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Abstract

We study the impact on market liquidity of the introduction of a penalty for
high order-to-trade ratios (OTRs), implemented by the Italian stock exchange
to curtail high-frequency quote submission. We find that the fee is associated
with a collapse in the quoted depth of the stocks that make up the bulk of trad-
ing in Italian equities and an increase in price impacts of trading across the
treated stocks. Spreads do not change, however. Stocks from a pan-European
control sample show no such liquidity changes. Thus, the Italian OTR fee
had the effect of making Italian stocks markets more shallow and less resilient.
Large stocks are more severely affected than midcaps. We also find evidence
of a limited decrease in turnover. Consolidated liquidity, constructed by aggre-
gating across all electronic trading venues for these stocks, decreases just like
that on the main exchange. Thus, liquidity was not simply diverted form the
main exchange, it was reduced in aggregate.
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Enforcing order-to-trade ratios (OTRs) on a trading venue involves financially pe-

nalising individual member firms if the orders to buy or sell they enter do not lead

to a “sufficient” number of trades. As OTRs attack High-Frequency Trading (HFT)

at its root – targeting the high number of “messages” that high speed participants

rely upon – regulators currently consider them as one of the policy tools of choice

to reduce the incidence of HFT. For example Mary Schapiro, then Head of the US

Securities and Exchange Commission, indicated that the SEC was considering imple-

mentation of an OTR penalty scheme.1 The EU Parliament and Commission have

gone further: the current draft of the piece of legislation that will regulate trading

across all EU exchanges from 2016, the “Markets in Financial Instruments Directive”

(MiFID), includes across-the-board implementation of OTRs.2

In fact, the national regulators of some of the largest EU countries have decided not to

wait and have either already implemented OTRs or intend to do so. This includes the

Italian stock exchange, which is the focus of our study. On April 2nd, 2012, the Milan

Borsa, the historical stock exchange of Italy and part of the London Stock Exchange

Group, implemented an order to trade ratio applying to all its member firms. This

event presents us with a direct way of estimating the link between messaging activity

and liquidity.

There is little doubt that a measure causing high-frequency quoting to contract has

the potential to alter pricing, trading and liquidity processes in a significant way.

By all accounts, high-frequency flow has become very significant in today’s markets.

The Tabb Group, a consultancy, estimated the incidence of High-Frequency trading at

39% for Europe in 2012 (reported in“Understanding High Frequency Trading”, World

Federation of Exchanges report, 29 May 2013). Consistent estimates are available for

1Financial Times, 28 February and 10 April 2012.
2Its Article 51(3) states that “Member States shall require a regulated market to have in place

effective systems, procedures and arrangements to ensure that algorithmic trading systems cannot
create or contribute to disorderly trading conditions on the market including systems to limit the
ratio of unexecuted orders to transactions that may be entered into the system by a member or
participant (...).” Proposal for a Directive of the European Parliament and of the Council on
markets in financial instruments repealing Directive 2004/39/EC of the European Parliament and
of the Council, COM(2011) 656 final, 20.10.2011.
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a few markets where research-based evidence is available: In Nasdaq data, Brogaard,

Hendershott, and Riordan (2013) find that HFT makes up about 42% of traded

volume in large stocks over their sample period, a figure that they indicate does not

include all HFT flow. In Nasdaq-OMX data, Hagströmer and Nordén (2013) report

an interval estimate of 26-30% for pure HF firms, and a total amount of HF trading

that could be as high as 52%. (The first figures do not include firms using a mix

of low and high frequency strategies.) The effect of a reduction of high frequency

quoting is not clear however. If those using large numbers of messages are making

markets, then liquidity might decline with the imposition of an OTR. If instead,

firms with high messaging rates impose adverse selection costs on other participants,

then constraining this behaviour might attract other traders back to market and thus

increase liquidity.

We find that the introduction of the OTR penalty scheme is associated with a marked

deterioration in quoted depth for Italian stocks. Depth declines particularly steeply in

large stocks that make up the bulk of turnover in Italian equities. Price impacts from

trading are significantly increased following the introduction of the OTR penalty

for all Italian stocks. Measures of quoting and trading activity also fall. Perhaps

more surprisingly, we also find that the deterioration of liquidity on the historical

exchange extends to measures of consolidated liquidity (where consolidated liquidity

is measured from aggregated orders across the historical exchange and alternative

trading venues). Thus, activity did not simply move away from Borsa Italiana and

towards venues such as Chi-X, but liquidity was reduced in aggregate. This suggests

that the historical exchange may dominate price and liquidity discovery. Another

interpretation is that only a limited number of liquidity suppliers make markets across

all venues, resulting in the maintenance of liquidity at less than competitive levels

(see Biais, Bisière, and Spatt (2010) for evidence along these lines from US markets).

In the next Section we discuss the motivation for the Italian OTR scheme. In Section

2, we review relevant theory and evidence and formulate some testable hypotheses.

In Section 3 we give details on the data we use and the market from which it is drawn.
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Section 4 explains our modelling approach and Section 5 presents estimation results.

1 Policy debates and stated goals of the Italian

OTR scheme

There is widespread interest in OTRs on the part of politicians, regulators and ex-

changes. Policy-makers seem driven by the intuition that there must be something

untoward in the submission of a large number of orders that do not lead to execu-

tions. With such low probability of execution, high-frequency orders must either have

lifetimes so short that they can’t be traded against or be too far from current prices

to be “bona fide” (O’Hara, 2010). At best, such orders are dismissed as not consti-

tuting genuine liquidity, while at worst, extremely short-lived quotes raise suspicions

of abusive behaviour, the most obvious example being “quote-stuffing” (attempts to

flood the systems of other firms with order entries and cancellations to hide manip-

ulative behaviour.) Other manipulative strategies such as “layering” the order book

or “spoofing” also rely on the submission of multiple orders which are subsequently

cancelled.3

These views are exactly what inspired the Italian OTR scheme – widely reported in

the financial press to have been implemented at the request of the national regulators

CONSOB (see Financial Times, February 20, 2012, and The Trade, February 27,

2012.) To a Finance commission of the Italian Senate, the Head of CONSOB gave

more details on the rationale behind the fee, stating that“the ability of high frequency

traders to suddenly cancel orders placed before they are executed, displacing other

investors, can generate a misleading representation of the actual depth of the order

book, creating favorable conditions for market manipulation.” He went on to say that

3The European regulator ESMA defines layering and spoofing as “submitting multiple orders
often away from the inside on one side of the order book with the intention of executing a trade on
the other side of the order book. Once that trade has taken place, the manipulative orders will be
removed.” In ESMA, “Guidelines – Systems and controls in an automated trading environment for
trading platforms, investment firms and competent authorities”, 24 Feb 2012.
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“the increase in the number of orders placed in the trading systems and in the order-

to-trade ratio may endanger the regular course of the negotiations and the integrity of

markets, given the limits on capacity and the reliability of the infrastructure.”4 This

confirms that the OTR scheme was explicitly directed at HF traders and motivated by

concern that their rates of order entry may disrupt markets and foster manipulation.

