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Abstract: We provide time-evolution operators, gauge transformations and a pertur-

bative treatment for non-Hermitian Hamiltonian systems, which are explicitly time-

dependent. We determine various new equivalence pairs for Hermitian and non-Hermitian

Hamiltonians, which are therefore pseudo-Hermitian and in addition in some cases also

invariant under PT-symmetry. In particular, for the harmonic oscillator perturbed by a

cubic non-Hermitian term, we evaluate explicitly various transition amplitudes, for the

situation when these systems are exposed to a monochromatic linearly polarized electric

field.

1. Introduction

To be able to predict the evolution in time for a Hamiltonian system is of central importance

to most practical physical problems. For the standard situation, i.e. when the Hamilto-

nian is Hermitian, there exist well developed frameworks. Having for instance in mind to

anticipate the response of an atomic system described by a Hermitian Hamiltonian when

it is subjected to an external time-dependent laser field is an intensively studied problem

in the weak and recently also in the strong field regime. In the former case Fermi’s golden

rule is for instance one of the central results, whereas the latter case leads to interesting

new phenomena such as high harmonic generation [1], above threshold ionization [2] and

stabilization [3, 4, 5], see also [6, 7] for strong field phenomena in general.

Less developed is the situation regarding non-Hermitian Hamiltonians. Depending on

the nature of their eigenvalues non-Hermitian Hamiltonian systems can be investigated

in various fundamentally different ways. When the corresponding energy eigenvalues are

complex one may essentially keep the standard framework and accept the fact that the non-

Hermitian nature of the Hamiltonian will lead to decaying states and wavefunctions. Vari-

ous investigations concentrate on that particular setting [8, 9, 10, 11, 12, 13, 14]. However,

more recently it was observed that a large class of non-Hermitian Hamiltonians possess real

and positive spectra [15]. For that situation it is natural to demand preservation of prob-

ability density, which is not guaranteed even when the Hamiltonian is time-independent.

http://arXiv.org/abs/quant-ph/0604014v2
mailto:A.Fring@city.ac.uk, C.F.M.Faria@city.ac.uk
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By now there exists a considerable amount of results regarding this situation for various

single particle systems [16, 17, 18, 19, 20] quantum field theories1 [23, 24, 25] and also

integrable many particle systems [26, 27]. So far most effort has gone into the development

of a proper quantum mechanical framework for such systems. The main purpose of this

paper is to extend these treatments, such that they include a proper description for the

time-evolution for non-Hermitian Hamiltonian systems.

Our manuscript is organized as follows: In order to establish our notation and to

highlight the key concepts we review in section 2 the main characteristics for a consistent

quantum mechanical description involving non-Hermitian Hamiltonians. In section 3 we

generalize the scheme to construct time-independent pseudo Hermitian Hamiltonian sys-

tems and provide a systematic procedure, which leads to closed formulae involving Euler’s

numbers for the equivalence pairs of Hermitian and non-Hermitian Hamiltonians, h and

H, respectively. Subsequently we employ that scheme to compute various new equiva-

lence pairs in its exact and perturbative form needed afterwards for the time-dependent

treatment. In particular, we generalize non-Hermitian perturbations of the harmonic oscil-

lator to anharmonic oscillators with a wider class of perturbations in an exact formulation.

Amongst those new non-Hermitian Hamiltonians is a doubly graded generalization of the

Swanson Hamiltonian. Perturbatively we also compute Hermitian counterparts for the

harmonic oscillator with an additional igxn-term for generic n, hitherto only studied for

specific cases. In particular, for the case n = 3 we provide the explicit formula for all

wavefunctions up to order g3, which turn out to be far simpler than their non-Hermitian

counterparts. In section 4 we discuss the time evolution for non-Hermitian Hamiltonian

systems in various different gauges and investigate a time-dependent perturbation theory.

As a particular example we employ the formalism to compute some transition probabili-

ties for the harmonic oscillator perturbed by igx3 in an external laser field. We state our

conclusions in section 5.

2. Quantum Mechanics involving non-Hermitian Hamiltonians

The possibility that non-Hermitian Hamiltonian systems can possess discrete eigenstates

with real positive energies has already been indicated by von Neumann and Wigner [28]

almost eighty years ago. More recently this type of systems are under more intense scrutiny

and nowadays the properties of these so-called BICs (bound states in the continuum) are

fairly well understood for many concrete examples [29, 30, 31] together with their bi-

orthonormal eigenstates [32, 33].

Whereas the above type of Hamiltonians only possess single states with these “strange

properties” [28], it was observed eight years ago by Bender and Boettcher [15] that Hamil-

tonians with potential terms V = x2(ix)ν for ν ≥ 0 possess an entirely real and positive

spectrum. Since that discovery non-Hermitian Hamiltonians, in the sense that H† 6= H,

are under intense investigation. Initially the reality of the spectrum was attributed to

the PT -symmetry of the Hamiltonian. In fact, when the wavefunctions are simultaneous

1In 1+1 dimensional quantum field theories non-Hermitian Hamiltonian systems are known to be mean-

ingful for some time [21, 22].
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eigenstates of the Hamiltonian and the PT -operator one can easily argue that the spec-

trum has to be real [34]. However, despite the fact that [PT,H] = 0, this is not always

guaranteed as the PT -operator is an anti-linear operator [19]. As a consequence one may

also encounter conjugate pairs of eigenvalues for broken PT -symmetry [34]. To determine

whether the PT -symmetry is broken or not one may use various techniques to verify this

case-by-case [18, 35]. The central problem arising in this context is that inner products

of wavefunctions constituting solutions of the time-independent Schrödinger equation in-

volving non-Hermitian Hamiltonians become indefinite, which is due to the fact that the

wavefunctions have to be simultaneous eigenfunctions of H and the PT -operator [36]. Ben-

der, Brody and Jones [34] solved this problem consistently by introducing a new type of

inner product

〈Φ| Φ′
〉

CPT
:= (CPT |Φ〉)T ·

∣

∣Φ′
〉

, (2.1)

which then indeed leads to a positive definite metric, that is 〈Φn| Φm〉CPT = δnm when

labelling the energies by increasing values εn. This inner product inherits one complication,

which is already present when solving the eigenvalue problem, namely that eventually the

wavefunctions Φ no longer vanish for |x| → ∞. In that situation one has to integrate

within wedges bounded by the Stokes lines in the complex x-plane [15]. A further initial

drawback of this formulation was that the C-operator C(x, y) =
∑

n Φn(x)Φn(y) needed to

be determined dynamically, which requires in principle the knowledge of all wavefunctions.

