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Abstract—In this paper, we present a novel two-step algorithm 

for segmentation of coronary arteries in CT images based on the 

framework of active contours. In the proposed method, both global 

and local intensity information are utilised in the energy 

calculation. The global term is defined as a normalised cumulative 

distribution function (CDF), which contributes to the overall 

active contour energy in an adaptive fashion based on image 

histograms, to deform the active contour to out of stationary points. 

Possible outliers, such as kissing vessel artifacts, are removed in 

post-processing stage by a slice-by-slice correction scheme based 

on multiple regions competition, where both arteries and kissing 

vascular structures are identified and tracked through the slices. 

We demonstrate the efficiency and the accuracy of the proposed 

technique on both synthetic and real datasets. The results on 

clinical datasets show that our method is able to extract the major 

branches of arteries with an average distance of 0.73 voxels to the 

manually delineated ground truth data. In the presence of kissing 

vessel artifacts, the outer surface of the entire coronary tree, 

extracted by the proposed algorithm is smooth and contains fewer 

erroneous regions, originating in the kissing vessel artifacts, as 

compared to initial segmentation. 

 

Index Terms— Level sets; CT; Coronary Artery; Segmentation; 

Kissing Vessel Artifacts; Multiple regions competition 

I. INTRODUCTION 

eliable and correct vessel segmentation is invaluable in the 

diagnosis of vascular disease, as it is a crucial and essential 

step for quantitative vessel analysis. Since their introduction as 

a means of front propagation based segmentation methods, 

active contour models have been extensively studied. Existing 

approaches can be categorised in two groups, in terms of the 

image driven energy, namely, edge based and region based 

models.  

The application of edge based models to image segmentation 

was pioneered in [1], where active contours are represented 

using geodesic formulations. In these methods, the front 

evolution is terminated using image gradient information, and 

therefore, they are robust to region inhomogeneities but 

sensitive to image noise and contour initialisation. Statistical 
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shape priors [2, 3], serving as external constraints in the active 

contour energy functional, are usually employed to improve the 

overall segmentation results of the edge based models, 

particularly in the case where intensity features are ambiguous. 

Contrary to edge-based models, which characterise image 

content based on a small neighbourhood of pixels, region-based 

methods, relying on global information obtained from image 

regions, are more robust to weak image gradients at the edge 

locations and image noise. The use of region based active 

contour models was firstly reported by Chan and Vese [4], who 

proposed an active contours model based on a simplified 

Mumford-Shah [5] functional. In their method, image regions 

are represented by their mean intensities. Hence, their method 

cannot distinguish objects with similar mean intensities but 

different variances. Exponential parametric models and 

non-parametric methods were later introduced to model 

complex intensity distributions [6, 7]. The aforementioned 

methods, however, are based on global intensity statistics, 

which are inefficient, when regional statistics are spatially 

varying across the image. Localised approaches [8-11], 

estimating regional statistics in a neighbourhood of the active 

contour, have recently emerged to address this problem. By 

introducing a localised kernel, such models are more robust to 

local intensity variations and can therefore improve the overall 

segmentation results under changing brightness conditions. 

However, segmentation based on local decisions alone may not 

suffice to drive the contour to terminate at the desired 

boundaries, since it may be trapped in undesired local stationary 

points. Moreover, the selection of appropriate scales for the 

localisation poses additional difficulties. We refer the reader to 

[12] and the references therein for the comprehensive review of 

the active contour based segmentation. 

Another issue in the segmentation of vascular structures in 

angiography images is the so called “kissing vessel” artifacts 

[13], where vessels are in close proximity to each other. This is 

a partial volume effect, often encountered in angiograms [14], 

which may result in artificial vessel junctions, thus distorting the 

geometry of the vessel. Wong and Chung [15] proposed tracing 

the centrelines of vessels and segmenting their cross sections 

based on a probabilistic vessel axis tracing framework. Their 

approach accommodates the engagement of user’s interaction to 

produce desired traces through the abnormal regions, which 

contain kissing vessels, lesion vessels (e.g., stenosis) and vessel 
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junctions. The final segmentation in such regions is thus derived 

from the continuous vessel axis based on the cross sections.  