2 Priors and testable hypotheses: HF trading and

liquidity

Whether an OTR will enhance or reduce liquidity depends on the net contribution

to liquidity of those HF agents targeted by the OTR as using the highest speed

(equivalently, the lowest latency). We review both sides of the argument.

An OTR may reduce the likelihood of outright manipulation. If the highest speed

targeted by the OTR is chiefly used for manipulative purposes (e.g. through quote

stuffing or layering of order books), then the OTR may improve liquidity by reducing

the costs that fast traders impose on slower participants. We have no estimate of how

much HF flow might be abusive in nature because such behaviour is very difficult to

detect unambiguously, particularly in its high-frequency flavour.5 Few cases are pros-

ecuted successfully and fewer cases still are found to involve HF traders.6 However,

some academic work does raise the possibility that some HFTs engage in behaviour

that is consistent with manipulation. Gai, Yao, and Ye (2012) and Egginton, Van

Ness, and Van Ness (2013) find patterns consistent with quote-stuffing in their data.

Clark-Joseph (2013) finds that HF traders forecast the order flow of slower traders.

4“Audizione del Presidente della CONSOB Giuseppe Vegas, Senato Della Repubblica VI Com-
missione (Finanze)”, 26 June 2012, 54 p., Appendix 5, “High-Frequency Trading”, pp 39-40. (Our
translation.)

5There is a suspicion that regulators are overwhelmed by the amounts of data that today’s
markets generate and that they are lagging behind brokers and exchanges in respect of the skills
required to analyse the data. This view is expressed for example in “U.S. Securities and Exchange
Commission, Organizational Study and Reform”, Boston Consulting Group report, March 10, 2011.

6At the time of writing, we are aware of only three cases of successful prosecution of firms
considered HF traders: fines were imposed on Trillium Brokerage Services and Panther Energy
Trading in the U.S. and on Swift Trade in the U.K.
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When they know that liquidity is low and that a big non-HFT order is being worked,

then they trade in front of that order and increase the trading costs of slower traders.

Using Nasdaq data, Hirschey (2013) finds that HFTs trade in front of other traders

and forecast returns associated with price pressure of other traders. All of these ex-

amples of behavior (quote stuffing, anticipatory trading) will likely have the effect of

increasing the execution costs of slow traders, i.e. reducing realized liquidity.

One might also argue that, if HF traders are better informed than other market

participants, then if the OTR was to discourage them from participating in mar-

kets, adverse selection risk would drop and liquidity increase. Both Hendershott and

Moulton (2011) and Menkveld and Zoican (2014) report evidence of greater adverse

selection after systems upgrades that increase the incidence of HF trading by reducing

latency on the NYSE and NASDAQ-OMX respectively.

A counter-argument to this last point relies on the idea that an OTR may damage

liquidity due to the fact that HF traders may be acting as de facto market makers and

the OTR constrains those activities. Decomposing the costs of market making into

order processing costs, inventory risk and asymmetric information risk, one can argue

that an OTR would increase all of them. Order processing costs may mechanically

rise due to the OTR fee itself. Then, as the OTR limits a HF market-maker’s latency

advantage, it increases both the risk associated with carrying unwanted inventory and

the risk of being picked off by fast aggressive traders.7 Overall, limiting the ability of

HF market-makers to revise their quotes may reduce their participation in liquidity

supply or cause them to quote poorer prices and smaller sizes.

Finally, a separate argument is that the combination of automation and speed may

be a remedy to the issues of “limited attention” in human market-makers that are the

focus of a recent behavioural literature (Corwin and Coughenour, 2008; Boulatov,

Hatch, Johnson, and Lei, 2009). This work finds that human market-makers are

unable to give equal attention to all the stocks they deal in. As a result, their

7See Hendershott and Menkveld (2014) for a measurement of the economic significance of inven-
tory costs.
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liquidity provision is allocated unevenly, especially at times of increased activity:

Corwin and Coughenour (2008) find that market-makers submit fewer quote updates

than would be optimal in some of their assigned stocks, grant less price improvement,

and market efficiency is adversely affected. Again, the combination of automation

and speed provides potential remedies to this issue.

Consistent with these latter lines of reasoning, Hendershott, Jones, and Menkveld

(2011) Menkveld (2013) and Hasbrouck and Saar (2013) are examples of studies

reporting evidence consistent with greater speed allowing HF traders to narrow the

spread and improve liquidity.

2.1 Empirical evidence on the composition of HF activity

and on liquidity effects of trading regulations

How significant is liquidity supply as a proportion of HF activity and to what extent

would it be affected by an OTR? Using Nasdaq-OMX data where participants can

be identified, Hagströmer and Nordén (2013) report that market-making makes up

63 or 72% of HF business depending on the sample period, and in all cases over 80%

of all HF order submission. They also point out that “any regulatory policy directed

at HFTs as a group would primarily affect market-makers” as a result.

Intuition suggests that enforcement of an OTR seems likely to constrain HF market-

making more than other computerised trading activities such as statistical arbitrage

or execution of agency flow. Agency execution algorithms are designed to generate

executions (trades), and do not rely as heavily on speed as strategies considered“core”

HFT territory like stat arb and market-making do. The former can generate signifi-

cant quote “messaging” but executions are necessary for stat arb strategies to profit

from the mis-pricings that they identify. HF liquidity suppliers, on the other hand,

must revise their quotes to reflect the continuous arrival of macro and asset-specific

news, and to keep inventory risk to a minimum. Consistent with this, Hagströmer

and Nordén (2013) report that “market-making HFTs have higher order-to-trade ra-
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tios” than directional or other strategies. This suggests that market-making systems

may be the first to be revised under an OTR constraint, which is likely to reduce

voluntary HF liquidity supply more than other types of HF flow.

We are aware of one recent study that is closely related to ours, by Jorgensen, Skjel-

torp, and Odegaard (2014), who evaluate the implementation of a “message to trade”

ratio on the Oslo stock exchange. Intriguingly, they find no evidence of impact on

variables of liquidity and activity. Their results, considered with ours, may illustrate

how different calibrations of a constraint on order submission may have different

effects. Other evidence that we have seen is indirect, in that it did not involve imple-

mentation of an actual OTR. Gai, Yao, and Ye (2012) find that a reduction in the

trading latency permitted by an upgrade in Nasdaq’s IT infrastructure has led to an

increase in empirical order-to-execution ratios, which in turn had no effect on quoted

liquidity. Colliard and Hoffmann (2013) and Meyer and Wagener (2013) study the

implementation of a transaction tax in France in August 2012. Although the poten-

tial ability of such a tax to reduce the incidence of HFT is sometimes discussed, it is

not its main goal and it is a very different type of event to ours, as it targets trades

and not HF order submissions.8

2.2 Testable hypotheses

Quoted liquidity at the inside and beyond Existing estimates suggest that

market-making represents the bulk of HF activity, which itself makes up a large

proportion of total activity. The effect of the OTR will depend on whether the

constraint it places on genuine market making strategies dominates the improvement

in liquidity that might result from the reduction in HFT-generated adverse selection.

