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Abstract

This thesis investigates analogy as a paradigm for retrieving, understanding and

customising reusable specifications during requirements engineering. Cooperation

between software engineers and support tools is necessary for effective analogical

reuse. Retrieval uses a computational implementation of analogical reasoning to search

and match many reusable specifications. On the other hand understanding, transferring

and adapting specifications requires cooperation between the tool and software

engineer. Cooperative support was designed for less-experienced software engineers

with most to gain from successful specification reuse. Deliverables from this research

have implications for software engineering, artificial intelligence, cognitive science and

human-computer interaction.

Specification retrieval is founded on a framework of software engineering analogies.

This framework includes a set of domain abstractions describing key facts about

software engineering domains. A computational model of analogical reasoning which

matches domain descriptions to these abstractions was designed, implemented and

evaluated during user studies with a prototype reuse advisor. An intelligent dialogue

acts as a front-end to this retrieval mechanism by acquiring key domain facts prior to

retrieving domain abstractions. This dialogue was designed from empirical studies of

software engineering behaviour during requirements capture and modelling.

Design of support tools for specification understanding and transfer was based on

cognitive task and reasoning models of software engineering behaviour during

analogical reuse and mental models of analogical understanding. Two empirical studies

of inexperienced software engineers identified problematic mental laziness manifest as

specification copying. A third study of expert software engineers who successfully

reused specifications identified strategies for effective reuse. Detailed findings from all

three studies informed the design of tool-based support for specification understanding

and transfer. Findings also have implications for the design of tools to support other

requirements engineering activities.

14



Chapter 1

1: Overview: Specification Reuse by
Analogy

The possibility of reusing existing requirement specifications to develop new systems has

been brought closer by the computer-aided software engineering (CASE) revolution.

Increased automation of software development tasks suggests that repositories containing

artifacts from the analysis, design and coding phases are all available for reuse. Indeed,

reusing products from the early phases of software development appears to be a natural

progression from the code and object libraries which have dominated research into

software reuse over the last 30 years. Code reuse has always promised gains in the

productivity and quality of software. Successful reuse of specifications and designs early

in the development life cycle can increase these gains since omissions and errors in new

specifications can be identified and corrected at an early stage (Boehm 1981).

Productivity can also be increased by cross-application transfer from a repository

containing specifications developed for many different domains. This thesis proposes the

reuse of existing requirements specifications to assist specification of new systems,

thereby maximising the payoff from specification reuse by focusing on inter-domain

reuse early in the software development life cycle.

Analogy is proposed as an effective paradigm for requirements specification reuse.

Existing reuse paradigms such as faceted classification schemes (e.g. Prieto-Diaz &

Freeman 1987) and abstract templates (e.g. Harandi & Young 1985) have proved

ineffective when scaled up to support large-scale reuse between partially-similar systems.

Analogy, on the other hand, allows the transfer of knowledge from a previous solution to

a current problem solving episode (Hall 1989). This transfer is justified by a common

underlying knowledge structure rather than by syntactic similarities between domains

(Carbonell 1985, Gentner 1983), thus supporting reuse between specifications which

share a common underlying goal and domain structure, regardless of the syntactic

differences between their applications. Analogy has been proposed elsewhere as a

paradigm for large-scale reuse (e.g. Finkelstein 1988, Dubisy & Lamsweerde 1990,

Miriyala & Harandi 1991), however the processes and knowledge required to reason

analogically during specification reuse are poorly understood. This thesis proposes a

model of analogical specification reuse based on investigations of the process by which

reuse may best be achieved, and a definition of analogical matching between software

engineering domains. This definition identifies critical determinants of software

15



engineering analogies as a basis for retrieving and explaining specifications. Tool support

for subsequent understanding and transfer of retrieved specifications is founded on

logical and empirical models of how specification reuse may best be achieved. First

however, problems inherent in requirements engineering were investigated as a

background to this research.

1.1 Requirements Capture: the Pitfalls

Requirements capture is well-recognised as a complex and error-prone process (e.g.

Reubenstein & Waters 1991, Roman 1985, Meyer 1985) encompassing social,

communication and technological issues. Requirement specifications are defined as

stating the desired functional characteristics of some component independent of any

actual realisation, while design specifications describe the component's implemented

internal structure and behaviour (Roman 1985). Requirements specifications differ from

design specifications in that they state current problems, desired goals and facilitate

understanding while design specifications render physical and logical structures that

implement these requirements and prescribe the system's functionality. This focus on

integration in the real world makes requirements engineering a much softer, more

difficult task than other steps in software development. For instance, this view of

requirements engineering can preclude the complete capture of all relevant domain

knowledge, thus limiting the expertise and capabilities of any intelligent requirements

engineering toolkit.

Requirements engineering can be viewed as a social and communication as well as a

technological process. Scacchi (1984) suggests that requirements specifications are

inherently social objects in which people find meaning. The development of a

requirements specification must be understood as the outcome of a complex social as

well as technological process. Curtis et al.'s (1988) extensive studies of 17 large software

projects revealed important communication difficulties between software engineers, users

and business managers during the early stages of software development:

'developing large software systems must be treated, at least in part, as a learning,
communication and negotiation process. Much early activity on a project involved
learning about the application and its environment, as well as new hardware, new

development tools and languages, and other evolving technologies'.

Curtis and his colleagues also identified the thin spread of domain knowledge between

software developers which left the fate of projects in the hands of powerful and

knowledgeable individuals. They propose that, at the broadest level, software
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development environments must become a medium of communication to integrate

people, tools and information (e.g. Olson et al. 1990). A social study of requirements

capture and investigation of communication difficulties during requirements engineering,

although important, are outside the scope of this thesis. Rather, this research investigates

specification reuse as one paradigm for overcoming errors, omissions and ambiguities in

individual understanding of requirements specifications.

Requirements specification has proven to be a problematic activity. Meyer (1985)

identified reoccurring patterns of deficiencies in informal requirements documents

routinely produced by industry which he labelled as the seven deadly sins of the specifier

(see Table 1.1). Roman (1985) also identified characteristics of requirements

specifications which are problematic for effective requirements capture, including

incompleteness, inconsistency and ambiguity. Formalisation of requirements

specifications has been proposed as one solution to these problems (e.g. Meyer 1985,

Reubenstein & Waters 1991), however, many of the implicit premises of formal methods

do not hold in requirements engineering. Indeed, it may be productive to maintain

inconsistencies and incompleteness, for instance conflict and imprecision can foster

creativity. Furthermore, it is unlikely that a single formalism can capture the richness of

requirements knowledge. Instead, tool support for requirements engineering should

encourage intuition and communication among end-users and software developers

possibly through continued use of informal structured analytic notations such as data flow

diagrams (De Marco 1978). Such a paradigm differs from formal approaches in its

recognition of the softness of the unstructured and informal task. The denial of the

existence of a complete formalism does not mean that it is impossible to formalise

requirements engineering. Rather it should be recognised that tool support for

requirements capture needs a two-way transition between formal and informal

representations during both requirements acquisition and validation.

the presence in the text of elements irrelevant to the problem
at hand;
the existence of problems not covered by the requirements
specification, i.e. incompleteness;
inclusion of implementation-level data in specifications;
inconsistency between definitions of two or more elements
that define system features in an incompatible way;
specification definitions that make it possible to interpret a
problem feature in at least two different ways;
the presence of specification components that use features
of the problem not defined until later in the specification;
the presence of specification elements that define problem
features in such a way that a candidate solution cannot be
realistically validated with respect to those features.

Table 1.1 - Meyer's seven deadly sins in requirements specifications
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1.2 A Definition of Requirements

A definition of requirements is needed before reuse of requirements specifications can be

investigated. This thesis defines functional requirements as stating the desired functional

characteristics of some component independent of its implementation. Functional

requirements can be of three types:

• problem-driven requirements are caused by failure of the old system which must be

corrected in the new system;

• goal-driven requirements identify new system features to be added in the new

implementation;

• constraints describe events, domain states and functions which must or should not occur

in the new implementation.

All three types of requirement are expressed using natural language statements rather

than formal definitions of needs. Current requirements engineering research has also

focused on non-functional as well as functional requirements, however non-functional

requirements are poorly understood, thus investigation of analogical reuse of non-

functional requirements in this thesis is an unrealistic research aim. Rather, this thesis

investigates analogical specification reuse to assist more effective capture and modelling

of functional requirements.

It is also important to distinguish between functional requirements and reusable

specifications. Specifications held in CASE repositories represent domain knowledge

about the problem rather than detailed functional characteristics of the desired system,

hence analogical specification reuse provides domain knowledge to assist the completion

and disambiguation of functional specifications. Thus, an important emphasis of this

research remains the validation of requirements specifications by resolving ambiguities,

incompleteness and inconsistency in their domain descriptions. As such, it aims to

improve the definition of requirements which are implicit in the description of software

engineering domains rather than a direct attempt to capture, model and validate

functional requirements. An overview of the proposed analogical reuse scenario is shown

in Figure 1.1 on the following page.
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1.3 Specification Reuse: Intelligent Support

This thesis proposes specification reuse as a paradigm for supporting the requirements

engineering phase of software development. Previous research has identified the need for

both domain and method knowledge to support the early phases of software development

(Frenkel 1985, Fickas 1987, Curtis et al. 1988, Fickas & Nagarajan 1988, Puncello et al.

1988, Loucopoulos & Champion 1989, Sharp 1991). At the broadest level, domain

knowledge represents all aspects of the problem domain being analysed (Arango &

Freeman 1985) as well as high-level solutions in these domains. On the other hand

method knowledge refers to structured analysis techniques such as SADT (Ross 1977)

and SSA (De Marco 1978), including procedural steps which guide the analytic process

(e.g. the Structured Systems Analysis (SSA) method) and notations (e.g. data flow

diagrams) which represent the artifacts from that process (De Marco 1978). In many

existing intelligent systems which support requirements engineering (e.g. Lubars &

Harandi 1986, Harandi & Lubars 1985, Tsai & Ridge 1988, Loucopoulos & Champion

1989 Katsouli & Loucopoulos 1991, Johnson 1991, Lee & Harandi 1991a, 1991b)

domain and method knowledge are stored separately, however, empirical studies have

revealed that expert software engineers remember and recall abstract and concrete

specifications (e.g. Guindon & Curtis 1988, Guindon 1990) in which domain and method

knowledge are integrated in common reusable patterns. This would suggest that reuse of

specifications expressed using structured notations is one form of domain and method

knowledge which could 'simulate' expert analytic performance. In particular,

specification reuse can exploit analogical similarities to identify ambiguity,

incompleteness and inconsistency in new specifications as well as improve productivity

during the costly requirements engineering phase of software development. They can also
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provide a basis for communication by describing complex concepts in terms of well-

understood, existing specifications.

1.3.1 Different Forms of Specification Reuse

Specification reuse can occur in several forms, although it is only likely to benefit

software engineers if specifications are reused in their original format, otherwise the

effort required to 'tinker' with specifications beforehand (i.e. design for reuse) may offset

benefits from reuse. Furthermore, considerable effort is necessary to derive generic

designs and templates (e.g. Harandi & Young 1985, Fugini et al. 1991) while the

difficulty of modelling domains to support multiple instances of reuse (Arango 1988)

may discourage software reuse at its outset. On the other hand, specifications currently

held in CASE tools often describe large applications implemented using millions of lines

of code. Furthermore, additional specifications for reuse can be derived by reverse

engineering code of existing systems. These specifications are documented using

structured analysis notations such as data flow or process structure diagrams (e.g. De

Marco 1978, Jackson 1983 respectively) as well as narrative descriptions of entities and

processes such as logical process outlines (Cutts 1987). As such, reusable specifications

provide a rich seam of domain and method knowledge not available using alternative

paradigms. Indeed, specification reuse can provide the greatest payoff from minimal

preparation effort compared with alternative paradigms for intelligent requirements

engineering support (e.g. Dardenne et al. 1991).

1.3.2 Alternative Techniques

Domain analysis and domain modelling are currently the most popular techniques for

eliciting and representing knowledge to support the requirements analysis process

(Arango 8c Freeman 1985), despite being difficult and time-consuming to achieve.

Previous studies (e.g. Arango 1988) have shown that domain analysis requires

experienced domain analysts for lengthy periods, so considerable investment in time and

effort is needed to provide long term benefits to the software development process.

Unfortunately such investment may not be justifiable in current software engineering

environments dominated by project deadlines and shortages in experienced staff.

Specification reuse can overcome this knowledge acquisition bottleneck by exploiting

domain knowledge held in readily-available specifications. Furthermore, this knowledge

can be represented as logical specifications which may be more readily applicable to the

requirements specification process. Knowledge- or transformation-based (e.g. Katsouli &

Loucopoulos 1991, Barstow 1985) paradigms represent domain knowledge as isolated
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rules which ignore the complex knowledge structures of software engineering domains.

On the other hand, reusable specifications incorporate complex and context-dependent

domain knowledge and designed solutions which can be reused in similar software

development scenarios. As a result, they are a more available and applicable source of

domain knowledge during requirements engineering.

1.3.3 Advantages of Effective Specification Reuse

Successful reuse of specifications can support the requirements engineering process in

many ways:

• the consistency, completeness and clarity of a system's functional requirements can be

improved through reuse of specifications developed for similar applications;

• non-functional requirements may possibly be reused based on similarities between

functional requirements, for example two systems with equivalent functionality and

structure may also have similar interface, performance and operating constraints.

Further research beyond the scope of this thesis is required to examine reuse of non-

functional requirements;

• reusable specifications can provide domain-specific methods with which to analyse

new domains. Ryan (1988) reports that providing software engineers with method

knowledge alone failed to enhance analytic performance. Domain-specific knowledge

in reusable specifications may be used to guide and control analytic processes more

effectively, by highlighting critical system requirements, functionality, structure and

scope (e.g. Puncello et al. 1988);

• reusable specifications can provide solution templates for specifying new systems. This

may be particularly beneficial for inexperienced software engineers because empirical

studies of program design tasks suggest that novice software engineers do not have

preformed memory schemata to recall and are unable to structure and scope the domain

space effectively (e.g. Adelson 1984, McKeithen et al. 1985, Koulek et al. 1989, Rist

1991);

• prototyping during system design has long been advocated as a paradigm for software

development (e.g. Crinnion 1991, Luqi 1989, Luqi & Ketabchi 1988). Specification

reuse encourages this paradigm through provision of analogical specifications from

which to prototype new applications;

• reusable specifications can also be used to evaluate system specifications developed

elsewhere. Empirical studies of analytic behaviour (e.g. Fickas et al. 1988, Guindon &

Curtis 1988) suggest that experienced software engineers evaluate solutions

successfully through scenario-based simulation, so reusable specifications could
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provide inexperienced software engineers with alternative scenarios for testing new

specifications;

• matched reusable specifications can also constrain the search space of reusable design

modules by suggesting: (a) candidate design modules to meet functional requirements

in the specification, and (b) the structure and relationship between design modules. In

addition, Lange & Moher (1989) and Green et al. (1992) report that locating design or

code modules during reuse is difficult, so analogically-matched specifications may be a

useful guide for locating design objects.

These potential advantages over existing reuse paradigms justify analogical specification

reuse as a paradigm worthy of investigation. The remainder of this chapter examines the

analogical specification reuse paradigm in more detail. First, an example of analogical

reuse is presented to demonstrate the scale and potential pitfalls of the paradigm, then a

high-level model of the analogical reuse process is proposed to identify the three major

aims of this thesis. Finally these aims are examined in terms of the necessary theoretical

and empirical bases for tool support.

1.4 Analogy in Specification Reuse

Specification reuse across domains involves analogical reasoning. However, research in

artificial intelligence (e.g. Hall 1989), cognitive psychology (e.g. Gentner 1983) and

systems management (e.g. Silverman 1983, 1985) suggests that analogical reasoning may

be complex and difficult to achieve. Difficulties which can arise are best demonstrated by

a simple example which will be referred to and expanded on throughout this thesis. This

example analogy supports reuse between a source theatre reservation specification and a

target university course administration specification.

1.4.1 An Analogy between a Theatre Reservation and University
Course Administration Problem

A theatre reservation system allows theatregoers to reserve seats for any performance.

They can reserve one or a block of seats, and seats vary in price. Theatre staff use the

system to reply to enquiries and to manage reservations. A waiting list is created

whenever a performance is overbooked, and whenever a cancellation is made people are

transferred from the waiting list and allocated to the seats made available. The context

diagram (De Marco 1978) for this theatre reservation system is given in Figure 1.2(a).

A university course administration system manages applications to a full-time and part-
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time MSc in Systems Analysis. The course administrator uses the system to reply to

enquiries on place availability and course requirements, and to manage the annual takeup

of course places. Candidate students are offered conditional places on either course, each

of which has an upper limit of places during an academic year. A waiting list is used for

additional students who cannot be offered places immediately. Students on the waiting

list have first option on any places which become available due to cancellations. The

context data flow diagram for this system is given in Figure 1.2(b).

Figure 1.2(a) - context data flow diagram for the
theatre reservation system

Figure 1.2(b) - context data flow diagram for the
course administration system

Data flow diagrams illustrate the potential reuse which can be exploited from this

analogy. Reuse is also possible at more detailed levels within data flow diagrams,

between processes (e.g. reservation of theatre seat/course place), data stores (e.g. theatre

booking/course application) and external agents (theatregoer/student), and between

specifications represented using other notations (e.g. entity-relationship models, entity

life histories etc.). These mappings indicate a good analogical match between the two

domains.

The theatre reservation/university course administration analogy demonstrates how

analogical matching can maximise the potential payoff from reuse by supporting reuse

across applications. An important feature of analogy is that similarities occur between
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deep knowledge structures rather than syntactic similarities (Gentner 1983). For instance,

the analogical match between the two domains can occur because both involve the

allocation of resources to meet prespecified constraints, although other reasons also exist.

Therefore, the first major aim of this research was to identify critical determinants of

software engineering analogies as a basis for their retrieval, selection and explanation.

This work is elaborated in chapter 3.

1.4.2 A Contrast Between Analogical Reasoning & Other Software
Reuse Strategies

This thesis investigates analogy as a paradigm for large-scale specification reuse, so the

analogical reasoning process was contrasted with that of conventional software reuse

typified by keyword retrieval (e.g. Wood & Sommerville 1988), faceted classification

(e.g. Prieto-Diaz & Freeman 1987), abstraction (e.g. Fugini et al. 1991) and object-

orientation (e.g. Lenz et al. 1987). Analogical reasoning involves three major steps (Hall

1989), namely recognition of the analogy, comprehension of the analogy by developing

and justifying analogical mappings between the source and target problems and transfer

of the source analog to the target across these mappings. Each of these steps mirrors a

major step in existing software reuse paradigms, namely retrieval of candidate

components for reuse, selection of the best-fit candidate, and adaptation of that

component to fit the new problem. Correspondences between the analogical reasoning

and software reuse paradigms are shown in Figure 1.3. Each is examined in detail.

02222=23

repository of
specifications

Figure 1.3 - overview of the
3 major phases of analogical

specification reuse
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Analogical Recognition

Analogical recognition matches each specification in the repository to key facts about the

target problem. It is more complex than retrieval of formally-defined code modules (e.g.

Burton et al. 1987) since requirements analysis often begins with an incomplete,

inconsistent and ambiguous statement of needs. In addition, key features may be difficult

to identify, for example the course administration and theatre reservation specifications

may be matched by similarities between any number of features, including functional

goals (maximise allocation of theatre reservations/applications), domain structures (one

theatre contains many seats, one course has many places) and specification components

(allocated seats, allocated places). One solution advocated by this thesis is to view

recognition as an iterative process of: (i) retrieving candidate specifications; then (ii)

elaborating the current statement of system needs in light of the improved domain

understanding from the reusable specification. First however, critical determinants of

software engineering analogies must be identified as a basis for analogical recognition.

Analogical Comprehension

Retrieved specifications must be understood before successful reuse can occur. However,

effective analogical understanding requires extensive knowledge of the source and target

domains, for example consider the knowledge required to justify component reuse in the

example analogy. Inevitably, reuse of poorly understood specifications will lead to poor

transfer of reusable components manifest as omitted components and incorrect mappings.

The need to effectively understand reusable artifacts has also been stressed in current

software reuse research (e.g. Biggerstaff 1987, Fischer 1987, Elzer 1991, Huff &

Thompson 1991). However, few concrete conclusions exist about the support needed for

component understanding. Therefore, a second aim of this thesis is to determine how

specifications and analogical links between them may be understood.

Analogical Transfer

Analogical transfer involves reuse of specification components to construct a new

system. It is equivalent to modifying white-box code modules during software reuse

(Biggerstaff & Richter 1987), during which the functionality and structure of the module

are understood and customised. However, specification reuse across applications requires

extensive customisation to fit a reusable specification to the target domain, for example

most data flow diagram components in Figure 1.2 must be changed during reuse in the

example analogy. The importance of adaptation during analogical transfer should not be
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underestimated. However, little is known of how to adapt reusable components to fit new

domains, so the third major goal this thesis investigates how effective transfer of

analogical specifications can best be achieved.

Differences between Analogical Reasoning and Software Reuse

The three major software reuse steps correspond to the main steps during analogical

reasoning, although major differences exist within each step. Analogical recognition

requires iterative specification retrieval and elaboration until the needs statement is

sufficiently complete. Subsequent understanding of retrieved specifications may be a

difficult and error-prone task, similar in nature to comprehension of large and unfamiliar

programs (e.g. Pennington 1987), but with additional, complex analogical mapping

between domains. Analogical transfer differs from the black-box reuse proposed by many

researchers (Dusink & Hall 1991) because it needs extensive adaptation of the

specification. Previous approaches to reuse emphasised software construction from many

black-box components, thus as a result of this and the low level of current reuse practice,

issues affecting customisation of reusable software are poorly understood. These major

differences suggest the need for a radically new paradigm which is investigated in the

three major aims of this thesis, namely identification of key determinants of software

engineering analogies and effective strategies for analogical comprehension and transfer.

1.4.3 How to Achieve Specification Reuse by Analogy

This thesis proposes a human-oriented reuse paradigm in the form of tool support which

cooperates with an individual software engineer during specification reuse, see Figure

1.4. Previous research suggests that analogical reasoning is knowledge-intensive (Russell

1989), for instance the theatre reservation/university course administration example needs

extensive knowledge of the source and target domains. Some source knowledge may be

captured in the repository, however, knowledge of the target domain often is only known

to the end-user or the software engineer. As a result, this thesis hypothesises that

analogical reasoning requires extensive human involvement to be effective.

Unfortunately previous studies (e.g. Gick & Holyoak 1980, 1983, Cheng & Holyoalc

1985, Cheng et al. 1986) suggest that analogical reasoning during problem solving is

difficult, so tool support is proposed to assist this analogical reasoning. The division of

work between tool support and the software engineer depends upon their respective

abilities to retrieve, comprehend and transfer reusable specifications analogically, which

in turn is determined by their knowledge and reasoning capabilities, as shown in Figure

1.5. This thesis proposes that analogical reasoning will be shared between the software
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scope of this research

software
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Figure 1.4 - scenario of use with reuse advisor

Analogical retrieval must be a tool-based activity because the search space for

analogically-matched specifications is too large for unguided browsing by software

engineers, especially if successful uptake of CASE technology leads to organisation-wide

specification repositories. As a result, a computational model of analogical reasoning will

be needed to retrieve specifications. It will differ from existing models such as the SME

(Falkenhainer et al. 1989) and ACME (Holyoak & Thagard 1989) in that it uses minimal

domain knowledge during retrieval to maximise the leverage from the resulting

analogical match. Some human involvement will be needed during this retrieval phase, to

provide domain knowledge about the new problem and agree candidate analogical

matches. On the other hand, the limited availability of domain knowledge and ability to

reason analogically indicate that more human involvement will be necessary during

analogical comprehension and transfer of specifications. Specifications must be

understood to ensure their correct selection, transfer and adaptation. Leaving analogical

comprehension and transfer to the software engineer permits reuse from many different

specification notations including entity-relationship modelling, data flow diagrams or

English text, thus maximising the payoff from the analogy. This cooperative paradigm is

examined more closely below during an overview of the analogical reuse process.
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three phases of analogical specification reuse

1.5 An Intelligent Advisor for Reuse

This thesis proposes an intelligent advisor to support a single software engineer during all

three steps of analogical reuse. Three important theoretical and empirical questions were

investigated as the major aims of this research: why do analogies between software

engineering domains exist, how can software engineers understand such analogies, and

how do software engineers reason analogically to exploit reusable specifications:

• tool-based retrieval and explanation of specifications must be founded on a definition

which states why analogies exist. The cognitive psychology and artificial intelligence

disciplines have proposed many different and often contradictory theories of analogical

reasoning. Software engineering analogies will be examined using these existing

theories to determine a set of critical analogical determinants for tool-based retrieval
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and explanation of analogical specifications;

• the tool must also work cooperatively with a single software engineer during analogical

specification reuse. To be effective this cooperation must be founded on how software

engineers reason during requirements capture and analogical reuse. Unfortunately little

is known of how software engineers analyse complex problems or reuse unfamiliar

analogical specifications. Empirical investigations of software reuse are limited to

single-user studies (Langer & Moher 1989) while cognitive issues during the systems

analytic and design processes have received only small scale empirical research

(namely Vitalari & Dickson 1983, Guindon & Curtis 1988, Fickas et al. 1988, Guindon

1990). Similarly, scant research has been paid to determining effective strategies and

explanation tactics for analogical reuse. This thesis proposes that design of effective

tool support must be founded on empirically-derived models of working and reasoning

practices of software engineers during specification reuse. This empirical basis for tool

design will be derived from empirical studies of reuse of analogically-matched

specifications.

An overview of the problems facing analogical specification reuse are shown in Figure

1.6. Three major components of an advisor are envisaged. First, the problem identifier

will interact with the software engineer to acquire key facts about a domain. Specification

retrieval will be achieved by entering these facts into a computational implementation of

analogical reasoning known as the analogy engine. Analogical specifications retrieved

from the repository will then be passed to the specification advisor. This must assist the

software engineer to understand each analogy, select the most appropriate specification to

reuse and customise that specification to fit the target domain.

Figure 1.6 - an overview of the analogical reuse problem
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1.6 Thesis Rationale & Organisation

The remaining six chapters describe how the three major aims of this research were met,

see Figure 1.7. Chapter 2 investigates the applicability of existing reuse paradigms to

specification reuse. Examples of analogical specification reuse demonstrate the need for

an alternative paradigm for specification reuse and cooperative tool support for reusing

specifications. The remaining chapters are outlined in terms of its contribution to

development of the intelligent advisor. 	 •
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Figure 1.7 - overview of the rationale behind
the author's research

Chapter 3 presents a theoretical framework of software engineering analogies for

retrieving and explaining specifications. Example analogies are used to evaluate the

meta-schema for representing key domain facts and the logical model of domain

abstraction derived from existing cognitive and computational models of analogical
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reasoning.

Chapter 4 represents four empirical studies of software engineering behaviour which

show analogy to be an effective paradigm for specification reuse and inform the advisor's

design. A first study describes a controlled experiment to show the effectiveness of

reusing abstract and concrete analogical specifications on the analytic performance of

inexperienced software engineers. A second study reports software engineers' reasoning

strategies to inform design of the problem identifier (see Figure 1.6) and demonstrate

problems which can be overcome by analogical reuse. The third and fourth studies elicit

cognitive task, reasoning and mental models of analogical specification reuse. The third

study identifies reuse errors to inform the specification advisor's diagnostic and error-

detection module. The fourth study identifies experts' successful analogical

comprehension and transfer strategies which can be followed by inexperienced software

engineers.

Chapter 5 draws on the logical model of software engineering analogies from chapter 3

and the empirically-derived models of analogical reuse practice from chapter 4 to design

the advisor's three components:

• the problem identifier acquires key facts about a domain prior to matching reusable

specifications. This acquisition process will be informed by the logical model of

software engineering analogies developed in chapter 3 and results from the first

empirical study in chapter 4;

• design of the specification advisor will be informed by empirical findings from other

studies in chapter 4. A diagnostic capability identifies likely misconceptions about

analogies based on errors exhibited by inexperienced software engineers in study 3. The

advisor will also encourage inexperienced software engineers to adopt effective

comprehension and transfer strategies exhibited by successful expert reusers in study 4;

• the analogy engine matches and retrieves analogical specifications using a

computational implementation of the logical model of software engineering analogies

defined in chapter 3.

Chapter 6 describes a partial implementation of an intelligent reuse advisor and its

evaluation in user trials with inexperienced software engineers. Both the problem

identifier and analogy engine were implemented and evaluated, thus allowing software

engineers to enter key domain facts which could be analogically matched for goodness of

fit to candidate specifications. This evaluation indicated the effectiveness of the

cooperative paradigm for analogical specification reuse.
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Chapter 7 summarises this research and proposes future directions. Implications are

discussed for tools which support cooperation between a tool and a single user. In

particular, studies to extend and validate the proposed framework of software engineering

analogies are outlined and justified. This research is expected to inform future versions of

advisors for intelligent reuse and requirements engineering. The contribution of each

chapter to the development of the advisor is shown in Figure 1.8.

Figure 1.8 - focus of research effort by chapter

1.7 Contributions

This interdisciplinary doctoral research feeds off and has implications for research in

software engineering, artificial intelligence and human-computer interaction, similar to

implications put forward by Basili & Musa (1991):

Software Engineering:

• example-based analysis of specification reuse indicates that analogies are more

widespread than existing software reuse research has suggested;

• a framework of software engineering analogies identifies key analogical determinants
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for retrieval and explanation of specifications;

• a tentative model of domain abstraction for software engineering is proposed. Current

reuse of domain cliches (e.g. Reubenstein 1990, Reubenstein & Waters 1991) and

object-oriented approaches (e.g. Coad &Yourdon 1990) are not founded on any theory

of abstraction, so knowing what to abstract can augment these approaches;

• a prototype version of the advisor has been implemented and evaluated to indicate the

effectiveness of analogical specification reuse;

• analogical reuse is proposed and demonstrated as a paradigm for increasing software

development productivity and the quality of requirements specifications.

Human-Computer Interaction/Cognitive Science:

• a cognitive task model of inexperienced software engineers' reasoning and analytic

strategies is proposed, in contrast to previous studies which examined expert analytic

behaviour (e.g. Guindon 1990, Vitalari & Dickson 1983). This model has implications

for the design of the reuse advisor and requirements engineering tools;

• cognitive task and reasoning models of analogical specification reuse and mental

models of analogical comprehension are also proposed to describe software engineers'

behaviour during reuse of analogically-matched specifications. They extend our limited

knowledge of how software engineers reuse;

• cognitive task models can inform more general process and activity models of

analogical specification reuse;

• existing cognitive and computational theories of analogy are extended. Previous

theories may have oversimplified analogical reasoning and ignored inter-individual

differences and the importance of domain knowledge in analogical reasoning.

Artificial Intelligence:

• a computational implementation of the logical model of software engineering analogies

has been developed, similar to several existing computational engines (e.g.

Falkenhainer et al. 1989);

• the success of a cooperative approach to specification reuse is indicated by evaluation

of the prototype which augments the problem solving skills of humans with artificial

intelligence tools (e.g. Kolodner 1991, Woods & Roth 1988);

• the framework of software engineering analogies can be proven as a computational

reasoning process.
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Chapter 2

2: Specification Reuse by Analogy

This chapter examines specification reuse in terms of existing software reuse paradigms

such as keyword retrieval and domain analysis to demonstrate analogy as a more

effective paradigm. A more detailed example shows analogical specification reuse

between real-time as well as business information applications.

2.1 The Air Traffic Control/Flexible Manufacturing
System Analogy

This example describes an analogy between an air traffic control (ATC) and flexible

manufacturing system (FMS). A detailed version is given in Appendix D. Although the

ATC and FMS domains may appear quite different, analogy can support extensive reuse

between two specifications.

2.1.1 The Air Traffic Control System

The ATC system monitors the position of commercial aircraft flying in the vicinity of an

airport. Aircraft may be flying to, coming from, or flying over the airport. The aims of the

system are to ensure aircraft do not risk collision by coming too close to each other, and

to track aircraft to ensure they are following the agreed flight plan (Perry 1991, Agard

1973).

The sky around the airport is structured to improve the control of aircraft movements.

Aircraft fly along unidirectional air corridors at different heights, as described in Figure

2.1. To ensure safety the system must alert the air traffic controller whenever two aircraft

come too close. Aircraft are surrounded and protected by an air space which no other

aircraft is permitted to enter. This air space is a three-dimensional area which exists

within a given air corridor and height (see Figure 2.1). The system monitors each aircraft

to ensure it does not deviate from either the air corridor or the flight plan. Each flight plan

is divided into a number of flight steps, which are given by the air traffic controller to

direct the aircraft to use given air corridors at certain times during the flight.

A level-0 data flow diagram (DFD) representing the air traffic control system is given in

Figure 2.2.
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Figure 2.1 - Three-dimensional model of the airways within one geographical area:
aircraft fly at different heights along air corridors

2.1.2 The Flexible Manufacturing System

A company manufactures products with the latest computerised production techniques,

and keeps human intervention in the production process to a minimum. During

manufacture products are passed along lines of machines by a complicated series of

conveyor belts and automatic handlers. The aims of the flexible manufacturing system

(FMS) are two-fold: (i) to ensure products do not collide, by warning the production

controller if two products are in the same manufacturing section, and (ii) to ensure

products are manufactured according to the steps in their production plan, which dictates

the machine order which each product must follow. The FMS is described pictorially in

Figure 2.3 and a level-0 DFD describing the system is given in Figure 2.4.
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Figure 2.3 - pictorial representation of the
flexible manufacturing system

2.1.3 Discussion of the ATC/FMS Analogy

Both the ATC and FMS domains have objects moving in a space, risking collision and

being guided by a plan to reach a destination. These basic similarities suggest the

existence of a good analogy which can support extensive reuse between the ATC and

FMS specifications (see Figures 2.2 and 2.4 - reused DFD components are identified by

their similar physical position in the diagrams). Reuse can occur between external

entities, inputs and outputs, and data stores, as well as between processes. For example,

reuse is possible between the MONITOR and REPORT processes, as well as between the

two external entities RADAR and INFRARED SENSOR, and between the AIR

CORRIDOR and MACHINE TRACK data stores.

2.2 Domain Analysis and Domain Modelling

The ATC/FMS analogy can support extensive transfer of domain knowledge. Domain

analysis for application modelling is a commonly proposed alternative technique for

eliciting reusable domain knowledge in well-understood domains (e.g. oil-well logging,

Barstow 1985). Domain analysis attempts to make domain knowledge available for reuse

(Arango & Freeman 1985) by eliciting and modelling this knowledge (Prieto-Diaz 1990)

using transformational models (e.g. Balzer 1981, Wile 1983, Smith et al. 1985, Feather

1987). Typical domains include statistics reporting (Neighbors 1980, 1984). However,

reusable domain knowledge may be difficult to elicit and apply during requirements

analysis:

• analysing and modelling specific domains can only support multiple instances of reuse

within single domains while large-scale software development often occurs in diverse,
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poorly-understood applications (Prieto-Diaz 1990);

• eliciting generic domain knowledge can support reuse across applications, for example

the IDeA environment (Harandi & Lubars 1985, Lubars & Harandi 1986, 1988)

provides generic design components for inter-application reuse. However, derivation of

domain knowledge has proved difficult and time-consuming. Prieto-Diaz (1990)

reveals that success stories with domain analysis are exceptions rather than rules, while

Arango (1987) pinpoints obstacles to acquiring reusable domain knowledge as the very

high cost of either (i) generating such knowledge, or, (ii) locating and repackaging the

knowledge in reusable forms. Unfortunately, effective methods for eliciting and

representing reusable domain knowledge still appear to be some way off (Arango 1988,

Prieto-Diaz 1991).

Unlike specification reuse, domain analysis is unlikely to lead to effective knowledge

reuse across domains. One possible reason for the effectiveness of inter-domain analogies

is that reusable specifications transfer many facts represented as complex knowledge

structures rather than isolated predicates. The next two sections examine other existing

reuse paradigms for specification reuse.

2.3 Paradigms for Software Reuse

Most current paradigms support reuse of code modules rather than higher-level designs or

specifications. This has been achieved through domain-independent retrieval mechanisms

at the expense of component comprehension and adaptation (e.g. Maarek et al. 1991).

Indeed, until recently, the black-box view of software reuse prevailed to ensure that the

contents of the software component were unseen and unmodified during reuse (e.g.

chapter 2 of Dusink & Hall 1991). Reuse was viewed as a process of composition, during

which components were linked using modular interconnection languages (e.g. Goguen

1986). Unfortunately these approaches have failed to achieve the expected increases in

software productivity and quality. In addition, management did not recognise the

importance of software reuse even in cases where the technical problems were easily

solved. The next section examines these problems more closely in the context of

specification reuse.

2.4 Current Paradigms for Specification Reuse

Reuse of specifications during requirements analysis and the early stages of software

design has been discussed elsewhere (e.g. Balzer et al. 1983, Finkelstein 1988, Czuchry
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& Harris 1989, Karakostas 1989, Sommerville et al. 1989, Basili 1990, Mylopoulos &

Rose 1991). Tracz (1990) suggests that successful reuse of requirements specifications

can also provide the basis for the reuse of design, code and documentation if traceability

between a specification and its design and code could be assured. However, few concrete

conclusions have been reached about the nature or processes of specification reuse.

Existing paradigms have proved moderately successful for reuse of system designs and

code, however they appear inappropriate for reusing specifications during requirements

analysis. Each paradigm is investigated in terms of the ATC/FMS example to assess its

appropriateness for matching and explaining analogical specifications during

requirements engineering.

2.4.1 Keyword Retrieval

Retrieval of reusable components based on syntactic similarities between keywords is a

much-vaunted approach to software reuse (Burton et al. 1987, Wood & Sommerville

1988, Prieto-Diaz 1991). Keyword retrieval paradigms match software components by

their functionality since most software performs a function which characterises the

software component. Indeed, Prieto-Diaz's (1985) extensive study of software

descriptions concludes: 'Program listings are characterised by describing the function

performed by the program...'. However, large-scale software engineering problems are

too complex to be described comprehensively by keywords representing only the

functionality of the required computer system. For instance, keywords representing

critical functions of the ATC and FMS computer systems include MONITOR, UPDATE,

REPORT & RECEIVE INPUT. However, these processes are also common in many

systems which are not analogous and do not support valid specification reuse. For

example, a patient monitoring system also has these functions, and any attempt to reuse

the specification of patient monitoring systems during analysis of the FMS would be

more likely to hinder than help the software engineer.

Wood & Sommerville (1988) propose a lexicon of semantically-equivalent descriptors of

code functions based on natural language descriptions of software components. Lexicons

provide richer descriptions but still only match software components by their function.

Alternative, more complex specification descriptors which focus on non-functional

features of software components appear necessary for effective software reuse. Chief

among these approaches is faceted classification schemes.
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2.4.2 Faceted Classification of Software Components

Faceted classification schemes derived from library science (e.g. Prieto-Diaz 1991,

Prieto-Diaz & Freeman 1987, Prieto-Diaz 1985) attempt to overcome several problems of

simple keyword retrieval by describing non-functional features of software components.

Prieto-Diaz's facets included objects, medium, system type and setting, which identifies

the original application of the software component. However, faceted classification

schemes are unlikely to support specification reuse across domains because they fail to

provide the general and powerful descriptors needed for cross-domain reuse:

• faceted classification schemes are founded on descriptive, application-dependent facets.

For example, the ATC specification may have many settings, including aircraft

management, passenger transport, safety-critical and real-time, while settings

describing the FMS specification include production management, manufacturing and

real-time. The only match between the ATC and FMS specifications is real-time, which

is clearly insufficient as a basis for analogically matching specifications. Wood &

Sommerville (1988, p 206) also reported that differences in terminology inhibit the

applicability of classification schemes for cross-domain reuse. Indeed, Prieto-Diaz

(1991) admits that faceted classification schemes are more effective for domain-

specific reuse (p 94), stating that: 'A faceted scheme for a diversified collection [of

software components] becomes too general, losing its descriptive precision';

• faceted classification schemes are also plagued by knowledge acquisition problems.

Development of a comprehensive scheme requires difficult and time-consuming

domain analysis of applications across which reuse is intended to occur (e.g. Boldyreff

1989). Furthermore, Prieto-Diaz's recent experiences (1991) suggest that deriving

classification schemes and adding new entries to a component library are labour-

intensive activities which cannot be fully automated. Implications for a classification

scheme to support specification reuse across domains are clear: the benefits derived

from specification reuse may be offset by the effort needed to initially develop and

maintain such a scheme;

• finally faceted classification schemes impose discipline on their use since new

problems must be described with a constrained lexicon of unnatural terms which has

been shown empirically to lead to inconsistent object descriptions (Furnas et al. 1987).

In short, successful specification reuse requires both powerful and generic descriptors to

identify analogical matches across domains, however, these descriptors cannot be

provided by single or complex sets of keywords.
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2.4.3 Abstract Templates

Reuse of abstract solutions is another, much-vaunted approach to software reuse. Reuse

of abstract software components has been typified by code-level reuse of program

templates (e.g. Mittermeir & Oppitz 1987, Katz et al. 1987, Volpano & Kieburtz 1989),

although object-oriented programming can also promote reuse of abstract software

components (e.g. Curry & Ayers 1984, Kaiser & Garlan 1987, Lenz et al. 1987, Bott &

Wallis 1988). As well as providing reusable solutions, abstractions can be used as a basis

for common understanding. The Programmer's Apprentice integrated reusable program

components representing well-understood programming concepts (e.g. a device driver)

into an intelligent assistant for expert programmers (Waters 1985, Rich & Waters 1988).

