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ABSTRACT 

This thesis deals with the decentralized and hierarchical control of a class 
of robot manipulators, where the robot manipulator is treated as a large scale 
uncertain systelll. The work is divided into three parts. 

The first part is concerned with the development of an integrated 
mathematical model of the robot manipulator. The model of the system 
considered comprises the mechanical part of the robot manipulator, the actuators, 
as well as the gear trains. The formulation results in nonlinear time varying 
state equations, which represent a more realistic model of the robotic system. A 
procedure to decompose and reduce the integrated model of the robot manipulator 
into a set of interconnected subsystems with bounded uncertainties description is 
then presented. 

In the second part of the research, two decentralized control approaches 
based on a deterministic approach are outlined. The first method uses only the 
local states as the feedback information. It is shown that the robot manipulator 
utilizing the proposed controller is practically stable and tracks a reference 
trajectory if a given sufficient condition is satisfied. In the second approach, the 
controller is designed based on the local states as well as the states of the 
neighbouring subsystems as the feedback information. It is shown that the 
controller will force the nonlinear uncertain robot manipulator to track a desired 
trajectory to within a small uniform ultimate boundedness set. 

In the final part of the study, two hierarchical control concepts for robot 
manipulator are proposed. The controllers are formulated based on a 
deterministic approach. It is shown that the hierarchical control strategies are 
capable of withstanding the expected variations and uncertainties and will render 
the robot manipulator to track a prescribed trajectory satisfactorily. 

In synthesizing the proposed controllers, it is assumed that the upper 
bounds on the nonlinearities, couplings and uncertainties present in the system are 
available. The proposed methods are simple and robust to parameter variations 
and uncertainties present in the system. The performance of the proposed control 
algorithms are evaluated by means of computer simulations. The proposed 
control laws are applied to a three degree of freedom revolute robot manipulator 
actuated by DC motors. Several case studies have been considered, and the 
simulation results are presented and discussed. 

In this thesis, the term practical stability means bounded stability in the 

sense of Lyapunov. 
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SYMBOL 

1. Upper Case: 

A( *,*,*) 

Aj( *,.,*) 

LIST OF SYMBOLS 

DESCRIPTION 

3Nx3N system matrix for the integrated robot manipulator model 

3Nx3N system matrix for the integrated robot manipulator model 

using OJ, OJ, and iaj as the state variables 
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Ap2( .,.,.) 
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B( .,.,.) 

B B( .,.,-) 
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2Nx2N system matrix for the mechanical linkage dynamics 
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NxN matrix component of the matrix Ap( .,.,.) 
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using 0i, 0i' and 0i as the state variables 

ijth subn1atrix of BB( .,.,.) 
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B· 1 

ID(7]) 

C( *,*,*) 

f"V 

C .. 
I) 

D( *,*,*) 

D( *,*) 

D .. 
I) 

D( .,.) 

3NxN input matrix for the augmented dynamic equation of the 

actuators using 8i , ili, and Bi as the state variables 

3xl input matrix for the ith actuators using 0i, 8., and O. as the 

state variables 

input matrix for the ith subsystem 

nominal input matrix for the ith subsystem 

matrix representing the uncertainties in the input matrix for the 

ith subsystem 

2NxN input matrix for the mechanical linkage dynamics 

expressed in state variable form 

Penrose-Pseudoinverse of Bp( *,*,*) 

viscous friction coefficient for the ith motor (Nm/rad/s) 

close ball with radius 7] 

NxN coefficient matrix related to the acceleration vector In the 

derivative of the manipulator link dynamic equation 

f"V 

ijth element of the matrix C( *,*,.) 

Nxl vector of Coriolis and centrifugal forces 

N 
Nx L i matrix related to D( *,*,*) vector 

i = 1 

ijth element of the matrix D( *,.) 

derivative of the matrix D( .,.) with respect to time 
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D( *,*,*) 

D( *,*,*) 

f'V 

D·· I} 

~. 
I 

G( *,*) 

G· I 

G( *,*) 

G( *,*) 

NxN matrix related to D( *,*,*) vector 

NxN coefficient matrix related to the velocity vector In the 

derivative of the manipulator link dynamic equation 

f'V 

ijth element of the matrix D( *,*,*) 

a continuous function related to ..1B I ( *,*) 

back emf for the ith actuator 

3NxN load distribution matrix for the augmented dynamic 

equation of the actuators using Bi, 0i, and iai as the state variables 

3xl load distribution matrix for the ith actuators using Bi, 0i, and 

iai as the state variables 

3NxN load distribution matrix for the augmented dynamic 

equation of the actuators using Bi, 0i, and 0 i as the state variables 

3xl load distribution matrix for the ith actuators using BI , BI , and 

o i as the state variables 

Nxl vector of gravitational forces 

ith component of the matrix G( *,*) 

derivative of G( *,*) with respect to time 

NxN matrix related to the vector of gravitational forces G( *.*) 

lx3 vector of continuous functions related to the interconnection 

matrix Alj( .,*) 
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I· l 

J. 
I 

K· I 

9G(.,.) 

L( .,.) 

L· I 

1 

M( *,.) 

M·· I] 

M( *,*) 

lx3 vector of continuous functions related to LlA j ( *,*) 

an ixi identity matrix 

moment of inertia at the centre of gravity for the ith link with 

respect to x-, y-, and z-axis, respectively 

set denoting the number of joint (degree of freedom) of the 

manipulator 

moment of inertia for the ith motor ( Kgm2) 

pseudo inertia matrix of the ith link 

linear feedback gain matrix for the ith subsystem 

total kinetic energy of the system 

Lagrange function 

armature inductance for the ith motor (H) 

field inductance for the ith motor (H) 

Lyapunov function 

derivative of the Lyapunov function 1 

NxN inertia matrix of the manipulator linkage 

ijth elements of matrix 11( .,.) 

derivative of the inertia matrix 11(.,.) 
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N· I 

N 

0·· I) 

p. 
I 

P 

Q 

R· I 

~N 

T(*) 

inverse of the gear ratio (gear ratio=l/NJ for the ith joint 

number of degree of freedom/joints of the robot manipulator 

an ixj null matrix 

solution of matrix Lyapunov equation for the ith subsystem 

3Nx3N matrix with Pi' i=1,2, ... ,N as the diagonal submatrices 

and null off-diagonal submatrices 

solution of the matrix Lyapunov equation for the overall system 

total potential energy of the system 

positive definite symmetric weighting matrix, 

armature resistance for the ith motor (0) 

uncertainty bounding set for Lla:j( .,.) for all i and j 

N-dimensional real space 

I 

uncertainty bounding set for Llb i ( .,*) for all i. 

Nxl vector of driving forces/torques applied by the actuators at 

the drive points on each link of the manipulator 

T
i
(*) ith component of T(.) = driving forces/torques applied to the ith 

joint by the ith actuator 

load torque on the motor shaft at the prImary side of the ith 

motor (Nm) 
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T( *) derivative of the manipulator torque T( *) with respect to time 

T i( *) ith component of T( *) 

Tr trace operator 

lr L NxN test matrix for decentralized local control law 

lr G NxN test matrix for decentralized global control law 

lr H2 NxN test matrix for the second hierarchical control strategy 

U Nxl control input vector for an N degree of freedom robot 

manipulator 

control input for the ith actuator/joint = ith element of U(*) 

decentralized local controller for the ith subsystem 

decentralized global controller for the ith subsystem 

control for the ith subsystem generated at the lower level usmg 

two-level hierarchical control structure 

control for the ith subsystem generated at the lower level using 

the first hierarchical control method 

control for the ith subsystem generated at the lower level using 

the second hierarchical control method 

control for the ith subsystem generated at the upper level usmg 

two-level hierarchical control structure 
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v·· I) 

V·· k I) 

V( .) 

'V H2 

control for the ith subsystem generated at the upper level using 

the first hierarchical control method 

control for the ith subsystem generated at the upper level using 

the second hierarchical control method 

linear control component for the ith subsystem 

first partial derivative of the transformation matrix with respect 

to joint variable 

second partial derivative of the transformation matrix with 

respect to joint variable 

N L ixN velocity matrix related to D( *,.,*) vector 
i = I 

derivative of the matrix V( *) with respect to time 

NxN diagonal matrix 

NxN diagonal matrix obtained uSIng the second hierarchical 

control strategy 

uncertainty bounding set for ~a;;( *,*) for all i and j 

3NxN rate of load distribution matrix for the augmented dynamic 

equation of the actuators using 0i, OJ, and OJ as the state variables 

3xl rate of load distribution matrix for the ith actuators using OJ, 

OJ, and OJ as the state variables 

2Nxl state vector for the manipulator linkage 
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3Nxl state vector for the integrated robot manipulator model 

using Ojl Oi' and iaj as the state variables 

3xl state vector for the ith actuator using 0·, 0·, and 1 . as the •• a. 
state variables 

3Nxl state vector for the integrated robot manipulator model 

using Oi' Oi' and OJ as the state variables 

3xl state vector for the ith actuator using Oil Oi' and OJ as the 

state variables 

3Nxl desired state trajectory vector for the integrated robot 

manipulator system 

3xl desired state trajectory vector for the ith subsystem 

3xl state vector for the ith subsystem 

3xl initial state vector for the ith subsystem 

Lyapunov ellipsoid with respect to K 

3Nxl error state vector between the actual and the desired states 

of the overall system 

3xl error state vector between the actual and the desired states 

for the ith subsystem 

2Nx3N transformation matrix relating Xp( t) to X A ( t) 

Nx3N transforll1ation ll1atrix relating O( t) to X B ( t) 

Nx3N transformation matrix relating O( t) to X B ( t) 
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ZB2 Nx3N transformation matrix relating B( t) to X B ( t) 

Zc Nx3N transformation matrix relating 8( t) to XA ( t) 

"J 

Z 3Nxl vector whose elements are II Zdl ' i=l, 2, .. " N 

(.)
T 

transpose of (.) 

(.)
c 

complement of (.) 

II ( .. ) II Euclidean norm of (.) 

2, Lower Case : 

a· 1 

aBO . IJ 

a· . IJ 

i _I 

a ii ' a ij 

a~ . 
IJ 

common normal distance along xi-axis from the intersection of the 

Xi and Zi_l-axes to the origin of the ith coordinate frame 

ijth element of the matrix A B 

ijth element of the integrated system matrix A( .,.,.) 

ijth element of the system matrix Ai( .,.) for the ith subsystem 

ijth element of the ijth interconnection matrix Aij( .,.) 

minimum and maximum bound of a!j( .,.), respectively 

ijth element of the nominal system matrix Ai for the ith 

subsystem 

ijth element of the uncertain matrix L1Ai( .,.) for the ith 

subsystem 
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b·· I) 

I 

b· I 

d· I 

e(.,.) 

element of the input matrix B Bi for the ith actuator 

ijth element of the integrated input matrix B( .,.,.) 

ith element of the ith subsystem input matrix B i ( .,.) 

minimum and maximum bound of b~(.,.), respectively. 

ith element of the nominal input matrix Bi for the ith subsystem 

ith element of the uncertain input matrix ..1B i ( .,.) for the ith 

subsystem 

distance along zi_l-axis from the ongln of the i-I th coordinate 

frame to the intersection of the Xi and Zi_l-axes 

'lumped' uncertain elements 

'lumped' uncertain elements for the ith subsystem usmg 

decentralized local control law 

'lumped' uncertain elements for the ith subsystem uSIng 

decentralized global control law 

'lumped' uncertain elements at the lower level for the ith 

decoupled subsystem using the second hierarchical control law 

'lumped' uncertain elements at the upper level for the ith 

subsystem the second hierarchical control law 

element of the load distribution matrix FBi for the ith actuator 

upper bound of the norm of the ij inerconnection matrix Aij( .,.) 
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I· I 

m· • 

• ri; 

y .. . , 

s~ • 

t 

WBi 

gravity row vector 

armature current for the ith motor (A) 

field current for the ith motor (A) 

torque constant for ith motor (Nm/ A) 

back emf constant for ith motor (V /rad/s) 

length of the ith manipulator link (m) 

mass of the ith manipulator link (Kg.) 

bounds on the values of Lla~;( *,*) 

position vector of the centre of gravity of the ith link with respect 

to the ith coordinate frame 

i 
bounds on the values of Llb i ( *,*) 

time (second) 

input voltage (armature) for the ith actuator (V) 

field voltage of the ith actuator (V) 

element of the rate of the load distribution matrix W Bi for the ith 

actuator 

ith state variable for the manipulator linkage = ith component of 

the Xp( t) state vector 
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3. Greek Symbols 

Q. , 

(3. , 

f· , 

twist angle from Zi_l-axIS to the Zi-axIS, measured about the xi­

aXIS 

ith positive constant 

thin boundary layer which decides the size of the switching region 

for the overall system 

thin boundary layer which decides the size of the switching region 

for the ith subsystem 

r adi us of the closed ball m 

radius of the closed ball m for robot manipulator usmg 

decentralized local control law 

radius of the closed ball m for robot manipulator usmg 

decentralized global control law 

radius of the closed ball m for robot manipulator using the first 

hierarchical control strategy 

radius of the closed ball m for robot manipulator using the second 

hierarchical control strategy 

radius of the closed ball m for the ith decoupled subsystem using 

the second hierarchical control strategy 

8(.),8(.),8(.) Nxl vector of joint displacement (rad), joint velocity (rad/s), and 

joint acceleration (rad/s2), respectively. 
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8di, 8di , 8 di desired joint angle, velocity, and acceleration, respectively for the 
ith joint. 

8i , 8i , 8i ith joint angle, velocity, and acceleration, respectively. 

8mi( *) angular displacement for the ith motor (rad) 

K, a constant corresponding to the smallest Lyapunov ellipsoid ~(K,) 

l1H2 a constant corresponding to the smallest Lyapunov ellipsoid ~(.l£) 

obtained using the second hierarchical control method 

A( *) eigenvalue of (*) 

I-l Li( *,*,*) 'switching surface' for decentralized local controller for the ith 

subsystem 

I-lGi( *,*,*) 'switching surface' for decentralized global controller for the ith 

subsystem 

p( *,*) 

parameters of the manipulator such as payload which belong to 

the finite region of allowable parameter values E. 

norm bound of the 'lumped' uncertainties 

norm bound of the 'lumped' uncertainties for decentralized local 

control law for the ith subsytem 

norm bound of the 'lumped' uncertainties for decentralized global 

control law for the ith subsytem 

norm bound of the 'lumped' uncertainties computed at the lower 

level for the ith decoupled subsystem using the second 

hierarchical control method 
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T 

~ . • 

--..... 

4>( *,*) 

norm bound of the 'lumped' uncertainties computed at the upper 

level for the ith subsystem using the first hierarchical control 
method 

norm bound of the 'lumped' uncertainties computed at the upper 

level for the ith subsystem using the second hierarchical control 
method 

time interval for manipulator to move from a gIven initial 

position to a final desired position (second) 

distance between the final and initial position 

finite region of allowable values for robot parameters, such as 

payload 

nonlinear saturating controller 

nonlinear control component of the decentralized local controller 

for the ith subsystem 

nonlinear control component of the decentralized global controller 

for the ith subsystem 

nonlinear control component of the decentralized controller 

generated at the lower level for the ith subsystem using the 

second hierarchical control method 

nonlinear control component generated at the upper level for the 

ith subsystem using the first hierarchical control method 

nonlinear control component generated at the upper level for the 

ith subsystem using the second hierarchical control method 
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n( *) 3xl vector of open loop control for centralized controller 

ni ( *) open loop control for the ith decoupled nominal subsystem 
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CHAPTER 1 

INTRODUCTION 

1.1 ROBOTIC SYSTEM 

A robot manipulator, which is an outgrowth of the machine tool industry, 

IS a general purpose computer controlled manipulator consisting of several rigid 

links connected in series by revolute or prismatic joints. One end of the chain is 

attached to a supporting base while the other end is free and attached with a tool, 

or end-effector to manipulate objects or perform assembly tasks. A simple end­

effector usually has two opposing, moving plates for grasping an object. 

Mechanically, a robot manipulator is composed of an arm subassembly, a 

wrist subasseInbly, and an end-effector. The arm subassembly and the wrist 

subassembly, which are the positioning and the orientation mechanisms, 

respectively, are normally each of three degree of freedom (dof) of movement. 

Normally, the joints of the manipulator are actuated by either electric or 

hydraulic actuators through a gearing mechanism. The motion of the joints 

produced by the actuators determine the position and orientation of the end­

effector at any time. 

Present day robot manipulators are also equipped with sensors to gIve 

accurate measurements of the joint displacements, velocities, and/or accelerations 

in order to provide information for determining the position and orientation of the 

end-effector, and to control the motion of the robot manipulator. Furthermore, 

some manipulators are also equipped with force/torque transducers, tactile sensors 

or range sensors to provide information about the contact of the end-effector with 

the environment. Figure 1.1 illustrates the COm1110n components of a robotic 

system. 
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FIGURE 1.1 Robotic System Components 

For many robot manipulator applications, the end-effector of the 

manipulator is made to move along a desired trajectory, starting from a gIven 

initial position and orientation and stop at a specified terminal position and 

orientation, in the manipulator workspace. A manipulator workspace represents 

all the possible positions that the end-effector of the robot manipulator can reach. 

Depending on the particular control technique used, the positions, velocities as 

well as the accelerations of the generalized coordinates as functions of time are 

often included in the description of the manipulator trajectory. The trajectory 

may also include the desired force when the manipulator is in contact with the 

environment. The desired trajectory for a specific task to be tracked by the robot 

manipulator may be precomputed off-line in advance and stored in the memory of 

the controlling computer. 

Today, robot manipulators are increasingly being used in a wide variety of 

manufacturing and technical applications. They are used In hazardous 

environments such as handling of hazardous (eg. radioactive) materials in nuclear 

plants, chemical and gas polluted surroundings, and dangerous mining areas. 

They are also being employed in space expeditions and deep undersea explorations 

where it is not suitable for human operation. But the main use of robot 

manipulators is for repetitive tasks which require speed, consistency and accuracy 
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In a wide variety of automated industrial assembling and fabrications such as 

material moving and handling, spot/arc welding, metal sheet or fabric pat tern 

cutting, spray painting in the automotive industry, and parts assembly. Such 

tasks are generally tedious for human operators while they are most suited for 

mechanical manipulators. 

The majority of current robot manipulators used in industrial assembling 

and manufacturing tasks are equipped with some simple manipulator control 

systems which prove to be adequate enough for such operations. As the industrial 

tasks become too complex, involving too many uncertainties or requiring too 

much flexibility to adapt to a changing environment, these simple manipulator 

control strategies become ineffective. 

As robot manipulators find more and more advanced applications, 

accurate, fast and versatile manipulation becomes necessary. To achieve higher 

speed and accuracy for robot manipulators over a wide range of applications, the 

control technique needs to be improved. In general, the dynamic performance of a 

robot manipulator is directly dependent on the efficiency of the control algorithm 

and the dynamic model of the robot manipulator. Thus the robot manipulator 

control problem consists of determining the mathematical model of the robot 

manipulator system and then specifying the corresponding control strategies based 

on these models so that the desired system response and performance is achieved. 

1.2 MANIPULATOR LINK DYNAMIC MODEL 

A number of techniques for developing an efficient analytical model of the 

mechanical part of a robot manipulator are available. Among these are the 

Lagrange-Euler method [Lee, 1982; Lee, 1983; Paul, 1981; Vukobratovic and 

Potkonjak, 1982], the Recursive-Lagrange method [Hollerbach, 1980], the Newton­

Euler method [Luh et.al., 1980b; Orin et.al., 1979], and the methods based on the 

generalized D'Alembert principle [Vukobratovic and Potkonjak, 1982]. All of 

these methods provide equations which describe the three-dimensional motion of 

the robot manipulator. 
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It should be noted that the structure of the equations formulated based on 

one method may differ from the structure of the equations obtained by another 

method. However, these equations are 'equivalent' to each other in the sense that 

they provide the same dynamic response of the robot manipulator. 

Of the available methods, the Newton-Euler method and the method based 

on the Lagrange formulation are the most commonly used approaches for deriving 

the dynamic equations of the mechanical part of a robot manipulator. The 

Newton-Euler method yields a set of forward and backward recursive equations, 

which results in a tremendous reduction of computational time allowing real-time 

(on-line) control application. However, the Newton-Euler model does not provide 

sufficient insight for control design due to the recursive computation. 

Deriving the dynamic model of a manipulator using the Lagrange-Euler 

method is simple and systematic. Furthermore, the method gives a set of 

dynamic equations in a compact matrix form which is appealing from the control 

viewpoint. However, from the computational point of view, the method is not 

very convenient and real-time control based on the dynamic model derived is 

difficult to achieve. To improve the computational efficiency of the Lagrange­

Euler method, a Recursive-Lagrange formulation was developed by Hollerbach 

[1980], but the recursive equations destroy the 'structure' of the dynamic 

equations which is appropriate for control design purposes. 

For an N dof manipulator as shown in Figure 1.2, using the Denavit­

Hartenberg matrix representation (Appendix A) for the manipulator linkage and 

the Lagrange-Euler formulation as outlined in Appendix B, the dynamic equations 

describing the motion of the manipulator in the absence of actuator dynamics, 

friction, and other disturbances can be written in the following matrix form: 

where 

M(B(t), ~) 8(t) + D(B(t), 8(t), e) + G(B(t),~) = T(t) , 

B(t) = [Bl(t), B2(t), . .. , BN(t)]T 

B( t) E?RN , 8( t) E?RN , 8( t) E ?RN 
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11(8(t), ~) 

D ( 8( t), 8( t), ~) 

G(8(t), ~) 

T(t) 

8(t), 8(t), 8(t) 

NxN inertia matrix 

Nx1 vector of Coriolis and centrifugal forces 

Nx1 vector of gravitational forces 

Nx1 vector of generalized driving forces/torques applied 

by the actuators at the drive points on each link of the 

manipulator 

Nx1 vectors of generalized joint displacements, velocities, 

and accelerations respectively 

a vector (with appropriate dimension) of parameters of 

the mechanism such as payload, which belong to the 

finite region of allowable parameter values :=, that is, ~ 

E :=. 

In general, the elements of the 11(8(t), ~), D(8(t), 8(t), ~), and G(8(t), ~) 

matrices are functions of the dynamic parameters of the manipulator (lengths, 

masses, load, etc.) as well as the instantaneous configuration (position) of the 

links, while the elements of the D( 8( t), 8( t), ~) matrix also depend on the 

instantaneous velocity of the links. Thus, the elements of these matrices are 

strongly varying while the manipulator is in motion. 

The inertia matrix 11( 8( t), ~) is positive definite, bounded, symmetric and 

always invertible for all 8( t), ~, and t [Balestrino et.al, 1983; Paul, 1981; Tourasis 

and Newman, 1985]. The inertia and the gravitational terms are particularly 

important in manipulator control as they affect the system stability and positional 

accuracy of the manipulator. It is generally assumed that the Coriolis and 

centrifugal forces are significant only when the manipulator is moving at high 

speed. At low speed, their effects are small [Paul, 1981; Tourasis and Newman, 

1985]. 

The Coriolis and centrifugal vector D( 8( t), 8( t), ~) can also be written in 

the following form [Lim and Eslami, 1985] : 

D(8(t), 8(t),~) = D(8(t), 0 V(8(t)) 8(t) , ( 1.2) 

where 
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o N-I,l iJ2 ( t) I N_I 

V(iJ(t)) (1.3) 

_ N 
N 

where D(O(t), ~) is a Nx ~ i matrix, V(iJ(t)) is a ~ i x N matrix, Oi,j is an ixj 
i=l i=l 

null matrix, and Ik is a kxk identity matrix. 

z 

, .... 

N 

~~--~----------~----+y 
~ ........... tl I 

8 .......... ... I 
1 ......... ll .. 

x 

FIGURE 1.2 N dof Robot Manipulator 

From the above equations, it is clear that the manipulator is a multi-input 
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multi-output system, described by a set of coupled, nonlinear time varymg 

second-order differential equations, resulting from the dynamic interactions among 

the links of the manipulator arm. However, in designing the controller for a robot 

manipulator, the majority of current industrial approaches ignore the coupled, 

time varying dynamic equations and treat the robot manipulator as a set of 

simple, decoupled, linear time invariant servomechanisms. However, the changes 

in the parameters of the controlled system due to the nonlinear time varying 

dynamics are significant enough to render the linear servomechanism strategy 

ineffective for fast and high-precision tasks [Fu et.al., 1987; Spong and Vidyasagar, 

1989]. 

In contrast to the current industrial approaches where the controller is 

normally designed based only on the actuators dynamics, the advanced control 

strategies proposed in much of the literature on robot manipulator control, were 

designed based only on the dynamic model of the mechanical part of the robot 

manipulator (equation 1.1); the dynamics of the actuators which are part of the 

whole robot manipulator system have generally been ignored, and the drive 

torques or forces are modeled as pure torque/force sources or as first order lags 

[Good, 1985]. This, in the majority of cases, is a simplification of a much more 

realistic model of the system [Ailon, 1988]. 

1.3 MANIPULATOR CONTROL STRATEGIES 

The robot manipulator control system is basically organized in a vertical 

hierarchical fashion which consists of several control levels. The question of how 

many different levels should there be in the hierarchical structure is dependent on 

the type of the robot manipulator and the complexity of the tasks for which the 

robot manipulator is intended. One thing certain is that all robot manipulators 

have the lowest two control levels, namely, the tactical level which generates the 

desired trajectories of each dof of the manipulators, and the executive level which 

executes these trajectories by producing proper drive signals, through a suitable 

control algorithm, to the appropriate actuators incorporated in each dof of the 

robot manipulator. It should be noted that each of these levels may be further 
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subdivided in a number of separate hierarchical levels [Vukobratovic and Stokic, 

1982]. 

Ideally, the aim of robot manipulator controller at the executive level is to 

maintain a prescribed motion for the manipulator along a desired trajectory 

generated at the tactical level, and in accordance with some prespecified system 

performance. The majority of current industrial approaches to the robot arm 

control design treat each joint of the manipulator as a simple linear 

servomechanism with, for example, proportional plus derivative (PD), or 

proportional plus integral plus derivative (PID) controllers. In designing the 

controllers, the nonlinear, coupled and time-varying dynamics of the mechanical 

part of the robot manipulator system have usually been completely ignored, or 

assumed as disturbances. They generally give satisfactory performance when 

properly tuned and driving only one joint at a time. However, when the links are 

moving simultaneously and at high speed, the nonlinear coupling effects and the 

interaction forces between the manipulator links may decrease the performance of 

the overall system and increase the tracking error. The disturbances and 

uncertainties such as variable payload in a task cycle may also reduce the tracking 

quality of the robot manipulator system [Vukobratovic et.al., 1985]. Thus, the 

method is only suitable for relatively slow manipulator motion and limited­

precision tasks [Craig, 1986; Fu et.al. 1987; Spong and Vidyasagar, 1989]. 

In the past years, various advanced and sophisticated control strategies at 

the executive level of the control hierarchy have been proposed by numerous 

researchers for controlling the robot manipulator such that the system is stable as 

well as the motion of the manipulator arm is maintained along the prescribed 

path generated by the tactical level. The structures of these controllers can be 

loosely grouped into three categories, namely, the centralized, decentralized, and 

multilevel hierarchical structures. In the following, some of these control 

approaches which have been reported in the literature will be briefly presented. 

A number of centralized control schemes have been developed for 

improving the control of the nonlinear, coupled time varying robot manipulator. 

These include among others, the Computed Torque techniques [Markiewicz, 1973; 

Bejczy, 1974; Craig, 1986] or the Inverse Problem methods [Raibert and Horn, 

1978; Paul, 1981), the Resolved ~1otion Control strategies [Whitney, 1972; Luh 
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et.al., 1980a; Wu and Paul, 1982], the Nonlinear Decoupled Control methods 

[Freund, 1982; Kuo and Wang, 1989], the Variable Structure Control approaches 

[Young, 1978; Slotine and Sastry, 1983; Chen et.al., 1990; Fu and Liao, 1990; 

Wijesoma and Richards, 1990; Song and Gao, 1991], the Self-Tuning Control 

methods [Koivo and Guo, 1983; Leininger, 1984], and the Model Reference 

Adaptive Control strategies [Dubowsky and DesForges, 1979; Balestrino et.al., 

1983; Osman, 1985; Tzafestas and Stavrakakis, 1986; Chen, 1987b; Ambrosino 

et.al., 1988]. 

The Computed Torque Technique [Markiewicz, 1973; Bejczy, 1974; Craig, 

1986], also called the Inverse Problem method [Raibert and Horn, 1978; Paul, 

1981], is basically composed of a feedforward and a feedback component. The 

methods require exact modeling of the manipulator arm dynamics. Based on the 

manipulator dynamic model and the desired joint trajectory, the feedforward 

component computes the required input torques to compensate the actual 

manipulator arm dynamics such that the nonlinear coupled manipulator system is 

reduced into a linear decoupled time invariant system. Then, based on a standard 

linear control technique, the feedback component is designed to control the linear 

decoupled system. One of the main drawbacks of these control methods 

[Markiewicz, 1973; Bejczy, 1974; Paul, 1981; Craig, 1986] is that they require on­

line computation of the joint torques based on the complete Lagrange-Euler 

dynamic equation of the robot manipulator, which is very inefficient. Raibert and 

Horn [1978] used a partial table look-up approach to simplify the computation 

automatically in the control computer rather that to compute the nonlinear 

dynamic equations. The disadvantage of this scheme is that it requires a large 

computer memory. Another problem with these methods is that their validity is 

questionable when there is a significant difference between the computed torque 

model parameters and the actual robot manipulator parameters. 

Resolved motion means that the motion of the various joints are combined 

and resolved into separately controllable end-effector motion along the task 

coordinates axes (Cartesian coordinate system) [Fu et.al, 1987]. The Resolved 

~10tion Control strategies include the Resolved ~fotion Rate Control ['Vhitney, 

1972], Resolved ~10tion Acceleration Control [Luh et.al., 1980a], and Resolved 

Motion Force Control [Wu and Paul, 1982]. In Resolved ~10tion Rate Control 

[Whitney, 1972], the joint motors are required to move simultaneously at different 
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time varyIng speeds along the axes relevant to the task coordinate in order to 

achieve desired coordinated end-effector motion. The method requires the 

computation of the inverse of the Jacobian matrix at each sampling time for the 

calculation of the joint rate (velocity). The disadvantages of this method are that 

the inverse Jacobian matrix requires intensive computations, and matrix inversion 

may cause singularity problems. The Resolved Motion Acceleration Control 

method [Luh et.al., 1980a] is simply an extension of the Resolved Motion Rate 

Control technique, which includes acceleration control. It assumes that the 

desired positions, velocities and accelerations are available. The method is quite 

similar to the Computed Torque Technique except that the desired trajectory and 

the feedback law are expressed in terms of the task coordinates. This control 

technique has the same disadvantages as the Revolved Motion Rate Control 

technique and the Computed Torque technique. Resolved Motion Force Control 

[Wu and Paul, 1982] is based on the relationship between the forces obtained from 

wrist force sensors and the joint torques at the joint actuators. The controller 

consists of the Cartesian position control which calculates the desired forces to be 

applied to the end-effector in order to track the desired task trajectory, and a 

force convergent control which determines the required joint torques to be applied 

to each joint actuator such that the end-effector has the desired forces applied as 

determined by the Cartesian position control. The method avoids the 

computation of the inverse Jacobian matrix and complicated dynamics of the 

robot manipulator. However, the convergent rate of the force convergent control 

depends on the structure of the manipulator, and the calculation of the dynamic 

model is replaced by an iterative stochastic method which also demands extensive 

computation [Vukobratovic et.al., 1985]. 