The contributions of the present work are two-fold. Firstly, 

we propose a new active contour based algorithm, which utilises 

both global and local intensity statistics to segment coronary 

arteries in CT angiographies. The application of local intensity 

information allows for accommodating uneven brightness 

distributions over the image. The global energy, designed as a 

normalised cumulative distribution function (CDF) based on the 

histogram of the input images, ensures that the contour evolves 

towards the desired boundaries without being trapped in local 

stationary points. Secondly, we develop a novel slice-by-slice 

correction scheme based on multiregion competition algorithms 

to suppress kissing vessel artifacts, which are not normally 

addressed in conventional segmentation approaches. To the best 

of our knowledge, the majority of the work published so far 

does not consider the effect of kissing vessel artifacts. However, 

such artifacts are inherent in coronary CT angiograms and 

should be addressed to produce morphologically correct vessel 

segmentations for other radiological tasks. Following this 

introduction, the proposed method is described in Section II. 

Next, experimental results on both synthetic and clinical 

datasets, demonstrating the efficiency and application of the 

proposed approach, are provided. Finally, the conclusions of 

this work and future research directions are presented in Section 

IV. 

II. METHODS 

In this section, we present an active contour based method for 

segmentation of the coronary arteries in 3D CTA images, where 

both global and local intensity information are utilised in the 

energy calculation. We compute the regional statistics locally, 

in the neighbourhood of the active contour, to deal with varying 

image brightness. The global intensity information, on the other 

hand, is utilised to evolve the contour to the desired boundaries 

without being trapped in local minima. The proposed algorithm 

is implemented using a Bayesian probabilistic framework to 

incorporate the two homogeneity constraints. Possible outliers, 

such as kissing vessel artifacts, are removed in the subsequent 

stage through a novel slice-by-slice correction scheme based on 

multiregion competition, where both arteries and kissing vessels 

are identified and tracked through the axial slices.  

 

A. Modelling Regional Statistics 

We commence our analysis by modelling the histogram of 

coronary CT images using a Gaussian Mixture Model (GMM) 

in a similar way as described by Yang and her co-workers  [16], 

where three Gaussian functions were used to approximate the 

intensity distribution of the background (i.e., the air in the 

lungs), soft tissues and blood filled regions, respectively. The 

parameters for each class are determined by the Expectation 

Maximisation (EM) algorithm. By utilising prior anatomical 

knowledge that coronaries are located on the outer surface of the 

heart, we neglect the class corresponding to the air to obtain a 

bi-modal histogram (see Fig. 1(b)). The first peak (T1) in the 

fitted histogram corresponds to the soft tissues in the heart. We 

therefore assume that voxels with intensity values less than T1 

belong to the background, while voxels with intensity values 

greater than this threshold are considered as potential objects of 

interest (i.e., blood-filled regions).  

Based on the fitted histogram, we assign each voxel of the 

image with a fuzzy label, measuring the probability of the voxel 

belonging to the object, through the application of a labelling 

function.  In this research, we formulate the labelling function as 

a normalised CDF of the histogram. We normalise the labelling 

function between -1 and 0 for voxels with intensity values 

between 0 to T1, and bound the output of the function between 0 

and 1 for the input voxels with intensity values greater than T1. 

Let g(t) represent the PDF of the fitted histogram, as shown in 

Fig. 1(b). The label function is defined as a normalised CDF of 

the fitted histogram as: 
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                     (a)                                             (b) 

Figure 1.  The histogram of the CTA image. (a) The histogram (blue) and the 

fitted mixture model (red) of the CTA image. (b) The fitted histogram within 

the heart region. 

Let Ox denote a neighbourhood with a radius r centred at x. 

The localised image, Ox, can be partitioned into two sub-regions 

by the active contour, i.e., the regions inside and outside the 

active contour, respectively. Here, we define the probability of a 

voxel being classified to the region Ωi as follows: 
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where {Ωi ⋂Ox | i = 1,2} denote the regions inside and outside 

the contour within the localised image Ox, centred at x with a 

radius r. I(y) is the image intensity at y, μi and σi represent the 

mean and the variance derived from the region Ωi, respectively. 