Meanwhile also alternative methods have been developed to compute C and this is no

longer a real obstacle. For instance, noting that C is a symmetry of the Hamiltonian

and in addition an involution, one may compute it alternatively by solving the algebraic

equations [37]

[C,H] = 0, [C,PT ] = 0 and C2 = 1 . (2.2)

Even before the discovery of [15] and the introduction of the CPT -inner product (2.1)

there have been very general considerations addressing the question of how a consistent

quantum mechanical framework can be constructed for non-Hermitian Hamiltonian systems

[38]. It was understood that quasi-Hermitian (pseudo-Hermitian) systems would lead to

positive inner products. Subsequently this was further developed by Mostafazadeh [39,

40, 41, 42], who proposed that instead of considering PT -invariant Hamiltonians one may

investigate pseudo-Hermitian Hamiltonians satisfying

h = ηHη−1 = h† = η−1H†η ⇔ H† = η2Hη−2, (2.3)

with η† = η. Since the Hermitian Hamiltonian h and the non-Hermitian Hamiltonian H

are related by a similarity transformation, they belong to the same similarity class and

therefore have the same eigenvalues. The corresponding time-independent Schrödinger

equations are then simply

hφ = εφ and HΦ = εΦ, (2.4)

where the wavefunctions are related as

Φ = η−1φ. (2.5)

– 3 –
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Having real eigenvalues for the Hermitian Hamiltonian h then guarantees by construction a

positive spectrum also for H. In fact, this formulation is more general than demanding the

Hamiltonian to be PT -symmetric, which is only a sufficient, but not a necessary condition

for the spectrum to be real for unbroken PT -symmetry of the wavefunctions. In addition

the formulation which involves pseudo-Hermitian Hamiltonians is more intuitive as the

reality of the spectrum of H is completely evident. Inner products for the wavefunctions

Φ related to the non-Hermitian Hamiltonian H may now simply be taken to be

〈Φ| Φ′
〉

η
:= 〈Φ| η2Φ′

〉

, (2.6)

where the inner product on the right hand side of (2.6) is the conventional inner product

associated to the Hermitian Hamiltonian h. In case the similarity transformation (2.3)

holds, the Hamiltionian H is PT -symmetric and when in addition the solution to (2.2) is

taken to be C = η−2P , the CPT -inner product (2.1), the η-inner product (2.6) and the

conventional inner product related to the Hermitian Hamiltonian coincide

〈Φ| Φ′
〉

CPT
= 〈Φ| Φ′

〉

η
= 〈φ| φ′

〉

. (2.7)

With regard to (2.7) one may wonder why one requires the CPT -inner products when

one may in fact use the η-inner products, or even more radically why one needs the non-

Hermitian formulations at all when they can always be related to the standard inner prod-

ucts. In fact, these issues are quite controversially discussed at present [43, 44, 45, 46].

With regard to CPT versus pseudo-Hermiticity, our point of view is that despite the lim-

ited restrictive power of PT -symmetry, in particular the fact that is does not guarantee

a positive spectrum, it is a very good guiding principle to select potentially interesting

non-Hermitian Hamiltonians on the classical level, e.g. for many-particle systems [26, 27].

This property can be read off directly from a classical Hamiltonian, whereas even when

one has identified such Hamiltonians, a proper analysis requires the construction of the

similarity transformation η of the CPT -operator, which is usually not evident a priori.

With regard to the inner products, it appears far easier to construct η rather than the

CPT -operator. One apparent virtue of the non-Hermitian formulation, using CPT or η-

inner products, is that in this way we may relate simple non-Hermitian Hamiltonians to

fairly complicated Hermitian Hamiltonians. It is sometimes argued that the computations

in the non-Hermitian framework are simpler to perform [45], but this statement has been

challenged [46]. Certainly, as we will see below, this feature can not be elevated to a general

principle. We will see that even when the non-Hermitian Hamiltonian looks simpler than

its Hermitian counterpart, this is not true for the corresponding wavefunctions, which still

take on a simpler form in the Hermitian formulation. Furthermore, we find here in addition

that the time-dependent non-Hermitian formulation will always be more complicated or

at most of equal degree of complexity than the Hermitian one. It appears to us that the

best strategy is to make use of both worlds and switch to one or the other formulation

depending on the specific problem at hand.

The main purpose of this paper is to investigate how these frameworks may be trans-

lated to the situation when the Hamiltonians become genuinely time-dependent.

– 4 –
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3. Construction of pseudo Hermitian Hamiltonians

Accepting that a non-Hermitian formulation of quantum mechanics is more straightforward

in a pseudo-Hermitian formulation rather than a CPT -scheme, the question with regard

to (2.3) then arises of how to construct Hamiltonians h and H belonging to the same

equivalence class. Supposing that the similarity transformation can be realized by using an

operator of the form η = exp(q/2), the relation (2.3) implies by standard Baker-Campbell-

Hausdorff commutation relations that

H† = H + [q,H] +
1

2!
[q, [q,H]] +

1

3!
[q, [q, [q,H]]] + . . . =

∞
∑

n=0

1

n!
c(n)
q (H). (3.1)

For convenience we have introduced here a more compact notation for the n-fold commu-

tator of the operator q with some operator x as

c(n)
q (x) := [q, [q, [q, . . . [q, x] . . .]]] . (3.2)

Taking now the non-Hermitian Hamiltonian to be of the form H = h0 + ih1, with h0 = h†0,

h1 = h†1 the relation (3.1) acquires the form

i [q, h0] +
i

2
[q, [q, h0]] +

i

3!
[q, [q, [q, h0]]] + . . . = 2h1 + [q, h1] +

1

2
[q, [q, h1]] + . . . (3.3)

In solving this equation one may start from different given quantities. For instance one

may solve for h1 with given h0, q, see section 3.1, or one may solve for q with given h0, h1,

see section 3.2. We will not treat the remaining possibility to construct h0 for given h1, q.

Furthermore, we will also not discuss the interesting possibility to exploit the isomor-

phism between commutator relations and Moyal products [47, 48]. This relation allows to

translate the commutator relation into a differential equation for η, which may be solved

subsequently.

3.1 Exact similarity relations

Some simple exact solutions to (3.3) can be found easily in a quite systematic way by search-

ing for vanishing multi-commutators. For instance, if for a given Hermitian Hamiltonian

h0 we can find some q such that its triple commutator with h0 is vanishing

[q, [q, [q, h0]]] = 0, (3.4)

we can define the non-Hermitian part of H as

h1 =
i

2
[q, h0] , (3.5)

such that the relation (3.3) is solved exactly. According to (2.3) the Hermitian counterpart

h of the non-Hermitian Hamiltonian H is then computed to

h = η

(

h0 −
1

2
[q, h0]

)

η−1 = h0 −
1

8
[q, [q, h0]] . (3.6)
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We can generalize this construction procedure to any vanishing n-fold commutator of q with

h0. Assuming for this that the sum in (3.3) terminates at some stage, i.e. c
(ℓ+1)
q (h0) = 0,

we make the following ansatz for the non-Hermitian part of H

h1 = i

ℓ
∑

n=1

κn

n!
c(n)
q (h0), (3.7)

where the constants κn ∈ R are to be determined such that the relation (3.3) is solved

exactly. The substitution of (3.7) into (3.3) then yields

ℓ
∑

n=1

1

n!
c(n)
q (h0) =

ℓ
∑

n=1

2
κn

n!
c(n)
q (h0) +

ℓ−1
∑

n=1

ℓ
∑

m=1

1

n!

