IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Maiden, N. (1992). Analogical specification reuse during requirements analysis.
(Unpublished Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/7892/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Appendix A:

Set of Identified
Domain Abstractions

o LTL

0202380ag

1: Basic Object Containment and Object Allocation Domains

Many abstract domain models are developed from the two basic models of object
containment and object allocation, as demonstrated in the remainder of this
Appendix. Object containment domains have a store of objects which are gradually
depleted as they are removed to a store, as shown below:

Distribute
H resources

Sink

A store of resources

Object Allocation is more complex and involves the allocation of requirements
to a resource if some constraints are met, constraints symbolised by the different
shapes of the requirements.

Allocate
requirements
to resources

Set of

Requirements A resource containing
many requirements

2: Basic Renewable Resource Management

A set of resources are held in a store which controls the level of resource held in the
store. Resources are depleted over time and periodically replaced by new resources
provided by a source when the level of resources reaches a minimum quantity.

Resupply
resources
when level
at minimum Distribute

resourc,

Sink

Source
A set of

resources

Example: This abstraction supports an analogy between domains for controlling the
level of stationary supplies in a university department's cupboard and for transferring
money from deposit to current accounts for all relevant customers of a local bank on a
daily basis. In both resupply occurs when the level of stationary in the cupboard and

a minimum level of money in the current account are reached.

Resupply

items when

they reach a Goods-Out
minimum of department

level

=

[| ”
Stauoll;lary Station users
suppliers ary 3
PP Stationary Cupboard in the departmen

Resupply == o2 Distribut
cash —— gj§ : , . i~

I

é\/[oney held in Money held in
eposit account
P current account Cash withdrawl, by

cheque or cashpoint

3: Structured Renewable Resource Management

A set of resources are held in a store which is structured and divided into segments
acting as mini-stores controlling the level of resource type held in each. Resources
are depleted over time and periodically replaced by new resources provided by a

supplier when the level of resources in a mini-store reaches a minimum quantity.

Resupply

resources
when level O

at minimum Distribute
L res
Suppliers «> Sink
A set of
resources

Example: This abstraction supports an analogy between domains for stock control
in warehouses and maintaining the fleet of cars in a large car rental firm. Both involve

the gradual depletion of a stock (through use, accidents etc.) and the renewing of stock
segements when predetermined limits are reached.

Resupply
stock when
it reaches a
.) minimum
level
& : @)
B P |E
uﬂn <> »
Manufacturing «=> Customer
Suppliers Warehouse containing
many bins
Resupply
vehicles when .

type reaches a vehicles
‘ minimum

(out of
lel “ service)

o)

p—
' e
S=
Vehicle -2 [

Suppliers Car Pool containing .
many different types Reasons for
of vehicle vehicle withdrawl

4: Object Recording

Objects move in and then out of a space. The aim of the information system is to
record that movement to provide information on objects which are in the space. It
represents one of the simplest domain abstractions.

Record objects Record objects
entering the leaving the
spac spac

A sink of
objects

A source of
objects

A space containing
many objects

Example: This abstraction supports an analogy between domain for recording
personnel starting and leaving an organisation, and for recording information
about students beginning and leaving a university course. Both domains have a
static space (organisation/course) which contains many objects (staff/students)
at any time.

"

T U L 1 T 1 1 1 L 1 1 [

Record staff

entering the
organisation

Record staff
leaving the
organisation

Agency with 4= Other agencies
t : or sources of
many stafl An organisation with employment

many staff

Record students
entering the
course

Record students
leaving the
course

Accepted students
prior to taking up
their place

A course with many
students

Graduate &
failed students

5: Non-Renewable Resource Management

Resources held in a store are lent to borrowers and then returned at a given date or
time. The resource store is self-renewing, and not replenished from other sources
within the scope of this abstraction.

Lend resources to
borrowers

Return
A store resources to
of resources store

Numerous
Borrowers,

each with one

Or many resources

Example: This abstraction supports an analogy between car rental and
university library domains. Both domains have a store of resources which are
hired/lent to borrowers who normally return them to the store, so each object
is normally lent and returned many times.

Lend cars to

Car rental clients

Store of cars to
be rented

Lend books to
studen

Store of books to library Student population
be borrowed

6: Periodic Object Recalling

Many objects exist in a space and most are periodically called to a space for
inspection or other purposes. Inspection periods are most often temporal or linked
to usage of the object. In exceptional circumstances inspections may be postponed
and rearranged if the initial inspection cannot be attained. One or many objects
can be inspected at a time.

Recall object
Jor inspection

©
©

Return object Small space
after inspection containing only
a few objects
for inspection

Space containing
many objects

Example: This abstraction supports an analogy between domains for servicing

the heavily-used London buses and for regular dental checkups at a surgery. Buses
are returned to the maintenance depot after a given mileage (determined by the age
of the bus) for a complete service and overhaul. This servicing is managed to ensure
that buses are quickly back on the road and that the depot does not have an over-
whelming number of buses to service at any given time. Similarly patients are
called to a dental surgery every six months for a regular checkup which may be
followed by special care if necessary. If necessary servicing of buses and patients'
mouths can be rescheduled if initially inconvenient.