As previous discussed, global statistics are robust to local 

spurious features, while local information is capable of dealing 

with spatially varying brightness in the image. In order to 

incorporate their advantages, the labelling function is designed 

to be a normalised CDF of the fitted histogram, rather than the 

probability density function (PDF) as defined in Yang et al. 

model [16]. By doing so, the distal segments of the arteries, 

usually exhibiting relatively lower intensities and less contrast 

to the background, would be assigned with labels which are 
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close to zero (i.e., |L(x)| →0). In these regions, the global energy 

term will contribute less to the overall energy functional, and 

thus, the contour will evolve mainly based on the local energy 

information. On the other hand, when the contour is located in 

homogenous regions or unwanted local minima, the global 

energy term is able to provide additional force to drive the front 

to evolve away from these stationary points. 

B. Active Contour Energy and Level Set Formulation 

In this section, we incorporate the two aforementioned energy 

terms using a probabilistic framework. Consider a contour C(x) 

representing the boundary of the object to be segmented. For 

each point along the contour, given the local image Ox and the 

labelling function L(y), the posterior probability of a voxel x 

being classified as belonging to the sub-region Ωi⋂Ox can be 

defined as: 
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where P(y ∈Ωi⋂Ox) is the prior probability of the current voxel 

being assigned to region Ωi among all the possible partitions 

within the local image Ox. This term can be ignored, if equal 

probabilities are assumed for all partitions of the image. 

P(I(y),L(y)) denotes the joint probability density distribution of 

the gray level value I(y) and the labelling function L(y), which 

are independent of the segmentation of the image and can 

therefore be neglected. We assume that the voxel labels and the 

regional gray level intensity distribution are independent. The 

posterior probability for each voxel can then be computed as:    

     )|)(()|)(()|)(),(( xxx yyyyyyy OLPOIPOLIP iii    (4) 

The prior probability of P(I(y)|y∈Ωi⋂Ox) has been defined in 

(2). In order to compute the posterior probabilities in (4), the 

prior probability of the labelling function should be known. In 

this research, we model the prior probability distribution of the 

labels as:  
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represents the weighting kernel, which is a decaying function of 

the distance between x and y. v is the overall weight, which 

determines the influence of the labels on the segmentation, and 

R(y) is a normalised Boolean function indicating whether the 

current voxel y is located inside the contour C(x) within the 

local image Ox: 
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According to (5), when a voxel, located at position x, is 

classified as belonging to the object, i.e., R(x) =1, then a point y 

in its vicinity has a high probability of being marked as 

belonging to the object (i.e., L(y) →1) and is less likely to be 

considered as background (L(y) →-1).  

Let ϕ denote the embedded level set function, and assume that 

the level set function takes positive values in the interior of the 

contour, and is negative for regions outside of the zero level set. 

To achieve the active contour segmentation, we need to define a 

contour C(x) that minimises the energy along the contour over 

the image domain. We denote H(·) to be the Heaviside function, 

and then the active contour energy can be formulated as: 

  

dxH

dxMdOLP

OIPHE

ii

i

i
xi



 










|))((|                                

))}((])|)((log                                

)|)(([log{))(('
2

1

x

yyyy

yyx

x

x












 (7) 

where M1(ϕ (y))=H(ϕ) and M2(ϕ (y))=1-H(ϕ), H´ denotes the 

derivative of the Heaviside function. The first term on the right 

hand side of (7) is the negative logarithm posterior probability 

defined in (4), which would be minimised when the active 

contour is located on the desired boundaries. While the second 

term estimates the length of the zero level contour of the level 

set function, which enforces smoothness in the resulting 

contour. The constant μ controls the contribution of this 

smoothness term to the active contour functional. The 

associated Euler-Lagrange equation of (7) is defined as: 
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where P1 and P2 were defined previously in (2). δ(·)  denotes the 

Dirac delta function, which is defined as the derivative of 

Heaviside function H(·). 

 

         
                        (a)                                        (b)  

Figure 2.  Illustration of ‘kissing vessel’ artifacts present in coronary CT 

images. (a) 3D surface reconstruction of the coronary arteries with a touching 

non-arterial vessel (shown by the arrow), (b) The cross sectional image taken 

from the volume, and the close up image of the outlier vessel. The cross 

sectional segment of the non-arterial vessel appears (shown by the arrow) 

darker than the artery. 