A nonlinear feedback pole placement control method for controlling a robot 

manipulator was proposed by Freund [1982]. The control algorithm consists of 

two parts. The first part is the nonlinear decoupling control which completely 

decouples the nonlinear robot manipulator dynamics into a set of decoupled linear 

input-output second order differential equations whose characteristic coefficients 

can be chosen arbitrarily. The second component of the Nonlinear Control 

Algorithm is an arbitrary pole placement technique to design the dynamics of the 

linear input-output second order equations, obtained from the first part, as 

desired. It was acknowledged that [Freund, 1982] the method uses a relatively 
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complicated nonlinear operator and the nonlinear decoupling theory is extremely 

difficult, especially for robot manipulators with three dof or more, and with 

complicated dynamic equations. Kuo and Wang [1989] combined the nonlinear 

state feedback control law of Freund [1982] to obtain a set of decoupled equations 

in joint coordinates, with a robust servomechanism theory to calculate the linear 

control signal for each joint of the manipulator to suppress the effects of modeling 

errors, disturbances and other uncertainties. The nonlinear control part of the 

control algorithm uses the Newton-Euler recursive formulation to calculate the 

complete manipulator dynamics on-line. 

Several control algorithms for robot manipulators based on the theory of 

Variable Structure Systems have been reported in the literature [Young, 1978; 

Slotine and Sastry, 1983]. Variable Structure Systems are characterized by a 

discontinuous feedback control law on an appropriate switching surface in the 

state space. The control law induces the sliding mode in which the system 

trajectories lie on the switching surface, which results in insensitivity to parameter 

variations and disturbances. It is this insensitivity property that enables the 

elimination of the interactions among the joints of the robot manipulator. The 

control algorithm does not require an accurate knowledge of the physical 

parameters of the manipulator; the bounds of the parameters are sufficient to 

construct the controller [Young, 1978]. However, the discontinuous control law is 

very difficult for realization in practice and the discontinuous controller results in 

chattering effects of the control signal. To reduce the chattering effects due to the 

discontinuous control inputs, Slotine and Sastry [1983] replaced the discontinuous 

feedback control law with an approximated continuous feedback control law. 

However, there is a trade-off between robustness to high frequency dynamics 

(chattering) and the tracking precision of the robot manipulator. Fu and Liao 

[1990] constructed a robust tracking controller for robot manipulators based on 

nonlinear state feedback control theory and Variable Structure control theory. 

The purpose of the nonlinear control law is to linearize and decouple the system in 

order to obtain a set of linear output equations, whereas the aim of the Variable 

Structure Control law is to compensate for the uncertainties and at the same time 

to provide an asymptotic tracking force. It was shown through simulations that 

the output of the closed loop robot manipulator system asymptotically tracks the 

desired trajectories despite the presence of the uncertainties. A robust trajectory 
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tracking control for a robot manipulator based on the combination of the 

Computed Torque technique and the Variable Structure theory was proposed by 

Wijesoma and Richards [1990]. The computed torque component which is based 

on the nominal dynamic model of the manipulator is used to linearize and 

decouple the system. Then the Variable Structure theory is used to synthesize a 

discontinuous control component to eliminate any residual coupling and nonlinear 

effects due to variations of the system from its nominal dynamics. An almost 

similar approach was used by Chen et.al. [1990] and Song and Gao [1991] in their 

design. However, a great amount of on-line computation is needed during the 

manipulator motion due to the computation of the nonlinear state feedback 

control law or the nominal torque required for each manipulator joint. 

A great deal of research has been conducted towards developing an 

adaptive robot controller which leads to high-level performance of the robot 

manipulator in the presence of large variations in the dynamic characteristics of 

the manipulator, such as load variations and parameter uncertainties. These 

include the Self-Tuning Control methods [Koivo and Guo, 1983; Leininger, 1984,], 

and The 110del Reference Adaptive Control (MRAC) techniques [Dubowsky and 

DesForges, 1979; Balestrino et.al., 1983; Nicosia and Tomei, 1984; Osman, 1985; 

Chen, 1987b; Ambrosino et.al., 1988]. 

The adaptive Self-Tuning Control proposed by Koivo and Guo [1983] used 

an autoregressive model to fit the input-output data from the robot manipulator. 

The method does not require a detailed mathematical model of the robot 

manipulator, and the resulting system is insensitive to the changing configurations 

of the manipulator and variations in the load. However, the dynamic model of 

the manipulator is required to be linearized. Thus, the technique results in a poor 

system performance over a wide range of tasks. Leininger [1984] proposed a self­

tuning pole placement method which provides an adaptive feedback design 

approach which does not requires an a priori mathematical description of the 

robot manipulator dynamics. The method automatically compensates for the 

manipulator compliance, friction, and link flexibility through the on-line learning 

mechanism. However, the behaviour of the manipulator when starting the 

learning process depends mostly on the accuracy in initialization of the prediction 

Inodel parameters. This accuracy determines the degree of 'erratic' motion at 

task start-up. Another problem associated with the method is that the 
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convergence of the parameter estimation and controller gains may not be achieved 

during the finite time over which the motion takes place [Vukobratovic et. al., 

1985]. 

The MRA C technique is based on the selection of an appropriate reference 

model which specifies the design objective (rise time, delay time, etc.), and an 

adaptation mechanism which modifies the feedback gains to the system. The 

objective of the control system is to minimize the error between the states or 

outputs of the reference model and those of the actual robot manipulator via the 

chosen adaptation mechanism. Normally, linear second-order time invariant 

reference models were used for each dof of the robot manipulator. Dubowsky and 

Des Forges [1979] used the steepest descent method to adjust the gains in the 

position and velocity feedback loops. The method is computationally less 

burdensome than the methods which evaluate a complete nonlinear robot 

manipulator model, and it has good noise rejection properties [Vukobratovic et.al., 

1985]. However, the interaction forces among the joints of the manipulator are 

assumed to be negligible and consequently ignored. Hence, the method does not 

result in satisfactory control particularly for the faster and more sophisticated 

tasks. Several Adaptive Model Following Control (AMFC) techniques that nullify 

the difference between the behaviour of the robot manipulator and the reference 

model via Popov's hyperstability theory [Balestrino et.al., 1983; Nicosia and 

Tomei, 1984], and the Variable Structure theory [Osman, 1985] have been 

proposed. The methods require perfect model matching conditions to be satisfied. 

The control algorithms are insensitive to parameter variations and disturbances, 

and force the nonlinear, coupled time varying robot manipulator system to have 

well-behaved, linear, uncoupled characteristics. It is, however, difficult to 

establish any stability analysis of the controlled system [Fu et. al., 1987], and the 

techniques are complicated mathematically due to the centralized nature of the 

control approaches [Vukobratovic et.al., 1985]. 

Eventhough some of the aforementioned centralized methods, notably the 

MRAC and the Variable Structure Control techniques, exhibit excellent and 

promising results in simulation or in a laboratory environment, very few results 

could be transferred into practice. This is due to the fact that the centralized 

control schemes, in general, require excessive computation time, are complex and 

are costly to implement. The centralized approach treats the robot manipulator 

52 



as a single plant which is unfavourable and impractical from the view point of 

reliability, implementation and maintenance of the controllers. 

Furthermore, most of the above control strategies were developed based on 

a model of the robot manipulator (i.e. equation 1.1) that is inadequate because the 

actuators dynamics have not been taken into account. Normally, the drive 

torques/forces are modelled as pure torque/force sources or as first order lags 

[Good, 1985]. Since the actuators are part of the robot manipulator system, the 

introduction of their dynamic behaviour is essential for a more realistic 

presentation of the complete dynamics of the robot manipulator, and for the 

synthesis of high performance control algorithms. 

Eventhough the actuator dynamics constitute an important part of the 

complete robot manipulator system, only a limited amount of research on robot 

manipulator controller synthesis based on the complete dynamic model of the 

system can be found in the literature. A MRAC technique and hyperstability 

approach similar to that of Nicosia and Tomei [1984] was used by Tzafestas and 

Stavrakakis [1986] to synthesize a robot manipulator controller based on the 

complete dynamic model of the manipulator and its actuators (DC motors). The 

method is unnecessarily complicated due to the need to find the reflected 

electromagnetic torque which guarantees the desired trajectory, velocity, and 

acceleration, and for inclusion in the reference model. Beekmann and Lee [1988] 

applied Freund's nonlinear control theory [1982] to decouple the robot 

manipulator model that contains the link dynamics, motor dynamics, and the 

interaction dynamics. A pole placement method was then applied to control the 

decoupled system. The derivation of the control law is complicated and requires 

extensive on-line calculation of the nonlinear controller. A similar problem arises 

with the control method proposed by Tarn et.al. [1991]. A nonlinear decoupled 

control law was designed to linearize and decouple the complete model of the 

robot manipulator and its actuator into a number of decoupled linear subsystems 

in the task space. An optimized linear controller was then designed to render the 

system robust against system parameter uncertainties. The controller requires the 

computation of the complete dynamic model of the robot manipulator system on­

line, which is a drawback. \Vhile the above studies were based on a robot 

manipulator actuated with DC motors, the study of the influence of 

electrohydraulic actuators with various degree of complexities, on the synthesis of 
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a robot manipulator controller can also be found in the literature [Katic and 

V ukobratovic, 1986]. 

While it is necessary to consider the effect of the actuator dynamics in 

synthesizing the robot manipulator controller, the inclusion of the 

servomechanism dynamics into the robot manipulator dynamic equations will 

inevitably increase the order and complexity of the overall dynamic model of the 

system. Accordingly, the control law required to control the system will become 

more complex, particularly if the controller structure is in the centralized form. 

In order to circumvent the problems due to the centralized structure of the 

control system at the executive level, it is necessary to decentralize the control 

effort or to decompose the executive control level further into a two-level 

hierarchical control structure. 

1.4 RESEARCH OBJECTIVES 

The objectives of this research are as follow: 

A. To give a unifying framework for the formulation of the complete 

mathematical dynamic model of a DC motor actuated revolute robot 

manipulator in state variable form. The formulations result in nonlinear 

time varying state equations which are believed to represent a more 

realistic model of the robot manipulator than the model with the drive 

torques/forces modelled as ideal pure torque/force sources or as first order 

lags, and to provide a better model for advanced controller design purposes. 

Two different structures of the model are outlined where each model is 

based on a different set of state variables. The first set of the state 

variables consists of the manipulator joint angle, velocity and the motor 

armature current, while the manipulator joint angle, velocity, and 

acceleration forms the second set of the state vector. It will be shown that 

the integrated robot manipulator model with the joint position, velocity 

and acceleration as the state variables is more suitable for the synthesis of 

high performance control algorithms. 

54 



B. To decompose and transform the integrated nonlinear dynamic model of 

the robot manipulator into a set of interconnected subsystems with 

bounded uncertainties. 

c. To synthesize decentralized tracking controllers for a robot manipulator 

based on a deterministic approach. Two tracking control algorithms are 

proposed : local decentralized control and global decentralized control. The 

local decentralized controller utilizes only the local states of the subsystem, 

while the global decentralized control law uses the local states as well as 

the states of the other subsystems as feedback information. Both methods 

assume that the bounds on the nonlinearities and uncertainties present in 

the system are known. It will be shown that in both methods, the 

resulting errors between the responses of the actual robot manipulator 

system and that of the reference trajectories are uniformly ultimately 

bounded with respect to any arbitrarily small set of ultimate boundedness; 

in spite of the highly nonlinear and coupled robot manipulator dynamics, 

and the uncertainties present in the system. 

D. To formulate two-level hierarchical controllers for tracking control of a 

robot manipulator based on a deterministic approach. Two methods are 

proposed. In both methods, the control laws are decoupled at the lower 

level of the hierarchy, and utilize only the local states as the feedback 

information. It will be shown that the hierarchical controllers will render 

the nonlinear robot manipulator practically stable and track the desired 

trajectory within a particular bounded neighbourhood of the trajectory 

after a finite time. 

Verification of the proposed control algorithms are performed through 

stability analysis using Lyapunov's second method and computer simulation 

studies using a three dof revolute robot manipulator actuated with DC motors. 
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1.5 STRUCTURE AND LAYOUT OF THESIS 

Chapter 2 deals with the formulation of the integrated dynamic models of 

revolute robot manipulators. First, the state space representation of the dynamic 

model of the mechanical part of the robot manipulator are outlined. Then, the 

state space descriptions of the actuator dynamics (DC motor) with two different 

sets of state variables are presented. The first set of the state variables consists of 

the joint angle 9( t), the joint velocity 8( t), and the armature current ia(t), while 

9(t), 8(t), and 8(t), the joint angle, velocity, and acceleration respectively, form 

the second set of the state variables. Based on the actuator dynamic models, two 

integrated dynamic models of the robot manipulator in state space description are 

presented. The advantages and disadvantages of each method is also discussed. 

Finally, a detailed derivation of the integrated dynamic model for a three dof 

revolute robot manipulator with 9( t), 8( t), and 8( t) - the joint angle, joint 

velocity, and joint acceleration respectively - as the state variables is presented. 

Chapter 3 establishes the basis for the synthesis of the controller based on 

the deterministic approach presented in the next few chapters. The integrated 

nonlinear dynamic model of the robot manipulator is decomposed into an input 

decentralized form. Based on the known allowable range of operation of the robot 

manipulator and the maximum allowable load, the decomposed model is then 

transformed into a set of interconnected linear subsystems with bounded 

uncertainties description. 

Chapter 4 outlines a decentralized control strategy for robot manipulators 

based on a deterministic approach. A brief review of the existing decentralized 

control techniques and deterministic control approaches for controlling a robot 

manipulator are given in the earlier part of the chapter. The formulation of the 

decentralized tracking control problem and some standard assumptions are given 

next. The method is designed based only on the local states and the bound on the 

uncertainties as the feedback information. Finally, the performance of the 

proposed decentralized tracking control approaches is evaluated by means of 

computer simulation study. 

In Chapter 5, a decentralized global tracking control law is proposed. The 

method uses the local states, the bound on the uncertainties, as well as the states 
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of the neighbouring subsystems as the feedback information. To evaluate the 

performance of the controller, the decentralized global controller is then applied to 

the three dof revolute robot manipulator model derived previously and simulated 

on a digital computer. Various simulation results are presented and discussed to 

study and verify the performance of the proposed controllers. 

Chapter 6 presents the hierarchical control concepts for robot manipulator 

control. General multilevel and hierarchical control concepts, and the existing 

hierarchical control techniques for robot manipulators, are briefly reviewed. Two 

hierarchical control concepts for robot manipulators based on a deterministic 

approach are proposed. The simulation results for various case studies are 

presented and discussed. 

Chapter 7 summarizes the results of the studies. Suggestions for future 

work are also presented at the end of the chapter. 

Four Appendices are included. Appendix A presents an algorithm for 

establishing the coordinate frames and Denavit-Hartenberg (D-H) transformation 

matrices for robot manipulators. The second appendix outlines the Euler­

Lagrange formulation to derive the dynamic model of the mechanical linkage of a 

robot manipulator. Appendix C is an overview of the existing methods of deriving 

the complete robot manipulator mathematical model. The last appendix presents 

the detail components of a three dof revolute robot manipulator dynamic 

equation. 
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CHAPTER 2 

MODELING OF ROBOT MANIPULATOR 

2.1 INTRODUCTION 

An important initial step in the design of controllers for an industrial robot 

is to obtain a complete, and as accurately as possible, the mathematical model of 

the robot manipulator. Such a model is useful for computer simulation of the 

robot manipulator motion, for the synthesis of a control algorithm for controlling 

the robot manipulator, etc. As mentioned in the previous chapter, typical 

industrial robots can be modelled as an open kinematic chain of N-rigid bodies or 

links, connected in series by N joints. Normally, the joints are actuated by either 

electric or hydraulic actuators. 

In much of the literature on advanced control strategies proposed to 

improve the performance of robot manipulators control algorithms were designed 

based only on the dynamics of the mechanical links (equation 1.1), where the joint 

torques/forces are considered as the inputs or the control variables to the system. 

However, the dynamics of the mechanical part of the robot manipulator alone is 

not sufficient to represent the dynamics of the robot manipulator, since it does not 

include the dynamics of the actuating mechanism which generates the joint 

torques/forces. In fact, it is the input to the actuators, but not the output (joint 

torques/forces) that is directly controlled [Tarn et.al., 1988]. 

Since the actuators are part of the robot manipulator system, it is 

necessary to consider the effects of the actuator dynamics especially in cases where 

higher speed and better SystcITI performance are required [Ailon, 1988; Tarn et.al., 

1988]. Hence, it is necessary to include the actuators dynamics into the robot 

manipulator dynamic equations. 
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The aim of this chapter is to present the formulation of the integrated 

mathematical dynamic model of an electrically driven revolute robot manipulator 

in state variable form. The integrated model comprises the dynamic model of the 

mechanical links of the robot manipulator as well as the actuators dynamics 

(permanent magnet DC motors). Two different approaches are presented. In the 

first approach, the joint angles, velocities and the armature currents of the 

actuating mechanisms are chosen as the state variables. In the second approach, 

the armature current is replaced by the joint acceleration as the state variables. 

The formulations result in third-order nonlinear time varying state equations, 

which represent a more realistic model of the robot manipulator than the model 

with the joint torques/forces modeled as pure torque/force sources or as first-order 

lags. The advantages and disadvantages of the methods will also be discussed. 

Finally, an integrated model of a three dof revolute robot manipulator driven by 

DC motors is derived based on the second approach. 

It should be noted that, the integrated dynamic models of the robot 

manipulator derived by no means represent a complete model of the robotic 

system since the drive system nonlinearities such as Coulomb friction, backlash, 

stiffening spring characteristic of the actuators, and various sources of flexibility 

(such as deflection of the links under load and vibrations, elastic deformation of 

bearings and gears) are not included in the formulation of the integrated dynamic 

model. However, it is believed that the integrated model derived represents more 

closely the dynamic behaviour of the robot manipulator, and provides a better and 

much more suitable model for the purpose of dynamic analysis and advanced 

controller synthesis for the robot manipulator. 

2.2 STATE SPACE REPRESENTATION OF MANIPULATOR LINK 

DYNAMICS 

In this section, the dynamic equations of the mechanical part of the robot 

manipulator are rewritten in the state variable form, as outlined by Balestrino 

et.al. [1983], and Lim and Eslami [1985; 1986]. This formulation is required in 

deriving the integrated model of the robot manipulator based on the first 
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approach. 

From equations (1.1) and (1.2), the dynamic equation of the mechanical 

links of the robot manipulator can be rewritten as follows: 

M( 8( t), e) 8( t) + D( 8( t), e) V( 8( t)) 8( t) + G( 8( t), e) = T( t). (2.1) 

In the following, some of the arguments are sometimes suppressed for convenience. 

Let the state variables for the N dof manipulator be : 

x . = 8· pa a 

(2.2) 

i E!J a {i : i = 1, 2, ... , N} , 

and, hence, the 2N-dimensional state vector is given as : 

(2.3) 

Xp( t) E ~2Nzl . 

Let the gravitational force vector be represented by 

(2.4) 

where the matrix G(X"i' e) E RNzN is not unique [ Lim and Eslami, 1985; 1986]. 

Then, in terms of the state variables, equation (2.1) becomes : 

X,,( t) = A"(X,,, e, t) X,,( t) + B"(X,,, e, t) T( t) (2.5) 
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where 

(2.6) . . . . . . . . . . . . . . . . . . . . . . . . 
Apl(Xp, {, t) : Ap2(Xp, {, t) 

Apl(Xp, {, t) = - M-\xpi, {, t) G(Xpi' {, t) (2.7) 

Ap2(Xp, {, t) = - M-\Xpi' {, t) D(xpi' {, t) V(Xpi) , (2.8) 

. . . . . . . . . . (2.9) 

and IN is an NxN identity matrix, while ONN is an NxN null matrix. 

Each element of the matrices (2.6) and (2.9) is a nonlinear function of the 

state variables, taking into account the contribution of the inertia matrix, 

Coriolis, centrifugal, and gravitational forces. 

2.3 ACTUATOR DYNAMICS 

For robot manipulators, permanent magnet D.C. motors and 

electrohydraulic actuators are widely used as the actuating mechanism. Here, an 

electrically driven manipulator is considered, where each joint of the robot 

manipulator is driven by an armature controlled permanent magnet DC motor. 

For ith joint, the schematic diagram of a permanent magnet armature 

controlled DC motor can be illustrated as in Figure 2.1. By the application of 

Kirchhofrs voltage law to the armature circuit of the motor and Newton's law of 
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motion to the rotating system, the dynamics of the actuator can be obtained as 
follows: 

where 

£. • 
R· • 
iai( t) 

T Li( t) 
vi( t) 

moment of inertia for ith motor ( Kgm2) 

angular displacement for ith motor (rad) 

viscous friction coefficient for ith motor (Nm/rad/s) 

torque constant for ith motor (Nm/A) 

back emf constant for ith motor (V /rad/s) 

armature inductance for ith motor (H) 

armature resistance for ith motor ((}) 

armature current for ith motor (A) 

load torque for ith motor (Nm) 

voltage input to the ith actuator (V) 

(2.10) 

(2.11 ) 

Notice that the motor dynamics (equations 2.10 and 2.11) are linear and time 
invariant. 

In most of the present robot manipulators, the motor shaft is mechanically 

coupled to the manipulator link (load) through gears as shown in Figure 2.2. The 

shaft of the ith gear train is directly connected to the axis of the ith motor, and is 

referred to as the primary side. The output shaft of the gear is on the secondary 

side, and is coupled to the ith link of the robot manipulator. Depending on the 

type or structure of the gear train, the motion of the output shaft may rotate in 

the same direction as the input shaft or in the opposite direction. Assuming that 

the gear train is ideal, that is, assuming the gear train is frictionless, there by 

creating no power losses, and inertialess; the relationship between the loading 

torque T i( t) on the secondary side and the load torque T Li( t) on the motor shaft 

at the primary side can be obtained as 

Ti(t) 
N· • 
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+ 

v· • 

R· • 

FIGURE 2.1 

L· • 

+ 
~. • 

T mi ith motor torque 

Schematic Diagram Of Armature Controlled 

Permanent Magnet DC Motor. 

where N i is the inverse of the gear ratio. Thus the loading torque T i( t) is reduced 

when it is reflected to the shaft of the motor when Ni is large. 

From equation (2.12), the actuator dynamics then become as follows: 

(2.13) 

(2.14 ) 

The loading torque T.( t) acting on the ith actuator is given by the ith 

element of the vector T(t) of equation (2.1), that is, the dynamics of the 

mechanical links of the robot manipulator. The inclusion of the load torque T,( t) 
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III equation (2.13) will turn the otherwise linear, decoupled, and time invariant 

actuator dynamics into a nonlinear, coupled, and time varying one. The effect of 

the nonlinear dynamics of the mechanical links on the actuator dynamics depends 

very much on the speed of the robot manipulator and the size of the gear ratio. 

For a slow robot manipulator (and normally with large value of N j), the influence 

of the nonlinear, coupled, and time varying dynamics of the mechanical links are 

small and thus, can be ignored. For a fast manipulator and direct drive robot 

manipulator (N j=1), the influence of the nonlinear dynamics are very significant 

and must be taken into consideration. 

In-order to reflect the actuator dynamics to the manipulator side of the 

gearing mechanism, the following identity is used: 

(2.15) 

Then, after rearranging, the equations (2.13) and (2.14) become 

ith 
Link 

+0 ith DC Motor : 

v· J mi' B vi , R i , Li N· • I 

-0 
(Figure 2-1) 

Step Down Gear 

FIGURE 2.2 Diagram Of The ith Manipulator Link Actuated by 

DC Motor With Gear Train. 
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(2.16) 

(2.17) 

If the armature inductance is small (i.e. if the electrical time constant of 

the motor LJ Ri, is negligible), the inductance Li can be ignored. This will reduce 

the actuator to a second-order model described by the following second-order 

differential equation: 

(2.18) 

In the cases where the viscous friction constant of the motor, Bvi , can be assumed 

negligible, the actuator viscous friction term BViBi( t) can also be ignored. 

The inclusion of the armature inductance will inevitably make the actuator 

a third-order model characterized by the above equations (2.10) and (2.11), or 

equations (2.16) and (2.17). By combining equations (2.16) and (2.17), the 

actuator dynamic model can also be represented by a single third-order 

differential equation as follows: 

2 Ri T .(t) + } T,·(t) 
N ·J ·L·' N J I ml I i mi 

kti (t) N.J L. Vi 
I ml I 

(2.19) 

where Ti ( t) is the time derivative of the load torque T i ( t) due to the ith joint of 

the manipulator on the ith motor. 

In this research, a third-order actuator model is considered. In the 

following, two different fornls of actuator dynamics in state space description are 

outlined. The first fOrIn is based on equations (2.16) and (2.17) where the joint 
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position, joint velocity, and armature current are chosen as the state variables, 

while equation (2.19) form the basis of the second approach where the joint 

position, velocity, and acceleration are chosen as the state variables. 

2.3.1 Third-order Actuator Model With 8, 8, ia As State Variables 

By defining a 3xl state vector of the ith actuator to be : 

(2.20) 

equations (2.16) and (2.17) can be rewritten in state variable form as follows: 

where 

o 1 o 

AAi = 0 -B· kti 
FAi = VI 

NiJmi Jmi 

-k· -R· 
0 VI I 

L· L· I I 

o 

1/ Li 

XAi(t): 3x! state vector of the ith actuator 

U i( t) : scalar input to the ith actuator 
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o 

1 -
N;Jmi 

0 
(2.22) 



T i( t) the load acting on the ith actuator due to the manipulator links 

(from equation 2.1). 

AAi' B Ai and F Ai are the system, input and load distribution matrices for the ith 

actuator respectively, with appropriate dimensions. 

For N actuators (N dof robot manipulator), the augmented dynamic 

equation of the actuators can be written in the following compact form: 

(2.23) 

where 

XA(t) = [T T T r XAt(t) , XA2(t) , ... , XAMt) 

U(t) [Ut(t) , U2(t) , ... , UMt) r 
T(t) [Tt(t) , T2(t) , ... , TMt) r (2.24) 

AA - diag [ AAt' AA2' ... , AAN] 

BA diag [BAt' BA2, ... , BAN] 

FA diag [ FAt' F A2, ... , FAN] 

and XA(t) is a 3Nx1 vector, U(t) is an Nx1 input vector, and T(t) is the torque 

due to the mechanical link (equation 2.1). 

It can be observed from the structure of the input matrix B Ai and the load 

distribution matrix F Ai in equation (2.22), hence the structure of the augmented 

matrices B A and F A respectively, that the load torque T i( t) or T( t) lies outside 

the range space of the input matrix. 

2.3.2 Third-order Actuator Model With 8, iJ, ij As State Variables 

From equation (2.19), the second form of the actuator dynamic model in 

state variable form can be obtained. Here the armature current is replaced by 
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joint acceleration as state variable. Let the state vector for the ith actuator be 

defined as follows : 

(2.25) 

Then, the state equation of the actuator dynamic model can be rewritten in the 

following form : 

where 

o 

ASi = 0 

o 

FSi= 

XBi(t) : 
Ui(t) 
Ti ( t) : 

1 

o 

o 

o 

R-• 

W S -= , . 

o 

1 

BviLi+JmiRi 
JmiLi 

o 

o 

3xl state vector of the ith actuator 

scalar input to the ith actuator 

Bs -= , . 

the load torque acting on the ith actuator 

manipulator itself (from equation 1 or 2) 
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o 

(2.27) 

due to the 



1:\( t) the time derivative of the load torque T i( t) acting on the ith 
actuator, 

and ABi, B Bi, FBi' and W Bi are the system, input, load distribution and rate of 
load distribution matrices with appropriate dimensions respectively, for the ith 
actuator. 

For an N dof robot manipulator, the augmented dynamic equation of the 
actuators can be written in compact form as follows: 

XB(t) = AB XB(t) + BB U(t) + FB T(t) + W B T(t), (2.28) 
where 

XB(t) = [T T T r XBI(t) , XB2(t) , ... , XBMt) 

U(t) [UI(t) , U2(t) , ... , UMt) t 
T(t) [TI(t) , T2(t) , ... , TMt) t 
T(t) - [ TI(t) , T 2(t) , ... , TMt)y (2.29) 

AB - diag [ ABI , AB2, ... , ABN ] 

BB diag [ BBI' BB2' ... , BBN] 

FB diag [FBI' Fm, ... , FBN ] 

WB diag [ W BH W B2' ... , W BN ] 

and Xs(t) is a 3Nxl vector, U(t) is an Nxl input vector, T(t) is the Nxl 

mechanical link torque (equation 2.1), and T(t) is its time derivative. 

It can be observed from the structure of the input matrix BBi' the load 

distribution matrix FBi and the derivative of the load distribution matrix W Bi in 

equation (2.22) (hence the structure of the matrices BB, FB, and W B, in equation 

2.29 respectively), that the load torque Ti(t) and its derivative Ti(t) (hence the 
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vector T(t) and T(t), respectively) lie within the range space of the input matrix. 

Hence the control input which enters the system through the input matrix B Bi or 

B B can affect and compensate directly the nonlinear, coupled and time varying 

effect due to the load, that is, the mechanical linkage. 

2.4 INTEGRATED DYNAMIC MODEL OF ROBOT MANIPULATOR 

Eventhough the actuator dynamics constitute an important part of the 

complete robot manipulator system, only a limited number of research on deriving 

the integrated mathematical model comprising the mechanical part of the system 

and the actuators, as well as on the controller synthesis based on the complete 

robot manipulator model can be found in the literature. The explicit form of the 

integrated model of the robot manipulator can be obtained by combining the 

actuator dynamic equations with the dynamic equations of the mechanical links. 

Vukobratovic and Potkonjak [1982] derived the complete model of the robot 

manipulator based on the mechanical links and actuator models described by 

equations (2.1) and (2.23) respectively. The derivations are unnecessarily 

complicated. A much simpler formulation of the robot manipulator integrated 

model is outlined by Vukobratovic et.al. [1985], Troch [1986], Troch et.al. [1986]. 

All of the above methods are based on the actuators and mechanical links models 

represented by equations (2.23) and (2.1) respectively. All of these methods will 

give the complete robot manipulator dynamic model in state space form with the 

joint angles, velocities and motor armature currents as the state variables. For 

comparison purposes, their formulations are briefly outlined in Appendix C. 

Spong and Vidyasagar [1989] derived an integrated dynamic model of the robot 

manipulator based on a second-order actuator model (equation 2.18) for each 

joint. Thus, their overall mathen1atical model is greatly simplified. Tarn et.aZ. 

[1988, 1991] derived an integrated robot manipulator dynamic model based on a 

third-order actuator lnodel for each joint represented by equation (2.19), and the 

mechanical link model described by equation (2.1). The joint angles, velocities 

and accelerations have been chosen as the state variables in their formulation. 

However the actuators viscous friction terms have been assumed negligible, and , 
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subsequently ignored in their formulation. 

In this section, two different state space representations of the complete 

robot manipulator dynamic model are presented. The formulation of the first 

form of the integrated model is based on the actuator dynamic model described by 

equation (2.23), while the derivation of the second form of the integrated model of 

the manipulator and its actuating mechanism is based on the actuator dynamic 

model described by equation (2.28). 

2.4.1 Integrated Model Based On 8, 9, ia As State Variables 

This method is based on the dynamic equation of the manipulator in state 

variable form of equation (2.5) and the actuators dynamic behaviour described by 

equation (2.23). Let the transformation between the manipulator state vector 

Xp(t) and the actuator state vector XA(t) be lA' such that, 

(2.30) 

where the 2Nx3N transformation matrix lA has the following form: 

100 
I - - - - - r - - -., 
I 100 I 0 
L. - - - -I-

• • • _L -- --
0 100 

lA = . . . . . . . . . . . . . . . . . . . . . . .. (2.31 ) 

010 
- - - - ~ - - -, 

I 010 0 
~ - - -I -• • • :.. ,- - - -

0 010 

71 



Substitution of equation (2.30) into (2.5), gives 

(2.32) 

From equation (2.32), the driving forces/torques T can be obtained as 

t 
where Bp(XA' ~, t) is the Penrose-Pseudoinverse of Bp(XA' ~, t) : 

t -1 

Bp(XA' ~, t) = [ B~(XA' ~, t) Bp(XA' ~, t)] B~(XA'~' t). (2.34) 

Substituting equation (2.33) into the actuators state equation (2.23), gives 

the state equation of the integrated robot manipulator model as : 

where 

t -1 
AA(XA, ~, t) = [ IN - FA Bp(XA' ~, t) lA ] [ AA -

t 
FA Bp(XA' ~, t) Ap(XA' ~, t) lA ] (2.36) 

In this method, it is required to find the pseudoinverse of the matrix 

Bp(XA' ~,t). In the following, the existence and the uniqueness·of the matrix 
t . 