κm

m!
c(n+m)
q (h0). (3.8)

Reading off the coefficients of equal n-fold commutators from this equation produces a

recursive equation for the constants κn

κn =
1

2
− 1

2

n−1
∑

m=0

(

n

m

)

κm for 1 ≤ n ≤ ℓ. (3.9)

With κ0 = 0, we can solve (3.9) iteratively and find that all coefficients κn for even n

vanish, whereas the remaining ones become

κ1 =
1

2
, κ3 = −1

4
, κ5 =

1

2
, κ7 = −17

8
, κ9 = −31

2
, κ11 = −691

4
, . . . (3.10)

Finally we compute from (2.3) the Hermitian counterpart h of H to

h = η

(

h0 −
ℓ
∑

n=1

κn

n!
c(n)
q (h0)

)

η−1 =

ℓ
∑

n=0

λn

2nn!
c(n)
q (h0), (3.11)

where the constants λn are related to the κn as

λn = 1 −
n
∑

m=0

2m

(

n

m

)

κm. (3.12)

Using the above solutions for the κn (3.10), we find that only coefficients λn with n even

are non-vanishing

λ0 = 1, λ2 = −1, λ4 = 5, λ6 = −61, λ8 = 1385, λ10 = −50521, . . . (3.13)

In fact we observe that these constants are very closely related to Euler’s numbers En as

λ2n = (−1)nEn for n = 1, 2, 3, . . .With this identification we may alternatively solve the

equations (3.12) for the constants κm, such that they are also expressed in terms of Euler’s

numbers

κn =
1

2n

[(n+1)/2]
∑

m=1

(−1)n+m

(

n

2m

)

Em. (3.14)

Here [x] denotes the integer part of x.

– 6 –
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Thus given some Hamiltonian h0, which constitutes the Hermitian part of a non-

Hermitian Hamiltonian H = h0 + ih1, together with an operator q satisfying c
(ℓ+1)
q (h0) = 0

for some finite integer ℓ, the above procedure provides a systematic way to compute pairs

of Hamiltonians

h = h0 +

[ℓ/2]
∑

n=1

(−1)nEn

4n(2n)!
c(2n)
q (h0) and H = h0−

[(ℓ+1)/2]
∑

n=1

κ2n−1

(2n − 1)!
c(2n−1)
q (h0), (3.15)

with h = h† and H 6= H†, which belong to the same similarity class related by the adjoint

action of η = exp(q/2) according to (2.3). The closed formulae in (3.15), together with the

line of arguments leading to them, appear to be new.

3.2 Perturbative similarity relations

Often one has a different type of starting point as in the previous subsection and would like

to construct h for a completely specified non-Hermitian Hamiltonian H, that is for given

h0 and h1. In that case we have to solve the commutator relation (3.7) for q and some ℓ.

Whenever this is not possible in an obvious manner, one can resort to perturbation theory

as originally proposed by Bender, Brody and Jones [37] (see also [49]). To develop this

one makes a further assumption on the form of the similarity transformation η = exp(q/2),

namely

q =
∞
∑

n=1

g2n−1q2n−1. (3.16)

One may argue, by demanding PT -invariance [37], that the powers of g have to be odd.

Here we want to guarantee pseudo-Hermiticity and therefore present a slightly different

argumentation. We assume the following dependences on the coupling constant g

η(−g) = η(g)−1, h(g) = h(−g) and H†(g) = H(−g). (3.17)

The first equation is obviously satisfied by the ansatz (3.16), whereas the second and third

are supported by the examples presented below. Using then (3.17) the pseudo-Hermiticity

H†(g) = η(g)2H(g)η(g)−2 (3.18)

simply follows from

h(g) = η(g)H(g)η(g)−1 = h(−g) = η(−g)H(−g)η(−g)−1 = η(g)−1H†(g)η(g). (3.19)

Returning to the discussion of perturbation theory, we see that with the ansatz (3.16)

the multi-commutator c
(n)
q (h0) will be at least of the order O(gn). This means that a

precision of order O(gℓ) corresponds to c
(ℓ+1)
q (h0) = 0, such that the above arguments

apply and from (3.7) we obtain

h1 = i

ℓ
∑

n=1

κn

n!
gn

∑

n1+n2+...+nℓ=n

c(n1)
q1

(

c(n2)
q2

(

. . . c(nℓ)
qℓ

(h0)
))

+ O(gℓ+1). (3.20)

– 7 –
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Solving these equations order by order yields the set of equations

[h0, q1] =
2i

g
h1, (3.21)

[h0, q3] =
i

6g
c(2)
q1

(h1), (3.22)

[h0, q5] =
i

6g

[

c(1)
q1

(c(1)
q3

(h1)) + c(1)
q3

(c(1)
q1

(h1)) −
1

60
c(4)
q1

(h1)

]

, (3.23)

which can be used to determine the unknown quantities qi for 1 ≤ i ≤ ℓ recursively,

as already noted in [37]. Having determined the qi to the desired order the Hermitian

counterpart h to H results from (3.11) to2

h =

[ℓ/2]
∑

n=0

(−1)nEn

4n(2n)!
g2n

∑

n1+n2+...+nℓ=2n

c(n1)
q1

(

c(n2)
q2

(

. . . c(nℓ)
qℓ

(h0)
))

+ O(gℓ+1). (3.24)

We present here now various time-independent Hamiltonians which belong to the same

equivalence class and which we discuss below in its time-dependent variant.

3.3 Non-Hermitian Hamiltonians and their Hermitian counterparts

We will consider some non-Hermitian perturbations of the harmonic or anharmonic oscil-

lators depending on a real coupling constant α ∈ R

h0
n(α) =

1

2
p2 +

α

2
xn, (3.25)

where x and p are operators obeying the standard canonical commutation relation [x, p] = i.

Throughout this paper we use atomic units ~ = e = me = cα = 1. In the last equation α

is of course the fine structure constant and not the coupling constant in (3.25).

3.3.1 Anharmonic oscillator perturbed by i
∑

gpx
p

We take as a starting point the harmonic oscillator h0 = h0
2(α) and q = µp, where µ is

a real constant which needs to be determined. It is then easily checked that the triple

commutator c
(3)
q (h0) indeed vanishes. Therefore we evaluate from (3.5)

h1 =
1

2
αµx = gx, (3.26)

where we introduced a new coupling constant g ∈ R to simplify the notation. The non-

Hermitian Hamiltonian is then of the form

H(α, g) =
1

2
p2 +

α

2
x2 + igx. (3.27)

2After completion of this work we were notified by H.F. Jones that he also noted the occurrence of

Euler’s numbers in front of the multi-commutators of the perturbative expressions (3.21)-(3.23) [50]. Here

they are a consequence of our general formulae (3.15).

– 8 –
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According to (3.6) we compute next the Hermitian counterpart of H(α, g) to

h(α, g) = ηH(α, g)η−1 =
1

2
p2 +

α

2
x2 +

1

2

g2

α
. (3.28)

with

η = e
g

α
p. (3.29)

This equivalent system of Hamiltonians (3.27) and (3.28) follow also directly from (3.15)

and for α = g = 1, they can already be found for instance in [45].