The bulk of extant empirical work suggests that the negative effect could dominate

here, causing liquidity to fall. In particular, the OTR may cause order submitters to

8In fact, Italy introduced a specific tax on high speed trading in the year after the OTR we study
was enforced. The French Government also introduced a specific tax on HF trading at the same
time as its general tax on transactions.
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curtail liquidity supply with low execution probabilities. This could reduce order book

depth away from the inside spread. A similar reasoning applies to price impact of

trades: it may increase (market resilience decrease) if the OTR hampers the ability

of fast liquidity suppliers to refresh their quotes when liquidity is depleted. Price

impacts might also rise if fast informed liquidity suppliers become fast, informed

liquidity demanders under the OTR. If the OTR reduces the ability of HF traders to

trade in front of other traders, price impacts might instead fall.

Activity The average trade size could be affected in opposite ways by an OTR.

Two effects may cause it to increase: First, high-frequency trading seems charac-

terised by small trade sizes (see, for example, Chordia, Roll, and Subrahmanyam,

2011). Hence under an OTR that reduces HF participation, trade sizes might in-

crease. Additionally, an OTR may encourage more impatient trading and liquidity

consumption rather than supply and one might expect HF traders to conduct the

same activity using fewer, larger trades. On the other hand, a decrease in depth

(increase in price impact) may force traders controlling their execution costs to trade

in smaller lots.

In terms of total trading activity, the effect of the OTR will depend on whether it

causes HFTs to withdraw from trading and whether slower traders might participate

more in less HFT-dominated venues. In fragmented markets, activity may simply

move to other venues which do not impose an OTR, leaving total turnover unchanged.

Cross-sectional effects The effect of the OTR in the cross-section of stocks re-

mains to be identified empirically. Anecdotal evidence from the financial press sug-

gests that HFT interest is focussed on the largest names in terms of sheer quoting

frequencies, but this neither indicates that their OTRs in those stocks are higher

nor that HF market-making leads to smaller improvements in the liquidity of smaller

stocks. A small amount of HF activity in midcaps may significantly reduce spreads,

for example, while in large caps, as spreads are already very tight due to high natural

8



trading interests, adding HF market makers to the mix may not improve liquidity

much. Alternatively, if HF market making was very limited in midcaps already, then

imposing an OTR could have little real effect on them but a detrimental effect on large

caps (through the constraints placed on market-making). Also, if order submission

becomes more expensive, liquidity suppliers may lose incentives to quote aggressively

in stocks where execution probabilities are smallest and focus on larger issues only.

This might lead to substitution of HF activity towards larger issues to the detriment

of mid-caps.

Fragmentation, competition between order books and consolidated market

quality The impact of an OTR on consolidated measures of liquidity and activity

will depend on two effects. First, does independent price and liquidity discovery

occur on the rival electronic order books? If venues are substitutable in terms of

their ability to contribute to price discovery, then the result of an OTR on one venue

should be a wholesale migration of HF quoting to an alternative market and little

effect on consolidated, market-level liquidity. Second, how keen is competition in

liquidity supply across venues? If only a limited number of liquidity suppliers operate

on both, they may be able to adopt rent-seeking (collusive) behaviour to maintain

liquidity at uncompetitively low levels on the smaller venues. A finding with exactly

this flavour was reported by Biais, Bisière, and Spatt (2010) for Nasdaq and Island

in the US. Further, if those demanding liquidity are constrained by technology, by

history or by mandate to seek execution on the historical main exchange then the

ability for liquidity supply to migrate to alternative venues is limited.

3 Market structure and data

The Italian stock exchange (Borsa Italiana), located in Milan and part of the London

Stock Exchange Group, operates a standard electronic order-driven system. The

trading day begins with a pre-opening auction phase that runs from 8 to 9 a.m.,
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followed by the main continuous auction phase between 9 a.m. and 5.25 p.m. During

the continuous periods, order execution is determined by the usual price and time

priorities. The market is closed by a batch auction at 5.30 p.m.

Over the sample period, the market share of electronic trading in Italian stocks held

by the Milan exchange stood at over 80% by value. The next largest competitor was

the newly merged BATS/Chi-X Europe with market share of roughly 15%, followed

by Turquoise (about 2%). Other markets are too small to mention. As such, at the

time, the Milan exchange had retained a much larger market share of total order flow

in its domestic equities than the historical exchanges of the UK, Germany or France

but a smaller share than the Spanish exchange.9

3.1 Features of the OTR scheme and preliminary evidence

The order-to-trade ratio is computed for each exchange member firm over all orders

they enter and the trades that result. The numerator includes all order entries,

irrespective of order type or price placement, of the proprietary or agency nature of

the order or of the phase of trading (opening and closing batch auctions or continuous

auction). For each firm, the ratio is calculated across its orders and trades in the

stocks belonging to the Milan exchange’s main segment called MTA. These 250 or

so stocks represent very close to 100% of total exchange market capitalization and

turnover by value.

From the ratio, the Italian exchange determines fees on a daily basis, thus reducing

the flexibility for a firm to engage in bursts of quoting activity on some days and

make up for those bursts on quieter days. There are three threshold ratios of 100:1,

500:1 and 1000:1 corresponding to a schedule of increasing fees (C0.01, C0.02 and

C0.025 per order respectively). That is, a firm having an OTR between 100:1 and

500:1 on a given day will pay 1 Euro cent (1.4 U.S. ¢) extra for each order entered

over 100:1. The fee increases to 2 cents per order for realised OTRs between 500:1

9Source: Thomson Reuters monthly market share reports, February to May 2012.
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and 1000:1, and then to 2.5 cents per order entry above 1000:1. An added condition

is that fees are capped at C1,000 per firm-day.

Whilst an OTR of 100 to 1 by firm-day may may represent a strict constraint for

some firms, a maximum fee of C1,000 does not, on the face of it, look large.10 In spite

of this, evidence generated by the Italian regulators (CONSOB) themselves, shows

that the OTR fee caused a sharp decline in realised OTRs (Caivano et al., 2012). In

the study, the authors compute order-to-trade ratios for all exchange member firms

over four months of data before imposition of the OTR fee. They find that seven

exchange members firms had average daily ratios that exceed the 100:1 threshold.

Out of perhaps 90 firms, four of them are clear outliers, the largest having an average

OTR of 1947 during the sample period. The authors then focus on 10 “pure-play”

HF firms that operate on the Milan exchange and report that four of them clearly

dominate activity, representing 90% of the trades conducted by the HF firms in their

sample. It is likely that the four firms that dominate trades are the same that are

outliers in OTR terms. Taken together, this suggests that the OTR fee applied to a

very small number of HF firms, to the exclusion of other agents.