Bp(XA' ~, t) wIll be shown. 

Since the manipulator inertia matrix M(XA' ~, t) is always symmetric and 

nonsingular, the following properties of the inertia matrix hold for any value of 

XA(t), ~, and t : 

(2.38) 

• It should be noted that in general, the Penrose-Pseudoinverse of a matrix is not unique. 
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T 

[ M-
1
(X A, ~, t) ] = M-\XA, ~, t) . 

Hence from (2.9), 

(2.39) 

This gives 

(2.40) 

and 

(2.41 ) 

Thus, 

(2.42) 

Since M(XA' ~, t) exists and is unique, therefore, B~(XA' ~, t) also exists 

and is unique. This concludes the proof. 0 

Equation (2.42) not only provides the proof for the existence and the 

uniqueness of the matrix Bt(XA, ~, t), but also provides a simple method of 

determining the matrix Bt(XA, ~, t). 

Due to the structures of the F Ai and B Ai matrices, hence, the structure of 

the FA and B A matrices, it is observed that equation (2.37) is equivalent to the 

actuators input matrix BA, which is constant and independent of XA(t), ~, and t : 

(2.43) 

This can be verified from the structure of the actuator dynamic equations 

(2.16) and (2.17). Equations (2.16) and (2.17) are 'independent' of the input 

voltage v i( t) and the load torque T i( t), respectively. Due to the structure of the 

load distribution matrix F Ai' the components of the load torque Ti(t) (that is, the 

link inertias, the Coriolis and centrifugal forces, etc.) will coupled with the 

elements of the second row of the system matrix ABi only. Thus, equation (2.1 i) 
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remains the same when the ith mechanical link dynamic equation Ti(t), which can 

be obtained from the mechanical link equation (2.1), is directly substituted into 

equation (2.16). Hence, the input term vi( t)/ Li is unchanged for the integrated 

model for the ith link. Hence, the input matrix B A(XA, ~, t) for the integrated 

model remains the same as the input matrix of the augmented actuator model B A-

The method presented above is different from those outlined by 

Vukobratovic et.aZ [1985], Troch [1986], and Troch et.aZ [1986]. The main 

difference lies in the choice of the form of the dynamic equation for the 

mechanical linkage used in the formulation. Here, the formulation of the 

integrated model is based on the mechanical link dynamic model in state space 

form (2.5), while those in the references based their formulation on equation (2.1). 

Furthermore, the structure of the integrated dynamic model obtained here is 

slightly different from that of Vukobratovic et.aZ [1985], Troch [1986], and Troch 

et.aZ [1986]. However, as it is shown in the Appendix C, the integrated model 

derived above (equations 2.35, 2.36, and 2.37) is equivalent to those obtained by 

Vukobratovic et.aZ [1985], Troch [1986], and Troch et.aZ [1986]. 

2.4.2 Integrated Model Based On 8, 8, 9 As State Variables 

In this subsection, the integrated robotic model based on equation (2.28) of 

the actuator dynamics is presented. The derivation of the integrated model is not 

as straightforward as the previous one due to the need to find the time derivative 

of the dynamic equation of the mechanical part (mechanical link) of the 

manipulator. 

From equation (2.1), the derivative of the torque, T( t), may be written as : 

T(t) = 11(B(t), 0 'ii(t) + C (B(t), 8(t), ~) 8(t) + i5 (B(t), 8(t), ~) 8(t) (2.44) 

where 
C (B(t), 8(t), ~) 8(t) = 11(8(t), ~) 8(t) + D(B(t), ~) V(8(t)) (2.45) 

fj (8(t), 8(t), 0 8(t) = D(8(t), 0 V(8(t)) + G(B(t), ~) , (2.46) 
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,..,..,. ,..,..,. 
and C (B( t), B( t), ~) and D (B( t), B( t), 0 are NxN matrices. Now define the 

following transformations: 

where lB' lBI' and lB2 have the following form: 

lBI = 

001 
""' - - , 
I 0 0 1 I 
a.. - - - r-

o 

I 
o 1 0 I 

-- ---, I 
1 0 1 0 I 
~ -- -t-

o 

0 

o 

o 0 I ,- ---
I 001 

0 

0 I 
-.... - --

I 

I 010 

100 I 0 
I ----- --., 
I 1 0 0 I 

lB2 = L - - 1-: 

o 

Equation (2.1) can be rewritten as : 
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o I - - - --
I 100 , 

(2.4 7) 

(2.48) 



T(t) = M(8(t),~) 8(t) + D(8(t), 8(t), ~) 8(t) + G(8(t), ~) 8(t) , (2.49) 

where D( 8( t), 8( t), ~) and G( 8( t), ~) are NxN matrices. By substituting equations 

(2.44) and (2.49) into the augmented actuator dynamic equation (2.28), and using 

(2.4 7), the integrated dynamic model of the robotic system can be obtained as 
follows: 

where 

(2.52) 

Due to the structure of the load distribution matrix FBi and the derivative 

of the load distribution matrix W Bi in equation (2.27), the nonlinear components 

of the load torque Ti(t) and its derivative Ti(t); that is the link inertias, the 

Coriolis and Centrifugal forces and the gravitational forces, and their 

corresponding derivatives; will be integrated into the last row of the system 

matrix A Bi . Hence, in the resultant integrated model, the nonlinear, coupled and 

uncertain components of the load torque T( t) and its derivative will appear in 

very 3ith (i=l, 2 , ... , N) row of the system matrix AB(XB, ~, t) and input matrix 

BB(XB , ~,t). Thus, in this case, the elements of the input matrix BB(XB , ~, t) are 

highly nonlinear, coupled, time varying and contain uncertainties. 

This method will be applied to a three dof robot manipulator in section 2.5 

to derive the complete equation of motion for the system. 
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2.4.3 Differences Between The Two Integrated Models 

For convenience, the integrated model with the B( t), 8( t), ia( t) as the state 

variables, described by equations (2.35), (2.36) and (2.37), will be referred to as 

Form A, and the integrated model with the B( t), 8( t), 8( t) as the state variables, 

represented by equations (2.50), (2.51) and (2.52), will be reffered to as Form B. 

The formulation of the overall integrated model of the manipulator and the 

actuator dynamics based on Form A is simple and straightforward. The input 

matrix B A(XA, t) is equivalent to the input matrix of the augmented actuators 

state equation, thus simplifying the derivation of the integrated dynamic 

equation. However, the formulation results in the nonlinear, uncertain and 

coupling terms to lie outside the range space of the input matrix of the integrated 

model state equation. Thus, even if the nonlinearities and uncertainties are 

known, one cannot compensate them since the control input which enters through 

the input matrix cannot affect the nonlinearities and the uncertainties. Hence, it 

is difficult to design an advanced and robust controller for the robot manipulator 

when the overall dynamic model is in the Form A. 

The structure of the integrated model based on Form B is different from 

that of Form A in that the nonlinear, uncertain and coupling terms lie within the 

range space of the input matrix of the derived overall state equation. Thus, the 

control input which enters the system through the input matrix can affect and 

compensate directly for the nonlinear and uncertain components. However, the 

derivation is not as straightforward as in Form A, because it is necessary to find 

the time derivative of the nonlinear, coupled dynamic equation of the mechanical 

part of the manipulator, which is very time consuming and tedious especially for a 

robot manipulator with a large dof. Nevertheless, once the integrated model is 

obtained in the form B, various advanced and robust control strategies can be 

developed for controlling the nonlinear robot manipulator system. In view of this 

advantage over Form A, the formulation of the complete robot manipulator 

mathematical model as presented in section 2.4.2 is used in this study. 
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2.5 DYNAMIC MODEL OF A THREE dof REVOLUTE 

ROBOT MANIPULATOR 

In this section, a complete mathematical model of a three dof revolute 

robot manipulator, as shown in Figure 2.3 is derived based on the approach 

presented in section 2.4.2. The robot manipulator is actuated by three permanent 

magnet armature controlled DC motors. The parameters of the mechanical 

linkage and the actuators as presented in Zainol Anuar [1985] are tabulated in 

Table 2-1 and Table 2-2 respectively. It is assumed that the permanent magnet 

DC motors are identical for all the three joints. It is also assumed that the end­

effector and the variable load are lumped together as a single mass mL and is 

located at the end of the third link. This load is assumed to vary between 0 kg to 

20 kg. 

2.5.1 Dynamic Equation Of The Mechanical Linkage 

From the Euler-Lagrange method outlined in Appendix B, the dynamic 

equations of for the three dof robot manipulator under consideration can be 

wri t ten in the following form : 

11(B,~) 8(t) + D(B,~) V(O) + G(B,~) T(t) , (2.53) 

where 

B( t) (2.54) 

T(t) (2.55) 

~ mL L1 the payload mass carried by the manipulator 

o o 

11(8, ~) o (2.56) 

o 
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/ , 
X 

Manipulator's Range of Operation: 

Joint 1 _160° < 81 < 160° iJlma:r = 120
0

/s 

Joint 2 _225° < 82 < 45° iJ2maz = 110 o/s 

Joint 3 - 46° < 83 < 225° iJ3ma:r = 110 o/s 

FIGURE 2.3 Three dof Revolute Robot Manipulator 
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Link Number 

0 1 2 3 

Mass, mi (kg) 2.0 1.5 

Length, Ii (m) 0.3 0.5 0.6 0.5 

Position of the 
center of gravity 0.3 0.25 

(m) 

Moment of inertia 
~i , (kgm2) 

with respect to : 

x-axis at cg* 0.06 0.03 

y-axis at cg* 0.008 0.0025 

z-axis at cg* 0.04 0.06 0.03 

cg* : centre of gravity 

TABLE 2-1 Parameters Of The Three dof Robot Manipulator Linkage 

so 



Moment of inertia, Jmi 

Armature resistance, Ri 

Armature inductance, Li 

Viscous friction constant, Bvi 

Back Emf constant, k vi 

Motor torque constant, kti 

Inverse of gear ratio : 

joint 1, Nt 

joint 2, N2 

joint 3, N3 

1.52 kgm2 

2.45 n 

0.245 H 

1.5 Nm/rad/s 

7.0 V /rad/s 

4.3 Nm/A 

16 

18 

18 

i=I,2,3. 

TABLE 2-2 Parameters Of The Actuators 
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o o o o 

D(8, ~) o o o (2.57) 

o o o o 

O}O} 

0}02 
0 

-- . 0}03 
V(8) and G(8, ~) - G2 (2.58) 

0202 
G3 

8283 

0303 

where the non-zero elements of the matrices M( 8, ~) , D( 8, ~) and G( 8, ~) are as 

follows: 

82 

..... 



D21 

D 25 

D 26 (2.59) 

D31 -

D34 

where 

(2.60) 

3 
.A6 = 0.25 [ 11l:J + 4 mL ) Z; + 011 

3 

.As = 0.25 [ 11l:J + 4 mL ) Z; + 011 
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.A 10 - [ 0.5 ~ + mL ] g l:J , 

iii . . 
where g=9.8016 m/s2, 011 , 022 , and 033 are the moment of InertIa at the centre 

of gravity of the ith link with respect to the x-axis, y-axis and z-axis respectively. 

- - . The terms D(O, ~)V(O) and G(O, 0 in equation (2.53) can be rewritten as 

:5(0, 8, ~)8 and G(O, ~)(J ,respectively. Thus, the manipulator dynamics can be 

rewri t ten as 

T(t) M(O,~) B(t) +:5(0, 8,~) 8 + G(O,~) 0, (2.61 ) 

where 

0 DI28I D1381 

D2181 0 D2S82 + D2683 (2.62) 

D3181 D3482 0 

and 

0 0 0 

G(O, ~) 0 
G2 0 T. 

(2.63) 

0 0 
G3 

-0; 

In order to apply the method presented in section 2.4.2, the dynamic 

equation of the robot manipulator, that is equation 2.53, is needed to be 

differentiated with respect to time, as presented next. 
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2.5.2 Derivative Of The Mechanical Link Torque 

From equations (2.44), (2.45), and (2.46), the derivative of the torque 

(equation 2.53), with respect to time, for the three dof robot manipulator can be 

obtained as follows: 

T(t) = M(B, ~)"B" + C (B, 8, 0 B + D (B, 8, ~) 8 (2.64) 

where 

(2.65) 

o 

o 

D (B, 8, 0 (2.66) 

and the elements of the C (B, 8, ~) and D (B, 8, ~) matrices are as follows : 

'" D12 82 + D 13 83 C1l 2 [ 

'" 
D12 81 C12 

'" D 13 81 C13 

'" 2 D21 81 C21 
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"" 
C23 D 25 ( O2 + 03 ) + D 26 03 

(2.67) 

"" D13 2 .A3 01 (02+03 ) Cos(202+203 ) -.A4 01 O2 Cos(202+03 ) 

"" 
D21 

"" 
D22 

"" D 23 

"" 
D31 

"" 
D32 -

"" 
D33 

Next, the dynan1ics of the actuating servo-mechanisms will be presented. 
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2.5.3 Model Of The DC Motors 

From equation (2.28), the augmented actuators dynamic equation for the 

three dof robot manipulator is as follows: 

(2.68) 

where 

XB(t) = [ Xl X2 X3 X4 Xs X6 X7 Xs X9 r 
T 

[ xk, 2 3 1 2 3 1 2 x13 ] XBl XBl XB2 XB2 XB2 XB3 XB3 

T 

[ (}l (}l (}l (}2 (}2 (}2 (}3 (}3 (}3 ] ,(2.69) 

0 1 0 

0 0 1 0 
0 aB32 aB33 

1 ------ -1- - - - - -, 
I 0 1 0 I 

AB 0 0 1 
I 

I 
0 aB6S aB66 I l.. ____ -.- - -- - - - -

I 0 1 0 

0 0 0 1 

0 aB9S aB99 
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0 

0 

bBI 

0 

BB = 0 

0 

0 

0 

0 

0 

0 

WBI 

0 

W B = 0 

0 

0 

0 

0 

Tl (t) 

T( t) = T 2( t) 

T 3( t) 

0 0 

0 0 

0 0 

0 0 

0 0 

b B2 0 

0 0 

0 0 

0 bB3 

0 0 

0 0 

0 0 

0 0 

0 0 

WB2 0 

0 0 

0 0 

0 WB3 

0 

0 

fBI 

0 

, FB = 0 

0 

0 

0 

0 

U(t) = 

1\(t) 

T(t) = T2 ( t) 

T3(t) 

88 

0 0 

0 0 

0 0 

0 0 

0 0 

fB2 0 

0 0 

0 0 (2.70) 

0 fB3 

U1( t) 

U2 ( t) 

U3(t) 



The non-zero elements of the AB , BB , FB , and W B matrices are as follow: 

aB32 = -
kvl kn + Bvl Rl 

aB33 = - BvlLl+JmlRl 
JmlLl JmlLl 

aB65 = -
kV2kt2+ Bv2R2 

aB66 = -
Bv2L2+Jm2R2 

J m2L 2 J m2 L 2 

aB98 = - kV3 kt3+ BV3R 3 
aB99 = - BV3L 3+ J m3R3 

J m3L 3 J m3L 3 

(2.71 ) 

bBl 
kn bB2 

~2 bB3 
~3 

JmlLlNl Jm2 L 2N 2 J m3L3N 3 

fBI 
Rl 

fB2 
R2 

fB3 
R3 

N~JmlLl 
, 

N~Jm2L2 N~Jm3L3 

wBI 
1 

wB2 
1 

wB3 
1 

N~Jml N~Jm2 
, 

N;Jm3 

2.5.4 Integrated Model Of The Three dof Robot Manipulator 

The complete dynamic model of the three dof robot manipulator can be 

obtained by using the formulae as presented in section 2.4.2. From equation 

(2.48), the 3x9 transformation matrices l B, 1m, and lB2 are as follows: 

o 0 1 o 0 000 0 

o 0 0 0 0 1 000 (2.72) 

o 0 o 0 0 0 0 0 1 
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o 1 0 0 0 0 0 0 0 

l B1 = 000 0 1 0 000 (2.73) 

o 0 0 0 000 1 0 

1 0 0 0 0 000 0 

lB2 = 000 1 000 0 0 (2.74) 

o 0 0 0 0 0 1 0 0 

Then, from equations (2.50), (2.51) and (2.52), the integrated model of the three 

dof robot manipulator can be obtained and has the following form: 

where 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 a32 a33 0 a 3S a36 0 a38 a39 

0 0 0 0 1 0 0 0 0 

A{XB,~,t) 0 0 0 0 0 1 0 0 0 

0 as2 as3 as4 ass as6 as7 ass as9 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

0 8.g2 8.g3 8.g4 8.gs 8.g6 0 8.gs 8.g9 

(2.76) 
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0 0 0 

0 0 0 

b11 0 0 

0 0 0 

B(XB' ~, t) 0 0 0 (2.77) 

0 b22 b23 

0 0 0 

0 0 0 

0 b32 b33 

The non-zero nonlinear elements of the matrices A(XB' ~, t) and B(XB' ~, t) are 

given in Appendix D. 

It can be observed from Appendix D and the above equations that the 

complete dynamic equations of the robot manipulator are highly nonlinear, 

coupled, and time varying. Furthermore, a varying payload carried by the 

manipulator during a task cycle will create uncertainties in the manipulator 

dynamics. Each non-zero element of the system and input matrices is a nonlinear 

function of the instantaneous configuration of the manipulator linkage, its 

instantaneous velocity, and payloads. 

It can be observed from equations (2.76) and (2.77) that the nonlinear 

elements of the system matrix A(XB' ~, t) lie within the range space of the input 

matrix B(XB' ~, t). 

2.6 CONCLUSION 

Two methods of deriving a more realistic dynamic mathematical model of 

a robot manipulator have been described in this chapter. The derived model of 

the integrated system comprises the mechanical part of the system as well as the 
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actuators and the gear trains. It is shown that the selection of an appropriate set 

of state variables for the robot manipulator system is vital for synthesizing an 

advanced and robust controller to overcome the nonlinearities, uncertainties and 

couplings inherent in the robot manipulator system. Eventhough deriving the 

complete model of the robot manipulator with the joint angles, velocities, and 

accelerations as the state variables is complex, it is postulated that the resulting 

mathematical model will lead to a convenient approach for the synthesis of 

advanced and robust control algorithm. Furthermore, the state variables are 

readily accessible for direct measurements using encoders, tachometers, and 

accelerometers. These measurements are usually very precise and are directly 

available for advanced control applications. 
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CHAPTER 3 

ROBOT MANIPULATOR AS A 
LARGE SCALE UNCERTAIN SYSTEM 

3.1 INTRODUCTION 

In this research, large scale systems may be defined as those systems which 

are composed of a great number of diverse parts or those systems of high 

complexity. They are often also called interconnected systems or composite 

systems since the systems may be often be viewed as a collection of several 

in terconnected subsystems. 

Central to the control problem of a large scale system is the decomposition 

of the original system into a set of interconnected subsystems each of considerably 

lower order than the over all (original) system. The decom posi tion process of a 

large scale system into several lower order interconnected subsystems with 

appropriate form is by no means a trivial task. The process of decomposition of 

the global system must take into account properties like controllability and 

observability of the resulting subsystems so that the decoupled subsystems can be 

con trolled and stabilized. 

There are numerous ways of partitioning a large scale system into a set of 

interconnected subsystems as long as the above mentioned properties are satisfied. 

Two general approaches of decomposing a large scale system are [Michel and 

11iller, 1977] : 

1. the structural properties of the system being lnodelled usually dictate 

a natural decomposition of the global system; 

2. the decomposition is usually influenced by mathematical convenience 

to overcome technical difficulties. 
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Once the large scale system has been decomposed into a set of 

interconnected subsystems of manageable size, it becomes feasible to have these 

subsystems controlled by local controllers and possibly a global controller in such 

a way that the overall system performs as required in terms of stability, tracking, 

or other objectives. Such an approach leads to a decentralized and/or hierarchical 

control structure of the system. 

Although robot manipulators are not a true large scale system in the sense 

that their dimensions are not as large as, for example, an electrical power 

network; due to the structural properties and complexity of the robot 

manipulators dynamics, robot manipulators may be considered as large scale 

systems. Thus, the control methodologies for large scale systems, such as 

decentralized and hierarchical control strategies, can be applied for controlling 

robot manipulators. 

The aim of this chapter is to decompose and reduce the integrated robot 

manipulator dynamic model into a set of interconnected subsystems with bounded 

uncertainties, such that decentralized and hierarchical control concepts coupled 

with a deterministic approach can be applied to the tracking control problem of 

the robot manipulator. This chapter is organized as follows: in section 3.2, the 

process of decomposition of a robot manipulator into subsystems and couplings is 

presented; in section 3.3, based on the known allowable range of operation of the 

robot manipulator, the robot manipulator model is transformed into an 

interconnected subsystem description with bounded uncertainties; in section 3.4, 

the decomposition and transformation process is applied to the three dof revolute 

robot manipulator model as derived in Chapter 2. 

3.2 DECOMPOSITION OF ROBOT MANIPULATOR 

In order to apply decentralized and/or hierarchical control method to robot 

manipulators, it is necessary to perform the distribution of the robot manipulators 

integrated dynamic model into local subsystems and couplings. 
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The decomposition of a robot manipulator depends mainly on the physical 

consideration of the system. As mentioned in the previous chapters, for an N dof 

robot manipulator, it consists of N rigid links connected in series by N joints. 

Each joint is powered by an actuator which, in turn, produces the motion of the 

joints. The dynamic behaviour of a joint influences, and is influenced by, the 

behaviour of the rest of the robot manipulators joints. Thus, it is common to 

treat each joint ( or each dof ) of the robot manipulator as a subsystem. 

Based on the above observation, Vukobratovic et.al. [1980], Vukobratovic 

and Stokic [1983], Stokic and Vukobratovic [1984], Zainol Anuar [1985], Mills and 

Goldenberg [1988], and Pandian et.al. [1988], decomposed the robot manipulator 

into N interconnected subsystems each represented by the mathematical model of 

the actuator, and treated the mathematical model of the mechanical linkage of 

the robot manipulator represented by equation (1.1) or (2.1) as the 

interconnection function between the subsystems. The state vector and input 

variables of the actuating mechanism at the joint are taken as the state vector 

and the input variables for the subsystem, respectively. The decomposition 

results in completely linear subsystem models (actuator dynamics), and nonlinear 

interconnection functions (manipulator linkage's dynamics). However, this 

decomposition places part of the mechanical linkage's dynamics, which should be 

incorporated into the decoupled subsystem model description, into the interaction 

function. For example, the inertia at the ith joint due to the acceleration at the 

ith joint caused by the considered actuator should be included with the considered 

actuator's own inertia. Mathematically, since the interaction function 

(mechanical linkage's dynamics) is also a function of the state coordinates (state 

variables) of the actuating mechanism, those terms in the mechanical linkage's 

dynamic equation which are dependent on the state vector of the subsystem 

should be incorporated into the decoupled subsystem dynamic model. Another 

problem associated with this decomposition is that since the interaction function 

which is a differential equations on its own right, with the same order as the 

actuator dynamic equations, it will be difficult to design a tracking controller for 

the system, unless, the whole interaction function, that is, the mechanical 

linkage's dynamics, is treated as disturbances and the controller design is based 

only on the decoupled subsystems dynamics. As mentioned in previous chapters, 

this will result with poor robot manipulator performance for a fast robot 
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manipulator system. 

Thus, in order to obtain a complete and realistic model of the robot 

manipulator described In the form of interconnected subsystems, the 

decomposition process should be based on the integrated model of the robot 

manipulator. That is, the integrated or complete model of the robot manipulator, 

which consists of the actuator dynamics and the dynamics of the mechanical part 

of the manipulator, should be obtained first, and then decomposed into an 

interconnected subsystem description. In the following subsections, two different 

descriptions of the robot manipulator in the input decentralized form are outlined. 

In both of these decompositions, each joint (each dof) of the robot manipulator is 

taken as a subsystem. 

3.2.1 Decomposition Based On Integrated Model With Joint Angle, Velocity 

And Current As State Variables 

In this subsection, the decomposition is based on the robot manipulator's 

integrated model in the form of equations (2.35), (2.36) and (2.37), as given in 

section 2.4.1 of Chapter 2. 

Let the system matrix AA(XA, ~, t) in equation (2.36) be partition into the 

following form : 

I 
AAll (XA' ~, t) 1 AAI2(XA'~' t) 

- - - - - - 1- -- - - - - - -I - - - r - - - - - -- -

- - • - 1- - ~ - .. -- - -1-

------
I 

AANl(XA, ~, t) I AAN2(XA, ~, t) 
I 
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where 

3x3 matrix 

i , j = 1, 2, ... , N. 

Then, since the input matrix B A(XA, ~, t) in equation (2.37) is equivalent 

to the augmented actuators input matrix B A which is in block diagonal form, the 

integrated robot manipulator dynamic equation (2.35) can be decomposed into a 

set of interconnected subsystems which is as follows: 

N 
XAi(t) = AAii(XA, ~, t) XAi(t) + BAi Ui(t) + L AAiAXA, ~, t) XAj(t) , (3.2) 

and 

where 

Ui ( t) 

t E ~, 

j=l 
j i i 

ith component of the X A ( t) vector - state 

vector of the ith actuator 

3x3 ijth submatrix of A A (X A, ~, t) 

3xl ith diagonal submatrix of B A - input 

matrix of the ith actuator 

(3.3) 

ith row of input vector U( t) - input to the ith 

actuator 

jth component of the X A ( t) state vector. 

The structure of the AAii(XA1 ~, t), B Ai, and AAij(XA, ~, t) matrices may be 

obtained as follow : 
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0 1 0 
0 

AAii(XA , e, t) = 0 ** ** BAi = 0 

0 
-k· -R· 1/ Li 

VI I 

L· L· I I (3.4) 

o o o 

AAij(XA , e, t) = 0 ** ** ** nonlinear, coupled 

element (function 

0 0 0 of XA , e, t) . 

The integrated robot manipulator model (2.35) can be decomposed into an 

input decentralized form (3.2) since the integrated input matrix B A(XA, e, t) is 

equivalent to the augmented actuator matrix which is readily in the desired block 

diagonal form. One drawback of this description is that the nonzero elements of 

the interconnection matrix AAij(XA , e, t), for i =1= j, are not in the image of the ith 

input matrix B Ai' 

3.2.2 Decomposition Based On Integrated Model With Joint Angle, Velocity 

And Acceleration As State Variables 

In this subsection, the decomposition of the integrated robot manipulator 

dynamic model represented by equations (2.50), (2.51), and (2.52) is considered. 

In order to apply a decentralized and/or hierarchical control strategy, the robot 

manipulator dynamic model is decomposed into an input decentralized form. 
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Let the integrated system matrix AB(XB, ~, t) of equation (2.51), and the 

integrated input matrix BB(XB, ~, t) of equation (2.52) be partitioned in the 

following form : 

and 

where 

- - - - -I - - - - - .... - - I - - - - -
I 

A B21 (XB, ~, t) I A B22(XB, ~, t) 
I 
1 

. .. I AB2N(XB'~' t) 
1 

'" - - I -

I 

- - t - - --,. -to - -

A BN1 (X B, ~, t) 1 ABN2(X B, ~, t) 
1 

I 

BBll(XB, ~, t) I BB12(XB'~' t) 
1 

- - - - -I - - - - -
I 

B B21 (XB' ~, t) 1 B B22(XB, ~, t) 

I BB1N(XB'~' t) 
I I 
1- - -t-

_I - - - "'- - - I - - - - -

I 

- - ~ -
I 

BBNl(XB, ~, t) I BBN2(XB, ~, t) 

ABij(XB, ~, t) 

BBij(XB, ~, t) 

i I j = 1, 2, ... , N. 

3x3 matrix 

3xl matrix 
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With the above partitioning, the robot manipulator dynamic model can be 

written in the input decentralized form which is as follows: 

where 

XBi(t) = ABii(XB'~' t) XBi(t) + BBii(XB'~' t) Vi(t) + 

N N 
L ABiAXB, ~, t) Xj ( t) + L BBiAXB, ~, t) V j( t), (3.7) 
j=l j=l 
j¥i j¥i 

XBi( t) = [ 8i , 8i , 8 i r (3.8) 

X Bi( t) E ~3, 

XBAt) 

ABii(XB, ~, t) 

ABij(XB, ~, t) 

BBii(XB, ~, t) 

BBiAXB, ~, t) 

Vi ( t) 

VAt) 

i E 3, 

ith component of the XB ( t) vector _ state 

vector of the ith actuator 

jth component of the XB ( t) state vector 

3x3 ith diagonal submatrix of AB(XB, ~, t) 

3x3 ijth off-diagonal submatrix of AB(XB, ~, t) 

3xl ith diagonal submatrix of B B(XB, ~, t) 

3xl ijth off-diagonal submatrix of BB(XB, ~, t) 

ith row of input vector V( t) = input to the ith 

actuator 

jth row of input vector V( t) _ input to the jth 

actuator. 

For non-direct drive robot manipulators, the magnitudes of the non-zero 

elements of the off-block diagonal submatrices in BB(XB, ~, t) are often very small 

compared to the elements of the diagonal submatrices BBii(XB, ~,t). Thus, the 

off-block diagonal submatrices BBij(XB, ~, t) can often be assumed to be negligible 

and can be ignored and, hence, in these situations, the integrated input matrix 

B B(XB, ~, t) may be treated as in block diagonal form, that is, 
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Then, in this case, the interconnected robot manipulator model can be written as 

(3.10) 

without the last term on the right hand side of equation (3.7). As an example, for 

the robotic system considered in Chapter 2, the non-zero element of the off­

diagonal submatrices has the value of - 0.00639 ± 0.007839, which can be 

considered negligible compared to the value of 0.6248 ± 0.01558 for the smallest 

non-zero element of the diagonal submatrices, hence the off-diagonal submatrices 

in the integrated input matrix BB(XB'~' t) in equation (3.6) can be ignored. 

However, if the above assumption is not valid, such as, in the case of direct 

drive robots in general, then one has to use expression (3.7) to represent the 

interconnected robot manipulator system. In this study, only non-direct drive 

robot manipulator is considered, and it is assumed that equation (3.9) hold. 

In general, equation (3.10) describes the dynamic model of the ith 

subsystem which IS interconnected with the other subsystems through 

ABij(XB, ~, t)XBj( t). The structure of the ABii(XB, ~, t), ABij(XB, ~, t), and 

B Bii(X B, ~, t) matrices may be obtained as follow : 

o 1 o o 

o o 1 

** ** ** ** 
(3.11 ) 

101 



o o o 

o o o 

** ** ** 

** nonlinear, coupled element (function of X B , ~, t) . 

The maIn advantage of this representation of the robot manipulator 

dynamic model is that all the nonlinear, coupled and time varying elements of the 

system are in the image of the input submatrices, as shown by equation (3.11). 

This is important in the sense that the control input U j( t) which enters the ith 

subsystem through the input submatrix BBij(XB, ~, t) can affect and compensate 

the nonlinear, coupled and time varying elements directly. 

3.3 ROBOT MANIPULATOR AS AN UNCERTAIN INTERCONNECTED 

SYSTEM 

In this section, it will be shown that the robot manipulator dynamic model 

in the above descriptions can be transformed into a linear interconnected system 

with uncertainties representation. This representation of the robot manipulator is 

required in order to design the tracking controller based on a deterministic 

approach which will be presented in the next few chapters. 