We may now easily generalize this system by taking for the Hermitian part of the

Hamiltonian H the Hamiltonian h0 = h0
n(α) as starting point. We compute

c(m)
µp (h0

n(α)) =

{

(−iµ)m α
2

n!
(n−m)!x

n−m for 1 ≤ m ≤ n

0 for m > n
, (3.30)

and thus we can take here ℓ = n as a cut-off condition in order to compute h1 from (3.7).

For µ = 2g we then find

HAO
n (α, g) =

1

2
p2 +

α

2
xn− iα

2

[(n+1)/2]
∑

m=1

(−1)2m

(

2g

α

)2m−1( n

2m − 1

)

κ2m−1x
n+1−2m, (3.31)

where the constants κm are determined from (3.14) as sums over Euler’s numbers. The

Hermitian counterpart results from (3.11) or (3.15) to

hAO
n (α, g) = ηHAO

n (α)η−1 = h0
n(α) +

α

2

[n/2]
∑

m=1

(

2g

α

)2m

Em

(

n

2m

)

xn−2m. (3.32)

Clearly, since c
(m)

pk (h0
n(α)) = 0 for some finite values of k, n,m, we can generalize this and

take q =
∑k

m=1 µmpm to construct further conjugate pairs of Hamiltonians. Notice that

the dependence of hAO
n (α, g), HAO

n (α, g) and η(g) on the coupling constant g respects the

aforementioned identities (3.17).

3.3.2 Generalizations of the Swanson Hamiltonian

Next we start again with h0 = h0
n(α), but change the operator q in the similarity trans-

formation to qm = µmxm. It is easy to observe that in this case c
(3)
µmxm(h0

n(α)) = 0 for all

m,n ≥ 0. Therefore when taking µm = 2g/m relation (3.5) yields

HS
n,m(α, g) =

1

2
p2 +

α

2
xn − i

g

2
(pxm−1 + xm−1p), (3.33)

and consequently (3.6) gives

hS
n,m(α, g) = h0

n(α) − 1

8

[

qm,
[

qm, h0
n(α)

]]

= ηHS
n,m(α)η−1 (3.34)

=
1

2
p2 +

α

2
xn +

1

2
g2x2m−2. (3.35)

– 9 –
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Notice that when specializing to n = m = 2, we obtain the harmonic oscillator

hS
2,2(α, g) = h0

2(α + g2) (3.36)

and HS
2,2 becomes the Swanson Hamiltonian [51, 44]

H(α, g) = h0
2(α) − i

g

2
(xp + px), (3.37)

upon changing the conventions for the coupling constants. We further note that only for m

odd ih1
n,m(α) is PT -symmetric, which sustains our previous assertion that the requirement

of pseudo-Hermiticity covers a larger class of Hamiltonians, which have a positive spectrum.

Once more we note that the dependence of hS
n,m(α, g), HS

n,m(α, g) and η(g) on the coupling

constant g respects the identities (3.17). Notice that if the wave function φ is vanishing at

±∞ this is no longer the case for Φ for odd m.

3.3.3 Harmonic oscillator perturbed by igxn

In the examples discussed so far we were always able to construct explicitly the similarity

transformation η. However, when we start with a given non-Hermitian Hamiltonian this

is not always possible. For instance, considering the simplest non-Hermitian perturbation

of the harmonic oscillator by h1 = gx3 [37, 44, 49] and their generalizations

HHO
n (α, g) =

1

2
p2 +

α

2
x2 + igxn (3.38)

one has to resort at present to perturbation theory in order to construct η. We adopt now

the notation Sm,n from [52, 37, 44] for the totally symmetric polynomial in the m operators

p and n operators x

Sm,n =
1

2n

n
∑

k=0

(

n

k

)

xkpmxn−k =

(

m + n

n

)−1
∑

π

pmxn. (3.39)

In the last expression we take the sum over the entire permutation group π. Since the

variables x and p are non-commutative this sum produces (m + n)!/m!/n! non-equivalent

terms. The first sum is the much simpler Weyl ordered version of this polynomial. Taking

now in (3.21) the harmonic oscillator h0
2(α) and h

(n)
1 = gxn as our starting point we solve

(3.21) for q
(n)
1 and compute to first order in perturbation theory

q
(3)
1 =

2

α

(

S1,2 +
2

3α
S3,0

)

, (3.40)

q
(5)
1 =

2

α

(

S1,4 +
4

3α
S3,2 +

8

15α2
S5,0

)

, (3.41)

q
(7)
1 =

2

α

(

S1,6 +
6

3α
S3,4 +

24

15α2
S5,2 +

16

35α3
S7,0

)

, (3.42)

q
(9)
1 =

2

α

(

S1,8 +
8

3α
S3,6 +

48

15α2
S5,4 +

64

35α3
S7,2 +

128

315α4
S9,0

)

, (3.43)

...

q
(n)
1 = −

√
π

[(n+1)/2]
∑

k=1

1

(−α)k
Γ
(

k − 1
2 − n

2

)

Γ
(

k + 1
2

)

Γ
(

1
2 − n

2

)S2k−1,n+1−2k. (3.44)
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We extrapolated here to the closed formula for all values of n, which we have verified up to

n = 20. The expression for q
(3)
1 agrees with the solution found in [37]. The remaining q

(n)
1

for n ≥ 3 do not seem to be known in the literature. It is straightforward, but labourous

to continue the analysis to higher orders. To next order we compute

q
(3)
3 = 4

(

32

15α5
S5,0 +

10

3α4
S3,2 +

2

α3
S1,4 −

3

α4
S1,0

)

, (3.45)

The expression for q
(3)
3 agrees precisely with the one found in [37, 44]. Once again the

expressions for higher values of n for q
(n)
3 seem to be unknown. From (3.15) we then

compute the Hermitian counterpart to (3.38) as

hHO
n (α, g) =

1

2
p2 +

α

2
x2 − i

g2

4
[xn, q

(n)
1 ] + O(g4). (3.46)

The only commutator one needs to evaluate this is [52]

[xn, Sr,s] = i

λ(n,r)
∑

k=0

1

(−4)k
1

(2k + 1)!

n!

(n − 2k + 1)!

r!