Reuse of abstract solutions during system specification and design has also been

encouraged through provision of design templates (e.g. Harandi & Young 1985, Fugini et

al. 1991) and generic specifications (Reubenstein & Waters 1991). The Requirements

Apprentice (Reubenstein & Waters 1989, Reubenstein 1990, Reubenstein & Waters

1991) provides software engineers with template specifications (cliches) of the type of

system under analysis (e.g. library or object monitoring systems). These cliches are

combined with techniques including dependency-directed reasoning and hybrid

knowledge representations to check requirements specifications for consistency and

completeness and develop a summary document of the specification to facilitate

communication. However, reuse of abstract specifications faces the following problems:

• successful reuse of abstract specifications must provide a complete set of specifications

to fit all possible solution scenarios. Given the variety and complexity of requirements

specifications, this may be a difficult task. Previous partial attempts to classify system

types have proved difficult (e.g. Amadeus 1986), suggesting that reuse of abstract

specifications falls foul of the coverage problem;

• experiences with developing abstract specifications revealed that constructing

sufficiently abstract and detailed templates is difficult, i.e. reuse of abstract solutions

must overcome the granularity problem to provide both generic and useful solutions;

• a theory of abstraction in software engineering from which to develop domain cliches is

currently lacking, i.e. there is a lack of a model for systematic abstraction.

To conclude, predetermined derivation of a complete set of generic and powerful

specifications representing reusable solutions may be prohibitively difficult, given the

current limits of our knowledge of software engineering problems. On the other hand,

reusable specifications are widely-available and may be abstracted as appropriate during
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reuse, thus going some way to overcome both the coverage and granularity problems.

2.4.4 Design Recovery and Replays

Capturing design decisions behind software components can assist their recovery and

reuse (e.g. Dhar & Jarke 1988, Biggerstaff 1989, Fischer et al. 1989, Arango et al. 1991,

Fischer et al. 1991c). However, Mostow (1989) asserts that design replays are both

difficult to capture and apply when developing new systems because of the

incompleteness and imperfection of rationale. Indeed, Parnas & Clements (1986) suggest

that software development will never be achieved in a rationale way, because they

include initially unknown system requirements, the inevitability of errors during

development, preconceived ideas, economic and other influences on the software

development process. Indeed, requirements analysis is more complex than other phases

of software development since it involves users and software engineers during the

identification, exploration and negotiation of hypotheses about diverse topics including

functional requirements, implementation tradeoffs and the social impact of the new

system. In addition, empirical studies of analytic processes of software engineers reveal a

rich diversity of strategies typified by opportunistic reasoning (Guindon 1990). If this

were not bad enough, anecdotes suggest that software engineers are notoriously bad

documenters, so our ability to faithfully capture, record and reuse requirement

specifications based on development rationale is poor. An alternative solution may be to

infer the design rationale behind reusable specifications from documentation and the

specification itself, although this leads to a new set of problems to overcome. The major

advantage of this approach is that it encourages reuse from the wealth of specifications

currently held in software development tools, for which no development rationale is

likely to exist.

2.4.5 Formal Methods

Formal approaches to software reuse include Paris (Katz et al. 1987) and 13' (Lafontaine

et al. 1991). Formally specifying software requirements may be effective for reuse of

small, well-defined software components, however, formalising the needs of a complex

system is more difficult. For example, the Paris system (Katz et al. 1987) uses

preconditions and postconditions plus assertions about component properties to form

clauses to be proved with the Boyer-Moore theorem prover. The resulting proof

developed a list of candidate components. However, determining preconditions,

postconditions and assertions about reusable specifications is difficult and may not

represent critical features of the specification. As such, formal methods for reuse are only
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likely to be effective if a perfect model of the target domain is already known. They do

not encourage reuse of existing software available through CASE technology, nor do they

appear to overcome the component understanding problem.

2.4.6 Management Issues

Many technical problems involving design and code-level software reuse have been

overcome using the techniques described in this chapter. The currently accepted story is

that the lack of wide-spread software reuse may at least in part be attributed to

management practices (e.g. Prieto-Diaz 1991). For instance, Biggerstaff (1987) writes:

'Technologists are confounded because reusability is a multiorganisation
problem and requires a critical mass of components before it can really
pay off. These issues prevent spontaneous use of reuse'.

This is due in part to management's lack of belief in benefits attainable from software

reuse, which is not surprising given the intangible nature of software and current

management practices which pay developers to write new code. However, examination

of Japanese software engineering practices reveal the potential benefits for software reuse

from management backing. Although management issues concerned with successful

specification reuse are beyond the scope of this thesis, analogical specification reuse can

demonstrate obvious benefits to an organisation, thus encouraging more positive

management attitudes towards reuse.

2.4.7 Summary of Existing Software Reuse Paradigms

Existing software reuse paradigms appear inappropriate for specification reuse during

requirements analysis. Simple or faceted classifications of reusable specifications are

unlikely to identify domain-independent determinants of reuse while knowledge-

intensive paradigms based on domain analysis and design replay have failed to overcome

the knowledge acquisition bottleneck. Analogy provides an alternative, intuitively-

appealling paradigm for reusing specifications across domains, however it has received

little attention in the literature. Analogy can overcome the knowledge acquisition

bottleneck since specifications are readily-available as a result of the software

development process, thus supporting reuse of existing specifications. Analogy can also

provide a rich diversity of reusable specifications from repositories, thus partially

overcoming the coverage problem inhibiting reuse of generic templates.

Whilst it is not overtaxing to develop an intuitive understanding of the ATC/FMS
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analogy, it is more difficult to state why the analogy exists or to justify the analogy as a

basis for specification reuse. A model of analogy is necessary to identify critical

determinants of specification reuse, in particular to assist retrieval and explanation of a

specification to aid its understanding and customisation when fitting it to the target

domain. Finkelstein (1988) proposed several determinants of analogy in specification

reuse, however these determinants were only supported with simple examples and not

explained by any underlying model of software engineering domains, so the scope and

nature of specification reuse by analogy remains undetermined. Existing general theories

and models of analogy are discussed in the next section as a basis for a framework of

software engineering analogies.

2.5 Analogy as a Paradigm for Specification Reuse

Analogical reasoning has been researched by both cognitive psychologists and artificial

intelligence researchers. Whilst many different definitions of analogy exist, the definition

proposed by Carbonell (1985, p3) suggests that specification reuse is an instance of

analogical reasoning:

"Analogical problem solving consists of transferring knowledge from past
problem solving episodes to new problems that share significant aspects with
corresponding past experience -- and using the transferred knowledge to
construct solutions to the target problems"

Analogical reasoning in specification reuse is akin to case-based reasoning (e.g. Rissland

& Skalak 1991, Ashley 1991, Branting 1991, Kolodner 1991, Ashley & Rissland 1988),

during which a reasoner remembers previous situations similar to the current one and

uses them to solve the new problem. Case-based reasoning may be applied to adapting

old solutions to meet new demands, explaining new situations, critiquing new solutions

or reasoning from precedents, roles which analogical specification reuse can also fulfil.

Therefore, specification reuse is also an instance of case-based reasoning. Gentner (1983)

emphasises the importance of structure in analogical reasoning when she stated that:

"Analogous reasoning transfers a complete network of knowledge rather than
unrelated facts"

Unlike existing knowledge-based approaches to intelligent analytic support (e.g. Harandi

& Lubars 1985, Puncello et al. 1988) which tend to apply isolated domain facts or

method heuristics to a target application, specification reuse involves the transfer of a

network of domain and method knowledge represented as a specification. Gentner

demonstrates that mapping an interrelated network of knowledge allows analogical
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reasoning to occur between domains which are otherwise very different, for example an

analogy occurs between the structure of a hydrogen atom and our solar system. This

would suggest that analogy is not based on syntactic similarities between problems, but is

critically determined by deeper knowledge structures (Gentner 1983), thus suggesting

that analogy may be particularly effective during cross-application reuse.

Russell (1989) discussed theories of analogy and identified three types, which he labelled

as similarity-based theories, theories based on implicative justification and determination

theories. Similarity-based theory only exploits syntactic matches between domains so it is

similar to existing reuse paradigms. On the other hand, theories of determination and

implicative justification require domain knowledge. The difference between the two is

that analogy by implicative justification requires the unrealistic assumption of complete

knowledge about software engineering domains. Determination analogies differ from

implicative justification in their use of less complete, weak domain theories to suggest

key features of an analogy. Such a theory only models critical analogical features at the

expense of other domain knowledge. Determination theories have been implemented in

several artificially-intelligent systems, for instance HYPO (Ashley & Rissland 1988)

reasons analogically between legal cases, using dimensions of legal cases to identify

useful axes along which cases can vary.

Determination theories identifying key features of analogical specifications may be one

approach for effective reuse. They exploit a weak, application-independent model of

software engineering domains in which key analogical determinants are represented as

complex knowledge structures rather than isolated facts. This thesis investigates a weak

determination theory of software engineering analogies. As a starting point, existing

models of analogy were examined more closely for key knowledge types in analogical

specification reuse.

2.5.1 Previous Research of Analogical Reasoning

Theories and models of analogical reasoning can be divided into four classes: natural

language metaphors, cognitive models of analogical problem solving, learning through

analogy and computational analogical models.

2.5.1.1 Natural Language Metaphors

Natural language metaphors have often been likened to simple similes such as 'my job is

a jail', so their relevance to analogical specification reuse may be limited. Glucksberg &
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Keysar (1990) argue that metaphors are class-inclusion assertions, in which the topic of

the metaphor is assigned to a diagnostic category. For example 'my job is a jail' suggests

that the topic 'job' is `an entity that confines one against one's will, is unpleasant and is

difficult to escape from' (p3). This understanding of metaphorical comparisons suggests

that analogies may occur between two instances of the same problem type, so abstraction

may be important for analogical reasoning.

2.5.1.2 Analogical Problem Solving

Empirical studies of analogical problem solving also revealed the importance of abstract

memory schema for analogical retrieval (e.g. Gick & Holyoak 1983, Cheng & Holyoak

1985, Cheng et al. 1986, Keane 1987). Generally, findings suggest that analogical

problem solving and training is effectively enhanced by teaching or presenting abstract

principles common to the source and target analogs. On the other hand, subjects without

relevant schemata exploit superficial similarities and transfer solutions incorrectly (Ross

1987, 1989), leading to mental laziness and solution copying rather than analogical

understanding (Novick 1988).

2.5.1.3 Analogical Learning

Empirical studies of analogical learning in unfamiliar domains indicate that analogies can

be used to teach complex concepts (e.g. Caplan & Schooler 1990). Analogical learning of

programming constructs (e.g. 'variable is like a box', Burstein 1988a, 1988b, Hoc &

Nguyen-Xuan 1990) has proved effective. However, du Boulay (1989) identified errors

due to the misapplication of analogy, indicating that novice programmers tried to extract

more from an analogy than was warranted. Halasz & Moran (1982) also point out that

extending an analogy too far may become a barrier to learning. One solution may be to

constrain the scope of an analogy by abstraction, so analogical learning should be

restricted to analogical inferences also belonging to the underlying abstraction.

2.5.1.4 Derivational Analogy

Derivational analogy solves problems by replaying the plan used to solve a previous

problem, modifying it where necessary (Mostow 1989, Carbonell 1985, 1988). Mostow

(1989) reviewed existing computational models of derivational analogy to analyse how

they redesign complex artifacts like programs and circuits. Their deficiencies indicate

that they are insensitive to higher-level aspects of redesign problems and lack a retrieval

method that scales up to larger design libraries such as a specification repository. In
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addition, these systems have focused on redesign in relatively well-defined domains such

as electronic circuitry. The difficulties of capturing and replaying reasoning processes

during requirements analysis are likely to be much greater, due in part to the lack of

domain knowledge which is needed to interpret such rationale. Derivational analogy is

similar in nature to design replays, and unfortunately it suffers from the same set of

problems when applied to specification reuse.

2.5.1.5 Computational Approaches to Analogy

Computational models of the above types of analogical reasoning have been developed

both as implementations of cognitive theories of analogy and as problem solvers in their

own right (Thagard 1988, Hall 1989). Typically these models represent domain-specific

deductive reasoners which emphasise the role of domain knowledge (e.g. Kedar-Cabelli

1988a, 1988b, Holyoak & Thagard 1989) and abstractions (e.g. Greiner 1988a, 1988b) in

analogy. They provide important clues for knowledge and structures which are

analogically-matched and transferred.

2.5.1.6 Summary of Previous Research of Analogical Reasoning

Both computational and cognitive models of analogical reasoning emphasise the

importance of abstraction, although the knowledge structures which are represented in

these abstractions remain largely undetermined. Computational models of analogy

emphasise the importance of knowledge types and structure in analogy, so the ATC\FMS

example was investigated more closely.

2.5.2 Knowledge in Software Engineering Analogies

At their broadest level, software engineering analogies may match at least three different

types of knowledge which were examined for their role in determining the ATC/FMS

analogy:

• solution knowledge, representing information system concepts of the reusable

specification;

• domain knowledge, representing problem domain and real-world knowledge;

• goal knowledge, describing purposes of new and reusable systems.
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2.5.2.1 Solution Knowledge

Solution knowledge differs from domain knowledge in that it describes information

systems using structure charts and other notations. Solution knowledge is defined using

notation syntax in the same way that program code is represented using language syntax

rather than underlying domain constructs. Analogical matching on the syntactic notation

of structured diagrams permits structural matching (e.g. Gentner 1983), however this

syntax provides few clues about the semantics of the domain. As a result the syntax of

structured notations may support analogical transfer but fail to justify analogical

matching and retrieval of specifications.

2.5.2.2 Goal Knowledge

Several researchers (e.g. Kedar-Cabelli 1988a, 1988b) have suggested the importance of

analogical mappings between goals or purpose. For example, two analogical goals of the

FMS and the ATC systems include the ATC system should monitor aircraft to meet the

flight plan, and the FMS should monitor products to meet the production plan. The need

for analogical system goals is not surprising, since there is a close relation between a

system's goals and its functionality. Indeed, goals can be said to be high-level statements

of functionality. However, system functionality is inappropriate as a basis for analogical

matching for two reasons. First, functional goals are difficult to define precisely, for

example the goal monitor products to meet the production plan may also describe the

purpose of a non-analogous system for scheduling production plans. Second, goals do not

represent the interrelated knowledge structures fundamental to analogical recognition and

transfer (Gentner 1983), hence they fail to capture key analogical concepts. Simple

measures of similarity such as functional goals may be suitable for reuse in the small,

however they negate the importance of domain knowledge which is essential in

requirements engineering. This distinction emphasises the difference between the domain

and design spaces, so models of software engineering analogies must consider domain

knowledge.

2.5.2.3 Domain Knowledge

Many computational models reason analogically with domain knowledge (e.g. Hall

1989), albeit using constraints on the categories of domain knowledge which can be

mapped. This thesis hypothesises that analogical specification reuse is critically

determined by domain knowledge. For example the ATC/FMS analogy is understood in

terms of aircraft travelling unidirectionally along air corridors while products move along
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conveyor belts. However, domain knowledge can represent a wide diversity of concepts.

Both Winston (1980, 1982) and Gentner (1983) hypothesised that analogy transfers a

network of relations that hold between concrete objects in two domains, while attributes

describing objects are discarded, see Figure 2.5. Applying this structure-mapping

approach to software engineering analogies is appropriate because domains tend to be

well-structured, with well-defined objects and relations. Furthermore, Gentner

constrained analogical matches to object-relations which supported a higher-order causal

structure. However, the ATC/FMS example revealed that causality within domain

structures alone was too general to constrain analogical matching, for instance Figure 2.6

describes causally linked object-relations which correctly describe the domain but do not

support the analogy. Therefore, further constraints on analogical matching between

software engineering domains are required as a basis for a framework of software

engineering analogies. However, as Russell (1989) indicates, these constraints must be

founded on a weak theory of the domain of interest. In this case, the domain of interest is

software engineering, and analogical matching and explanation requires a model of

domain knowledge in software engineering.

Figure 2.5 - corresponding causal relations
representing the ATC and FMS domains
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2.5.2.4 Summary of Knowledge in Software Engineering Analogies

Recognition and explanation of software engineering analogies requires solution

knowledge, goal knowledge and domain knowledge. The ATC/FMS example suggests

that specification reuse exploits solution and goal knowledge, however existing models of

analogy indicate that domain knowledge is critical. A weak theory of software

engineering domains is needed to determine software engineering analogies. Object

relations which can be analogically-mapped and causally linked may be one approach to

successful analogical mapping, although further constraints appear necessary. This

framework is developed and evaluated in the next chapter.

2.6 Conclusions

Specification reuse has two advantages over alternative paradigms for knowledge and

software reuse during requirements analysis. First, domain knowledge is difficult to elicit

while reusable specifications store domain knowledge in a readily-applicable form.

Second, the potential benefits from reusing domain rules or transformations have tended

to be small and within single applications while specification reuse can support large-

scale knowledge transfer across different domains. These advantages are due to the

structure and assumptions stored implicitly in reusable specifications but missing from

rule- and transformation-based paradigms.

Example-based studies indicate that analogy is an alternative paradigm for reusing

specifications because they provide old solutions to new problems represented as

complex knowledge structures (Carbonell 1985, Gentner 1983). Such analogies are
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critically determined by key similarities between the underlying domains rather than their

reusable specifications. The next chapter expands this definition of analogy into a

framework of software engineering analogies as a basis for their retrieval and

explanation.
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Chapter 3

3: A Definition of Analogy in Software
Engineering

This chapter presents a logical model of analogy between software engineering domains

to determine why analogies occur and how they can be identified during specification

reuse. It has two components: a meta-schema of knowledge types for representing key

facts about software engineering domains, and a model of domain abstraction which

determines the scale of analogical matching during specification reuse. This model of

analogy represents a logical definition rather than the more psychologically-plausible

representations of analogical reasoning discussed in chapter 4.

The first component of the model, the meta-schema of knowledge types, defines key

domain facts about software engineering problems as a basis for analogical retrieval and

explanation. These domain facts were identified during example-based analyses and

using constraints  on analogical matching applied from existing cognitive and

computational models of analogical reasoning (e.g. Gentner 1983, Greiner 1988a,

Holyoak & Thagard 1989). The second component is a logical model of domain

abstraction for software engineering. Domain abstractions are central to analogical

matching, hence a model is proposed to identify key similarities and differences between

abstractions to assist analogical retrieval and explanation. The meta-schema and logical

model of domain abstraction provide the analogical expertise for specification retrieval

and explanation.

The proposed logical model of software engineering analogies is defined in several stages

throughout the chapter. First, the meta-schema of knowledge types is described as a basis

for representing software engineering domains and analogical similarities between them.

Knowledge types in the meta-schema are justified using constraints on analogical

mapping derived from existing cognitive and computational models of analogy. The

meta-schema is then demonstrated and evaluated using several detailed analogical

examples described more fully in Appendix A. The remainder of the chapter defines the

proposed model of domain abstraction to provide a framework for identifying and

justifying analogical matches between domains. Domain terms for instantiating the meta-

schema are derived from a subset of software engineering domains which were

investigated. Finally the proposed definition of analogy in software engineering is
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demonstrated further using several, non-simple examples of analogical domains.

3.1 An Initial Definition of the Model

Chapter 2 identified three basic knowledge types which are mapped between analogical

software engineering problems. Each software engineering problem incorporates three

models: a solution model, a goal model and a domain model:

• the solution model defines a specified information system;

• the goal model depicts functional requirements to be fulfilled by the new system;

• the domain model represents all aspects of the underlying problem. Chapter 2 revealed

that analogical similarity between domains can occur between interconnected domain

structures (Gentner 1983), hence domain structure may be important when defining

analogies.

To summarise, although knowledge about information systems and their functional goals

is important for analogical reuse, it is knowledge describing their underlying domains

which determines the existence of an analogy. Therefore, this chapter primarily

investigates analogical mapping between software engineering domains. However, before

this can happen, the knowledge which is mapped between software engineering &mains

must be defined formally. A knowledge meta-schema is proposed for representing

software engineering domains and analogical mappings between them. Its definition is

followed by justification of the meta-schema using constraints imposed by existing

cognitive and computational models of analogical reasoning.

3.2 A Meta-schema of Knowledge Types for Software
Engineering Domains

The proposed framework of software engineering analogies may be described as a hybrid

model of analogy (Russell 1989) because it integrates several existing cognitive and

computational models of analogy to form a framework of software engineering analogies.

This model claims that an analogical specification is critically determined if:

• two domains share a network of interrelated, semantically-matched terms;

• these domains are described with similar state transitions between object

structures;

• these source and target descriptions are both instantiations of the same domain

abstraction representing a generic class of software engineering domain, see
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Software engineering domains are described using a meta-schema consisting of the seven

knowledge types shown in Figure 3.2. Each knowledge type is specified using typed

predicates. The first five knowledge types describe the problem domain while the other

two define aspects of the information system linked to that domain. This thesis

hypothesises that analogy is critically determined by key state transitions between object

structures, so the knowledge meta-schema describes each software engineering domain in

terms of these state transitions. In the next section each knowledge type in the meta-

schema is described and elaborated using several simple software engineering examples.

object structure:	 < object, object, structural-relation >
domain requirement:	 < object, object, structural-relation, value >
state transition:	 < object, source, destination, transition >
object type:	 < object, object-type >
conditions on state transition: < precondition, object, source, destination, transition>
function/domain event: 	 < function/event, object, source, destination, transition >
function achieving transition: < function >

Figure 3.2 - the knowledge meta-schema definition using formal typed predicates

3.2.1 State Transitions between Object Structures

Central to this model are state transitions with respect to a domain structure. They

represent system intervention in the domain to maintain or change states which are
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defined as object structures. Gentner (1983) constrained analogical matching by imposing

a higher order causal structure on such matches. Similarly, state transitions are linked

causally through specification to system functionality. One example of a state transition

is an allocation in the theatre domain which causes an object, such as a theatregoer's

booking, to change state from an unoccupied state to an occupying-resource state by

being allocated to a theatre seat. This can be represented using the meta-schema as:

< booking, reservation, seat, many >

The final term of the predicate indicates that many seats may be changed by one booking

transition from an unoccupied to occupying-resource state. A second example is the

reserve action in the university course administration domain which causes an object,

such as a student application for a course, to change state from an unreserved to a

reserved state by guaranteeing a place on that course:

< application, pending, place, many >

State transitions are central to the model of. software engineering domains, and all other

knowledge types defined in the meta-schema elaborate this basic definition of state

transitions.

3.2.2 Object Structures

Domain states are defined with reference to object structures representing object-

relationship predicates similar to the notations used by Gentner (1983) and Sowa (1984).

For example, object structures representing the theatre domain include the theatre having

many seats, the waiting list containing a number of unmet bookings and the world having

one theatre. Structures define object membership in sets which model high-level

components of the domain. Cardinality constraints on set membership are expressed as

properties of object structures using the meta-schema, for example:
< theatre, seat, has-many >

< waiting-list, unmet-bookings, contains-many >
< world, theatre, has-one >

3.2.3 Domain Requirements

Domain requirements elaborate object structures through addition of language statements

identifying goals and constraints for the required system. Future research will unpack the

nature of these requirements further, however for the purposes of this thesis, domain

requirements were represented in simple form as high-level linguistic statements of

needs, functions and constraints. For instance, needs can be represented as high-level

functions which are a long way from the operationalised state. Within the meta-schema

domain requirements are associated with object structures and convey additional facts
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about system goals. For instance, a requirement in the theatre reservation domain is

theatre seat contains-one booking, but this description fails to convey the complete

requirement. The system aims to maximise the use of theatre seats for any performance,

so the domain requirement is specified through addition of the linguistically-expressed

goal, so that:

< theatre seat, booking, contains-one, maximise-use >

Domain terms which express functional requirements in this chapter include maximise-

quantity, minimise-quantity, same-properties and date or time-limits.

3.2.4 Preconditions on State Transitions

Preconditions on state transitions further elaborate the definition of these key transitions.

The proposed model hypothesises that state transitions between domain states can be

triggered by different conditions. For instance, stock replenishment in a stock control

domain occurs when stock levels reach a minimum. On the other hand, the allocation

state transition in the theatre domain only occurs if the reservation and allocated seat have

similar constraints such as non-smoking, price <£20, seat is unreserved, etc.. These two

instances of condition can be represented using the meta-schema notation as:
< minimum-level, stock, supplier, warehouse, many >
< same-properties, booking, reservation, seat, many >

3.2.5 Object Types

Constrained typing of objects is also permitted by the meta-schema, for instance stock

items in a stock control domain and theatre seats in the theatre reservation domain both

act as resources in relation to their key state transitions. On the other hand bookings act

as inputs-to-be-met in that domain. Using the meta-schema we can say:
< stock-item, resource >

< theatre-seat, resource >
< booking, input-to-be-met >

Two types of object can be identified from domain descriptions. Key objects are those

which move with respect to a structure in a state transition. Structural objects on the other

hand define the static structure in which key objects move. This fundamental distinction

between object types in software engineering domains will be elaborated later in this

chapter. Object types may be recognised easily by software engineers, so enhancing the

comprehensibility of domain models. Indeed, they already have been used as a basis for

analogical matching in design reuse (Lee & Harandi 1991).
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3.2.6 Domain Events & System Functionality

State transitions can be defined further by domain events and the functionality of the

information system expressed as language. This elaboration assists analogical matching

between key state transitions by linking each transition to a prominent event or function.

Events in the domain cause state transitions, for instance the lend event in a lending

library system causes a transition of books from an in-library to an on-loan state. System

functions on the other hand are associated with state transitions, for example the function

allocate is associated to a state transition moving a theatre booking from a waiting-list to

an occupying-resource state. Other examples of domain events include lend, return and

goods-in. Example system functions are monitor and check-status. Each state transition is

linked to the event or function associated most prominently with the transition.

Furthermore, system functions can be linked to state transitions in two ways. First, an

existing system function can be associated directly with events which cause transitions

between states, for instance the allocate function in the theatre domain is associated

closely with changing a reservation from an unoccupying to an occupying-seat state.

Thus, system functions are associated with a change in the domain expressed as a state

transition. Second, state transitions can identify the need for the function through the

process of system specification, for instance in the ATC domain, the state transition

representing aircraft movements between airspaces causes the functional requirement to

MONITOR for potential aircraft collisions to be specified. In this case, state transitions

imply functionality through the process of specification. However, for the purposes of

defining the meta-schema, the distinction between system functionality and domain

events is removed to permit simple attribution of linguistic terms to improve definition of

key state transitions. Therefore domain events and system functions are defined using the

meta-schema as:
< allocate, booking, reservation, seat, many >
< allocate, application, pending, place, many >

Domain events, system functions and state transitions are defined in a single predicate

during the examples in the rest of this chapter.

3.2.7 The Role of Functions in State Transitions

Finally, state transitions can be differentiated by the role of associated system functions

in the transition. State transitions may be achieved by functions, for instance in the

theatre domain the allocate function is needed to achieve the transition of the booking

from the unoccupied to occupying-resource state. A similar distinction was made

between internal and external actions equivalent to state transitions in Dardenne et al.
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(1991). Therefore functions' roles can differentiate between key state transitions,

although this knowledge type in the meta-schema plays a less important role in analogical

matching than other types.

3.2.8 Summary of the Proposed Meta-schema

This meta-schema of seven knowledge types has been used to represent many different

domains. The next section justifies the proposed meta-schema by examining constraints

on analogical mapping from existing cognitive and computational models of analogy. For

instance, many features of the FMS domain described in chapter 2, such as the two-

dimensional layout of production tracks, cannot be transferred analogically to the ATC

domain. Two computational and cognitive models of analogical reasoning (e.g. Gentner

1983) were used to constrain analogical matching between software engineering domains

and validate the knowledge types defined in the meta-schema.

3.2.9 Constraints on Analogical Mapping

The meta-schema of knowledge types was validated by examining constraints on the

analogical mapping of domain knowledge taken from cognitive and computational

models of analogy. The use of these constraints is also demonstrated by three non-simple

examples of analogy presented at the end of this chapter. They are structural and

semantic constraints (Gentner 1983, Holyoak & Thagard 1989), which ensure that

analogy only maps an interrelated, semantically-equivalent network of facts, and

abstraction, which ensures that analogy only maps facts belonging to a known class of

domain (Greiner 1988a). The aim of this exercise was to validate the knowledge types

defined in the meta-schema using computational and cognitive models of analogical

reasoning. Both constraints are examined in turn.

3.2.9.1 Isomorphic Constraints on Analogical Mapping

Isomorphism has been suggested as an important constraint on analogical matching

(Weitzenfeld 1984, Holyoak & Thagard 1989). Gentner's structure-mapping theory

(1983) constrains analogical mapping by transferring an interrelated knowledge structure

rather than unrelated facts. Her systematicity principle states that a source domain

predicate that belongs to a mappable system of mutually interconnecting relations

constrained by higher-order causal structures is more likely to be imported into the target

system than an isolated predicate. Similarly, this thesis proposes that analogical reuse
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transfers a network of interrelated domain knowledge predicates defined in the meta-

schema.

Gentner (1983) transfers interrelated knowledge structures by semantically matching a set

of relations which link equivalent objects in the source and target domains. These

relations are independent of specific domains, thus providing a syntactic basis for

identifying analogical similarity. Systematicity in software engineering analogies is

possible because the knowledge types in the meta-schema define semantic relations

between domain objects, as shown graphically in Figure 3.3. Using Gentner's model as a

starting point, analogical matching between software engineering domains requires a

restricted set of domain terms for instantiating the knowledge types in the meta-schema.

These terms are dependent upon the domain classes to be represented using the meta-

schema, hence a taxonomy of domain types is needed in the framework of software

engineering analogies.

Figure 3.3 - systematicity between domain terms
representing the ATC and FMS domains (labels

on object relations represent domain terms)
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An alternative approach to imposing systematicity between analogical software

engineering domains is abstraction. Two software engineering domains are analogous if

they are both instances of the same abstraction. Abstractions can impose isomorphism on

analogical matching by mapping a source and target domain to their shared abstraction,

see Figure 3.4. Furthermore, these abstractions represent known domain types, so they

may identify a set of terms able to represent domain instantiations and their abstractions

in the meta-schema. Therefore, abstraction appears to be an important concept during

analogical matching.

3.2.9.2 Abstract Constraints on Analogical Mapping

Gick & Holyoak (1983) and Greiner (1988a, 1988b) constrained analogical matching by

only mapping knowledge belonging to an abstraction shared by the target and reusable

domains. Studies of natural language metaphors and analogical problem solving reported

in chapter 2 also emphasised the importance of class- or type-inclusion during analogical

reasoning. Returning to one of the example analogies, the ATC and FMS domains can be

expressed as two instantiations of an abstract domain class in which objects move in a

space, risk collision if they fail to follow a predetermined plan and are controlled

remotely by people. For software engineering domains, analogy is more likely to support

specification reuse if the two analogically-matched domains belong to a shared

abstraction. Indeed, the desire for software reuse arose from the recognition that similar
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problems were constantly being re-solved, suggesting that specification reuse may only

occur between applications belonging to the same domain class.

Furthermore, by combining abstraction with structural isomorphism, domain abstractions

can be endowed with critical features belonging to all instances of a domain class, see

Figure 3.4. This however, necessitates one set of terms for describing both domain

abstractions and their instantiations, to permit recognition of analogical similarity. The

other, obvious drawback is the need for a predetermined library of appropriate domain

abstractions, so a taxonomy of software engineering domains is needed for both

analogical matching and determining terms to represent these domains.

It is important to emphasise the difference between reuse of domain abstractions and

generic templates (e.g. Harandi & Young 1985) discussed in chapter 2. Templates

represent abstract solutions in the design space while this thesis proposes use of domain

abstractions for matching between reusable domain spaces. Deriving a complete and

correct set of template solutions to even a small set of problems has proven difficult. Any

one problem may be solved in many ways, so the space of candidate specifications is

large and potentially difficult to identify. For instance, the scheduling problem in the

production planning/video hiring analogy described at the end of this chapter may be

solved using the following algorithms:

• simple matching of unordered resources against unordered requirements;

• prior sorting of resources and requirements to ensure difficult allocations are made first;

• linear programming techniques;

• controller intervention in the allocation process, for instance the controller has the

ability to make priority allocations before running the scheduling routine.

It may be easier to derive a useful set of domain abstractions representing a tractable set

of domain types than to derive a set of design abstractions. These abstractions provide an

analogical bridge for recognising, understanding and transferring similarities between

two software engineering domains, see Figure 3.1. Distinguishing critical determinants of

reuse from knowledge held in specifications has important implications for how effective

reuse can be achieved.

A classification of software engineering domains also allows the identification of terms

for representing these domain instances. The current set of domain abstractions is shown

in Appendix A. It is derived from many sources including textbooks and academic case

studies. Examples reveal that many domains can be represented effectively by a small set
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of domain terms, suggesting that, at the proposed level of abstraction, many domain

classes only have a few key differences.

To sum, it is hypothesised that abstraction can constrain analogical specification reuse,

although reuse is limited to between instantiations of known domain abstractions.

Induction of generic domain classes from many solution instances has been proposed as

one solution to deriving these abstractions (Lee & Harandi 1991a, 1991b, Harandi & Lee

1991), however automatic generation of abstractions appears unrealistic for two reasons.

First, genuine automatic induction can only be achieved from very large numbers of

analogical specification instances which may not be available in many CASE

repositories. Second, current machine-learning techniques require complete domain

theories to induce facts about simple domains such as blocksworld (e.g. Chenoweth 1991,

Gutpa & Nau 1991), so their applicability to software engineering domains is limited.

Instead, domain abstractions must be derived and evaluated manually.

3.2.10 Domain Terms Defining the Meta-schema

Domain terms are required to define the meta-schema, represent known software

engineering domains in Appendix A and allow analogical matching and explanation. For

the purposes of this chapter, 10 domain abstractions were selected to derive and

demonstrate a workable subset, although no claim to completeness and extent of

coverage of software engineering domains is made. The current set of terms are not

specified formally, although this remains a.distinct possibility in future work.

3.2.10.1 Object Structure

Object structures describe the relationship between domain objects as set memberships

which identify the cardinality and optionality of this membership. Object structures are

described using 6 terms divided into has and contain relations. The has relations

represent object structures unaffected by state transitions while contains relations

describe states which may alter as a result of transitions. The has/contains distinction is

similar to relation optionality in entity-relationship diagramming:

A has-no B:	 this states that A is an empty set with regard to B;

A has-one B:	 one object B is always found in A, for example the theatre domain

example is always populated by one theatre;

A has-many B:	 many B objects are always found in A, for example the theatre is always

populated by many seats;

A contains-no B:	 this states that A may be an empty set with regard to B, for example a
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A contains-one B:

A contains-many B:

theatre seat may contain no booking, implying that the seat is available;

one instance B may be found in A, for example a theatre seat may contain

a customer booking;

one A may be populated by many Bs, for example the performance

waiting list may contain many unmet reservations.

3.2.10.2 Domain Requirements

Domain requirements elaborate object structures through addition of language statements

identifying goals and constraints for the required system. The current set of requirements

represent functional requirements and required domain states. Four requirements were

identified for the 10 domain abstractions:

maximum-quantity: the system is aiming to achieve a maximum quantity of the specified set

membership, for example in the theatre reservation system the system

requirement is to maximise bookings in theatre seats ,i.e. the number of

booked seats in the set;

minimum-quantity: the system is aiming to achieve a minimum quantity of the specified

knowledge state;

same-properties:	 set membership is dependent upon the containing and contained objects

having the same properties, for example customer bookings and theatre seats

must share similar properties before allocation occurs,

date-limit:	 the system should only permit the required knowledge state until a specific

date or time period. For example, in a library lending domain, books should be

returned by borrowers by the end of the loan period.

3.2.10.3 State Transitions

Two terms exist to describe state transitions between object structures B and C:

move-one A from B to C:

move-many A from B to C:

only one object A is moved from B to C by the state transition, for

instance movement of one aircraft in the ATC domain is

independent of movement from other aircraft, so each transition

only moves one aircraft;

several objects are moved instantaneously from B to C, for

example in the theatre domain one reservation can book many

seats, so several bookings are allocated to theatre seats by the state

transition.

3.2.10.4 Object Types

Object types can be divided into key and structural domain objects, as described earlier in
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resource:

input-to-be-met:

moving-object:

this chapter. Three key and three structural object types were identified for the 10 domain

abstractions. Key object types are:

the object is used by the system for meeting its requirements, for example

theatre seats in the theatre reservation system acts as system resources for

meeting its requirements;

the object acts as a need to be met by resources, for example a theatre seat

booking can be typed as a need to be met by theatre bookings;

the object moves in relation to object structures so that it occupies different

positions in a space.

Structural object types were:

list:	 the object is a list containing an ordered set of other objects, for example the

waiting lists in the theatre reservation and university course administration

domains are instances of list;

container:	 the object acts as a container for other objects (often resources), for instance the

video library may be a container since it contains available video copies;

receptacle:	 the object acts as the final destination of processed objects moved by key state

transitions.

3.2.10.5 Preconditions on State Transitions

Four preconditions describing triggers for state transitions were identified:

minimum-quantity: the state transition only occurs when the level of objects in its initial position

reaches a minimum quantity, for example in a stock control domain, goods are

only restocked when the level of goods reaches a prespecified minimum (see

Appendix A);

maximum-quantity: the state transition only occurs when the level of objects in its initial position

reaches a maximum quantity;

same-properties: the state transition only occurs when properties of the object moved in the

transition match those of objects in the final position of the transition. For

example, in the theatre reservation domain, bookings are only allocated to

seats if booking and seat share the same properties, such as non-smoking,

price, location etc.;

date/time-limit:	 the state transition occurs at specific times or dates, for example, in a library

lending domain, books are often returned by borrowers at the end of a loan

period. Similar terms can be developed for other state attributes such as

pressure, temperature etc..

3.2.10.6 Domain Events & System Functions

Domain events and system functions represent the most salient characteristics of key state
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transitions. Domain events describe state transitions while system functions represent

high-level design algorithms for solving software engineering problems. A lexicon of

combined functions and events has been developed for the 10 example abstractions.

These are: loan, borrow, dispatch, send, lend, goods-out, receipt, input, goods-in, arrival,

addition, allocate, assign, place, correct, join, return, finish-loan, check-position,

monitor and record. To repeat, these domain events and system functions elaborate the

definition of key state transitions, thus improving the likelihood of an analogical match

with a domain description.

3.2.11 Examples Demonstrating the Meta-Schema of Knowledge Types

The meta-schema of knowledge types was evaluated by the examples shown in Appendix

A. These examples were drawn from many sources, including the author's previous

software development experiences, textbooks, academic case studies and benchmark

applications offered by attendees at conferences to test the current set of domain

abstractions. They represent domains more often found in business rather than real time

information systems which is indicative of their source. The meta-schema is

demonstrated using four example software engineering analogies taken from Appendix

A. Each example is represented using terms defined as typed predicates. Each of the four

example analogies is described in turn.

The Theatre/Course Administration Example

The instantiated meta-schema for the theatre and course administration domains is

represented graphically in Figure 3.5.
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Figure 3.5 - graphic representation of the theatre reservation,
course application and object allocation domains

Typed predicates which provide the basis for analogical matching between domain

descriptions are highlighted in bold:

function/event/transition (allocate, booking, reservation, seat, many)
condition (same-properties, booking, reservation, seat, many)
object structure (world, reservation, has-many)
object structure (reservation, booking, contains-many)
object structure (world, theatre, has-one)
object structure (theatre, seat, has-many)
object structure (seat, booking, contains-one)
object structure (seat, booking, contains-no)
domain requirement (seat, booking, contains-one, same-properties)
object category (booking, different-object-types)
object category (allocation, different-object-types)
function achieving transition (allocate)

function/event/transition (allocate, application, candidates, place, many)
condition (same-properties, application, candidates, place, many)
object structure (world, candidates, has-many)
object structure (candidates, application, contains-many)
object structure (world, course, has-one)
object structure (course, place, has-many)
object structure (place, application, contains-one)
object structure (place, application, contains-no)
domain requirement (place, application, contains-one, same-properties)
object category (booking, different-object-types)
object category (allocation, different-object-types)
function achieving transition (allocate)
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The abstraction representing critical facts belonging to both domains is:

function/event/transition (allocate, requirement, requirements, resource, many)
condition (same-properties, requirement, requirements, resource, many)
object structure (space, requirement, has-many)
object structure (space, resources, has-one)
object structure (resources, resource, has-many)
object structure (resource, requirement, contains-one)
object structure (resource, requirement, contains-no)
domain requirement (resource, requirement, contains-one, same-properties)
object category (requirement, different-object-types)
object category (resource, different-object-types)
function achieving transition (allocate)

The Lending Library/Car Hire Example

The instantiated meta-schema for the lending library and car hire domains are:

function/event/transition (lend, book, library, student, many)
function/event/transition (return, book, student, library, many)
condition (date-limit, book, student, library, many)
object structure (world, student, has-many)
object structure (world, library, has-one)
object structure (library, book, has-many)
object structure (student, book, has-many)
domain requirement (student, book, has-many, date-limit)
object category (book, resource)
object category (library, resource-container)

function/event/transition (lend, car, hirecentre, client, many)
function/event/transition (return, car, client, hirecentre, many)
condition (date-limit, car, client, hirecentre, many)
object structure (world, client, has-many)
object structure (world, hirecentre, has-one)
object structure (hirecentre, car, has-many)
object structure (client, car, has-many)
domain requirement (client, car, has-many, date-limit)
object category (car, resource)
object category (hirecentre, resource-container)

The abstraction representing critical facts belonging to both domains is:

function/event/transition (lend, object, resource-holder, borrower, many)
function/event/transition (return, object, borrower, resource-holder, many)
condition (date-limit, object, borrower, resource-holder, many)
object structure (world, borrower, has-many)
object structure (world, resource-holder, has-one)
object structure (resource-holder, object, has-many)
object structure (borrower, object, has-many)
domain requirement (borrower, object, has-many, date-limit)
object category (object, resource)
object category (resource-holder, resource-container)

The Stock Control/Car Pool Maintenance Example

The meta-schema representing the stock control and car pool maintenance domains are:

function/event/transition (delete, stock, bin, customer, many)
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function/event/transition (resupply, stock, supplier, bin, many)
condition (minimum-quantity, stock, supplier, bin, many)
object structure (world, customer, has-many)
object structure (world, supplier, has-many)
object structure (world, warehouse, has-one)
object structure (warehouse, bin, has-many)
object structure (customer, stock, contains-many)
object structure (supplier, stock, contains-many)
object structure (bin, stock, contains-many)
domain requirement (bin, stock, contains-many, maximum-quantity)
object category (stock, resource)
object category (bin, resource-container)

function/event/transition (delete, car, carpool-type, out-of-service, many)
function/event/transition (resupply, car, dealer, carpool-type, many)
condition (minimum-quantity, car, dealer, carpool-type, many)
object structure (world, out-of-service, has-many)
object structure (world, dealer, has-many)
object structure (world, carpool, has-one)
object structure (carpool, carpool-type, has-many)
object structure (out-of-service, car, contains-many)
object structure (dealer, car, contains-many)
object structure (carpool-type, car, contains-many)
domain requirement (carpool-type, car, contains-many, maximum-quantity)
object category (car, resource)
object category (carpool-type, resource-container)

Again, the abstraction representing critical facts belonging to both domains is:

function/event/transition (delete, object, small-container, source, many)
function/event/transition (resupply, object, sink, small-container, many)
condition (minimum-quantity, object, sink, small-container, many)
object structure (world, source, has-many)
object structure (world, sink, has-many)
object structure (world, large-container, has-one)
object structure (large-container, small-container, has-many)
object structure (sink, object, contains-many)
object structure (source, object, contains-many)
object structure (small-container, object, contains-many)
domain requirement (small-container, object, contains-many, maximum-quantity)
object category (object, resource)
object category (small-container, resource-container)

The Air Traffic Control/Flexible Manufacturing Example

The meta-schema instantiated in the air traffic and flexible manufacturing domains are:

function/event/transition (monitor, aircraft, airspace, airspace, one)
object structure (world, airspace, has-many)
object structure (airspace, aircraft, contains-one)
object structure (airspace, aircraft, contains-many)
object type (aircraft, moving-object)
domain requirement (airspace, aircraft, contains-one)

function/event/transition (monitor, product, track-section, tack-section, one)
object structure (world, tack-section, has-many)
object structure (track-section, product, contains-one)
object structure (track-section, product, contains-many)
object type (product, moving-object)
domain requirement (track-section, product, contains-one)
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The abstraction representing critical facts belonging to these final two domains is:

function/event/transition (monitor, object, space, space, one)
object structure (world, space, has-many)
object structure (space, object, contains-one)
object structure (space, object, contains-many)
object type (object, moving-object)
domain requirement (space, object, contains-one)

Summary of the Four Examples

Key domain terms (shown in bold in the above examples) provide the basis for

analogical matching during specification retrieval and explanation. The likelihood of an

analogical match is enhanced by a coherent structural match between mapped predicates.