In general, the robot manipulator model in input decentralized form as 

described by equation (3.2), or in the form of equation (3.10), can be represented 

as 

N 
)(j(t) = Aj(X, ~, t) X.(t) + Bj(X, ~, t) Uj(t) + L AjAX, ~, t) XAt). (3.12) 

)=1 
j ¢ i 
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Since the physical parameters of the actuators and the manipulator (length 

and mass of its links), the range of its payload, the joint displacements as well as 

the range of the veloci ties are known (specified by the man ufact urer ), the bounds 

on the elements of the matrices Ai(X, ~, t), Bj(X, ~, t), and Ajj(X, ~, t) can be 

computed and specified in the form: 

a ~ . < a!j(X, ~, t) < _I a· . 
-I) I) 

b~ 
1 

b~ < bj(X, ~, t) < -I 1 (3.13) 

jj 
< a:~(X, ~, t) < 

_ij 
a· . a ij , -I) 

where 

a:j{X, ~,t) ijth element of the Ai(X, ~, t) matrix 

1 

bj(X, ~, t) ith row of the Bj(X, ~, t) matrix 

a:~(X, ~,t) ijth element of the Ajj(X, ~,t) matrix, 

and the upper and lower bars indicate the maXImum and mlDlmum values, 

respectively. Since these bounds are known, the matrices Aj(X, ~, t), Bj(X, ~, t) 

can be wri t ten as : 

(3.14) 

Bj(X, ~, t) = Bi + LlBj(X, ~, t), 

where A· and B· which are time-invariant, represent the nominal part of 
1 I' 

Aj(X, ~, t) and Bj(X, ~, t) respectively. The elements of the matrices Ai and Bj, 

respectively, may be determined as follows: 
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, +-i . a·· a I)' 1 -I) a. j = ----''-;:2~-

(3.15) 

The elements of the matrices AA.(X, <, t) and AB.(X, <, t), respectively, can be 
obtained as 

a~ . 
I) 

i • 
Llb.(X, <, t) = b.(X, <, t) b~ 

1 

where 

LlaiAX, <, t): ijth element of the LlA.(X, <, t) matrix 

1 

Llb.(X, <, t): ith row of the LlB.(X, <, t) matrix, 

and their range of variations can be computed as follows: 

where 

. 1 

-si < Llb.(X, <, t) < s:, 

. -. . r··-a··-a·· I) - I) I) 
. -. . 

s~ = b· - b· 1 , , 

(3.16) 

(3.17) 

These values are computed off-line, and may be calculated only once for the 

robotic system. That is, equations (3.15) and (3.17) need not be recalculated for 

different manipulator payload, task or trajectory if all the possible range of the 

payload, configurations (work space) of the manipulator as well as its maximum 

velocity, etc. have been taken into account in determining the bounds on the 

elements of the matrices A.(X, <, t), B.(X, <, t), and Aij(X, <, t) in equation 

(3.13). However, if the bounds in equation (3.13) are obtained based only on a 

specific trajectory or task, then equations (3.15) and (3.17) have to be recalculated 

if the manipulator is needed to perform a new task or follow a new trajectory. In 

determining these values, a full dynamic model of the robot manipulator in the 
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form of equation (3.12) is required. 

In view of equations (3.13) - (3.17), without lost of generality, equation 

(3.12) can be rewritten as 

(3.18) 

where the elements, of the matrices LlAi(X, ~, t), LlBi(X, ~, t), and AiAX, ~, t) -
, I ' , 

Lla!j(X, ~, t), Llbi(X, ~, t), and a:~(X, ~, t), respectively - are considered as 

uncertainties which belong to uncertainty bounding sets ~, j, and 0/, respectively. 

The uncertainty bounding sets are defined as follows: 

j Ll {Llb~ ; 't/ i E 3, 't/ j E 3 I -s~ < Llb~ < s~ } 
I I - I 

(3.19) 

Ll ij ij ij _ij 
0/ = {aij ; 't/ i E 3, 't/ j E 3 I a ij < aij < a ij} , 

, 'ij IJ 
where the values of r!j , si , a ij ,and aij are as given in (3.13) and (3.17). Thus 

the nonlinear coupled integrated robot manipulator dynamic model (equation 

3.12) is reduced to a set of interconnected linear subsystems with bounded 

uncertainties described by equation (3.18) and (3.19). 

It should be noted that equation (3.18) is a continuous function of time t, 

and highly nonlinear and coupled. 

For a robot manipulator in the form of equation (3.2), the matrices Ai' Bi, 

LlA i( *), LlB.( *), and Aij( *) can be shown to have the following form: 
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0 1 0 0 

A·= 0 I • B·= 0 I a22 a23 I 

0 • • b; a32 a33 

o o o 

(3.20) 

o o o 

o o o o 

o 

o o o o 

where (*) represents the arguments (XA' ~,t). It can be seen from the structure 

of the Aij( *) and L1Ai( *) matrices in equation (3.20) that the uncertainties lies 

outside the range space of the input matrix Bi . 

For a robot manipulator integrated dynamic model in the form of equation 

(3.10), it can be shown that the matrices Ai' Bi, L1Ai(*), L1Bi(*), and Aij(*) have 

the following form : 

0 1 0 0 

A -i- 0 0 1 B·= • 0 

• a31 
I 

a32 
I 

a33 b~ 
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o o o 

o o o (3.21 ) 

o o o o 

o o o o 

where (*) represents the arguments (XA' ~, t). 

For the ith subsystem, equation (3.21) shows that the uncertainties 

presents in the system and input matrix, LlAi(XA, ~, t) and LlBi(XA, ~, t) 

respectively, and the interconnection matrix Aij(XA, ~, t) lie in the range space 

(image) of the nominal input matrix B i . Thus, the control input which enters 

through the input matrix can compensates the uncertainties present in Ai(XA , ~, 

t) and Bi(XA , ~, t), and the interaction functions due to Aij(XA , ~, t) matrix. 

It should be noted that, if the uncertainties and the interaction function 

lies outside the range space of the input matrix, there is no control input that can 

compensate for them even if the uncertainties and the nonlinear interconnection 

functions are known [Chen, 1987bj Fu and Liao, 1990]. Due to this reason, the 

robot manipulator model in the form of equation (3.10) should be used in 

designing a robust controller for the system. In other words, in deriving the 

mathematical model of the robot manipulator for control purposes, the joint 

angles, velocities, and the acceleration should be chosen as the state variables, 

instead of the joint angles, velocities, and the armature currents. 

In the following section, the integrated model of the three dof robot 

manipulator as derived in Chapter 2 is decomposed and transformed into the 

uncertain input decentralized description as presented above. 
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3.4 APPLICATION TO A THREE dof ROBOT MANIPULATOR 

In this section, based on the procedures described in Section 3.2.2 and 

Section 3.3, the three dof revolute robot manipulator integrated dynamic model is 

transformed and reduced into a set of interconnected subsystems with bounded 

uncertainties description. 

Since the robot manipulator considered is of three dof, the robot 

manipulator's dynamic model as presented by equation (2.75) can be decomposed 

into three interconnected subsystems. Based on equations (3.5) and (3.6), the 

integrated system matrix A(XB' e, t), and the input matrix B(XB' e, t), equations 

(2.76) and (2.77), respectively, can be partitioned as follow (for convenience the 

subscript B has been dropped) : 

0 1 0 0 0 0 I 0 0 0 

0 0 1 I 0 0 0 I 0 0 0 

0 a32 a33 I 0 a35 a36 
1 0 a3S a39 

- - - - - - -1- - - ------ -1- - - - -
0 0 0 0 1 0 0 0 0 

A(X,e,t) 0 0 0 0 0 1 0 0 0 

0 a62 ~3 
I ~4 ~5 ~6 ~7 ass as9 

J 1 - - - - - - 1 - - - - - - --
0 0 0 0 0 0 0 1 0 

0 0 0 0 0 I 0 0 1 0 

0 ag2 ag3 ag4 ags 3m; 0 ags agg 

( 3.22) 
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0 0 0 

0 0 0 

bn I 0 I 0 
- - - -i - - - ,- - - -

0 0 0 

B(X, ~, t) 0 0 0 (3.23) 

0 b22 b23 
- - - .J - --

0 0 0 

0 0 0 

0 b32 b33 

Then the integrated three dof robot manipulator model (equation 2.75) can be 

rewritten in the following input decentralized form: 

J 

where 

3 3 I: Aij{X, ~, t) Xj( t) + I: Bij(X, ~, t) U j( t), (3.24) 
j=1 j=1 
j~i j~i 

1 , 2 ,3, 

ith component of the X( t) vector _ state 

vector of the ith actuator 

(3.25) 

jth component of the X( t) state vector - state 

vector of the jth actuator 
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Ai(X, ~, t) 

Aij(X, ~, t) 

Bi(X, ~, t) 

Bij(X, ~, t) 

Ui ( t) 

3x3 ith diagonal submatrix of A(X, ~, t) 

3x3 ijth off-diagonal submatrix of A(X, ~. t) 

3x1 ith diagonal submatrix of B(X, ~, t) 

3x1 ijth off-diagonal submatrix of B(X, ~. t) 

ith row of input vector U( t) = input to the ith 

actuator 

jth row of input vector U( t) _ input to the jth 

actuator, 

and where, the structure of the Ai(X, ~, t), Bi(X, ~, t), Aij(X, ~, t) and Bij(X, ~, 

t) matrices are in the form of equation (3.11). 

Based on the physical parameters of the actuators and the manipulator as 

given in Table 2.1 and Table 2.2, as well as the allowable range of operation and 

the maximum allowable load as specified in Chapter 2, the bounds on the nonzero 

elements of the matrices Aj(X, C t), Bj(X, ~, t), Aij{X, ~, t), and Bij{X, ~, t) can 

be computed. Then, based on equations (3.15) and (3.17), the nominal matrices 

Ai' Bi, as well as the bounds on the non-zero elements of the matrices LlAi(X, ~, 

t), LlBi(X, ~, t), AiAX, ~, t) and Bij(X, ~, t) in (3.24) for each subsystem can be 

calculated off-line as follows : 

0 1 0 0 

A}= 0 0 1 B}= 0 

0 -87.8068 -10.9546 0.6987 

0 1 0 0 

A2 = 0 0 1 B2 = 0 

0 -88.1354 -10.9543 0.6248 

0 1 0 0 

A3= 0 0 1 B3 = 0 

0 -89.759 -10.9768 0.6349 
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r~2( *) = 2.8768 rk(*) = 0.3683 (3.26) 

r~l( *) = 17.5617 r~2( *) = 2.46 r~(*) = 0.09303 

r~l(*) = 7.9962 r~2(*) = 0.2296 r~( *) = 0.001653 

s~(*) = 0.02289 s~(*) = 0.01558 s~(*) = 0.000166 

-1.5936 < a~~(*) < 1.5422 -0.1372 < ~(*) < 0.1372 

-0.8856 < ~~(*) :5 0.91 -0.07876 < ~(*) < 0.08055 

-0.601 :5 ~~(*) < 0.6022 -0.1054 :5 a~(*) < 0.1054 

-0.176 < a~~(*) < 0.176 -0.6671 < ~~(*) < 2.4571 

-0.0855 < a~~(*) < 0.1309 -0.3676 < ~~(*) < 0.3444 

-0.06452 < a~~(*) :5 0.06234 -0.4037 < ~~(*) < 0.4037 

-0.4379 < ~~(*) :5 2.2381 -0.04044 < ~(*) :5 0.05323 

23 32 
-0.01423 < b32( *) = b32( *) :5 0.001449 

The non-zero elements of the off-block diagonal input submatrices B23(X, 

e, t) and B32(X, e, t) have the value of - 0.00639 ± 0.007839, which is assumed to 

be negligible compared to the non-zero element of the diagonal submatrices. 

Thus, they can be ignored. Thus, the robot manipulator model can be 

decomposed into three interconnecting subsystems with bounded uncertainties in 

the form of equation (3.18). That is, equation (3.24) can be rewritten as 
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3 
L Aij(X, ~, t) Xj( t) 
j=l 
j:F i 

i=j=1,2,3. 

(3.27) 

It is clear from the above equations that the structure of the components of 

equation (3.27) are in the form of equation (3.21). Thus, a robust decentralized 

and/or hierarchical tracking controller which can overcome the uncertainties, 

nonlinearities, and couplings may be designed for the robot manipulator based on 

a deterministic approach. 

The three dof robot manipulator model represented by equation (3.27) with 

the values as given in equation (3.26) will be used in deriving the decentralized 

and/or hierarchical tracking controller in this study. It should be emphasized 

here that the above description is only used to derive the decentralized and/or 

hierarchical controller for the robot manipulator, while the integrated robot 

manipulator model (equation 2.75) is used to represent the real three dof robot 

manipulator in the simulations in the following chapters. 

3.5 CONCLUSION 

In this chapter, the robot manipulator is treated as a large scale uncertain 

system. A procedure to decompose and transform a robot manipulator system 

into a set of interconnected subsystems with bounded uncertainties is presented. 

The problem of selecting the appropriate state space representation of the 

interconnected robot manipulator subsystems is critical for designing a robust 

decentralized and hierarchical tracking controller for the system, based on a 

deterministic approach. It was shown in this chapter that by choosing an 

appropriate set of state variables for the robot manipulator dynamic modeL the 

uncertainties present in the subsystems system and input matrices, as well as the 

112 



interconnection functions can be placed in the range space of the subsystems input 

matrix. This will enable the control input which enters the subsystem through 

the input matrix to affect and compensates for the uncertainties and the nonlinear 

interaction functions. The decomposition of the robot manipulator into an input 

decentralized form with bounded uncertainties description presented in this 

chapter will be the basis for the decentralized and hierarchical tracking controller 

formulations, based on a deterministic approach, which will be presented in the 

following chapters. 
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CHAPTER 4 

DECENTRALIZED TRACKING CONTROLLER 
DESIGN FOR ROBOT MANIPULATORS 

4.1 INTRODUCTION 

Decentralized control strategies are increasingly being used in the design of 

robotic controllers due to economical and practical reasons. The majority of the 

current industrial robot manipulators utilize a decentralized control method, 

where each joint is treated individually as a simple linear servomechanism with, 

for example, proportional plus integral plus derivative (PID) controllers. In 

designing these controllers, the highly nonlinear, coupled and time-varying 

dynamics of the robot manipulator linkage have usually been completely ignored. 

Thus, the method is satisfactory only for an industrial robot manipulator designed 

with less demanding path control application, since the influence of the nonlinear, 

coupled and time-varying dynamics is strong for fast manipulator motion. 

The application of a decentralized control concept at the executive level for 

a robotic system has been considered by several researchers [Vukobratovic and 

Stokic, 1983; Stokic and Vukobratovic, 1984; and Pandian et.al., 1988]. In these 

papers, the robotic system is treated as a set of subsystems, each represented by 

an actuator model (equation 2.21), interconnected through the dynamics of the 

mechanical part of the robotic system (equation 1.1). For each subsystem, a 

completely decentralized controller is designed based only on the local states of 

the subsystem. The controller consists of two parts : programmed nominal 

controller and compensating controller. Based on the decoupled free subsystem 

model, the programmed nominal controller is designed to track the nominal 

(desired) trajectories in the absence of the couplings. A compensating controller is 
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then designed based on the deviation model of the subsystem from the nominal 

states (trajectories). Pandian et.al. [1988] proposed a high gain control technique 

to design the compensating controller such that the deviation model tends to zero 

asymptotically. In Vukobratovic and Stokic [1983], and Stokic and Vukobratovic 

[1984], the compensating controller is obtained using an optimal control technique. 

It was shown that the decentralized controller will render the overall robot 

manipulator practically stable if a given sufficient condition is satisfied. 

In this study, robust tracking controllers which are capable of withstanding 

all the expected variations and uncertainties in the system are presented based on 

a class of deterministic approach developed by Leitmann [1981], and Corless and 

Leitmann [1981]. A brief description of the approach is presented next. 

4.2 DETERMINISTIC CONTROL OF UNCERTAIN SYSTEMS 

Consider an uncertain system where all the uncertainties can be 'lumped' 

together as described by the following equation : 

X( t) = AX( t) + BU( t) + Be(X, t) X E~n (4.1 ) 

where e(X, t) is the 'lumped' uncertain elements. 

The control of such a system can in general be treated either by using 

stochastic theory, or the use of deterministic techniques where the uncertainties 

are described only in terms of their bounds. No statistical information is assumed 

about the uncertainties. 

Among the deterministic approaches that can be used to control such a 

system are the techniques based on : 

1. Variable Structure method [Young, 1978] 

2. The second method of Lyapunov in which a Lyapunov function is 

minimized with respect to the control variables. This will leads to a 

class of 'min-max' controllers [Leitmann, 1979; Gutman and Palmor, 
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1982] 

3. The class of controllers proposed by Leitmann [1981]' and Corless and 

Leitmann [1981]. 

The first two classes of controllers guarantee asymptotic stability of the 

system behaviour. However, the controllers are discontinuous in structure, thus, 

they are difficult to be realized in practice. 

The class of controllers proposed by Leitmann [1981]' and Corless and 

Leitmann [1981] also uses the second method of Lyapunov. It is based on the 

theory of guaranteed stability (or ultimate boundedness) of the solution of the 

uncertain system (4.1). The control approximates the 'min-max' control by a 

single-valued continuous function in the neighbourhood of the switching surface. 

Thus, the control action is continuous everywhere. However, the behaviour of the 

system obtained is generally ultimate boundedness, and not asymptotic stability. 

In the following, the deterministic control approach of Leitmann [1981]' 

and Corless and Leitmann [1981] is briefly described. 

4.2.1 Deterministic Control Approach of Leitmann [1981], and 

Corless and Leitmann [1981] 

In the ultimate boundedness results of the mentioned literatures for an 

uncertain system represented by equation (4.1), a nonlinear saturated feedback 

control law is used. The feedback controller is based solely on the knowledge of 

the maximum possible value of the norm of the 'lumped' uncertainties e(X, t). 

This value may depend on X and t. The controller proposed is of the form 

U( t)=~(X,t), where for a given f > 0, 

if 

~(X, t) ( -1.2) 

II ~(Z, t) II < p(X, t) if 
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where P is the positive definite solution of the Lyapunov equation 

(4.3) 

for a positive definite symmetric matrix Q, and where the system matrix A is 

assumed to be a stable matrix. p(X, t) is the norm bound of the 'lumped' 

uncertainties: 

II e(X, t)" < p(X, t) . ( 4.4) 

Beginning with the Lyapunov function 

! = XT P X, (4.5) 

the derivative of ! along the solution of the system (4.1) and (4.2) can be shown 

to be bounded as [Leitmann, 1981]: 

( 4.6) 

where Qi > 0 (i=0,1,2) are some coefficients of IIxlr. 

Since Q2 > 0, consequently, .i < 0 for all t and X E mC(7]), where mC(7]) is 

the complement of the closed ball m(7]), centred at x=o with radius 

Q1 + ~ Q~ + 4Q2 Q O 

2Q2 

Since P is positive definite, the following ellipsoids can be defined: 

(4.7) 

:!(K) .1 {X E?Rn I XTpX < K = constant> 0 }. (4.8) 

Let the smallest Lyapunov ellipsoid that contains the closed ball m( 7]) be :!(.~), 

where in view of 
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(4.9) 

and Amin(P) > 0 since P > 0, K is given by 

(4.10) 

Then, given a Q>O, it was shown in Leitmann [1981] that the uncertain system 

(4.1), with the nonlinear saturating controller 4)(X, t) and corresponding to an 

initial condition (Xo, to), has uniform ultimate boundedness with respect to the set 
I(K), where 

(4.11) 

Uniform ultimate boundedness means that the solution of the system (4.1) with 

the saturating controller will enter an ultimate region after a finite time and 

remains there thereafter. Hence, the closed loop system is practically stable. 

4.2.2 Application Of A Deterministic Approach To Robot Manipulator Control 

- An Overview 

The implementation of the deterministic approach for robot manipulator 

tracking control problems has been considered by Corless et.al. [1984], Chen 

[1987b], Chen and Eyo [1988], Corless [1989], Chen and Pandey [1990], and 

Shoureshi et.al. [1987; 1990], for example. In most of these papers, the actuator 

dynamics which constitute an integral part of a robot manipulator have been 

ignored; the controller is designed based only on the dynamics of the mechanical 

part of the robot manipulator. Furthermore, in some of the approaches [Corless 

et.al., 1984; Chen and Eyo, 1988; Shoureshi et.al., 1987; 1990]' the controller 

requires a nonlinear compensator which is based on the on-line computation of the 

complicated robot manipulator dynamics. Chen and Pandey [1990] used a 

Computed Torque Technique coupled with the deterministic approach to design a 

robust hybrid controller for a robot manipulator. Similar to the above mentioned 

methods, the controller requires on-line computation of the robot manipulator 
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dynamic equations. In all of these works, the proposed controllers are centralized 

in structure. Thus, the methods are usually complex and demand heavy on-line 

computation of the robot manipulator dynamics. 

In this chapter, a decentralized tracking controller for robot manipulators 

is presented. The decentralized controller is formulated based on the results of 

[Leitmann, 1981; Corless and Leitmann, 1981; Chen, 1986; 1987a; 1988]. but 

without the above mentioned computation difficulties. Each local controller is 

designed based only on the local states of the corresponding subsystem. A 

complete model of the robot manipulator dynamics is used in designing the 

controllers. It is assumed that the bounds on the nonlinearities, couplings and 

uncertainties present in the system are known. The decentralized tracking 

controllers are nonlinear and are based only on these bounds. It will be shown 

that, the controller will render the errors between the robot manipulator responses 

and the corresponding reference trajectories practically stable, and track the 

desired trajectories, in spite of the uncertainties, couplings and nonlinearities 

present in the system. 

The formulation of the decentralized tracking problem and some standard 

assumptions are presented in the following section. 

4.3 PROBLEM FORMULATION 

As shown in Chapter 3, robot manipulator dynamics can be represented by 

a set of interconnected linear subsystems with bounded uncertainties described by 

equations (3.18) and (3.19) which are as the following: 

Xj(t) = [Aj + LlAj(X,~, t)] Xj(t) + [B j + LlBj(X,~, t)] Uj(t) + 

N L Aj;(X, ~, t) X j( t), 
j=l 
j :F i 
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( 4.13) 

i E ~, (4.14) 

where Xio is a given initial condition vector. The elemen~s of the LlAi(X, ~, t), 

LlBi(X, ~, t), and Aij(X, ~, t) matrices, Lla!j(X, ~, t), Llb:(X, ~, t), and a:~(X, ~, 
t), respectively, may be considered as uncertainties which belong to uncertainty 

bounding sets ~, 1, and cy respectively. The uncertainty bounding sets may be 

defined as follows : 

~ Ll { Lla!j( *) ; 'V i E ~, 'V j E ~ -r~ . 
IJ < Lla!j{ *) < r~ . } 

IJ 

1 
Ll i 

; 'V i E ~, 'V j E ~ I -s~ 
I 

s: } = { Llbi(*) < Llbi( *) < ( 4.15) I 

cy Ll ij 
; 'V i E ~, 'V j E ~ I 

ij 
a:~( *) 

I) 

= { aij{ *) a·· < < aij } -11 

where the values of rL , s: , a:~ ,and a:~ are as given in (3.13) and (3.17). For 

robot manipulators, these bounds are known. Equation (4.12), which represents 

the complete dynamics of the robotic arm is a continuous function of the states 

and time t. So are the uncertain elements. 

To reduce the effect of the uncertainties on the performance of the robot 

manipulator, an appropriate control law which takes into account the 

uncertainties must be formulated. 

Let a continuous function Xd ( t) E ~3N be the desired state trajectory, 

where Xd ( t) is defined as : 

( 4.16) 
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The robot manipulator control problem is then to design a decentralized 

controller for each subsystem such that the robot actual state trajectory Xj( t) 

tracks the nominal or reference state trajectory Xdi ( t) as closely as possible for all 

t in spite of the uncertainties and nonlinearities present in the system. 

I t is assumed that : 

1. The pair ( Aj , Bi ) is stabilizable, 

11. There exist continuous functions Hi(X, ~, t) E ~lx3, and Ei(X, ~, t) E ~, 
such that for all X E ~N and all t : 

L1Ai(X, ~, t) = BiHi(X, ~, t) ( 4.17) 

L1Bi(X, ~, t) = BjEi(X, ~, t) ( 4.18) 

II Ei(X, ~, t) II < 1. (4.19) 

Ill. There exist a Lebesgue function ni ( t) E~, which is integrable on 

bounded intervals, such that 

( 4.20) 

IV. There exist an upper bound, g" of the norm of the interconnection 
I] 

matrix for each i and j ( i =I j) : 

II AiAX, ~, t) II < g". 
I] 

(4.21 ) 

In studying a decentralized large scale system, the question of whether the 

system can be stabilizable depends on the property called the decentralized fixed 

modes. In a system (centrally), fixed modes are the uncontrollable and 

unobservable modes of the system. In a decentralized control system. any 

uncontrollable and unobservable eigenvalue with respect to a centralized control is 
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also a fixed mode with respect to decentralized control [Davison and OZgiiner, 

1983]. Decentralized fixed modes includes any modes of the system which are not 

controllable and observable in the centralized sense, and those uncontrollable and 

unobservable modes that arise due to the decentralization of the system. If there 

are uncontrollable and unobservable modes for an overall system (centrally) which 

are unstable, then the system itself have to be change. Thus, in this study, it is 

assumed that the overall system is controllable and observable. It also assumed 

that if there is any decentralized fixed mode in the system due to decentralization, 

the decentralized fixed mode lies in the open left half part of the complex plane. 

In other words, it is assumed that there is no unstable decentralized fixed mode in 

the system. 

In assumption (ii), the continuous functions Hj(X, e, t) and Ej(X, e, t) 

exist if and only if the following rank conditions are satisfied : 

rank [ Bj ] ( 4.22) 

rank [ Bj ] ( 4.23) 

That is, if and only if each column of the matrices L1Aj(X, e, t) and L1Bj(X, e, t) 

is a linear combination of the columns of the matrix Bj. Equations (4.17) and 

(4.18) or the rank conditions (4.21) and (4.22) are essentially related to the 

structure of the matrices B j, L1Aj(X, e, t), and L1Bj(X, e, t), and not to the values 

of their elements. These conditions impose constraints on the structure of the 

system matrix uncertainty L1Aj( *), and the input matrix uncertainty L1B j ( *) in 

that, the uncertainties should lie within the range space of the input matrix B j . 

This assumption is needed so that the control, U j( *), which enters the ith 

subsystem through B j , can overcome or compensate the possible uncertainty in 

the subsystem. If these assumptions are not satisfied, one cannot compensate for 

the uncertainties even if the uncertainties are known [Chen, 1987b]. In view of 

equations (3.21), these conditions are always satisfied for a robot manipulator if 

its state space description is derived based on the joint angles, velocities and 

acceleration as the state variables. 

122 



The condition II E i ( *) II < 1 in assumption (ii) is needed to assure that a 

given control acts in the desired 'direction'. This condition also imposes a limit to 

the uncertainty present in the ith subsystem input matrix. 

Assumption (iii) is required to ensure that the ith free decoupled 

subsystem state tracks the ith desired state trajectory Xdi ( t) asymptotically. 

For each subsystem, lets the state tracking error between the actual and 

the desired states be defined as Zi( t), that is, 

( 4.24) 

and, (4.25) 

Using (4.12) and (4.20), the error state equation for the ith subsystem can be 

obtained as follows : 

N L Aij(X, ~, t) XAt) - B;!1i(t) , 
j=1 
j:F i 

( 4.26) 

and the error state equation for the overall system may be obtained as follows : 

Z( t) = AZ( t) + A(X, ~, t)X( t) - AX( t) + B(X, ~, t)U( t) - BO( t), (4.27) 

where 

T T T T 
Z(t) = [ Z1 (t), Z2(t), ... , ZN(t) ] 

T 

O( t) = [ 0 1 (t), 02( t), ... , OM t) ] . 
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The objective is then to design U i( t) such that for any uncertainties. 

interconnection functions, and initial conditions, the overall error system (eqn. 

(4.27)) with the decentralized control law 

( 4.28) 

is practically stable. Hence, in the error space, the robot manipulator tracking 

problem has become the problem of stabilizing the error system (equation 4.27). 

In the following section, a decentralized tracking controller based on local 

approach is presented. The vector norms are Euclidean, and the matrix norms 

are the corresponding induced one, that is, 11A\11=~Amax(A\TA\), where Amax(A\) 

denotes the maximum eigenvalue of the matrix A\. 

4.4 DECENTRALIZED NONLINEAR TRACKING CONTROLLER 

DESIGN - LOCAL APPROACH 

In this section, a nonlinear decentralized local tracking controller for a 

robot manipulator system is proposed. Each local controller is designed based 

only on the local states of the corresponding subsystem. 

From assumptions (ii) and (iii), with the arguments (X, ~, t) has been 

dropped for convenience, equation (4.26) becomes: 

( 4.29) 

For each subsystem, let the decentralized local controller be of the form: 

(4.30) 
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(4.31 ) 
where 

fl Li(Zi, ~, t) 
-lIflLi(Zi, ~, t) II PLi(Zi, ~, t) if I/flL/ Zi' ~,t) II > fi 

( 4.32) 

IIq>Li(Zi'~' t)11 < PLi(Zi'~' t) if IIflLJZi, ~,t)1/ < fj 

( 4.33) 

-1 

PL/Zi'~' t) .1 mat [1 - "Ei(Llb~)"] ( 
Llb j E 1 

and fi in equation (4.32) is a prescribed positive constant. The constant gain 

matrix Ki is chosen such that the closed loop system matrix 

f'V .1 
A· = A· + B·K· • • •• (4.35 ) 

is asymptotically stable. Pi is the solution of the matrix Lyapunov equation 

for a given positive definite symmetric matrix Qi' The structure of the 

decentralized local controller is as illustrated in Figure 4.1. 
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TRAJECTORY GENERATOR 
TACTICAL 
LEVEL 

EXECUTIVE 
LEVEL 

CONTROLLER 1 

SUBSYSTEM 1 

i.1,= [At +..1AtlXl 

;',': ,:t'., + [at :+L1B:t]U i1 
'::"':" -+ 2: Al~X . 

itl J J 

CONTROLLER 2 

SUBSYSTEM 2 

X2 = [A2 + L1A21X2 I---~~ 

+ [B2 + L1B2] U L2 

+ L:A2 -X· 
jj;2 J J 

FIGURE 4.1 Decentralized Control Of Robot Manipulator 
- Local Approach 

As shown in equation (4.30), the controller is made up of a linear part and 
t'V 

a nonlinear part. The linear part, Ui(Zi, ~, t), is designed based on the ith 

decoupled nominal subsystem (without uncertainties), such that the ith isolated 

free nominal subsystem is stable and tracks the desired trajectory asymptotically. 
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The structure of the nonlinear component, 4">Li(Zi, ~, t), as given in (4.32) is 

similar to those of [Leitmann, 1981; Corless and Leitmann, 1981: Chen, 1987a: 

1988] as presented in section 4.2.1. It is of the saturation type. It's aim is to 

compensate for the effect of the uncertainties present in the ith subsystem's 

system and input matrices in order to reduce their effect on the system 

performance. 4">Li(Zi'~' t) approximates closely a 'min-max' controller in the 

neighbourhood of the switching surface defined by fi' where fi can be viewed as 

a thin boundary layer which decides the size of the switching region, that is the 

region at which the nonlinear control 4">Li(Zi, ~, t) switches its form. The control 

action is continuous everywhere. If however, fi = 0, then the control 4">Li(Zi, ~, t) 

becomes a switching control (min-max) which is discontinuous and unrealizable in 

practice. 

It can be seen from equation (4.34) that P L/ Zi' ~, t) is formulated based 

only on the possible bound of the uncertainty. Thus the uncertainty has been 

compensated by the nonlinear control component through PL/Zi, ~,t). From the 

construction of the controller, it can be seen that the controller for the ith 

subsystem does not depend on the neighbouring states, Xj ( t) (for j -::j:. i). Thus, 

the decentralized nonlinear tracking controller U Li( t) is designed based only on its 

local states. 

Unlike in [Corless et.al., 1984; Shoureshi, 1987; 1990], the control law (4.30) 

does not have a nonlinear compensator which is based on the inverse dynamics of 

the manipulator to cancel the nonlinear and coupling terms present in the system. 

Furthermore the controller is decentralized in structure. Hence, the , 
computational complexities of the controller are greatly reduced. 

Theorem 4.1 

Subject to Assumptions (i) to (iv), the decentralized tracking controller (4.30) will 

render the interconnected robot manipulator system (4.12) globally practically 

stable and tracks the desired state trajectory (4.16) to within the neighbourhood 

of the ultimate boundedness set I(l£} (defined below) if the test matrix 

T L=[1 L]NrN' where 
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Amin( Q.) for t=) • 
TLij = ( 4.37) 

- 2 Amax(P i) 9ij if if;j 

is a positive definite matrix, that is, if the successive principle minors of the test 

matrix are all positive. 