The authors of the CONSOB study then show that the mean realised OTR on the

electronic system collapsed after introduction of the fee. The daily average OTR

shifted down from pre-OTR levels ranging between 30 and 200:1 to a level of 10:1 or

less under the fee. Caivano et al. (2012) also compare the notional fees that would

have been charged under the OTR scheme before its imposition, showing that only

3 firms would have contributed most of the fees and, further, that after the OTR

is introduced, fee revenue drops to more or less zero. Therefore the constraint had

much sharper teeth than financial considerations alone would suggest.

As noted above, the OTR was decided upon by CONSOB. The threat that they

would have asked for the penalties to be stepped up if they were not seen to make a

difference to the behaviour of member firms might have been very real. The exchange

10We are unable to proxy the actual fees levied by the exchange as a result of the ratio as it would
require data identifying the member firm behind all order submissions and trades.
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is perfectly able to communicate this to the few members concerned via unofficial

channels. We can only surmise that those few HF firms exceeding the OTR threshold

before the fee have thought it wise not to provoke the regulator into further action.

(They were not completely successful in that respect, though, as Italy introduced a

specific tax on low latency trading in October 2013. We suspect that at the time of

the OTR, the regulators had already sent clear signals to HF participants that they

meant business.)

3.2 Data and sample construction

We build our treated and control samples from the components of the Stoxx Europe

600 index, which comprises large, medium and smaller firms from across the Eurozone.

We select all Italian companies that were constituents of this index as of the beginning

of 2012 and with market caps above Euro 1bn at the beginning of 2012 as our treated

sample. After deleting a small number of stocks that experienced major corporate

actions or have data limitations during our sample period we are left with 51 treated

stocks. Our sample stocks include 38 of the 40 components of the blue chip FTSE

MIB index and taken together, they represent 93.6% of Euro turnover in all 296

listed Italian companies in 2012.11 Hence we can be confident that any economically

significant changes brought about by the OTR will be captured in our sample.

Our control sample serves to separate any effects occurring in Italian stocks from

changes that might impact Eurozone stocks. We select our control stocks from all

French, German, Spanish, Dutch and Belgian constituents of the Stoxx 600 Europe.

Following Davies and Kim (2009), for each treated stock we identify a match that

minimises distance based on mean market cap and turnover in the pre-event period.

We use the Mahalanobis distance metric to match one-for-one and without replace-

ment. Hence our control sample comprises as many stocks as the treated one, i.e.

51. Our samples are very diversified across industries. Panel (a) in Table 1 presents

descriptive statistics for the stocks in the treated and control samples respectively.

11Source: computed from 2012 annual turnover report, Borsa Ialiana.
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Besides the 38 MIB40 components alluded to above, 12 more of our sample stocks

are members of the FTSE Italia Midcap index, and 1 is not in any index. None of

them are small enough to qualify for the FTSE Italia Small Cap, let alone for the

FTSE Italia Micro Cap. Due to the size and composition of the Stoxx Europe 600

index, treated and control stocks are very closely matched, not only on the variables

of market capitalization and turnover that were used for that purpose, but also on

number of trades and, to a slightly smaller extent, on spreads.

The OTR fee was introduced on April 2nd 2012. The event window we focus on

covers two calendar months before and after the event, thus comprising over 8,500

stock-days in total (with roughly half of the data points either side of the event).

We do not use an exclusion period based on the results in the CONSOB study that

market Order-to-Trade ratios declined abruptly at the time of the event.12

Over our event window the FTSE MIB index, which includes most of our treated

sample stocks, and the Stoxx Europe 600 index, to which all of our sample securities

belong, showed a moderate downward movement and, more importantly for us, they

were very highly correlated (their daily return correlation was 0.918).

4 Empirical specification

We estimate a difference-in-differences specification, a widely used methodology in

the economic analysis of market reforms and regulatory events. Diff-in-diff estimation

combines a control group with the treated sample to “difference out” confounding

factors and isolate the effect of an event.

We first construct a set of market quality and activity metrics to be used as dependent

variables. For each stock, we use high frequency data to construct daily figures, based

on equally-weighted averages or cumulative sums.13 We build three liquidity and three

12Trading behaviour may have adapted ahead of the event, but removing two weeks of data before
it makes no difference to our results below.

13Examples of recent work that uses similar daily panel modelling of events include Boehmer,
Saar, and Yu (2005) and Hendershott, Jones, and Menkveld (2011).
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activity measures: the best bid-ask spread (in basis points); the daily average depth

available at the best bid and offer prices, in thousands of Euros; the daily average

cumulative depth up to the 5th price level of the limit order book, again in Euros; the

number of trades (in thousands); the number of quote updates, defined as a change

in either price or size at any of the best five bid or ask levels, again in thousands; the

turnover in millions of Euros. All measures expressed in cash (both depth and the

turnover variables) are scaled by a pre-OTR average turnover figure so as to roughly

equalise the scale of these variables across stocks.14

We regress these dependent variables on a set of treatment indicators that includes a

dummy variable picking out the treated group of Italian stocks (Dtreated), a dummy

picking out the period after the OTR fee introduction (DOTR) and the interaction

of those two dummies. If there is any difference in the behaviour of the variable

for main and control sample stocks in the OTR penalty period, it will appear as a

significant coefficient on the (treated × OTR) interaction variable. Thus, denoting

the dependent variable of interest with yi,t, the coefficient (γ3) in the equation below

is the focus of our attention.

yi,t = α + β1RV oli,t + β2Tradesi,t + β3MktCapi,t + β4RelT icki,t

+γ1D
treated
i + γ2D

OTR
t + γ3D

treated×OTR
i,t + εi,t (1)

We also include a set of control variables. For the liquidity measures, these are

stock-day level return volatility (the sum of intra-day absolute returns expressed in

basis points), trading activity by value and market capitalisation both in millions of

currency units, as well as the relative tick size, equal to the ratio of the tick size on to

the stock’s volume-weighted average price. This latter variable is intended to capture

the constraints that the tick size exerts on liquidity. A large literature shows that

the ratio of the tick size to the stock price affects the spread and quoted depth in

14This is just for ease of interpretation. Our results hold whether depth is rescaled by turnover
or simply expressed in Euros.
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opposite directions. When we use an activity measure as dependent variable in (1) the

control variables are volatility and market cap only. Note that, for panel econometric

purposes, all of our control variables vary across both stocks and time. Both volatility

and turnover are rescaled by their pre-event stock-specific means. Market value and

tick size are re-computed on a monthly frequency.

We estimate all panel models using robust covariance matrix estimators that allow for

clustering within stock and within time period (Cameron, Gelbach, and Miller, 2011;

Petersen, 2009; Thompson, 2011). We see no a priori reason to allow for clustering

along other dimensions. The potential cost of using clustered estimation is a loss of

efficiency that will generate excessively low t-statistics when clustering is not needed.