The four examples demonstrate that, according to the proposed model, analogical

matching occurs between software engineering domains equivalent in scale to medium-

sized entity-relationship diagrams. They also indicate domain terms for representing and

matching software engineering domains defined more fully in the next section.

3.2.12 The Meta-Schema of Knowledge Types: A Summary

A meta-schema of knowledge types for representing key facts about software engineering

domains is a major component of the framework of software engineering analogies. It

differs from existing meta-schema (e.g. Greenspan 1984, Lubars 1988) in its focus on key

domain facts rather than comprehensive domain models which identify both key and non-

critical domain facts for analogical matching (e.g. Dardenne et al. 1991). Knowledge

types defined in the meta-schema were validated using constraints on analogical

matching borrowed from cognitive and computational models of analogy, namely

structural isomorphism and instantiation of the same domain abstraction. The meta-

schema was evaluated by example and demonstrated in this chapter using four pairs of

analogical software engineering domains. Abstraction is central to analogical matching,

so known domain abstractions are also represented using the knowledge meta-schema.

The overall paradigm for analogical reuse shows how domain abstractions bridge

between a new domain and reusable specifications, see Figure 3.1. These abstractions are

separated from reusable specifications, thus maximising the potential payoff from any

single match. Finally, the subset of defined domain terms are capable of representing a

wide range of software engineering domains, indicating that they are powerful domain

descriptors.

The meta-schema of knowledge types provides few clues about the range of domain

abstractions. A process for categorising and representing these domain abstractions is

68



needed to assist analogical matching and explanation. The next section proposes a logical

model of domain abstraction which identifies a framework for structuring and

instantiating domain abstractions to support analogical matching and explanation.

3.3 A Logical Model of Domain Abstraction

A logical model of domain abstraction is proposed to identify similarities and differences

between domain abstractions based on knowledge types defined in the meta-schema. It is

described in two parts. First, a model of abstraction is proposed, then domain abstractions

are instantiated to identify common generic domain worlds, for instance the object

monitoring and plan adherence abstractions underlying the ATC domain can also be

instantiated in other safety-critical transport worlds including train signalling and

monitoring of harbour shipping movements. First however, similarities and differences

between domain abstractions are defined.

3.3.1 The Structure of Domain Abstractions

Knowledge types in the meta-schema provide a theoretical basis for distinguishing

between as well as identifying domain abstractions. Domain abstractions are represented

in a hierarchy, grouped first by key state transitions then specialised at lower levels of the

hierarchy by other knowledge types. The assumptions that this model rests upon are

drawn from cognitive models of memory, and in particular the hierarchical models of

natural categories (Rosch et al. 1976) and hierarchical memory schema (Anderson 1990).

These assert in slightly different forms that human memory is organised in an informal

hierarchy of classes. Each domain model in the hierarchy inherits all the features of its

father and specialises it to represent a sub-type. This hierarchical form assists the

retrieval, selection and explanation of single domain abstractions when matching domain

descriptions of equivalent scale and detail. •

The central hypothesis of the model is that domain abstractions are differentiated by key

state transitions in respect to an object structure, hence a non-renewable resource

abstraction, of which library loans is an example, can be distinguished from a renewable

resource abstraction (e.g. stock control) by the key transition of return. Similarly, a

simple object allocation abstraction, of which a cinema booking domain is an example,

can be differentiated from a complex object allocation abstraction such as the theatre

domain by the inclusion of key transitions which send and remove bookings from a

waiting list, see Figure 3.6.
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Figure 3.6 - example stock control,
local cinema and theatre domains

Object structures describing domain states can also distinguish between different

abstractions. The library and stock control domains and can be differentiated, for instance

only the latter domain has the supplier concept linked to the goods-in action and its key

state transition, see Figure 3.6. Similarly, the theatre domain implements a waiting list

policy for unmet bookings while the local cinema does not, so the former domain model

includes the waiting-list structure to support the key send and remove actions. At least

two domain abstractions can be identified to represent this concept of object allocation

(see Appendix A).

Preconditions on state transitions identify further differences between domain

abstractions. Consider the example of the lending library and dental patient domains

shown in Figure 3.7. Both domains have similar key state transitions with respect to
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object structures, however preconditions on these transitions differ. Books must be

returned to the library by a certain date or time. On the other hand, calls for patient

check-ups are triggered periodically, hence the preconditions on the two state transitions

are fundamentally different. As a result, preconditions on state transitions can distinguish

between domain abstractions with similar state transitions and object structures.

Figure 3.7 - example library and
dental surgery domains

Information system functions and domain events can also help to distinguish between

domain abstractions. Analogy aims to support reuse between functionally-equivalent

system specifications, so it is not surprising that functions and events may be able to

distinguish between otherwise similar abstractions. The two examples shown in Figures

3.6 and 3.7 demonstrate this. In the first example functions and events such as stock-out

& meet-order differ from allocate or assign, while differences between lend, return and

call events exist in the second example in Figure 3.7.

Finally objects types can help distinguish domain abstractions. The abstractions

underlying the library lending and dental patient check-up domains have equivalent state

transitions and object structures, however matched objects in both domains have very

different roles. In the library, books act as resources which are stored in a resource-

container known as the library. On the other hand, patients act as customers which are

served in the service-area which is the dentist's surgery (note that these terms were not
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defined in the meta-schema because the abstraction was not was to define the meta-

schema). As such, a closed set of object types can provide additional terms to distinguish

between domains which cannot be conveyed using other knowledge types. The derivation

of such a set is dependent upon the range of domain abstractions incorporated into the

framework of software engineering analogies.

To summarise, knowledge types defined in the meta-schema both determine and

differentiate between domain abstractions. Abstractions are grouped by key state

transitions with respect to object structures to identify key differences between abstract

domain classes. Within these major groupings domains are distinguished further by

preconditions on state transitions, domain events and system functions linked to state

transitions, triggering events of these transitions and object types. An example of a class

hierarchy of 10 domain abstractions is shown in Appendix J. It identifies four main

domains differentiated by key state transitions. The object monitoring abstraction

monitors the movement of objects between spaces to avoid collisions (e.g. air traffic

collision avoidance). The object positioning abstraction examines object movement to

ensure that they occupy required positions. The object allocation abstraction assigns

demands for objects to available resources assuming that they meet prespecified

constraints. Furthermore this abstraction can be specialised to represent a more complex

multiple object allocation abstraction by adding object structures (e.g. theatre seat

allocation). Finally, the object containment abstraction describes the movement of

objects out of a container. It can be specialised to the non-renewable (e.g. lending

library) and basic renewable resource abstraction, the latter of which can be specialised

further by addition of object structures (e.g. warehouse has-many bins) to represent

abstractions of either a complex stock control or personnel domain.

3.3.2 Generic Domain Worlds

The proposed framework for domain abstraction is developed further by specialising

domain abstractions to generic domain worlds, see Figure 3.8. Application-independent

domain abstractions are necessary for analogical matching and explanation, however

domains can also be modelled at lower levels of abstraction. The model is extended to

include intermediate levels of abstraction for each domain class to provide more concrete

knowledge about software engineering domains, thus improving analogical retrieval and

explanation of specifications.
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Chapter 2 documented the considerable research interest in application templates and

domain modelling indicative of the reuse potential at lower levels of abstraction. While

this thesis does not propose to model specific applications for reasons stated in chapter 2,

it models generic domain worlds to assist analogical matching and explanation. Two new

knowledge types are added to the meta-schema to incorporate generic domain worlds for

each domain abstraction. They impose physical attributes on each key object in that class:

domain abstraction < domain, generic-domain-world >
object property < object, physical-property >

The role of generic domain worlds is best demonstrated by several examples. The air

traffic control domain is one instance of a domain class in which objects must avoid

collision and accidents are likely to lead to loss of life, so the following extensions can be

made to the domain abstraction:

domain abstraction < object-monitoring, safety-critical-transport >
object property < object, manned-vehicle >

object property <space, safety-zone protecting manned-vehicle >

The abstraction can be instantiated as:

domain abstraction < air-traffic-control, safety-critical-transport >
object property < aircraft, manned-vehicle >

object property < airspace, safety-zone protecting manned-vehicle >

Other equivalent generic domain worlds which instantiate the same domain abstraction

include train safety and ship movements in a harbour, so many applications can be

instantiated to the safety critical transport generic domain world. As such, analogical
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matching would favour retrieval of specifications belonging to the same generic domain

world over those which do not, indicated in bold in the above example. A second, similar

example represents instantiation of the non-renewable resource abstraction to a car hire

domain. The generic domain world is defined as:

domain abstraction < non-renewable-resource-management, rental >
object property < object, single-rentable-item >

object property < resource-container, source-of-rental-items >
object property < resource-borrower, borrower-of-rentable-items >

An instantiation of this generic domain world can be:

domain abstraction < care-hire, rental >
object property < car, single-rentable-item >

object property < carpool, source-of-rental-items >
object property < client, borrower-of-rentable-items >

Furthermore, other knowledge types can be added to the meta-schema to represent facts

about generic domain worlds which help lower-level analogical matching. For instance,

some facts about the physical layout of space in airlanes, shipping lanes or railway lines

can be transferred between all instances of object monitoring in a safety-critical transport

world. These physical structures can be instantiated for the FMS and harbour shipping

control domains respectively to assist lower-level matching as shown in chapter 5:

physical structure < production-track, track-section, in-sequence >
physical structure < sea-lane, lane-section, in-sequence >

To conclude, representation of known domain classes at intermediate levels of

abstraction, such as generic worlds, can extend the logical model of domain abstraction

and refine analogical matching and explanation. However, several problems still remain,

most important among which are the coverage and granularity problems discussed in

chapter 7.

3.3.3 The Logical Model of Domain Abstraction: A Summary

This logical model identifies similarities and differences between domain abstractions.

The overall model is shown pictorially in Figure 3.8. Domain abstractions are key to

analogical retrieval and explanation while generic domain worlds provide additional,

non-critical domain knowledge to supplement and assist this analogical matching. As

such, the model attempts to overcome the granularity problem which has hindered

development of successful software component libraries. General heuristics of software

reuse (Biggerstaff & Richter 1987) indicate that larger abstractions can provide greater
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payoff in terms of more extensive specification reuse, at the cost of fewer analogical

matches. On the other hand, small abstractions may increase the likelihood of analogical

matching at the expense of smaller knowledge transfer. This research has tentatively

identified the scale of domain abstractions which might maximise reuse, although the

validity of this claim remains to be determined. The remainder of this chapter

demonstrates the logical model of software engineering analogies using three non-simple

examples.

3.4 Non-Simple Examples of Software Engineering
Analogies

The first example demonstrates the role of domain terms during analogical matching. The

second example also demonstrates the need for domain terms defining the meta-schema

during selection of a source domain which shares few syntactic similarities with the

target domain. The third example demonstrates the issues involved when scaling up

analogical matching to larger and more complex software engineering domains.

3.4.1 The Underground Railway Signalling (RS) Example

This example investigated an analogical match between an underground railway

signalling domain and the ATC and FMS domains described in chapter 2. It demonstrates

the importance of the defined domain terms for analogical matching.

An underground railway system has a number of lines and several stations on each line.

Trains move unidirectionally along these lines. Each tunnel section may only permit one

train, however if this rule is violated then the signal controller is warned immediately of

impending danger. An overview of the railway signalling system is given in Figure 3.9,

and a data flow diagram of the required system is given in Figure 3.10. Extensive reuse

between the specifications is possible, for instance reuse occurred between the

MONITOR and REPORT processes, as well as between the external entities AIR

TRAFFIC and SIGNAL CONTROLLERS, and between the data stores TRAIN LOG and

FLIGHT PLAN. The potential extent and depth of reuse can be demonstrated by

examining detailed actions in the analogical MONITOR processes (see Figure 3.11), for

example both systems flag a train or aircraft position as either safe (ignore) or a clash

(inform the system operator). Similar extensive reuse was also possible between the FMS

and RS systems.
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Figure 3.11 - level-2 DFDs demonstrating potential
reuse of lower-levels of the RS and ATC specifications

The importance of domain terms is demonstrated by the following description of the

railway signalling domain using the meta-schema. Again, key terms for matching domain

descriptions are shown in bold. This description matches the ATC and FMS domain

descriptions described earlier in this chapter.

function/event/transition (monitor, train, tunnel-section, tunnel-section, one)
object structure (world, tunnel-section, has-many)
object structure (tunnel-section, train, contains-one)
object structure (tunnel-section, train, contains-many)
object type (train, moving-object)
domain requirement (tunnel-section, train, contains-one)
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3.4.2 The Video Hiring/Production Planning Example

The analogy between a video hiring and production planning domain is explained more

fully in Maiden (1991). It demonstrates the need for knowledge types defined in the

meta-schema as a basis for analogical matching and selection. It is investigated in a reuse

scenario in which a software engineer is required to specify a production planning system

scheduling jobs to machines. This can be achieved by choosing between either the FMS

specification or the specification of a video hiring system described below.

3.4.2.1 The Production Planning Domain

A company manufactures a wide range of industrial products using complicated

production machinery, robots and conveyor belts which allow partial automation of the

process. Production is planned weekly, and at the beginning of each production cycle the

production planning system allocates production jobs to manufacturing machines. This

allocation process attempts to maximise production output and minimise the idle time of

machines and is constrained by the manufacturing requirements of the job and the

availability of machines and skilled operators. A JSD process structure diagram

describing part of the production planning system is given in Appendix C.

3.4.2.2 The Video Hiring Domain

An organisation rents videos to hotels for use on their internal video systems on a

monthly basis. A computer system allocates video copies to hotels within constraints

determined by each hotel's requirements (e.g. videos for a VHS system only) and by

details of each film (e.g. the length of the film). This allocation function must maximise

use of the existing stock of video copies, and ensure that the needs of all hotels are

satisfied. A ED process structure diagram representing part of the video hiring system is

given in Appendix C.

3.4.2.3 Analogical Mapping in the Production Planning/Video Hiring
Analogy

Uninformed inspection of the two candidate reusable specifications may suggest that the

FMS problem is a better analogical match since both domains include a factory layout

involving a complex network of conveyor belts along which products move. However,

reuse of the FMS specification to specify the production planning system would fail

because the two systems are fundamentally different. On the other hand, analogical
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matching can support reuse with the video hiring specification since both information

systems aim to assign resources to inputs to be met effectively. The description of the

production planning problem below can be. contrasted with the very different FMS

description represented earlier in this chapter. Again, structural matching occurs, with

semantic similarity defined by typed predicates shown in bold.

function/event/transition (allocate, job, job-specification, machine, many)
condition (same-properties, job, job-specification, machine, many)
object structure (world, job-specification, has-one)
object structure (world, machine, has-many)
object structure (job-specification, job, contains-many)
object structure (machine, job, contains-one)
object structure (machine, job, contains-no)
domain requirement (machine, job, contains-one, same-properties)
object category (machine, different-object-types)
object category (job, different-object-types)

function/event/transition (allocate, hotel-need, hotel-requirements, video-copy, many)
condition (same-properties, hotel-need, hotel-requirements, video-copy, many)
object structure (world, hotel-requirements, has-one)
object structure (world, video-copy, has-many)
object structure (hotel-requirements, hotel-need, contains-many)
object structure (video-copy, hotel-need, contains-one)
object structure (video-copy, hotel-need, contains-no)
domain requirement (video-copy, hotel-need, contains-one, same-properties)
object category (video-copy, different-object-types)
object category (hotel-need, different-object-types)

This example demonstrates the importance of identifying key domain facts for both

analogical matching and selection, even between domains which share misleadingly

similar syntactic properties such as the physical layout of the production floors.

3.4.3 The Local Library/Builders' Supplier Analogy

The third example demonstrates matching, selection and reuse of a larger, more complex

specification through several analogical matches, each equivalent to single instantiations

of defined domain abstractions. The analogy occurs between a local library system and a

system being developed for a supplier of building equipment for both hire and sale.

3.4.3.1 The Local Library Domain

A local library lends books, magazines and videos to the community for fixed periods of

time. All borrowers must be members of the library. Reminders and fines are levied on

overdue loans, increasing in severity with the length of the overdue loan. The principle

aim of the system is to support this lending activity, although it must also maintain a

stock of good quality, up-to-date books and videos. As such, the system monitors stock
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levels to warn of potential short falls in available book and video categories. The library

domain is shown pictorially in Figure 3.12.

Figure 3.12- library lending domain

3.4.3.2 The Builder's Supplier Domain

A supplier to the building trade sells building material and lends equipment to local

builders. Equipment is lent over fixed periods of time, and late or damaged return of

equipment incurs penalties related to the extent of damage or lateness of return. Sales

occur over the counter from the supplier's warehouse. The warehouse must maintain

sufficient stock to ensure availability of major items at all times. To this end, stock levels

are monitored by the system to ensure that no stock falls below a minimum quantity. The

supplier's domain is shown pictorially in Figure 3.13.
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Figure 3.13 - builder's equipment domain

3.4.3.3 Analogical Similarity between the Two Domains

Two abstractions shared by both domains identify the analogical match. These

abstractions are defined separately as the non-renewable resource and structured

renewable resource abstractions in Appendix A, and shown on the domain descriptions

represented pictorially in Figures 3.12 and 3.13. However, these domain abstractions can

be aggregated into a larger lending domain which must also maintain its stock of objects

to be lent. Such an aggregation can be applied to a variety other lending problems, such

as car hire and costume rentals, thus providing additional knowledge to support reuse

between the two instantiated domain abstractions. Extension of the software engineering

analogy model to incorporate domain aggregations is discussed further in chapter 7.

3.5 Summary: A Logical Model of Software
Engineering Analogies

A logical model of key determinants of software engineering analogies was proposed to

permit their retrieval and explanation. This model was developed in two parts. First, a
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meta-schema of knowledge types for representing key facts for analogical retrieval and

explanation of specifications was proposed and justified in terms of existing cognitive

and computational models of analogical reasoning. Second, a model of domain

abstraction was proposed to classify known types of software engineering domains which

act as a bridge for analogical matching and explanation.

Analogical matching is constrained by structural isomorphism and abstraction, so that

two domains are analogical only if they both belong to a predetermined abstraction

representing the key features of that domain class. Currently these abstractions are similar

in size to medium-sized entity-relationship diagrams, thus limiting the scale of analogical

matches to domains of equivalent scale. Domain abstractions can be specialised to

identify common generic domain worlds. A computational implementation of part of the

model to support analogical retrieval and explanation is described in chapter 5.

Domain knowledge is needed to provide intelligent support during requirements

engineering as well as during analogical reuse. Knowledge structures in requirements

engineering have received scant attention thus far, but the meta-schema defined in this

chapter provides a foundation for intelligent support for the requirements engineering

process. The logical model of software engineering analogies enables tool support for

effectively matching and explaining reusable specifications. It defines why analogies

occur and how they can be identified. The next chapter investigates analogical

comprehension and transfer to prove the specification reuse scenario. Empirical studies of

analogical understanding and customisation of specifications are reported with

implications for design of support tools during these activities.
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Chapter 4

4: Empirical Studies of Software
Engineering Behaviour

Chapter 1 proposed the need for tool support to assist software engineers to understand,

select and customise analogical specifications. Empirical studies are needed to prove the

analogical reuse paradigm and inform the process of analogical specification reuse.

Existing empirical studies of analogical problem solving indicate that people are poor

analogical reasoners unless assisted by reasoning or memory aids (Gick & Holyoak

1983). Little is understood of how software engineers reuse specifications or reason

during requirements engineering, so empirical studies are needed to inform support tool

design. This chapter reports four empirical studies of software engineers' behaviour

during requirements engineering and analogical specification reuse, then summarises

these findings to inform the design of tool support during the comprehension and

customisation of specifications.

Experimental studies are needed to evaluate the analogical reuse paradigm, determine

inputs to the specification retrieval mechanism and examine how reusable specifications

are and can be reused most effectively. To this end, four empirical studies are reported,

each of which informs the design of tool support:

• a first study investigated how inexperienced software engineers analysed a complex

software engineering problem and developed a high-level system specification to solve

that problem. This study was intended to inform design of the fact acquisition dialogue

which precedes specification retrieval. In particular software engineers' analytic and

reasoning processes were investigated and a preliminary cognitive task model of the

requirements engineering task was developed;

• a second study investigated the experimental hypothesis that analogical specification

reuse improves the analytic performance of inexperienced software engineers. The

experiment investigated the effect on analytic performance of reusing analogically-

matched templates and specifications. The null hypothesis was rejected, indicating that

analogical specification reuse does help inexperienced software engineers to specify

new domains. However, analogical specification reuse was error-prone, indicating the

need to assist software engineers during specification understanding and customisation;

• the third study examined analogical specification reuse by investigating how
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inexperienced software engineers' understood and transferred an analogical

specification to fit a new problem. In particular, software engineers' analytic strategies

and misconceptions about the analogy were modelled, resulting in cognitive task and

reasoning models of analogical reuse and a mental model of analogical comprehension.

These models informed strategies for more effective reuse practice and design of a

diagnostic component intended to determine software engineers' analogical errors and

misconceptions;

• the final study investigated successful reuse by expert software engineers in the same

scenario as the previous study to derive expert cognitive task and reasoning models of

specification reuse and a mental model of analogical comprehension. These models

informed design of tool support by indicating effective strategies for reuse as well as

the cognitive limitations of analogical understanding during reuse.

Each empirical study is reported in detail then their conclusions are applied to the design

of the reuse advisor. This chapter ends with an outline tool specification which is

expanded throughout chapter 5.

4.1 Study 1: Analytic Behaviour of Inexperienced
Software Engineers

This study investigated how inexperienced software engineers analysed a complex

software engineering problem and developed a high-level system specification to solve

that problem. Reasoning topics were also investigated in this study to examine software

engineers' ability to identify critical problem features from an ambiguous and incomplete

problem statement (see Appendix B). The study is reported more fully in Sutcliffe &

Maiden (1992). It contrasts with previous studies of systems analysis and high-level

software design which only identified correlations between frequencies of mental

behaviours and expertise exhibited by experienced software engineers (e.g. Vitalari &

Dickson 1983) or higher-level social, organisational and experience-based factors linked

to effective software development (e.g. Curtis et al. 1988, Rosson et al. 1988).

There has been little study of the cognitive processes underlying requirements

engineering, although better planning, more effective gathering of domain information,

better formation of structured diagrams of the problem domain and more critical testing

of hypotheses have been suggested as qualities which differentiate expert from novice

software engineers (Vitalari 1981, Vitalari & Dickson 1983, Fickas et al. 1988, Guindon

& Curtis 1988, Guindon 1990). Furthermore, experts appear to use better heuristics and

retrieve richer knowledge structures from memory (Guindon & Curtis 1988). More
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extensive psychological studies of program designers have demonstrated that novices

have fewer preformed memory schemas and that novices tend to focus on the surface

aspects of the problem (i.e. lexical/syntactic features of the programming language)

rather than the semantic level of the problem itself (e.g. Jefferies et al. 1981, Adelson

1984, McKeithen et al. 1985, Holt et al. 1987, Koulek et al. 1989). Studies of program

debugging suggested novices fail to scope problems, resorting to a strategy of bug

isolation and repair (Nanja & Cook 1987), whereas expert strategies are directed towards

building multiple domain models (Pennington 1987).

Requirements engineering involves different and more demanding skills than

programming. The software engineer has to acquire information and build a model of the

domain before design can proceed. Analysis, acquisition and comprehension of domain

knowledge is a challenging task only partially supported by structured analysis

techniques. Currently these approaches are limited to providing procedural guidelines for

software engineers and diagram notations to represent problem domains. Although

certain mental qualities (e.g. poor gathering of domain information) are purported to

result in poor analytic performance, no thorough investigation of novice software

engineer's reasoning and factors underlying failure has been undertaken. The objective of

this study was to investigate cognitive factors underlying their performance and build a

cognitive task model of that process to inform design of the problem identifier and

specification advisor.

4.1.1 Method

Protocol analysis was used to investigate problem-solving behaviour of 17 novice

software engineers (14 Male & 3 Female MSc students in Business Systems Analysis,

with a maximum of 6 months structured analysis experience). Three pilot subjects

undertook the analytic task beforehand, to refine the problem and the experimental

procedure. During the experiment 3 subjects were unable to attend, whilst a fourth failed

to verbalise sufficiently and was discarded. Data from the remaining 13 subjects (11M,

2F) provide the basis for the results discussed in this section.

Subjects were asked to develop a specification for a delivery scheduling system. All

subjects had background domain and method knowledge necessary to develop a

specification. They knew the delivery scheduling problem through experience on a case

study, during which they used the Structured Systems Analysis (SSA) method and its

main representation technique, data flow diagrams (DFDs). These techniques had been

recently taught and practised as a part of the subjects' MSc curriculum. Relevant subject
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experience prior to undertaking the MSc course varied; 5 subjects had no previous

exposure to developing computer systems, whilst 7 subjects had some exposure to

structured development methodologies or flowcharting techniques.

4.1.1.1 Experimental Material

All subjects were given a 400-word narrative describing the problems of a manual

delivery scheduling system (see Appendix B). The objectives for a computerised delivery

system were also outlined, together with an example report describing the required

delivery schedule. Subjects had no access to other material during the protocols.

4.1.1.2 Experimental Design

Subjects were requested to think aloud and their verbal protocols were recorded on audio

tape. Beforehand all subjects were given the chance to practice thinking aloud whilst

solving a simple puzzle. During the protocols subjects were advised to take their time

when verbalising, and not be afraid of verbalising too much, following the practice of

Ericsson & Simon (1980, 1984). The experimenter also recorded important bouts of

physical behaviour such as reading the problem narrative or drawing a structured

diagram. Instructions for subjects were read by the experimenter. Each subject was

requested to develop a specification of a computerised system using data flow diagrams.

Subjects were given 35 minutes to develop a specification as the pilot studies with 3

subjects indicated this was sufficient time to complete the task. All subjects were

informed of this time limit before beginning the task, and were expected to complete a

solution by the end of it. All subjects were halted after 35 minutes. While each subject

performed the task a protocol was recorded. Upon completion of the task a 10 minute

retrospective protocol elicited further details of reasoning strategy and behaviour.

Retrospective questioning was driven by a checklist of different behaviours which were

expected to occur during the task (e.g. "Why did you model the current system before the

required system ?"). Care was taken not to prejudice the retrospective protocol, so the

experimenter only asked open-ended questions, following Ericsson & Simon's practice.

Previous computing experience of each subject was obtained from the post-test

questionnaire and scores for completeness/accuracy of the solution (DFDs and lists of

requirements reported by the subjects against the list provided by expert judges) were

provided by an expert judge. These scores are shown in Table 4.1. Experience ranged

from subjects D, E, 0, R and S who had no experience with computer systems

development to subject K who had a BSc degree in mathematics for business (including
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final-year project experience of SSA techniques) and 16 months programming

experience. Average experience of the subjects was approximately 6 months

programming experience but only 6 weeks training in SSA techniques prior to the MSc

course.

4.1.1.3 Analysis

Protocol transcripts were analysed by matching mental behaviours to speech segments,

usually sentences and incomplete utterances (see Ericsson & Simon 1984 for further

details of the method). Six major categories were used, divided into mental and non-

mental behaviours.

Mental behaviours:

Recognise goal- statement of high level functional requirement (e.g. "..And there is a

need to improve the delivery system");

Assertions-	 verbalisation of a belief or statement of facts about the problem domain

directly attributable to the problem narrative (e.g. "Lorries leave the

depot half empty");

Reasoning-	 verbalisation of the creation, development and testing of hypotheses

about the problem and its proposed solution (e.g. "..he also wants... to

know about urgent orders, so again, that should be marked in some way,

he will be able to pick it up straight away..");

Planning-	 a meta-level of control over the analytic process. Two types of plan were

distinguished by their dependence on method knowledge. A SSA

method plan is "I'll list the inputs, outputs and sources, then draw a

logical new DFD". General plans are, "I'll read the problem once, then

construct a specification".

Reasoning was distinguished from assertions by the degree of inference applied and

concurrent non-mental behaviour (e.g. reading). Recognition of a goal implied an

understanding of the required functionality of the system. Planning behaviour differs

from goal recognition in that it is domain-independent: goals state what the system must

achieve whilst plans state how the subject develops a specification to meet those system

goals.

Non-mental behaviours:
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Information acquisition- searching for and retrieval of data in the problem text or

elsewhere (e.g. reading the problem text);

Model recording -	 physical construction of the system specification recorded as a

DFD.

Figure 4.1 and Appendix B present sample protocols identifying mental and non-mental

behaviours. Ericsson & Simon (1984) have suggested that protocol analysis is a useful

technique for eliciting sequential models of human problem solving. The consistent

verbalisation of our subjects suggests that their reports were generally representative of

the underlying mental behaviour, although this cannot be guaranteed. Retrospective

questioning was also used to elicit mental behaviour which may not have been verbalised

by the subject during the analytic task.

4.1.1.4 Protocol Categorisation

Protocol categorisation was validated through cross-marking by two independent

observers. Each observer allocated a behavioural category to each utterance in 5

randomly-selected protocols. Categories were allocated to over 99% of all identified

speech segments. Initial inter-observer agreement was 79% of the utterances categorised

by both observers. Resulting differences were attributable to identifiable discrepancies

between the observers. These differences between protocol categorisations were

discussed and where necessary changes were agreed and reconciled by both observers.

4.1.1.5 Solution Completeness

Completeness scores were allocated to each subject's solution specification to represent

their success or otherwise in solving the problem. Incompleteness was identified by

Meyer (1985) to be a major sin of most requirements specifications. Completeness scores

were considered an appropriate measure of analytic success over other sins for two

reasons. First, subjects were required to identify the scope and major functional

requirements of the delivery scheduling system, so one important measure of analytic

success was their ability to recognise problem boundaries and major system components,

i.e. processes, and entities. Indeed, pilot studies revealed these measures to be an

important determinant of the quality of pilot subjects' solutions. Second, quantitative

measurement of alternative requirements 'sins' such as contradiction and wishful

thinking was difficult and thus omitted from this analysis.
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Dev hyp
Ext hyp
Draw
Ext hyp
Test hyp

So we've got external, the external agent;
first one is our customers.

Makes the order,
and er,

Dev hyp	 the process order department which will, er,
Draw
Ext hyp	 will see if the order is valid,
Test hyp	 and er,
Ext hyp	 and about the credit worthiness of the customer,
Ext hyp	 will proceed the order,
Ext hyp	 which will be stored in a file, data store, order file
Draw
Ext hyp	 and each order, the order will be some kind of a record,
Ext hyp	 which will have information about er, the customer name,
Ext hyp	 urn, you can have only the account number of the customer,
Test hyp	 which will, who can,
Ext hyp	 it will the main address of the customer,
Ext hyp	 the item he needs,
Test hyp	 and er,
Ext hyp	 the day that he needs, he needs the items.
Gather Info
Ext hyp	 Pink scheduling note, •
Test hyp	 okay.

ICUSTOMER I

ORDER

ORDER

FILE

Figure 4.1 - example protocol from subject J, including part of data
flow diagram developed during this segment

A marking scheme was created from solutions developed by 3 experienced software

engineers with considerable knowledge of the delivery scheduling problem and SSA

techniques and who were considered very capable for the task. The scheme contained a

list of components to be included in a specification, and focused on semantic features of

subjects' solutions rather than on the syntax of the data flow diagramming representation.

These components included the processes, data stores, system inputs, outputs, functional

and non-functional requirements of the system. Components were included on the

marking scheme list if they were included in any one of the 3 expert solutions. Subjects
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received a score if a component was included in the resulting data flow diagram or if the

subject verbally stated that the component was to be included in the system. Each

completeness score was representative of the subject's ability to recognise the scope of

the problem and the major functional requirements of the system. A data flow diagram

representing a composite solution developed by the experienced software engineers is

given in Appendix B.

4.1.2 Results

Subjects' overall performance was poor, averaging only 11.4% of the 'expert' score (see

Table 4.1). Most subjects' low scores possibly reflected both their inexperience and the

limited time available to complete the problem (35 minutes was allowed based on expert

completion times of about 20 minutes). This suggested that they found the analytic task

difficult. One subject (D) drew nothing, eight subjects drew context diagrams, and ten

subjects drew data flow diagrams, all of which were incomplete. The most exhaustive

attempt was a set of five diagrams from subject E labelled as current logical and new

logical systems. Two sets of diagrams were reworked by the subjects and many were

used as informal recording devices for the development of drawn specifications. Potential

reasons for poor analytic performance were investigated.

Frequencies of mental behaviours were counted for 5 minute segments. This was

considered to be a convenient time period to yield suitable frequencies for analysis.

Information gathering, assertions and planning decreased with time and reasoning

increased in the later stages of the protocols, see Figure 4.2. The rise in planning

behaviour was caused by two subjects (G, M) who ended their protocols by stating how

they would have approached design of the delivery scheduling system. The decline in

information gathering before the increase in goal recognition behaviour suggested that

subjects required time to assimilate the problem before system requirements could be

identified. Individual differences were apparent in total occurrences of each particular

behaviour (see Table 4.2), notably subject H who had low levels of planning, goal

recognition and assertions.
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Information
gathering

Goal IMMO .xxx planning

model
11111n11

recording 20

16

Assertions
12

Reasoned
Beliefs

8

4

Sub ject

%age
completeness
score achieved

by subjects

%age
completeness
score achieved
for DFD only

Analysis
Experience

Programming
Experience

D 7.8 0 nil nil

E 12.4 7.2 nil nil

G 6.9 7.2 6 wlcs taught 15 mths taught

H 4.7 4.3 1 wk taught 12 mths prac.,

I 13.2 10.1 1 yr flowchrts nil

J 17.1 24.6 3 mths taught 18 mths taught

K 43.4 7.2 5 mths project 16 mths taught

M 9.3 4.3 6 mths taught 6 mths prac.

N 11.6 2.9 3 wks taught 12 mths prac.

0 8.5 10.1 nil nil

P  10.1 2.9 taught only 3 mths prac.

R 1 1.4 nil nil

S 2 4.3 nil nil

Average 11.4 7.1

Range 10.01 - 43.4 0 - 24.7

Table 4.1 - completeness scores, as %ages of the entire expert solution
and of the expert DFD, and subjects previous computing experience

(all subjects had an additional 6 weeks training with SSA techniques)

%age of total
behavioural
	

%age occurences
occurences
	 of total behaviour

5 10 15 20 25 30 35

Figure 4.2(a) - frequencies of occurrence of
all behaviours in 5-minute segments of
protocols, for all subjects

5 10 15 20 25 30 35

Figure 4.2(b) - frequencies of occurrence of
Assertion and Reasoning behaviour,
analysed in 5-minute segments for all subjects

0
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sub ject

information-
gathering

behaviour, in
mins & secs

number of
goals/

requirements
identified •

number of
assertions

made

number of
reasoning
inferences

made

number of
plan details

made

D 20 mns 1 lsecs 7 21 4 17

E 3 mns 20 secs 7 40 18 13

G 5 mns 18 secs 8 33 23 11

H 17mns 46 secs 0 0 21 0

I 12 mns 3 secs 8 8 21 6

J 12 mns 8 secs 2 14 35 0

K 8 mns 37 secs 9 17 60 11

M 10 mns 35 secs 5 28 13 14

N 12 mns 36 secs 6 24 14 8

0 11 mins 0 31 6 15

P 11 mns 40 secs 10 19 32 0

R 16 mns 24 secs 3 17 5 4

S 18 mns 17 secs 2 20 22 0

average 12 mn 18.1 scs 5.2 20.9 21 8.46

range
3 mns 20 secs -
20 mns 11 secs 0-10 0-40 5-60 0-15

Table 4.2 - total occurences of behaviour by subject. All values are the
number of occurences of a behaviour except for information gathering

which is given in seconds duration.

Sequential dependencies between behaviours for all subjects were analysed by casting the

behaviours in a transition matrix (occurrences of A following B and vice versa) then

constructing a network model of the temporal relationships between behaviours. The

results for all subjects are shown in Figure 4.3. The strongest associations were between

gather information, assertions, and recording structured diagrams. These associations

probably represent the analytic side of understanding the problem domain as software

engineers acquire information, understand it, and organise facts in data flow diagrams. In

comparison, there was little association between reasoning and planning behaviours,

suggesting that subjects exhibited little systematic reasoning about the domain.
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Figure 4.3 - averaged sequential dependencies (>2%) between behavioural
categories for all subjects. Total occurrences of each behaviour are shown in the

circles and the circle size has been scaled accordingly

No correlation was found between experience scores and solution completion (Spearman

Rank Order Coefficient). Similarly no relationship was found between totals of different

types of behaviour over time (two-way analysis of variance, time analysed as 5-minute

segments). Correlations between totals of each type of behaviour and individual's

experience and solution completion were also non-significant apart for reasoning with

completeness (Spearman Rank Order Coefficient, p � 0.05). At the fairly crude level of

totals of behaviour, this suggested that reasoning ability may be linked to improved

analytic performance, although only subject (K) performed competently at the task. To

understand this link further, models of analytic reasoning were derived from protocol

transcripts, as described in the next section.

4.1.2.1 Models of Reasoning Behaviour

Reasoning behaviour was investigated in terms of the development of hypotheses

following the generally accepted development-and-test model (e.g. Akin 1986). The life

history of each hypothesis was traced by its thematic content until eventual rejection or
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resolution. Hypothesis reasoning behaviour was categorised as generate, develop, test,

confirm, modify and discard (see Figure 4.4). All subjects showed well-developed

networks linking Generate-Develop-Test Discard or Modify, apart from subjects R and S

who showed only weak associations between generate, develop and discard. It was

noticeable that these subjects also had low completeness scores (1% and 2%

respectively) and that weaker subjects (D, G, H, R and S) used reasoning strategies less

effectively, i.e. by testing only general hypotheses and applying poor tests which resulted

in vague conclusions. Stronger subjects generated domain scenarios to evaluate

hypotheses. Many subjects immediately discarded hypotheses once they had they been

generated, suggesting that in general, subjects were poor reasoners unable to develop and

test hypotheses about the domain.

Figure 4.4 - network model of hypothesis life histories for all subjects:
figures on the arcs represent the total number of transitions which

occurred, and circle sizes have been scaled accordingly

All subjects showed little tendency to reconsider old hypotheses, as 81% of all hypothesis

topics were never retrieved for further development. Of those that were, development of

11% was triggered by reference to facts in the problem statement, while 9% were linked

to development of system requirements. Eighty five percent of the hypotheses followed

information gathering from the narrative hence most reasoning was linked to domain

knowledge extracted from the problem statement and guided by the contents of the

problem narrative. This indicated that subjects tended only to reason about topics closely

related to existing system problems.
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4.1.2.2 Reasoning and Structured Diagrams

A major recommendation for use of structured methods is the formalisation of domain

knowledge using structured notations such as data flow diagrams, entity relationship

models, etc (e.g. De Marco 1978). These diagrams can be used to describe new target

domains, so this study examined how subjects reasoned with these structured model

notations. Modelling was analysed by examining reasoning behaviour which occurred

concurrently with diagram formation. Model-based reasoning involved the generation

and development of hypotheses linked by a single thematic strand related to components

added to the diagram.

Six subjects (E, G, I, J, K, N) exhibited model-based reasoning while another five

subjects partially did so (H, P, R, S, 0). On the other hand subject M, along with the

subject D who did not develop a DFD reasoned with a series of disjoint, unrelated

hypotheses and consequently were judged not to have shown model-based reasoning.

Subjects who constructed full diagrams produced more complete solutions (average score

17.4% modellers) than subjects who exhibited partial or no diagramming behaviour

(average score 5.26% for partial modellers, 8.5% for non-modellers). Four subjects who

exhibited model-based reasoning were among those with more experience of SSA

techniques. In addition 5 of the 6 model-based reasoners were among those who

produced the best data flow diagrams, suggesting either that building and reasoning with

structured diagrams may improve analytic performance, or that greater experience with

structured analytic notations may promote model-based reasoning. Construction of data

flow diagrams may have been influenced by the analytic strategies adopted by subjects,

hence these strategies were investigated.