Proof 

Substituting equation (4.30) into (4.29), gives the closed loop equation for the ith 

subsystem as (the arguments have been dropped for simplicity) : 

where 

= A; Z; + B; { iPL ; + eu } + f A;j Xj , 
3=1 
j ¢ i 

'"V 

Hi Xi + Ei ~ Li + Ei U i . 

Let the Lyapunov function for ith subsystem be : 

T 
!i(Zi, t) = Zi Pi Zi , 

and the composite Lyapunov function be : 

N 
!(Z, t) = 2: Li(Zi, t) 

N 
2: 

T 
Zi Pi Zi . 

• • 

( 4.38) 

( 4.39) 

( 4.40) 

(4.41) 

The Lyapunov function l(Z, t) is positive definite since P is positive definite. The 

128 



derivative of the Lyapunov function with respect to time t can be obtained as 
follows: 

l(z, t) ( 4.42) 

Substituting equation (4.38) into (4.42), gives: 

N T N 
I: 2Zi Pi I: Aii Xi . (4.43) 

i i:F i 

From Rayleigh's principle [Franklin, 1968] : 

(4.44 ) 

the first term on the right-hand-side (RHS) of equation (4.43) can be written as 

follows: 

N T f'V 

"""' 2Z· P·A·Z· L..J •• I • 

• 

N T f'V f'VT 

- ~ Zi [P iAi + Ai Pi] Zi 
• 

N 2 

< - ~ Amin(Q) !!Zi!! . 
• 

From the fact that II~Lili < PLi (equation 4.32) , implies, 
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< PLi (4.46) 

In deriving equation (4.46), equation (4.34) has been utilized. For the second 

term on the RHS of equation (4.43) : 

1. If 11 Li > fi , implies 

T B·P·Z· gj I I I 

Li = -II T IIPLi' B·P·Z· • • I 

(4.4 7) 

which gives 

f2(B~PiZ/{~Li + eLi} < f21lB~Piz.llll ~Li + eLi II 
I 

< f211B~PizJ ~I gjLi II + II eLi II} 

< - f211B~PizJ PLi + f211B~PizJ PLi 
i • 

= 0 ; ( 4.48) 

(4.49) 

then, 
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< f21IB~P;d PL; + f21IB~P;d PL. 
• • 

< f41IB~P;z;k; 
• 

( 4.50) 

Now, consider the error vector 

z· = X·-X·d J J J (4.51 ) 

Then, ( 4.52) 

But, from Pollard et. al. [1986] , 

hence, II X j II < II Z j II + II X jd II . ( 4.54) 

Then, the last term on the RHS of equation (4.43) can be written in the following 

form: 

(4.55 ) 
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In deriving equation (4.55), equation (4.54) and assumption (iv) have been 

utilized. From equations (4.45), (4.48), (4.50) and (4.55), the Lyapunov 

derivative (4.43) along the solution of the error system (4.38) is given as follows: 

l(z, t) 

Let, 
/'V

T 

Z = [/I Zl II, II Z211 ,. . ., II Z N II ] , ( 4.57) 

hence, ZTZ = II Z 112 = IIZII . ( 4.58) 

Then, the derivative of the Lyapunov equation (4.56) can be rewritten as follows: 

• /'V
T 

/'V '" N 
L(Z, t) < - Z lr L Z + V Z + L 4 fi (4.59) 

• 

where, lr L is an NxN test matrix whose elements are as given in equation (4.37), 

and, V is an NxN matrix whose elements are as follows: 

N 
L 2 Amax(P i) 9ij II Xjd II for t=) 

j"#i 
(4.60) Vij = 

0 if i#j 

Equation (4.59) can be rewritten as : 

It can be seen that (4.61) is of the form of equation (4.6) in section 4.2.1. Thus, 

if Amin(lr L) > 0 , l(Z, t) < 0 for all t and Z E mC

(7]L)' where mC

(7]L) is the 
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complement of the closed ball m(7]L)' centred at Z=O with radius 

! 

( 4.62) 

and the error system (4.38) with the nonlinear decentralized controller (4.30) and 

corresponding to an initial condition (Xo, to), is uniform ultimate boundedness 

with respect to the set 1:(K), where 

( 4.63) 

( 4.64) 

p diag [ PI, P 2 , •.. , P N ] . ( 4.65) 

This conclude the proof. 0 

The condition in terms of the positive definiteness of the test matrix lr L as 

given by equation (4.37) is a sufficient condition for the practical stability of the 

system (but not necessary). It should be noted that Lyapunov stability theory is 

always known to be conservative in predicting stability of a system. If the 

condition is satisfied then the system is practically stable with respect to the 

stability region. If the test is not successful, one cannot conclude whether the 

subsystem is stable or not; the system may be stable even when the test is not 

positive. Another important point that should be mentioned concerning the test 

matrix lr L is that, the weaker the interconnections, that is, the smaller the terms 

9ij , for i f= j, the easier it is to satisfy the sufficient condition. 
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Inspection of (4.62) shows that the size of the set ~(K), and hence the 

tracking error, depends both on Ei and the bound of the interconnection matrices 

9ij. For small values of Ei' the radius of the uniform ultimate boundedness set 

decreases and hence, the tracking precision increases. Thus, the errors between 

the responses of the robotic system and the reference trajectories can be made 

arbitrarily small. In order words, the robot manipulator can be made to track the 

reference trajectory within an arbitrarily small neighbourhood of Xd ( t). 

The decentralized control law (4.30) is simple and easy to compute because 

it is designed based on a set of decomposed robot manipulator models, rather than 

the overall system. Moreover, it is physically realizable and easy to implement as 

the exchange of any information between subsystems are not required. 

The performance of the proposed decentralized control law is evaluated by 

means of a computer simulation study which will be presented in the following 

section. 

4.5 SIMULATION AND RESULTS 

A simulation study has been carried out to investigate the performance of 

the proposed controller on a three dof robot manipulator actuated by armature 

controlled DC motors. 

The complete dynamic model of the robot manipulator has been obtained 

III Chapter 2. Equation (2.75) which represents the complete dynamics of the 

robot manipulator is highly nonlinear and coupled, taking into account the 

contributions of the actuator dynamics, as well as the inertias, the Coriolis forces, 

the centrifugal forces and the gravitational forces present in the mechanical part 

of the robot arm. It is this equation (equation 2.75) that was used in the 

simulation to represent a real plant (three dof robot manipulator) without any 

approximation and simplification of the highly nonlinear and coupled system. 

In this silnulation work, the Runge-Kutta-Butcher (James et.al, 1985) 

numerical integration method has been used to solve the robot nonlinear 

differential equations. The method was used because it is one of the best methods 
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in finding a solution to a differential equation in terms of accuracy and minimum 

computing time (James, et. al., 1985). Computer programs in FORTRA:\ have 

been developed for simulating the dynamic behaviour of the robot manipulator 

with the controller. Double precision arithmetic and a sampling period of 10ms 

have been used for the simulations throughout this study. 

In the simulations, as in any actual robot manipulator application, it is 

necessary to have a preplanned trajectory for the robot manipulator to follow so 

that it can move efficiently with or without any obstacle in the work space. 

4.5.1 Trajectory Generation 

At the tactical level of the overall robot control hierarchy as described in 

Chapter 1, the desired trajectory for each joint angle (position), velocity, and 

acceleration of the robot manipulator is generated using a trajectory generator. 

A trajectory is defined as a time history of position, velocity and 

acceleration of each joint (each dof) of the robot manipulator. Logically, a smooth 

continuous trajectory is preferable than a jerky discontinuous one. This requires 

that the first and the second derivative of the trajectory must exist to guarantee 

the continuity of the trajectory. Suppose that it is desired for the ith robot joint 

angle (}i( t) to move from a given initial position (}i(O) to a desired final destination 

of (}i( T) in time interval T seconds, starting and ending with zero velocity, that is, 

B.(O) = Bi ( T) = 0 rad/s. One way to generate a smooth joint space trajectory with 

the specified conditions for the joint angle is by using a cycloidal function as 

follows: 

II (0) + L1i [27rt Sin (27rt) ] 
Ui 27r -r - T' 

( 4.66) 

T<t 

where 
1, 2, 3. 
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The subscript d means the desired trajectory for the joint to track. The cycloid 

has a smooth 'bell-shaped' velocity profile and a 'sinusoidal' acceleration profile 

which can be obtained by differentiating equation (4.67) once and twice, 
respectively, with respect to time t : 

(4.67) 
o , 

21rLl· 
Sin (~) , I O<t<T T2 

8 die t) - ( 4.68) 
o , T<t 

The cycloid also has a smooth jerk profile 'ii di( t) which can be obtained by 

differentiating equation (4.68) once with respect to time. 

Figure 4.2 illustrates the joint angular trajectory profile for each joint of 

the three dof robot manipulator starting from an initial position of [91(0), 92(0), 

93(0)]T = [-0.8, -1.5, -0.5 ]T radians, to a desired final position of [91 ( T), 92( T), 
93( T )]T = [1.0, 0.2, 1.2 ]T radians in time T = 2 seconds. Figures 4.3 and 4.4 

show the corresponding velocity and acceleration profiles for each joint of the 

robot manipulator, respectively. It can be seen that the trajectories are smooth 

and continuous. 

In the simulations, care has been taken in selecting the time T for the joint 

to move from a given initial angular position to a desired final position to ensure 

that the maximum velocity profile generated does not exceed the specified 

maximum velocity of the robot manipulator. From equations (4.68) and (4.69), 

the time T needed for the joint to move from a given initial position to a final 

position should be chosen such that 
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T < 2Ll· • 

where 8m is the maximum velocity specified for the robot manipulator. 

(4.69) 

Throughout this research, each joint of the robot manipulator is simulated 

to track the above type of trajectories. 
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4.5.2 Simulation Using Independent Joint Linear Control 

Before the proposed decentralized nonlinear controller is applied to the 

robot manipulator, a simulation study was carried out to evaluate the 

performance of the robot manipulator using an independent joint control method 

which is normally used in a real industrial robot. Here a linear state feedback 

controller was used for each joint. In designing the controller, the dynamics of 

the mechanical linkage has been completely ignored. Each joint of the robot 

manipulator was treated as an independent servomechanism problem represented 

by the actuator state equation as follows : 

(4.70) 

The above equation is obtained by ignoring the last two terms on the right hand 

side of equation (2.26). The elements of the matrices ABi and BBi are as in 

equation (2.27). Based on the actuator's parameters value as tabulated in Table 

2-2 in Chapter 2, the matrices A Bi and B Bi are as follow : 

o 1 o 

ABi= o o 1 t = 1, 2, 3 , 

o - 90.6955 -10.8968 (4.71 ) 

o o 

BBI = o o 

0.7217 0.6415 
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The following linear state feedback controller was employed for each sub­

system: 

( 4.72) 

where Ki is the 1x3 linear state feedback gain matrix, Zi( t) is the state error 

vector similar to equation (4.23), and nmi ( t) is the control component to ensure 

asymptotic tracking of the ith open-loop decoupled linear subsystem (4.71) with 
• .. T 

respect to the desired state trajectory vector Xdi ( t) = [ () di( t) , () di( t) , () di( t) ] . 

The following nmi ( t) functions have been used in the simulation: 

nm1 (t) = 125.6744 Bdl(t) + 15.22410d1 (t) + 1.3857'iJ'dl(t) 

nm2(t) = 141.3837 Bd2(t) + 17.12720d2 (t) + 1.5589'iJ'd2(t) (4.73) 

nm3(t) = 141.3837 Bd3(t) + 17.12720d3(t) + 1.5589·B·d3(t). 

For the following closed-loop poles of the subsystems: 

Subsystem 1 

Subsystem 2 

Subsystem 3 

-0.4 

-5.0 

-0.3 

-0.4 

-5.0 

-0.3 

- 5.0 

-10.0 

- 5.0 

the corresponding feedback gains have been computed as follow: 

Subsystem 1 Kl = [ -1.1085 119.91 7.1873 1 

Subsystem 2 K2 = [ - 389.721 - 53.4767 -14.0505 1 

Subsystem 3 K3 = [ - 0.7015 136.5668 8.3975 1 
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Four cases have been considered in the simulation study : 

a) the manipulator was required to track a slow trajectory without 
carrying any load 

b) the manipulator was required to track a fast trajectory without 
carrying any load 

c) the manipulator was required to track a slow trajectory while 

carrying a 20 Kg. load 

d) the manipulator was required to track a fast trajectory while carrying 

a 20 Kg. load. 

For the slow trajectory, the robot manipulator was required to move from 

an initial position of 8(0) = [ 0.0 , - 1.5 , - 0.2 ]T radians to the final position of 

8( r) = [ 0.5 , - 1.0 , - 0.3 ]T radians in r = 2 seconds. The maximum velocity for 

this trajectory is 0.5 radian per second for all the joints. For the fast trajectory, 

the robot manipulator was required to move from an initial position of 8(0) = 

[ - 0.8 , - 1.5 , - 0.5 ]T radians to the final position of 8( r) = [ 1.0 , 0.2 , 1.2 ]T 
radians in r = 2 seconds. The maximum velocity for this trajectory is at 1.8 

radians per second for joint 1, and 1. 7 radians per second for joint 2 and 3. 

Figure 4.5 illustrates the position tracking error for each joint for case (a) 

and (b), while Figure 4.6 shows the position tracking error for case (c) and (d). 

From the graphs, it can be observed that the tracking errors are significant when 

the manipulator was carrying a load compared to without load. It can been seen 

from Figure 4.5 that the error for each joint angle is significant for the case when 

the manipulator was required to track a fast trajectory. Similar results can also 

be observed from Figure 4.6 where the manipulator was required to carry a 20 Kg. 

load. The increase in the load or velocity or both may also cause instability as 

shown by the simulation results for joint 3 of the manipulator in Figure 4.6 . 

The simulation results confirm that the independent linear joint controller 

is not robust to load variations and is only suitable for slow manipulator motion. 

For fast manipulator motion, the influence of the dynamics of the mechanical part 

of the manipulator is strong due to increase in the velocity dependent 
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component in the mechanical linkage dynamics such as Coriolis forces terms. 

The increase in the load carried by the manipulator also increases among others 

the gravitational loading terms in the mechanical linkage dynamics. The static 

linear controller with a particular fixed set of feedback gains does not have the 

capability to compensate these sudden changes in the overall robot manipulator 

system, hence resulting in a large tracking error and may cause instability of the 

system as shown in the simulations. In designing a controller for a robot 

manipulator which is required to move payloads of different masses from one 

point to another, it is more desirable to have a single controller for each joint 

which works for a range of payload masses and trajectories than to change the 

controller or adjust some controller parameters for each task. 

4.5.3 Simulation Using Decentralized Nonlinear Local Control Method 

In order to apply the proposed decentralized control strategy, the robot 

dynamic model was decomposed and reduced into a set of three interconnected 

uncertain subsystems in input decentralized form as outlined in section 3.4 of 

Chapter 3. From equation (3.27), the dynamic equations of the subsystems are as 

follows: 

XI(t) = [AI + LlAI(X, ~, t)] XI(t) + [BI + LlB1(X, ~, t)] UI(t) + 
AI2(X, ~, t) X2( t) + A13(X, ~, t) XJ( t) 

X
2
(t) = [A2 + LlA2(X, ~, t)] X2(t) + [B2 + LlB2(X, ~, t)] U2(t) + 

A21 (X, ~, t) XI(t) + A2J(X,~, t) X3(t) 

XJ( t) = [AJ + LlAJ(X, ~, t)] XJ( t) + [BJ + LlBJ(X, ~, t)] UJ( t) + 
A31 (X, ~, t) Xl (t) + AJ2(X'~' t) X2( t) 
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The non-zero elements of the uncertain matrices LlAj(X, ~, t) and LlBj(X, ~, t) for 

i=1, 2, 3, can be obtained by using equations (3.15), (3.16), (3.22), (3.23) and 

Appendix D. In view of equation (3.22), the non-zero elements of the 

interconnection matrices Ajj(X, ~, t) for i ~ j are as given in the Appendix D. 

The elements of the matrices Aj and B j, as well as the bounds on the elements of 

the matrices LlAj(X, ~, t), L1Bj(X, ~, t) and AjAX, ~, t) are as given by equation 

(3.26) in Chapter 3. Based on equation (4.76) and the known maximum bounds 

on the uncertainties in the system - the maximum bound on the uncertain 

elements of the system, input and interconnection matrices - the decentralized 

control law is designed to control the robot manipulator. 

It should be emphasized here that the robot dynamics In the form of 

equation (4.76) is only used for the derivation of the decentralized nonlinear 

control law, which is done off-line. 

For each subsystem, the control law was established according to equations 

(4.30) to (4.36). Based on equation (4.35), the linear feedback gains in equation 

(4.31) were synthesized for each subsystem closed-loop poles similar to those used 

III the previous section for comparison purposes. The following 

corresponding feedback gains for each subsystem were obtained: 

Subsystem 1 Kl = [ -1.145 119.7204 7.3775 1 

Subsystem 2 K2 [ - 400.0975 - 58.9978 -14.4766 1 (4.76) 

Subsystem 3 K3 = [ - 0.7088 136.5112 8.4698 1 

Notice that the feedback gains are not much different from those in the previous 

section. The functions nj( t) in equation (4.31) have been determined as follows: 
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fll(t) = 125.6744 Odl(t) + 15.67880d1 (t) + 1.4313·O·d1 (t) 

fl2(t) = 141.0512 Od2(t) + 17.53130d2 (t) + 1.6004id2 (t) (4.77) 

fl3(t) = 141.3782 Od3(t) + 17.28940d3(t) + 1.5751·O·d3(t) . 

In solving the matrix Lyapunov equation (equation 4.36), the posith'e definite 

symmetrical matrix Q
i 

was taken to be a 3x3 identity matrix for each subsystem. 

The following solution of the Lyapunov equation has been computed: 

3.4341 3.8378 0.625 

3.8378 6.5294 1.0427 

0.625 1.0427 0.266 

15.3389 7.0444 0.002 

7.0444 4.7073 0.0604 (4.78) 

0.002 0.0604 0.02802 

4.4444 6.443 1.1111 

6.443 12.9873 2.2469 

1.1111 2.2469 0.4905 

Next, the functions Hi(X, ~, t) and Ej(X, ~, t) are computed as follows: 

145 



HI (X, ~,t) = 1.4313 [ 0 

(4.79 ) 

EI (X, ~, t) 
1 = 1.4313 Llb3 

E2(X, ~, t) 
2 = 1. 6004 Ll b3 ( 4.80) 

E3 (X, ~, t) 
3 = 1.5751 Llb3 

Based on the maximum bound of Llb;( *) as given in Chapter 3, the norm of the 

function Ei(X, ~, t) is obtained as follows : 

IIEI(X,~,t)1I 

II E2(X, ~, t) II 

0.0328 < 1 

0.0249 < 1 

II EI (X, ~, t) II - 2.6154x10 - 4 < 1. 

Thus, equation (4.19) in assumption (ii) is satisfied. 

(4.81 ) 

To obtain the nonlinear part of the controller, the functions PLi(Zi, ~, t) in 

equation (4.34) were computed based on the maximum bound of the elements 
. I 

Lla:j and Llb i , and are given as the following: 

PLI(ZI, ~, t) 

PL/Z2, ~, t) 

where 

1.0339 { 114.1174 x~ + 0.5271 x~ II + 110.0328 wtll } 

1.0256 { 1128.1056 xi + 3.9371 x~ + 0.1489 x~ II 

+ 1I0.0249w2 11} (4.82) 

1.0003 { 1112.5947 x~ + 0.3616 x~ + 2.6029xlO - 3 X~ II 

+ 112.6154x10 - 4 W311 } , 
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"V 

Vi = KiZi(t) + 0i(t), i = 1,2,3. ( 4.83) 

The following form of the nonlinear term (equation 4.32) In the decentralized 
con trol law has been used : 

J-l Li(Zi, ~, t) 
/lJ-lLi(Zi, ~,t) II > - /lJ-lL/Zi' ~, t) /I PL/Zi, ~, t) if f· • 

~ Li(Zi, ~, t) ( 4.84) 
J-lLi(Zi, ~, t) 

P L/Zi, ~, t) if IIJ-lLi(Zi, ~,t)" f· < f· • • 

where J-lLi(Zi'~' t) is as given by equation (4.33) for i=1, 2, 3. 

The system was simulated to study the performance of the controller. 

Here, a fast trajectory was used. As in the previous section, the robot 

manipulator was required to move from an initial position of 8(0) = [ - 0.8 , 

-1.5, - 0.5 ]T radians to the final position of 8( T) = [ 1.0 , 0.2 , 1.2 JT radians in T 

= 2 seconds. The following values of fi in equation (4.84) have been used: 

fl = 1.1 ; f2 = 0.5 ; f3 = 0.9 . 

Figures 4.7, 4.8, and 4.9 illustrate the position, velocity and acceleration 

tracking responses of the manipulator, respectively, while carrying a 10 Kg. load. 

It can be seen that the robot manipulator tracks the desired trajectories (position, 

velocity and acceleration) for each joint with very small errors. Figure 4.10 shows 

the position tracking errors which verify the above observation. For comparison 

purposes, Figure 4.10 also shows the position tracking error for each joint of the 

robot manipulator using the linear independent joint controller as discussed in the 

previous section. It can be seen that the linear independent controller result~ in a 

larger tracking error as compared to the decentralized nonlinear controller. This 

is because the linear controller cannot compensate the uncertainties present in the 

system, as compared to the decentralized nonlinear controller. 
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The simulation shows that under the same conditions, the performance of 

the decentralized nonlinear controller is better than the linear independent joint 

controller. The inclusion of the nonlinear component in the controller reduces the 

tracking error caused by the uncertainties and nonlinearities in the system. 

Figure 4.11 illustrates the control input for each joint of the manipulator 

using the decentralized nonlinear control law. The control inputs are continuous 

and are within the operating limit of the actuators. 

In the next set of simulations, the performance of the controller IS 

evaluated under different loading conditions. 
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4.5.3.1 Effect Of Load Variation 

In the simulations, the manipulator was required to carry a 20 Kg. load, a 

10 Kg. load and 0 Kg. load (no load), respectively. Figures 4.12, 4.13, and 4.14 

illustrate the tracking performance of joint 1, joint 2, and joint 3 of the 

manipulator, respectively. Also shown in the figures are the joint tracking errors 

under the mentioned loading conditions. 

It can be seen from the graphs that the controller is capable of forcing the 

robot manipulator to track the desired trajectories under different loading 

conditions with small tracking errors especially for joint 1. The tracking error for 

joints 2 and 3 are large compare to joint 1 for the 20 Kg. load in particular due to 

the gravitational forces acting on joints 2 and 3 (joint 1 does not have any 

gravitational forces acting on it). Nonetheless, the tracking error for joints 2 and 

3 are small compared to the tracking error using the linear independent joint 

control method as shown in Figure 4.6 under the same conditions (20 Kg. load and 

fast trajectory). 

The joint velocity and acceleration tracking responses under the different 

loading conditions are as shown in Figures 4.15, 4.16, and 4.17 for joints 1, 2, and 

3, respectively. The figures show that the joint velocity and acceleration tracks 

the desired joint velocity and acceleration profile with a small tracking error 

especially for joints 1 and 3. The simulations show that the decentralized 

nonlinear control law is robust to the parameter variations as a result of the 

different loading conditions. It should be noted that the decentralized nonlinear 

controller was designed to operate for the payload range of OKg. to 20 Kg. Thus, 

for any load carried by the manipulator that is within this range, the robot 

manipulator is capable of tracking a given desired trajectory satisfactorily. 

Figure 4.18 and Figure 4.19 illustrate the control inputs to the Jomt 

actuators when the manipulator is moving without carrying any load and while 

carrying a 20 Kg. load, respectively. The control inputs produced by the 

decentralized nonlinear controller are continuous and smooth for both cases. 

There is very little difference between the two cases. The control inputs are 

within the specified limit of the actuators, and are at the maximum when the 

motion of the manipulator is at its maximum velocity as expected. 
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In the next subsection, the effect of varying the constant parameter fj in 

equation (4.32) is studied. 

4.5.3.2 Effect Of Varying The Value fi 

In the following simulations, the effect of varying the constant (j in the 

nonlinear control component is studied. fi can be viewed as a thin boundary layer 

at which the nonlinear control <PLi(Zi, ~, t) switches its form. 

It was desired for the manipulator carrying a 10 Kg. load to track a 

trajectory starting from an initial position of 8(0) = [ - 0.5 , - 1.2 , - 0.2 ]T 
radians to the final position of 8( T) = [ 1.0 , 0.2 , 1.2 ]T radians in T = 2 seconds. 

The following values of fi have been considered in the simulations: 

Case 1 fl = 2.0 f2 = 2.0 f3 = 2.0 

Case 2 fl = 1.5 f2 = 1.5 f3 = 1.5 

Case 3 fl = 1.0 f2 = 1.0 f3 = 1.0 

Case 4 fl = 0.25 , f2 = 0.2 f3 = 0.54 

Figures 4.20, 4.21, and 4.22 illustrate the tracking error for joint 1, joint 2 

and joint 3, respectively, for all the above cases. It can be seen from the figures 

that, as the values of the fi decreases, the tracking error decreases for all the 

joints. Hence, the tracking accuracy of the robot manipulator increases as the f, 

decreases. In other words, the smaller the value of fj, the tighter the tracking, 

and the smaller the ultimate boundedness set given by equation (4.63). This is 

due to the fact that the radius TJ L of the smallest closed ball given by equation 

(4.62) enclosed by the ultimate bounded ness set decreases as the value of t, 

decreases. 

The control input for each joint for the Case 4 is as shown in Figure 4.23. 

Notice that there is a very small oscillation in the control input for joint 2 and 
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joint 3. The oscillation will become apparent and significant when the value of t . 
• 

is decreased further. This is illustrated by Figures 4.24 and 4.25. For these 

figures, the simulation was carried out with the values of fj chosen as follows: 

fl = 0.2 , f2 = 0.15 , t3 = 0.5 . 

Figure 4.24 demonstrates the tracking error of the robot manipulator with 

the specified value fi' while Figure 4.25 illustrates the corresponding control input 

for each joint of the robot manipulator. As shown in Figure 4.25, the control 

inputs exhibit a phenomenon called chattering, which arises due to the digital 

implementation of the control law. The chattering occurs because the function 

J.LL/Zj, ~, t) changes in sign at the sampling frequency if the sampling interval is 

not small enough for a fixed value of ti. Chattering is undesirable because it may 

excite the unmodelled dynamic effects of the robot manipulator such as the joint 

flexibility. It may also degrades the tracking performance of the robot 

manipulator as can be seen by comparing Figure 4.24 with Figures 4.20 to 4.22. 

Thus, there is a trade-off between tracking accuracy and chattering of the 

control signal. Therefore, in the selection of an appropriate ti' careful attention 

must be given to the desired tracking accuracy and the chattering of the control 

signals for a fixed sampling period. 

In the following subsection, the effect of varying the weighting matrix Qi in 

equation (4.36) is studied. 

4.5.3.3 Effect Of Varying The \Veighting Matrix Q i 

In this set of simulations, the value of the weighting matrix Q i in the 

matrix Lyapunov equation (4.36) was varied to evaluate the performance of the 

controller. The same feedback gains as in section 4.5.3.1 were used. Similar to 

the previous section, it was desired for the manipulator carrying a 10 Kg. load to 

track a trajectory starting from an initial position of 8(0) = [ - 0.5 , - 1.2 , 

]
T d·· t) _ 0.2 ]T radians to the final position of 8( T) = [ 1.0 , 0.2 ,1.2 ra lans III T = ~ 

seconds. The following value of fi has been used : 
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€1 = 0.25 ,f2 = 0.2 ,f3 = 0.54 . 

For simplicity, it was assumed that the matrix Q. was the same for all the three 
I 

subsystems. The following values of Q. have been considered: 
I 

Case 1 Q. = 0.1 13 
I 

Case 2 Q. = 0.513 
I 

Case 3 Q.= 13 , 
I 

Case 4 Q.=1.513 I 
, 

where 13 is a 3x3 identity matrix, and i = 1, 2, 3. 

Figures 4.26, 4.27, and 4.28 demonstrate the joint tracking errors for joint 

1, joint 2, and joint 3, respectively, for all the cases considered. It can be 

observed from the Figures that the tracking error for each joint decreases as the 

matrix Qi increases in value. Thus, the tracking accuracy of the robot 

manipulator is proportional to the matrix Qi. The simulation results agree with 

the theory (equation 4.63) in that the radius of the ultimate boundedness set 

decreases as Q. increases. 
I 

Figure 4.29 illustrates the control input for each joint of the robot 

manipulator for Case 1, that is, when Q=l.l 13 for all the subsystems. It can be 
I 

seen that chattering occur in all of the control signals. Thus, care should be taken 

in selecting an appropriate Q. matrix for all the subsystems to ensure good 
I 

tracking accuracy and at the same time to obtain smooth control signals. 

The simulation results demonstrate that the proposed controller can 

accurately control the movement of the robotic arm with good robustness 

properties, and forces the robot manipulator to track the reference trajectory 

precisely in spite of the substantial uncertainties and nonlinearities that exist in 

the system. In general, the addition of the nonlinear control component improves 

the performance of the system as well as stabilizes a response that may be 

unstable in the presence of only the linear control component. It should be noted 
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that as long as II Ei(x,t) II satisfies assumption (ii) for all i E ~, no matter how large 

the loads and the uncertainties are~ an arbitrarily small set of ~(K) can be 

obtained by properly choosing fi and Q " 
I 

4.6 CONCLUSION 

Based on a deterministic approach, a framework for designing decentralized 

nonlinear feedback control law has been presented for tracking control of a robot 

manipulator. The system is treated as a set of interconnected subsystems with 

bounded uncertainties. The decentralized control approach utilizes only the local 

states and the bounds of the uncertainties as the feedback information, and 

satisfaction of a certain sufficient condition results in practical stability of the 

overall uncertain robot manipulator system despite the absence of 

information between the local subsystems. It has been shown theoretically and 

through simulations that the error between the response of the actual robotic 

system and that of the reference trajectory is uniformly ultimately bounded with 

respect to any arbitrarily small set of ultimate boundedness. That is the 

controller forces the robotic system to follow the reference trajectory within a 

close neighbourhood of the reference trajectory, even when substantial 

uncertainties and nonlinearities exist in the system. In other words, the controller 

is robust to any uncertainties and nonlinearities present in the system. The 

drawback of the approach is that the tracking precision is dependent on the 

magnitude of the interconnection functions. If the interconnections between the 

subsystems are strong, the uniform ultimate boundedness set will be large. Hence, 

the tracking error between the robot manipulator and the desired trajectory will 

increase. However, the ultimate boundedness set can be made smaller if the 

interconnection matrices are compensated directly. This will be presented in the 

following Chapter. 

• within the specified bounds. 
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CHAPTER 5 

DECENTRALIZED GLOBAL TRACKING CONTROLLER 

DESIGN FOR ROBOT MANIPULATORS 

5.1 INTRODUCTION 

In the completely decentralized control method as presented in the 

previous chapter, the interconnections between the subsystems are completely 

neglected, yielding a loss of information about the behaviour of the 

interconnection and their dynamic effects on each subsystem. The radius of the 

uniform ultimate boundedness set is also dependent on the bound of the 

interconnection matrices g, ,. 
I) 

Thus, if the the interconnections between the 

subsystems are strong, the uniform ultimate boundedness set will be large. Hence, 

the tracking error between the robot manipulator and the desired trajectory will 

increase. The uniform ultimate boundedness set can be made smaller if equation 

(4.63) is independent of the term 9 ij" This can be done if the interconnection 

matrices are compensated directly by using a decentralized global control method. 