(r − 2k + 1)!
Sr−2k−1,s+n−2k−1, (3.47)

where the upper limit of the sum is λ(n, r) = min([(n + 1)/2], [(r + 1)/2]). We then obtain

hHO
n (α, g) =

1

2
p2 +

α

2
x2 +

g2

2

[(n+1)/2]
∑

k=1

k
∑

p=0

ckp
n S2(k−p−1),2(n−p−k) (3.48)

with constants

ckp
n = (−1)k+p+1

√
π

2

1

αk4p

Γ(2k)Γ(n + 1)Γ
(

k − 1
2 − n

2

)

Γ
(

k + 1
2

)

Γ
(

1
2 − n

2

)

Γ (2k − 2p − 1) Γ (n − 2p) Γ (2p + 2)
(3.49)

In particular, this reduces to

hHO
3 (α, g) =

1

2
p2 +

α

2
x2 +

3

2

g2

α2

(

2S2,2 + αS0,4 −
1

3

)

(3.50)

hHO
5 (α, g) =

1

2
p2 +

α

2
x2 +

5

2

g2

α3

(

4

5
+ α2S0,8 − 4αS0,4 + 4αS2,6 − 16S2,2 +

8

3
S4,4

)

(3.51)

The expression for hHO
3 (α, g) recovers the one found already in [37, 44]. This equivalence

system has been studied extensively and here we shall elaborate further on it taking it as

our prime example in the next section. Specifying now α = 1 the eigenvalue problem for

the non-Hermitian counterpart of hHO
3 (1, g), namely HHO

3 (1, g) was solved in [53] up to

order g4. The energy eigenvalues were found to be

εn = n +
1

2
+

g2

8
(30n2 + 30n + 11) + O(g4). (3.52)

The quite lengthy expression for corresponding wavefunctions Φn(x) may be found in [53],

see formulae (3.2), (3.3) and (3.6) therein. In the next section we would like to use the
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wavefunction for the Hermitian Hamiltonian hHO
3 (1, g) instead, which we can simply com-

pute from (2.5). With the help of the explicit expression for q
(3)
1 we may express the η as

a differential operator in x-space

η = 1 + ig

(

2

3
∂3

x − x∂xx

)

− g2

(

x2 + 2x3∂x − 3∂2
x +

x4

2
∂2

x − 8

3
x∂3

x − 2

3
x2∂4

x +
2

9
∂6

x

)

.

(3.53)

A somewhat lengthy but straightforward computation then yields

φn(x) = ηΦn(x) =
ine−x2/2

√√
π2nn!

[

Hn(x) − g2Pn(x) + O(g4)
]

, (3.54)

where the Hn(x) are the nth Hermite polynomials,

Pn(x) =
3

16

(

2Ĥn−4(x) − (8n − 4)Ĥn−2(x) + (2n + 3)Hn+2(x) − 1

8
Hn+4(x)

)

(3.55)

and Ĥn−p(x) = n(n − 1)(n − 2) . . . (n − p + 1)Hn−p(x). The φn(x) are orthonormal

wavefunction, which solve the Schrödinger equation up to order g4. We observe that

despite the fact that the Hermitian Hamiltonian hHO
3 is more complicated than its non-

Hermitian counterpart HHO
3 , this is no longer true for their corresponding wavefunctions

as φn(x) takes on a much simpler form than Φn(x).

4. Time evolution for non-Hermitian Hamiltonians

Next we consider genuinely time-dependent Hamiltonians. There have been some previous

investigations in this direction [8, 9, 10, 11, 12, 13, 14], which, however, do not make use

of pseudo-Hermiticity. In addition, in many of these studies the precise meaning of the

physical set up remains unclear. For instance, in [10], no explanation is given about the

meaning of making the mass time-dependent etc. Here we wish to address a more clear

cut physical problem, namely one of the classical questions concerning the behaviour of a

quantum mechanical system coupled to an external electromagnetic field. In particular,

we have in mind an atom in a time-dependent linearly polarized electric field E(t) in the

dipole approximation of finite duration τ . In the length gauge, see section 4.2 for more

discussions, this scenario is described by the Stark Hamiltonian and the time-dependent

Schrödinger equation reads

i∂tφ(t) =

[

p2

2
+ V + xE(t)

]

φ(t) = [h + xE(t)] φ(t) = hl(t)φ(t), (4.1)

We follow here largely the notation of [54, 5, 55]. As the field is taken to be a pulse of

finite duration we have hφ(0) = Eφ(0) and hφ(τ) = Eφ(τ). With regard to our previous

discussion we assume now that h has a non-Hermitian counterpart H which is in the same

equivalence class, such that H = η−1hη. Hence this involves a potential for which we no

longer demand that it is Hermitian, i.e. we allow V † 6= V . Consequently also the resulting

Stark Hamiltonian is non-Hermitian Hl(t) 6= H†l (t).
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Time evolution of non-Hermitian Hamiltonian systems

The central quantity of interest in this context is the time-evolution operator

u(t, t′) = T exp

(

−i

∫ t

t′
dsh(s)

)

, (4.2)

which evolves a wavefunction from a time t′ to t, that is φ(t) = u(t, t′)φ(t′). T denotes the

time ordering. When h(s) is a self-adjoint operator in some Hilbert space, u(t, t′) satisfies

the relations

i∂tu(t, t′) = h(t)u(t, t′), u(t, t′)u(t′, t′′) = u(t, t′′) and u(t, t) = I . (4.3)

Taking instead a Hamiltonian H(t) which is not self-adjoint and therefore its matrix repre-

sentation is non-Hermitian these relations no longer hold. However, as we now demonstrate

when H(t) is pseudo-Hermitian there is a simple modification of them. Acting adjointly

with the time-independent operator η−1on (4.3) and assuming that the similarity transfor-

mation h = ηHη−1 extends from the time-independent to the time-dependent system

h(t) = ηH(t)η−1, (4.4)

simply yields

i∂tU(t, t′) = H(t)U(t, t′), U(t, t′)U(t′, t′′) = U(t, t′′) and U(t, t) = I , (4.5)

where we introduced the new time evolution operator U(t, t′) associated to the non-

Hermitian Hamiltonian H(t) as

U(t, t′) = η−1u(t, t′)η. (4.6)

This time-evolution operator is quasi-pseudo-Hermitian

U †(t, t′) = η2U−1(t, t′)η−2, (4.7)

which follows directly from u†(t, t′) = u−1(t, t′). The non-Hermitian counterpart H to the

Hermitian Hamiltonian hl(t) as defined in (4.1) results therefore to

Hl(t) = H + η−1xE(t)η. (4.8)

The central assumption is here the validity of the similarity transformation (4.4), which

makes the formalism for the treatment of the non-Hermitian problem fairly straightforward.

Of course we could also try to solve the problem for the situation when the electric field is

coupled directly to the non-Hermitian Hamiltonian H, that means we take it to be of the

form

Ĥl(t) = H + xE(t). (4.9)

In some special cases, namely when η−1xE(t)η = xE(t), this version is equivalent to (4.8),

but in general we require a new kind of formalism for this type of situation as we have now

lost the equivalence relation (4.4).
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4.1 Equivalent time-dependent pairs of Hamiltonians

Let us illustrate the above for the concrete examples discussed in section 3.

The simplest example is the generalized time-dependent Swanson Hamiltonian, which

in the length gauge is simply of the form

HS,l
n,m(α, g, t) = HS

n,m(α, g) + xE(t). (4.10)

In this case the formulations (4.8) and (4.9) coincide as η−1xE(t)η = xE(t). Its time-

dependent Hermitian counterpart is therefore simply given by

hS,l
n,m(α, g, t) = hS

n,m(α, g) + xE(t). (4.11)

Thus for the Swanson Hamiltonian one obtains the same result whether one couples

the electric field to h or H.