4.1.2.3 Planning

Control over the analytic process was manifest as planning behaviour. Seventy-three

plans were verbalised, six of which summarised reasoning which had already taken place.

Of the remaining 67 plans, 52 were carried out during the protocol while 15 were

abandoned. The majority (97%) of implemented plans were short term describing the

next sub problem task and were executed within 5 minutes. Retrospective questioning

about overall plans and strategies also revealed that all subjects had difficulty verbalising

coherent plans, suggesting either the absence of long term planning or the unconscious

nature of such plans.

Forty-one percent of all plans involved method steps and procedures (specified by the
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SSA methodology, e.g. "Model the current system before modelling the required

system"), while the remaining 59% employed general knowledge. Subjects with weaker

completeness scores exhibited more planning (see Tables 4.1 and 4.2) and a greater

reliance on method procedures while other subjects exhibited less planning and largely

ignored structured analysis guidelines. This indicated that method procedures may have

been more actively employed by the most inexperienced and least successful subjects,

although as Ericsson & Simon (1984) suggested, subjects more experienced with these

techniques may fail to verbalise frequently-applied knowledge.

These quantitative analyses of subjects' behaviour revealed some determinants of good

and poor analytic performance. The empirical findings reported thus far provide clues to

a general cognitive task model based on subjects' reasoning behaviour. However, one

more specific objective of this study was to investigate the semantic content of their

specifications to suggest likely inputs to the specification retrieval mechanism. This

objective was met by investigating the semantic content and errors of subjects' completed

specifications.

4.1.2.4 Solution Quality and Errors

Subjects' protocols and completed data flow diagrams were analysed for both errors and

their underlying misconceptions. Analysis of detailed errors was hampered by subjects'

inability to develop even basic structured diagrams. Solutions were incomplete rather

than erroneous. Subjects were more successful at recognising system goals and inputs

(23% and 20.5% of the expert solution respectively), whilst there was poorer recognition

of system data stores (11.9%), processes (8.8%) and outputs (5.8%). Inspection of

protocols suggested subjects were unable to recognise or infer those processes and data

store accesses included in the expert software engineers' solutions.

The semantic content of subjects' solutions was examined to determine the existence of

critical facts about the scheduling problem as stated by the meta-schema of knowledge

types in chapter 3. Fundamentally, the delivery scheduling system consists of two object

allocation, or constraint satisfaction, domains. The first problem must allocate daily

deliveries to lorry space, and the second problem must allocate lorries to particular routes

to maximise deliveries to customers. Both constraint satisfaction functions have

requirements which must be met by resources, so they are analogical to the lift routing

domain shown in Appendix A. Subjects' solutions were examined for the inclusion of

key domain features as described in Table 4.3.
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key facts about
the domain

subjects

DEGHI J K MN OP RS

fn: allocate daily orders q 4 4

fn: allocate orders to lorries

object: order/delivery 4 4 4

object: lorry I/

object: lorry space

object: route 4

condition: suffic. lorry space

condition: selected route is ok.

delivery type

lorry space type

lorry type

route type

reqt: meet all deliverables

reqt: meet all route needs

function of 1st alloction

function of 2nd alloction

label: object allocation

label: constraint satisfaction

label: requirement matching

01010totals 0 0 111 0 2 1 0 0 3

Table 4.3 - verbalised or drawn key domain facts by subject:
a tick indicates recognition of the fact by the subject during

concurrent protocols. Facts are derived from the logical model
of software engineering analogies defined in chapter 3. Generic

terms labelling the domain type were also included in this analysis

However, subjects were unable to incorporate these concepts into their specifications,

suggesting that they had a poor understanding of critical domain facts. Rather subjects

tended to model the current system and focus on high-level system inputs, outputs and

processes more related to sales order processing than delivery scheduling, possibly

because they had previously analysed and specified the sales order processing system for

the same case study organisation. Eight subjects did not include any critical components

in their solutions while at best one subject included three components. In addition,

subject J recognised the need to sort requirements by priority to maximise subsequent

allocation. However, we should not be surprised by these findings, since subjects had

little or no previous experience of similar domains. These results have important

implications for the specification retrieval mechanism. Subjects' solutions revealed their
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inability to determine most key domain using diagrammatic representations, although

several subjects were able to model key state transitions. Furthermore, many subjects

modelled the correct state transitions for the sales order processing domain, indicating

that the proposed logical model of domain abstraction may be an effective mechanism for

modelling and matching domain descriptions, although extensive tool support appears

necessary. In the light of these findings, subjects' analytic strategies were investigated

more closely to determine potential reasons for this failure to recognise key domain facts.

4.1.2.5 Analytic strategies

This analysis was completed by examining subjects' planning and reasoning behaviours

in combination with the types of knowledge employed. Investigation of analytic

strategies was primarily qualitative rather than quantitative. Pilot data suggested that

subjects start analysis by investigating the scope of the domain and structuring the

problem space. Indeed, most structured methods advise boundary definition as an early

exercise in analysis; consequently this study also focussed on whether subjects

effectively structured the problem space before moving onto more detailed analysis. The

concurrent and retrospective protocols were examined for the following qualities of

reasoning strategies:

• was a logical model of the current system constructed before design issues were

introduced, following the usual paradigm of separating analysis from design ?

• were physical issues (implementation) brought into the analysis and design, contrary to

the advice of most methods ?

• were method heuristics, procedures or steps used explicitly (e.g. top down functional

decomposition) ?

• did subjects scope the size of the problem and establish the problem boundaries before

proceeding to analytic detail ?

All subjects attempted to scope the problem but eight ( D, G, H, M, N, 0, R, S) were not

effective in doing so. One of the eight poor scopers did not determine the boundaries of

the domain, while the other seven became embroiled in detail before determining the

problem boundary. Five poor scopers modelled the current system and rigidly employed

SSA method heuristics (e.g. 'identify all external agents' and 'model the current system

using a data flow diagram') to guide domain scoping. These heuristics appeared to

quickly focus subjects' attention on domain details, hence successful domain scoping

may have been impeded. A sixth poor scoper (N) only modelled the inputs to the current

system before attempting to design a solution. Subjects who had difficulty in scoping the
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domain also had low completeness scores. Findings suggest that literal reliance upon

method heuristics may have impeded proper scoping of the domain.

Nine subjects (E, G, H, I, J, K, N, 0, R) explicitly reported using heuristics and method

steps of structured analysis (e.g. determining external entities, system inputs outputs,

context diagram, etc) but only three (E, H, J) used the method consistently. Ten subjects

used a top-down approach without verbalising it, though it was not applied consistently.

Subjects tended to "divide and conquer", analysing one area in depth before moving onto

another.

Only the least successful subjects exhibited much overt usage of structured analysis

methods while developing data flow diagrams. Furthermore, over half of the subjects did

not follow the dictates of developing a current logical model before developing a new

logical design. Only three subjects (G, E, K) clearly separated analysis from design. On

the other hand three subjects (J, M, 0) disobeyed the structured approach by mixing

physical design details (e.g. files, sorts, implementation hardware) with analysis. Two of

these subjects (J, M) had the most programming experience and did not suffer from

inclusion of implementation features. It is notable that subject J constructed the most

complete data flow diagram using several sort procedures as the hub of his model.

Generally subjects did not exhibit a well-ordered approach to systems analysis and mixed

design of the problem solution with analysis and problem description.

4.1.3 Conclusions: Qualities of Effective Requirements Engineering
Behaviour

Findings indicated that good performance by inexperienced software engineers cannot be

predicted by a single factor, although rigorous testing of hypotheses and reasoning with

structured diagrams do give a firm indication of performance. Three subjects (J, K, E)

who combined opportunistic generate-and-test strategies also appeared to be more

effective. Similarly no one factor underlies poor performance. Poor domain scoping and

lack of hypothesis testing appear to be important. Performance in any one individual is

probably the result of a combination of these factors, as demonstrated by case studies of

two successful subjects and one poor subject given in Appendix B. The possible reasons

for poor and good performance by subjects are summarised in Table 4.4.
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reasons for good
performance

subjects

DE GHI J KMNOP R S

good problem
scoping

4 .4 4 4 4

use of structured
diagrams

4 4 4 4 4 4

critical testing 4 4 4 4 4

Table 4.4 - summary of possible reasons for
good performance by subjects

4.1.4 Discussion

This study investigated inexperienced software engineers during the analysis and

specification of a complex software engineering problem. Conclusions from this study

were mixed. Several factors linked to effective analytic behaviour were identified,

however software engineers were unable to identify many key facts about the delivery

scheduling domain defined in chapter 3, and their final specifications were incomplete.

One obvious reason for this failure was their lack of relevant domain knowledge due to

no exposure to similar scheduling problems. Instead, subjects may have exhibited a

recency effect and focused on system features related to a recent problem solving

experience with the sales order processing function of the same problem.

Findings suggest several factors linked to poor analytic performance. Changes in totals of

behaviour over time during the protocols combined with analysis of the protocol

transcripts indicate that analysis may have two distinct phases; an initial scoping of the

problem and structuring the problem space, followed by more detailed reasoning about

the problem. Information acquisition was concentrated in the first phase, and novice

software engineers in this study spent an average 33.5 % of the whole protocol gathering

information, which is greater than Vitalari's (1981) figure of 25% information acquisition

time for experienced, but poor performing, software engineers. However, these software

engineers were unable to scope and structure the problem, suggesting it to be one

determinant of poor performance which software tools must help software engineers to

overcome.

Poor performance may be attributed to a variety of other factors, from ineffective testing

of hypotheses, supporting Jefferies et al.'s (1981) and Adelson & Soloway's (1985)

findings, to ineffective modelling. This contrasts with the essentially unitary causalities
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of poor performance reported by previous studies (e.g. Vitalari & Dickson 1983, Fickas

et al. 1988). This study may have uncovered natural human limitations in information

processing ascribable to poor mental model formation or motivational factors.

Software engineers' success in this study appeared to be able to reason critically and

effectively with structured diagrams. Model-based reasoning may be indicative of mental

model formation in the sense of Gentner (1983). As mental models involve holding many

linked facts in memory they may be regarded as a large composite knowledge structure.

Experts in many domains are distinguished by their ability to retrieve and use large

knowledge structures (Schank 1982) and mental model formation has been postulated as

an important factor in human mental reasoning ability (Johnson Laird 1983, Gentner &

Stevens 1983, Adelson & Soloway 1985). It is therefore not surprising that model based

reasoning and performance appear linked. Representation of related information in

tractable notations may be one of the more important improvements which structured

methods have made in supporting the analytic reasoning process.

Contrary to the advice given in software engineering methods, novice software engineers

did not appear to separate analysis from design, and mixed physical implementation

detail with logical specification. The former strategy incurred no performance penalty,

indicating that mixed analytic and synthetic-design based reasoning may be more natural

than the enforced separation advised by methods, a finding which agrees with Lawson's

(1980) and Akin's (1986) studies on architectural domains. Likewise, concentration on

physical detail did not appear to incur performance penalty, suggesting even the

methodological sin of mixing logical and physical development phases may not be

disadvantageous. A similar diversity in opportunistic reasoning strategies have been

reported in professional domains (e.g. Akin 1986) and everyday problem-solving tasks

(Hayes-Roth & Hayes-Roth 1979) as well as software development (Guindon & Curtis

1988, Guindon 1990, Visser & Hoc 1990).

To conclude, this study led to a tentative, empirically derived cognitive task model of

requirements engineering with implications for supporting individual software engineers

during the investigation and specification of an unfamiliar problem. Of course, much

software development occurs between distributed peer groups or during meetings with

end-users (e.g. Curtis et al. 1988, Curtis & Walz 1990), so the proposed model has

limited implications. However, it does provide important clues about the fact acquisition

dialogue needed to feed the specification retrieval mechanism. An outline of this support

is described in the next section.
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4.1.5 Implications for Support Tools

The most important implication from this study is the need for semi-automated tool

support during key fact acquisition. In particular such tools must provide domain

knowledge necessary during fact acquisition to facilitate problem understanding, scoping

and identification of key domain facts (Curtis et al. 1988). One effective way of

providing this domain knowledge may be to present software engineers with key domain

abstractions early in the fact acquisition dialogue to assist problem scoping, structuring

and evaluation. Understanding these abstractions may be difficult, so concrete examples

can be provided to aid comprehension (Gick & Holyoak 1983). A similar, example-based

approach was implemented in the CODEFINDER system (Fischer et al. 1991a).

Alternative notations for representing key knowledge types are needed to supplement

more traditional structured analytic notations which failed to capture key domain facts in

this study. Such notations must represent key state transitions and object structures.

Indeed, defining software engineering domains in terms of key state transitions may be

cognitively plausible since software engineers exhibited a tendency to model key system

functions, inputs and outputs equivalent to these transitions. Tool support will be

necessary to assist completion of these domain descriptions because software engineers

found this task difficult.

This first study revealed other factors which were linked to good and poor requirements

definition. On the positive side, support tools should encourage software engineers to

reason effectively with structured and informal diagrams, thus prompting more effective

mental model formation. However, the need for alternative notations to support

structured diagrams formulated by software engineers should not be underestimated.

Software engineers must also scope and test specifications more effectively, and one

solution may be to provide explicit, prescriptive guidelines to encourage better scoping

and testing. Furthermore, support tools should not encourage use of structured analysis

heuristics during individual bouts of analysis but promote a more opportunistic mode

(e.g. Guindon 1990) of reasoning during problem exploration and mental model

formulation. The implications from this study for the design of support tools are

described in more detail at the end of chapter 4 and throughout chapter 5.

4.2 Study 2: An Experimental Study of Specification
Reuse

The effectiveness of specification reuse on analytic performance was investigated
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experimentally in a second study. A controlled experiment examined the effect of

providing analogically-matched abstract and concrete specifications on the analytic

behaviour of inexperienced software engineers. Minimal support for specification reusers

was provided so the experiment investigated valid analogical reuse in a realistic CASE

tool scenario. Software engineers received the reusable specification and a brief narrative

describing the system's functionality without any explanation of analogical mappings or

key domain abstractions.

This study also investigated software engineers' ability to comprehend and transfer

analogical specifications to inform design of tool support. Previous empirical studies of

programming behaviour suggested that effective specification reuse would be difficult.

Program debugging tasks revealed that, in practice, even expert programmers required

considerable time and mental effort to understand and modify unfamiliar programs

(Pennington 1987), whilst novices often fail to achieve any successful modifications

(Holt at al. 1987). Indeed novices tend to adopt strategies which hinder understanding

(Nanja & Cook 1987). The inexperienced software engineers in this study lacked

experience and knowledge of similar domain types, so specification understanding was

likely to be difficult and error-prone. In addition, as Shell suggested (cited in Sein 1988),

inexperienced software engineers are unlikely to have many domain analogies to draw on

when constructing new mental models. However, given novices' poor performances in

the previous study, it was hypothesised that analogical specifications would still promote

reuse and improve specification completeness and accuracy.

Finally, this study investigated the effectiveness of reusing abstract and concrete

specifications. As discussed in chapter 1, reuse of generic templates or cliches has

received considerable attention in the literature (e.g. Harandi & Young 1985, Fugini et al.

1991). However, software engineering authors rarely evaluate the usability of their

products, consequently little evidence exists on how abstract concepts may help systems

development. In light of this the reuse of specifications presented in concrete and abstract

forms was investigated to determine the relative effectiveness of generic templates and

whether they can supplement reuse of concrete analogical specifications.

4.2.1 Method

Complete accounts of this experiment are given in Sutcliffe & Maiden (1990a & 1990b)

while the experimental data is presented in Appendix C. Thirty (23 male, 7 female)

subjects were full-time MSc students in Business Systems Analysis and Design. They

had knowledge of several structured analysis and Jackson (JSD) techniques, and all but 6
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had previous systems development experience. The subjects, whose age ranged from 21

to 36 years, volunteered their services, for which they received practice and

supplementary tuition on JSD techniques.

A video camera recorded all written work, and verbal protocols were tape recorded.

Subjects were asked to develop a JSD process structure diagram for a scheduling function

allocating videos to hotels. The problem built upon target domain knowledge already

acquired by subjects from a case study.

A between subjects, two conditions experiment was conducted with:

• a control group, where subjects were given the problem narrative alone;

• an abstract analogy group (AA), where subjects were provided with the problem

narrative and an unfamiliar abstract JSD template of a general scheduling problem;

• a concrete analogy group (CA), where subjects were given the problem narrative and a

JSD specification of a real but unfamiliar analogous production planning application.

Each group of 10 subjects was balanced with respect to subjects' experience.

In concurrent protocols, groups CA and AA subjects were requested to verbalise:

• similarities between the reusable specification and the problem; and

• how these similarities were used to solve the problem.

Subsequent retrospective analysis probed subject's general problem-solving strategies and

their understanding of the analogy and the target problem. The main concept was the

functional requirement to allocate a resource within certain constraints. This was manifest

as scheduling a resource (or video copies in the target domain) within constraints such as

time and hotel preference in the target domain. Retrospective protocols and a written

questionnaire captured problem-solving and reuse strategies.

Subjects' solutions were scored for completeness and validity. Completeness was used as

a measure of success for the same reasons as given in the first study while an error count

was found to be effective in this study due to the well-defined nature of the task and the

scope of the domain. Completeness was measured against a solution provided by an

experienced JSD analyst. Subjects' solutions were scored for the correct number of

actions in the diagram and for use of JSD design constructs (e.g. Backtracking). The

validity of solutions was measured by the quantity of specific errors, determined by the
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extent to which the specification was incorrect in terms of domain knowledge and JSD

syntax. Solutions were independently cross-marked by two experts, who agreed on

scoring in 91% of all cases for completeness scores.

4.2.2 Results

Completeness scores for subjects are shown in Table 4.5. They indicate that the subjects

who were given reusable specifications produced more complete solutions than the

control group. This effect was significant for the abstract template (AA group) (T-test,

using the approximating Z distribution for non-normal populations; Z = -2.23, p �0.05);

however, although the concrete analogy (CA group) showed better scores than the control

group, this difference was non-significant. Control subjects made more errors than both

experimental groups although these differences were also non-significant.

average %
and number

complete-
ness	 of

errors

control
group

abstract
(group AA)

concrete
(group CA)

% completeness 24.4 41.1 32.8

average number
of errors

11.8 10 10.1

Table 4.5 - average completeness (as % of ideal solution ) and
error scores for solutions developed by subject groups

Recognition of the analogy was evaluated by asking subjects whether they recognised

three key analogical associations derived from the object allocation abstraction described

in Appendix A:

• the functional transformation of allocation/scheduling;

• the concept of resources; and

• the requirements needing the resources.

All the AA subjects recognised at least one key association, 8 out of 10 CA subjects also

recognised one association but none of the subjects recognised all three.

Three mappings which involved JSD method knowledge as well as domain knowledge

were analysed in more detail. Subjects were asked whether they recognised and used

three features and their solutions were checked for inclusion of the same. The three

features of the allocation function were: integrity of the top-level sequence, an iteration of

hotel-to-video allocations, and a backtracking selection for each allocation (see Table

4.6). Most of the control subjects failed to recognise these features whereas the
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experimental subjects performed significantly better, with the AA group having a higher

overall score than the CA group (T-tests approximating Z distribution for non-normal

populations; Z = -4.637 & -2.6.76 respectively, p �0.05). This suggests that the transfer of

structural knowledge about the target solution was effective, particularly with the abstract

template.

solution
structure

control
subjects

group AA
subjects

group CA
subjects

top-level sequence 1 9 5

alloction iteration 4 8 8

backtrack condition 0 6 3

group totals 5 23 16

Table 4.6 - number of subjects who reused key structures in their solutions

Subjects' attitude, recorded by the post-test questionnaire, underlined the effectiveness of

the abstract template. Subjects from the AA group rated the abstract analogy to be more

helpful in developing a solution than did CA subjects for the concrete analogy.

The reasons for failure to use the analogy appear to be matters of motivation and

comprehension of the analogical specification. Five group CA subjects failed to use the

analogical material. Two of these 5 subjects retrospectively reported that they rejected the

analogical specification since it contained too much information to be absorbed in the

time allowed, whilst another 2 totally ignored the analogical material. The other CA

subject was unable to reuse the scheduling function, even though the analogy was

recognised. Two AA subjects also failed to reuse the abstract template because they

misunderstood the functionality in the specification, although they did recognise the

potential analogy with target problem. These findings indicate that the concrete analogy

may be more difficult to assimilate than the abstract template.

Analytic strategies which appeared to lead to errors were identified in retrospective

protocols, backed up by analysis of subjects' solutions. Three strategies were apparent:

• creation of unnecessary components in the target specification, apparently caused by

the motivation of mapping all components across from the analogical specification (4

AA and 2 CA subjects);

• making false analogies, apparently caused by trying to link all structures in the

specification with a structure in the target domain (1 CA subject);

• choice of the structure to map was based on its general familiarity (2 CA subjects).
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Some subjects used more than one of the above erroneous strategies. It was noticeable

that weak heuristics were also used to attempt to solve other, less-important aspects of the

target problem not associated with the analogy.

4.2.2.1 Effect of Experience

No significant interaction was found between experience and solution completeness or

errors with a two-way analysis of variance, see Table 4.7. Inexperienced subjects made

proportionally fewer syntax errors, which appears to contradict their lack of experience

(see Table 4.8). This result may be caused by a copying strategy from the analogical and

template specifications which could also explain their higher rate of domain errors.

completeness
or error score

subject
experience

control
group

abstract
(group-AA)

concrete
( group-CA)

%age
completeness

considerable 27.8 63.9 50

some 21.3 38.9 20.4

none 30.6 25 52.8

average
errors

considerable 8.5 4 6.5

some 11.33 14.83 12.16

none 16.5 1.5 7.5

Table 4.7 - average completeness (as % of possible total ) and
error scores by subject group and subject experience

subject
experience

percentage
completeness

average
errors

ratio of domain:
syntax errors

considerable 45.3 5.5 1:1

some 26.9 12.5 1.2:1

none 36.1	 • 9.83 2:1

Table 4.8 - average completeness (as %age of possible total),
error scores by subject experience including domain: syntax

error ratios for subject solutions

4.2.2.2 Analysis of the Use of Analogy

The quality of analogical reuse was rated in four bands according the completeness

scores and reuse strategies reported by the subjects. In all cases the strength of assertions

made retrospectively about analogical transfer agreed with the quality of subjects'

solutions. Five group CA subjects and 8 group AA subjects, who had completeness

scores of � 7/18 components, verbalised a clear model of the analogy and its association
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to the domain in retrospective protocols. In addition, poor usage was shown by another 2

CA subjects who misunderstood the concrete analogical specification, made false

inferences about component details and mapped to an inappropriate JSD process

structure. Finally two AA subjects partially used the abstract template and employed

some of the analogy's components in their solutions. Results are given in Table 4.9.

quality of

application

number of
group-AA
subjects

number of
group-CA
subjects

good 6 5

partial	 ' 2 0

poor 0 2

none 2 3

Table 4.9 - application of analogy knowledge by
group AA & CA subjects

Successful reuse of the abstract template and concrete analogical specification was

examined more closely. Good and partial reuse subjects were grouped as successful

reusers while others were classified as unsuccessful reusers - see Table 4.10a. Although

the completeness scores, predictably, were better for successful subjects, this effect was

not present for errors. It suggested that although reuse may promote a more complete

solution, accuracy of the result may not be improved. Furthermore, successful reuse of

the concrete analogy resulted in more complete and valid specification than reuse of the

abstract template, however, these differences in scores of successful subjects only neared

significance - see Table 4.10b.

no. of
subjects

average %
completeness

scores

average
error

scores

successful subjects 13 49.2 9.23

unsuccessful subjects 7 14.3 11.57

Table 4.10a - average completeness and error
scores for successful and unsuccessful subjects

no. of
subjects

average %
completeness

scores

average
error

scores

group-AA 8 47.2 11.125

group-CA 5 52.2 6.2

Table 4.10b - average completeness and error
scores of successful subjects in AA and CA groups
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The type of errors made by transferring knowledge from the reusable specification was

investigated by looking at constraint checking, an important part of the scheduling

function. Again successful CA subjects performed better than their AA counterparts. All

5 successful CA subjects modelled individual constraint checks and correctly used

components in the concrete analogical specification. However, of the 8 successful AA

subjects, four modelled the constraints in non-specific terms, (e.g., 'Check Constraints'

component, or '1st', '2nd', 3rd', etc Constraints'), two only modelled 2/4 individual

constraints, one subject specified incorrect constraints, and only one subject correctly

modelled the constraints as required. This better performance of the CA subjects among

the successful reusers may be caused by the extra mental effort required to understand the

concrete analogy. The number and naming of the check constraints components by the

AA subjects were closely related to the reusable specifications from which they were

derived, suggesting they may have been copying the material rather than reasoning about

it.

Specification copying in the sense of direct transfer and lexical tailoring of specification

components, without reasoning, also accounted for many errors. Errors in eleven of the

13 successful subjects' solutions, combined with their retrospective reports, suggested a

general failure to understand the analogy. One subject included the sort component

within the allocation iteration while the remaining 10 subjects had errors related to the

backtracking concept, from duplication of conditions and posits to use of conditional

rather than backtrack symbols in the posit\admit components. Retrospective questioning

also revealed that no subject understood the reusable specification to their satisfaction,

although this did not inhibit reuse. For example, 9 subjects transferred the backtracking

concept, although post-test questioning revealed only 3 of these subjects understood its

meaning.

Among the successful reusers, only 6 developed solutions that supplemented the material

derivable from the analogy. One CA and 3 AA subjects added minor components or

structural features, while 2 group AA subjects expanded the abstract solution,

retrospectively claiming that the abstract constraint checking component was insufficient.

However, it was more common for subjects to omit components from the reusable

specification, for example all but one subject omitted backtracking quits from their

solutions. Retrospective probing suggested that such omissions may have been caused by

failure to understand the role of the components in the abstract template and concrete

analogical specification.
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4.2.2.3 Other Findings

Analysis of the video tapes suggested successful reuse required considerable effort, since

subjects who developed the most complete solutions spent 90% of the protocol session

time attending to the reusable specification. There was a significant correlation between

time spent analysing the reusable specification and subject completeness scores

(Spearman Rank Order Coefficient r=0.657, p�0.05 ). Most subjects took some time

to recognise similarities between the two systems, suggesting that understanding the

analogy may have been incremental.

Failure to understand the analogy led to mappings based on surface similarities between

the problem and the reusable specification. Thirteen of the 20 subjects provided with the

reusable specification were unable to construct mappings where no surface similarities

existed (e.g. Video-Copy to Resource entities). An analysis of false mappings made by

both groups emphasised dependence on surface similarities.

4.2.3 Conclusions from Study 2

The two aims of this second study were to investigate the hypothesis that analogical reuse

can enhance the analytic performance of inexperienced software engineers. Results

indicated that specification reuse did improve analytic performance although problems

were encountered, indicating the need for tool-based support during specification

understanding and transfer.

Reuse of specifications appears to improve the completeness but not the validity of

solutions produced by software engineers. Reusable material presented in an abstract

form appears to enhance performance more than presentation of concrete analogies,

probably because similarities with the abstract template were more easily recognised than

with the concrete specification. Abstract concepts in software engineering are thought to

reflect expert performance and require considerable learning (e.g. Gilmore & Green

1988), so a stronger effect may have been expected from the concrete analogy. However,

abstraction does not appear to help creation of more accurate specifications. A possible

explanation is that the skill level of the software engineers was insufficient for them to be

familiar with abstraction, even though no significant interaction between experience and

the abstract/concrete condition was found.

Design of tool support can be informed by errors encountered in this study. Although

analogical recognition was effective, understanding the analogies was not. Even
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successful reusers made mistakes many of which could be attributed to lack of detailed

reasoning about the specification. Software engineers appeared to exhibit a mental

laziness which was manifest in copying rather than reasoning while reusing specification

components. While this effect may be ascribed as a lack of motivation among software

engineers, this was not the given impression as most expressed keen interest in the

experiment and its outcome. A more probable explanation consistent with other findings

is that reuse offers developers a mentally-easy cognitive strategy for problem solving.

Novick (1988) observed that subjects invoked cognitively-easy strategies when

exploiting analogies. Chi et al. (1989, 1982) also identified mental laziness in students

who solved physics problems by copying example textbook solutions which had similar

surface properties to the current problem. Similarly a frequent mistake made by the

software engineers in this study was to focus on surface, lexical properties of the reusable

specification. The software engineers' poor understanding of the analogy was probably

caused by a lack of reasoning.

Understanding a problem domain requires construction of a mental model, based on

analysis and knowledge of similar domains held in memory (e.g. Gentner & Stevens

1983, Pennington 1987). However, the software engineers did not have past experience

of solving similar problem types. Furthermore, the first study suggested that

inexperienced software engineers tend to follow weak problem solving strategies and

have difficulty in initial scoping of the domain. It is therefore not surprising that when

presented with a reusable specification they take it as a potential ready-made solution.

4.2.4 Implications for Support Tools

This study validated the hypothesised reuse scenario, although it indicated that analogical

specification reuse may be problematic and in need of tutorial support to encourage

analogical understanding and avoid mental laziness. Support tools must ensure effective

reuse by teaching analogical specifications to software engineers then emphasising the

need for extensive reuse based on good analogical understanding. In short, software

engineers must be grabbed 'by the scruff of their necks' and made to understand and

transfer the analogy effectively.

Reuse of the abstract template and analogical specification revealed different

characteristics which can influence the design of support tools. Software engineers

recognised similarities with the abstract template more easily, indicating that abstraction

may be effective for analogical recognition. However they tended to copy the abstraction

rather than reason analogically with them, suggesting it was less effective for analogical
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comprehension and transfer. On the other hand, the concrete specification encouraged

more critical analogical reasoning which led to better analogical transfer and fewer

errors. These differences would suggest that design of effective tool support should

incorporate the benefits of both abstract and concrete analogical reuse. In particular,

recognition of analogical specifications will be supported by presentation of domain

abstractions to maximise this matching process. Once the analogical match is recognised,

reuse of the concrete specification promotes both better analogical reasoning and

understanding. These strategies will be elaborated at the end of this chapter.

Intelligent tutoring techniques are one means of assisting software engineers to

understand specifications correctly. Previously, intelligent tutoring systems have been

developed in well-understood domains such as algebra (e.g. Wenger 1987) and LISP

programming (e.g. Poison & Richardson 1988) to help learning non-complex skills such

as basic arithmetic. They generally consist of three components. The expert component

has expertise of the tutor's domain, the didactic component instructs students by

imparting knowledge using teaching strategies, and the diagnostic component attempts to

infer students' understanding of the domain so that the most appropriate instruction can

be given. Support tools also require capabilities to diagnose and explain software

engineering analogies. The analogy engine will provide the analogical expertise while the

diagnostic and explanatory capabilities will be incorporated into the specification advisor,

see Figure 1.6. For instance, mapped components which share syntactic similarities may

indicate incorrect analogical mappings, although findings from this study alone are

insufficient to inform the full range of complete diagnostic capabilities.

Design of a complete intelligent reuse advisor must be informed by stronger models of

how software engineers should and do reuse analogical specifications. Cognitive task and

reasoning models of analogical comprehension and transfer by inexperienced software

engineers are needed to determine where and how software engineers make errors during

analogical reuse. Furthermore a mental model of their analogical understanding is

needed, to be contrasted with theoretically-derived computational models of analogy

defined in chapter 3. The need for these stronger models led to a second study of

inexperienced software reusers.
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4.3 Study 3- Detailed Study of Analogical Specification
Reuse by Inexperienced Software Engineers

This study informed design of tool support by investigating how inexperienced software

engineers understand and transfer retrieved specifications. This design was based on

cognitive task and reasoning models of the analogical reuse process and a mental model

of analogical understanding exhibited by software engineers. In particular, these models

informed design of the specification advisor, the tool component supporting

comprehension and transfer of specifications. This study used concurrent and

retrospective protocol analysis to investigate several hypotheses suggested by software

engineering behaviour in the previous study, namely mental laziness during specification

reuse, errors which occur during reuse and how these errors may be overcome.

4.3.1 Method

Protocol analysis was used to investigate analytic and reuse behaviour of 5 novice

software engineers (3M & 2F MSc students in Business Systems Analysis) with a

maximum of 3 years programming experience obtained from commercial and academic

backgrounds and one year of university tuition in systems analysis. They were asked to

use SSA techniques to develop a specification for an air traffic control (ATC) system by

reusing the flexible manufacturing system (FMS) specification (see Appendix D &

chapter 2). All subjects had background method knowledge and were provided with the

domain knowledge necessary to develop a specification.

4.3.1.1 Experimental Material

All subjects were given a narrative describing the air traffic control system and a

specification describing the analogical FMS. The 820-word problem narrative described

the domain of air traffic control and functional requirements for the computerised system.

The analogical FMS specification was represented using DFD notation supplemented by

short narratives describing the objectives and main processes of the system. It is shown in

Appendix D. Subjects had access to both documents at all times during the protocols, but

were not allowed access to any other material.

4.3.1.2 Experimental Design

Subjects were requested to think aloud and their verbal protocols were captured by a
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video camera which also recorded drawing and reading behaviour. During the protocols

subjects were advised to take their time, and not to be afraid of verbalising too much,

following the practice of Ericsson & Simon (1984). Instructions for subjects were read by

the experimenter. Each subject was strongly recommended to reuse the analogical

specification to develop two new data flow diagrams, otherwise the problem was to

difficult to complete in the time allowed.

Subjects were given 75 minutes to develop two data flow diagrams (context and level-0).

All subjects were informed of this time limit before beginning the task, and were

expected to complete a solution by the end of it. While each subject performed the task a

concurrent protocol was recorded. Upon completion of this task the experimenter

retrospectively elicited further details of subjects' analytic strategies and mental and non-

mental behaviour. First, a 10 minute written questionnaire elicited their understanding of

the analogy, then the experimenter verbally questioned the subject for 15 minutes to elicit

further details of subject's analytic and reasoning strategies and to investigate specific

hypotheses and errors. Retrospective questioning was controlled by a checklist of

different events and issues which were expected to occur during the task (e.g. "Why did

you stop analysing the problem and start to develop your solution ?"). Care was taken not

to prejudice the retrospective protocol, so the experimenter only asked open-ended

questions, following Ericsson & Simon's practice. Finally all subjects completed a

questionnaire identifying details of all previous analysis and programming experience.

4.3.1.3 The Analogy

The analogy between the ATC and FMS domains was carefully constructed to allow

considerable reuse of the FMS specification, although several similar features of the

reusable specification were 'red herrings' included to identify mental laziness during

analogical comprehension and transfer. Otherwise, the analogy is similar to that in

chapter 2.

4.3.1.4 Analysis

Protocol transcripts were analysed twice: (i) by categorising the mental behaviours

represented in speech segments, usually sentences and incomplete utterances; (ii)

identification of analytic strategies using a taxonomy based on criteria of mental and non-

mental (physical) activity. Protocol utterances were categorised using the following

definitions of mental and non-mental behaviour. Mental behaviours were:

113



Assertions - verbalisation of a belief or statement of facts about the target or

source domains directly attributable to the problem narrative or

reusable specification (e.g. "Aircraft fly along unidirectional air

corridors at predetermined heights");

Reasoning -	 verbalisation of the creation, development and testing of

hypotheses about the problem, its proposed solution or the

source domain (e.g. "the aircraft risk colliding, hence the

warning process must be automatic, and it must inform the air

traffic controller with warning messages displayed on the radar

screen"). Each reasoning utterance was further categorised to

identify subjects' topic focus: (i) reasoning about the target

(ATC) domain, (ii) reasoning about the source (FMS) domain,

(iii) reasoning about analogical concepts between the source and

target domains, and (iv) reasoning about general concepts which

do not describe the target or source domains, or the analogical

links between them;

Planning -	 meta-level control over the analytic process. Two types of plan

were distinguished by their content: method knowledge and

SSA heuristics, or general heuristics. A method plan is "I'll list

the inputs, outputs and sources, then draw a logical new DFD",

while general plans include "I'll read the problem once, then

look at the analogical specification";

Diagram-based testing - generation of multiple tests to evaluate a solution DFD. Testing

was guided by the flow of data through the model, and

evaluated the role of each component linked to the data flow

(e.g. "so the radar sends in data, which is stored, then the radar

data is passed to this process....");

Other -	 utterances which cannot be allocated to any other mental

behaviour.

Reasoning utterances were distinguished from assertions by the degree of inference

applied, concurrent non-mental behaviour (e.g. reading behaviour suggested assertions)

and the tone and vocal inclination of the verbalised utterance. Non-mental behaviours

were:

Information acquisition - searching for and retrieval of data in the problem text or the

reusable specification;

Model recording -	 physical construction of the system specification, recorded as a
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data flow diagram;

Notetaking -	 physical notetaking and highlighting not related to the

construction of the data flow diagram.

Non-mental behaviour was categorised as occurring concurrently with mental behaviour.

Both mental and non-mental behavioural categories were similar to those employed in the

first study, although they represented some improvements in the experimental design

learnt from the first study.

Analytic strategies were based on mental and non-mental behaviour and classified using

eight strategies developed in part from analytic strategies identified in the first study

(section 4.1). The use of video cameras in this study assisted categorisation through

evidence of physical behaviours:

Gather information -	 read the target document or the reusable specification;

Summarise data -	 summarise the contents of the target document or the

reusable specification;

Reuse -	 reuse the FMS specification to develop a structured

diagram representing a solution to the ATC problem;

Construct -	 develop a structured diagram representing a solution

without reusing the FMS specification;

Revise -	 redraw the solution;

Evaluate against the target - test the subject's solution against the target requirements

in the problem document;

Evaluate against the analogy - test the subject's solution against the reusable

specification;

Summarise solution -	 test the subject's solution without accessing the problem

document or the reusable specification.

Gather information and summarise data strategies represented problem scoping while

solution building was achieved by reusing, constructing and revising the solution. Testing

occurred either by evaluating the solution against functional requirements, the reusable

specification and the subject's own mental model. Illustrations of these analytic strategies

and mental behaviours are given in the example protocol transcript in Appendix D and in

Figure 4.5.

115



Reads Reusable Specification
Gen Hyp Analogy	 For example, here we have production controller, now this could

be urn, our air traffic controller,
Scribbles on Reusable Specification
Ext Hyp Analogy	 With the same form of feedbacks, reports and warnings, changes.
Reads Reusable Specification
Gen Hyp Analogy	 Flexible manufacturing system can be, um, a process of moving

between, urn, corridors.
Scribbles on Reusable Specification
Gen Hyp Analogy	 Production operators are assumed to be, or could be compared to

pilots,
Ext Hyp Analogy	 and infrared sensors could be the radar.

Read Reusable Specification
Gen Hyp Analogy	 Product being manufactured, this is new products entering the

system,
Ext Hyp Analogy	 this is instructions, this product being manufactured
Ext Hyp Target	 change in direction
Draws Data Flow (Instructions), Data Store (Change in Direction)
Mod Hyp Target 	 or this could be new flight plan
Change Data Store (New Flight Plan)

Figure 4.5 - example protocols from subject N3, the first from the transcript while
gathering information from the reusable specification, and the second while reusing the

analogical specification

4.3.1.5 Protocol Categorisation

Protocol categorisation was validated through cross-marking by two independent

observers with experience of protocol analysis. Each observer allocated a behavioural

category to each utterance in 3 randomly-selected protocols. Inter-observer agreement

was 83% of all categorised protocol utterances, and differences between observer

categorisation were reconciled. Analytic strategies in three different protocols were also

independently categorised, and the observers reconciled differences between

categorisation of strategies to develop a common definition of analytic strategies used to

categorise all protocols.

4.3.1.6 Solution Completeness and Errors

Completeness and error scores were allocated to each subject's solution to evaluate their

success or otherwise in solving the problem, using a similar scheme to that reported in the

first two studies. In order to construct a marking scheme a solution was developed by two

expert software engineers who had considerable knowledge of both domains and the

analogy between them. The marking scheme for solution completeness contained a list of
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components to be included in a specification, and focused on semantic features of

subjects' solutions rather than on the syntax of the data flow diagramming notation.

Solution components included the processes, system inputs and outputs, external entities

and data store accesses in the expert solution. Subjects received a score if a component

was included in the resulting data flow diagram, and each subject's completeness score

represented the number of required components included in their solution. The expert

solution to the ATC problem is given in Appendix D.

Subjects' solutions were also analysed to determine their validity through an error

analysis. Specifications were examined for their inclusion of 5 types of syntactic error

and 7 types of semantic error. Subjects received a score for each type of error included in

their solution, and their score represented the total errors of different types made by each

subject.

4.3.2 Results

All subjects developed a solution to the ATC problem, although subject N2 only

developed the level-0 DFD. Completeness and error scores are shown in Table 4.11.

Subjects N3 and N5 developed more complete solutions than other subjects. Control of

their analytic processes was manifest in planning behaviour. Subjects did not appear to

rely on SSA method knowledge to structure the analytic process (average 25.2 instances

of general planning behaviour, 2.8 instances of method planning behaviour). Indeed,

successful subjects (N3 & N5) ignored method plans (1 and 0 planning utterances

respectively) and relied on the reusable specification to guide their behaviour, suggesting

an important role for reuse in subjects' behaviour.

sub-
ject

completeness scores
(as %age of expert score)

total
no of
error
types

total
score

re-
use

con-
strct

sum.
soltn

eval.
trget

eval.
anlgy

Ni 61.4 25 31.9 4.5 2

N2 50 45.4 2.3 2.3 3

N3 72.7 72.7 3

N4 54.5 52.3 2.3 2

N5 72.7 68.1 2.3 2.3 o

Table 4.11 - completeness & error score totals
and completeness scores by strategi for all

subjects
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4.3.2.1 Analytic Strategies

Analytic strategies were examined to investigate analytic behaviour in more detail. The

occurrences of analytic strategies and mental behaviours were counted within each 5

minute time period (see Figures 4.6 & 4.7). The trends in frequencies of strategies

suggested an initial period of problem scoping before the solution was developed by

reuse, then tested by summarising the solution and evaluating it against the target.