5 Results

5.1 Liquidity (main market)

Estimation results for the three dependent variables measuring liquidity appear in

Table 2. For ease of interpretation, we have demeaned the control variables prior to

inclusion in the regression. Thus the intercept coefficient combined with the appro-

priate dummy variable coefficients show any shifts that may have occurred in average

values of the dependent variable for the main sample pre and post event and also

for the control sample. The units are common to the sample securities so economic

interpretation of the magnitudes is straightforward.15

Starting with inside spreads as a measure of liquidity, the dummy coefficients show

no statistical difference between treated and control stock spreads prior to the intro-

duction of the OTR. After the OTR event, both control and treated stock spreads

rise, but there is no significant increase in treated stock spread relative to control

stock spreads – the estimated coefficient on the key interaction variable is positive

15As using stock-level fixed effects seemed to make very little difference to our estimates, we
present the simplest results obtained from fitting a common constant.
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but close to zero. The coefficients on the control variables are all of the expected sign,

where significant. Greater turnover is associated with smaller spreads and stocks with

greater market cap have smaller spreads.

Conversely, analysis of depth shows economically and statistically large effects of the

OTR on treated stock liquidity: the coefficients on the interaction dummies for both

total and inside depth are negative, large and significant. To understand the size of

these coefficients, recall that depth is expressed relative to pre-OTR turnover. Thus,

after the introduction of the OTR penalty, depth at the best drops by around 10%

of average turnover while depth across the first five levels of the order book drops by

approximately a whole day’s turnover. These reductions equate to 20% and 30% of

mean pre-OTR depth respectively.

Thus, as expected, depth outside the best quotes is more strongly affected than depth

at the best, consistent with liquidity suppliers reducing their submission of orders

with low execution probabilities more than they reduce submission of orders at the

front of the book. For both depth regressions, most of the control variables have the

expected sign and are statistically significant. The negative coefficient on market cap

in these regressions is due to the fact that for larger stocks, depth on display in the

order book tends to be smaller as a proportion of turnover than for smaller stocks. If

we run these regressions with raw cash depth as dependent variable, the market cap

coefficients are, as expected, positive (and significant). Finally, unlike spreads, depth

does not change in the control sample in the OTR fee period.

This strong effect on depth is perhaps surprising given that HF liquidity suppliers

are often suspected of not supplying liquidity in size compared to more traditional

liquidity suppliers – partly because their business model involves taking small inven-

tory positions that can be quickly turned around. Our findings, economically the

strongest in our study, suggest instead that HF liquidity suppliers do contribute sig-

nificant displayed depth. The counter-argument could be that much of this depth

may be fickle or even a result of manipulative strategies conducted away from the

inside e.g. “layering” the order book or “spoofing”. This view is hard to support
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because we find that depth declines significantly at the best quotes too, if not by as

much as depth away from them.

5.2 Order book activity (main market)

The estimates from the regressions that use measures of quoting and trading activity

on the left-hand side also tend to be consistent with our priors. Results appear

in Table 3, where the units are: thousands of quote events, raw number of trades,

thousands of Euros for trade size and millions of Euros for turnover. Turnover is

rescaled by its stock-level pre-event mean.

Common to the four sets of estimates is the result that prior to the OTR there is

no significant difference between treated and control sample stocks in any of the

dependent variables. After the introduction of the OTR, however, activity patterns

diverge for treated and control stocks. Our treated stocks show significantly smaller

quoting activity, smaller trade size, fewer trades and, thus, lower turnover. The

reductions in trading activity and turnover are both statistically and economically

significant, at around 10% of pre-OTR levels, while those for trade size and quoting

activity are more muted (either economically or statistically). It is likely that these

drops in activity are related to the decreased depth that Italian stock markets display

after the introduction of the OTR fee.

5.3 Liquidity in the cross-section

Is there evidence that the OTR constraint affected our sample stocks differently in

the cross-section? To test this, we split both treated and control samples into two

equally-sized groups, with the separation based on market capitalization. Panel (b)

of Table 1 shows descriptive statistics for these subsamples, for market values and

turnover (the variables used to match the treated and control securities). The match

is very close again.

17



The results for depth at the best quotes for these subsamples, presented in Table 4,

show very large effects for the subsample comprising larger stocks.16 For these stocks,

depth at the inside drops by around 40%. There is no significant change in inside

depth for the smaller stock subsample. The same table presents results for the depth

measures across the first five levels of the order book. Here the reduction in depth is

significant for both subsamples, including a fall of around 20% for smaller stocks.

Hence, from Table 4, we knew that the negative effect of the OTR fee operated on

depth and from Table 2 we find that it has a cross-sectional flavour with large caps

more severely affected. This is consistent with the view that HF traders focus on

large, liquid stocks, where frequent information releases allow them to exploit their

latency advantage and active trading renders quick inventory management easier.

In liquid securities, restrictions on order placement activity do not prevent spreads

from reaching competitive levels, but the constraints discourage order placement at

and behind the best quotes, due to those orders’ increased cost and lower execution

probability.

5.4 Price impacts

As Bessembinder and Venkataraman (2010) note, some authors have argued that

the price impacts of trades are the best estimators of realised trading costs. Price

impacts are particularly relevant to institutional traders who have to work large or-

ders gradually on electronic systems. A persistent controversy concerns whether HF

traders conduct “predatory” or “order anticipation” strategies that increased the ex-

ecution costs of worked orders. If the OTR fee limits the ability of fast traders to

re-price or withdraw liquidity as it is demanded, then it may result in less preda-

tion/anticipation, a more stable order book (its avowed goal) and lower price impact.

If, on the other hand, genuine liquidity is only refreshed more slowly under the fee,

then impacts will increase.

16We also tried the subsample analysis for bid-ask spreads but, just as in the full sample, there
was no significant effect from the OTR.
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We estimate the 10-trade price impacts and then construct their stock-day averages.

Impact is measured simply as the basis point change in price from one trade before

the current observation to ten trades after. The sign of the impact of sell trades is

reversed so that we would expect mean impact across all trades to be positive.

Table 5 presents diff-in-diff estimation results similar to those previously conducted,

controlling for volatility, turnover and stock size. These impact results provide further

evidence that the OTR penalty reduced liquidity. Price impacts rise significantly for

the aggregate sample and each of the two size-based subsamples. For the aggregate

sample, the rise is around 45%. It is interesting to note here that the change in price

impact post-OTR is greater for smaller stocks. Thus while the effect on depth for

these stocks is more muted, they become much less resilient.

These impact results confirm and complement our earlier results on quoted depth.

First, the large increase in price post-OTR indicates that the depth that was supplied

before the fee was genuine and not purely transient. Second, they show that the cross-

sectional effect of the OTR may depend on the measure of liquidity used. Using

impacts, it’s the smaller stocks in our sample that were most affected by the fee.

5.5 Consolidated order book liquidity and activity

The OTR constraint was enforced on Borsa Italiana only and not on rival electronic

venues, chief of which is Bats/Chi-X. That seems to supply a simple way around the

constraint to high-frequency firms, who could just redirect order flow (both liquid-

ity supply and consumption) towards rival order books devoid of an OTR penalty.