C. Slice-by-Slice Correction 

The segmentation results obtained in the first stage of 

processing is nearly optimal. However, due to the complexity of 

medical images and the associated artifacts, the resulting images 

may contain some outliers, such as kissing non-arterial vessels 

(see Fig. 2). In order to remove these erroneous segments, a 

slice-by-slice correction scheme was applied to the resulting 

images obtained in the first stage of the segmentation. As it can 

be observed in the zoomed image in Fig. 2(b), the non-arterial 
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vessel appears darker than the coronary artery, and thus, it can 

be potentially segmented through a multiple regions based level 

set model. In region-based models, the active contour energy 

can be considered as the sum of two types of forces, namely, the 

shirking force and expanding force, respectively. The shrinking 

force, derived from image regions inside of the contour, is 

always negative. It tends to exclude the current point from the 

interior areas of the contour. The expanding force, on the other 

hand, is always positive, which tries to move the contour 

outwards in order to include the current point into the resulting 

segmentation. In this paper, we propose a modification to Brox 

and Weickert's evolution scheme [17], to let the active contour 

will evolve according to two-phase energy (competing with 

itself), when there is no competition nearby. When multiple 

contours are present in an interface, the points in the interface 

would move together, subject to the strongest force across all 

the regions. The proposed evolution equation is defined as 

follows:  
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where ek,1 and ek,2 represent the active contour energy derived 

from regions within the interior and the exterior of the k-th level 

set function, respectively. Pk,i denotes the posterior probability 

of a voxels, x, being classified as belonging to image regions 

Ωi⋂Ox by the k-th level set function, defined previously in (4).  

   To identify kissing vessels and remove them from the first 

stage of the segmentation, we assume that the coronary arteries 

can be modelled as a tree structure, and the transaxial cross 

sectional segments of the artery taken from the top to the bottom 

can only split but not merge over the transaxial images. The 

procedure begins by finding the first slice, which contains the 

coronary artery, as shown in Fig. 3(a). Next, we assign each 

connected object to a level set function in the starting slice and 

perform 2D active contour segmentation according to evolution 

equation in (8). To identify the presence of the kissing vessels, 

for each axial slice of the CT data, we compare the resulting 2D 

segmentation obtained from the previous slice against the initial 

segmentation defined in the first stage of the processing. If there 

is a component that does not touch any known segments of the 

tracked artery, then the object is considered as a kissing vessel 

structure. Fig. 3(b) shows the resulting 2D segmentation (red 

contours) obtained at the slice before the presence of the kissing 

vessels, while the initial segmentation at this slice is illustrated 

in Fig. 3(c). It can be seen that the kissing vessel (arrowed) in 

this slice is not connected to any known objects. Hence, this 

object is considered as the kissing vessels and a level set is 

assigned to it (shown in green contour in Fig.3 (d)). In the next 

step, both of these two vessels will be evolved based on (9) and 

tracked (see Fig. 3(e)). The process is repeated until the last 

slice containing the artery is reached. 

     
(a)                         (b)                        (c) 

     
           (d)          (e)             (f) 

Figure 3.  Transaxial slices illustrating the slice-by-slice correction algorithm. 

(a) The first slice containing the artery (delineated in red). (b) The artery is 

tracked through the slices. (c) The binary image obtained from the first stage 

segmentation; this is the first slice containing the kissing vessel (shown by the 

arrow), (d) and (e) The kissing vessel is identified and tracked over the slices 

(depicted by the green contours). (f) The same transaxial slice as shown in (e) 

depicting the initial segmentation.  

III.         EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we apply our method to both 2D synthetic and 

3D and clinical images to analyse its efficiency. Firstly, we 

compare the proposed method with active contour models based 

on global and local information alone, to demonstrate the 

benefits offered by using both local and global statistics on a 2D 

synthetic image. Then, we validate the proposed method in 3D 

CTA images and compare it with Yang et al., method [16]. The 

tuning parameters of the proposed method were empirically 

determined and fixed throughout the experiments. In particular, 

we choose the smoothness weight μ to be equal 0.2, while the 

global energy factor v is set to 0.4. The radius of the localised 

image r is selected based on prior information regarding the size 

of the vessels to be segmented, which is equal to the maximum 

radius of the vessel of interest.  

A. Experiments on Synthetic Images 

Firstly, we use the synthetic image shown in Fig. 4(a) as an 

example to demonstrate the benefits offered by the proposed 

algorithm. The image consists of two elongated objects with 

distinct intensity distributions, which are close to each other. 

Gaussian noise was added to the images for a simplified 

approximation of the noise model in CT images.  