Testing strategies occurred more frequently at the end of the protocols.

strategies

information gathering

summarise documents —

reuse —

construct —

revise —

summarise solutions —

evaluate against target —

evaluate against analogy —

• • NI •

St•IIIIII••••••

St

• ::::	 ::::: X • • Of

22 • it

I	 I

0	 20	 40	 60 75
Time\minutes

• = 5 subjects	 = 1 subject.

Figure 4.6 - number of subjects using a
strategy within 5-minute periods

The use of analytic strategies by subject is also shown in Table 4.11. Four strategies were

employed by at least 4/5 subjects however 3 strategies (summarise data, revise and

evaluate against the analogy) were only used by 2 or less subjects, and construct was only

used by one subject for more than 2 minutes. This suggested that subjects' analytic

behaviour appeared to be based on four analytic strategies. Strategies were examined

more closely by determining the average length of time spent by all subjects on each

analytic strategy (see Figure 4.8). Information gathering and reuse were the most

frequently-used strategies while subjects spent least time constructing and revising their

solutions and evaluating it against the analogy, suggesting that the reusable specification

appeared to be useful for building a solution but not for testing it. Subject Ni was unique

in that she constructed rather than reused most of her solution. The payoff of using each

strategy was investigated by examination of the improvement in the completeness of
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planning

assertions

structured
solutions

subjects' solutions. This payoff was measured by the components added during each

strategy. Reuse resulted in the most effective development of subjects' solutions while

one subject (Ni) constructed some of their solution directly from the problem narrative,

and testing strategies led to few improvements (see Table 4.11). As expected subjects

developed most of their solutions during the building phase of analysis.

mode/ context
8i. level-0 DFDs

)1(
• la • • :2 •

)( info. gathering

• • PA

FAIN•Elatr''

model level-0 DFDs

0	 20	 40	 60 75
Time \ minutes

Planning:	 MI 19+ utts.	 1-3 utts.

Assertions:	 1137+ utts.	 1-6 utts.

Structured	 U37+ cmp	 1-6 cmps.
solutions:

Figure 4.7 - average number of utterances
of mental behaviours verbalised during
5-minute periods for all subjects, and

average number of components added to
structured solutions during 5-minute periods
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Figure 4.8 -average duration of strategies for
each subject

4.3.2.2 Sequential Patterns of Analytic Behaviour

Sequential dependencies between analytic strategies for all subjects were analysed by

casting the strategies in a transition matrix (occurrences of A following B and vice versa)

and then constructing a network model of the temporal relationships between strategies.

Frequencies greater than 5% of the total are shown in Figure 4.9. Reuse had a pivotal role

in analytic strategies. Initial bouts of information gathering led directly to specification

reuse and some construction of the specification. Testing involved many interactions

between reuse, evaluate against the target and summarise solution strategies, hence

testing and building behaviour were interleaved. Evaluation of the specification against

the analogy was of little importance, suggesting that testing was achieved by

summarising the solution and evaluating it against the requirements.
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Figure 4.9 - sequential dependencies
between strategies for all subjects,

showing all dependencies � 5% total
number of dependencies

4.3.2.3 Detailed Analytic Strategies

Reuse and information gathering strategies, plus construct solution, were examined in

more detail to suggest reasons for good analytic performance and to identify individual

differences in analytic behaviour.

Reuse

Reuse strategies were examined for specification copying by investigating reuse of the

level-0 DFD. Reuse strategies were categorised as top-down (reuse all processes first) or

incremental (reuse each process and its inputs\outputs in turn), then each occurrence of

reuse was analysed to determine the number of components reused and added to the

solution. Reuse strategies were also examined for the number of missed reusable

opportunities. The number of candidate reusable components which each subject

reasoned about were counted, see Table 4.12. Results revealed that incremental reuse was

only employed by the two successful subjects (N3 & N5) who also reasoned about more

candidate reusable components, hence good analytic performance may require careful

reuse of the analogical specification to ensure that it was fully exploited.
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Concurrent and retrospective protocols revealed that 4/5 subjects (including N3 and N5)

admitted to word substitution and copying during reuse, although two of these subjects

admitted that copying was not an ideal approach but the only option available. This

indicated that the analytic success of N3 and N5 may be attributed to detailed incremental

copying of the reusable specification to exploit the close 'analogical fit' between the

ATC and FMS domains. In addition, retrospective questioning revealed that N3 and N5

depended more on the reusable specification than other subjects to guide their analytic

behaviour.

_

sub-
ject

number of
components

reused
incrementally
during reuse
of LO DFD

number of
reusable

components
omitted

from
LO DFD

during reuse

Ni 3 8

N2 0 7

N3 14 3

N4 0 12

N5 14 0

Table 4.12 - number of components
transferred incrementally or omittd

during reuse of the LO DFD

Reuse was examined to identify which features of the reusable specification were

successfully transferred. All subjects reused at least 4/6 FMS processes but were less

successful at transferring other reusable components. N3 and N5 transferred 65.5% of all

reusable data store accesses, external entities, inputs and outputs while transfer by the

other subjects (Ni, N2 & N4) was poor, transferring 13.8% of all reusable data store

accesses, external entities, and inputs and outputs). One reason for Ni, N2 and N4's lack

of success was that they did not follow top-down reuse through to its conclusion and used

construct and testing strategies to add many of the system inputs, outputs and data store

accesses to their solutions. Reasons for abandoning the reuse strategy varied by

individual: N2 adopted an iterative testing cycle while N4 redrew his solution in order to

better understand it.

To conclude, successful analytic behaviour appeared to be determined by both

painstaking copying and incremental reuse of the analogical specification. Subjects

122



achieved this by rigidly copying the specification at the expense of more cognitively-

demanding analytic strategies. Other subjects adopted top-down reuse tactics which did

not lead to full exploitation of the reusable specification.

Information Gathering from the Reusable Specification

Information gathering occurred with either the requirements document or the reusable

specification, so these two sub-strategies were investigated. Information gathering from

the reusable specification focused either on reading the DFDs or the supporting narrative.

Ni and N4 gathered information equally from both sources while N2 found the DFDs too

confusing and read the supporting narrative. However, N3 and N5 were so keen to begin

reuse of the DFDs that they failed to notice the third page of the specification containing

the supporting narrative. Indeed, N3 retrospectively claimed that the reusable DFD was

the solution to all her problems, so it was unnecessary to read any further. However,

reading this narrative was expected to have enhanced subjects' understanding of the

analogy since it described important analogical features of the FMS domain which are

unlikely to have been inferred from examination of DFDs. This indicated that subjects

who extensively copied the specification made no attempt to understand it by gathering

extra knowledge about the source domain.

Information Gathering from the Requirements Document

Only two subjects employed method knowledge during information gathering. N2 used

different-coloured pens to underline recognised documents, external entities and data

stores in the problem narrative while N5 initially identified key problem entities,

although he admitted this was due to a recency effect from course work on entity-

modeling techniques. In short, method knowledge did not appear to assist subjects to

analyse and scope new problems.

Identification of the system boundaries was critical to scoping the ATC problem. Four of

the five subjects ignored problem boundaries stated in the narrative and included the pilot

in their solutions, although some subjects read and verbalised reasoning about problem

boundaries during information gathering. No subject scoped the problem in detail and no

subject read the problem document more than once before building a solution. Subjects

read sequentially and only once cross-referenced different pages of the two documents.

However, they appeared to be satisfied with general levels of information gathering and

did not express fears that the problem contained too much data to remember.
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Construct

One subject (Ni) constructed rather than reused the context-level and the remainder of

the level-0 DFD once the reuse strategy had been abandoned. However, this failed to

improve on the analytic performance achieved by poorer reusers (N2 & N4). Some

solution construction exhibited by N2 also failed to improve the specification

completeness because the added components were either incorrect or beyond the stated

problem boundaries. Therefore, constructing a specification without reuse proved to be

less effective than rigidly copying it from the analogy.

Reasoning Behaviour

The first study reported in this chapter revealed the importance of reasoning in software

engineers' behaviour, so their reasoning was examined in more detail. All subjects

reasoned more about the target domain than about the analogy or the source domain (see

Table 4.13). Totals of reasoning about the source domain was poor (average 9.8

reasoning utterances per subject) so subjects did not verbalise much understanding of the

reusable domain.

subject
no. of reasoning utterances

target analogy source

Ni 119 15 0

N2 192 46 28

N3 107 50 3

N4 162 78 5

N5 147 71 13

Table 4.13 - totals of reasoning utterances by subject

The occurrence of reasoning behaviours was counted within each 5 minute time period

(see Figure 4.10). Most analogical reasoning occurred early in the protocol while subjects

gathered information and accounted for 70.3% of all reasoning utterances during

information gathering from the reusable specification. Recognition involved generating

many different analogical mappings, and the subjects who transferred the specification

most effectively (N3 and N5) verbalised more analogical reasoning utterances than other

subjects during this recognition phase.
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Figure 4.10 - average number of
reasoning utterances verbalised during

5-minute periods for all subjects

Hypotheses' life histories were examined using the same approach as in the first study.

Frequencies greater than 1% of the total are shown in Figure 4.11. More transitions

occurred within target utterances and within analogy utterances than occurred between

the target and the analogy, suggesting that subjects tended to separate reasoning about the

target domain from reasoning about the analogy. Subjects reasoned more from the

analogy to the target than vice versa, indicating the importance of reuse in specification

development. Sequential dependencies between reasoning behaviours during reuse (see

Figure 4.12) revealed a similar network pattern, so the analogical specification appeared

to trigger hypotheses which were developed and evaluated in terms of the target domain.

Indeed, closer examination of reasoning behaviour during reuse indicated that N3 and N5

exhibited the largest number of hypotheses involving reasoning about both the analogy

and the target, so reinforcing the critical role that specification reuse appeared to play in

their reasoning behaviour and analytic success.

125



Figure 4.11 sequential dependencies
between hypothesis categories for all subjects

Figure 4.12 - sequential dependencies
between hypothesis categories for reuse

strategy only by all subjects

Summary of Analytic Strategies

Subjects developed much of their solutions by reuse and successful transfer was achieved

by copying and incremental reuse of the analogical specification, ignoring domain

knowledge described in the supporting narrative. Investigations into subjects' reasoning

behaviour reinforced the critical role of the analogy during specification development. On

the other hand, development of specifications without reusing the analogy appeared to be

less effective. Subjects tested their specifications against the system requirements and by

summarising them, however both strategies appeared to be ineffective for identifying
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errors and omissions. Subjects only gathered partial information about the target domain

and did not use method heuristics to structure the analytic process. The dependence of

subjects' reasoning on the analogy was examined further by investigating subject's

qualitative understanding of the analogy.

4.3.2.4 Errors and Misconceptions

Malrules were investigated by examining specific source domain and analogical errors

verbalised by subjects. Subjects exhibited six misconceptions about the source domain.

Each error resulted in failure to transfer the associated source concept to the solution

specification. Subjects averaged an error for every 8 source reasoning utterances (see

Table 4.15), suggesting that they made a proportionally high number of source domain

errors. Incorrect reasoning about source concepts could be attributed to the following

malrules:

• IF fail to acquire source domain knowledge THEN abandon hypothesis (subject N3);

• IF unable to distinguish between different source domain concepts which share some

features THEN reject analogical mapping (N5);

• IF unable to distinguish between similar reusable components which share some

similarities THEN reject analogical mapping (N2 & N4);

• IF postponed reasoning about complex, detailed reusable components THEN do not

return to hypothesis (Ni & N2);

• IF similar structural position in the analogical specification THEN match incorrect

reusable component to the target using this structural match (N2 & N4).

These five heuristics warrant some explanation. The first heuristic appeared to be a

consequence of poor fact acquisition from the reusable specification (N3 did not read the

specification narrative). On the other hand, postponed reasoning in the fourth heuristic

may have been due to the complexity of the reasoning necessary to understand the source

domain concept. The remaining three heuristics indicate the importance of syntactic

similarity to incorrect analogical mapping first identified in the previous study. These

heuristics are demonstrated further in Table 4.15. Most surprisingly, these five malrules

were derived from a total of only 48 reasoning utterances about the source domain out of

a total of over 1000 such utterances. Successful analogical understanding will probably

require more reasoning about the source domain, so software engineers are likely to infer

many misconceptions about the source domain before developing a thorough analogical

understanding.
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subject error result malrule

Ni fail to understand process 4 (fall
'update the production plan')

to transfer the process transfer easy mappings,
fail to return to
postponed reasoning
about complex reusable
components

N2 fail to understand flow 'data
describing product's devt'

fail to transfer the flow transfer easy mappings,
fail to return to
postponed reasoning
about complex reusable
components

N2 fail to distinguish process 4 (
'update the production plan')
& process 5 ('change and
identify product details')

fail to transfer process 5 unable to distinguish
two reuse components,
lit target hypotheses to
structure of specification

N3 fail to understand flow 'track
section of machine'

fail to transfer the flow abandon hypothesis
due to lack of source
knowledge

N4 fail to distinguish process 4 (
'update the production plan')
& process 5 ('change and
identify product details'), then
confuse with process 3 ('
monitor to ensure the
production plan is met')

fail to transfer process 5 unable to distinguish
two source components,
fit target hypotheses to
structure of specification

N5 fail to distinguish between
'product' and 'machine'

fail to transfer all relevant
components

unable to distinguish
two source concepts
due to domain-depend-
ent interference, so fit
target hypothesis to
structure of specification

Table 4.15- malrules exhibited by subjects while reasoning about
the source domain

Subjects also exhibited five false analogical mappings (incorrect mappings not based on

syntactic similarities between components), see Table 4.16. These malrules were:

• IF some syntactic similarities between mapped source and target concepts THEN

incorrectly map other related components based on these similarities (Ni, N3);

• IF two objects share equivalent positions in the two specifications THEN incorrectly

match target hypotheses to reusable components (N4);

• IF synomynous source concepts exist in specification THEN interchange components

during reuse, leading to false mappings between concepts (N5).



subject error result malrule

Ni 'new products entering
system' maps to 'aircraft
takeoffs'

aircraft takeoffs included
(wrongly) in the scope of the
system

false mapping caused by
common syntactic
features ('new' & 'input')

N3 'product being manufactured'
maps to 'changes in direction'

inclusion of ATC instructions
in an inappropriate area of
the solution

false mapping caused by
common syntactic
features ('new' & 'input')

N3 'new products entering
system' maps to 'instructions'

--- I	 I --- --- I	 I ---

N4 'aircraft' maps to 'production
operators'

no effect on solution failure to fit poor
reasoning about target
concepts into the
analogical structure

N5 'flight' maps to 'product' inconsistency in use of
'flight' and 'aircraft' terms in
the solution specification

synomonous use of
different target terms
contradicting
corresponding mappings

Table 4.16 - malrulcs exhibited by subjects while reasoning about
analogical mappings

To conclude, this study suggested nine distinct malrules leading to reuse-related errors by

four of the five subjects. Errors varied and were thinly spread across subjects so that there

were no clues to links between error occurrence and subjects' success. Although further

work is required to elaborate and evaluate these malrules, findings from the study can

provide a starting point for a diagnostic module incorporated into support tools.

4.3.2.5 Analogical Understanding

Subjects' final understanding of the analogy was examined by retrospectively requesting

target mappings for each object in the source domain. Subjects only partially understood

the analogy and recognised on average 51.5% candidate analogical mappings. In general

subjects recognised mappings with product, two products in the same section,

misdirected product manufacturing, production plan, production controller, production

operator and infrared sensor but showed a poor understanding of the physical domain

structure and only recognised a total of three correct mappings with machine, track

section and production floor layout, see Table 4.17. When retrospectively prompted for

critical analogical mappings no subjects identified machine and track section as key

analogical concepts and only two subjects recognised mappings with the production floor

layout as important. Poor understanding of analogical physical structures may have been

due to the inexact fit between the continuous three-dimensional ATC domain and the

segmented two-dimensional FMS production paths, indicating that subjects may only

understand close analogical matches.
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analogical mapping
correctly
mapped

incorr-
ectly

mappedsource domain target domain

production controller air traffic controller 5 0

infra-red sensors radar 5 0

production plan flight plan 5 0

two products in same space two aircraft in same space 5 0

product aircraft 4 1

misdirected product aircraft off course 3 0

production floor layout airways 3 1

production operator pilot 3 2

production track air corridor 2 3

delayed product manufacture delayed flight 2 1

manufacture of a product flight 2 1

production track section air space 1 2

lost product manufacture missing flight 0 1

machine air space 0 2

job flight step 0 4

Table 4.17 - retrospective understanding of analogical mappings,
prompted from candidate source domain mappings

Interestingly N3 and N5 mapped the largest number of wrong source objects while N2

and N4 mapped the largest proportion of correct analogical mappings (see Table 4.18)

based on the ratio of correct to incorrect mappings. Therefore subjects who copied their

solutions and recognised analogical mappings from the reusable DFD seemed to have a

poorer understanding of the analogy. Good analogical understanding may have been due

to their willingness to read the supporting narrative during information gathering.

Subjects Ni, N2 and N4 all read the supporting narrative and exhibited less incorrect

analogical mappings than N3 and N5. The reusable DFDs represented solution

knowledge, however analogies were critically determined by similarities between the

underlying ATC and FMS domains, so reading domain descriptions may have led to

improved analogical understanding, although this understanding was not complete.
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subject
total

correct
total

incorrect

Ni 6 4

N2 9 2

N3 8 8

N4 9 0

N5 11 5

Table 4.18 - totals of retrospectively-
recognised correct and incorrect

analogical mappings

This link between analogical understanding and domain understanding was investigated

further by allocating reasoning utterances to one of three categories. Domain utterances

represented inferences about the underlying domain and were independent of the required

computer system. Reasoning about the target and reusable computer systems were

categorised as solution utterances. Utterances describing the required high-level

functionality of the target computer system were categorised as requirements utterances.

Results revealed that subjects reasoned mostly about the computer solution. Subject N2

exhibited most reasoning about the domain, so the supporting narrative during

information gathering may have encouraged more reasoning about the domain underlying

the reusable specification.

Subjects' analogical understanding was also investigated by reexamining their concurrent

protocols. Retrospective questioning elicited key analogical mappings between objects,

then reasoning behaviour during concurrent protocols was examined to identify uttered

relations between critically-mapped pairs of objects which may be compared to the

domain terms in chapter 3, see Figure 4.13. Findings revealed that subjects reasoned in

terms of functional relations between target objects rather than the domain's physical

structure. They support the logical model of software engineering analogies at least in

part, since subjects did not reason about physical domain structures in isolation, but

considered the logical domain structure in relation to key state transitions and functions

(e.g. aircraft must not deviate from aircraft).
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Figure 4.13- composite model of subjects'
problem space

To summarise, subjects exhibited only a partial understanding of the analogy. Those who

gathered domain knowledge from the supporting narrative understood more of the

analogy than subjects who directly copied the solution specification, possibly because the

narrative represented domain features which were critical to understanding the analogy.

Subjects well-understood six analogical concepts but exhibited a poor understanding of

analogical mappings between physical concepts in both domains, possibly due to the

inexact match between the physical ATC and FMS domains.

4.3.3 Conclusions from Study 3

This third study investigated problems encountered by inexperienced software engineers

when understanding and reusing an unfamiliar but analogically matched specification. In

particular, it examined problems of mental laziness manifest as copying during reuse.

Findings revealed that problems occurred during both analogical understanding and

transfer, and a better analogical understanding did not imply improved transfer, a result

also reported by Novick & Holyoak (1991). Indeed, software engineers who copied the

specification most effectively exhibited the poorest analogical understanding. As a result

software engineers could be divided into two groups: (i) those who preferred rigid

copying, and: (ii) those who reused the specification more opportunistically.

Possible reasons for poor analogical understanding were three-fold. First, the

inexperienced software engineers lacked the relevant domain knowledge, hence key

analogical constructs were difficult to recognise and elaborate (e.g. Gick & Holyoalc

1983). Second, analogical comprehension can be improved through notetalcing (e.g. Gick

& Holyoak 1983), however software engineers made little use of sketches and notes.

Third, comparison with the logical model of software engineering analogies suggests that
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the software engineers in this study failed to recognise many key facts about the

ATC/FMS analogy, that is two or more aircraft or products in the same air space or track

section. Subjects did not recognise the air space or track section concepts as important

analogical components. One reason may have been the lack of syntactic similarities for

analogical recognition or the inconspicuous nature of the track section component in the

reusable specification. Component prominence was dependent on the specification's

notation, and reuse of entity-relationship diagrams may have led to a different result. On

the other hand well-understood mappings were both syntactically similar and prominent,

suggesting the need for explicit analogical triggers in the reusable specification. Of

course, an alternative reason for this poor understanding is the inexact fit between the

physical three-dimensional ATC and two-dimensional FMS domains.

Possible reasons for poor analogical transfer were two-fold. First, software engineers'

failure to infer complex analogical mappings between data stores representing domain

objects (e.g. track section and airways) may have limited transfer of components without

syntactic similarities between them. A second, complementary reason is that assimilating

data from three different pages of the reusable specification may have led to less-

structured and ineffective transfer of the specification. As a result, successful

specification reuse may require more integrated techniques to support analogical

understanding and transfer, including explanation of reusable components and analogical

mappings during transfer.

4.3.4 Implications for Support Tools

Findings have implications for the design of tools supporting analogical specification

reuse. These tools must infer software engineers' analogical understanding, identify

symptoms of mental laziness and diagnose analogical errors so that the best assistance

can be provided. The nine malrules of analogical misuse provide an empirical basis for

error diagnosis during analogical reuse, with implications for explanation of analogical

mappings discussed further in chapter 5. However, diagnosis from just nine malrules is

unlikely to determine analogical misconceptions, so a dialogue (Self 1988) which

questions software engineers about their analogical understanding will be needed to

support diagnosis. A second major implication for tool support is the need to discourage

mental laziness by encouraging the software engineer to understand the specification

prior to its reuse.

The analogical specification proved an effective trigger for hypotheses about the target

domain, however software engineers' analogical reasoning was poor, so help is also
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needed to promote analogical reasoning in the form of external memory aids and

explanation of analogical mappings. Similarly, help is needed when scoping and

structuring the analogical specification, so guidelines to this effect may assist

specification reuse.

Most findings from this study identify the problems which tool support must overcome,

i.e. what tool support must do, rather than how support will proceed. One solution to

specifying how support will proceed was to examine how successful, expert reusers

undertake reuse tasks, to determine how they work and why they are successful.

Therefore, a fourth study examined experienced software engineers' strategies to

determine how they understood and transferred analogically matched specifications.

4.4 Study 4: Expert Analogical Specification Reuse

The aim of this study was to examine the analogical comprehension and transfer

strategies of successful reusers in the same scenario as the third study. In particular it

investigated cognitive task and reasoning models of effective analogical specification

reuse to inform design of tool support. Expert software engineers, some with over 20

years commercial analytic experience, analysed and reused an unfamiliar problem

domain so that they were required to develop understanding of the domain before

analogical transfer took place, thus providing clues to both comprehension and transfer

strategies of experts. Unfortunately, analogical specification reuse is a novel concept, so

no expert specification reusers were available. Rather this study investigated expert

software developers with considerable exposure to many different classes of software

engineering domain.

4.4.1 Method

Protocol analysis was used to investigate analytic and reuse behaviour of 12 expert

software engineers. They (9M,3F) had a minimum of 6 years programming and between

6 months and 20 years analysis experience obtained in commercial environments. During

the experiment 2 software engineers (1M,1F) failed to verbalise sufficiently and their

protocols were discarded. Data from the remaining 10 experts provided the basis for

results presented in this study.

The software engineers were drawn from four different sources. Five (4M,1F) worked in

local government and had knowledge of structured analysis techniques, although only
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one had employed these techniques on a daily basis. Four software engineers (3M,1F)

employed by 2 consultancy firms had regularly used structured analysis techniques. The

10th expert (1F) lectured in computing at an academic institution and had experience in

applying and teaching structured analysis techniques.

Subjects were asked to use Structured Systems Analysis (SSA) techniques (De Marco

1978) to develop a specification for the air traffic control (ATC) system from a

specification describing a flexible manufacturing system (FMS). Experimental material,

design and analysis were the same as those given to inexperienced software engineers

described in study 3, so see chapter 4.3.1 for method details. Cross-categorisation of

analytic strategies and mental and non-mental behaviours was also the same as in study 3.

4.4.2 Results

All subjects developed a specification to the ATC problem. Subject E4 initially

misunderstood the experimental instructions and developed part of his specification

without accessing the reusable specification. Completeness and error scores are shown in

Table 4.19. There was a negative correlation between completeness and error scores

(Spearman Rank Order Coefficient r= -0.722, p=0.018), hence stronger subjects

developed more complete and valid specifications. There were notable differences

between subjects' success, for instance Ell developed a specification which was only

half as complete as that of E3, so there appeared to be differences in the quality of

subjects' reuse and analytic behaviour. Indeed, overall performance of the experienced

subjects was not significantly improved over their inexperienced counterparts from study

3, so reasons for the success of the most effective subjects were examined.
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subjt

completeness scores
(as %age of expert score)

total
no. of
error
typestotal

score
re-
use

con-
strct

sum.
soltn

eval.
trget

eval.
anlgy

El 59.1 20.5 20.5 15.9 2.3 2

E3 79.5 70.5 4.5 4.5 1

E4 75 72.8 2.3 1

E5 70.5 47.8 15.9 6.8 1

E7 63.6 50 6.8 2.3 4.5 1

E8 70.5 47.8 11.4 4.5 4.5 I

E9 68.2 61.4 9.1 2

EIO 61.4 61.4 2

Ell 38.6 29.6 4.5 4.5 3

E12 61.4 27.3 27.3 4.5 2.3 1

Avge 64.8 41.9 16.4 0.45 5.22 1.12 1.5

Table 4.19 - completeness & error score totals
and completeness scores by

strategy for all subjects

Initially analytic strategies were investigated to identify patterns of subjects' behaviour.

The occurrence of analytic strategies was counted within each 5 minute time period (see

Figure 4.14) and occurrences of mental and non-mental behaviours were also counted

(see Figure 4.15). Subjects began with a period of problem scoping followed by building

then testing the solution. Closer examination of each subjects' analytic strategies revealed

individual differences in their approaches to reusing and testing specifications. Analytic

behaviour was also investigated by retrospectively asking subjects to describe their

strategies if they were required to repeat a similar reuse problem. Three subjects (E5, E7,

E8) proposed a two-step approach: produce a first-draft solution from the reusable

specification, then test and improve that solution. Two subjects (El, E10) also claimed to

employ the two-step approach during their protocol sessions while E3 spent the last 20

minutes of the protocol 'filling in the gaps in the solution'.
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4.4.2.1 Planning Behaviour and Analytic Heuristics

Subjects' analytic behaviour was suggested by control of their analytic processes. High-

level control of this process was manifest in planning behaviour. As in the previous study
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subjects did not appear to rely on method knowledge to structure the analytic process, as

on average 23.1 instances of general planning behaviour were observed, compared with

5.6 instances of method planning behaviour. Two subjects (E8, E9) from a consultancy

background exhibited the greatest use of method knowledge, and the four consultants

accounted for 67.8% of all method planning behaviour. Protocol transcripts of the four

consultants were examined more closely. All consultants considered developing entity-

relationship models to understand the ATC problem while only one other subject (El)

employed SSA techniques during information gathering. Of the consultants Ell used

method heuristics to constrain the scope of the problem space and develop an incomplete

solution. However, overall there was little difference between the analytic behaviour of

consultants and other subjects, hence method knowledge appeared to have little influence

on analytic performance.

To sum, method knowledge had little influence on analytic behaviour. Indeed, some

subjects preferred to contradict SSA advice and considered implementation issues during

analysis. Subjects also tended to adopt a 'try it and see' approach to specifying the

problem, emphasising the importance of structured diagrams for developing as well as

recording specifications. However, these behaviours did not indicate any reasons for

success, so analytic strategies were examined more closely.

4.4.2.2 Analytic Strategies

Six of the eight strategies were employed by more than 7/10 subjects and two strategies

(summarise data and revise) were only used by 3 or less subjects for short lengths of

time, hence expert analytic behaviour appeared to be primarily based on 6 analytic

strategies.

The average length of time spent by all subjects on each analytic strategy is given in

Figure 4.16. There was a correlation between solution completeness and the amount of

time spent reusing the analogical specification (Spearman Rank Order Coefficient

r=0.647, p=0.047), indicating that reuse may be an important determinant of good

analytic performance. One exception (E4) was discarded from the statistic because he

misunderstood the experimental instructions and failed to read the reusable specification

during the first 26 minutes of the protocol. The payoff from strategies, measured by the

components added and reasoned about during each strategy, revealed that reuse and

construct strategies resulted in the most effective development of subject's solutions

while summarise data and revise strategies were ineffective (see Table 4.19) and

evaluation against the target was the most effective testing strategy.
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4.4.2.3 Sequential Patterns of Analytic Behaviour

tr)

Sequential dependencies between analytic strategies for all subjects were analysed by

casting the strategies in a transition matrix (occurrences of A following B and vice versa)

then constructing a network model of temporal relationships between strategies.

Frequencies greater than 5% of the total are shown in Figure 4.17. Reuse had a pivotal

role in the analytic strategies, often involving interaction with construct and evaluate

against the target strategies, while the link from evaluate against the target to evaluate

against the analogy shows the involvement of the reusable specification during testing

and validation. This considerable interaction between reuse and testing strategies

suggested that specification reuse played an important role in subjects' analytic

behaviour.
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Figure 4.17 - sequential dependencies
between strategies for all subjects,

showing dependencies � 5% of total
number of dependencies

4.4.2.4 Detailed Analytic Strategies

Initial examination of analytic strategies revealed that specification reuse was related to

subjects' success. Reuse and other strategies were examined in more detail to suggest

reasons for good analytic performance and identify individual differences in behaviour.

Reuse

Reuse proved to be the most effective strategy, so reuse of the level-0 DFD was

investigated more closely. This study hypothesised that expert software engineers would

attempt to understand rather than copy an analogical specification. Concurrent and

retrospective protocols revealed that 7/10 subjects were wary of the analogical

specification and refused to take its similarities for granted. Three subjects (E5, E7, Ell)

did admit to some copying of reusable processes, although this copying was limited and

these three subjects also exhibited behaviour consistent with analogical reasoning and

specification understanding.

Further evidence of analogical understanding was suggested by seven reuse-related

heuristics verbalised by subjects. Five of these heuristics were concerned with knowledge

required to achieve reuse and suggested that subjects attempted to understand the analogy

before reusing the analogical specification:
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• be concerned with the details during reuse;

• only model the reusable specification if it is understood;

• do not be constrained by knowledge of previous systems;

• be wary of differences between the solution and reusable DFDs;

• acquire more data on the reusable data stores.

Two other types of heuristic suggested that the process of reuse could be constrained and

ordered by the structure of the analogical specification:

• reuse the structure of the DFD;

• fit the reusable specification into the new specification.

This indicates that transfer of the reusable specification may best be achieved by using

the analogy as a template to control analogical reuse. Furthermore, heuristics suggested

that specification understanding was important to expert software engineers. Bouts of

reuse were examined for the number of exploited reusable opportunities. The number of

candidate reusable components which each subject reasoned about during reuse were

counted, see Table 4.20. A correlation existed between subjects' completeness scores and

the number of considered reusable components (Spearman Rank Order Coefficient

r=0.637, p=0.048), indicating that successful subjects reasoned about more reusable

components and that good analytic performance may have required careful reuse of the

analogical specification to ensure that it was fully exploited. E9 was the only subject to

reason about all candidate reusable components. She was also the only subject to reuse

the analogical specification by directly modifying it and changing or deleting the names

of reusable components based on analogical mappings, hence the specification acted as a

development template to control analogical transfer. This thorough exploitation of the

analogy by successful subjects contrasts markedly with copying demonstrated by novice

software engineers in the previous study.

141



subject

number of reusable
components which

subjects did not
reason about during
reuse of level-0 DFD

El 9

E3 8

E4 -

E5 8

E7 6

E8 8

E9 0

E 1 0 9

Eli 10

E12 22

Table 4.20 - number of reusable components
not reasoned about during reuse of level-0

DFD, by subject

Further studies revealed that effective reusers who transferred most reusable components

correctly (E3, E9, E10) exhibited long, uninterrupted bouts of reuse. The importance of

these long bouts was investigated in more detail by measuring the length of the longest

reuse bout exhibited by each subject. There was a strong correlation between the

completeness scores of subjects' final solutions and the length of the longest bout of

reuse in minutes (Spearman Rank Order Coefficient r=0.911, p �0.001), hence effective

analogical transfer appeared to be related to long and uninterrupted bouts of specification

reuse. On the other hand, less successful subjects abandoned reuse and employed

alternative strategies to complete their solutions. They did not appear to adopt reuse to

guide their reasoning once alternative strategies, such as intermittent testing of the

solution and frequent access to the problem requirements document, had been used. Thus,

mixing development and testing strategies may not be the most effective way of reusing

specifications.

To summarise investigation of subjects' behaviour during reuse suggested that they

attempted to understand rather than copy the reusable specification and the analogy.

Successful reuse was achieved by controlled transfer of the structure of the reusable

specification as a template and by detailed reasoning about all of the candidate reusable

components during an uninterrupted bout of reuse. Subjects who mixed reuse with other

strategies failed to fully exploit the analogy.
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Construct

Six subjects employed the construct strategy (develop a solution without reuse) for a total

of more than 10 minutes. El and E5 developed the least complete and the least valid

context DFDs respectively while E12 constructed the second-least complete level-0 DFD

and E8 only constructed three processes before developing the remainder of his solution

by reuse. In addition E9 modelled the existing ATC system. These findings indicate that

subjects who constructed parts of their solutions without extensive reuse also developed

poor solutions, thus supporting the conclusion that subjects' reuse strategies were one

major reason for their success.

Information gathering

Analogical recognition and comprehension occurred while gathering information from

the reusable specification. Subjects tended to favour the supporting narrative for this

purpose because 6/10 subjects read this narrative only while 3/10 subjects read both the

supporting narrative and the reusable structured diagram. Two subjects found the DFDs

difficult to understand, although this was not the case for other subjects. After all, DFDs

are supposed to be simple to understand. A more likely reason was that structured

diagrams did not contain the key domain knowledge found in the narrative, so subjects

may have considered the importance of assimilating key domain knowledge when

understanding the analogy.

Evaluate against the analogy

Analogical transfer was also investigated during evaluation of the solution against the

analogy. However, this strategy only resulted in an average increase per solution of 0.5

(1.12%) completeness points (see Table 4.19) from the transfer of analogical components

which had been omitted when building the solution, suggesting that little analogical

transfer occurred. Possible reasons for ineffective testing against the analogy were two-

fold. First, subjects appeared to test their solutions superficially against the analogy. They

only evaluated parts rather than the whole of the DFDs and did not reason about the

analogy in the necessary detail. Second, those subjects (E4, E8) who did reason about the

analogy in detail were still unable to recognise analogical mappings or correctly transfer

reusable components, suggesting that successful transfer was inhibited by ineffective

analogical comprehension. Subjects' difficulty in transferring detailed reusable

components may be due to the cognitive distance within the analogy. Mapping equivalent
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source and target concepts required considerable abstraction to identify and apply key

similarities to the ATC specification.

Evaluate against the target

Evaluation against the problem document resulted in an average increase per solution of

2.3 (7.6%) completeness points (see Table 4.19), hence it proved a more effective testing

strategy than evaluating specifications against the analogy. Improvements to solutions

were additional requirements which had been omitted during solution building. There

was a strong correlation between length of time spent evaluating and improvements made

to a solution (Spearman Rank Order Coefficient r=0.953, p �0.001) hence successful

evaluation proved to be a time-consuming process, although no subjects successfully

identified all omissions from their solutions.

Summarise solutions

Finally, summarisation of solutions only resulted in an average increase per solution of

0.2 (0.45%) completeness points (see Table 4.19). Improvements to solutions resulted

from inferred omissions from subjects' solutions. Subjects did not reason about solution

concepts in detail, and were unable to identify omissions and errors in their solutions.

Only one subject (E7) exhibited much diagram-based testing during solution

summarisation, but this did not result in many improvements to his solution.

Reasoning Behaviour

There was no correlation between success, subjects' experience and totals of reasoning

behaviour. The content of reasoning was examined by categorising each utterance as

reasoning about the target or source domains or the analogical mappings between them,

and 9/10 subjects reasoned least about the source domain, see Table 4.21. The occurrence

of types of reasoning behaviour was counted within each 5-minute time period.

Information gathering from the reusable specification coincided with peaks in reasoning

about the analogy and the source domain after 15 and 20 minutes respectively, suggesting

that subjects reasoned most about the reusable specification during problem scoping.
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subject
no. of reasoning utterances

target analogy source

El 182 4 31

E3 185 42 0

E4 143 48 16

E5 287 120 13

E7 302 78 59

E8 324 93 35

E9 332 112 27

EIO 219 119 60

Ell 116 48 1

E12 145 45 0

Table 4.21 - totals of reasoning
utterances by subject

The life history of each hypothesis was traced by its thematic content until eventual

rejection or resolution. Sequential dependencies between reasoning behaviour for all

subjects were analysed to construct a network model of the temporal relationships

between categories. Frequencies greater than 1% of the total are shown in Figure 4.18.

Subjects exhibited more transitions among target utterances and among analogy

utterances, suggesting that they tended to separate reasoning about the target from

reasoning about the analogy. Sequential dependencies from reasoning about the analogy

to reasoning about the target supported the importance of reuse in subjects' behaviour.

The pattern and frequencies of transitions suggested that many hypotheses were triggered

from the analogy but evolution and evaluation of hypotheses occurred in the target

domain. Sequential dependencies were also used to investigate reasoning behaviour

during strategies. Reasoning behaviour during reuse and evaluate against the analogy

revealed a similar network pattern which was not observed during other analytic

strategies, thus reinforcing the critical role that specification reuse appeared to play in

subject's reasoning behaviour. It suggested that subjects reasoned analogically with the

reusable specification, however, it was the quality rather than the quantity of this

reasoning which appeared to be critical in this study.

145



gen
analogy4

)13T

Figure 4.18 - hypothesis life history of all 10 subjects, expressed as frequencies
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reasoning behaviour about the target, source and analogy. Only
transition � 1% of total number of transitions are shown

Summary of Analytic Strategies

Specification reuse appeared to be important to subjects' analytic performance. Reuse

appeared to be effective for transferring the structure and major functions of the

specification but not for reusing detailed analogical components. Successful subjects

transferred the structure of the reusable specification as a basis for guiding reuse of

detailed analogical components. This success was linked to their motivation for

analogical transfer rather than any sophistication of their thought processes during

analogical reuse. Subjects also correctly transferred more reusable components as a result

of long, uninterrupted bouts of reuse behaviour, suggesting that subjects' concentration

may also have been important. On the other hand, short periods of reuse interspersed with

problem scoping, solution testing and construction resulted in ineffective transfer of

reusable components. Analogical transfer proved effective for specification building but

not for testing, so subjects evaluated their specifications against target requirements

rather than the analogical match. Finally, in contrast to inexperienced software engineers,

most experts attempted to understand the analogy rather than copy the specification, and

analogical understanding was based on key domain knowledge represented in the

narrative document. Thus, these findings may provide the basis for expert analogical

comprehension and transfer strategies. However, quantities of analogical reasoning

behaviour did not correlate with analytic success, so subjects' qualitative analogical

reasoning was examined more closely during analogical recognition, comprehension and

transfer.
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4.4.2.5 Recognition of the Analogy

Analogical recognition was investigated by examining subjects' concurrent protocols to

identify their first analogical mappings when gathering information about the reusable

specification. Not surprisingly, subjects appeared to be influenced by the sequential order

of the narrative in the reusable specification and recognised analogical mapping with

objects described in the first paragraphs of the document. The concepts which prompted

analogical recognition were investigated further during retrospective questioning to

reveal three triggers to analogical recognition. Five subjects recognised the analogy

through similarities between the radar and the infrared sensors, three subjects recognised

that the two systems had similar objectives (e.g. collision detection and avoidance) and

one subject recognised that both problems involved objects which moved in a space. In

short, the analogy was recognised from a variety of viewpoints (e.g. object functionality),

suggesting individual differences in subjects' understanding.

4.4.2.6 Comprehension of the Analogy

Analogical comprehension was investigated by examining concurrent verbalised

misconceptions and retrospective reports of understood analogical mappings.

Error Analysis

Concurrently verbalised false analogical mappings and source domain misconceptions

were investigated to identify possible misunderstandings about the analogy. Ten false

mappings were made by 5 different subjects. Five of these false mappings suggested

breakdowns in analogical reasoning when a subject was unable to infer analogical

mappings and developed alternative, incorrect solutions to specification requirements.

Other errors varied and could be ascribed to several possible causes (see Table 4.22),

including syntactic similarities which indicated that subjects may have copied some

analogical components. However, these components were neither prominent or central in

the reusable specification, and copying was not on a scale of that exhibited by

inexperienced software engineers. Four subjects made a total of 6 erroneous inferences

during reasoning about the source domain, although no error pattern could be discerned,

see Table 4.23. Interference from subjects' knowledge of other applications may also

have inhibited analogical mappings.
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error type

	

	 number of
subjects

breakdown in analogical reasoning, adoption
of alternative solutions	 5
incorrect analogical reasoning	 2
cascade effect on erroneous analogical mappings 	 1
erroneous mappings based on surface similarities 	 3

Table 4.22 - types of analogical error
concurrently verbalised by subjects

error type

	

	 number of
subjects

poor understanding of source goals and domain
structure	 2
interference from other applications 	 2
interference from programming knowledge	 1
confusion between similarities between processes 	 1

Table 4.23 - types of source domain error
concurrently verbalised by subjects

To sum, error analyses revealed that most misconceptions occurred while reasoning about

minor functions and data stores while subjects generally showed a good analogical

understanding of important functions and problem boundaries. There was some evidence

of mental laziness while reasoning analogically to transfer minor specification

components, suggesting that subjects were able to understand the broad outline of the

analogical match but were unable to fill in the analogical details. The major difference

between these errors and those exhibited by novices may have been the degree of

reasoning involved. Novice errors could be explained by mental laziness while experts

exhibited more incorrect reasoning leading to false analogical mappings and incorrect

understanding of source concepts.