This prompts us to ask whether consolidated market liquidity and activity may have

deteriorated. In Table 6, we present the results of estimation of some of the same

models as in Section 5.1, but with dependent variables constructed from different

data. Now the dependent variables (inside spreads and depth, the number of events

at the inside quotes and total turnover) are constructed from data aggregated across

multiple electronic order books. Thus, for example, the spread is the distance in basis
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points between the lowest offer price on any venue and the highest bid and turnover

takes in trading activity across all venues. The number of quote events now looks

at changes in liquidity supply at the best quotes, where the best is defined from all

trading venues. (Thus, these data are in the spirit of those that would be seen by a

smart order-router as in Foucault and Menkveld (2008).)

The first regression shows that spreads for Italian stocks exhibit no significant in-

crease after the implementation of the OTR, similar to the result observed in Table

2 for the main market only. However, consolidated depth in Italian stocks is signifi-

cantly reduced by the OTR just like its main market counterpart. The coefficient is,

in magnitude, only a little smaller than for the main market. This effect is statisti-

cally significant and provides evidence that liquidity supply has not just migrated to

alternative venues with the introduction of the OTR on the main market. Finally,

consolidated turnover also falls significantly post-OTR, by just less than 10%. Thus

while there may have been a small migration of turnover to alternative venues, this

in no way makes up for the decline on the historical exchange.

Table 7 shows that the cross-sectional depth results observed in Table 4 also hold

in the consolidated data. The OTR fee significantly reduces the depth available for

trade for the large subsample of Italian stocks. That consolidated depth in large

caps should be reduced to almost the same degree as it was on the main exchange is

striking, given that the market share of the Milan Borsa was smallest in those stocks

(with an unconditional average of 77%) and we might expect liquidity supply and

consumption to move more freely between venues than in smaller caps.

Thus, in sum, there is clear evidence that the OTR has damaged overall liquidity

supply, rather than just supply on the main market. Two interpretations for this

result are possible and they are not mutually exclusive. First, the historical exchange

may entirely dominate price and liquidity discovery and other venues simply cannot

fulfil these roles. Also, there may be institutional impediments to some brokers

executing away from the main exchange that help cement its dominant role.

Second, the decrease in liquidity is consistent with less than competitive liquidity
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supply across venues. Our findings are reminiscent of Biais, Bisière, and Spatt (2010),

who study liquidity in US stocks traded on both the Nasdaq and the Island order

book. They find evidence consistent with rent-seeking by a limited number of liquidity

suppliers who effectively make markets on Island as an oligopoly. While they couch

their results in terms of spreads because the event they study is a change in tick

sizes, the same intuition extends to our event and setup which seems to affect depth

throughout the order book. Overall, our findings might be interpreted as suggesting

that impediments to full competition between venues exist, even if we are unable to

say more about their nature.

5.6 Market share of the historical exchange

XXX This section shifted after the previous one.

We finally examine whether imposition of the OTR constraint on the main exchange

has caused some redirection of order flow to the alternative order books by measuring

the market share (in total traded volumes) of the historical exchange in total order

flow by value before and after the event. The deterioration of liquidity observed in

consolidated quotes suggests that the incentives to redirect order flow to alternative

order books may be limited. The pre-event and post event mean market shares,

equally-weighted across stocks for the treated stocks stand at 81.7% and 78.7% re-

spectively. The hypothesis that no change occurred in the Milan pre and post mean

market share is rejected but not strongly, with t-stat of 1.73 (51 observations pre

and post). The same test for our control sample stocks (comparing their respective

main markets with electronic competitors pre and post the introduction of the Ital-

ian OTR) shows no economically and statistically detectable change in the average

market share across the European exchanges involved. The pre-event and post event

means are virtually identical at 66.25 and 66.17% respectively with t=0.039.

The figures suggest that the OTR has caused some redirection of order flow away

from the main market – for a market share decrease of 3% to occur in a matter of
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weeks is far from trivial, even if it is limited in statistical significance. A caveat is that

for many of the midcaps in our sample, the Milan market retained a near-monopoly

on the trading of Italian shares, with a market share of total turnover by value of 90-

100%. The equity market may not have been mature enough in that respect for more

sizeable shifts in order flow to occur. (For comparison, during the same period, the

London Stock Exchange retained marginally more than a 50% share in U.K. equity

turnover).

5.7 Possible effects of an OTR not considered here

Our focus is on measurable, but relatively immediate effects of the OTR on liquid-

ity and activity. It may be that longer-term effects also materialise, including some

related to liquidity. The argument has been made that under a slower-moving order

book, the “market ecology” may change in a positive way. O’Hara (2010) or Brogaard

(2011) emphasise that some investors are disturbed by quotes with durations so short

that they are very hard to trade upon. A more stable order book may encourage more

participation on the part of those who are currently deterred by quote “flickering”.

Similarly, it might convince slower liquidity suppliers previously evicted by high fre-

quency players to come back to market and perhaps contribute more depth than HF

agents. Brogaard (2010) finds that HF traders contribute less depth than do slower

liquidity suppliers, consistently with one leg of this argument. Their participation in

liquidity supply may also be more stable than that of HF agents, who are sometimes

accused of “fair-weather” market-making.

Regulators may also have other social benefits in mind when adopting an OTR. One

of them could be the “arms race” argument, analysed for example in the model of

Biais, Foucault, and Moinas (2014), where HF traders increase adverse selection for

slower participants because they process public information faster. By making it

more costly for fast traders to exploit their speed advantages, regulators might be

trying to dissuade firms from investing excessive amounts in trading technology.
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Either because they are not to do with liquidity or because they seem by their nature

likely to remain very hard to identify empirically, these long-term hypotheses are

outside the scope of our analysis. Note, though, that doubling the duration of our

post-event window to cover four months of the OTR regime makes no difference to

our results.

6 Conclusion

We assess the effect that a measure designed to constrain the order submission fre-

quency of low latency traders has had on liquidity. We find a clear picture of reduced

liquidity supply, with quoted depth affected across the board and dramatically so for

large stocks, whether at the best quotes or beyond. HF firms may be more significant

contributors to depth than previously thought.

We also report that the same changes observed for liquidity and activity on the Milan

exchange extend, albeit with slightly less strength, to a consolidated order book

that includes quotes from rival electronic venues. Depth does not simply migrate to

other order books where the OTR does not apply. We speculate that this negative

externality could have two, not mutually exclusive, explanations – first, the historical

exchange may have retained a completely dominant role in price formation and other

venues feed off prices set on it. Second, there may be rent-seeking on the part of

a limited number of liquidity suppliers who operate across rival electronic systems.

Those market-makers may be able to keep liquidity supply below competitive levels,

as Biais, Bisière, and Spatt (2010) have found in the context of much more liquid US

stocks.

Our study also highlights the extent to which market liquidity may be affected by a

very small number of extremely active participants. A study by the Italian regulators

shows that only three firms out of the roughly 90 member firms that participate in

trading and quoting had OTRs consistently above the fee threshold before it was

enforced. It is changes to their order submission behaviour that likely caused the
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effects on liquidity and activity that we detect in our paper. This is consistent with

other evidence such as that in Menkveld (2013), who finds for Dutch stocks that the

entry of one single HF market-maker caused detectable changes to liquidity.