The comparison of the efficiency in segmenting the object is 

conducted between the proposed algorithm, the localised CV 

model and Yang et al., method. Four metrics were used to 

validate the segmentation results, specifically: 
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                     (a)                                              (b)   

Figure 4.  A synthetic image to evaluate the efficiency of the proposed 

method. (a) Illustration of the synthetic image, (b) Histogram distribution.  

   
 (a)                          (b) 

     
 (c)                                 (d) 

Figure 5.  Comparison of the segmentation results obtained using various 

methods. (a) Initialisation, (b) Yang’s model results, (c) Localised CV method 

results, (d) Results of the proposed algorithm.  

TABLE I 

COMPARISON OF THE 2D SYNTHETIC IMAGE SEGMENTATION RESULTS FOR 

VARIOUS METHODS 

Rate Yang et al. Method Localised 

CV  

Proposed Method 

TP (%) 94.96 95.91 94.61 

FN (%) 5.040 4.590 5.390 

FP (%) 103.3 27.88 4.430 

OM 0.6361 0.8571 0.9507 

 

The ground truth data NR is defined as a binary image with 

voxels labelled to one for the object and zero for others. NB 

indicates the pixels/voxels, which are segmented as the object 

by the aforementioned algorithms. TP, FN and FP denote the 

true positive, false negative and false positive metrics, 

respectively. OM represents the overlapping metric defined in 

[18], which is close to 1, when the segmentation is well matched 

to the reference ground truth, and approaches to zero when the 

results have no similarity to the reference. 

In Fig. 5, we present the segmentation results obtained using 

the previously reported algorithms and the proposed method for 

a 2D synthetic image. Contour initialisation is shown in Fig. 

5(a). Fig. 5(b) shows that Yang et al. model, based on global 

intensity information alone, segments the two objects as a 

whole. The localised CV method achieves a better segmentation 

result. However, as shown in Fig. 5(c), there are regions which 

have been incorrectly segmented. The proposed method 

successfully extracts the desired object, as shown in Fig. 5(d). 

The quantitative validation of these results is shown in Table I. 

It can be seen that the TP rate of the proposed method is slightly 

lower than the other two models. This is due to the fact that both 

of these methods over-segment the object, where more pixels 

are classified as belonging to the object, thus resulting in a 

higher TP rate. However, in terms of the FP and OM metrics, 

the performance of the proposed method is superior.  

B. Experiments on Real Clinical Images 

Eight coronary CT volumes were acquired from St Thomas 

and Guys Hospitals, London, UK. Two of them were obtained 

with a 16-slice CT scanner (Brilliance, Philips), and the 

remaining six volumes were acquired with a Philips ICT-256 

workstation. In addition, another four coronary CT studies were 

obtained from a public database [19]. The mean size of the 

images is 512 ×512 × 286 with an average in-plane resolution of 

0.40 mm × 0.40 mm, and the mean voxel size in the z-axis is 

0.42 mm. The ground truth data were obtained through manual 

delineation. Since the manual segmentation procedure is very 

time consuming, only four major branches, i.e., right coronary 

artery (RCA), left anterior descending artery (LAD), left 

circumflex artery (LCX), and one large side branch of the 

coronaries, were chosen for evaluation. In addition to the 

metrics defined in (10), the Hausdorff distance [20] was applied 

to measure the difference between the segmented vessel surface 

and the manually delineated ground truth data. The Hausdorff 

distance is defined as: 
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where X,Y are the vertices of the mesh surfaces of the arteries 

corresponding to the segmentation results and the ground truth, 

respectively, and d(x,y) measures the Euclidean distance 

between points x and y belonging to vertices X and Y. The mesh 

surface of the arteries was obtained by extracting the isosurface 

of the binary volume obtained from the segmentation/manual 

delineation, using the marching cube algorithm [21] .  

In Fig. 6 and Tables II and III, we present the comparison of 

the resulting segmentation results obtained using the proposed 

method and Yang’s method with respect to the ground truth 

data. The initial surface for the level set evaluation was obtained 

using a Hessian-based vessel enhancement filter. The tuning 

parameters of both of the two techniques were empirically 

determined from a training set, which consisted of three CT 

studies randomly selected from the available datasets. The 

proposed approach was implemented in MATLAB (R2010b) 

on a standard specification PC (Dell Precision T3500, Inter(R) 

Xeon(R) CPU at 2.67GHz), and the average execution time was 

found to be 80 seconds for extraction of the entire coronary 

trees. Yang et al., on the other hand, requires roughly 45 

seconds to carry out the same process. 