Retrospective Understanding

Subjects' final understanding of the analogy was examined by retrospectively requesting

target mappings for 15 concepts in the source domain. Analogical understanding was

only partial and on average experts only correctly recognised 43.8% of candidate

analogical mappings, which was actually less than the inexperienced software engineers

in study 3 (51.5%). This result was surprising since novices copied specifications while

experts attempted to understand the analogy, so it may indicate that the analogy may have

been more difficult to understand than originally assumed.

Like novices, experts also tended to understand key analogical concepts (see Table 4.24),

suggesting that their analogical understanding appeared to be based on six central
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analogical mappings. They also believed that these mappings were important to the

analogy. When retrospectively prompted for critical analogical mappings subjects

identified five of these six central mappings as very important for supporting reuse of the

FMS specification (see Table 4.25). Retrospective misconceptions about the analogy

were investigated by examining erroneous mappings recognised for each object in the

source domain (see Table 4.25). Subjects had a good understanding of the six central

analogical mappings (no errors with 4/6 mappings) however they generally did not

understand other mappings. Most errors occurred while mapping the physical structure of

the two domains, and incorrect analogical mappings involving 'production floor layout',

'product track' and 'track section' accounted for half (11/23) of all incorrect mappings.

Six of these eleven errors involved incorrect mappings, so despite a clear and accurate

specification, subjects seemed to have a confused picture of the physical structure of

FMS and ATC domain, possibly due to the inexact mapping between the three-

dimensional and two-dimensional domains. In addition 4 subjects were unable to

differentiate between the physical structure of the domains and the logical structure of the

flight and production plans, since their erroneous mappings involved a link between the

physical components of the FMS domain with 'flight plan' or 'flight step'. In sum, these

errors suggested that subjects had a poor analogical understanding of concepts beyond the

6 critical analogical mappings, in particular with the physical domain structures.

analogical mapping
subjects total

mapp-
ingsEl E3 E4 E5 E7 E8 E9 El0 Eli E12

aircraft/product q -4 4 4 4 4 4 7
radar/infra-red sensors 4 4 4 4 4 4 6

air traffic controller\
production controller

4 4 4 4 4 5

air corridor/track q 4 4 4 4

flight plan/product plan 4 4 4 3

similar processes .4 -4 2

warnings in two systems q 1

air space \ machine q 1

similar collision proces. 4 1

similar guiding process. 4 1

aircraft pos \product pos 4 1

both tracking systems q 1

Table 4.24 - analogical mappings which were retrospec ively
recognised as important by subjects
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analogical mapping
correctly
mapped

incor
rectly

mappedprompt in source domain correct choice in target domain

production controller air traffic controller 9 0

Infra-red sensors radar 9 0

production plan flight plan 8 0

production track air corridor 7 2

product aircraft 6 2

two products in same track section two aircraft in same air space 6 0

manufacture of a product flight 3 2

production floor layout airways 2 4

misdirected product aircraft off course 2 0

production track section air space 1 5

job flight step 1 2

production operator pilot 1 3

machine air space 1 1

delayed product manufacture delayed flight 0 2

lost product manufacture missing flight 0 0

Table 4.25 - retrospective understanding of analogical mappings,
prompted from source domain mappings

Several subjects showed a better understanding of the analogy, so reasons for these

improvements were investigated. The total number of correct analogical mappings

identified retrospectively correlated with the total of reasoning utterances about the

analogy (Spearman Rank Order Coefficient r=0.831, p �0.005), revealing that more

analogical reasoning may have lead to greater analogical understanding. Analogical

reasoning occurred primarily while assimilating and gathering information about the

reusable specification. The behaviour of one subject (E10) also suggested that careful

scoping and notetaking during assimilation and analogical understanding may have

improved comprehension of the analogy. She made extensive notes to record analogical

mappings (12 analogical mappings were recorded in narrative form) before reusing the

data flow diagrams and exhibited the best retrospective understanding of analogical

mappings.

Abstraction of key analogical concepts is necessary for analogical understanding, see

chapter 3, Gick & Holyoak (1983) and Gick (1989). Subjects' understanding of these

abstractions was investigated by retrospectively prompting for generic descriptions of

each key analogical mapping identified by subjects. Abstractions are given in Table 4.26.

150



Subjects viewed both domains as objects moving in a space and following a spatial

position plan, during which they were tracked by a remote monitoring device. A human

monitor or controller supervised object movement. These retrospectively verbalised

abstractions bear some resemblance to the logical domain abstractions defined in chapter

3 which underlie the ATC/FMS analogy, hence these findings lend some cognitive

plausibility to the defined model of domain abstraction.
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Table 4.26 - abstraction of perceived
important analogical mappings

retrospectively recognised by subjects

Finally, subjects' partial understanding of the analogy was investigated more closely

using the same analysis as in study 3. Concurrent and retrospective findings were

integrated to develop a composite model of the analogy. Reasoning behaviour during

concurrent protocols was examined to identify relations between the mapped pairs of

objects, similar to Gentner's structure-mapping theory (Gentner 1983). The resulting

model is represented as an informal semantic network in Figure 4.19. The analogical

mapping between aircraft and product was central to subjects' understanding of the

analogy. As in study 3, subjects tended not to reason about the domain in terms of its

physical structure. Rather, they verbalised utterances about the domain structure in the

context of required functionality. The most commonly-verbalised functional relation was

Air Traffic Controller updates/changes the Flight Plan, while only two purely structural
relations were identified (Aircraft flies in Air Corridor and Aircraft passes along Air
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Figure 4.19 - composite expert mental model

To summarise, subjects only partially understood the analogy from 6 out of a possible 15

analogical mappings. They exhibited good understanding of the aircraft/product,

radar/infrared sensor, flight plan/production plan, air traffic controller/production

controller, air corridor/production track and aircraft collision/product collision mappings

but showed poor understanding of other analogical concepts. Analogical abstractions

revealed that subjects viewed the analogy as collision avoidance between objects which

followed predetermined plans in a space. Differences between inexperienced and expert

levels of understanding yielded surprising results. The novices' greater analogical

comprehension may have been linked to guessing and less precision during retrospective

questioning: they averaged over twice as many incorrect false mappings as experts during

retrospective questioning (4.8 to 2), possibly indicating a greater willingness to complete

the questionnaire.

4.4.2.7 Analogical Transfer

Transfer of the analogical specification occurred primarily during reuse, and solutions

developed by 9 subjects were similar in size (average completeness score of 9 subjects

was 63.67%) and layout to the reusable specification, so large scale transfer took place

despite the analogy only being partially understood. The overview of analogical reuse

given in the first chapter distinguished analogical comprehension from transfer.

Concurrent protocols were reexamined to identify how quickly subjects understood the 6

central analogical mappings. Subjects only verbally recognised on average 2.58/6
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mappings during information gathering compared with recognition of 4.5/6 mappings at

the end of the reuse session. This suggests that subjects developed their understanding of

important analogical mappings while both scoping and transferring the reusable

specification.

It is intuitively appealing to link good analogical comprehension to effective analogical

transfer, so transfer of the six central analogical mappings understood by most subjects

was examined. Twelve components in the final solution were linked directly to the target

concepts in the six mappings. However, subjects only included 65% of these components

in their solutions, so good understanding of analogical concepts did not necessarily lead

to their successful transfer. Similarly, successful transfer did not imply that the analogical

concept had been learnt. For example, three subjects exhibited effective analogical

reasoning to reuse the data flow from 'track section' to the monitoring processes.

However, these subjects did not exhibit any retrospective analogical understanding of

'track section', suggesting that effective analogical transfer may have occurred without

learning the underlying analogical concepts.

Finally, analogical transfer appeared to have an important influence on solution

development. Each component included in seven or more of subjects' solutions could be

matched analogically to a component in the reusable specification. On the other hand, the

required solution contained several components without analogical matches to the

reusable specification, and no more than three subjects recognised each of these

unmapped components. Therefore, many subjects relied heavily on the analogical

specification throughout specification development.

To summarise, successful expert reusers appeared to compensate for a partial analogical

understanding by using the structure and contents of the reusable specification to guide

analogical transfer of the components which were reused. Thus transfer proved to be

important to solution development since many transferable components were included in

most subjects' solutions. Finally subjects also appeared to develop an understanding of

important analogical concepts during reuse, suggesting that analogical comprehension

and transfer occurred in parallel.

4.4.2.8 Summary of Subjects' Behaviour

Most subjects exhibited an initial period of information gathering followed by reuse of

the analogical specification, then solution testing against the target requirements or the

reusable specification. During reuse they reasoned analogically to transfer reusable
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components using the structure of the reusable specification. Subject's behaviour was

individually variable and they used different strategies to achieve analytic success. Reuse,

construct and evaluate against the target strategies were all used to develop subjects'

specifications, although individual differences existed in the use of these strategies.

Subjects only partially understood the analogy from six analogical mappings and

exhibited a poor understanding of mappings between the physical domain structures.

Effective analogical transfer was achieved by following the structure of the reusable

specification rather than by developing a detailed analogical understanding. Mappings

triggered hypotheses which were developed and evaluated in the target domain. Such an

approach was effective for developing a specification given the closeness of analogical fit

in this study, however more effective analogical understanding may be necessary for a

less exact fit.

Several determinants of good and expert analytic behaviour were identified:

• careful and painstaking reuse to fully exploit the reusable specification;

• long, uninterrupted bouts of reuse;

• reusing a specification so that the new solution is structurally similar to the reusable

specification where appropriate;

• directly writing over the analogical specification during reuse so that the specification

acts as a template for analogical transfer;.

• reasoning analogically during reuse of the specification;

• assimilating and understanding the analogy from a narrative describing critical concepts

in the underlying problem domain; and

• thorough and detailed testing against the functional requirements of the target domain.

Furthermore better analogical understanding was related to more extensive reasoning

about the analogy. Poor analytic performance in this study was linked to:

• mixing reuse with other analytic strategies to develop a specification;

• constructing solutions independently from the reusable specification;

• testing by summarising solutions and evaluating them against the reusable

specification;

• redrawing solutions or summarising documents;

• failing to reason about analogical mappings.

Other results suggested that use of method knowledge to structure the problem space and

the analytic process was not effective.
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Subject behaviour was complex and individually variable, and no subject exhibited all

determinants of good analytic performance. Individual differences in subject's behaviour

were investigated in more detail by examining the protocols of two good quality subjects.

These case studies are summarised in Appendix D.

4.4.3 Conclusions from Study 4

The three aims of this study were to elicit cognitive, reasoning and task models of

effective analogical reuse and mental models of analogical understanding possessed by

expert software engineers. The study was successful on all three counts.

Expert software engineers effectively recognised and transferred the ATC/FMS analogy.

Analogical recognition was triggered by three well-understood analogical concepts while

reuse strategies maximised the transfer and minimised omission of analogical

components. There was no link between effective analogical comprehension and transfer,

supporting findings reported by Novick & Holyoak (1991). However, unlike the

inexperienced software engineers in the previous study, experts recognised problems

associated with copying and attempted to understand the analogy prior to reuse.

Surprisingly, complete analogical understanding appeared to be difficult even for

experienced software engineers, despite their greater analogical reasoning and motivation

for the task.

4.4.3.1 Effective Analogical Transfer

The cognitive task model of expert specification reuse revealed effective strategies for

analogical transfer. Most expert software engineers adopted a 'try it and see' approach

and quickly drew specifications to structure and scope the problem space using the

analogical specification's layout and boundaries. Their reasoning processes during reuse

were also guided by the analogical specification, which is not surprising given that

method procedures and heuristics were inappropriate for supporting specification reuse.

As such, analogical specifications may be one way of providing templates which guide

software engineers' reasoning focus during the early stages of software design (e.g.

Reubenstein & Waters 1991, Fugini et al. 1991).

The analogical specification structure proved effective for transferring major functional

components although experts occasionally exhibited incorrect transfer of less-important

reusable components, thus supporting Novick & Holyoak's (1991) finding that analogical
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transfer is difficult. Ineffective reusers reasoned more opportunistically, mixing reuse

with testing, problem scoping and construction strategies whilst reasoning about specific

topics. This contrasts with studies of planning and system design by Hayes-Roth &

Hayes-Roth (1979) and Guindon (1989, 1990) which revealed externally-cued,

opportunistic reasoning to be typical of successful, expert performance. However, ill-

structured reuse in this study was linked to reasoning about more candidate reusable

components. This may indicate that opportunistic reasoning is ineffective without well-

formed mental models of the domain. Software engineers appear in need of guidance

during specification reuse, thus the syntactic structure of analogical specifications can be

exploited to guide their reasoning strategies.

4.4.3.2 Partial Analogical Comprehension

In contrast to their effective transfer strategies, software engineers failed to understand

the entire analogy, and their mental models were built upon key object mappings which

justified reuse of some but not all analogical components. This may indicate cognitive

limitations when understanding complex analogies. Possible reasons for partial analogical

comprehension are three-fold:

• software engineers filtered out many useful facts while reading the reusable

specification and tended not to use external memory aids to record domain facts or

analogical mappings, although such notetaking appeared necessary given the

complexity of the analogy;

• software engineers also failed to determine key analogical mappings defined in chapter

3 and had a poor understanding of the key air space/track section mapping, which in

turn may be due to syntactic differences between the air space and track section

concepts, the obscurity of track section in the reusable specification, or both;

• the narrative domain description failed to provide software engineers with a good

analogical understanding, a result also found by Gick & Holyoak (1983, 1989) who

reported that spatial diagrams prompted analogical comprehension more effectively.

Results indicate that even experts were unable to assimilate and recognise all analogical

cues or hold models of the source, target and abstraction concurrently in working

memory, thus reducing the cognitive processing capacity available for schema acquisition

(Sweller 1988). As such, analogical comprehension prior to specification transfer is

naturally difficult and in need of tool support to overcome cognitive limitations.
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4.4.3.3 A Cognitive Model of Analogical Specification Reuse

The cognitive model of analogical specification reuse shown in Figure 4.20 indicates how

analogical reasoning occurs during specification reuse. An iterative cycle of hypothesis

generation, development and testing occurs throughout the model. Analogical reasoning

is divided into two parts. First, an analogical understanding is developed whilst

assimilated source domain data from documentation, then this analogical understanding

is validated during transfer of the specification to identify the extent of the analogical

match. During the initial phase, information gathering about the specification leads to

recognition of analogical mappings and development of a mental model of analogical

understanding. Subsequent validation and transfer of the analogy is driven by the

reusable specification. Analogical cues generate target hypotheses which are developed

and evaluated in the target domain. As such, initial analogical mappings activate further

mappings when reasoning about other components linked to the mapped component. This

analogical validation and transfer continues until each analogical specification

component has been transferred or rejected.
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Figure 4.20 - cognitive model of analogical reasoning
during specification reuse
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4.4.3.4 Cognitive Theories of Analogical Reasoning

Existing theories of analogical reasoning differ according to the types of knowledge

mapped across domains. Our findings support several of these models, however they also

indicate that analogical reasoning may be more complex. For instance, retrospective

analyses revealed that many software engineers developed an abstract model of the

analogy, supporting Greiner's (1988a, 1988b) theory that analogical domains must

belong to the same domain class. Within this abstraction, aircraft and products were

identified as system objects while flight plan and production plan were both plans.

Software engineers also mapped several analogical system goals (e.g monitor collision),

suggesting that purpose is important for the recognition and comprehension of analogies

(Gick & Holyoak 1983, Kedar-Cabelli 1988). They also exhibited evidence of Gentner's

(1983) structure-mapping theory by transferring interconnected object-relation structures.

Indeed, the syntactic structure of the reusable specification also provided an important

basis for analogical transfer, indicating that two types of structural transfer occurred. This

greater analogical complexity may have been due in part to the small-scale problem

analogies investigated previously. On the other hand, Russell (1989) suggests that

analogical reasoning is domain specific rather than being determined by simple measures

of similarity between source and target analogs. These results indicate that effective

analogical comprehension is dependent upon understanding key domain abstractions. As

such the empirical findings from this study support the logical model of software

engineering analogies defined in chapter 3.

4.4.3.5 Contrast with Analogical Specification Reuse by Novices

Studies 3 and 4 were not intended to be an experimental study of expert/novice

differences, however some comparisons are worth making. First, notable differences

existed in software engineers' attitudes towards specification copying, although both

groups exhibited similar degrees of analogical understanding. Second, expert software

engineers were better information gatherers while novices tended to exploit reusable

solutions and ignore other knowledge sources which were not directly transferable. Third,

experts reasoned more extensively about both source domain and the analogy, suggesting

a greater desire to understand the FMS domain despite the difficulties encountered.

Indeed, many of the differences identified between expert and novice software engineers

indicate that the experts were more motivated to understand the analogy before reuse. In

spite of these differences, the difficulties encountered during large-scale analogical

understanding by both inexperienced and expert software engineers may be considerable,

indicating the need for similar forms of extensive tool support for expert, intermediate
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4.4.4 Implications for Support Tools

An integrated view of the cognitive reasoning, task and mental models is shown in Figure

4.21. Implications for support tools are three-fold. First, the cognitive task model

determines effective strategies for analogical reuse. Second, the cognitive reasoning

model has implications for controlling hypothesis level interaction within analytic

strategies such as information gathering and reuse. Finally, the mental model of

analogical comprehension indicates the extent of analogical understanding, with

implications for the reasoning focus during analogical comprehension and transfer.

Design implications from each of these three models are examined more closely.

Figure 4.21 - links between the cognitive reasoning, task and mental models
of analogical understanding

4.4.4.1 Design Implications from the Cognitive Task & Mental Models

The cognitive task and mental models of successful, expert analogical reuse influenced

design of support tools in two ways. First, the tool must encourage inexperienced

software engineers to follow successful expert reuse strategies, thus simulating their

performance. Second, tool support must incorporate additional strategies to assist

software engineers to overcome the comprehension difficulties encountered even by

experts. The functional requirements include the following observed strategies for

analogical comprehension and transfer:

• encourage some analogical comprehension prior to transfer;

• understand the analogy from the reusable specification and descriptions of key facts

about the source domain;

• prompt additional analogical reasoning about mappings with reusable components

which share notable syntactic similarities with the target domain;
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• strong guidance to ensure full exploitation of the analogy;

• transfer each component and all its neighbours in turn;

• long, uninterrupted bouts of transfer to maximise analogical reuse;

• use the analogical specification as a template to guide the reuse process, directly

modifying the reusable specification when required and ensuring that both solutions

have a similar structure. As such the reusable specification provides a stencil for

spreading activation and hypothesis triggering during analogical transfer;

• evaluate the transferred specification against functional requirements of the target

system, to identify omissions from transfer;

• evaluate the transferred specification against the analogical specification by promoting

further analogical reasoning between the old and new solutions.

Inferred strategies to augment observed behaviour in this study are:

• provide spatial diagrams to encourage visualisation of the analogy and aid mental

induction of key domain abstractions (Gick & Holyoak 1983, Gick 1989);

• provide familiar analogies of common, everyday objects or problems to also aid mental

induction of key domain abstractions;

• promote greater analogical reasoning by explicitly defining analogical mappings using

the advisor. Salient syntactic triggers are likely to provide the most effective prompts

for analogical mapping;

• hide specification components not relevant to the current reuse task, to concentrate

software engineer's reasoning and discourage copying and opportunistic reasoning.

Partial exposure to the full functionality has been found to be effective elsewhere (e.g.

Carroll et al. 1988).

The mental model of analogical understanding also has implications for guiding the

software engineer's reasoning focus. Software engineers failed to understand all key

domain facts, so domain abstractions must be explained early during reuse to focus

reasoning on critical analogical determinants. Software engineers must also be guided to

reason analogically about all other candidate mappings. Assistance will be needed since

the software engineers in this study exhibited difficulties when reasoning analogically

about physical structures which are not perfectly matched.

4.4.4.2 Design Implications from the Cognitive Reasoning Model

The cognitive reasoning model has implications for controlling detailed reasoning by the

software engineer within analytic strategies such as information gathering and reuse. The
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proposed reasoning planner shown in Figure 4.22 must encourage iterative and

incremental analogical reasoning and integrate explanation of different knowledge types

into the proposed iterative reasoning cycle. Indeed, the meta-schema of knowledge types

defined in chapter 3 indicates that software engineers are required to learn multi-layered

facts about an analogical match. Analogical reasoning while gathering information from

the specification is driven by key types of knowledge to be explained. State transitions

with respect to a structure are central to the proposed model, so mappings with state

transitions and object structures should be explained first, followed by other knowledge

types such as preconditions on state transitions and object types. Explanation of each

knowledge type can be layered by depth, degree of causality and reliance on the domain

abstraction to provide complex and variable explanation of the analogical match. These

explanations will be coupled with gradual exposure to key domain abstractions and, if

necessary, simple examples of these abstractions. Additional explanations will also be

presented to correct analogical misconceptions and erroneous mappings. Unlike

analogical comprehension, the topic focus during transfer will be driven by candidate

components for reuse. The reasoning planner will explain each reusable component topic

at several levels of complexity. These increasing levels of explanation include

presentation of the underlying analogical mapping, explanation of mappings between

linked domain objects, explanation of the mapping in the context of the domain

abstraction and presentation of simple examples of the domain abstraction.

Figure 4.22 - empirically derived design of
the reasoning planner

possible
erroneou
mappings

To sum, the analogical reasoning, comprehension and transfer strategies derived from

this study demonstrate the potential benefits from empirically-derived requirements for

software tools. These findings are integrated into an empirically-derived design for

support tools outlined in the remainder of this chapter and expanded on in chapter 5.
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4.5 An Empirically Derived Design for the Intelligent
Advisor

Implications for design of the problem identifier and specification advisor are examined

in the remainder of this chapter. The overview of the intelligent reuse advisor

incorporating them is shown in Figure 4.23.

4.5.1 Implications for Design of the Problem Identifier

Inexperienced software engineers in the first study lacked the necessary domain

knowledge to develop a specification and were unable to structure and scope new

problems, specify detailed functional requirements or evaluate the resulting

specifications. Therefore, the problem identifier must interact with the software engineer

to acquire and explain key target domain facts prior to their input to the specification

retrieval mechanism. This is achieved by providing the domain knowledge necessary

during fact acquisition to facilitate problem understanding, scoping and identification of

key domain facts (Curtis et al. 1988). Presenting software engineers with appropriate

domain abstractions and real world instances of these abstractions early in the fact

acquisition dialogue can assist domain scoping, structuring and evaluation, similar to the

approach implemented in the CODEFINDER system (Fischer et al. 1991a). Languages

and notations are also needed to model the new domain in terms of these abstractions and

examples, thus encouraging the model-based reasoning which appeared to be one

determinant of better analytic performance. The failure of structured method notations to
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represent key fact types defined in the meta-schema emphasises this need for alternative

representations.

More generally, software engineers reasoned effectively with diagrams, indicating that

they may have led to better mental model formation. Indeed, fact recording with

diagrams was linked to more effective analytic performance while software engineers

made little effective use of procedural heuristics. Although method knowledge was used

by inexperienced software engineers in the first three studies it appeared to hinder rather

than improve their analytic performance. Rather, inexperienced software engineers'

reasoning focus appeared to be triggered by the narrative, so domain knowledge had

greater influence on their analytic approaches.

The need to retrieve domain abstractions, combined with software engineers' failure in

the first study to specify the domain correctly, indicates the need for semi-automated fact

acquisition strategies. Dialogues can also be structured to capture facts in an order which

helps mental model formation. Controlled fact gathering differs from other intelligent

requirements engineering toolkits (e.g. Reubenstein & Waters 1991, Harandi 8c. Lee

1991) which permit free form entry of facts. Indeed, a more structured approach to fact

acquisition and modelling may be critical for effective description, retrieval and

explanation of domain abstractions. An overview of the problem identifier's architecture

is shown in Figure 4.24 to demonstrate how the reported empirical findings can inform its

design.

Figure 4.24 - empirically based architecture
of the problem identifier
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4.5.2 Implications for Design of the Specification Advisor

The specification advisor is intended to assist software engineers to understand and

transfer analogical specifications based on empirical findings reported in this chapter.

Findings from the second and third studies identified problems encountered by

inexperienced software engineers while the fourth study identified successful

comprehension and transfer strategies. Most implications for the specification advisor's

design are reported in previous sections and not repeated here. On the other hand, the

second and third studies indicated the need to overcome mental laziness during reuse.

Malrules representing misconceptions during analogical reuse can diagnose software

engineers' analogical understanding, thus permitting more accurate support. Integrated

designer's notepads (e.g. Haddley & Sommerville 1990) can extend working memory to

assist software engineers' reasoning about the target, source and abstraction domains and

develop a better analogical understanding. This external memory could also provide the

advisor with important knowledge about the software engineer's analogical

understanding so that errors can be corrected more easily. An overview of the

specification advisor's architecture is shown in Figure 4.25. It incorporates the impact of

the empirical studies on the design of its two major components during support of

analogical comprehension and transfer.



4.6 Chapter 4: A Summary

This lengthy chapter reported empirical findings from four studies of analytic and

analogical reuse behaviour. The cognitive task, reasoning and mental models inform the

intelligent advisor's design so that it meets the true needs of its target users. These

empirical findings lay the foundations for the advisor's architecture. Surprisingly, expert

software engineers in study 4 were also unable to understand the analogical match

effectively, so the proposed tool design may also aid analogical specification by

experienced software developers. The advisor's architecture will be extended and

developed throughout chapter 5 to specify how support tools interact and reason with

software engineers during the retrieval, understanding and customisation of analogical

specifications.
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Chapter 5

5: The Intelligent Reuse Advisor (Ira)

This chapter specifies the intelligent reuse advisor (Ira) which assists inexperienced

software engineers during analogical specification reuse. The advisor's analogical

expertise is derived from a computational implementation of the logical model of

software engineering analogies and its interactive components are founded on

empirically-derived findings of software engineering and reuse behaviour. Its design also

borrows concepts from computational models of analogical reasoning (e.g. Falkenhainer

et al. 1989, Hall 1989) and analogical problem solving (e.g. Gick & Holyoak 1983).

Cooperative problem solving by humans and machines has been proposed elsewhere (e.g.

Roth et al. 1988), for instance Kolodner's (1991) model of case-based reasoning pro-

posed tool-based retrieval of analogical cases for application by the user. Similarly,

effective analogical reuse requires cooperation between the software engineer and the

advisor (Cumming & Self 1989), as opposed to traditional intelligent tutoring systems

which teach subjects using their expertise of well-understood domains (e.g. Sleeman &

Brown 1982). The division of work built into the advisor's design is intended to make the

most of the domain knowledge and analogical reasoning capabilities possessed by the

software engineer. Support for software engineers is based on the cognitive task,

reasoning and mental models of analogical specification reuse derived empirically in

chapter 4. The advisor undertakes the following roles during specification retrieval,

understanding and transfer:

• assisting the acquisition of key domain facts prior to retrieval of specifications;

• computationally matching and retrieving candidate analogical specifications for reuse;

• explaining key analogical constructs to the software engineer to ensure effective

analogical understanding. Explanations exploit a computational implementation of the

logical model of software engineering analogies defined in chapter 3;

• diagnosing the software engineer's incorrect analogical beliefs to inform explanation of

the specification. Diagnosis is founded on the model of analogical errors derived from

the third empirical study in chapter 4;

• assisting the software engineer to understand and transfer specifications effectively.

Strategies are derived from the expert understanding and reuse strategies derived

empirically from the final study in chapter 4.
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Chapter 5 is divided into four main sections. First, a brief overview of the current state of

the art in intelligent tutoring system (ITS) research is given to situate the advisor. The

remaining sections describe how Ira supports analogical recognition, comprehension and

customisation during specification reuse. A partial prototype of this intelligent advisor

incorporating two of these components has also been implemented and is described in

chapter 6.

5.1 Previous Research of Intelligent Tutoring Systems

Traditionally, intelligent tutoring systems (ITS) consist of three modules: a student

module, a didactic module and an expert module. The current state of ITS research is

briefly examined in terms of these three models, then implications for design of the

advisor are outlined.

5.1.1 Student Models

Development of student models has bourn the brunt of ITS research (e.g. Johnson 1990,

Escott & McCalla 1988, Rizzo et al. 1988). Until recently it was proposed that intelligent,

adaptive tutoring requires some dynamic representation of the current knowledge state of

the individual student, known as the student model (VanLehn 1988, Payne 1988, Nwana

1991). However, difficulties inherent in student modelling compound problems

encountered during error diagnosis. Most diagnosis involves inference of unobservable

behaviour, so application of thorough diagnostic techniques such as model-tracing

(Skwarecici 1988, Anderson 1988) and reconstruction (Johnson 1990) in analogical

specification reuse is unrealistic. However, more recent research by Self (1988) suggests

that it is not essential that ITSs possess precise student models, for several reasons. It

may be better to develop interactions which unobtrusively tell the tutor what it needs to

know, and only diagnose what the tutor can treat, to avoid unnecessary effort.

Furthermore, do not feign omniscience, but adopt a 'fallible collaborator' role to develop

a working partnership between tool and user. Ira has incomplete domain knowledge, so it

cannot have complete expertise in the domain and must cooperate with the software

engineer. Indeed, this expertise must be constrained to key analogical mappings rather

than complete knowledge of complex domains.

5.1.2 The Didactic Model

Didactic models implement pedagogical activities intended to have a direct effect on the
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student, i.e. they represent teaching styles and strategies (see Halff 1988 for an

overview). Unfortunately, computational models of didactics have been incomplete

(Wenger 1987, Derry et al. 1988) while empirical studies of expert teachers have been

few and far between. One alternative approach is to specialise more general theories to

analogical specification reuse, for example the Minimalist approach (Carroll et al. 1988,

Rosson et al. 1990) has successfully been applied to state-of-the-art training manuals and

novice users of the smalltalk object-oriented programming language, with implications

for comprehension and reuse strategies incorporated into the advisor. However, most

support for the software engineer will be founded on the cognitive task and reasoning

models defined in chapter 4.

5.1.3 The Expert Module

Anderson (1988) claims that there are two Places for intelligence in an ITS. The first is in

the principles by which it tutors and the method by which it applies these principles. The

second is in its knowledge of the subject domain. Anderson describes the expert module

as the backbone of an ITS, and a powerful expert must have an abundance of knowledge,

for example STEAMER (Hollan et al. 1984) and the LISP tutor (Anderson et al. 1990).

Representation of complex knowledge structures in ITSs has received research interest in

its own right (Wenger 1987, Woolf 1988, Woolf et al. 1988, McCalla & Greer 1988,

White & Frederiksen 1990). However, as Anderson and others admit (Cumming & Self

1989, Nathan 1990), empowering ITSs with sufficient knowledge of non-simple domains

is a near-impossible task. Thus, Ira's expertise and assistance is limited to knowledge of:

(i) generic domain classes represented by known abstractions; (ii) source domain

descriptions, and (iii) mappings between analogical source, target and domain

abstractions.

5.1.4 Intelligent Tutoring Systems: A Summary

ITSs have mainly been developed for teaching novices about small, well-defined domains

such as algebra or LISP programming. Applying ITS principles to a complex, poorly-

understood task is a challenging use of technology which breaks with some ITS

conventions. Some ITS concepts will be applied to the advisor as needed (e.g.

Anderson's cognitive principles in the design of computer tutors), however, many

features incorporated into the advisor are based on research described in the thesis and

findings reported in other fields.
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5.2 Ira's Architecture

Ira has three main components which support the retrieval, selection and customisation of

an analogical specification belonging to the same domain class (see Figure 1.6). Each are

examined in this chapter:

• the problem identifier obtains a description of a new target domain and explains domain

abstractions retrieved by the analogy engine so that the software engineer can classify

the new domain;

• the specification advisor controls interaction with the software engineer during

selection and customisation of retrieved analogical specifications by explaining

analogies to the software engineer and guiding them to ensure that the analogical

specification is fully exploited;

• the analogy engine reasons with key facts acquired by the problem identifier to retrieve

and match specifications. Its reasoning capabilities also allow the specification advisor

to reason alongside the software engineer to support explanation of the analogy during

customisation.

5.3 The Problem Identifier

The problem identifier has two aims: (i) to acquire key facts about the target domain

which can be matched successfully by the analogy engine, and; (ii) to explain retrieved

domain abstractions to software engineers, see Figure 5.1. An incremental, example-

based domain definition and retrieval paradigm is proposed to achieve these aims, similar

to that proposed by Fischer et al. (1991b) and Fischer & Reeves (1991). During an

interactive session, domain description and explanation of retrieved abstractions occurs

iteratively, thus leading to a gradual refinement of the domain description.

The first study in chapter 4 suggests that software engineers encountered difficulties

when identifying key domain facts which may be overcome by tool-based, semi-

automated assistance. In the proposed scenario, key facts must be specified using the set

of domain terms which define the meta-schema of knowledge types in chapter 3.

However, people find it difficult to abstract unfamiliar problems, so unsupported use of

these domain terms may be problematic. For instance, it has proven difficult to get an

agreed set of terms to describe computer artifacts (Fumas et al. 1987). Therefore, one of

the problem identifier's main aims is to ensure effective domain description using

abstract terminology which can also be matched to retrieve domain abstractions. An
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Figure 5.1 - architecture of the problem identifier

Understanding and representing the new domain is assisted by the early retrieval of

domain abstractions. However, tool-based explanation of retrieved domain abstractions is

also needed since software engineers reported in chapter 4 were unable to understand

generic templates while previous empirical studies (e.g. Gick & Holyoalc 1983, Gick

1989, Gilmore & Green 1988) also revealed that understanding abstract concepts is

difficult. Thus, explanation of unfamiliar domain abstractions during the early phases of

requirements engineering appears necessary to assist effective fact capture prior to

specification retrieval.

5.3.1 Tactics Employed by the Problem Identifier

The problem identifier incorporates empirically- and theoretically-derived tactics to

overcome the difficulties reported in chapter 4 and capture a sufficiently complete and

correct domain description for retrieving analogical specifications. The main aim of these

tactics is to encourage induction of relevant domain abstractions by software engineers,

thus assisting them to scope and structure the domain and identify its key facts, see

Figure 5.2. Tactics include example-based explanation, visualisation of abstractions and

information hiding. Each is examined more closely.
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5.3.1.1 Example-Based Explanation

Example-based explanation of domain abstractions (e.g. Breuker 1988) can lead to

schema induction, for instance Gick & Holyoak (1983, 1989) revealed that schema

induction only occurred when two analogical problem instances were available during

problem solution. Example-based categorisation has also been shown to be an effective

retrieval mechanism. Fischer et al. (1991a) studied information access mechanisms for

poorly understood concepts which are continuously elaborated upon and evaluated until

appropriate cues are constructed. People thought about categories of things in terms of

prototypical examples as opposed to formal or abstract attributes, a result also identified

by Rosch et al. (1976). Elsewhere example-based information access has been applied to

create a cooperative relationship giving users the ability to incrementally improve a query

by critiquing the results of previous queries (Fischer & Reeves 1991). In the problem

identifier, analogical examples of retrieved domain abstractions permit similar

cooperative retrieval, incrementally improving the software engineer's understanding of

the target domain and narrowing the analogical search space, see Figure 5.2. This

paradigm blurs the distinction between domain description and retrieval, suggesting that

incremental retrieval and explanation of domain abstractions may be an effective means

of retrieving analogical specifications.

5.3.1.2 Visualisation of Analogical Examples

Visualising domain abstractions and analogical examples using spatial diagrams is

another empirically demonstrated tactic for analogical comprehension and schema

induction. Gick & Holyoak (1983, 1989) reported that spatial diagrams representing key

abstractions aided people's understanding of analogical problems while text descriptions

did not lead to effective analogical comprehension. Spatial diagrams are relevant to

analogical reuse since they can be used to represent key state transitions and object

structures in the proposed meta-schema (see Appendix A). Visualisation of abstractions

also permits them to be understood in terms of simpler well-known analogies, for

171



instance many domains may be instantiated as simple blockworlds (e.g. Gupta & Nau

1991) which involve the movement of objects or blocks from one position (or state) to

another. Domain visualisation can also assist during the acquisition of key facts. Software

engineers can define key state transitions and object structures in diagrammatic form,

thus encouraging a representation of the new domain which is similar to the retrieved

domain abstractions and analogical examples.

5.3.1.3 Explanation of Analogical Examples

Unfortunately, visualising concrete domain examples alone is unlikely to ensure that

domain abstractions are understood. Therefore, description and justification of retrieved

domain abstractions and knowledge types defined in the meta-schema are proposed (e.g.

Breuker 1988, Wenger 1987), supported by evaluative tactics such as elicitation and

comment. For instance, the domain terms resource and resource-container cannot be

explained fully in terms of larger analogical examples, so detailed explanation of each

domain term is required.

5.3.1.4 Additional Tactics

Analogical copying may occur when attempting to understand analogical examples, so

additional tactics are incorporated into the problem identifier to avoid mental laziness.

First, information hiding combined with controlled access to windows for defining new

domain terms can discourage copying of analogical examples. Second, a single, non-

analogical example is presented to demonstrate how these terms describe domains.

Finally, summary descriptions of the domain are presented to encourage its evaluation.

For example, when evaluating the theatre domain, the state transition linked to allocating

theatre bookings to seats only occurs if both the seats and the booking match, so the

following paraphrase may be displayed to the software engineer for agreement or

rejection:

Ira believes that ALLOCATION of BOOKING to THEATRE SEAT only occurs when:
BOOKING and THEATRE SEAT have the some properties.

Thus, the problem identifier explains some of its analogical reasoning during evaluation

of the domain description. In addition, immediate feedback on analogical errors can

correct false mappings and incorrect reuse before it has a chance to occur. Immediate

feedback on errors would appear to be an important tactic since there was little evidence

of self-error correction by inexperienced software engineers during analogical reuse.
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5.3.1.5 Simple Retrieval Mechanism

Effective domain abstraction requires early retrieval of analogical examples, thus a

second, simpler retrieval mechanism is needed to intuitively guess relevant domain

abstractions and retrieve class-inclusive examples. Retrieval is achieved by matching

information system functions and domain events to a lexicon of functions and events

describing domain abstractions. For example 'allocate' is semantically equivalent to

'assign' and 'place' functions in the theatre reservation domain. Function/event matching

was incorporated into the search mechanism because these functions and events were the

only key knowledge types recognised effectively by inexperienced software engineers in

the first study of chapter 4. Every abstraction is also defined using three application-

independent terms which also describe the new domain. For instance, 'constraint

satisfaction' correctly defines both the theatre domain and its abstraction. Lexical

matching in this retrieval mechanism was felt to be acceptable since both functions and

domain terms were based on the logical model of software engineering analogies defined

in chapter 3.

5.3.2 Ira's Fact Acquisition Dialogue

The problem identifier incorporates example-based explanation, domain visualisation,

information hiding and summary descriptions into a fact acquisition dialogue which

captures all key facts about a domain. The dialogue has five phases:

• acquisition by the advisor of key system functions, domain events and general domain

terms as input to the simple retrieval mechanism;

• retrieval and explanation of the two best-fitting domain abstractions to the software

engineer using example instances, familiar physical analogies and visualisation of the

domain abstraction. These explanations aim to induce a mental model of the domain

abstraction;

• definition of key state transitions and object structures in diagrammatic form by the

software engineer;

• further definition of the domain using text descriptions. Candidate domain terms are

explained by description, justification and non-analogical examples;

• evaluation and modification of the domain description before passing it to the analogy

engine.

Furthermore, the first phase of this dialogue may be preceded by problem assimilation
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and understanding using structured analytic techniques such as functional decomposition

and data flow diagramming. The main features of the fact acquisition dialogue are

demonstrated during a mocked-up description of the theatre domain described in chapter

1.

5.2.3.1 Acquire Key Facts to Retrieve Candidate Abstractions

The problem identifier provides the software engineer with scroll menus to select

functions and general domain terms, see Figure 5.3. For the theatre domain, software

engineers may be expected to select the function allocate and the general terms

requirements matching and constraint satisfaction during correct specification of the new

domain.

Figure 5.3 - screen design of a fact acquisition dialogue,
demonstrating the selection of functions and domain descriptors

for the theatre domain

5.2.3.2 Present Domain Abstractions and Concrete Examples

The software engineer is encouraged to understand domain abstractions retrieved by the

simple matching mechanism. Concrete examples and familiar analogies are represented

graphically to encourage the software engineer to visualise the analogical match.
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Concrete examples represent well-understood software engineering domains while the

analogies include many everyday, non-software engineering objects, domains or

situations, a selection of which is shown in Figure 5.4. Throughout this learning process

the software engineer can request further examples to assist their analogical

understanding. Examples of the retrieved domain abstraction and analogy for the theatre

domain are shown in Figure 5.5. As well as encouraging mental schema induction,

analogical examples demonstrate the concise range and complexity of the defined domain
terms.

Figure 5.4(a) - example analogy of the object monitoring and object positioning domain
abstractions (see Appendix A). A checkers board, representing the concepts of structured
space and objects in space, critical to both the ATC/FMS analogy and analogies founded

on the object positioning domain abstraction (see Appendix A). In the former domain
abstraction two objects should not be positioned in the same space, while rules which
explain the object positioning domain include no two adjacent spaces should be left

unoccupied.

Figure 5.4(b) - example analogy for object containment abstraction (see Appendix A). A
water beaker has contents which are controlled in an inflow and an outflow, analogous to

an object containment abstraction instantiated to many forms of stock control. An
important concept is that of a minimum level of contents in the beaker (store).
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5.2.3.3 Develop a Pictorial Description of the Target Domain

The software engineer enters key state transitions and object structures in diagrammatic

form, although some textual entry is also necessary, see Figure 5.6. Direct manipulation

palettes can be used to select domain objects, then terms for elaborating these object

structures and state transitions can be selected from scroll menus. For instance, text-based

menus are needed to determine whether there are one or many theatres in the world, see

Figure 5.6.
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Figure 5.6 - screen design of the fact acquisition dialogue,
demonstrating the need for text fact entry during diagrammatic definition

of the theatre reservation domain

5.2.3.4 Develop a Text Definition of the Target Domain

The remaining knowledge types in the meta-schema are best defined in text form. The

software engineer selects appropriate domain terms from menus, supported by

explanations of these terms and a single non-analogical example demonstrating their use.

Furthermore, the problem identifier uses the result of its initial match with a domain

abstraction (see section 5.2.3.2) to present hints about the new domain to the software

engineer. The problem identifier also encourages the software engineer to evaluate their

entered domain description, so lessening the likelihood of mental laziness during fact

acquisition.