OTR experiments are under way on several exchanges. We are aware of at least one

market that scrapped its OTR only three months after voluntarily introducing it.

On June 1st 2012, the American electronic trading venue DirectEdge put in place a

scheme that financially penalised individual firms if they exceeded a monthly average

message-to-trade ratio greater than 100 to 1 under the name of “Message Efficiency

Incentive Program” (MEIP). At the end of August 2012, DirectEdge justified the

removal of its scheme with the SEC in the following terms: “(...) the Exchange

believes that, by not adequately isolating purely inefficient message flow, the MEIP

may have unintentionally captured, and therefore disincentivized, order behavior that

benefits market liquidity. For example, the MEIP potentially discourages market

participants from posting multiple levels of liquidity in less actively traded securities.

Thus, while the Exchange’s intention was to encourage efficiency and consequently

attract more liquidity, the MEIP appears to have resulted in the opposite effect.”17

In an interview, DirectEdge COO Bryan Harkins further commented: “When we

looked at MEIP over a few months, we decided it wasn’t having the effect that we

wanted. (...) people want to make liquidity away from the inside and they want

to create deeper markets. Well, obviously if you’re sending liquidity away from the

inside, that’s additional message traffic but that would be discounting the value of a

deeper order book away from the inside price. Another example is, our market needs

to be able to trade illiquid securities, exchange-traded funds, a lot of these stocks

that don’t trade actively. Oftentimes the market-maker has to update a quote very

frequently.”18 These specific references to a reduction in order book depth beyond

the inside quotes and to a more negative impact on the liquidity of less active assets

appear remarkably consistent with the effects we document.

17Proposed Rule Change by EDGX Exchange, Inc., pursuant to Rule 19b-4 under the Securities
Exchange Act of 1934, 31 August 2012.

18“Mixed Messages: Direct Edge Equivocates on HFT”, WatersTechnology, 27 September 2012.

24



References

Bessembinder, H., and K. Venkataraman, 2010, “Bid-Ask Spreads: Measuring Trade
Execution Costs in Financial Markets,” in Encyclopedia of Quantitative Finance,
ed. by R. Cont. John Wiley & Sons.

Biais, B., C. Bisière, and C. Spatt, 2010, “Imperfect Competition in Financial Mar-
kets: An Empirical Study of Island and Nasdaq,” Management Science, 56(12),
2237–2250.

Biais, B., T. Foucault, and S. Moinas, 2014, “Equilibrium Fast Trading,” Working
paper.

Boehmer, E., G. Saar, and L. Yu, 2005, “Lifting the veil: An analysis of pre-trade
transparency at the NYSE,” Journal of Finance, 60(2), 783–815.

Boulatov, A., B. C. Hatch, S. A. Johnson, and A. Y. Lei, 2009, “Dealer attention,
the speed of quote adjustment to information, and net dealer revenue,” Journal of
Banking and Finance, 33(8), 1531.

Brogaard, J., 2010, “High Frequency Trading and its Impact on Market Quality,”
Working paper.

, 2011, “Minimum quote life and maximum order message-to-trade ratio,”
Economic Impact Assessment EIA1, The Future of Computer Trading in Financial
Markets, UK Government Office for Science - Foresight.

Brogaard, J., T. Hendershott, and R. Riordan, 2013, “High Frequency Trading and
Price Discovery,” Working Paper, http://ssrn.com/abstract=2341037.

Caivano, V., S. Ciccarelli, G. D. Stefano, M. Fratini, G. Gasparri, M. Giliberti,
N. Linciano, and I. Tarola, 2012, “High Frequency Trading: Definition, Effects,
Policy Issues,” CONSOB (Commissione Nazionale per le Società e la Borsa) Dis-
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Table 1: Summary statistics for treated and control sample stocks

Mean Median Std Dev Maximum

(a) Full sample

Treated stocks
Market Cap (C mn) 7085.4 2699.7 11236.3 69058.6
Turnover (C mn) 30.7 10.2 53.6 253.4
Number of trades 3877.8 2327.6 4041.0 19001.7
Spread (b.p.) 13.21 11.64 8.53 42.68

Control stocks
Market Cap (C mn) 6819.1 2639.0 11272.3 70498.8
Turnover (C mn) 36.0 10.3 69.1 409.9
Number of trades 3958.5 2175.7 5201.7 30383.2
Spread (b.p.) 17.20 15.55 8.11 43.89

(b) By sample halves above and below the median

Treated stocks
Market Cap (C mn) H1 1685.3 1386.4 587.1 2699.7

H2 12277.8 7795.9 13963.5 69058.6
Turnover (C mn) H1 4.8 4.1 4.3 16.4

H2 55.9 29.7 66.3 253.4

Control stocks
Market Cap (C mn) H1 1653.9 1352.7 599.7 2809.5

H2 11785.6 6568.8 14193.4 70498.8
Turnover (C mn) H1 8.5 4.8 11.8 46.8

H2 62.0 26.3 89.5 409.9

Notes: the table reports summary statistics for liquidity and trading variables for our sample stocks.

In panel (a), for each stock we compute average market cap in millions of Euros over the pre-event

period, average time-weighted daily spreads in basis points, mean daily number of trades and mean

daily quantity traded, expressed in Euros. The table reports, for each variable, the equally-weighted

mean and median, and the standard deviation and maximum from the cross-stock distribution.

Panel (b) presents the same statistics for the variables of market cap and turnover, but where

the sample is broken down into two using the median stock size as cutoff (the two equally-sized

subsamples are denoted H1 and H2).
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Table 2: Difference-in-differences regression analysis of the effect of the OTR con-
straint on main exchange liquidity

Spreads Inside Depth Level 5 depth

Turnover (value) -3.247∗∗∗ 0.149∗∗∗ 0.987∗∗∗

(5.22) (6.19) (5.65)
Volatility 3.158∗∗∗ -0.156∗∗∗ -1.324∗∗∗

(2.93) (3.67) (3.38)
Market cap -0.0004∗∗∗ -1.07×105∗∗∗ -6.45×105∗∗

(3.98) (2.74) (2.53)
Relative tick size 0.606 0.0318 0.305

(1.32) (1.36) (1.61)
Treated sample 1.140 0.105 0.968

(0.42) (0.87) (1.06)
OTR period indicator 2.105∗∗∗ 0.0066 0.0310

(4.50) (0.53) (0.26)
Treated × OTR -0.720 -0.0895∗∗∗ -0.996∗∗∗

(1.24) (5.01) (6.09)
Constant 15.36∗∗∗ 0.454∗∗∗ 3.52∗∗∗

(9.30) (6.21) (6.39)

R2 0.27 0.16 0.16
N 8,550 8,382 8,382

Notes: the table reports the results of daily panel difference-in-differences estimation of variables

measuring inside bid-offer spreads, depth at the inside spread, and depth at the 5th price level for the

main and control sample shares against measures of activity, realised volatility, firm size and relative

tick size. Two indicator variables pick out main sample stocks and the OTR period respectively,

and a further indicator variable interacts the previous two. All variables are defined in Section 4.