As shown in Table II, the mean TP rate and OM metric for the 

proposed method were found to be 91.1% and 0.776, 

respectively, which indicate that the proposed method is able to 

correctly extract the major branches of the coronary arteries. 

Meanwhile, high values of the FP rate (39.2% on average) mean 

that the proposed method over-segments the arteries (see Figs. 

6(a) and (c)). This is because the ground truth data were 

modelled as circular cross sectional tubes, which leads to the 

resulting ground truth data under-estimating the true vessel 
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surface. However, in terms of the voxel-wise measurement, the 

average value of the Hausdorff distance metric was found to be 

0.73 voxels, which implies that the proposed method is capable 

of extracting the luminal surfaces of the arteries with sub-voxel 

accuracy.  

 
TABLE II   

 COMPARISON OF THE 3D CTA SEGMENTATION RESULTS BETWEEN THE 

PROPOSED METHOD AND YANG’S TECHNIQUE  

Rate 

Methods 

Proposed Method 

Mean 

Yang et al. Method 

Mean 

TP (%) 91.1  53.8 

FP (%) 39.3 16.9 

OM 0.776 0.556 

Mean(dH) 0.730 1.07 

 

TABLE III -A    

COMPARISON OF THE 3D CTA SEGMENTATION RESULTS BETWEEN THE PROPOSED 

METHOD AND YANG’S TECHNIQUE: DATASETS #1-6 

Rate Methods 
3D CTA Images 

1 2 3 4 5 6 

TP (%) 
Proposed 94.1 93.9 93.1 92.8 97.0 93.2 

Yang’s 47.6 50.3 52.1 25.6 89.9 87.9 

FP (%) 
Proposed 32.4 28.4 43.1 38.3 45.5 29.4 

Yang’s 1.31 8.39 13.6 3.16 60.7 68.9 

OM 
Proposed 0.831 0.731 0.791 0.803 0.800 0.837 

Yang’s 0.639 0.634 0.629 0.397 0.717 0.685 

Mean(dH) 
Proposed 0.623 1.02 0.670 0.833 0.623 0.782 

Yang’s 0.865 1.35 1.00 1.09 0.767 0.891 

 
TABLE III -B    

COMPARISON OF THE 3D CTA SEGMENTATION RESULTS BETWEEN THE PROPOSED 

METHOD AND YANG’S TECHNIQUE: DATASETS #7-12 

Rate Methods 
3D CTA Images 

7 8 9 10 11 12 

TP (%) 
Proposed 90.1 89.0 95.3 80.5 86.5 87.8 

Yang’s 51.2 49.2 88.4 53.6 23.4 26.7 

FP (%) 
Proposed 41.6 38.6 51.8 35.2 42.2 44.7 

Yang’s 3.16 1.57 16.3 10.0 9.55 6.18 

OM 
Proposed 0.778 0.782 0.713 0.744 0.756 0.755 

Yang’s 0.663 0.318 0.580 0.655 0.353 0.402 

Mean(dH) 
Proposed 0.759 0.719 0.620 0.561 0.769 0.783 

Yang’s 1.07 1.63 0.976 1.15 1.24 0.861 

 

In terms of the FP rate, Yang et al. method performs better 

than the proposed approach, with the average value found to be 

16.9%. However, we note that the TP and OM metrics of their 

segmentation are significantly lower than the proposed one, 

with the average values being 53.8% and 0.556, respectively. In 

addition, by observing the statistics presented in Table III, we 

note that both the TP rate and the OM metric vary significantly, 

with the TP rate ranging from 23.4% to 89.9%, while the 

minimum and maximum values of the OM metric were found to 

be 0.318 and 0.717, respectively. These observations imply that 

Yang et al. algorithm under-segments the coronary arteries and 

is only able to extract partial branches of the arterial tree, which 

are illustrated in Figs. 6(b) and (d). The reason for this is that 

Yang et al. method, solely relying on global intensity statistics, 

is sensitive to image contrast and brightness changes. Their 

model can correctly extract the arteries when the intensity 

densities are evenly distributed along the vessel. However, 

uneven intensity distribution is commonly encountered in 

coronary CTA, because of the concentration attenuation of the 

contrast agent and acquisition noise. In this case, Yang et al. 

method can only extract the proximal segments of the arteries, 

since distal segments have relatively lower intensity values and 

lack image contrast.  