For the perturbed anharmonic oscillators, this relation does no longer hold, since the

similarity transformation (3.29) does not commute with x, but instead induced a complex

shift in x → x+ig/2. From (4.8) the time-dependent versions of the anharmonic oscillators

result to

HAO,l
n (α, g, t) = HAO

n (α, g) + xE(t) + igE(t)/2, (4.12)

which due to the last term is evidently different from the version (4.9). The time-dependent

version of its Hermitian counterpart (3.32) is

hAO
n (α, g, t) = hAO

n (α, g) + xE(t), (4.13)

and one has now entirely different systems when coupling the electric field to h or H.

The expressions become more complicated when we have non-trivial commutators

between x and η, as for the perturbed harmonic oscillator HHO
n (α, g), for which we only

know the similarity transformation perturbatively. In that case the time dependent version

becomes

HHO
n (α, g, t) = HHO

n (α, g) + E(t)
∞
∑

n=0

(−1)n

n!2n
c(n)
q (x) (4.14)

and we have to terminate the infinite sum according to the desired order of precision in

powers of g. Using the commutator [x, Sm,n] = imSm−1,n, which results as a special case of

the commutator (3.47), the first order in g is easily computed with the generic expression

for q
(1)
n , see (3.44), to

HHO
n (α, g, t) = HHO

n (α, g)+E(t)



x − ig

[(n+1)/2]
∑

k=1

√
π

(−α)k
Γ
(

k − 1
2 − n

2

)

Γ
(

k − 1
2

)

Γ
(

1
2 − n

2

)S2k−2,n+1−2k



 .

(4.15)

In particular we have

HHO
3 (α, g, t) = HHO

3 (α, g) + xE(t) + i
g

α
E(t)

(

x2 +
2

α
p2

)

, (4.16)

HHO
5 (α, g, t) = HHO

5 (α, g) + xE(t) + i
g

α
E(t)

(

x4 +
4

α
S2,2 +

8

3α2
p4

)

. (4.17)
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The next order is more challenging as it involves commutators between different types of

symmetric polynomials Sm,n and Sr,s for which an expression can be found, however, in

[52]

[Sm,n, Sr,s] = in!r!

λ(n−2,r−2)
∑

k=0

3F2(−1 − 2k,−m,−s;n − 2k, r − 2k; 1)

Γ (n − 2k) Γ (r − 2k) Γ (2k + 2)
Sm+r−2k−1,n+s−2k−1,

(4.18)

where 3F2 is a hypergeometric function. We will not present such calculations here.

At this point one may wonder about the PT-symmetry of the non-Hermitian Hamil-

tonians involved. For instance the term igE(t)/2 is only PT-symmetric if E(−t) = −E(t),

which means that it depends on the explicit form of the laser pulse. Taking for instance

a typical pulse for a laser field with frequency ω, amplitude E0 and Gaussian envelop-

ing function f(t), that is of the form E(t) = E0 sin(ωt)f(t), would result in a PT-invariant

Hamiltonian. However, the perfectly legitimate replacement sin(ωt) by cos(ωt) would break

the PT-invariance. Recall that in this context the electric field is treated classically. A

discussion of PT-invariance for a full quantum electrodynamic setting may be found in

[56, 57]. For the physical application in mind, PT-invariance is, however, not a relevant

issue here, since the pulse is always chosen such that hΦ(0) = EΦ(0) and hΦ(τ) = EΦ(τ )

and the eigenvalue problem is therefore only important in the time-independent case. We

treat the full solution of (4.1), the consequences on the non-Hermitian counterpart and

dressed states [58] elsewhere [59].

4.2 Gauge transformations for non-Hermitian Hamiltonian systems

For various applications it is extremely useful to transform the system to a different gauge.

For instance, when having weak fields the length gauge is suitable as it usually involves the

electric field just as an additional term, which is very useful for perturbation theory. The

Kramers-Henneberger gauge is most useful when one wishes to exploit the periodicity of the

field in Floquet analysis, especially for high frequencies. We now want to demonstrate how

gauge transformations may be used for non-Hermitian Hamiltonian systems. Replacing

for this purpose the wavefunction φ in the time-dependent Schrödinger equation related to

some Hermitian Hamiltonian h by φ = a(t)−1φ′, with a(t) being some unitary operator,

one obtains the well known identity, see e.g. [54, 5, 55]

i∂tφ
′ = h′(t)φ′ =

[

a(t)h(t)a(t)−1 + i∂ta(t)a(t)−1
]

φ′. (4.19)

Due to the relation φ = ηΦ it is straightforward to see that the gauge transformation for

the non-Hermitian system results to

i∂tΦ
′ = H ′(t)Φ′ =

[

A(t)H(t)A(t)−1 + i∂tA(t)A(t)−1
]

Φ′, (4.20)

where the similarity transformation (4.4) extends to the gauge fields as well as to the gauge

transformed time-dependent Hamiltonians

a(t) = ηA(t)η−1 and h(t) = ηH(t)η−1. (4.21)

– 15 –



Time evolution of non-Hermitian Hamiltonian systems

Note that the gauge transformations A(t) guarantee that physical observables remain in-

variant, when computed using the generalized inner product (2.6).

In the context of laser-matter interaction, there are standard gauge transformations,

from the length to the velocity gauge and from the velocity to the Kramers-Henneberger

gauge

al→v(t) = eib(t)x and av→KH(t) = eid(t)e−ic(t)p, (4.22)

respectively, involving the classical momentum transfer b(t), the classical displacement c(t)

and the classical energy transfer d(t), from the laser field to the system in question. Such

quantities are defined as

b(t) =

∫ t

0
dsE(s), c(t) =

∫ t

0
dsb(s) and d(t) =

1

2

∫ t

0
dsb(s)2. (4.23)

In the Hermitian case, the Hamiltonians in the length, velocity and Kramers-Henneberger

gauge are related as

hl(p, x) − xE(t) = hv(p + b(t), x) = hKH(p, x + c(t)). (4.24)

Physically, in the length gauge, the coupling with the field can be understood as a laser-

induced dipole moment. In the velocity gauge, such a coupling appears as a shift p → p−b(t)

in the canonical momentum, corresponding to the well-known minimal coupling procedure.

Finally, in the Kramers-Henneberger gauge, there is a displacement x → x − c(t) in the

coordinate x, which can be interpreted as time-dependent binding potential [60]. For their

pseudo-Hermitian counterparts H, one has in general

Hl(p, x) − η−1xE(t)η 6= Hv(p + b(t), x) 6= HKH(p, x + c(t)). (4.25)

Note that when in η = eq/2 the operator q is linear in x or p, the equalities hold in (4.25).

Otherwise, the similarity transformation will not induce a simple shift and will mix terms

in x and p (for concrete examples, see section 4.2.1).