The use of a global control concept in a decentralized control strategy for a 

robot manipulator in order to overcome the discrepancy of the completely 

decentralized control n1ethod has been considered before. For example, 

Vukobratovic and Stokic [1983], and Stokic and Vukobratovic [1984] postulated 

that a global force feedback control law may be introduced in their decentralized 

control algorithm to compensate for the destabilizing influence of the couplings 

among the subsystems. However, the force feedback controller requires either the 

introduction of several force transducers which represents additional technical 

problems and increases the system costs, or the on-line computation of the 

coupling functions which is very time consuming and complex. 
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In this Chapter, a type of decentralized global nonlinear state feedback 

control law based on a deterministic approach is presented for the tracking control 

of a robot manipulator. The controller utilizes the local states as well as the 

states of the connecting subsystems as the feedback information. As with the 

method presented in the previous chapter, the controller is designed based only on 

the bounds of the nonlinearities, the uncertainties, and the interconnection 

functions present in the system. It is assumed that these bounds are known. 

It will be shown theoretically and through computer simulations that the 

proposed controller will render the tracking errors between the robot manipulator 

responses and the corresponding reference trajectories uniformly ultimately 

bounded with respect to a small uniform ultimate boundedness set. 

The following section outlines the formulation of the decentralized global 

tracking problem. 

5.2 PROBLEM FORMULATION 

The dynamic model of the robot manipulator in the form of equations 

(4.12) - (4.15) are being considered again. For the robot manipulator system as 

given by equation (4.12) : 

N L Aij(X, ~, t) Xj( t) 
j=1 
j#=i 

t E ~, (5.1) 

the objective is to design U i( t) for each of the robot manipulator subsystem (each 

dof) based on its local states as well as the states of the connecting subsystems, 

such that, for any uncertainties and nonlinearities present in the system, the 

overall robot manipulator with the decentralized control law 
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U(t) (5.2) 

tracks the reference state trajectory Xd ( t) as defined by equation (4.16), as closely 

as possible for all time t. 

To synthesize the control algorithm, the following assumptions are 

required: 

i. The pair ( Ai , Bi ) is stabilizable, 

ii. There exist continuous functions Hi(X, ~, t) E ~lx3, and Ei(X, ~, t) E ~, 

such that for all X E ~N and all t : 

(5.3) 

(5.4) 

IIEi(X, ~, t) II < 1. (5.5) 

111. There exist a Lebesgue function f!i( t) E ~, which is integrable on 

bounded intervals, such that 

(5.6) 

IV. There exist continuous functions Gij(X, ~, t) E ~lx3, such that for all 

X E ~N and all t : 

(5.7) 

Assumptions (i) - (iii) are similar to assumptions (i) to (iii) In the 

previous chapter and, hence, their explanation are omitted here. 
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In order to realize the decentralized global controller, assumption (iv) is 

needed to ensure that the interconnection functions Aij{X, ~, t) are within the 

range space of the input matrix B i . Thus, the interconnection functions can be 

compensated by the control input U i( t) which enters the ith subsystem through 

the input matrix Bi. The continuous functions Gij(X, ~, t) exist if the following 

rank condition is satisfied: 

rank [ Bi ] (5.8) 

If this assumption is not satisfied, the interconnection functions AiAX, ~, t) 

cannot be compensated by the controller even if they are known. However, in 

view of equation (3.21), assumption (iv) always holds for a robot manipulator 

state space model derived with the joint angles, velocities and accelerations as the 

state variables. 

Is is also assumed here that there is no unstable fixed mode present in the 

system. 

The proposed decentralized tracking control method based on a global 

approach is presented next. 

5.3 DECENTRALIZED NONLINEAR TRACKING CONTROLLER 

DESIGN - GLOBAL APPROACH 

Recall the error state equation (4.26) for the ith subsystem: 

N L Aij(X, ~, t) Xj( t) - Bini( t) . 
j=1 
j ~ i 
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From the given assumptions (i) to (iv), equation (5.9) becomes (the arguments 

have been omitted), 

(5.10) 

For each subsystem, a decentralized controller of the following form is considered: 

Ll f'J 

Ui(t) = UGi(t) = Ui(Zi , t) + q,Gi(Zi, e, t) , (5.11) 

f'J 

where U i(Zi, e , t) is as given in equation (4.31), and 

if II J1-Gi (Zi, e,t) II > fi 

(5.12) 

IIq,Gi(Zi, e, t) II < PGi(Zi, e, t) if IIJ1-G/Zi, e,t) II < fi 

(5.13) 

PGJZ;, ~, t) " rna;' [1 -IIE;(.1b:)11 ( ( 
Llb i E ~ 

m~x II Hi(Lla!j) Xi( t) II + mar II Ei(Llb~) Ui(Zi, e, t) II + 
Lla!j E ~ Llbi E ~ 

(5.14) 

f'J 

and, the positive definite matrix Pi and the closed loop system matrix A i are as 

defined in equations (4.36) and (4.35), respectively. Figure 5.1 illustrates the 
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proposed decentralized global tracking control structure. 
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The maIn difference between the control law presented here and the 

decentralized local control law presented in the previous chapter is in the way the 

function PGi(Zi, e, t) is formulated. It can be seen from equation (5.14) that 

PG/Zi, e, t) IS formulated based not only on the possible bound of the 

uncertainties present in the subsystem and input matrices, but also on the bounds 

of the interconnection matrices represented by Gij(X, e, t). Whereas the function 

PLi(Zi, e, t) was based only on the bounds of the uncertainties present in the 

subsystem and input matrices (see equation 4.34). Thus, the uncertainties as well 

as the interconnection functions, may be compensated by the nonlinear control 

component through PG/Zi, e, t). From the construction of the nonlinear control 

part, especially from PGi(Zi, e, t), it can be seen that the dependence of PGi(Zi1 e, 
t) on Xj( t) (j =I i) is due to Gij(X, e, t) or AiAX, e, t). If the ith subsystem is 

connected with a jth subsystem for some j, it is then required that the ith 

subsystem has access to the state information of the jth subsystem. Otherwise, 

this is not needed. Here, it is assumed that local communication for the 

connecting subsystems is possible such that the decentralized control design 

represented by equation (5.11) is feasible. 

Theorem 5.1 

The composite system (5.1) satisfying assumptions (i) to (iv) can be practically 

stabilized via the decentralized global control law (5.11), and tracks the reference 

trajectories (4.16) to within any neighbourhood of $( 7]G)' where 

(5.15) 
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Proof 

By substituting equation (5.11) into (5.10), gives 

N '" 
AiZi - BJli + Bi[HiXi + L GijXj] + Bi[I+Ei][Ui+~Gi] 

j=l 
j~i 

'" N '" 
A iZi - Bj[KiZi+ni] + Bi[HiXi + L GijXj] + Bi[I+Ei][Ui+~Gi] 

where 

j=l 
j~i 

'" '" N 
A iZi + Bi[HiXi + EiUi + L GjjXj] + Bi[I+Ei]~Gi 

j=l 
j#;i 

'" 
A iZi + BieGi + Bi~Gi' 

'" N 
eGi = HiXi + EiUi + L GijXj + Ei~Gi . 

j=l 
j#;i 

Let the Lyapunov function for each subsystem be 

and the composite Lyapunov function for the overall system be 

N 
l(Z, t) = L 

j=l 

(5.16) 

( 5.17) 

(5.18) 

(5.19) 

Beginning with the composite Lyapunov equation and equation (5.16), the proof 

of the theorem can be accomplished by following the same procedure as outlined 

in section 4.4. From equations (5.16) and (5.19), the derivative of the Lyapunov 

equation can be obtained as follows : 

L(Z, t) f 2Z~PiA iZi + f2Z~PiBi { ~Gi + eGi} 
I 
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From Rayleigh's principle [Franklin, 1968] : 

(5.21 ) 

and in view of equation (4.45), the first term on the right-hand-side (RHS) of 

equation (5.20) can be written as follows: 

From the fact that II<pcili < P
Ci 

(equation 5.12) , implies, 

N "J 

II eCi II = Hi Xi + Ei <PCi + L GijXj + EiUi 
j=l 
j:li 

(5.22) 

< P
Ci

' (5.23) 

In deriving equation (5.23), equation (5.14) has been utilized. For the last term 

on the RHS of equation (5.20) : 

1. If J.l
Ci 

> €i , implies 

<PCi (5.24) 

which gives 

f 2(B:P;Z/{~G; + eGo} < fdB:P;d II ~G; + eGo II 
I I 
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= 0 ; (5.25) 

11. If J-LGi < fi' hence, 

(5.26) 

then, 

f:2(B~P;Z;) T{PG; + eGo} < f:21IB~p;z.IIll PG; + eGo II 
I I 

( 5.27) 

From equations (5.22), (5.25), and (5.27), the derivative of the Lyapunov 

function along the solution of (5.16) is given as follows: 

(5.28) 
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Using (4.57) and (4.58), the above equation can be rewritten in the following 

form: 

'" 

",T '" N 
l(Z, t) < - Z T G Z + E 4 fi 

< 

I 

2 N 
Amin(T G) " Z II + E 4 fi , 

I 

(5.29) 

where, the vector Z IS as defined by equation (4.57) and, T G IS an NxN test 

matrix whose elements are: 

if 
. . 
1 = J 

'lGij = . (5.30) 

o if i:lj 

Since the matrix T G is a diagonal matrix and Q. > 0 for each i E 3, T G is 
I 

positive definite. Consequently, 1 < 0 for all t E ~ and all Z (t) E !B
C

( 7]G)' 
'" where !BC(7]G) is the complement of the closed ball !B(7]G) , centred at Z = 0 with 

radius 

7]G (5.31 ) 

and the error system (5.9) is uniformly ultimately bounded with respect to the set 

I(,,), where 

( 5.32) 
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(5.33) 

P = diag [ PI' P 2, ... , P N ] ,and Pi> O. (5.34) 

The set I(l£) is the smallest Lyapunov ellipsoid that contains the closed ball 

D3("7G)' Then, every solution Z{t) of (5.9) must be uniformly ultimately bounded 

within every I(IC). In other words, system (5.1) with the decentralized global 

control law (5.11) has existence, continuation of solution X(t) and tracks Xd(t) to 

within any neighbourhood of D3("7G). The set D3("7G) can be made arbitrarily small 

by properly choosing Q. > 0 and €i> 0, i = 1,2, ... , N. Thus, the error between • 
the response of the actual system and the desired trajectory can be made 

arbitrarily small after a finite interval of time. This conclude the proof. 0 

It can be seen from equations (5.31) - (5.33) that the uniform ultimate 

boundedness set depends on (i' Thus, in view of equation (5.31), the set can be 

made small by decreasing (i' By comparing equation "7G in (5.31) and "7 L in 

(4.62), it can be concluded that for a given (i (i E .'I), "7G < "7 L and, hence the 

uniform ultimate boundedness set for the integrated robot manipulator system 

with a decentralized local control law is larger than the uniform ultimate 

boundedness set of the system using a decentralized global control law. Thus, the 

tracking errors between the responses of the actual robot system using the 

decentralized global controller (5.11) and the desired trajectories are smaller than 

that of the system utilizing the decentralized local controller (4.30). The decrease 

in the size of the uniform ultimate boundedness set for the decentralized global 

control law is due to the fact that the nonlinear interconnection functions 

AiAX, ~, t) have been taken into account and duly compensated by the 

decentralized global control approach; whereas in the decentralized local control 

approach, their influence have completely been ignored. 

Another advantage of the decentralized global controller (5.11) is that the 

stability of the overall system can always be assured without referring to the test 

matrix T G since by design, Q
i 

is always chosen to be a positive definite matrix for 

each subsystems. Thus, Amin{T) is always positive. 
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In the following section, the effectiveness of the proposed approach IS 

demonstrated by means of a computer simulation study. 

5.4 SIMULATION AND RESULTS 

The proposed decentralized global controller has been applied to the three 

dof robot manipulator actuated by armature controlled DC motors as considered 

in the previous chapters, and simulated on a digital computer. 

Based on the known nominal matrices Ai and Bi, and the known maximum 

bounds on the uncertain elements of the matrices LlAi(X, ~, t), LlBi(X, ~, t), and 

Aij(X, ~, t), the control law for each subsystem was established according to 

equations (5.11) to (5.14). The elements of the matrices Ai and Bi, as well as the 

bounds on the elements of the matrices LlAi(X, ~, t), LlBi(X, ~, t) and Ajj(X, ~, t) 

are as given by equation (3.26) in Chapter 3. 

The continuous functions Hj(X, ~, t) and Ei(X, ~, t) in equation (5.14) are 

as computed in Chapter 4 (equations 4.79, 4.80 and 4.81). Thus, assumption (ii) 

is satisfied. The continuous functions 6 jAX, ~, t) corresponding to the 

interconnection matrices Ajj(X, ~, t) can be computed as follows: 

6 12(X, ~, t) = 1.4313 [ 0 a12 
32 a~ 

6 13(X, ~, t) = 1.4313 [ 0 a13 
32 a13 

33 

6 21 (X, ~, t) = 1.6004 [ 0 a21 
32 an 

6 23(X, ~,t) = 1.6004 [ a23 
31 a23 

32 a23 
33 (5.35) 

6 31 (X, ~,t) = 1.5751 [ 0 a31 
32 a31 

33 ] 

6 32(X, ~,t) = 1.5751 [ a32 
31 a32 

32 a32 
33 ] 

For the nonlinear part of the controller, it is sufficient to compute the functions 

PGi(Zi, ~~ t) in equation (5.14) based on the maximum bound of the elements 

Lla~· Llb~ and a~~ Thus the functions P .(Zj, ~, t) may be given as follows: 
IJ' I' I,., GI 
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Pal (Zb ~, t) -

PO/Z2, ~, t) -

PG/Z3, ~, t) -

1.0339 { 114.1174 x~ + 0.5271 x~ II + 110.0328 wIll + 

112.2809 x~ + 0.1964 x~ II + 

111.3024 x~ + 0.1153 x~ II } 

1.0256 { 1128.1056 x~ + 3.9371 x~ + 0.1489 x~ II + 

11 0.0249 w211 + II 0.9637 x~ + 0.1687 x~ II + (5.36) 

II 0.2816 x~ + 3.9323 x~ + 0.2094 x~ II } 

1.0003 { 1112.594 7 x~ + 0.3616 x~ + 2.6029x10 - 3 x~ II + 

112.6154x10-
4 

w3 11 + 110.579 x~ + 0.1016 x~ II + 

110.6358 xi + 3.5252 x~ + 0.0838 x~ II }. 

The following form of the nonlinear controller (equation 5.12) law has been used: 

if II J1-Gi(Zi, ~,t) II > fi 

(5.37) 

if II J1-0i(Zi, ~,t) II < fi 

where J1-0/Zi'~' t) is as given by equation (5.13) for i=1, 2, 3. 

The linear part of the controller Ui(Zi, t) in equation (5.11) is as given by 

equation (4.31) : 

( 5.38) 
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The same functions !li( t) as given in Chapter 4 are used: 

!ll(t) = 125.6744 iJd1(t) + 15.6788 Bdl(t) + 1.4313'iJ'dl(t) 

!l2(t) = 141.0512 iJd2 (t) + 17.5313 Bd2(t) + 1.6004·iJ·d2 (t) 

!l3(t) = 141.3782 iJd3(t) + 17.2894 Bd3(t) + 1.5751·iJ·d3(t) . 

( 5.39) 

The same feedback gains as in equation (4.76) were used for each sub system: 

Subsystem 1 Kl = [ -1.145 119.7204 7.3775 1 

Subsystem 2 K2 = [ - 400.0979 - 58.9978 -14.4766 1 (5.40) 

Subsystem 3 K3 = [ - 0.7089 136.5112 8.4689 1 

Similarly, the positive definite symmetrical matrix Q. was taken to be a 3x3 
• 

identity matrix for each subsystem. Thus, the corresponding solution of the 

matrix Lyapunov equation remained the same as in the previous chapter 

(equation 4.78). 

The above controller and the three dof robot manipulator were simulated 

on a digital computer using a sampling period of 10 ms. In the simulations study, 

the Runge-Kutta-Butcher integration method and double precision arithmetic 

have been used. In evaluating the performance of the decentralized global 

controller, various simulations have been performed, and the results will be 

presented in the following subsections. 
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5.4.1 Comparison Between Local And Global Approach 

One of the alms of the simulation is to compare the performance of the 

decentralized global control law with the decentralized local control approach. 

For that purpose, the control laws were computed under equal conditions and 

both systems were implemented to track the same desired trajectory. 

Figures 5.2, 5.3 and 5.4 illustrate the position tracking responses for joint 1, 

2 and 3, respectively, for the two control methods. In the simulation, the robot 

manipulator was required to track a desired trajectory starting from an initial 

position of 0(0) = [ - 0.8 , - 1.5 , - 0.5 ]T radians and end at the final position of 

8( T) = [ 1.0 , 0.2 , 1.2 ]T radians in T = 2 seconds while carrying a 10Kg. load. 

For both controllers, the following values of fi have been used: 

fl = 1.1 ; f2 = 0.5 ; f3 = 0.9 . 

For the decentralized global controller and the above values, the radius of 

the closed ball which is wholly contain inside the smallest Lyapunov ellipsoid can 

be computed as : 

TJG 
3.1623 . (5.41) 

The corresponding joint velocity and joint acceleration tracking responses, 

together with the control inputs to the joint actuators for the decentralized global 

control method are as depicted in Figures 5.5, 5.6, and 5.7, respectively. These 

figures can be compared to Figures 4.8, 4.9, and 4.10, respectively, for the 

decentralized local control approach. Notice that the control signal for each 

joint actuator is smooth and continuous, and is within the operating limit of the 

act uators ( ± 240V). 

The figures show that both of the control approaches are capable of forcing 

the uncertain nonlinear robot manipulator to track a desired trajectory 

satisfactorily. However, it is obvious from Figures 5.2b, 5.3b, and 5.4b that, 

under the same conditions, the performance of the robot manipulator is far better 
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2. 

with the decentralized global control approach. This is especially pronounced for 

the case of joints 2 and 3 where the error has significantly decreased as compared 

to the decentralized local control approach. 

The interaction dynamics as represented by the interconnection functions 

Aij(X, ~, t) affect the performance of the overall system, and their influence 

cannot be ignored if high tracking accuracy is desired. They have to be 

compensated. The results show that the proposed decentralized global control 

approach is capable of suppressing the effect of the interconnection functions as 

well as the uncertainties present in the system better than the decentralized local 

control algorithm. 

The simulation results also support the theory that, under the same 

conditions, the decentralized global approach produces smaller tracking errors in 

comparison to the decentralized local control algorithm which do not enlploy the 

neighbouring states as part of the feedback signals (that is, do not employ any 

compensation for the interconnection dynalnics). In other words. the uniform 

ultimate boundedness set for the decentralized global approach is snlaller than 
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that of the decentralized local approach under the same conditions. 

In the next simulations, the robustness of the decentralized global control 

approach is evaluated under different loading conditions. 

5.4.2 Effect Of Load Variation 

Different load masses were placed at the end of the robot manipulator's 

joint which gave the varying effect of the manipulator linkage inertia, Coriolis, 

centrifugal and gravitational forces exerted on the overall robot manipulator 

dynamics. This will affect the effectiveness of the decentralized global control 

algorithm. 

The manipulator was required to follow a nominal trajectory first without 

any load, then with a 10 Kg. load, and finally with a 20 Kg. load. The position 

tracking performance under the various loading conditions for joint 1, joint 2 and 

joint 3 are as shown in Figures 5.8, 5.9, and 5.10, respectively. Also shown in the 

figures (part b) are the corresponding joint tracking errors under the mentioned 

loading conditions. Figures 5.11 through 5.13 illustrate the joint velocity and 

acceleration tracking responses for joints 1 to 3, respectively. 

The simulation results illustrate that the robot manipulator with the 

decentralized global controller is capable of tracking the desired joint position, 

velocity and acceleration trajectories under the various loading conditions with 

small tracking errors. The results shown here are much better (in terms of 

tracking accuracy) than those obtained using the decentralized local approach as 

shown in the previous chapter (Figure 4.12 through Figure 4.17). 

The controller was computed based on the payload range of 0 Kg. to 20 

Kg. maxImum. Thus, the curves for the 0 Kg. load and the 20 Kg. load in 

Figures 5.8b, 5.9b and 5.10b) can be considered as representing the boundaries of 

the tracking error for the chosen controller parameters ( feedback gains, Ki , fi ,Q., 

etc.) for the three joints of the robot manipulator. For any load within the 

specified range carried by the manipulator along the reference trajectories, the 

corresponding tracking error for each joint will fall within these boundaries. The 

maximum difference between the 0 Kg. and the 20 Kg. load curves are at about 
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0.006, 0.0155, and 0.0035 radians for joint 1, joint 2 and joint 3, respectively. This 

means that if the robot manipulator without any load can track the reference 

trajectories without any tracking error, the same robot manipulator with a 20 Kg. 

load can track the same trajectories with very small tracking errors ( with 

maximum error at 0.006, 0.0155, and 0.0035 radians for joint 1, joint 2, and joint 

3, respectively). Furthermore, as shown in Figures 5.8a, 5.9a, and 5.10a, these 

tracking errors for the different loading conditions are negligible. Thus, the 

graphs show that high tracking accuracy can be achieved under varying loading 

conditions. Hence, it can be concluded that the decentralized global control law is 

robust to the parameter variations as the result of the different loading conditions. 

Figure 5.14 and Figure 5.15 illustrate the control inputs to the joint 

actuators when the manipulator is moving without carrying any load and while 

carrying a 20 Kg. load, respectively. The control inputs are continuous, smooth, 

and are within the specified limits of the actuators for both cases. 

The tracking accuracy may be increased further by decreasing the size of 

the uniform ultimate boundedness set (by reducing the radius of the closed ball 

enclosed by the set). There are several ways of accomplishing this. One way is 

by fine tuning the constant parameter (i. The effect of varying the value fi on the 

tracking accuracy of the robot manipulator utilizing the decentralized global 

con trol law is presented next. 

5.4.3 Effect Of Varying The Value Ei 

Varying the value fi' in effect, varIes the size of the hypothetical thin 

boundary layer at which the nonlinear part of the controller 4'Gi(Zi, ~, t) switches 

its form. 

The manipulator is required to track a reference trajectory from an initial 

position of 9(0) = [ - 0.5 , - 1.2 , - 0.2 ]T radians to the final position of 9( T) = 
[ 1.0 , 0.2 , 1.2 ]T radians in T = 2 seconds, while carrying a 10 Kg. load. 

Four different cases have been considered. Each case corresponds to a 

different set of f· values as tabulated in the following table (Table 5-1) . • 
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1 

f1 

Case 1 2.0 

Case 2 1.5 

Case 3 1.0 

Case 4 0.6 

TABLE 5-1 

Subsystem Radius Of The Closed 
Ball Contained In The 

Uniform Ultimate 
2 3 Boundedness Set 

Lfi 
71G = \ 

f2 f3 AminClr) 

2.0 2.0 4.899 

1.5 1.5 4.243 

1.0 1.0 3.464 

0.3 0.7 2.828 

Different Sets Of fi And 
The Corresponding fiG 

Also listed in Table 5-1 (in the last column) are the corresponding radii of 

the closed ball which determined the size of the uniform ultimate boundedness set 

for each case. It can be seen from the table that, as the values of fi decreases, the 

size of the closed ball decreases. Hence, the size of the uniform ultimate 

boundedness set becomes smaller. This in turn will result in tighter tracking of 

the desired trajectory (increase in accuracy). 

The time domain simulation results for all the cases are as shown in Figure 

5.16 to Figure 5.19. It can be seen from Figures 5.16, 5.17, and 5.18 that, as the 

values of the fi decreases, the tracking error between the actual robot response 

and the desired trajectory decreases for all the joints. Hence, the tracking 

accuracy of the robot manipulator increases as fi decreases. 
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Figure 5.19 illustrates the control input to the robot actuators for case 4. 

The control signals for each joint is continuous, smooth, and is within the 

specified operating limit of the input voltage of the actuator. 

The simulation results show that the smaller the value of fi' the tighter 

becomes the tracking. That is, the tracking accuracy increases as the ultimate 

boundedness set decreases in size. Theoretically, as the value fi approaches zero, 

the tracking error will go to zero. However, for a fixed sampling period, there is a 

limit to which the value fi can be reduced as illustrated in the next simulation. 

In this simulation, the value (i has been reduced to 

f2 = 0.15 , f3 = 0.5 

The radius of the closed ball for this case is at 2.05, which is smaller than that of 

case 4. Figure 5.20 shows the joint tracking errors while the corresponding control 

signals are as depicted in Figure 5.21. By comparing Figure 5.20 with Figures 

5.16 to 5.18, it can be observed that there is an increase in the tracking error 

for each joint of the manipulator compared to the simulation results of case 4. 

This is due to the chattering in the control signals as shown in Figure 5.21, which 

degrades the performance of the robot manipulator. As explained in the previous 

chapter, the chattering occurs because the sampling interval used is not 

sufficiently small for this case. For the sampling interval considered, the 

chattering in the control signals will be more severe if the value (I is reduced 

further. The chattering is undesirable because it may excite the unmodelled 

dynamic effects of the robot manipulator, or may cause rapid wear of the moving 

parts, and may lead to degradation in the performance of the robot manipulator. 

Thus, there is a trade-off between tracking accuracy and chattering of the control 

signal. 

Therefore, in designing the nonlinear controller, the value fi for each 

subsystem should be chosen as small as possible so that the smallest uniform 

ultimate boundedness set is obtained to ensure good tracking performance. 

Furthermore care should be taken to avoid chattering in the control signals. , 
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Apart from decreasing the value of fi' the size of the uniform ultimate 

boundedness set may also be decreased by varying the weighting matrix Q .. This 
• 

will be illustrated in the following subsection. 

5.4.4 Effect Of Varying The Weighting Matrix Q . 
• 

In this set of simulations, with Ei being kept constant, the weighting matrix 

Qi was varied to evaluate the performance of the controller. The same feedback 

gains and tracking conditions were applied in these simulations as in the previous 

section. The following value of Ei has been used: 

, E2 = 0.3 ,E3 = 0.7 . 

For simplicity, it was assumed that the matrix Q. was the same for all the three 
• 

subsystems. Table 5-2 lists the different cases considered in the study. 

The effect of varying Q. on the performance of the robot manipulator may 
• 

be illustrated by the joint tracking error for joint 1, joint 2, and joint3 as shown in 

Figures 5.22, 5.23, and 5.24, respectively, for all the cases considered. For case 1 

to case 2, it can be observed from the figures that, as the matrix Q. increases in 
• 

value from, the tracking error for each joint decreases. Hence, the tracking 

accuracy of the robot manipulator increases as the matrix Q. increases. The • 
simulation results agree with the theory that as the size of the ultimate 

boundedness set decreases as Q. increases. This can be observed from Table 5-2, 
• 

where the radius of the closed ball wholly contained within the uniform ultimate 

boundedness set is decreasing as Q. increases . • 
Similar to the case of E· there is a limit to which Q. can be increased for ., . 

fixed values of Ei and the feedback gains. Chattering will result in the control 

signals if Q. is increased beyond this limit as illustrated in Figure 5.25 for case 4 . 
• 

This will result in a poor tracking accuracy as shown in Figures 5.22 to 5.24 for 

case 4. 

203 



Case 

Case 

Case 

Case 

Radius Of The Closed 
Ball Contained In The 

Uniform Ultimate 
Q. Boundedness Set 

I 

't = 1, 2, 3. "'G = \ 
Efi 

AminClr) 

1 0.1 13 8.944 

2 0.5 13 4.0 

3 13 2.828 

4 1.1 13 2.697 

13 = 3x3 Identity 
matrix 

TABLE 5-2 Different Values Of Q. And 
The Corresponding '1G' 

Thus, in selecting an appropriate Q. matrix for each subsystem, care , 
should be taken to ensure good tracking performance and, at the same time, to 

obtain a smooth control signal that is free from chattering. 

It is worthwhile at this juncture to compare the proposed decentralized 

method with a centralized control approach, which will be presented next. 
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5.4.5 Comparison Between The Decentralized and A Centralized 

Control Methods 

The centralized control method by Corless et. ale [1984] and Shoureshi et. 

ale [1987; 1990] was used in the simulation study. The method is based on the 

deterministic approach proposed by Leitmann [1981] and thus the centralized 

method has the same structure as the proposed decentralized control methods. In 

applying the centralized control method, the overall nonlinear robot manipulator 

model (equation 2.76) was transformed into the following form: 

X( t) = [A + L1A(X, ~, t)] X( t) + [B + L1B(X, ~, t)] U( t) 

= AX(t) + BU(t) + B [H(X,~, t)X(t) + E(X,~, t)U(t)] , (5.42) 

where 

H(X, ~, t) (5.43) 

T -1 T 
E(X, ~,t) = [B B) B L1B(X,~, t) . (5.44) 

The 3x1 centralized controller for the 3 dof robot manipulator was as follows: 

U(t) KZ(t) + O(t) + ~(Z,~, t) . (5.45) 

where 

K 3x9 feedback gain matrix 

Z( t) 9xl state error vector 

O( t) 3xl vector of continuous functions 

~(*) 3xl vector of nonlinear control component. 
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The nonlinear control component has the following form: 

J1(Z, ~,t) ( 
- II J1 ( Z, ~, t) II p Z, ~, t) if II J1(Z, ~,t) II > f 

~(Z, ~,t) - (5.46) 

_ J1(Z, ~,t) (Z t t) 
f p, ~, if II J1(Z, ~,t) II < f 

where 
T 

J1(Z, ~, t) = B PZ( t)p(Z, ~, t) (5.47) 

p(Z, ~,t) ~ m~x [ 1 -II E(Llb~j) II fl ( 
Llbij E !f 

The 3xl vector n( t) has been computed as follows: 

n(t) = 

0.0 

0.0 

0.0 

0.0 0.0 0.0 125.6744 15.6788 

1.6006 0.0161 'ji 2(t) + 0.0 -7.357xl0-4 1.752xl0-5 

1.4313 

0.0 

0.0 0.0161 1.5752 'ji 3( t) 0.0 0.0182 1. 714xl0-3 

0.03676 5.959x10-17 

141.0512 17.5329 

1.852xl0-3 0.1664 

0.0 

0.0 

0.0 
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For this simulation, the following feedback gain values were used (the same values 

were used for the decentralized case for comparison purposes) : 

K 

and € = 1.0 . 

- 3.5781 111.004 - 0.065 0.0 0.0 0.0 

0.0 

0.0 

0.0 

0.0 

0.0 - 400.0979 - 58.9978 - 14.4 766 

0.0 0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

- 2.5201 128.5255 0.2785 

, (5.50) 

In solving the matrix Lyapunov equation P A +A Tp = - Q, where 

A ~ A+BK is the overall closed loop system matrix, the positive definite matrix Q 

has been chosen as a 9x9 identity matrix. 

For the decentralized controller, the control law as designed in section 5.4.1 

has been used with the above feedback gains (equations 5.50) with €1 = 0.5 , 

€2 = 0.3 , €3 = 0.5 . 

Figures 5.26 to 5.28 illustrate the tracking errors of the robot manipulator 

joints under the decentralized global control law and the centralized control 

method. For comparison purposes, also shown in the figures are the tracking 

errors for the robot manipulator joints utilizing the decentralized local controller 

and the linear independent joint control approach as discussed in the previous 

chapter. In all the cases, the manipulator was required to track a reference 

trajectory from an initial position of 8(0) = [ - 0.8 , - 1.5 , - 0.5 ]T radians to the 

final position of 8(r) = [ 1.0 ,0.2 , 1.2 ]T radians in r = 2 seconds while carrying a 

10Kg. load. 

Among the four control methods, the simulation results show that the 

performance of the control methods based on the deterministic approach which 

are capable of compensating the uncertainties and nonlinearities present in the 

robot manipulator system are far better than the time invariant linear indepen-
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dent joint control method. The figures also show that the decentralized control 

approach, especially the decentralized global control strategy, is comparable to the 

centralized control law. 