    
     (a)                                          (b) 

            
    (c)                                           (d) 

Figure 6.  Comparison of the resulting segmentation for datasets #5 and #11 

obtained using the proposed model (a) and (c), and Yang’s method (b) and (d), 

with respect to the ground truth data. The blue surface represents the manually 

delineated ground truth data, while the resulting segmentations are shown in 

red. 

TABLE IV 

COMPARISON OF THE SEGMENTATION RESULTS BEFORE AND AFTER THE 

APPLICATION OF THE CORRECTION SCHEME DATA #7 

Rate  Before correction After correction 

TP (%) 82.4 85.3 

FN (%) 17.6 14.7 

FP (%) 294 22.9 

OM 0.380 0.820 

 

Two CTA studies were affected by the presence of kissing 

vessels (i.e., datasets #7 and #11). The slice-by-slice correction 

scheme was subsequently applied after the first stage of the 

segmentation. Since the kissing vessels only affect the coronary 

arterial tree locally, we only conduct our analysis on the vessel 

segments containing kissing vessels. As illustrated in Fig. 7, the 

kissing vessel artifact was identified next to the distal LCA 

branch, between cross section A and C. To evaluate the 

performance of the proposed algorithm, we firstly slice the 

vessel segment by a sequence of 2D planes, which are normal to 

the course of the vessel, as shown in Fig. 7(a). Then, we 

compare the resulting segmentations obtained with and without 

the slice-by-slice correction against manually delineated 

boundaries on these cross sectional images. As depicted in Fig. 

7(b), the bounds of the artery before and after the application of 

the correction are depicted in black and blue, respectively, and 

the manual segmentation is shown in red. Fig. 8 illustrates the 

3D surface reconstruction image before and after applying the 

slice-by-slice correction algorithm, it can be seen that the false 

positives, i.e., the kissing vessels (arrowed), is removed from 

the first stage of the segmentation. Four metrics, as defined in 

(10), were used to quantify the performance of the algorithm, 

and the results are shown in Table IV. It can be seen that the FP 

rate, which is primarily caused by the kissing vessels, is 
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dramatically reduced (from 294% to 22.9% for these segments 

containing kissing vessels, e.g., the vessel segments shown in 

Fig. 7, between cross sections A and C), through the use of the 

slice-by-slice correction algorithm. 

 

 

                              (a)                                            (b) 

Figure 7.  The efficiency of the proposed slice-by-slice correction algorithm 

demonstrated by cross sectional view image. (a) 3D volume data, and (b) Cross 

sectional view image randomly taken from the 3D volume data (cross section 

B), illustrating the resulting segmentations with and without the correction step 

are shown in blue and black, respectively. The red contour represents the 

reference boundaries of the vessel obtained through manual delineation. 

             
                          (a)                                             (b) 

Figure 8.  The comparison (a) before and (b) after the correction process 

(datasets #7). The touching non-arterial vessel (arrowed) has been removed. 

IV. CONCLUSIONS AND FUTURE WORK 

Accurate extraction of coronary arteries is important for 

assessment of arterial lesions in clinical practice. In this paper, a 

novel two-step algorithm was proposed to efficiently segment 

coronary arteries from CT images by making use of both global 

and local intensity statistics. The global energy was designed as 

a normalised CDF based on the histogram of the input image 

data, which adapts its contribution to the overall active contour 

energy by considering the spatial-varying properties of the 

artery. The kissing vessels are identified and tracked throughout 

axial slices in the second stage of the segmentation based on a 

multiregion competition algorithm. Experiment on synthetic 

image has shown that our method is capable of segmenting the 

object of interest without being trapped by local stationary 

features. For the clinical data, the results show that the proposed 

approach is able to correctly segment the major branches of the 

arterial tree, with an average distance to the manually delineated 

ground truth of 0.73 voxels. Furthermore, in the presence of 

kissing vessel artifacts, the performance of the segmentation is 

significantly improved by the slice-by-slice correction scheme.  

In terms of future research, we intend to conduct quantitative 

coronary analysis based on the segmented images and construct 

patient-specific arterial models, which would further assist the 

clinician in diagnosis of coronary disease.  
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