The estimator used is robust to clustering effects both within and across panels. One, two or three

stars indicates 10, 5 and 1% significance respectively.
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Table 4: Difference-in-differences regression of depth at the best quotes and at the
5th price level, splitting main and control samples into market cap halves

Inside Depth Level 5 Depth
H1 H2 H1 H2

Turnover (value) 0.186∗∗∗ 0.110∗∗∗ 1.220∗∗∗ 0.816∗∗∗

(5.14) (3.95) (4.18) (5.96)
Volatility -0.191∗∗∗ -0.161∗∗∗ -1.722∗∗∗ -1.198∗∗∗

(2.95) (4.20) (3.01) (3.88)
Market cap -2.33×104∗∗ -3.10×106 -1.87×103∗∗ -1.79×105

(2.38) (1.48) (2.35) (1.21)
Relative tick size 0.0347 0.0430∗∗ 0.3151 0.3863∗∗

(0.75) (2.31) (0.80) (2.41)
Treated sample -0.0282 0.1578 -0.1557 1.487∗

(0.11) (1.48) (0.07) (1.78)
OTR period indicator -0.0447 0.0319∗∗∗ -0.1813 0.0788

(1.47) (2.99) (0.63) (0.99)
Treated × OTR -0.0824 -0.1036∗∗∗ -1.0673∗∗ -1.0594∗∗∗

(1.59) (4.99) (2.26) (6.67)
Constant 0.739∗∗∗ 0.241∗∗∗ 5.410∗∗∗ 2.158∗∗∗

(4.49) (4.91) (4.13) (5.38)

R2 0.12 0.28 0.12 0.33
N 4,070 4,318 4,068 4,317

Notes: The Table presents estimations where the dependent variable is quoted depth at the best

quotes and at also the 5th price level of the order book. Estimations are conducted on stock-day

averages. The panel models are specified as those presented in Table 2 but they are run separately

on two subsamples constructed from splitting the main and control samples in two groups around

the median capitalisation of sample stocks. The two equally-sized subsamples are denoted H1 and

H2. They are described in panel (b) of Table 1.
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Table 5: Difference-in-differences price impact regression (10 trades), splitting main
and control samples into market cap halves

Full sample H1 H2

Turnover (value) -0.263∗∗∗ -0.315∗∗∗ -0.323∗∗∗

(4.44) (3.60) (6.02)
Volatility 0.487∗∗∗ 0.537∗∗∗ 0.359∗∗∗

(4.96) (3.29) (3.45)
Market cap -3.15×105∗∗∗ -6.44×105 -1.84×105∗∗∗

(4.17) (0.43) (4.05)
Treated sample 0.036 0.321∗ -0.137

(0.32) (1.88) (1.29)
OTR period indicator -0.102 -0.189 0.0269

(1.37) (1.54) (0.44)
Treated × OTR 0.445∗∗∗ 0.684∗∗∗ 0.195∗∗∗

(4.99) (4.46) (2.83)
Constant 0.997∗∗∗ 1.223∗∗∗ 0.710∗∗∗

(11.54) (8.15) (9.36)

R2 0.10 0.06 0.20
N 8,292 4,020 4,269

Notes: The Table presents panel regressions where the dependent variable is the price impact,

measured as the basis point change in price from one trade before the current observation to ten

trades after it. The sign of the impact of sell trades is reversed so the expected mean impact across

all trades is positive. The impact is then averaged across all trades for each stock-day. The control

regressors are turnover, volatility and market capitalisation, as defined in Section 4. The estimations

are run on the full sample and also on subsamples constructed from splitting the main and control

samples around the median capitalisation of sample stocks. The two equally-sized subsamples are

denoted H1 and H2 and are described in panel (b) of Table 1.
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Table 6: Liquidity and activity regressions, consolidated order book

Spreads Inside Depth Turnover (value)

Turnover (value) -0.0285∗∗∗ 0.126∗∗∗

(3.13) (4.62)
Volatility 2.308∗∗∗ -0.120∗∗∗ 0.6068∗∗∗

(2.70) (2.62) (6.29)
Market cap -2.18×104∗∗ -1.10×105∗∗∗ -4.58×107

(2.34) (2.86) (0.61)
Relative tick size 0.364 0.0454∗

(1.13) (1.86)
Treated sample 2.822 0.0852 -0.00017

(1.32) (0.69) (0.02)
OTR period indicator 1.699∗∗∗ -0.0346 -0.165∗∗∗

(3.94) (1.58) (3.94)
Treated × OTR -0.279 -0.0530∗∗ -0.109∗

(0.53) (2.57) (1.92)
Constant 13.30∗∗∗ 0.456∗∗∗ 1.087∗∗∗

(9.98) (5.95) (59.01)

R2 0.26 0.18 0.53
N 8,461 8,378 8,461

Notes: each column in the Table reports the results of daily panel difference-in-differences estimation

of variables measuring inside spreads, the number of events occurring at the inside spread and total

turnover by value for the main and control sample shares respectively. Turnover is rescaled by

stock-specific, pre-event Average Daily Turnover. These variables are regressed against measures

of activity, realised volatility, firm size and relative tick size. All variables are constructed from

data for the electronic order book of the main stock exchange but also those of rival venues. Two

indicator variables pick out main sample stocks and the OTR period respectively, and a further

indicator variable interacts the previous two. All variables are defined in Section 4. The estimator

used is robust to clustering effects both within and across panels. One, two or three stars indicates

10, 5 and 1% significance respectively.
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Table 7: Inside depth estimation, splitting main and control samples by market cap,
consolidated order book

H1 H2

Turnover (value) 0.174∗∗∗ 0.0817∗∗∗

(4.18) (3.20)
Volatility -0.215∗∗∗ -0.0907∗

(2.75) (1.92)
Market cap -0.0002∗∗ -3.15×106

(2.26) (1.54)
Relative tick size 0.0666 0.0408∗∗

(1.41) (2.23)
Treated sample -0.0712 0.138

(0.26) (1.44)
OTR period indicator -0.0951∗∗ 0.0050

(2.20) (0.36)
Treated × OTR -0.0333 -0.0646∗∗∗

(0.58) (4.00)
Constant 0.76∗∗∗ 0.223∗∗∗

(4.54) (4.83)

R2 0.16 0.27
N 4,058 4,313

Notes: The Table presents estimations where the dependent variable is quoted depth at the best

quotes from consolidated order book data. Estimations are conducted on stock-day averages. The

panel models are specified as those presented in Table 2 but they are run separately on two sub-

samples constructed from splitting the main and control samples in two groups around the median

capitalisation of sample stocks. The two equally-sized subsamples are denoted H1 and H2.
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