As expected, the centralized control law gIves a better tracking 

perfonnance than the decentralized controllers. This is because the centralized 

controller was designed based on the complete robot manipulator model - without 

neglecting any component of the overall system model such as neglecting the off­

diagonal submatrices of the overall system input matrix B(X, ~, t), as in the 

decentralized case. In the decentralized control design, one has to assume that 

the off-diagonal subInatrices of the B(X, ~, t) matrix are negligible conlpared to 

the diagonal submatrices in B(X, ~,t). This is needed so that the overall model 

can be decomposed into the input decentralized form, for which the decentralized 

control designs are based. 
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However, the simulation results as shown in Figures 5.29 to 5.31 do not 

support the above expectation for certain joints of the robot manipulator. For 

this simulation, the following feedback gain values were used (the values used 

were similar to the decentralized case for comparison purposes) : 

K 

- 3.5781 111.004 - 0.065 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 0.0 

- 2.5606 127.992 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.247 

0.0 

0.0 

0.0 

- 2.5201 128.5255 0.2785 

, (5.51) 

and f has been chosen to have a value of 0.95, while fl = 0.5 , f2 = 1.0 , f3 = 0.5 

were used for the decentralized case. It can be seen that the magnitude of the 

feedback gains for this case are smaller than that of the previous case (equation 

5.50). 

Figures 5.29 and 5.31 show that the tracking errors using the decentralized 

global control law are smaller than that of the centralized approach for joints 1 

and 3 of the robot manipulator; while it is the opposite for joint 2 (Figure 5.30). 

This is due to the fact that the f value, which determines the size of the uniform 

ultimate boundedness set, is the same for all the joints in the centralized 

controller (f = 0.95 in this simulation). Whereas, in the decentralized case, f is 

different for each joint/subsystem (fl = 0.5 , f2 = 1.0 , f3 = 0.5). Thus, the size of 

the uniform ultimate boundedness set which affect the tracking accuracy of the 

robot manipulator utilizing the decentralized control approach can be set 

differently for each joint. Comparing the value of f in the centralized case with 

that of the decentralized case for each joint, it can be deduced that the uniform 

ultimate bounded ness sets for joint 1 and joint 3 are smaller for the decentralized 

global control than for the centralized control law. Whereas, the size of the set for 

joint 2 for the decentralized global control approach is bigger than that of the 
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centralized case. These findings are reflected in the simulations in the form of the 

tracking accuracy for the respective joints as shown in Figures 5.29 to 5.31 when 

the magnitude of the feedback gains used were not large enough. 

The magnitude of the uncertainties, nonlinearities, and the interconnection 

functions may be different for each subsystem. Thus, for some subsystem, the 

uniform ultimate boundedness set can be made smaller than for the other 

subsystems. In the centralized case, the value f in the control law for each joint 

cannot be set independently. The same f has to be used by all the joints. This 

iIlcvitably will create problems because a particular value of E might give a good 

tracking accuracy for a particular joint but, for another joint, chattering Inay 

result in its control signal. If the value of f is increased to overcome the 

chattering in the affected joint, the tracking error for the original joint will 

inn'itably increase. Thus, it is important to have the flexibility in setting the 

value of ( for each joint (subsystem) independently frOIn the other subsvstems. 
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Due to this fact, the decentralized global control law, or even the decentralized 

local control approach, is better than the centralized control law considered if the 

magnitude of the feedback gains used are not large enough. 

The other advantage of the decentralized global control law, compared to 

the centralized control approach, is that the decentralized control law is simple 

and less time consuming to design because it is based on the decomposed models 

of the overall robot system which are normally a fraction of the overall order. 

The on-line computation of the decentralized control law is less time consuming 

than the centralized control approach since the latter involves a larger number of 

mathematical operations than the former method. This is another main 

advantage of the decentralized control method especially for a system with fast 

and nonlinear dynamics such as occurs in robot manipulators. 

5.5 CONCLUSION 

In this chapter, a decentralized tracking control algorithm based on a 

deterministic approach is proposed. The method uses the local states as well as 

the states of the neighbouring subsystems as feedback information. From the 

derived analysis and the simulation results, this approach is better in term of 

tracking precision than the decentralized local control approach as proposed in the 

previous chapter. The simulation results demonstrate that the proposed controller 

can accurately control the movement of the robotic arm with good robustness 

properties, and forces the robot manipulator to track the reference trajectory 

precisely inspite of the substantial uncertainties and nonlinearities that exist in 

the system. As expected, the proposed method is capable of reducing the effect of 

the nonlinear uncertain interconnection dynamics as compared to the 

decentralized local approach. The simulation results also show that the 

decentralized global control approach is better than the considered centralized 

control strategy in that the tracking accuracy of each joint can be improved 

independently from the rest of the robot manipulator's joints. Furthermore, the 

decentralized method is simple and requires less time in its design and the on-line 

computation time is reduced, compared to the centralized control method. 
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CHAPTER 6 

HIERARCHICAL CONTROL CONCEPT IN 
ROBOTIC SYSTEM 

6.1 INTRODUCTION 

As an alternative to the decentralized global control approach, a 

hierarchical or multi-level control concept can be used to design a robust 

controller for robot manipulators such that the system is insensitive to 

nonlinearities, parameter variations and uncertainties and tracks a prespecified 

trajectory satisfactorily. 

In applying a hierarchical or multi-level control strategy, the executive 

level of the robot control hierarchy is normally divided further into two levels. At 

the lowest level, a local decentralized tracking controller is designed for each 

decoupled subsystem. At the upper level, a global controller is generated in order 

to balance as exactly as possible the effects of the interconnections between the 

subsystems. 

The idea of using a multi-level or hierarchical control concept for 

controlling a robot manipulator has been used in the literature. Bestaoui [1988] 

utilized a two-level hierarchical control scheme based on the Computed Torque 

technique to decompose the robot manipulator system and to compensate for the 

nonlinearities and the couplings that are present in the system. Similarly, Ro,Bler 

[1980] used a two-level hierarchical control structure to control a robot 

manipulator. An on-line coordination algorithm is proposed to reduce the 

couplings between subsystems. The coordination and dynamic compensation of 

the local nonlinearities are done on the upper level of the hierarchical structure. 

At the lowest level, the subsystems are treated as linear and decoupled ones using 

established control methods such as an optimal control technique. Zaprjanov and 
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Boeva [1981] and Mikhailov et.al. [1985] proposed a two-level hierarchical 

decentralized control structure based on the interaction-prediction coordination 

principle [Singh, 1971] to generate an optimal stabilizing controller for robot 

manipulators. At the lowest level, independent local linear quadratic control 

problems are solved for each subsystem corresponding to each robot arm joint. 

The interactions between these subsystems are taken into account via the 

coordination procedure on the upper level. But before this two-level hierarchical 

controller is applied, the robot manipulator system is linearized first using an 

inverse problem technique based on the nonlinear robot manipulator dynamic 

equations. Then, the synthesis of the stabilizing control is carried out on the 

linearized model by means of the two-level hierarchical control method. In all 

these methods, eventhough the controllers are decentralized and simple to 

implement at the lowest level, the overall schemes are numerically involved due 

to the computational complexity at the intermediate stage. 

In this study, robust two-level hierarchical controllers which are capable of 

withstanding the expected variations and uncertainties in the system are 

presented. The controllers are formulated based on the decentralized global 

approach as presented in Chapter 5. A complete model of the robot manipulator 

dynamics is used in designing the controllers. It is assumed that the upper 

bounds on the nonlinearities, couplings and uncertainties present in the system are 

available. The control laws are simple to implement and the numerical 

coordination strategies are also simple, which facilitate their use for a fast and 

strongly nonlinear system such as a robot manipulator. 

The formulation of the two-level hierarchical tracking problem and some 

standard assumptions are presented in the following section. 

6.2 PROBLEM FORMULATION 

A decentralized control system can also be a hierarchical or multi-level 

system if the information of some subsystems depend directly on the action of 

other subsystems at higher or lower levels. If the decentralized global control law 
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(5.11) in Chapter 5 is divided into two terms U~l (t) and U~ (t) which will be 

calculated on the first and second level, respectively, the decentralized global 

control system as presented in Chapter 5 will lead to a two-level hierarchical 

control structure. Thus, the two-level hierarchical control structures proposed in 

this chapter will be based on the mentioned decentralized global control law. For 

convenience, the interconnected robot manipulator dynamic equation and the 

some of the assumptions as presented in Chapter 5 are briefly reintroduced in the 

following. 

The dynamics of a robot manipulator can be represented by a set of 

interconnected linear subsystems with bounded uncertainties as described by the 

following equations : 

N 
~ AiAX, ~, t) XA t), 
j=l 
j,# i 

i E j, 

(6.1 ) 

(6.2) 

(6.3) 

where Xio is a given initial condition. The elements ?f the .1Ai(X, ~, .~), .1B i (X, 

~, t), and AiAX, ~, t) matrices , .1a!j(X, ~, t), .1b:(X, ~, t), and a~~(X, ~, t), 
respectively, may be considered as uncertainties which belong to uncertainty 

bounding sets ~, !f, and cy respectively. The uncertainty bounding sets may be 

defined as follows : 

(6.4) 
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where the values of r~j , s~ , a:~ ,and a:~ are as given in (3.13) and (3.17). 

Let a continuous function Xd ( t) E ~3N be the desired state trajectory, 
where Xd ( t) is defined as : 

(6.5) 

I t is assumed that : 

1. The pair ( Ai , Bi ) is stabilizable, 

11. There exist continuous functions Hi(X, e, t) E ~lx3, Ei(X, e, t) E ~ , 

and G,AX, e, t) E ~lX3, such that for all X E ~N and all t : 

LlAi(X, e, t) = BiHi(X, e, t) (6.6) 

(6.7) 

(6.8) 

1/ Ei(X, e, t) II < 1. (6.9) 

111. There exist a Lebesgue function S1 i ( t) E~, which is integrable on 

bounded intervals, such that 

(6.10) 

The explanations for the assumptions are omitted here since they can be 

found in Chapters 4 and 5. 
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For each subsystem, let the state tracking error between the actual and the 
desired states be defined as Z,( t), that is, 

(6.11 ) 

and, 
(6.12) 

Using (6.1) and (6.10), the error state equation for the ith subsystem can be 
obtained as follows : 

Z,( t) = Ai Z,( t) + L1Ai(X, ~, t) X,( t) + [Bi + L1Bi(X, ~, t)] U i( t) _ 

N 
B,ni( t) + L Aij(X, ~, t) Xj( t) 

j=1 
j:li 

The error state equation for the overall system may be obtained as follows : 

(6.13) 

Z(t) = AZ(t) + A(X, ~, t)X(t) - AX(t) + B(X, ~, t)U(t) - Bn(t), (6.14) 

where 

T T T T 
Z(t) = [ Zdt), Z2(t), .,', ZN(t) ] 

The objective is then to design a robust two-level hierarchical control law U i( t) = 
L U L U 

U i (t) + U, (t), where U i (t) and U, (t) are generated on the first and second levels 

respectively, such that, for any uncertainties, interconnection functions, and initial 

conditions, the overall error system (eqn, (6.14)) with the control law 

(6.15) 
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is practically stable. 

Associated with the problem is the 'decomposition' of the interconnected 

robot manipulator dynamic equation (6.1) (hence, the error equation 6.13) 

between the two levels in order to generate the control signals V~(t) and V~(t) 
respectively. In other words, the interconnected robot manipulator equation 

should be decomposed into two components: one component corresponds to the 
L 

first level to generate Vi (t), and the other component corresponds to the second 

level to produce the coordinator V~ (t). There are two ways for decomposing the 

integrated robot manipulator equation corresponding to the levels; thus, two 

methods can be proposed to derive a two-level hierarchical control law for the 

robot manipulator system. These are as follows: 

In the first method, which will be presented in the next section, the global 
u 

controller Vi (t) at the second level is used to compensate for all the uncertainties, 

the nonlinearities, and the interconnections between the subsystems. It is 

assumed that all the upper bounds for the uncertainties and the interconnections 

are available. The controller is formulated based on a deterministic approach, and 

is nonlinear in structure. At the first level, the local decentralized controller 

V~ (t) is designed based on a decoupled linear nominal model of the subsystem. 

Thus, the controller V~(t) in this method is linear. 

In the second method, the local decentralized controller V~ (t) is designed 

usmg a deterministic approach based on the decoupled uncertain model of the 

interconnected uncertain robot manipulator equation. That is, the controller is 

designed ignoring the interconnection functions. The local controller V~ (t) is 

nonlinear in structure. It is assumed that the upper bounds of the uncertainties 

present in the decoupled subsystem model are available. At the second level, a 

global controller V~ (t) is generated taking into account the effect of the 

interconnection functions. Similarly, the global controller V~ (t) is designed based 

on a deterministic approach and is nonlinear in structure. This method will be 

outlined in Section 6.4. 
L U 

In the following, superscripts 1 and 2 are introduced in Vi (t) and Vi (t) to 

indicate that the controllers are designed based on the first method and the 

second method, respectively. The vector norms are Euclidean, and the matrix 

norms are the corresponding induced one, that is, II A\ 11=~"\maz(A\TA\), where 
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Amax(A\TA\) denotes the maximum eigenvalue of the matrix A\TA\. 

6.3 HIERARCHICAL CONTROL STRUCTURE - METHOD 1 

In this approach, the coordinator U~\ t) at the upper level is asked to 

compensate directly all the nonlinearities, the uncertainties and the interactions 

between the subsystems as exactly as possible using a deterministic approach. At 
Ll 

the lower level, the local controllers U i (t) are designed ignoring the uncertain ties 

and the interconnections. That is, the subsystems are treated as if they are 

decoupled and linear time invariant systems. 

6.3.1 Controller Design At The Lowest Level - Linear Feedback Control 

At this level, it is feasible to choose arbitrary control strategies for the 

subsystems on the condition that the local decoupled free control subsystems are 

stable. Here, the local subsystem is treated as a servomechanism problem in 

which it is desired to find a linear control law in such a way as to cause the state 

of the subsystem to track or follow a desired state trajectory asymptotically. 

The free decoupled subsystem model is given by the state equation: 

(6.16) 

Using (6.10) and (6.11), the error dynamics for each decoupled free subsystem is 

given as follows: 

(6.17) 

For each decoupled free subsystem, the following linear decentralized local 

con troller is used : 
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(6.18) 

It can be shown easily that the decoupled free subsystem is asymptotically stable 

and tracks the desired trajectory if the closed loop subsystem matrix 

f"V ..1 
A· = A· + B· K · • • •• (6.19) 

is a stable matrix. This can be achieved by selecting the feedback matrix K
j 

such 
f"V 

that all the eigenvalues of the matrix A j are in the left half of the complex plain. 

Figure 6.1 shows the block diagram of the ith subsystem at the first level 
for this method. 

FROM LEVEL 2 

o U~l1 
• 

+ 

+ 

u· • 

FROM TACTICAL LEVEL 

:,. :.: 

.ith LOCAL CONTROLLER 

Ll "-I ( ) U · -U·-K- X--Xd ' +0· . - . - .. . . 

i'h SUBSYSTEM 

x. = [A. + LlA.1Xi + 
[B. + LlBJU. + ~.AijXj 

J .,.... 
x · • 

FIGURE 6.1: Decentralized Linear Controller For ith Decoupled 

Subsystem At The Lowest Level Using Method 1 
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6.3.2 Controller Design At The Upper Level - Deterministic Approach 

In this level, the coordinator takes into account all the system 

nonlinearities, uncertainties and interconnections between the subsystems based 

on their maximum bounds. Unlike in the first method where the coordinator is 

only used to overcome the influence of the interconnections between the 

subsystems, the aim of the coordinator in this method is to compensate the 

influence of all the nonlinearities, the uncertainties and the interconnections 

present in the system. 

where 

In this method, the following coordinator is proposed: 

p~1 (Zi, ~, t) " rna;< [ 1 -II Ei ( Llb:) II ( ( 
Llbi E 1 

m~x II Hi( Lla:j) Xi( t) II + m~ II Ei(Llb:) Uj(Zi' ~, t) II + , 
Lla:j E ~ Llbi E 1 

~ax 
'1 tV a·· E , '1 

), 

(6.20) 

(6.21) 

( 6.22) 

(6.23) 

and fj in equation (6.21) is a prescribed positive constant. PI is the solution of the 
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matrix Lyapunov equation 

(6.24) 

for a given positive definite symmetric matrix Q .. 
I 

It can be seen that equation (6.23) is the same as equation (5.14). Thus, all 

the uncertainties, the nonlinearities and the interconnections between the 

subsystem are being compensated by the nonlinear controller (6.20) from this 

level. Hence, the introduction of the second level is useful in providing a robust 

controller for the robot manipulator system. Figure 6.2 illustrates the proposed 

two-level hierarchical control concept presented in this section. 

Theorem 6.1 

The set of interconnected system (6.1) satisfying all the assumptions (i) - (iii), is 

practically stable via the two-level hierarchical control law 

(6.25) 

LI UI 
Vi(t) = Vi (t) + Vi (t), (6.26) 

where V~\t) and V~\t) are as given in equations (6.18) and (6.20), respectively, 

and tracks the reference trajectories (6.5) to within any neighbourhood of n3(77HI ), 

where 

( 6.27) 

Proof 

The proof is similar to the proof of theorem 5.1 in Section 5.3. Thus, it is omitted 

here. 
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- Method 1 
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The advantage of this method is that the proposed controller can be 

applied to an existing industrial robot using a proportional plus derivati\'e or 

proportional plus integral plus derivative controller for each joint. In this case the 

existing industrial controllers for the industrial robot manipulator are considered 

as the lowest hierarchical level replacing the linear control law (6.18). 

6.4 HIERARCHICAL CONTROL STRUCTURE - METHOD 2 

In this method, both the control signals from the two levels are nonlinear 

in structure. They are designed based on the deterministic approach presented in 

Chapter 4. At the first level, a local decentralized controller U~\ t) is designed 

for each of the following decoupled uncertain subsystems: 

(6.28) 

N 
The effect of the uncertain interconnection functions L Aij(X, ~, t) Xj ( t) 

j=l 
j'li 

U2 
between the subsystems is accounted for by the global controller U i (t) generated 

at the second level. 

6.4.1 Controller Design At The Lowest Level - Deterministic Approach 

A deterministic approach can be applied at this level in such a way as to 

cause the states of the decoupled uncertain subsystems (6.28) to track the desired 

states irrespective of the uncertainties present in each decoupled subsystem. 

Using assumptions (ii) and (iii), the error dynamics for each decoupled 

uncertain subsystem can be derived as follows: 
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(6.29) 

The objective is then to design the local decentralized control law U~2 (t) such that 

the error system (6.29) is practically stable and tracks the desired trajectory 

Xdi ( t). 

In this method, the following decentralized control law is proposed for each 

decoupled subsystem: 

( 6.30) 

"V 

where Ui(Zi, t) is as given in equation (6.18), and 

/l)Zi' ~,t) L2 
if IIJl/Zi, ~,t)11 > -IIJli(Zi'~' t)11 Pi (Zi'~' t) 

f, 

L2 
ifJi (Zi'~' t) (6.31) 

II ifJ~\Zi' ~, t) II < p~2(Zi' ~, t) if II Jl / Z i, ~,t) II < f· 
a a 

(6.32) 

mar II E;(.llb;) U;(Z;, {, t)" ) , (6.33) 
Llbi E :f 

and f. and p. are as defined earlier. The constant gain matrix Ki is chosen, such 
a a 

that, the closed loop system matrix A i .6 Ai + BiKi is asymptotically stable. The 

structure of the decentralized local controller can be illustrated as in Figure 6.3. 
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FIGURE 6.3 : Decentralized Nonlinear Controller For The ith 
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Method 2 
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I 
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From the above equations, it can be shown that 

(6.36) 

By substituting equation (6.30) into the error dynamic equation (6.29), the 

closed loop system can be obtained as follows (the arguments have been omitted 

for simplicity) : 

(6.37) 

where 

(6.38) 

Using (6.31) and (6.33), it can be shown that the norm of the 'lumped' 

uncertainties ef2 for the decoupled subsystem is bounded as follows: 

< p~2 . 
- I 

(6.39) 

U sing the following Lyapunov function 

(6.40) 

and equations (6.36) and (6.39), by following the same procedure as in Chapters 4 

and 5 it can be shown that the derivative of the Lyapunov functions along the , 
error equation (6.37) for each of the decoupled system can be obtained 

as follows: 
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(6.41) 

It can be seen that (6.41) is of the form of equation (4.6) in section 4.2.1. thus. if 

Amin(Q.) > 0 , !i(Zi, t) < 0 for all t and Zi(t) E mC(TJ .), where mC(TJ .) is the 
I LI LI 

complement of the closed ball m( 71 Li)' centred at Zi( t)=O with radius 

(6.42) 

and the decoupled error subsystem (6.29) with the nonlinear decentralized 

controller (6.30), is uniformly ultimately bounded with respect to the set i(Ki), 

where 

i(K.) .1 { z· E?RN I Z!p. Z· < K· } 
~ I III ~, 

(6.43) 

(6.44 ) 

Thus, at the lowest level, each decoupled uncertain subsystem is practically stable 

under the decentralized local control law (6.30). 

6.4.2 Controller Design At The Upper Level - Deterministic Approach 

The objective of this level is to compensate for the effect of the 

interconnections between the subsystems. In order to do that, the following 

nonlinear control law is proposed: 

(6.45) 

where 
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l1i(Zi, ~,t) U2 
if 1111 / Z i' ~,t) II > -1111/Zi'~' t)11 Pi (Zi'~' t) € 

I 

U2 
~i (Zi'~' t) (6.46) 

II ~~\Zi' ~, t) II < /!2(Zi' ~, t) if 1111 / Z i, ~,t) II < €. - I I 

and 11,(Zi'~' t) and fi are as defined earlier. 
I 

It can be seen from equation (6.47) that the interconnections between the 

subsystem is compensated by the nonlinear controller (6.45) from this level. 

Next, the practical stability of the overall system with the proposed two-level 

hierarchical control concept will be analyzed. 

6.4.3 Stability Of The Overall System 

Theorem 6.2 

The overall error system (6.14) is practically stable via the two-level hierarchical 

control law 

(6.48) 

(6.49) 

where U~\t) and U~2(t) are as given in equations (6.30) and (6.45), respectively, 

and tracks the reference trajectories (6.5) to within any neighbourhood of n3(7]H2)' 

where 

7]H2 
(6.50) 
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where 1r H2 is an NxN the positive definite matrix, and V H2 is an NxN diagonal 

matrix to be defined later. 

Proof 

Let, 
L2 U2 

4>j(Zj, ~,t) = 4>j (Zj, e, t) + 4>j (Zj,~, t) (6.51) 

Furthermore, from (6.31) and (6.46), 

II 4>~2(Zi' ~, t) II < p~2(Zj, e, t) (6.53) 

II 4>~\Zj, e, t) II < p~2(Zj, e, t). (6.54) 

Then, 

II 4>j(Zj, ~, t) II = II 4>~2(Zj, ~, t) + 4>~\Zj, ~, t) II 

< II 4>~\Zj, ~, t) II + II 4>~\Zj, ~, t) II 

= p .(Zj, ~, t) 
I 

(6.55) 

L2 U2 
Substituting the control law V j( t) = V j (t) + V j (t) into the error equation 

(6.14), and using assumptions (ii) gives: 

N L2 U2 
Zj(t) = AjZj - Bjnj + Bj[HjXj + 2: GjjX j ] + Bj[I+EjHVj + Vj ] 

j=1 
j~i 

N 
- AjZj - Bj[KjZj+nj] + Bj[HjXj + L GjjX j ] + 
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where 

'" N 
ei = HiXi + EiUi + L GijXj + Ei4>i . 

j=l 
j:li 

( 6.56) 

(6.57) 

Using (6.51), it can be shown that the 'lumped' uncertainties represented by 

equation (6.57) is composed of two components: 

'" N L2 V2 
ei = HiXi + EiUi + L GijXj + Ei (4)i + 4>i ) 

j=l 
j:l i 

where ef2 is as defined in equation (6.38), and 

From (6.47), 

< 15 II G ij Xj II + II Ei4>~2 II 
j=l 
j:li 

Then, from (6.39), (6.60), and (6.52) : 

I II e LI" 2 + eV
I" 2 II II ei I = 
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( 6.58) 

(6.59) 

(6.60) 



< II ef2 II + II ef2 II 

p .. 
I 

(6.61) 

Let the composite Lyapunov function be : 

(6.62) 

The derivative of the Lyapunov function with respect to time t can be obtained as 

follows: 

l(z, t) ( 6.63) 

Substituting equation (6.56) into (6.63), gives: 

l(z, t) NT _ NT { } 
" 2Z· P·A·Z· + "2Z· P·B· q,. + e· ~ IIII ~ III I I 

I 

(6.64) 

Following the similar procedure as in Section 4.4, the derivative of the composite 

Lyapunov function along the error system (6.56) can be obtained as the following: 

N 2 N N 
l(Z, t) < - E Amin(Q) IIZi/! + E 4'2iEi li Zi li + E 4'1iEi 

I I 

N 
< - AminCU-H2) II z II + II V H21111 z II + ~ 4 'Ii fj , (6.65) 

I 

""-J 

where Z is as defined in equation (4.57), 
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Since AminClr H2) > 0 by design, this implies that l(Z, t) < 0 for all t and 
~ c c 
Z E m ('Tl H2)' where m ('Tl H2) is the complement of the closed ball m( 'TlH ), centred 
~ 2 

at Z =0 with radius 'TlH2 as defined by equation (6.50). Hence, the error system 

(6.56) with the proposed two-level hierarchical control law controller Vi ( t) = 
L2 U2 

Vi (t) + Vi (t) is uniformly ultimately bounded with respect to the set i(KH2)' 

where 

P = diag[P1 , P 2 ,.·., PN ]. (6.72) 

This concludes the proof. 0 

The proposed nonlinear control law given above is slightly different from 

the decentralized global control (5.11) in Section 5.3 of Chapter 5 in that, the 

function P.(Zi' ~, t) in equation (6.32) does not contain the norm bound of the 
• 

error P .(Zi' ~,t). The proposed two-level hierarchical control concept is 
• 

illustrated in Figure 6.4 . 
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In the following section, a computer simulation study is conducted to 

evaluate the performance of the proposed hierarchical control strategies. 

6.5 SIMULATION AND RESULTS 

The proposed hierarchical controllers are applied to the three dof robot 

manipulator as considered in the previous simulation studies. The overall model 

and the controllers are solved by using the Runge-Kutta-Butcher numerical 

integration subroutine which has also been employed in the previous two chapters. 

Unless otherwise stated, the sampling interval on both of the levels has been 

defined to 0.01 second. 

6.5.1 Implementation Of The First Hierarchical Control Method 

At the first level, a linear decentralized local controller U~l (t) is designed 

for each decoupled nominal subsystem: 

(6.73) 

based on equation (6.16). The nominal matrices Ai and Bi for each subsystem are 

as given in Chapter 3. In designing the local controller, the same feedback gains 

Ki and the continuous function ni( t) as used in the previous chapter (equation 

5.40 and 5.39, respectively) are employed. 

A t the second level, the nonlinear coordinator is designed based on 

equations (6.21) to (6.23). These equations are in fact similar to equations (5.12) 

to (5.14), respectively. Thus, for comparison purposes, the same nonlinear 

controller given by equation (5.37) is used here: 
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(6.74) 

T 
J-l/Zi, e, t) = B; Pi Zi(t) p~I(Zi' e, t) (6.75) 

p~I(ZI' e, t) 1.0339 { 1/4.1174 X~ + 0.5271 X~ II + 1/ 0.0328 VII/ + 

112.2809 X~ + 0.1964 X~ II + 

111.3024 X~ + 0.1153 X~ II } 

p~I(Z2' e, t) 1.0256 { 1128.1056 X~ + 3.9371 X~ + 0.1489 X~ 1/ + 

1/ 0.0249 v21/ + 1/ 0.9637 X~ + 0.1687 X~ 1/ + (6.76) 

1/ 0.2816 X~ + 3.9323 X~ + 0.2094 X~ II } 

p~I(Z3' e, t) 1.0003 { 1112.594 7 X~ + 0.3616 X~ + 2.6029x10 - 3 X~ II + 

I/2.6154x10- 4 v311 + 110.579 X~ + 0.1016 X~ II + 

II 0.6358 X~ + 3.5252 X~ + 0.0838 X~ II }. 

where the matrix Pi for i = 1, 2, 3 is given by equation (4.78), and (1 = 0.6, 

(2 = 0.3, (3 = 0.7. 

In the simulation, the manipulator is required to move from 8(0) = [ - 0.5, 
T T 

-1.2, 0.2] radians to 8( T) = [ 1.0, 0.2, 1.2] radians in T = 2 seconds while 

carrying a 10 Kg. load. 

The graphs indicating the behaviour of the system are shown in Figures 6.5 

to 6.9. The simulations show that the manipulator joints track the desired 

commands (position, velocity, and acceleration) with very small tracking errors. 

This is as expected because the controller is similar to the decentralized global 
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2. 

controller as presented in Chapter 5, except that in this case, the nonlinear part of 

the controller has been placed at the upper level of the control hierarchy. Thus, 

the controller will have the same characteristic as the decentralized global 

controller if the sampling interval at both of the levels are similar, and if there is 

no interruption in communication between the upper and the lower level. 

6.5.2 Implementation Of The Second Hierarchical Control Method 

For this method, both levels use a controller synthesized based on a 

deterministic approach. For the lowest level, the decentralized control law is 

designed based on equations (6.30) to (6.33) : 
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L2 
q,i (Zi'~' t) -

p~2(ZI' ~, t) -

p~2(Z2' ~, t) -

p;2(Z3' ~, t) -

T 
Jl/Zi, ~, t) = Bi p. Z.(t) 

(6.77) 

if IIJli(Zi, ~,t) II < fi 

(6.7S) 

1.0339 { 114.1174 X~ + 0.5271 X~ II + 110.0328 vIII } 

1.0256 { 1128.1056 X~ + 3.9371 X~ + 0.1489 X; II + 

110.0249 v 211 } (6.79) 

1.0003 { 1112.594 7 X~ + 0.3616 X~ + 2.6029x10 - 3 X~ II + 

fI = 0.6, f2 = 0.3, f3 = 0.7 , 

and the same feedback gains K i, the continuous functions ni( t), and the matrix Pi 

for i = 1, 2, 3 as previously used for the first hierarchical method are utilized. 

Based on equations (6.45) to (6.47), the coordinator for the upper level is 

obtained as follows : 

Jl/Zi, ~,t) U2 
if II Jl/Zi, ~,t) II > f, - II Jl i ( Z. , ~, t) II p. ( Z. , ~, t) 

U2 
(6.80) q,. (Z.,~, t) -

Jl.(Z., ~, t) 
pC:2(Z., ~, t) if IIJli(Z., ~,t) II < f. 

, 
f· a a 

p~2(Zl' e, t) - 1.0339 { 112.2809 X~ + 0.1964 X; II + 
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111.3024 X~ + 0.1153 X~ II } 

p~2(Z2' ~, t) 1.0256 { II 0.9637 X~ + 0.1687 X~ II + 
II 0.2816 X~ + 3.9323 X~ + 0.2094 X~ II } (6.81) 

p~2(Z3' ~, t) 1.0003 { 110.579 X~ + 0.1016 X~ II + 
II 0.6358 X~ + 3.5252 X~ + 0.0838 X; II }, 

and fi is similar as the first level. 

The simulation results obtained for this particular control indicate that the 

controller can cope with the nonlinear and highly coupled robot manipulator 

satisfactorily (Figures 6.10 to 6.14). 
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By comparing Figures 6.5 and 6.9 to Figures 6.10 and 6.14, respectively. it 

can be observed that under the same conditions and controller parameters used. 

the first method produced slightly better tracking accuracy than the second 

hierarchical control strategy. However, the second control method uses less input 

energy than the first method. Thus, there is a trade off between the two 

hierarchical control methods in term of tracking accuracy and input energy 

required. 

6.5.3 Effect Of Load Variation 

Figures 6.15, 6.16, and 6.17 illustrate the joint 1, joint 2 , and joint 3 

tracking responses, respectively, of the robot manipulator using the first 

hierarchical control method under various loading conditions. The manipulator is 

required to track the desired trajectory while moving without load, with a 10 Kg. 

load, and finally, with a 20 Kg. load. Figures 6.18 and 6.19 show the control 

inputs for no load and 20 Kg. load, respectively. 

The performance of the second hierarchical control strategy under different 

loading conditions is as depicted in Figures 6.20 through 6.24. As expected, the 

tracking errors between the various loading conditions are small for both methods. 