5.2.3.5 Evaluation of the Domain Description

Domain descriptions are evaluated by both the advisor and the software engineer. The

problem identifier matches the domain description against abstractions retrieved by the

simple retrieval mechanism to identify omissions and inconsistencies. The software

engineer is also prompted to evaluate their own domain description. Once evaluated this

description passes to the analogy engine to be matched analogically against all known
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domain abstractions.

5.3.3 The Problem Identifier: A Summary

The problem identifier acquires key facts about problem domains using a battery of

explanation tactics including domain abstraction, example-based explanation, domain

visualisation and information hiding. The fact acquisition dialogue promotes early

retrieval of domain abstractions to provide inexperienced software engineers with the

domain knowledge necessary to structure and scope the problem space, identify key facts

and evaluate their final domain description : As such it is intended to overcome many of

the analytic problems identified in the first study in chapter 4. This incremental

prototyping approach is similar to that implemented by Fischer and his colleagues at the

University of Colorado (e.g. Fischer et al. 1991a). Once acquired, the domain description

is passed to the analogy engine to retrieve one or many domain abstractions and

analogical specifications.

5.4 The Analogy Engine

The analogy engine is a knowledge-based specification retrieval mechanism representing

a computational implementation of the logical model of software engineering analogies

defined in chapter 3. Analogical matching has been shown to be a plausible and

computationally tractable way of matching a source and target analog (Holyoak &

Thagard 1989, Gentner 1989, Falkenhainer et al. 1989). Implementations of Gentner's

structure-mapping theory (Gentner 1983) and Holyoalc's matching by constraint

satisfaction (Holyoak & Thagard 1989) suggest that analogical matching is achievable

using interacting structural and semantic constraints which also constrain analogical

matching between software engineering domains, see chapter 3. This section presents the

algorithms used to match descriptions of target domains, source domains and domain

abstractions. First however, a review of existing, general computational models of

analogy is presented.

5.4.1 Review of Existing Analogical Matching Mechanisms

Several computational models of analogical matching have been developed. However,

three models, the Structure-Mapping Engine, Analogical Constraint-Mapping Engine and

the Constrained Semantic Transference model, warrant special attention. Gentner's

Structure-Mapping Theory (Gentner 1983) was implemented as the Structure-Mapping
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Engine or SME (Falkenhainer et al. 1989). Following this theory, only structural criteria

are used to construct and evaluate mappings. The SME algorithm identified syntactic

similarities between local matches, then global matching identified their best structural

match from structural constraints. The SME was applied to over 40 example analogies

drawn from a variety of domains and tasks. It proved effective for simulating human

responses for analogical short stories and metaphors as well as serving as a module in a

machine learning program. Modified versions of the SME have been found in more

recent case-based reasoning engines such as GREBE (Branting 1991).

The Analogical Constraint Matching Engine, or ACME (Holyoalc & Thagard 1989)

operates in a similar way to the SME, although it also recognises and exploits semantic

and pragmatic constraints. Structural consistency is imposed in terms of a morphism

between sets of consistent mappings of source and target objects. Semantic similarity

loosens the limitations of syntactic similarity between isolated components, so allowing

the concept of similarity of meaning to be recognised, although Holyoak and Thagard are

unclear as to how such constraints are imposed in ACME. On the other hand, Indurkhya

(1987) proposed a formalism based on first order predicate calculus for representing

knowledge structures associated with a domain to develop a theory of constrained

semantic transference. This formalism allows the terms and structural relationships of the

source domain to be transferred coherently across to the target domain by emphasising

the coherency of knowledge transfer. It was employed to explain several cognitively

identified features of analogy and metaphor. Its algorithms relied heavily on the existence

of relevant domain knowledge.

To conclude, SME and ACME represent two domain-independent analogical

mechanisms with implications for design of the analogy engine. On the other hand,

Indurkhya identifies the need for domain knowledge matched by the algorithm, similar to

the inclusion of key domain abstractions in analogical matching.

5.4.2 Ira's Analogy Engine

Ira's analogical retrieval mechanism matches key facts about software engineering

analogies defined in the meta-schema. It matches a concrete domain to its abstraction,

then this abstraction to key facts about reusable specifications. To recap, analogical

matching is successful if a target domain, source domain and domain abstraction share a

coherent structure of semantically equivalent facts, and the extent of analogical match is

determined by the degree of overlap between these mapped structured facts.
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The analogy engine consists of four components. First, the analogical matcher identifies

candidate analogical matches with one or many domain abstractions. The abstraction

selector then reasons heuristically about key differences between these abstractions to

select the best match. Third, the analogy determiner combines quantitative measures of

similarity from the analogy matcher and selector to determine the degree of overall

analogical match. The analogy engine also includes the simple retrieval mechanism

described earlier. The three stages of the matching process are shown in Figure 5.7 and

the architecture of the analogy engine is shown in Figure 5.8. Each phase is examined in

turn.
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Figure 5.7 - three main stages of the analogical matching
process by the analogy engine

5.4.2.1 The Analogical Matcher

The analogical matcher determines the extent of a match between key domain facts and

each domain abstraction. Structural coherence ensures that mappings occur between

interrelated knowledge structures, similar to the SME (Falkenhainer et al. 1989).

Mappings occur between the seven types of knowledge defined in the meta-schema:
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object structure:	 < object, object, structural-relation >
domain requirement:	 < object, object, structural-relation, value >
state transition:	 < object, source, destination, transition >
object type:	 < object, object-type >
conditions on state transition: < precondition, object, source, destination, transition>
external transition events:	 < state transition >
function achieving transition: < function >

Figure 5.8 - architecture of the analogy engine. The analogical matcher
identifies candidate analogical matches which are passed to the

abstraction selector which identifies critical differences between
candidates as a basis for their selection. Selected matches are
passed through the analogy determiner before being presented

to the software engineer using the specification advisor

The Structural Coherence Algorithm

The structural coherence algorithm maps pairs of facts which belong to a coherent

knowledge structure in preference to those which do not. Previous analogical matching

mechanisms discussed in section 5.4.1 had excessive runtime and were computationally

181



complex (Holyoak & Thagard 1989), so the structural coherence algorithm attempts to

overcome these problems in three ways. First, definitions of domain abstractions and

descriptions are kept small and do not exceed 30 key facts, thus reducing runtime.

Second, the analogical matcher's search space is limited by only investigating mappings

which are possible given the current state of the analogical match. For example, the

analogical matcher does not investigate mappings between information system functions

or domain events until their linked state transitions have been matched. Finally, and most

importantly, the analogical matcher does not attempt exhaustively to map all possible

analogical combinations. Rather it approximates a coherent match between a domain

description and abstraction by identifying a topology of related facts. Each fact about a

domain abstraction is mapped to the domain fact which fits best with analogical

mappings between its linked domain abstraction facts. Thus, the structural algorithm uses

a complex and computationally-intensive but pragmatic search strategy. The algorithms

which define structural coherence are specified in Appendix I.

The structural coherence algorithm is best demonstrated by a simple example. Figure

5.9(a) shows a fact describing the object structure of a domain abstraction and two facts

describing the object structure of a new domain. According to the algorithm, only one of

these two domain facts can be matched to the abstract fact, so the structural coherence

algorithm must determine which domain fact fits best with the overall analogical match.

First, candidate mappings in the structural match must be semantically equivalent, so if

only one semantically-matched fact exists in both descriptions they are mapped. In the

example, two semantically-matched domain facts exist, so the best mapping is selected

by a quantitative degree of fit for each mapping to its neighbouring facts. Second, to this

end, each domain fact receives a score for every neighbouring candidate mapping which

it is connected to, a candidate mapping also occurring if the neighbouring facts in the

domain and abstraction are semantically equivalent. For instance in Figure 5.9(a), object

Al is also defined in four other facts, hence they are neighbours. These neighbouring

facts are defined by the domain terms rl, r2, r3 and T4. For the first domain fact there are

two abstract neighbours which are semantically equivalent (similar rl, r3) but for the

second domain fact there are four candidate mappings, suggesting that the mapping with

the second fact may fit best into the analogical match. Mappings with object A2 are also

counted to give a score of overall fit for each target fact. As expected, the second domain

fact is the best match to the abstract fact because it is connected to 7 potential

neighbouring matches while the first fact only has 5 neighbouring matches. State

transitions, object types and preconditions on state transitions are mapped using the same

structural coherence algorithm. This matching process is repeated for each of the above

domain terms in the target description until a degree of match between it and each
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Figure 5.9(a) - example demonstrating the structural coherence algorithm
to select the most appropriate domain fact for each candidate

fact about the domain abstraction. Resultant object mappings are:
Al <-> T3,
A2 <-> T4.

Once a structurally coherent match has been established, the analogical matcher attempts

to map other knowledge types such as information system functions, domain events and

domain requirements. This matching respects the structural coherence of existing
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analogical mappings, as shown by the algorithms in Appendix I. It also includes

similarities between general domain terms defined in section 5.2.3. An overview of a

structural match between the theatre reservation and university course administration

domain is shown in Figure 5.9(b).

Figure 5.9(b) - network demonstrating the structural
isomorphism of the analogical match between the theatre
reservation and university course administration domains
(lozenges represent domain objects, rectangles and lines

show domain terms)

To sum, the structural coherence algorithm approximates structure matching between

domain terms describing a concrete domain and its abstraction. Subsequent object

mappings can inferred from their equivalent positions in this structural match, see Figure

5.9(b). Approximation of structural matching is due to the small size of the domains

matched by the analogy engine, so it may not be appropriate for mapping larger analogs

evaluated by the SME (Falkenhainer et al. 1989) and ACME (Thagard & Holyoak 1989).

Unfortunately, paper-based evaluation of the effectiveness of the analogical matcher

indicated that it alone is insufficient for analogical retrieval of specifications. The next

section discusses the abstraction selector, a component which reasons about critical

differences between analogically-matched domain abstractions to assist selection of the

best analogical fit.

5.4.2.2 The Abstraction Selector

The abstraction selector reasons heuristically about critical differences between domain
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abstractions at each sub-level in the abstraction hierarchy. For example, Figure 5.10

shows the retrieval path to access an abstraction for object allocation. Analogical

matching between large and flat domain descriptions (e.g. Kline's baseball analogy, cited

in Falkenhainer et al. 1989) can require several hours to complete, so structuring the

search space appears to be necessary to reduce search times. Figure 5.10 also reveals the

close similarity between domain abstractions at lower levels in the hierarchy, indicating

the need for an alternative reasoning mechanism to identify critical differences between

these abstractions.

differences identifying the list domain:
1- there is a mapped object type LIST;
2- there is a mapped state transition from REQT SET to LIST;
3- there is a mapped state transition from LIST to RESOURCE SET.

differences identifying the bin domain:
1- there is a mapped object type BIN;
2- there is only one mapped state transition into RESOURCE SET.

Figure 5.10- example of part of inheritance hierarchy describing the position of
a domain abstraction for the theatre domain, and critical differences with neighbouring

abstractions such as that for train reservations

The analogy engine reasons heuristically about key differences between candidate

abstractions and analogical mappings between key components. In the example shown in

Figure 5.10 the structural coherence algorithm has identified an analogical match with

two domain abstractions, so six heuristics reason about key differences between the
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abstractions then calculate this difference as a percentage of the total possible differences

between the abstractions. Currently a critical difference occurs if this score exceeds a

predetermined percentage of difference between the abstractions. The algorithms for

determining critical differences are given in Appendix I.

5.4.2.3 The Analogical Determiner

This component determines the overall analogical match from results obtained from the

analogical matcher and selector, see Figure 5.7. Three levels of analogical match can

occur:

• a good-match indicates a successful match with a domain abstraction;

• a partial-match signifies a possible analogical match, although more domain facts are

needed to confirm or reject the match;

• a failed-match indicates no analogical match with any abstraction.

These degrees of analogical match are determined by quantitative measures of structural

coherence, key differences between abstractions and simple measures of similarity

between domain requirements, functions achieving transitions and general domain terms.

A quantitative measure of structural coherence is calculated by dividing the

predetermined total number of possible mappings with each domain abstraction by the

number which occur. Similarly the degree of difference between abstractions is

calculated as a percentage of the total possible differences. The algorithms for

determining good- and partial-matches are shown in Appendix I. As such the analogical

determiner acts as the top-level controller of the analogy engine, see Figure 5.7.

5.4.3 Additional Matching Techniques

Partitioning the search space of domain abstractions requires some modification of the

structural coherence algorithm to overcome additional problems which arise. The first

problem is that domain abstractions become more specialised with each level of

abstraction, so each domain fact must only be matched to facts describing one abstraction

in the hierarchy. Additional constraints are needed to avoid repetition and redundancy of

analogical mappings and redundant analogical matching, see Figure 5.11. The structural

coherence algorithm is modified to ensure that an analogical mapping with a domain fact

may only occur with one abstraction in the hierarchy. Subsequent analogical matching

with abstractions lower in the hierarchy must be consistent with mappings made to

higher-level abstractions. In Figure 5.11, the analogical mapping from the target object
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waiting list to the abstract object list is dependent on the existence of analogical

mappings inferred between the target description and a higher level domain abstraction.

Figure 5.11 - example of part of the inheritance hierarchy demonstrating the
inheritance of high-level analogical mappings on lower-level mappings,

for instance mapping list to waiting list cannot be achieved
without the higher-level mappings

A second problem which may arise is that matching must be constrained to ensure that

high-level domain facts are mapped to high-level domain abstractions and lower-level

facts are mapped to low-level domain abstractions. For instance, a complex stock control

domain instantiates the low-level domain abstraction shown in Appendix J. To reach this

abstraction the stock control domain must be matched to domain abstractions at three

different levels in the domain hierarchy, as described in Figure 5.12. This is achieved by

partitioning the target domain description into high and low-level facts about the domain,

decided by an algorithm given in Appendix L which layers objects by their links with the

highest-level world entity. For instance, high-level objects are linked by object structures

to the world entity (e.g. world has-one warehouse) whereas low-level objects are not (e.g.

bin contains-many stock-items). Such partitioning is achieved by the domain partitioner

shown in Figure 5.8.
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Consider a warehouse with many stock bins, each with many stock
items held within. This knowledge structure can be represented in

two ways, only one of which may be entered during fact acquisition:
i) WAREHOUSE contains-many ITEMS

ii) WAREHOUSE contains-many BINS, 8c
BINS contains-many ITEMS.

Figure 5.12(a) - effective matching by the analogy engine requires the ability to recognise equivalence
between domain facts. Analogical matching occurs at different levels of domain abstraction, so high-level
facts must be mapped to high-level abstractions early in the matching process, and low-level abstractions

must be mapped to low-level abstractions later in this process

.. ,i4t .	 _ ,ig.4.
al •nnr• ; "nnn•nn To TN ramni• m. n Tarim rmia on=••	 maim	 ma•E	 ••gm	 ••a•	 ••
m	 =••	 amm	 m••	 Wmam	 m••	 ••mi	 amme	 Mams•	 On
I=	 =••	 ••
IM	 MN
OE	 iU
OM
WE 	 	 ON•• 	 	 =•• 	 	 ••
= 	 	 NM•• 	 	 ••
MI 	 	 =••	 ••
NM	 =
••n•nn••n •n •nn•nnnnn• n•n•nnn• nn•••
••n=11=MMI=MIMM•=1==MIIMINO=IN•1=1•11

low level
match will occur

Figure 5.12(b) - demonstration of massaging the domain description to enhance matching
to high-level and low-level domain abstractions

The two specified additions to the structural coherence algorithm are defined in Appendix

I. Their inclusion in the analogy engine represents the development of a pragmatic

retrieval mechanism for specification reuse rather than a theoretically-based,
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computational model of analogical reasoning. These modified algorithms represent the

analogical mapping mechanism implemented in Ira's prototype described in chapter 6.

5.4.4 Matching Generic Domain Worlds

The logical model of software engineering analogies in chapter 3 incorporates generic

domain worlds representing common domains. To recap, one example of such a world

instantiates the object monitoring abstraction to a safety-critical transport world in which

manned vehicles move and risk collision in two- or three-dimensional spaces such as air

traffic control, train management and shipping movements along busy sea lanes.

Matching the physical attributes of domain objects can assist matching to the best-fitting

domain abstraction. The ATC domain, unlike the FMS domain, belongs to the generic

domain world safety-critical-transport, hence matching the ATC description will favour

analogical specifications instantiating both the correct domain abstraction and the generic

domain world (e.g. a specification of a control system for ship movements) in preference

to those which do not.

The analogy engine infers the presence of generic domain worlds from physical attributes

belonging to domain objects, for instance physical attributes of objects in the ATC and

video hiring domains are matched to similar physical attributes of domain abstractions:

< aircraft, manned-vehicle > maps to < object, manned-vehicle >
< video-copy, borrowed-item > maps to < object, borrowed-item >

etc..

To sum, physical attributes attached to abstract objects are shown in Appendix J. Physical

matching only occurs once a good match has been identified between the domain

.description and its abstraction. Physical attributes are matched by the analogy engine

using a simple measure of percentage lexical match between physical attributes

belonging to each domain and abstraction. This simple algorithm is also defined in

Appendix I.

5.4.5 Summary of the Analogy Engine

To summarise, the analogy engine consists of three major components. The analogical

matcher determines a structurally coherent match between a new domain and its

abstraction. The abstraction selector then reasons heuristically about critical differences

between matched domain abstractions to choose the best fit. Finally the analogy

determiner combines the measures of analogical similarity inferred by the analogical
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matcher and selector to produce a single measure of similarity between a domain

description and its abstraction. This analogy engine represents a pragmatic specification

retrieval and explanation mechanism founded on a computational implementation of the

logical model of software engineering analogies. The analogy engine differs from earlier

computational models of analogy in its implementation of both case-based and rule-based

reasoning paradigms. It more closely resembles recent hybrid analogy engines such as

CABARET (Rissland & Skalalc 1991). It provides the advisor's expertise for both

specification retrieval and explanation. The importance of explanation during

specification understanding and transfer is examined more closely in the next section.

5.5 The Specification Advisor

The specification advisor explains and assists customisation of retrieved specifications.

Its domain expertise is derived from mappings inferred by the analogy engine while its

knowledge of software engineers' analogical understanding is founded on the empirically

derived malrules and mental models of analogical understanding and the cognitive task

and reasoning models which identify strategies for effective specification understanding

and transfer. Definition of the specification advisor's architecture is followed by

explanation and reuse strategies and tactics from the empirically-derived findings in

chapter 4.

5.5.1 The Architecture of the Specification Advisor

The specification advisor's architecture is shown in Figure 5.13. Comprehension of the

specification is assisted by explaining the analogical match using its underlying domain

abstraction. The specification modeller and explainer then operate in an iterative present-

diagnose cycle based on the cognitive model of analogical reasoning to support

analogical transfer. During this cycle the software engineer enters modified components

and analogical mappings until he/she requests additional explanations or enters an

incorrect mapping. Immediate error correction is in keeping with Anderson's et al.'s

(1987) guidelines for tutor design. Errors are identified by the analogy engine's inferred

mappings and the reuse error library shown in Figure 5.13. The software engineer is

informed of the goals and structure of the dialogue throughout, in keeping with another of

Anderson et al.'s (1987) tutor guidelines. The remainder of this chapter defines the

advisor's expertise, empirically-derived strategies for effective analogical comprehension

and transfer, explanations to assist analogical reasoning and rules for error detection and

fixing.
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Figure 5.13 - architecture of the specification advisor

5.5.2 The Specification Advisor's Expertise

Explanation and error diagnosis by the advisor are limited by its domain abstractions and

inferred analogical mappings. Explanation was enhanced by causal links between

knowledge types in the meta-schema (e.g. White & Frederiksen 1990), see Figure 5.14.

For example, the causal structure linking the knowledge types is necessary to construct

the following explanation for the ALLOCATION system function:

the ALLOCATION function is caused by the state transition moving booking
from an unoccupied to an occupying-seat state
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object
type

Figure 5.14 - causal links between knowledge types defined in
the meta-schema, to permit causal, teleological and

function-based justification during explanation

5.5.3 The Specification Explainer

The specification explainer has three parts. First, it assists specification understanding

using empirically-derived strategies. Second, these strategies are aided by explanation of

the analogy using mappings inferred by the analogy engine. Finally the advisor assists the

software engineer to transfer the analogical specification.

5.5.3.1 Support for Specification Understanding

The cognitive task and mental models underpinning the strategies to aid specification

understanding are reported in section 4.4.4. The aim of these strategies is to improve the

software engineer's understanding of the analogy and its underlying abstraction from

their initial interaction with the problem identifier. Two mocked-up examples of the use

of these strategies are shown in Figures 5.15 and 5.16. The strategies are:

• promote an abstract understanding of problem solving knowledge, following Anderson

et al.'s (1987) guidelines for tutor design. In particular, software engineers must

understand key domain abstractions underlying the analogical match;

• minimise working memory load throughout the comprehension phase (Anderson et al.

1987). Present abstract and source domain knowledge in small, manageable chunks.

Coordinated explanation dialogues must be based on the rationale underlying

knowledge types in the meta-schema;

• encourage a good analogical understanding before transferring the specification. Use

spatial diagrams to explain the key domain abstraction and familiar analogies to

promote its induction. Spatial diagrams also serve to highlight key analogical

mappings. Furthermore, the advisor explains key facts about the reusable source
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domain rather than the transferable specification;

• during specification transfer, explain key domain facts alongside specification

components to encourage better analogical mapping with these components;

• promote greater analogical reasoning in several ways. Encourage explicit definition of

analogical mappings using electronic sketchpads and graphical representations of the

analogical match. In particular, promote analogical reasoning with key facts in the

source domain before reasoning with non-critical domain facts;

• present different types of knowledge defined in the meta-schema to encourage multi-

layered analogical comprehension. Knowledge presentation is controlled by the

reasoning planner defined in chapter 4. Analogical understanding is iterative, thus key

state transitions and object structures must be understood first, then other knowledge

types defined in the meta-schema, then non-critical domain attributes.
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Figure 5.16 - mockup screen layout demonstrating strategies to aid
analogical understanding

5.5.3.2 Strategies for Transferring Specifications

Strategies leading to effective analogical transfer are demonstrated in the mocked up

screen in Figure 5.17. The key components of these strategies at the dialogue level are:

• controlled transfer of specification components to maximise reuse. Dialogue windows

present each major component and its neighbours in turn. Initiative remains with the

system while it lists all candidate components for reuse, supported by scripted

explanation dialogues outlined in section 5.5.2. The software engineer is unable to

access other dialogues during this controlled sequence;

• the system hides information about the specification to inhibit copying and focus

reasoning attention on components being transferred. Browsable dialogues provide

limited views on the specification and support guided discovery and learning about the

analogical match (Elsom-Cook et al. 1988);

• the system also provides the specification structure as a template guiding its transfer.

Explanatory dialogue is also guided by the specification structure. The reuse 'template'

must allow editing of component labels;

• permit customisation of the reusable specification, changing component names and

altering the specification structure where permissible as defined by the transfer strategy.
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Work spaces are provided to permit exploration and experimentation with analogical

matches;

• encourage evaluation of mapped components which are syntactically similar to reusable

components. Such analogical errors and mismappings may represent mental laziness,

hence the advisor requests additional analogical reasoning to justify mappings;

• encourage evaluation of the customised specification against the target system's

functional requirements to avoid omissions, ambiguities and overspecification.

Dialogue windows permit browsing of functional requirements. Unchecked

requirements can be highlighted by the tool to ensure specification completeness. As

such the analogical specification can be checked both manually and automatically.
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Figure 5.17 - mockup screen layout demonstrating strategies
to aid specification transfer

5.5.3.3 Strategies for Analogical Reasoning

The reasoning planner defined in section 4.4.4 supports iterative analogical reasoning,

during which an analogical hypothesis is generated then developed and tested in the

target domain. As such, the planner maintains control of interaction with the software

engineer during specification comprehension and transfer. This interaction can be

integrated with explanation of analogical mappings and reusable components. Strategies

to assist analogical reasoning, understanding and transfer provide a prescriptive basis for
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guiding an inexperienced software engineer during analogical reuse. However, they

provide few clues for detailed explanation of the analogical match, so current theories

and models of explanation are reviewed, although they are beyond the direct focus of this

research.

5.5.3.4 Explanation of Analogical Specifications

Explanation can be viewed from: (i) what to say, and (ii) how to say it. The advisor's

expertise defined in section 5.5.2.1 determines what to say while this section specifies

classes of explanation which determine how to say it. Explanation has been researched

considerably in the cognitive psychology, intelligent tutoring and artificial intelligence

disciplines. Wenger (1987) identified the behavioural, epistemic and individual target

levels of didactic operations, the first two of which are operationalised by the advisor.

Interventions at the behavioural level can be classified as behavioural guidance (e.g.

specific hints or general advice) or exposure to behaviour (e.g. simple demonstrations)

while the epistemic target level operates to modify the student's knowledge state, either

via direct communication or practice, by organising specific experiences to expose the

student to. Explanations are central to dealing with articulation of knowledge at both

levels of didactic operation.

Many taxonomies of explanation exist (e.g. Wenger 1987). For instance, Breuker (1988)

identified explanation as one of six pedagogical tactics acting on objects in an intelligent

tutoring environment. Wenger (1987) proposed an overlapping classification of

explanation types, divided into three classes: justifications, integrations and

organisations. Justifications include teleological, causal and functional accounts.

Integration encompasses explanations described by articulation of genetic, analogical and

contrasting relations, and articulation of abstract objects and procedures. Finally

organisational explanations include articulation of general principles. Many of these

explanations can be incorporated into the advisor, for example:

• justification by teleological, causal and functional accounts exploits causal links

between knowledge types in the meta-schema defined in section 5.5.2.1;

• familiar analogies are another tactic for integrating domain abstractions into the

software engineers' current understanding. Domain abstractions can be also compared

and contrasted to emphasise key differences when understanding and selecting

abstractions. Articulation of organisational and general principles also emphasise the

importance of key abstractions and the underlying rationale of the analogical match.
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These classes of explanation tactic are incorporated into the advisor. The type of

explanation is determined by current comprehension and transfer strategies and

analogical misconceptions exhibited by software engineers.

5.5.3 The Specification Modeller

The specification modeller captures domain facts and analogical mappings for diagnosing

the software engineer's analogical understanding. Analogical mappings can either be

inferred from the customised specification (see Figure 5.18) or elicited directly by

questioning. Indeed, Self (1988) suggests that direct questioning has been underutilised

as a diagnostic strategy in ITS development.

/
allocate each

manufacturing
job to available
machines ifjob
type & machine

type match

allocations	 allocations

Figure 5.18 - demonstration of possible lexical mappings
during specification transfer, indicating that:

video copy <--> machine
hotel requirement <--> production job

Subsequent error diagnosis is achieved by comparing the software engineer's analogical

understanding to that inferred by the analogy engine. The advisor combines simple

overlay and enumerative bug models (e.g. Wenger 1987, VanLehn 1988) to determine

candidate errors. These models were considered appropriate given the advisor's limited

expertise. Initially models are overlaid to identify incorrect and omitted analogical

mappings. Candidate reasons for these errors are then inferred from the enumerative error

library derived from errors exhibited in the third reported study. The current error library

is defined in Appendix H, although it can be extended to incorporate common errors

involving analogical mappings with specific domain abstractions. Dialogue with the

software engineer can confirm erroneous mappings and diagnoses or ask the software

engineer for other analogical concepts which are poorly understood. Diagnosis informs
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the advisor's tactic selector so that misunderstood analogical concepts can be explained,

thus providing immediate feedback on errors (Anderson et al. 1987).

5.5.4 The Specification Advisor: A Summary

The specification advisor assists the software engineer to understand and transfer

analogical specifications. Explanation is founded on the logical model of software

engineering analogies defined in chapter 3, empirically-derived strategies for successful

analogical comprehension reported in chapter 4 and classes of explanation from the

literature on intelligent tutoring systems. Strategies which aid transfer of analogical

specifications are empirically-derived from ineffective and successful reuse behaviour

reported in the second, third and fourth studies in chapter 4. In addition, explanation of

analogical specifications is aided by diagnosis of analogical errors and misconceptions

exhibited by software engineers, supported by the error library derived from the third

empirical study of analogical reuse. As such, the design of the specification advisor has a

strong theoretical and empirical basis not found in many existing software reuse

environments (e.g. Woods & Sommerville 1988, Prieto-Diaz 1991, Fugini et al. 1991).

5.6 A Summary of Ira

This chapter specified the advisor's three major components based on the logical model

of software engineering analogies defined in chapter 3, empirically-derived cognitive

task, reasoning and mental models reported in chapter 4, and existing theoretical and

empirical evidence of analogical problem solving and tutor-based explanation. The

problem identifier acquires key domain facts prior to analogical matching. An iterative

acquisition and retrieval paradigm presents retrieved domain abstractions and concrete

examples early in the fact acquisition dialogue to assist domain scoping, structuring and

description. The analogy engine matches the acquired domain description to analogical

domains belonging to the same domain abstraction. The engine is a computational

implementation of the logical model of software engineering analogies defined in chapter

3. The analogy engine provides the tool's expertise to assist understanding and

customisation of specifications. The specification advisor uses empirically- and

theoretically-derived strategies to aid reuse. These strategies are supported by

explanations and diagnosis of analogical errors. The advisor cooperates with the software

engineer during specification reuse, a paradigm also implemented in the CODE FINDER,

CODE EXPLAINER and other toolkits developed at the University of Colorado (e.g.

Fischer, et al. 1991a, Fischer & Nakakoji 1991). The next chapter describes an evaluation

of two of these components.
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Chapter 6

6: A Prototype of Ira

This chapter describes the prototype implementation of Ira. The prototype supports fact

acquisition by the problem identifier, retrieval of domain abstractions by the analogy

engine and explanation of these abstractions to software engineer. Development of tool

support for specification retrieval was favoured because the effort required to build the

specification advisor was likely to be too great. In addition, fact acquisition and matching

provided a simpler scenario to evaluate the prototype's effectiveness because it allowed

software engineers to approach the domain without prior knowledge, whereas realistic

evaluation of the specification advisor would require simulation of interaction and

learning with the problem identifier. Partial implementation of a knowledge-based

specification advisor was considered, however the time and effort needed to model the

strategies and develop an integrated interface was considered to be too great. The

prototype advisor was developed on an Apple Macintosh IIcx with 5Mb main memory

and 40Mb hard disk using LPA MacProlog version 2.5, to exploit the package's

integrated graphics facilities which enabled fast development of powerful, interactive

explanation dialogues.

This chapter describes the implemented analogy engine and problem identifier in three

parts. First, an evaluation of the analogy engine is reported, then the prototype problem

identifier is investigated in two stages. Findings from user studies with a paper-based,

free form fact acquisition dialogue revealed the need for the semi-automated fact

acquisition strategies specified in chapter 5, then an evaluation of the complete prototype

investigates the effectiveness of the combined fact acquisition and analogical matching

components.

6.1 The Prototype Analogy Engine

The analogy engine reasons analogically to retrieve and explain analogical specifications.

It implements the algorithms described in chapter 5. The engine was populated with the

10 hierarchically structured domain abstractions defined in chapter 3 and Appendix J.
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6.1.1 Evaluation of the Analogy Engine

Complete evaluation of the analogy engine would have proved both difficult and time-

consuming. Instead, evaluation was example-based, in keeping with evaluation of other

computational models of analogical reasoning. For instance, the Structure-Mapping

Engine (Falkenhainer et al. 1989) was applied to over 40 analogies to model human

responses and act as a machine learning engine. ACME (Holyoak & Thagard 1989) also

provided a testbed for many applications of well-known scientific analogies. Similarly

the analogy engine was evaluated by matching domain descriptions representing

instantiations of known domain abstractions. Evaluation occurred in two phases. First,

complete and correct domain descriptions were input to ensure that they matched their

domain abstractions, then completeness and consistency of these target domain

descriptions were varied to investigate the engine's robustness.

6.1.1.1 Results of the Evaluation

During the first phase of evaluation, domain descriptions were successfully matched to

their abstractions. When domain descriptions were matched without key state transitions

or object structures, the analogy engine retrieved the correct domain abstraction in over

50% of cases and a correct higher-level abstraction in many other cases, see Table 6.1

and Appendix G. Problems arose when the correct domain abstractions were described by

a greater proportion of object structures, thus emphasising the importance of object

structures on structure-based analogical matching.

Domain Matched
Domain
Abstra-

ction

Test Without
Object

Structure

Test Without
State

Transition

Stock Control System OCP-BA Perfect Perfect

Personnel System OCP-BB Fail Partial *

Library System OCP-AB Perfect OCP Only

Air Traffic Control System OMP Fail Perfect

Coastguard Patrol System OPP Fail Fail

Simple Cinema System OAP Perfect Perfect

Complex Theatre System OAP-AA Perfect Perfect

Table 6.1 - results of evaluation of the analogy engine when
matching incomplete concrete domain descriptions to their correct

domain abstractions

Partial
match with
OCP, OMP

& OAP
classes
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6.1.2 Enhancements to the Analogy Engine

The analogy engine's matching algorithms were finely tuned in light of results from this

initial evaluation. The systematicity of a match with domain abstractions was measured

as a percentage overlap between the abstract and concrete descriptions, so a match

between a single domain abstraction and description was quantified as:

lin m
s= 	 *100 where

\--• nLi T

• M represents the number of matched target and abstract domain facts, and

• T represents the total number of abstract domain facts.

Evaluations led S to be set as follows:

•	 excellent analogical match: 80 � S � 100%

•	 good analogical match: 50 � S <80%

•	 partial analogical match: 33 � S <50%

•	 failed analogical match: 0 �. S <33%.

The abstraction selector was also tuned during this example based evaluation, and a

critical difference was deemed to occur if the percentage of the total number of possible

differences was greater than 33%. The full listing of the implemented analogy engine

(shown in Appendix L) demonstrates the complexity of the algorithms identifying

analogical matches.

6.2 The Prototype Problem Identifier

The prototype problem identifier attempts to overcome incompleteness and inconsistency

in domain descriptions by implementing the iterative, example-based fact acquisition and

retrieval paradigm defined in chapter 5. To recap, this paradigm incorporates the

following strategies:

• example-based explanation of retrieved domain abstractions;

• visualisation of retrieved analogical examples;

• information hiding to avoid example-based copying.
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Initially the need for these fact acquisition strategies was evaluated through paper-based

mockups of a simplified dialogue design to evaluate the effectiveness of free form fact

entry versus semi-automated fact acquisition. The paper-based, free form entry dialogue

omitted key strategies such as explanation and visualisation of analogical examples. It

was expected that such a free form entry dialogue would lead to incomplete and

inconsistent domain descriptions which would not retrieve the correct domain

abstractions. Instructions for identifying and representing key domain facts were given to

software engineers who then defined the domain on an answer sheet. Results from these

mockups demonstrated the need for complex fact acquisition strategies which were

evaluated during a second evaluation of the prototype advisor. These two evaluations are

described in the next two sections.

6.2.1 The Need for Fact Acquisition Strategies

The first, paper-based evaluation investigated the effectiveness of a free form entry

dialogue for describing domains, defined as non-interactive instructions for acquiring key

domain facts and a single, non-analogical example to explain the use of permitted domain

terms.

6.2.1.1 Method

Four inexperienced software engineers (second-year business computing undergraduates

with knowledge of structured analytic techniques) were requested to identify key facts

about the production planning domain described in Appendix E. All subjects were given

a one-page narrative describing the domain and five pages of instruction also shown in

Appendix E which explained how to identify key facts. Subjects had to select between

terms for describing the domain and enter these domain terms on the answer sheet, see

Appendix E. They were given 40 minutes to assimilate and describe the domain and were

expected to complete their description by the end of it. Both written and verbal

retrospective questioning elicited clues about the effectiveness of the fact acquisition

dialogues. Finally, subjects' descriptions were entered into the analogy engine by the

experimenter to determine whether they matched the production planning domain's

underlying abstraction.

6.2.1.2 Results

All four subjects described the production planning domain, although these descriptions
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were incomplete and inconsistent. Analogical matching using the prototype analogy

engine revealed that domain descriptions developed by Si and S2 only partially matched

the correct domain abstraction. On the other hand, domain descriptions developed by S3

and S4 failed to match any abstraction (see Appendix J), indicating that the mocked up

fact acquisition strategies were unsuccessful. Retrospective questioning revealed that

instructions were easy to use, so problems during fact acquisition and modelling were

examined more closely.

Subjects' Domain Descriptions

Retrospective questioning revealed that subjects encountered most difficulties identifying

key state transitions and object structures. More successful subjects (Si & S2) defined

state transitions correctly, although they confused operators with the concept of

unfulfilled production needs. On the other hand, S3 and S4 failed to describe key object

structures and state transitions. All subjects were more successful at selecting system

functions and object categories. They all selected allocate as the key system function

correctly, two subjects also selected assign because it was functionally equivalent to

allocate while only Si additionally selected the goods-in and goods-out functions,

apparently due to poor scoping of the production planning domain. Similarly, all subjects

categorised machines as system resources, although only one subject categorised jobs as

different-object-types correctly.

Difficulties Encountered by Subjects

Experimenters' sketches of each subject's written domain description revealed the

incompleteness and anomalies of these descriptions, see Figure 6.1. Both S3 and S4

modelled computer and organisation as separate entities rather than as the boundaries of

the production planning domain. All four diagrams also contained isolated components

which were inconsistent with the rest of the model. They also revealed discrepancies

which contradicted subjects' verbalised intentions. In the case of S3, who sketched the

domain, her model also revealed discrepancies between the model and the sketch,

indicating difficulties when defining object structures, although this may have been due

to the instructions provided. These findings revealed the need for more graphic domain

representations to overcome inconsistent domain descriptions.
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Figure 6.1 - graphic interpretations by the experimenter of the domain descriptions described
by subjects on the provided answer sheets

The non-analogical example was expected to aid fact acquisition. Si and S2 claimed

retrospectively to find the example easy to understand while other subjects encountered

difficulties using the example. For instance S3 claimed that the example was irrelevant to

the target domain while S4 had difficulties understanding it and would have preferred a

second, more helpful example. These findings suggest that effective fact acquisition may

be better served by analogical rather than non-analogical examples. Furthermore, no

subject followed the instructional sequence. Instead, they backtracked to their existing

domain description throughout the session to add or modify facts (e.g. Guindon 1990).

They also tended to read ahead to determine the goal of the instructions in order to better

understand them, so explicit representation of the goal structure may assist fact

acquisition (e.g. Anderson et al. 1987).

To conclude, the simplified fact acquisition strategies proved ineffective, thus justifying

the need for semi-automated rather than free entry fact acquisition strategies. The final

version of the prototype fact acquisition and matching strategies is described in the next

section.

204



6.2.2 The Prototype Problem Identifier

The need for complex fact acquisition strategies was demonstrated by the findings from

the previous study. To recap these more complex strategies include sketching the domain

to encourage visualisation of key facts, provision of analogical examples to assist schema

induction, active explanation of terms for representing the domain and explicit

representation of the fact acquisition goal structure (Anderson et al. 1987). The problem

identifier is specified in two parts.

6.2.2.1 The Fact Acquisition Dialogue

The fact acquisition dialogue consists of four sequential phases similar to those defined in

chapter 5, although there are several differences from the original specification. Most

importantly, the prototype lacked facilities for diagrammatic entry of key state transitions

and object structures. Instead, software engineers sketched the domains using pen and

paper, then entered key facts from these diagrams in text form. The software engineers

can abandon fact entry and begin again if required. Pull-down menus are provided to add,

modify or delete previously entered facts throughout the dialogue, although access to

these menus is controlled so that unexplained facts cannot be entered. Safeguards are also

built in to ensure fact consistency, for instance deletion of a key state transition cannot be

achieved without first deleting the conditions which trigger the state transition. Finally,

the simple retrieval mechanism was streamlined so that domain abstractions were

retrieved initially by matched functions or events only.

Selecting System Functions and Domain Events

Key system functions and domain events are selected from scroll menus and matched by

function/event using the simple retrieval mechanism, see Figure 6.2.
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206



acquire system functionality

acquire key state transitions

acquire key object structures

acquire object types

acquire preconditions

acquire required domain states

acquire problem descriptors

Explanation of Domain Abstractions and their Analogical Examples

The prototype presents analogical examples for the two best fitting domain abstractions,

see Figure 6.3. One of these examples is selected by the software engineer as a match for

the current domain. The top example shown in Figure 6.3 represents an analogical match

with the theatre domain. Better mental analogical understanding and schema induction is

prompted by requesting the software engineer to sketch the two examples and the current

domain using the same presented spatial representation.

Fact Acquisition

Key fact types are entered in text form into the prototype through a series of dialogues

defined in Figure 6.4 and exemplified in Figures 6.5, 6.6 & 6.7.

Figure 6.4 - the fact acquisition sequence within the problem identifier
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Evaluation of the Domain Description

The domain description is evaluated by matching it to the domain abstraction retrieved

earlier. This evaluation identifies omitted state transitions and object structures, see

Figure 6.8. The evaluation is supported by prompts to the software engineer to evaluate

the rest of the domain description.
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Fact Acquisition Dialogues: A Summary

The prototype implements most of the specified problem identifier from chapter 5 using

the 40 dialogues whose network is defined in Figure 6.9. The resulting domain

description is passed to the analogy engine to be matched to all known domain

abstractions. Dialogues for browsing, understanding and selecting between domain

abstractions are defined in the next section.
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6.2.2.2 Retrieval of Domain Abstractions

The prototype implements a two-phase strategy for domain abstraction retrieval. This

strategy is shown in Figure 6.10. Two phases were implemented to allow for the

incompleteness and inconsistency of domain descriptions entered by software engineers.

The second phase permits improvement of the domain description in light of feedback

from candidate analogical matches. There are several possible results from an analogical

match:

• a failed match: the problem identifier informs the software engineer of insufficient facts

for an analogical match;

• good matches: retrieved domain abstractions are explained;

• a partial match: the problem identifier acquires additional domain facts necessary for a

good match. Unmapped facts in the domain abstraction are assumed to have equivalent

facts in the target domain, so the problem identifier proposes candidate state transitions

and object structures to complete the domain description which then can be accepted or

rejected by the software engineer.