We will compute the Hamiltonians discussed in section 3 in the velocity and the

Kramers-Henneberger gauges, starting from their length-gauge counterparts (Sec. 4.1).

Thereby, there exist two ways to proceed: either one applies the gauge transformations

a(t) to the Hermitian Hamiltonians h(t), and obtains its non-Hermitian counterpart em-

ploying the similarity transformation η, or one applies the transformations A(t) to the

pseudo-Hermitian Hamiltonians H(t) directly.

4.2.1 The generalized Swanson Hamiltonian

For the generalized versions of the Swanson Hamiltonian, the similarity transformation

η only depends on x, and therefore commutes with the transformation al→v(t) from the

length to the velocity gauge. This implies that al→v(t) = Al→v(t), so that the Swanson

Hamiltonian HS,v
n,m(α, g, t) together with its Hermitian counterpart in the velocity gauge

are easy to compute

HS,v
n,m(α, g, t) =

1

2
(p − b(t))2 +

α

2
xn − i

g

2
(pxm−1 + xm−1p − 2b(t)xm−1), (4.26)
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and

hS,v
n,m(α, g, t) =

1

2
(p − b(t))2 +

α

2
xn +

1

2
g2x2m−2, (4.27)

respectively.

The computation of the time-dependent Swanson Hamiltonian in the Kramers-Henneberger

gauge is slightly more involved, since the gauge transformation av→KH(t) no longer com-

mutes with the similarity transformation η. Hence,

Av→KH(t) = exp[− g

m
xm]eid(t)e−ic(t)p exp[

g

m
xm] (4.28)

In this case, the time-dependent Swanson Hamiltonian and its Hermitian counterpart are

computed to

HS,KH
n,m (α, g, t) =

p2

2
+

α

2
(xc(t))

n +
g2

2
(xc(t))

2m−2− i
g

2
(pxm−1 +xm−1p)− g2

2
x2m−2, (4.29)

and

hS,KH
n,m (α, g, t) =

p2

2
+

α

2
(xc(t))

n +
1

2
g2(xc(t))

2m−2, (4.30)

respectively, with xc(t) = x − c(t). Note that in this case the equalities in (4.25) do not

hold as there are terms in (4.29) occurring for which the displacement c(t) is absent. Such

type of terms result from a shift p → p− igxm−1 in the momentum, caused by η. This can

be seen explicitly when (4.29) is re-written as

HS,KH
n,m (α, g, t) =

(p − igxm−1)2

2
+

α

2
(xc(t))

n +
g2

2
(xc(t))

2m−2. (4.31)

4.2.2 Perturbed anharmonic oscillators

For perturbed anharmonic oscillators, the similarity transformation η depends on p. Hence,

it no longer commutes with al→v(t), so that

Al→v(t) = e−
g

α
peib(t)xe

g

α
p. (4.32)

On the other hand, such a transformation commutes with av→KH(t), from the velocity

to the Kramers-Henneberger gauge. Therefore, Av→KH(t) = av→KH(t). For the non-

Hermitian Hamiltonians, we then obtain

HAO,v
n (α, g, t) =

(p − b(t))2

2
+

α

2
xn +

iα

2

[
(n+1)

2
]

∑

m=1

(−2g

α

)2m−1( n

2m − 1

)

κ2m−1x
n+1−2m

HAO,KH
n (α, g, t) =

p2

2
+

α

2
xc(t)

n +
iα

2

[ (n+1)
2

]
∑

m=1

(−2g

α

)2m−1 ( n

2m − 1

)

κ2m−1(xc(t))
n+1−2m.

In this case, the equality sign in (4.25) hold in analogy to their hermitian counterparts

(4.24), which is expected, since q is a linear function of p.

Once more we see from this that the non-Hermitian formulation exhibits no advantage

over the Hermitian one. Even when in the time independent case the Hamiltonian H is
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simpler than its Hermitian counterpart h, this is spoiled by the introduction of the electric

field. Thus in such a scenario, we have in h a complicated potential term, but simple

dependence on the electric field, whereas in H we have a simple potential but a complicated

dependence on the electric field. Alternatively, one could add the field directly to H and

thus keep both terms simple, but then the similarity transformation, which is already fixed

by the time-independent part, will introduce non-Hermitian terms in h. Apart from this

we have seen above that simplicity in the Hamiltonians does not imply simplicity in their

eigenfunctions (see section 3.3.3).

4.3 Perturbation theory for non-Hermitian Hamiltonian systems

In most realistic situations, the time evolution of a physical system cannot be computed

exactly. For instance, even in a Hermitian framework, it is in general not possible to solve

the time-dependent Schrödinger equation for an atomic system with a binding potential

V (x) subject to an external laser field E(t). Under these circumstances it is necessary to

address the problem perturbatively. In this section, we will show how perturbation theory

can be extended to a non-Hermitian framework. As a starting point, let us consider a

time-dependent Hermitian Hamiltonian

h(t) = h0(t) + hp(t) (4.33)

where h0(t), hp(t) are also Hermitian and satisfy the time-dependent Schrödinger equation.

Provided that the time-evolution operators associated to h(t) and h0(t) both satisfy the

relation (4.3), the time evolution operator u(t, t′) associated to h can then be expressed by

means of Du Hamel’s formula [61, 54, 5, 55]

uh(t, t′) = u0(t, t
′) − i

∫ t

t′
uh(t, s)hp(s)u0(s, t

′)ds. (4.34)

By iterating Du Hamel’s formula, one obtains a perturbative expansion for the time evolu-

tion operator uh(t, t′) in hp ≪ h0. For instance, for a Hamiltonian of an atom in a potential

V in the presence of an external laser field

h(t) =
p2

2
+ V (x) + xE(t), (4.35)

one chooses hp(t) = xE(t) and hp = V (x) in the strong and weak field regime, respectively.

In the latter case h0(t) is the Gordon-Volkov Hamiltonian, i.e., the Hamiltonian of a particle

in the presence of the laser field only [62, 63].

As we have argued above, relations of the type (4.3) also hold for the time-evolution

operator U(t, t′) in (4.6). Provided we can sensibly separate H(t) = H0(t) + Hp(t) such

that U0(t, t
′) satisfies the relation (4.5) as well, Du Hamel’s formula also holds for the

non-Hermitian time-evolution operator

UH(t, t′) = U0(t, t
′) − i

∫ t

t′
UH(t, s)Hp(s)U0(s, t

′)ds. (4.36)
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The time-evolution operators may then be employed to compute various quantities of phys-

ical interest, such as for instance the transition probability

Pn←m =
∣

∣

∣
〈Φn|U(t, 0) |Φm〉η

∣

∣

∣

2
= |〈φn| u(t, 0) |φm〉|2 (4.37)

from an eigenstate |φm〉 to |φn〉 of the Hermitian field-free Hamiltonian h or eigenstate

|Φm〉 to |Φn〉 of the non-Hermitian field-free Hamiltonian H. We will consider first-order

perturbation theory with respect to the external laser field amplitude E0. Iterating (4.34)

it follows that to this order the time-evolution operator can be approximated by

u(1)(t, 0) = u0(t, 0) − i

∫ t

0
u0(t, s)xE(s)u0(s, 0)ds, (4.38)

where u0(t, 0) = exp[−iht]. The transition amplitude then reads

〈φn| u(t, 0) |φm〉 = δnme−iεnt − ie−iεnt 〈φn|x |φm〉
∫ t

0
ei(εn−εm)sE(s)ds, (4.39)

where the εn are the eigenenergies. Form parity considerations it is evident that 〈φn|x |φm〉 6=
0 only when m,n are not both even or odd.