The control inputs are smooth, continuous, and there is no significant rise in the 

control input demand when the load is increase to 20 Kg from 0 Kg load. Thus, 

for both methods, the same controller can force the robot manipulator under the 

various loading conditions with relatively small tracking errors. And the tracking 

error for the manipulator carrying a load within the specified range (0 - 20 Kg.) 

will fall within the 0 and 20 Kg. load curves in the graphs. If the difference 

between the tracking error for 20 Kg load and that of without load is acceptable 

for the designer, then, the controllers are robust to the load variations present in 

the system. 

However, comparing the two control strategies under the load variations, 

the first method is better than the second method in terms of tracking precision. 
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6.5.4 Effect Of Structural Perturbation 

In applying a multi-level control concept to control a complex system. 

there arises the possibility of structural perturbations due to the interruption of 

the different signal lines or the communication links within the overall system. 

This may tend to modify the data transmission network, and may cause 

information losses and, hence, may effect the stability of the global system. In 

this subsection, a simulation study is conducted to evaluate the performance of 

the two-level hierarchical controllers under various structural perturbations 

between the coordinator (upper level) and the subsystems (lower level). The 

following cases have been considered: 

Case 1 

Case 2 

Case 3 

Case 4 

The communication link between the coordinator and subsystem 

1 is cut. 

The communication link between the coordinator and subsystem 

2 is cut. 

The communication link between the coordinator and subsystem 

3 is cut. 

All the communication links between the coordinator and the 

subsystems are cut. In this case, the subsystems are completely 

uncoordinated. Each subsystem is controlled by its own local 

controller only. 

Figures 6.25, 6.26, and 6.27 illustrate the tracking errors for joint 1, joint 2, 

and joint 3, respectively, for each case for the first hierarchical control method. 

The simulation results for the robot manipulator using the second hierarchical 

control method under structural perturbation are as depicted in Figures 6.~8, 6.29, 

and 6.30, for joint 1, joint 2, and joint 3, respectively. Also shown in all these 

figures is the joint tracking error for the case when there is no structural 

perturbation (complete hierarchy). 
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The simulation results show that when there is an interruption between the 

coordinator and the subsystem, the tracking error for the uncoordinated 

subsystem is larger for the robot manipulator using the first method compared to 

the same robot manipulator using the second control method. This is because, for 

the manipulator using the first method, the uncoordinated uncertain subsystems 

are being controlled only by the local linear controller which is incapable of 

compensating the effect of the uncertainties and nonlinearities present in the 

subsystems and, in some cases, it may cause instability if the linear controller gain 

is not large enough (see Figure 6.27). Whereas for the manipulator using the 

second method, the local controller for the uncoordinated subsystem behaves like 

the decentralized local control law as presented in Chapter 4. Thus, for the 

second method, the nonlinear local controller is still capable of compensating the 

effect of the uncertainties and nonlinearities present in the corresponding 

uncoordinated subsystems. Hence, the response of the robot manipulator using 

the second method is better than that obtained using the first method under the 

structural perturbation. 

6.5.5 Effect Of Varying The Sampling Interval At The Upper level 

It is a great advantage if the computation effort at the upper level of the 

control hierarchy (computation of the coordination functions) can be reduced. In 

the following simulations, the effect of reducing the computation frequency of the 

coordination functions at the upper level on the tracking performance of the robot 

manipulator using the two hierarchical control strategies is studied. 

In these simulations, the sampling interval at the first level has been 

defined at O.Ols. At the second level, the following cases have been considered: 

Case 1 

Case 2 

The sampling interval for level two is at 0.038 

The sampling interval for level two is at 0.05s 
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Case 3 The sampling interval for level two is at 0.10s 

For the robot manipulator using the first method, the resulting tracking 

responses are as shown in Figures 6.31 through 6.37. The simulations show that 

the control inputs to the joint actuators will become oscillatory and the tracking 

performance of the robot manipulator deteriorates as the sampling interval at the 

upper level is increased. 

A much better performance for the robot manipulator can be achieved 

usmg the second hierarchical control method (Figures 6.38 through 6.48). The 

figures show that the tracking performance of the robot manipulator using the 

second method is not significantly affected by the increase in the sampling 

interval at the second level of the control hierarchy. The control inputs are 

smooth as compared to that of using the first hierarchical control method (figures 

6.36 and 6.37). 
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The simulations show that in order for the first method to have a good 

tracking accuracy, the coordinator must be computed and send the compensating 

signal to each subsystem at the same sampling rate as the lower level. This is 

because each subsystem at the lower level cannot compensate or reduce the 

uncertainties and nonlinearities present in the subsystem through its own local 

controller, and the compensating signals must be available at every sampling 

interval of the subsystem. Whereas for the second method, the local controller at 

the lower level can compensate the effect of the uncertainties and nonlinearities 

present in the corresponding subsystem, and the signal from the coordinator is 

only needed to correct the effect of the interconnection functions between the 

subsystems. From the simulation results it is shown that, for the second method, 

the correcting signals at the upper level may be computed at a sampling intt'r\'al 

slower than that of the lower level. Thus, the computation of the coordinator can 

be reduced. This will result in the reduction of the overall on-line computation of 

the controller as compared to the first method. Hence, in this case, the second 
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method is better than the former technique. 

6.5.6 Comparison Between The Proposed Control Methods 

In this final set of simulations, the performance of the proposed 

hierarchical control method, the decentralized global control method and the 

centralized control approach as used in the previous chapter are compared. Here, 

only the second hierarchical control method is employed. This is because the first 

hierarchical control strategy is similar to the decentralized global control method 

in terms of their performance. 

For the decentralized and hierarchical control laws, the following feedback 

gains have been used : 

Subsystem 1 Kl = [ -3.5781 111.004 

Subsystem 2 K2 = [ - 400.0979 - 58.9978 

Subsystem 3 K3 = [ - 2.5201 128.5255 

which correspond to the following closed-loop poles: 

Subsystem 1 

Subsystem 2 

Subsystem 3 

-0.4 

-5.0 

-0.3 

-0.4 

-5.0 

-0.3 

- 5.0 

-10.0 

- 5.0 . 

-0.065 1 

-14.4766 1 (6.82) 

0.2785 1 

In solving the matrix Lyapunov equation (equation 6.24), the positive definite 

symmetrical matrix Q
i 

was taken to be a 3x3 identity matrix for each subsystem. 

The following values of fi were used: 
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El = 0.5 . 

For the centralized control method, the same controller used in the 

subsection 5.4.5 was utilized. The following feedback gaIn was used for the 

centralized control method: 

The matrix Q has been chosen as a 9x9 identity matrix for the centralized 

controller design, and E = 1.0 has been used. 

In the simulations, the robot manipulator was required to move from an 

initial position of 0(0) = [ - 0.8 , -1.5 , - 0.5 ]T radians to the final position of 

O( T) = [ 1.0 , 0.2 , 1.2 ]T radians in T = 2 seconds, while carrying a 10 Kg. load. 

For comparison purposes, the responses for each case are plotted on the 

same graph. Figures 6.49, 6.50, and 6.51 illustrate the tracking performance of 

the three dof robot manipulator under the various control methods considered 

for joint 1 , joint 2, and joint 3, respectively. 

The figures illustrate that the performance of the decentralized global 

control law is a little better than that of the second hierarchical control technique, 

but comparable to the centralized control method. It should be noted that the 

simulation for each controller is not under the same conditions. In terms of 

computation time, the centralized control method is the worst among the three 

approaches considered. The main advantage of the hierarchical control method 

over the decentralized global control technique is that the computation time 

needed to compute the controller can be reduced by increasing the sampling time 

at the upper level of the control hierarchy. 
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6.6 CONCLUSION 

Two two-level hierarchical control approaches have been proposed for on­

line tracking control of robot manipulators. Both methods are based on a 

deterministic approach, and on the assumption that the system uncertainties, the 

nonlinearities and the interactions between the subsystems are bounded and these 

bounds are known. For both methods, sufficient stability conditions for the 

overall system have been derived based on the stability of the subsystems. The 

overall system will become unstable if one of the subsystems is unstable. Thus, 

the stability of the overall system is dependent on the stability of each subsystem. 

The methods are simple and robust with regard to the uncertainties and the 

nonlinearities present in the system. It was shown that the numerical 

computation of the coordination function at the higher level for the second 

method is minimal compared to those methods mentioned at the beginning of thi~ 

chapter, and thus requires less computational time. Hence, the proposed method 

is suitable for on-line control of large scale systems with fast dynamics such a~ 

robot manipulators. 



CHAPTER 7 

CONCLUSION AND SUGGESTIONS 

7.1 CONCLUSION 

The research described IS concerned with both modelling and control 

aspects of robot manipulators. Emphasis has been given to the formulation of 

decentralized and hierarchical control of robot manipulators based on a 

deterministic approach. 

A framework for the formulation of a complete mathematical dynamic 

model of a DC motor actuated revolute robot manipulator in state variable form 

has been presented. The derived model of the robot manipulator comprises the 

dynamics of the mechanical linkage as well as the dynamics of the actuators. The 

formulation results in nonlinear time varying state equations which represent a 

more realistic model of the robot manipulator than a model with the drive 

torques/forces modelled as ideal pure torque/force sources, or as first order lags. 

It is shown that the selection of an appropriate set of state variables for 

deriving the model is vital for synthesizing an advanced and robust controller in 

order to overcome the nonlinearities, uncertainties, and couplings present in the 

robot manipulator system. The condition at which the nonlinearities, 

uncertainties, and couplings may be compensated depends only on the input 

matrix which actually defines the points where the nonlinearities, the 

uncertainties, the couplings and the control enter into the system. The control 

input which enters the system through the input matrix can compensate directly 

the nonlinear and uncertain components, if the nonlinear, uncertain and coupling 

terms lie within the range space of the input matrix. If these terms lie outside the 

range space of the input matrix, then there is no control input that may 

compensate for them directly even if the uncertainties and the nonlinear 
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interconnection functions are known. For this reason, it is shown that the 

integrated dynamic model of the robot manipulator derived using the joint 

position, velocity and acceleration as the state variables is more suitable for 

synthesizing a robust controller for the robot manipulator than the mathematical 

model derived using the joint angle, velocity, and the armature current as the 

state variables. 

The inclusion of the actuator dynamics into the robot manipulator 

dynamic equations increases the order and complexity of the overall dynamic 

model of the system. Accordingly, the control law required to control the system 

will become more complex, particularly if the controller structure is in the 

centralized form. Thus, due to the complexity and the structural properties of the 

robot manipulators dynamics, the robot manipulator has been treated as a large 

scale system. Consequently, the control methodologies for large scale systems, 

such as decomposition, decentralized control, and hierarchical control strategies, 

have been proposed for controlling the robot manipulators. 

A procedure for decomposing and transforming the integrated nonlinear 

dynamic model of the robot manipulator into a set of interconnected subsystems 

with bounded uncertainties has been presented. The bounds on the uncertainties 

have been computed from the specified physical parameters of the actuators and 

the manipulator (length and mass of its links), the range of its payload, the joint 

displacements as well as the range of the velocities. 

Based on a deterministic approach, a decentralized nonlinear feedback 

control law has been proposed for tracking control of a robot manipulator. The 

system is treated as a set of interconnected subsystems with bounded 

uncertainties. The decentralized control approach utilizes only the local states 

and the bounds of the uncertainties as the feedback information. Based on 

Lyapunov stability theory, it is shown that, with satisfaction of a certain sufficient 

condition, the controller results in practical stability of the overall uncertain robot 

manipulator system despite the absence of information signals between the local 

subsystems. It should be mentioned that the weaker the interconnections between 

the subsystems, the easier it is to satisfy the sufficient conditions. However, due 

to the conservative nature of the stability test, the system may be stable under 

the chosen control law even if the sufficient condition is not satisfied. Compared 
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with the linear independent joint control method, simulation results show that the 

method gives a better performance in terms of tracking accuracy. 

In the completely decentralized control method, the interconnections 

between the subsystems are completely neglected, yielding a loss of information 

about the behaviour of the interconnections and their dynamic effects on each 

subsystem. Moreover, if the interconnections between the subsystem are strong, 

the overall system behaviour may either become unsatisfactory with respect to the 

accepted criterion, or unstable. To compensate the destabilizing influence of the 

interconnection functions, and to increase the tracking accuracy of the robot 

manipulator, a decentralized global control concept has been proposed. The 

controller utilizes the local states, the bounds on the uncertainties and the 

interconnection functions, as well as the states of the connecting subsystems as 

the feedback information. It it shown theoretically and through simulations that 

the error between the response of the actual robotic system and that of the 

reference trajectory is uniformly ultimately bounded with respect to any 

arbitrarily small set of ultimate boundedness; in spite of the highly nonlinear and 

coupled robot manipulator dynamics, and the uncertainties present in the system. 

It is also shown that the robot manipulator performance is superior in terms of 

tracking accuracy when using the decentralized global approach than when using 

the decentralized local approach. 

As an alternative to the decentralized global control approach, two 

hierarchical control concepts for robot manipulators have been presented. For the 

first method a linear local decentralized control law is designed for each , 
decoupled system at the lowest level. At the upper level, a nonlinear global 

controller is generated to balance as exactly as possible the effects of all the 

nonlinearities, uncertainties, and the interconnections between the subsystems. In 

the second method, a nonlinear decentralized control law is designed at the lowest 

level, while the nonlinear global controller at the upper level is synthesized to 

overcome only the effects of the interconnection functions between the 

subsystems. All the nonlinear controllers are designed based on a deterministic 

approach with the assumption that all the bounds of the uncertainties, the 

nonlinearities and the interconnection functions are known. It is shown , 
theoretically and through simulations that both hierarchical controllers render the 

nonlinear robot manipulator practically stable and track the desired trajectory 
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within a particular bounded neighbourhood of the trajectory after a finite time. 

The controllers are found to be robust to the structural perturbations considered 

in the study. For the second method, it was found that the coordination signal 

from the upper level may be sent at a larger time interval to the lower level than 

the first method. This will reduce the computation of the coordination function. 

without significantly decreasing the tracking accuracy of the robot manipulator. 

Thus, the second hierarchical control concept requires less computational time. 

Hence, the proposed second method is more suitable for on-line control of large 

scale systems with fast dynamics such as robot manipulators. 

Four control methods have been proposed and investigated in this study. 

The methods are simple and robust with regard to the uncertainties and the 

nonlinearities present in the system. The control laws are simple to design and 

implement, and require less computation time as compared to the centralized 

control technique. This is due to the fact that the proposed controllers are 

designed based on a decoupled subsystem model rather than treating the robot 

manipulator as a single plant. It is shown through simulation study that the 

performance of the proposed controllers are comparable to the centralized 

controller considered. 

7.2 SUGGESTIONS FOR FUTURE RESEARCH 

The integrated dynamic model of the robot manipulator derived by no 

means represents a complete model of the robotic system. This is because the 

drive system nonlinearities such as Coulomb friction, backlash, stiff spring 

characteristic of the actuators, and various sources of flexibility (such as, 

deflection of the links under load and vibrations, elastic deformation of bearings 

and gears) are not included in the formulation of the integrated dynamic model. 

Thus, further study on the performance and practicality of the proposed controller 

with respect to these nonlinearities and uncertainties in the formulation of a 

complete robot manipulator mathematical model is required. 
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It is assumed that the overall system input matrix for the integrated 

dynamic equation derived based on joint angle, velocity, and acceleration is in 

block diagonal form. This is true for the non-direct drive robot manipulators 

considered where the magnitudes of the non-zero elements of the off-block 

diagonal submatrices in the overall input matrix are often very small compared to 

the elements of the diagonal submatrices. Thus, in this case, they can be assumed 

negligible and can be ignored. Hence, the assumption is valid. However, if this 

assumption is not satisfied, such as in the case of direct drive robots in generaL 

then further investigation on the applicability of the proposed control methods on 

such a system is needed. 

Although the proposed control strategies perform very satisfactory during 

the simulation studies on a digital computer, further implementation of the 

control algorithms on a real industrial robot is vital in order to investigate the 

performance of the proposed approaches under a real situation. 

7.3 CONCLUDING REMARKS 

The major aims of this research have been achieved. It is hoped that this 

thesis has introduced some improvements in the areas of modelling, decentralized 

and hierarchical control of a fast and strongly nonlinear system, such as a robot 

manipulator, that will lead to further scientific and commercial exploitation. 
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APPENDIX A 

DENAVIT - HARTENBERG (D-H) NOTATION 
AND TRANSFORMATION MATRIX 

An algorithm for establishing the coordinate frames and Denavit­

Hartenberg (D-H) transformation matrices for robot manipulators is presented in 

this appendix. 

It is assumed that an N dof robot manipulator has N+ 1 links (N moving 

links and one base link) numbered from 0 to N starting from the base link, which 

is taken as link o. The joints are numbered from 1 to N, so that the ith joint 

couples links i-I and i. 

The translational and rotational relationship of each link relative to its 

neighbours can be described by using the D-H convention [Craig, 1986; 

Shahinpoor, 1987; Spong and Vidyasagar, 1989] for each link of the robot 

manipulator. A right-handed coordinate frame is assigned to each link and 

normally, for link i, the coordinate frame is at joint i+l. The zi-axis is the axis of 

revolution (translation) of joint i+I if joint i+I is revolute (prismatic). The X j -

axis is in the direction normal to both the Zi and Zi-l axes, pointing away from the 

zi_l-axis towards the zi-axis. The axis y. is chosen to complete the right-handed 
• 

coordinate system. The D-H parameters (ai' di, 0i' and (Ji) are then obtained for 

each link For a revolute J. oint a· d· and o· are constant while (J,' is the joint . , .,., . 
variable For a prismatic J·oint a· (J. and o· are constant, while d j varies (the . , .,., , 
joint variable). When the joint axes of adjacent joints intersect, the link length 

ai is zero, such as the case with prismatic joints. Figure A-I illustrate the D-H 

frame assignment. 

Once the link coordinate systems have been established for the robot 

manipulator, the homogeneous D-H transformation matrix A\:-1' relating the ith 
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coordinate frame to the i-I th coordinate frame can be obtained. 

The method may be summarized by the following algorithm: 

Step 1 : Establish the base frame. The zo-axis lies along the axis of motion 

or rotation of the joint one. The Xo and Yo axes are chosen 

conveniently to form a right-hand frame. 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Step 7 

Step 8 

For each i, i = 1,2, ... ,N-l, do Steps 3 to 6. 

Establish the Zi-aX1S. Align the Zi-ax1S with the axIS of motion 

(rotary or sliding) of joint i+l. 

Locate the origin of the ith coordinate frame 0i at the intersection of 

the common normal between the Zi and Zi_I-axes and the zi-axis. If 

zi-axis intersects zi_I-axis, locate 0i at this intersection. 

Establish Xi-axis along the common normal between Zi-l and Zi 

through 0i, or in the direction normal to the Zi-l - Zi plane if Zi-l and 

Zi intersect. 

Establish y. to complete a right-handed coordinate system. 
• 

Establish the end-effector frame 0NXNY NZN' Assuming the Nth 

joint is revolute, set Z N along the direction of approach of the end­

effector on an object. Establish the origin ON conveniently along ZN' 

preferably at the center of the gripper or at the tip of any tool that 

the robot manipulator may be carrying. Set y N in the direction of 

the gripper closure, and set XN to complete a right-hand frame. If 

the tool is not a simple gripper, set XN and y N conveniently to form 

a right-handed frame. 

Create a table of the link parameters (D-H parameters) ai' d., Qi' 8.: 
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Step 9 

aj = the common normal distance along xi-axis from the intersection 

of the Xj and Zi-I-axes to the origin of the ith coordinate 

system, 0i. Note that ai is also referred to as the length of the 

ith link. 

d j = the distance along Zj-l from the origin of the i-lth coordinate 

system, 0i-l, to the intersection of the Xj and Zj_I-axes. (The 

distance between the two common normals aj and aj-l' or the 

distance between Xi and Xi-l axes.) Note that d j is the joint 

variable if joint i is prismatic. 

0i = the twist angle from the zj_l-axis to the zj-axis, measured about 

the Xi-axis. For most commercial manipulator, the twist angles 

are in the multiples of 900

• 

f}i = the angle of rotation from the Xi_I-axis to the Xi-axis, measured 

about the zj_l-axis. Note that f}i is the joint variable if joint i 

is revolute. 

Form the D-H transformation matrices A\~-l by substituting the D-H 

parameters into the following equation: 

Co· - SO.Co . SO·So. ajCO· 
I I I I I I 

SO. CO.Co . - CO.So . ajSO· 
(A.I) 

A\!-l 
I I I I I I , 

0 So. Co. d· I 
I I 

0 0 0 I 

where So. and Co. are Sin (f}j) and Cosine (f}j) respectively. 
I I 

Once the D-H transformation matrices, where each matrix relates the 

consecutive frames of the robot manipulator have been established, the position 

and orientation of the tool (end-effector) frame at the outermost link can be 

expressed in terms of the coordinate system established at the based of the robot 
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manipulator, that is, the base coordinate frame. For an N dof robot manipulator, 

the expression for the end-effector coordinate frame is given by 

ruN _ £1\1 ru2 ru3 ruN 
MIa - nl() MIl Ml2 ••• MIN-I· (A.l) 

Since each Ill~-l matrix is a function of an appropriate joint variable of the 

corresponding link, the Ill: matrix will be a function of all the joint variables of 

the robot manipulator. 

Another important application of the D-H transformation matrix is that 

the D-H matrices can be coupled to the Euler-Lagrange equation to derive the 

dynamic model of the mechanical linkage of the robot manipulator systematically 

as outlined in Appendix B. 

Y; 

z· I 

FIGURE A-I 

Joint i 

Denavit-Hartenbcrg Frame Assignment [Spong and 
Vidyasagar, 1981) 

284 



APPENDIX B 

EULER-LAGRANGE FORMULATION OF 

MANIPULATOR LINKS DYNAMICS 

The application of the Denavit-Hartenberg (D-H) matrix representation of 

the robot manipulator linkage and the Euler-Lagrange equation results in a 

systematic, convenient, and compact formulation of the robot manipulator 

dynamic equations. In the following, the method [Lee, 1983; Paul, 1981] is briefly 

presented. 

The Lagrange function L(8, 8) for an N dof robot manipulator can be 

obtained as follows : 

L(8, 8) 

%( 8, 8) 

~(8) 

%(8,8) - ~(8) , (B.l) 

Total kinetic energy of the system 

Total potential energy of the system 

8 Generalized coordinate of the system 

8 E ~N . 

For N dof robot manipulator, the kinetic and potential energy are gIven as 

follows: 

(B.2) 

~(8) 
N 
~ - rn l -- L-mig Mlori , 

(B.3) 

i = 1 

where 
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a~i j-I j 0 ~o Qj ~j-I for j ~i 7f8:" J 
lJ· . IJ (B.4) 

0 for j > i 

J i pseudo inertia matrix of the ith link 

mi mass of the ith link 

Tr trace operator 

g gravity row vector 

fi the position vector of the centre of gravity of the ith 

link with respect to the ith coordinate frame. 

~:-I = 4x4 homogeneous D-H transformation matrix that 

relates the ith coordinate frame to the i-I th 

coordinate system (see Appendix A). 

Then, from the Euler-Lagrange equation of motion, 

A [8L(~, 0)] _ [8L(8, 0)] 
dt a8. a8 i 1 

(B.5) 

Ti = generalized torque or force on the ith joint, 

the dynamic equations of the N dof robot manipulator can be obtained as follows : 

T = M(8) 8 + D(8 , 0) + G(8) , (B.6) 

where, t Tr [ lJ jk J j lJ}i ] Mik 
(B.7) 

i=rnax(i,k) 
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D· I (B.S) 

N 

. ~ Tr [ LJjkm J j LJ}. ] 
)=rnax ( I, k, m) 

(B.9) 

N 
G· I E [ - mj g LJji fj ] (B.lO) 

)=, 

rnj-l Q rnk-l Q rni 
Mlo j Mlj-l k Mlk-l , 

A au·· n I '"' ') 
'LJijk = a8

k 

rnk-l Q rnj-l Q rni 
Mlo k Mlk-l j MI j-l i~j~k (B.11) 

o otherwise 

[0 a -g a r (B.l2) 

0 -1 0 0 

1 0 0 0 
Qi for a revolute joint 

0 0 0 0 

0 0 0 0 

(B.l3) 

0 0 0 0 

0 0 0 0 
Qi for a prismatic joint 

0 0 0 1 

0 0 0 0 
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J. 
I pseudo inertia matrix of the ith link wh , ere 

- O~x+O~y+o:% + -2 o~y 2 m·x· D~% I I 
m·x· I I 

Oi Oi Oi 
O~fI xx - yy+ zz + -2 D~% 2 m·y· mSi 

I I 

J.= 
1 

D~fI O~% 
Oi +Oi Oi 
xx flY - %% 

+ -2 
2 mizi mz· 1 I 

m·x· m·y· m·z· I I 1 1 m· 1 1 I 

or 
(B.14) 

-IK~ IK~ 1K2 
IXX+ IYY+ izz 

lK~xfI lK~x% 2 x· I 

lK~xy lK~xx -1K~yy+lK~zz 
lK~y% YI 2 

J. 
1 m· 1 

lK~xy lK~y% lK~xx +1K~!lY -1K~zz 
z· 2 1 

x· 1 z· 1 1 

(B.15) 

and, 

11<. ·k I) the radius of the ith link gyrating about the j-k axes 

coordinates of the centre of gravity of the ith link 

moments of inertia about axes situated at the joint. 
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The Coriolis and centrifugal vector D( 6, 0) can also be written in the 

following form [Lim and Eslami, 1985] : 

D(6, 0) = D(6) V(O) 8(t) , (B.16) 
where 

V(O) (B.l i) 

N N 
where D(6) is a Nx L i matrix, V(O) IS aLi x N matrix, Oi,j is an ixj null 

i=l i=l 

matrix, and Ik is a kxk identity matrix. Hence equation (B.6) can be rewritten as 

T = M(6) 8 + D(6) V(O) O(t) + G(6) (B.18) 

In some cases, it is preferable to rewrite the dynamic equation of the manipulator 

linkage in the following from : 

T = M(6) 8 + D(6,0) 0 + G(6) 6 , (B.19) 

where D(B,8) and G(6) are NxN matrices given as follow: 

D(6,0) = D(6) V(8) , (B.20) 

and the matrix G(6) E IRNzN which is not unique [ Lim and Eslami, 1985; 1986], 

can be obtained from 

G(6) G(6) (B.21 ) 
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APPENDIX C 

ROBOT MANIPULATOR COMPLETE 
MODEL - A SURVEY 

In this appendix, the complete model of the robot manipulator as given by 

Vukobratovic and Potkonjak [1982]' Vukobratovic et.al. [1985], Troch [1986], and 

Troch et.al. [1986] are presented for comparison purposes. 

In the following, the manipulator link dynamics (equation 1.1) and the 

actuator dynamics (equation 2.23) are reintroduced for convenience. The dynamic 

model of the mechanical links of an N dof robot manipulator is as follows: 

M(B(t), ~) O(t) + D(B(t), B(t), ~) + G(B(t),~) = T(t) , (C.1) 

B( t) E ~N , B( t) E ~N , O( t) E ~N . 

For N actuators (N dof robot manipulator), the augmented dynamic equation of 

the actuators can be written in compact form as follows: 

(C.2) 

(C.3) 
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Let lc be an Nx3N transformation matrix such that 

The transformation matrix has the following form : 

o 1 0 I 

----- .. ----, 
I 0 1 0 I 
L-----t--

I • 

o 

o 
• I -r-----

I 0 1 0 
I 

Cl. Method Of Vukobratovic And Potkonjak [1982] : 

(C.4) 

(C.5) 

By substituting equation (CA) into (C.1), the torque can be obtained as 

follows: 

(C.6) 

Then, equation (C.2) is substituted into equation (C.6), to give: 

Finally, the complete robot manipulator dynamic model is obtained by 

substituting T in equation (C.7) back into equation (C.2) as follows: 

(C.Si 
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AA(XAl = AAXA + F A[IN - M(XAlZcF AJ -1 {M(XAlZCAAXA 

+ D(XAl + G(XAl} 

B A(XA) = B A + F A[IN -11(XA)lcF A] -1 M(XA)lcB A . 

C2. Method Of Vukobratovic et.al. [1985], Troch [1986], 

And Troch et.al. [1986] : 

(C.g) 

(C.lO) 

By substituting equation (C.6) into the actuators state equation (C.2), and 

after a simple manipulation, the state equation of the robot manipulator 

consisting the actuators as well as the mechanical links dynamics is obtained as 

follows: 

(C.U) 

where 

(C.l3) 

Clearly, the method of deriving the integrated model of the robot manipulator 

presented in this section is much simpler than the method outlined in section Cl 

above. In the following, it will be shown that the state equation of the integrated 

model of the robot manipulator presented in section 2.4.1 of Chapter 2 (equations 

2.35, 2.36, and 2.37), is equivalent to the state equation of the robot manipulator 

presented in this section (equations C.ll, C.12 and C.13). 
t 

From Chapter 2, since Bp(XA ) = [ 0NN: 11(XA )], and by the fact that 

the 2Nx3N transformation matrix ZA has the following structure: 
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I 00 , 
1 - - -, 
I I 0 0 
L - - - -1-

I '. 

o 
. I 

o -T-----
I 00 

. . . . . . . . . . . . . . . . . . . . 

by a simple mathematical manipulation, it can be shown that 

and 

then equation (2.35) in Chapter 2 can be rewritten as 

(C.14) 

(C.lS) 

(C.17) 

which is similar to the integrated model (equations C.II - C.14) presented in 

section C2 above. 
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APPENDIX D 

DETAILED EXPRESSIONS OF THE INTEGRATED 

DYNAMIC MODEL OF THE THREE DOF REVOLUTE 
ROBOT MANIPULATOR 

In this appendix, the expression for the non-zero nonlinear elements of the 

integrated dynamic model of the three dof robot manipulator as derived in 

Chapter 2, that is equations (2.75), (2.76), and (2.77), are presented. 

Let, 

'Pt - 1 - wBtMn 

'P2 - 1 - wB2M22 

'P3 - 1 - wB3M33 

'P4 - - WB2 M23 (D.l) 

'Ps - WB3M23 

IjI - 'P2'P3 - 'P4'PS . 

Then the non-zero nonlinear elements of the system matrix A(XB' t) can be , 
obtained as follows : 

a32 = { a B32 } / 'PI 
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a33 = { aB33 + fB1M11 + WB1C 11 } / 'PI 

~5 = { fB1D}2 X2 + WB1D }2 } / 'PI 

a36 = { WB1C 12} /'P1 

a38 = { fB1 D13 X2 + WB1D 13 } / 'PI 

~9 { W B1 C 13 } / 'PI 

as2 = { 'P3[ fB2D23 X2 + WB2D 21] - 'P4[ fB3 D 31 X2 + WB3D 31 ] } / Ijf 

as3 = { 'P3 W B2 C 21 - 'P4 W B3 C 31 ] } / Ijf 

= { 'P3[ fB2 M 23 + WB2 C 23] - 'P4[ aB99 + fB3 M 33 ] } / Ijf 

= { 'P2[ fB3 D 31 X2 + WB3D 31 ] - 'P5[ fB2D21 X2 + WB2D 21 ] } / tjI 
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Cig3 { <P2 W B3 C 31 - <PS W B2 C 21 ] } / tJ! 

Cigs { <;'S[ aB6S + WB2D 22] - <P2[ fB3D34 Xs + WB3D 32 ] } / tJ! 

Cig6 = - { <PS[ aB66 + fB2M22 + WB2C 22] - <P2[ fB3 M 23 + WB3C 32] } / tJ! 

Cig8 - {<PS[ fB2 (D2S Xs + D26 XS) + WB2D 23] - <P2[ aB98 + WB3D 33 ] } / tJ! 

Cig9 - { <PS[ fB2 M23 + W B2 C 23] - <P2[ aB99 + fB3M33 ] } / tJ! • 

For the input matrix B(XB' t), its non-zero elements are as follows: 

bll = { bBl } / <PI 

b22 = { bB2 <;'3 } / tJ! 

b23 { bB3 <;'4 } / tJ! (D.3) 

b32 { bB2 <Ps } / ~ 

b33 = { b B3 <;'2 } / ~ . 
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