The implementation of this algorithm is shown in Appendix L and an example of the

prototype's response to a partial analogical match is shown in Figure 6.11. Failure to

match the domain description at the second attempt is assumed to indicate that analogical

matching is unsuccessful, although future versions of the advisor will allow more

iterative fact acquisition and retrieval of domain abstractions.
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6.2.2.3 Explanation of Domain Abstractions

The prototype explains domain abstractions so that they can be understood and selected.

Strategies are also needed to browse and explain the domain abstractions retrieved by the

analogy engine. Currently the prototype only explains analogical mappings with each

retrieved abstraction, although future versions will also explain key differences between

domain abstractions. The software engineer can browse each retrieved abstraction in turn,

see Figure 6.12. Subsequent explanation of each abstraction is achieved using the same

tactics as implemented in the problem identifier. Spatial representations and narrative

description of key facts about the abstraction are supported by descriptions of inferred

analogical mappings with each abstract object. The software engineer can also browse

well understood examples representing analogical instantiations of the domain

abstraction. Furthermore, the software engineer is presented with analogical examples

belonging to the same generic domain world. As such, the prototype permits guided

discovery and learning of domain abstractions, see Figure 6.13.

The prototype has an override facility which permits experimentation with the retrieved

abstraction by allowing the software engineer to select and fix individual mappings

during analogical matching. This facility is particularly useful if the analogy engine infers

mappings perceived by the software engineer to be incorrect. In such cases the offending

mapping can be corrected by the software engineer and the domain description

rematched, as shown in Figure 6.14. Future versions of the advisor will incorporate

further embedded explanatory knowledge to permit more effective explanation of

analogical matches.
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Figure 6.13 - prototype's screens for explaining a stock control's domain abstraction.
The three screens, from top to bottom, represent: the key domain abstraction; a likely generic domain

world, and a well-understood concrete example
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6.3 Evaluation of the Prototype

The prototype's effectiveness at acquiring key domain facts and matching them to

domain abstractions was measured in a realistic problem scenario. Evaluation was

achieved through observation of inexperienced software engineers using the prototype.

To add a realistic challenge to this evaluation, the software engineers were given no prior

training or exposure to the prototype and were requested to retrieve and understand one

of the most complex abstractions known to the advisor.

6.3.1 Method

Four software engineers with moderate or little systems analytic experience used the

prototype to investigate the production planning domain (see Appendix F) then

understand and select retrieved domain abstractions. Subjects were doctoral students and

junior lecturers in the Department of Business Computing at City University with

experience of structured analytic techniques (e.g De Marco 1978) equivalent to that

possessed by subjects who used to the paper based mockups described in section 6.2.1.

Each subject was given a one-page description of the production planning domain shown

in Appendix F and an overview of the fact acquisition sequence. Coloured pens and A3

paper simulated the advisor's undeveloped diagramming facility, allowing subjects to

sketch the target domain and analogical examples. They had one hour to analyse and

describe the production planning domain followed by five minutes to understand and

select retrieved domain abstractions. Upon completion of this task the experimenter

retrospectively elicited further details of subjects' behaviour using a written questionnaire

and verbal questioning. Finally, the prototype's effectiveness was measured by the

goodness of fit of retrieved domain abstractions, two of which represented the production

planning domain, see Appendix J. The prototype was deemed successful if it retrieved

either of these two domain abstractions.

6.3.2 Results

All four subjects (S5-S8) entered domain facts but only three of these descriptions

matched a correct domain abstraction while S7's description failed to match any

abstraction. Successful subjects understood the retrieved abstractions and matched them

to the production planning domain. Performance represented a noticeable improvement

over that from the free form entry dialogues reported in section 6.1.
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Reasons for Subjects' Success

Subjects who used diagrams to represent and understand their domains also developed

more accurate and complete descriptions of that domain, although several discrepancies

between subjects' diagrams and domain definitions did occur. In addition, S5

retrospectively admitted that diagramming techniques led to considerable improvements

in the prototype's usability while S8 claimed to have sketched the production planning

domain directly from an example retrieved by the prototype. The need for further

diagramming facilities was also emphasised by S8, who made extensive notes and

sketches of the domain prior to fact input into the problem identifier. Indeed, S8 reused

her existing sketch of a retrieved example to model the target domain, suggesting the

importance of visualisation through diagrams.

The prototype promotes mental abstraction by partial exposure to pictorially represented

concrete examples, so the effectiveness of these key strategies was examined more

closely. Successful subjects claimed to understand the relevance of retrieved examples to

production planning while the unsuccessful subject failed to understand the example or

map it to the production planning domain. Indeed, S5 claimed that the example was well-

explained. However, a note of caution should be sounded, since S8 retrospectively

claimed to rely too much on the example and extended similarities with the example

beyond the validity of the 'analogical' match (Halsasz & Moran 1982, De Boulay 1989).

Finally, successful domain description also depended on effective use of visualisation and

immediate feedback. The retrospective questionnaire revealed that these strategies

resulted in more effective acquisition of key state transitions and object structures

compared with other knowledge types.

Problems Encountered by Subjects

Despite the qualified success of the study, all subjects encountered difficulties while

using the prototype. The failed subject (S7) succeeded initially in describing key state

transitions and object structures which, if matched at that moment, would have retrieved

the correct abstraction. However, he subsequently extended this description to include

incorrect and unnecessary facts. Retrospective questioning revealed that the subject found

the description too simple in comparison with structured analysis notations such as data

flow diagrams (De Marco 1978), so he overspecified his domain description and added a

second state transition and further object structures to describe entity-relationships

between domain objects. The result was to obscure key domain facts so that the analogy

engine was unable to retrieve any abstraction. Interference from structured analytic
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techniques presented an unforeseen problem for the prototype. Indeed, both S7 and S8

expressed doubts about the simplicity of the domain description in comparison with

complex models developed using structured analytic techniques. Further explanatory

dialogues will be necessary to justify the scale of domain descriptions acquired by the

prototype. Another problem encountered in this study was mental laziness: S7 admitted

to being lazy and copied the retrieved examples during the latter stages of domain

description, despite the strategies implemented in the prototype. These findings suggest

that mental laziness will be difficult to discourage.

6.3.3 Summary of the Evaluation

Evaluation of the prototype proved successful in that most software engineers were able

to understand and select the correct domain abstraction for a new application.

Presentation of concrete examples, visualisation of domains through sketching, guided

fact acquisition and partial exposure all proved effective for three of the four subjects.

Although the scale of this study is small, results do indicate that retrieval of domain

abstractions and concrete examples was effective. In addition, the tool assists software

engineers to model the key facts about a new domain which can then elaborated during

subsequent phases of requirements engineering.

6.4 Success of the Prototype

Overall, the prototype problem identifier and analogy engine were a qualified success.

Analogical examples assisted understanding of domain abstractions while spatial

representations aided both understanding of these abstractions and domain structuring

and scoping, although some mental laziness manifest as copying did occur. Indeed, early

presentation of examples was necessary to explain the otherwise difficult concept of state

transitions with respect to object structures to software engineers. The analogical

examples retrieved by the prototype permit problem formulation and understanding prior

to reuse of more comprehensive analogical specifications. Furthermore, mechanised fact

acquisition from a restricted set of domain terms proved effective. Thus, the development

and evaluation of this prototype has implications for requirements engineering as well as

analogical specification reuse.

Evaluation of the prototype did reveal several problems which remain to be solved. First,

copying of analogical examples remains problematic, despite incorporating several

strategies into the prototype to inhibit it. Further research of the tradeoff between
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knowledge provision and mental laziness during problem exploration is needed. Second,

the prototype's fact acquisition strategies must be integrated with existing structured

analytic techniques, both to provide a framework for mechanised requirements

engineering and to avoid interference with structured notations during acquisition of key

domain facts. These implications are discussed more fully in chapter 7.

The implemented analogy engine retrieved the correct domain abstractions from key

facts acquired from software engineers, although these descriptions were only partially

complete and consistent. This success underlined the robustness of the analogy engine.

However, a note of caution should be sounded since the search space of domain

abstractions was constrained for the purposes of the prototype. Problems may be

encountered when analogical matching is scaled up to searching many domain

abstractions. This additional functionality for Ira is discussed further in chapter 7.

_
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Chapter 7

7: Conclusions and Future Work

This research proposed analogical specification reuse as a paradigm for improving the

productivity of the requirements engineering process and quality of its artifacts.

Automated analogical specification reuse is beyond the knowledge and reasoning

capabilities of software engineering environments, so a cooperative paradigm exploiting

the knowledge of support tools and skills of the software engineer is proposed. The

validity of this paradigm was demonstrated by empirical studies of analogical

specification reuse, the logical model of software engineering analogies and its

computational implementation. Reuse of readily-available specifications represents an

advance over existing keyword and object-oriented reuse paradigms by exploiting the

rich seam of domain and method knowledge held in specifications. Indeed, it goes

beyond the use of small-scale components by retrieving large artifacts for wholesale

customisation, thus providing greater improvements in productivity and quality. This

chapter summarises the work reported in the thesis and emphasises the benefits of a mul-

ti-disciplinary paradigm for effective specification reuse. Possible extensions to the

model of domain abstraction in requirements engineering are followed by a discussion of

the current limitations of the analogical specification reuse paradigm. The thesis is

concluded by a review of future research directions.

7.1 A Multi-disciplinary Paradigm

A multi-disciplinary paradigm for analogical specification reuse is necessary otherwise

effective reuse cannot be achieved. This thesis proposes a cognitive engineering approach

(Woods & Roth 1988) to exploit the different skills and knowledge possessed by

software engineers and support tools (e.g. Kolodner 1991). This is possible by dividing

the work between the software engineer and tool then designing the advisor in light of

this division. The deliverables of the research reflect its multi-disciplinary nature:

• a logical model of software engineering analogies which justifies the existence of such

analogies. This model supports retrieval and explanation of analogical specifications;

• a set of domain abstractions representing key determinants of software engineering

analogies derived from example-based analyses of these analogies;

• cognitive task and reasoning models of analogical reuse and mental models of
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analogical comprehension exhibited by both inexperienced and expert software

engineers. These models provide an empirical basis for the design of tool support

during analogical recognition, comprehension and transfer;

• cooperative, tool-based strategies for the retrieval, understanding and customisation of

analogical specifications derived from empirical studies of analogical reuse reported in

this thesis and studies of cooperative problem solving reported elsewhere;

• the design of an intelligent advisor informed by the logical model of software

engineering analogies, cognitive task and reasoning models of analogical reuse, mental

models of analogical understanding and existing guidelines for the design of intelligent

tutoring systems;

• a partially-implemented prototype of the intelligent reuse advisor;

• a successful evaluation of this prototype to demonstrate the effectiveness of the

proposed cooperative paradigm for specification retrieval and fact acquisition during

requirements engineering.

Problems with existing software and knowledge reuse paradigms introduced in chapter 2

are reviewed, then the role of cooperative analogical reasoning in overcoming these

problems is discussed.

7.1.1 Why a Cooperative, Analogical Reasoning Paradigm

Existing software reuse paradigms fail to support effective specification reuse for two

reasons. First, current paradigms assume complete and correct domain knowledge for

component matching and retrieval, however acquiring and modelling this knowledge is,

to say the least, difficult. Second, they propose automation of software reuse based on

complex reasoning mechanisms and complete domain knowledge which overlook the fact

that humans often possess more domain knowledge and are better reasoners than existing

automated reasoners. On the other hand, analogy lends itself to a cooperative paradigm

which emphasises the importance of human reasoning during analogical recognition,

comprehension and transfer. This is confirmed by the current trend towards cooperative

case-based reasoners for problem solving (e.g. Ashley 1991, Branting 1991) rather than

fully automated computational implementations of analogical reasoning (e.g Hall 1989).

7.1.2 The Benefits of Cooperation

This research claims several benefits from a cooperative, analogical reasoning paradigm

for specification reuse. First, complex analogical retrieval of components represents an

advance over existing, inadequate keyword classification techniques. Second, the
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knowledge acquisition bottleneck is overcome by modelling domain abstractions (e.g.

Greiner 1988a, 1988b) rather than numerous concrete instances. Third, analogical

understanding emphasises mapping between source and target domains. This mapping

process is sadly neglected in current software reuse paradigms. On the other hand, human

analogical understanding and transfer have received more research attention, so

analogical problem solving provides a richer theoretical and empirical basis for informing

design of software reuse tools. Fourth, analogical transfer occurs between domains

sharing notable differences. In this respect analogy is closer to inter-application reuse and

more likely to provide important clues about the problems which effective specification

reuse must overcome. Emphasising similarities and differences between domains as anal-

ogical mappings may also be more likely to highlight the necessity of specification cus-

tomisation during reuse.

7.1.3 Cooperation During Requirements Engineering

Cooperation is also needed during other software engineering activities, however it must

be founded on an understanding of the roles most effectively carried out by machines and

software engineers, to assist software engineers in tasks which they find difficult and

encourage them to undertake tasks which they do well. Unfortunately few studies of soft-

ware engineering practice have been reported in the literature, so more empirical

investigations of software engineering practice are needed. This research provides a

starting point for such a cooperative approach to requirements engineering.

Findings from all four empirical studies have implications for the design of requirements

engineering environments. Methods often pay little attention to the early phases of

analysis and have been criticised for poor support of requirements engineering (Flynn et

al. 1986). First, domain knowledge must be incorporated into such tools to assist

structuring, scoping and determination of key domain facts. As already suggested,

populating such tools with a set of domain abstractions can provide the mental schemata

which inexperienced software engineers do not possess. Hypothesis testing through

domain scenarios was another important success factor in the first empirical study, hence

tools may benefit by embedding more explicit testing steps within development stages

(e.g. Fickas & Nagarajan 1988). Whereas many current software development tools

support such testing at the syntactic level of diagram correctness and specification

consistency, testing the semantics of specifications is likely to be more important. Here

integration of domain and method knowledge in software development tools may be the

way forward since introducing such domain knowledge into structured methods appears

difficult.

223 '



Flexible and easy-to-use electronic notepads (e.g. Haddley & Sommerville 1990) can

replace paper-based notetaking. Hypermedia (e.g. Conldin 1987) is one technique which

can be used to structure and present domain and method knowledge to the software

engineer. Problem structuring can also be enhanced by tool-based techniques which

record the software engineer's goals and design rationale (e.g. Mostow 1989), thus

extending their working memory as well as eliciting additional knowledge for a wider

diagnostic module (e.g. Anderson 1988).

Another implication is to acknowledge the flexibility in human approaches to problem

solving and not to rigidly prescribe development procedures and steps. This may be

viewed as an argument for methods based on a pick and mix of techniques (the tool-box

approach) without strict operational guidance rather than the cook-book approach found

in leading methods such as SA/SD (De Marco 1978) and JSD (Jackson 1983). However,

tool support may be necessary to assist inexperienced software engineers to select the

most appropriate technique. Furthermore, CASE tools must recognise these variations to

provide effective support. An intelligent advisor can assist error detection and correction

and provide effective strategies during software engineering activities. Another advantage

is that the combination of learning and problem solving activities in software

development tools permits training of software engineers without removing them from

their work place. However, to be effective, design of intelligent advisors should be

informed by cognitive task and reasoning models of software engineering behaviour.

To sum, this research has provided an empirical basis for cooperation during analogical

specification reuse and evidence of software engineering practice during other activities.

However, more empirical research of software engineering practice is needed to inform

design of truly effective requirements engineering environments.

7.2 Limitations of a Cooperative Paradigm for
Analogical Specification Reuse

The paradigm for analogical specification reuse defined in this thesis is limited.

Evaluation of the prototype advisor in chapter 6 demonstrated the effectiveness of

cooperation during fact acquisition and specification retrieval while empirical studies

reported in chapter 4 indicate that understanding and transferring analogical

specifications is both possible and effective. However, these studies do not validate the

complete paradigm or examine its full potential, so limitations are examined in more

detail.
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7.2.1 Scope

The current paradigm only supports reuse between complex but relatively small software

engineering domains. To be truly effective, the paradigm must be scaled up in terms of

the number and types of matched facts to support reuse between large and complex

domains. It has no tool-based facilities to capture and structure more complex

requirements or domain descriptions. It will also require more rule-based reasoning by

the analogy engine to structure the description and guide exhaustive analogical matching,

an approach adopted in existing case-based reasoning tools (e.g. Branting 1991).

During other phases, the specification advisor has no strategies to assist software

engineers to select the best fitting specification from retrieved candidates ranked by the

advisor. One solution may be to investigate the selection strategies of expert software

engineers when choosing the best analogical match from several similar candidates.

Common errors made by inexperienced software engineers during the same task can

inform the design of support tools for specification selection. This empirical approach to

tool design is in keeping with existing strategies which assist specification understanding

and transfer. The effectiveness of strategies assisting comprehension and transfer of

analogical specifications also remains to be evaluated, especially during reuse of large

specifications.

7.2.2 Validity

The validity of the paradigm remains to be shown. The logical model of domain

abstraction has withstood the relatively weak test of proof by evaluation with limited

examples, however further evaluation is needed to investigate the key issues of the

coverage and granularity of domain abstractions for effective reuse. Two possible

strategies for validating domain abstractions are to evaluate them against real-world

domains found in large organisations or to compare them to mental schemata possessed

by expert software engineers. The effectiveness of the empirically derived strategies for

specification understanding and transfer defined in chapters 4 and 5 also remains to be

confirmed, despite their importance in the proposed paradigm. In addition, further user

studies with the prototype advisor are needed to investigate the effectiveness of the fact

acquisition strategies, the analogy engine and explanation of domain abstractions during

domain description, especially when analysing more complex problems.
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7.2.3 Completeness

The completeness of the analogical specification reuse paradigm is dependent on the

coverage of its domain abstractions. The current set of domain abstractions is limited to

examples from case studies, textbooks, real-world domains and conference case studies.

It tends to represent business information rather than real-time applications. Four

strategies for evaluating the completeness of the defined set of domain abstractions are

available. First, further example-based studies of complex software engineering analogies

will extend the coverage of key domain abstractions. Second, these example-based

abstractions will be validated by domain modelling in large organisations using

interviewing, system examination and reviews of application and organisation

documentation (e.g. Prieto-Diaz 1990, Iscoe 1991). Derived domain models can be

abstracted using the meta-schema of knowledge types defined in chapter 3 to determine

the correctness of the current set of domain abstractions.

Third, domain abstractions can also be evaluated against memory schemata representing

domain abstractions possessed by expert software engineers with exposure to diverse

software engineering domains. Software engineers with expertise of single applications

such as banking may possess domain-specific abstractions for validating generic domain

worlds while consultants with a wide range of experience with different applications are

more likely to possess mental schemata equivalent to higher-level domain abstractions. A

host of knowledge acquisition techniques (e.g. Littman 1986, Cooke & McDonald 1987,

Garg-Janardan & Salvendy 1987) exist to elicit experts' mental schemata. An interesting

comparison would be to determine whether the schemata possessed by experts differ

from those abstractions derived from organisation-wide domain analyses. Finally,

observing schema acquisition by software engineers during analogical abstraction can

also indicate the nature of these mental schemata, although eliciting this process is, to say

the least, problematic. Even the most complete concurrent protocols during studies 3 and

4 failed to capture the schema acquisition process, indicating that such learning is

unconscious and can, at best, only be partially captured during retrospective questioning.

The remainder of the thesis examines the advantages of domain abstractions in software

engineering, then further research of analogical specification reuse is discussed in light of

current limitations.

7.3 Domain Abstraction

Domain abstraction is central to the proposed logical model of software engineering
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analogies. Analogy emphasises reuse of coherent knowledge structures linking domain

objects, so it is a more effective paradigm for reuse of large, complex domains which

minimise the importance of component functionality. On the other hand, it appears to be

less-effective for reuse of computationally-intensive systems such as accounting or

statistics. Previous domain analyses of complex real-time applications such as air traffic

control and traffic light control systems have led to the derivation of many low-level

concepts (e.g. vehicle) supporting functional-level reuse rather than higher-level

analogical mapping (Johnson 1991, Johnson & Harris 1991). Thus, analogy may be less

effective for reuse of real-time systems, although further example-based and empirical

research is required to support this conclusion.

Analogy may be the best research direction for defining the most effective coverage and

granularity of domain abstractions. Coverage is linked to the need to validate the model

of software engineering domains in many realistic scenarios. Extensive coverage

establishes confidence in the model, although it should be emphasised that complete

coverage of domains cannot be asserted theoretically. Granularity concerns the scale and

size of domain abstractions for effective specification reuse. Domain abstractions can be

aggregated or specialised to determine this most effective level of granularity. Analogy

provides a novel and alternative approach to determining the coverage and granularity of

software engineering abstractions.

Domain abstractions can assist software engineering practice in many ways, for instance

a strong theoretical model of domain abstraction in software engineering can support

business and domain modelling (e.g. Prieto-Diaz 1990, Greenspan et al. 1991) by

providing a framework for defining domains. Analogically-matched domain abstractions

can assist validation of requirements specifications (e.g. Reubenstein & Waters 1991) and

other software engineering tasks including reverse engineering and view integration.

Assistance for these two tasks is examined more closely.

7.3.1 Reverse System Engineering

Current reverse-engineering strategies have been limited by the availability of domain

and design knowledge (e.g. Byrne 1991), however one potential solution may be to

interpret system code and low-level designs using domain abstractions. Although domain

abstractions are too broad to assist low-level reverse-engineering to designs, they can

assist the derivation of system specifications from these designs by structuring low-level

designs within functional requirements. Furthermore, incorporating design abstractions

into models of domain abstraction can assist this reverse-engineering activity by linking
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implementation.

7.3.2 Viewpoint Integration

Domain abstractions can be specialised to incorporate different views of instantiated

concrete domains. Differing viewpoints and the need for contextual interpretation of

complex requirements have been identified as critical to supporting software engineers

(e.g. Leite 1989, Easterbrook 1991). Identifying and modelling these viewpoints can

allow intelligent environments to facilitate and assist viewpoint recognition through

context identification and reconciliation. For instance, the domain abstraction underlying

the theatre reservation example may be viewed differently by end-users and software

developers, as shown in Figure 7.1. The theatre manager is primarily interested in overall

patterns of auditorium use, the sales assistant at the ticket kiosk requires a two-

dimensional theatre model for identifying available seats and the application programmer

reasons about specific allocation algorithms. It is hypothesised that a common set of

domain viewpoints can be identified for each domain class, and that these viewpoints can

greatly assist the identification and reconciliation of individual differences in domain
understanding.

• Figure 7.1 - simple example demonstrating the
integration of viewpoints through single domain abstractions
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7.3.3 Domain Abstractions: A Summary

To sum, domain abstractions are an effective means of capturing, storing and reusing

domain knowledge during requirements engineering. Domain abstractions can also

permit the classification of software engineering domains to support other activities

including reverse engineering, viewpoint reconciliation and domain modelling. Domain

abstractions best assist these activities if supported by effective reasoning mechanisms

such as analogical matching. Combining this paradigm with more complex hybrid

reasoning mechanisms such as the Requirement's Apprentice's layered reasoning

facilities (Reubenstein & Waters 1991) is another direction for future research. The use of

knowledge acquisition techniques for eliciting and modelling generic domain knowledge,

similar to the approach adopted by the KADS project (Wielinga et al. 1991), also

warrants investigation. Finally, this research has modelled domain knowledge rather than

problems which trigger requirements, however problems causing requirements are

complex and vary. They include social or organisational issues, indicating the need for

more complex domain and organisational models to be effective (e.g. Goguen et al.

1991). Models should represent the causality underlying requirements (e.g. Yu 1991).

Thus, a third area for future research is to integrate domain abstractions with

organisational models representing personal conflicts, power balances, communication

channels and stakeholders.

7.4 Future Work

Although this research has provided some useful results the scope, validity and

completeness of the paradigm remain to be evaluated in future work.

7.4.1 Further Implementation of the Advisor

Further implementation of the intelligent reuse advisor is envisaged. In the first stage, the

specification advisor will be implemented as specified in chapter 5 to evaluate the

analogical comprehension and transfer strategies derived empirically in chapter 4.

However, effective and large-scale analogical reuse is likely to require additional

functionality to assist selection between candidate analogical specifications prior to

customisation. The second stage of this evaluation will be in two parts. First, the

specification advisor can be tested in isolation to determine its effectiveness on analytic

performance, measured by the improved completeness and validity of specifications and

understanding of key analogical determinants using measures similar to those reported in
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chapter 4. In addition, retrospective questioning will determine the effectiveness of the

strategies for analogical comprehension and transfer. Second, all three components of the

reuse advisor will be evaluated together as a coherent toolkit, thus permitting evaluation

of a complete phase of analogical specification reuse from domain description to

specification customisation.

7.4.2 Aggregation of Domain Abstractions

Solving software engineering problems is complex and often involves domains which,

when instantiated, are larger than individual domain abstractions. Unfortunately, the

proposed single hierarchical structure may not always represent the true complexity and

scale of many software engineering domains, so multi-dimensional storage and access to

domain abstractions may be needed. Riesbeck & Schank (1989) hypothesised that people

also need more complex knowledge structures when reasoning about complex situations,

for instance 'Going on a Vacation' and 'Going on a Business Trip' are specialisations of

'Going on a Trip' events (p. 34). Both events involve the 'Getting a Ticket' scene,

however 'Getting a Ticket' may be scenes in many other events such as 'Going to the

Cinema'. This example suggests that class hierarchies may not represent all software

engineering domains. In particular, domain aggregations can comprise several domain

abstractions, and each domain abstraction can occur in several aggregations. The stock-

lending domain aggregation underlying the video hiring store shown in Figure 7.2 can be

defined by at least two domain abstractions. The book lending activities in the library

instantiate the non-renewable resource management abstraction while key facts about the

inventory control activities are represented in the renewable resource management

abstraction. These two domain abstractions can be aggregated by common occurrence

since they also can be instantiated in other analogical domains such video lending, tool

hire and car rental domains. Other aggregations are shown in Appendix I. As such, multi-

dimensional storage and access to domain abstractions can supplement the hierarchical

model of domain abstraction for large-scale specification reuse.
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7.4.3 Design Abstractions & Non-Functional Requirements

The proposed model of domain abstraction can also be extended to represent design

abstractions in the design space as well as domain abstractions in the domain space. The

current model of software engineering analogies does not match design components

although design matching can extend analogical reuse towards the design space (see

Figure 7.3). This endeavour is tractable because mapping at the design level of

abstraction has been proposed in transformational programming (e.g. Barstow 1985,

Feather 1987, Doerry et al. 1990, Fickas & Helm 1990, Fickas & Helm 1991, Chung et

al. 1990) and reuse (e.g. Harandi & Lubars 1987), so the model will add an intermediate

level of abstraction linking designs to requirements. Designs represent algorithms which

differ from transformational programming involving the automatic change of formal

program structures. For example, several algorithms exist for sorting and matching

resources to requirements in object allocation domains. The problem of determining a

complete and valid set of design abstractions is analogous to that for domain abstractions.

Therefore similar research paradigms are envisaged to populate the design space with

generic designs.
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Non-functional requirements associated with software designs and algorithms such as

adaptability, maintainability and complexity may be able to assist selection of reusable

components using taxonomies of requirements based on existing definitions and metrics.

Unfortunately current research of non-functional requirements is immature, and a better

understanding of non-functional requirements is needed before this extension to the

framework can be achieved. As a result, component retrieval and selection by functional

rather than non-functional requirements is more likely to provide benefits in the near

future.

7.4.4 Intelligent Requirements Engineering

The logical model of domain abstraction and the advisor's fact acquisition strategies have

important implications for intelligent requirements engineering. First, they provide a

theory of domain knowledge to inform design of support tools. Fact acquisition dialogues

incorporated into the advisor can assist the structuring, scoping and classification of new

domains. Analogical examples of candidate domains can also be used to confirm and

guide analytic behaviour in terms of more well understood concepts (e.g. Fischer et al.

1991b). The role of concrete examples in component retrieval and problem formulation is

not new, for instance both the Programmer's and Requirement's Apprentices (Rich &

Waters 1988, Reuben stein & Waters 1991) provided concrete cliches as both reusable

solutions and bases for common communication between tool and machine. Second,
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terms and semantics defining domain abstractions have implications for knowledge

representation languages. The Requirements Apprentice (Reubenstein & Waters 1991)

recalled and reasoned with domain knowledge in the form of cliches to identify

inconsistencies, omissions and ambiguities in requirements specifications. However,

these cliches appeared to be developed in an ad hoc fashion without any underlying

theory of domain knowledge. Similarly, languages developed for requirements modelling

(e.g. Greenspan 1984, Borgida et al 1985, Greenspan et al. 1986, Lubars 1988,

Mylopoulos et al. 1990) have no underlying theory of domain knowledge, although

effective requirements capture needs such a theory. The framework of software

engineering analogies constrains knowledge representations to those key fact types

describing the essence of software engineering domains, around which more elaborate

and richer knowledge representations can be developed. Thus, the framework has

implications for representing domain knowledge in requirements engineering.

7.5 Questions Still to be Answered

This research claims to have proposed and answered important questions about

analogical specification reuse during requirements engineering. However, it has also

provoked some wide-ranging questions which are beyond its scope. Object-oriented

analysis has been proposed as an effective means of requirements modelling (e.g. Shlaer

& Mellor 1988, Coad & Yourdon 1990), although derivation of objects during

requirements engineering appears anecdotal and limited to identification of things in a

domain. Domain abstractions may provide a theoretical and logical basis for the

identification of objects and their relationships during requirements engineering.

This research has modelled domain knowledge in requirements engineering rather than

the requirements engineering process (Curtis et al. 1990, Carr & Koestler 1990), however

integrating domain and process knowledge during requirements engineering is likely to

provide the most effective support during requirements engineering (Nature 1992).

Furthermore, a better understanding of the requirements engineering process at the macro

and micro levels, supported by cognitive models of individual software engineering tasks,

is necessary to support requirements engineering. To this end, Pennington & Grabowski

(1990) categorised software engineering processes into types. Process models can be

developed at two levels. A theory of process engineering based on models of software

development activities at macro and micro levels of detail can demonstrate the contextual

links between activity organisation, the nature of individual activities and their triggering

conditions. At the detailed level, process modelling will investigate specific activities

(e.g. requirements validation, view integration) and the role of domain knowledge in
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requirements definition. These detailed processes may be domain-specific, thus identify-

ing a link between candidate domain abstractions and requirements engineering process

models for larger-scale procedural support. Thus, providing the most effective tool

support for requirements engineering needs knowledge of both the process and the

domain. The domain theory outlined in this thesis will be developed into a wider theory

of requirements engineering to inform design of truly effective support tools.
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Glossary

The following glossary defines key terms and concepts presented in this thesis.

Analogy Engine

One of Ira's three main components. The analogy engine is a computational

implementation of the logical model of software engineering analogies. This

implementation is a hybrid, combining both analogical and heuristic reasoning

algorithms for the retrieval and explanation of specifications.

Analogical Match

Degree of similarity and abstract relationship between a pair of domain descriptions,

either between two concrete domains or between a concrete and abstract domain

description.

Analogical Recognition

Identification of one or several key similarities between a target domain description

and descriptions of either a source domain or domain abstraction.

Analogical Comprehension

A mental state possessed by the software engineer represented as analogical

mappings between a source and target domain and a structural isomorphism between

mapped objects in both domains.

Analogical Specification

A reusable specification which can be matched analogically to the target domain.

Specifications are represented using structured notations such as entity-relationship

diagrams, data flow diagrams or structure charts.

Analogical Transfer

Customisation of an analogical specification by a software engineer to fit the target

domain. This transfer is achieved using analogical mappings between the domains

which represent the software engineer's analogical comprehension.

Assertion (Mental Behaviour Category)

Verbalisation of a belief or statement of facts about the target or source domains

directly attributable to a problem narrative or reusable specification.
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CASE (Computer-Aided Software Engineering) Tool

Tool-based software development environment containing a repository of

specifications which can be reused analogically.

Cognitive Distance

The degree of semantic and syntactic dissimilarity between the software engineer's

understanding of two analogical domains.

Cognitive Models of Analogical Reuse

Overall representation of the mental processes and models which occur during

analogical specification reuse. Mental processes are defined using cognitive task and

reasoning models while mental models of analogical understanding specify the extent

and structure of analogical mappings between objects in the target, source and

abstract domains. The cognitive model of analogical reuse consists of the cognitive

task model, cognitive reasoning model and mental model of analogical understanding.

Cognitive Reasoning Model

Representation of the mental processes and hypotheses of analogical reasoning during

specification reuse. This model represents software engineering behaviour at a finer

level of detail than the cognitive task model. Reasoning is represented as transitions

between hypothesis states, such as develop, test and discard. The cognitive reasoning

model is similar to GOMS (Card et al. 1983) in its identification of goals and

operators.

Cognitive Task Model

Representation of a sequence of steps and components in mental tasks during

analogical specification reuse, examples of which include strategies such as

information gathering and specification reuse. Reasoning about topics within each of

these tasks is represented using the cognitive reasoning model.

Construct Speccation (Analytic Strategy)

Develop a structured diagram representing a specification without reusing an

analogical specification.

Cooperative Specification Reuse

Paradigm for specification reuse in which the division of work is shared between the

software engineer and the tool. This thesis proposes that analogical retrieval is
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requires extensive intervention by the advisor. On the other hand analogical

comprehension and transfer are tasks undertaken primarily by the software engineer,

with support from the intelligent advisor.

Coverage Problem

The need to validate the defined domain abstractions by their coverage of software

engineering domains in realistic scenarios. Extensive coverage is needed to establish

confidence in the model, although it should be emphasised that complete coverage of

domains cannot be asserted.

Design Space

Space of all known design abstractions which may be matched.

Diagram-based Testing (Mental Category)

A mental behaviour exhibited by software engineers during empirical studies when

generating multiple tests to evaluate an existing structured diagram. The thematic

sequence of these tests is guided by the structure of the diagram.

Domain Abstractions

A logically-defined generic representation of a software engineering domain,

composed of abstract facts defined in the meta-schema of knowledge types. Domain

abstractions are key to analogical matching between source and target domains. They

are derived by example-based analysis of software engineering analogies to identify

key domain facts belonging to all instances of each analogy. Individual domain

abstractions belong to the logical model of domain abstraction.

Domain Description

A description of the components of a concrete target or source domain using a

restricted set of terms.

Domain Requirements

A type of knowledge defined in the meta-schema representing a broad category of

system requirements including functional needs, desired domain states and constraints

on the functionality and implementation of the information system. Requirements in

the meta-schema are expressed using natural language statements.

Domain Space

Space of all known domain abstractions which may be matched. It is the same as the
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logical model of domain abstraction.

Domain Terms

A set of terms for defining and distinguishing domain abstractions and their instances

within the meta-schema of knowledge types. These terms also define all domain

instances belonging to the defined set of domain abstractions.

Evaluate Against the Analogy (Analytic Strategy)

Test an existing specification by comparing it with a reusable specification.

Evaluate Against the Target (Analytic Strategy)

Test an existing specification against the original needs statement for that

specification.

Framework of Software Engineering Analogies

A theoretically-derived definition of an analogical match between software

engineering domains. Central to this framework are a meta-schema of knowledge

types representing critical analogical determinants for retrieval of specifications and a

logical model of domain abstractions representing critical features of known classes

of domain. In addition, structure matching algorithms determine the existence of a

structural match between software engineering domains, and heuristics identifying

key differences between domain abstractions to aid selection of the best-fitting

domain abstraction for a concrete domain.

Functional Requirement

A desired characteristic of some component independent of its implementation.

Functional requirements are of three types. Problem-driven requirements are caused

by failure of the old system which must be corrected in the new system. Goal-driven

requirements determine new system features to be added in the new implementation.

Finally constraints describe events, functions or states which must never occur in the

new implementation.

Gather information (Analytic Strategy)

Assimilate source or target domain knowledge by reading either the target document

or the reusable specification.

Generic Domain World

A specialisation of a domain abstraction, representing common physical attributes of
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a significant, predetermined set of domain instantiations. All instances of a generic

domain world are also specialisations of the same, higher-level domain abstraction.

Typically, generic domain worlds represent domains at a level of abstraction

equivalent to application templates (e.g. Fugini et al. 1991).

Granularity Problem

The need to determine the most effective scale and size of domain abstractions for

supporting analogical specification reuse and other requirements engineering

activities. Domain abstractions can be aggregated or specialised to determine the most

effective level of abstraction.

Intelligent Advisor

A support tool which uses partial knowledge of the user and domain to cooperate with

the user during the solution of a complex problem. Intelligent advisors differ from

intelligent tutors by their knowledge of the domain and nature of interaction with the

user.

Ira (Intelligent Reuse Advisor)

An intelligent advisor designed to cooperate with the software engineer during

analogical specification retrieval, comprehension and transfer.

Intelligent Tutoring System (ITS)

Intelligent tutoring systems are one paradigm for computer-assisted instruction.

Intelligent tutors have intelligence in three areas, namely knowledge of the domain of

expertise, ability to deduce a learner's approximation of that knowledge and the

ability to implement pedagogical strategies which reduce the difference between

expert and student performance.

Key Object Mappings

A set of analogical mappings between source and target domain objects which

instantiate the shared domain abstraction.

Logical Model of Domain Abstraction

A theoretically-derived definition of the structure and space of all domain

abstractions. Each individual abstraction is defined and distinguished from other

abstractions using key facts representing using the meta-schema of knowledge types.

Logical Model of Software Engineering Analogies .
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A definition of similarity between software engineering domains, consisting of two

components. The meta-schema of knowledge types represents critical determinants of

analogies and the logical model of domain abstraction represents critical features of

known classes of domain.

Memory Schema

A cognitive representation possessed by a software engineer of key abstractions about

a software engineering domain. Memory schema are induced through exposure and

experience of reasoning about concrete domain instances. They exist in either

working or long term memory. They represent the mental equivalent of the logically

defined domain abstractions.

Mental Model of Analogical Understanding

A mental state possessed by a software engineer which represents the software

engineer's understanding of the analogical match, represented as analogical mappings

between semantic objects in the source and target domains, structural isomorphism

between these mapped objects and the abstraction representing key constructs of both

domains. These mental models are closer to Gentner's (1983) use of the term rather

than that used by Johnson-Laird (1983).

Meta-schema of Knowledge Types

A description of seven knowledge types which represent key domain facts for the

retrieval and explanation of analogical specifications. This meta-schema can be

instantiated to represent both concrete software engineering domains and their

domain abstractions. The seven knowledge types defined in the meta schema are key

state transitions, object structures, domain requirements, preconditions on state

transitions, object types, system functionality and domain events, and functions

achieving state transitions.

Model-based Reasoning (Mental Category)

Model-based reasoning involves the generation and development of reasoning

hypotheses linked by a single thematic strand related to components in the structured

diagram.

Model Recording (Non-Mental Category)

A physical behaviour exhibited by software engineers during empirical studies in

chapter 4 when representing the problem domain or a tentative solution using

structured analytic notations such as entity-relationship, data flow and process
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structure diagrams.

Needs Statement

An informal document describing existing problems and functional and non-

functional requirements of a new system. This document is often incomplete,

inconsistent and ambiguous.

Object Structures (Type of Knowledge in the Meta-Schema)

A type of knowledge defined in the meta-schema.

Object Types (A Type of Knowledge in the Meta-Schema)

A type of knowledge defined in the meta-schema. Objects may be classified by their

role during key state transitions.

Planning (Mental Category)

Meta-level control over the analytic process. Two types of plan are distinguished by

content of method knowledge and SSA heuristics, or general heuristics.

Preconditions on State Transitions (Type of Knowledge in the Meta-Schema)

A type of knowledge defined in the meta-schema representing triggers for key state

transitions. These triggers are necessary for the state transition.

Problem Identifier

One of Ira's three main components. The problem identifier acquires key facts from

the software engineer prior to specification retrieval and explains domain abstractions

to the software engineer for confirmation or rejection of the analogical match.

Reasoning (Mental Category)

Category inferred from verbalisation of the creation, development and testing of

hypotheses. Reasoning utterances were further categorised to identify subjects' topic

focus: (i) reasoning about the target domain, (ii) reasoning about the source domain,

(iii) reasoning about analogical concepts between the source and target domains, and

(iv) reasoning about general concepts which do not describe the target or source

domains, or the analogical links between them.

Requirements Engineering

The first activity in the development of a software system, during which functional

and non-functional requirements are captured, modelled and validated during an
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interactive process between software engineers and end users of the required system.

Reusable Specification

Functional definition of an existing software system held in a CASE tool repository

and available for analogical reuse. Reusable specifications are typically represented

using notations belonging to structured methods such as data flow and entity-

relationship diagrams supported by narrative documents.

Reuse Specification (Analytic Strategy)

Reuse the FMS specification to develop a structured diagram representing the

specification of a solution to the target problem.

Revise Specification (Analytic Strategy)

Redraw a structured diagram from a first-draft, less well-defined structured diagram

or informal sketch.

Simple Retrieval Mechanism

A simple, keyword-based mechanism for the retrieval of domain abstractions early in

a fact acquisition dialogue. Retrieval is based on matched system functionality and

domain events as defined in the meta-schema of knowledge types.

Software Engineering Environment

An integrated toolkit which supports the software engineer during all phases of

software development.

Source Domain

The reusable domain represented by any candidate reusable specification.

Specification Advisor

One of Ira's three major components. The specification advisor acts as an intelligent

assistant during analogical comprehension and transfer of a retrieved specification. It

implements strategies and explanations for effective reuse, supported by diagnoses of

analogical errors and misconceptions exhibited by software engineers.

State Transitions (Type of Knowledge in the Meta-Schema)

A type of knowledge defined in the meta-schema. State transitions occur in respect to

an object structure in the domain.
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Structured Diagrams

Notations for representing software engineering specifications and designs.

Structured diagrams can represent both target domains or analogical specifications.

Examples of such notations include data flow, entity-relationship or entity life history

diagrams.

Summarise Data (Analytic Strategy)

Summarise the contents of the target document or the reusable specification.

System Functionality & Domain Events (Types of Knowledge in the Meta-Schema)

Types of knowledge defined in the meta-schema. System functions and domain

events elaborate the definition of key state transitions by their association with these

state transitions.

Target Domain

The new domain in which requirements engineering is taking place and to which

analogical specifications must be matched.
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