Let us now employ these formulae for a concrete examples.

4.4 Harmonic oscillator with a cubic non-Hermitian perturbation

We consider the harmonic oscillator perturbed with a cubic non-Hermitian perturbation

in the presence of a laser field

HHO,l
3 (1, g, t) =: H(t) =

1

2
p2 +

1

2
x2 + igx3 + η−1xηE(t). (4.40)

Up to order g3 this becomes with (3.40)

H(t) =
p2

2
+

x2

2
+xE(t)+ ig

[

x3 + x2E(t) + 2p2E(t)
]

+g2E(t)
[

x3 − 2pxp
]

+O(g3) (4.41)

As pointed out earlier, we observe that the additional term in (4.40), which contains the

electric field has destroyed the simplicity of the time independent Hamiltonian. There is

an additional problem with regard to perturbation theory, because we have lost the clear

distinction of the potential term from the electric field term such that the separation into

an H0(t) and Hp(t) becomes more problematic, as now the two parameters g and E0, which

control the perturbative expansion, occur mixed, i.e. one has terms ∝ gE0, ∝ g2E0, etc.

The Hermitian setting is much more clear cut and in addition the computations are

far simpler as in the free field case the wavefunctions take on a simpler form as discussed

in section 3.3.3. Thus when we consider the Hermitian counterpart of (4.41) instead

h(t) = h + xE(t) =
1

2
p2 +

1

2
x2 + g2

[

3

2
x4 + 3S2,2 −

1

2

]

+ xE(t) (4.42)

one is able to overcome this problem. We may now evaluate the transition probability

(4.37) for the eigenstates |φm〉, |φn〉 of the field-free Hamiltonian hHO
3 (1, g) see (3.50), up
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to second order in g, such that u0(t, 0) = exp[−ihHO
3 t]. Choosing next a concrete form for

the laser field E(t) = E0 sin(ωt), that is a monochromatic driving field of frequency ω and

field amplitude E0, we may compute (4.39) for the Hamiltonian (4.42). Our results are

presented in figure 1.

Figure 1: (Color online) Transition probability for a perturbed and unperturbed harmonic oscillator

in the presence of a monochromatic laser field, as functions of the field frequency (panel (a)), and

of the time (panels (b) and (c)). The perturbed and the unperturbed labels refer to expansions up

to second and zero-th order in the parameter g respectively. We consider the transition from the

energy level n = 15 to m = 16 to first-order perturbation theory with respect to the external laser

field. The field amplitude is taken to be E0 = 0.003 a.u. and the coupling constant is chosen as

g = 0.04. The pulse length τ and the frequency ω are indicated in the figure.

Panel (a) displays the transition probabilities |φ15〉 → |φ16〉 or (|Φ15〉 → |Φ16〉) up

to first order perturbation theory in E0, when the system is subjected to a pulse of con-

stant duration τ , but with varying field frequency. For comparison, we also consider the

unperturbed harmonic oscillator h0 in the presence of an external laser field, i.e. h(t) in

(4.42) for g = 0. Our choice of relatively highly excited states is motivated by the fact that

according to (3.52) the difference between the perturbed and unperturbed system should

be more pronounced for larger values of n.

We expect to find that the system absorbs a single photon of frequency ω = εn+1− εn,

in order to make a transition from the initial state |φn〉 to the final state
∣

∣φn+1

〉

. Thus for

the unpertubed harmonic oscillator we expect a peak at ω(h0) = εn+1 − εn = 1 and for the

perturbed system we find from (3.52) that the peak should be at

ω(hHO
3 , n, g) = εn+1 − εn = 1 + g2 15

2
(n + 1)/2. (4.43)

We evaluate from this ω(hHO
3 , 15, 0.04) = 1.192, which agrees with our numerical calcula-

tion of the expression (4.39), resulting to 1.190.
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Next we fix the frequency of the laser field to be resonant with the transition frequency,

but vary the duration of the pulse. From standard computations (see e.g. [64]) it follows

that the resonance probability should increase with t2 when the system is tuned to the

transition frequency. This behaviour is confirmed by our perturbative calculations. In

Panel (b) of figure 1 one clearly observes that that for the perturbed harmonic oscillator,

the transition probability increases approximately quadratically in time, whereas the un-

perturbed system does not exhibit this behaviour as it is off-resonance. In panel (c) the

roles of the two systems are exchanged and we are now at the resonance frequency of the

unperturbed system whereas the perturbed system is off-resonance.

5. Conclusions

We have constructed various new equivalence pairs, which relate non-Hermitian Hamil-

tonians to their Hermitian counterparts. Our construction scheme is general and can be

employed to compute further pairs not considered this far.

We have demonstrated that when demanding the same similarity transformation to

hold for the time-dependent Hamiltonian system and their time-independent counterpart,

it is straightforward to develop a framework which describes the time evolution for non-

Hermitian Hamiltonian systems. Despite the possibility to compute all relevant quantities

in the non-Hermitian framework it turned out that it is usually easier to resort to the

equivalent Hermitian formulation of the same systems and perform the evaluations in that

context. In the future, it would be very interesting to investigate systems which constitute

equivalence pairs in the time-independent case, but have the equivalence relation broken

in the time-dependent scenario [59], such as (4.9).

As was already remarked by various authors before, one may question the usefulness

of PT -symmetry altogether. First, despite the fact that it is a symmetry, it is does not

guarantee that the spectrum of the non-Hermitian Hamiltonian will be real, due to the anti-

linear nature of the PT -operator. Second, in the end it will come down to studying pseudo-

Hermitian Hamiltonians, which not only constitute a wider class of systems, but in addition

do not suffer from the shortcoming that the spectrum might not be positive and real after

all. Third, we have used the fact that the time-independent non-Hermitian Hamiltonian is

pseudo-Hermitian in formulating the time-evolution operator U . Just having PT -symmetry

as the only principle at one’s disposal would make this task very difficult. Of course using

the relation η2 = PC one may re-express all quantities in terms of CPT -operators, but

that would really mean to use the similarity transformations as a construction principle.

Fourth, apart from the time-independent Hamiltonian all quantities seem to be simpler

in the Hermitian formulation, e.g. see above for the wavefunctions, the time-dependent

Hamiltonians in their various gauges and perturbation theory.

Despite its limited constructive power PT -symmetry remains useful in the sense that

it is a very simple and transparent property, which can be read off directly from the

Hamiltonian and thus constitutes a tool which can be used to identify potentially interesting

non-Hermitian Hamiltonians.
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