Call bus
for inspection

'I'I'-'I'IE\
GpSalabenslpy

Return bus

after inspection Depot containing
All London buses 4 P several London buses
Call patient

for check-up

Retum from $4

surgery
after check-up

All patients

Dentist surgery
containing several
patients

7: Single Object Allocation

Single object allocation is more complex and involves the allocation of a
single requirement to resources if some constraints are met, i.e. the
requirement and allocated resources share the same properties.

Allocate
requirements
to resources

A islnglent A-contalner
requirements with many resources

Example: This abstraction supports an analogy between domains for
buying the most appropriate shares for a small shareholder at a share
shop and for selecting the most appropriate ship with which to transport
a cargo to a foreign port. In both cases allocation is constrained by

the availability of appropriate shares or shipping holds.

Allocate
share cash
to shares

Money available Many shares available
to apply specific for sale
type of share
Allocate
Sfreight load

to shs

Freight load
needing to be Many ships available
transported for transporting freight

8: Single Object Allocation, no Waiting List

A single set of requirements are allocated to a larger set of resources if a paired
requirement and resource share the same properties. If allocation of an object
cannot be achieved due to no available reosurces, they are discarded.

Allocate objects
to resources if
available |,

Requiremént

A set of
resources

2 Cancelled
llocations

Il

Example: This abstraction supports an analogy between local cinema seating
and reserving places on an intercity train. Both domains have requirements
(fulfilment of seats) which are met by resources (seats) if they meet constraints,
for example seats are non-smoking in the cinema or on the train, expensive or
cheap seats etc.. In both cases, waiting lists are impractical so unmet cinema or

train requests are not kept but are discarded.

Allocate
Booking : reservation
. to seats if

A I 1 available

Customer
reservations
Cancelled
bookings
Allocate
applications
to places if

available

Train
Reservations

Cancelled
bookings

lIlIIIll.Chwma
By seats
NEEEEEEEN
NEENEENEN
EEENEENEN
AEEEERE

Cinema

llllBlll'Traun
EE BEE DPlaces

9: Single Object Allocation, with Waiting List

A single set of requirements are allocated to a larger set of resources if a paired
requirement and resource share the same properties. If allocation of an object
cannot be achieved due to no available reosurces, requirements can be reserved
on a sequential waiting list. Subsequent cancellations of resource allocations can
be fulfilled from the waiting list. Requirements on the waiting list are prioritised,
and requirements on the list have priority over newly-arrived requirements.

Requirement

Save objects $
if no resources &
avallable

Allocate objects
to resources if
availabl

Waiting List

l—-————=Requirements to

allocations

llocate objects

resources if
available

Example: This abstraction supports an analogy between theatre reservation

and university course a

dminstration domains:

Allocate Theatre
OX ce reservation
to seats if ENEEEEEEE eatre
ﬂ available N Seats
v : ANEEEEEEN
e
Cancelled
EENEREN reservations
Customer
reservations -
Save % Waiting List Allocate reservations
reservations % | if seats come available
if no seats
available Unmet
[reservations
Allocate
applications
to places if Course with
available many places
Rejected offers
& withdrawls
Course
Applicant Walting List | "Allocate applications
save & _ J f places come available
applications 1
places ————t/nmet
available

applications

10: Multiple Object Allocation

A set of many requirements are allocated to a larger set of resources if a paired
requirement and resource share the same properties which act as constraints on the
matching process. The aim of the computerised allocation process is to maximise
allocation of requirements to resources, so resources are fully used and no requirements

are left unfulfilled.

Allocate objects
to resources if

Requirement
i available ,

A set of
requirements

A set of
resources

Example: This abstraction supports an analogy between domains involving staff
allocation to new projects within an organisation and allocating freight stock to
compose goods trains needed on British Railways.

Allocate
projects
x‘-% to staff
=== if available
Required new projects, Project staff
each needed many
staff
Allocate
trains to

rolling stock . A .

if available

i

Required Rolling stock

freight trains available to
compose trains

11: Multiple Object Allocation, No Waiting List

A multiple set of requirements are allocated to a larger set of resources if a paired
requirement and resource share the same properties. If allocation of a requirement

cannot be achieved due to no available reosurces, the requirement is rejected from
the allocation.

Allocate objects
to resources if

Requirement
: avallable

A set of
requirements

A set of

Cancelled resources

Example: This abstraction supports an analogy between video hiring and
production planning domains. Both domains involve the allocation of groups of
requirements to a set of resources which fulfil these requirements. If required

production jobs or hotel needs cannot be met by machines or video copies respectively
they are rejected as unfulfilled.

Allocate
hotels

to coples if
available

Video

Hotels

Videos
Allocate
Jobs
Job tom/cs if Production
Spegiﬂc- availabl Machines

ations ——— m
Production

Jobs Cancelled f_’roguction

production acilities

jobs

12: Multiple Object Allocation, with Waiting List

A multiple set of requirements are allocated to a larger set of resources if a paired
requirement and resource share the same properties. If allocation of an object
cannot be achieved due to no available reosurces, they are placed on a prioritised
waiting list are allocated from the list to resources are come available when
allocated requirements are cancelled.

Requiremenf

requirements™\

Save
requirements %,
if no resources

available

\, Allocate objects

to resources if

availabl]”
Cancelled
A set of allocations
resources
§ Allocate
_gFrequirements
if resources come

Waiting List available

Example: This abstraction supports an analogy between domains for mass booking
of airline tickets (e.g. charter trips) and planning for allocation of hospital beds for
routine operations. Both domains have grouped requirements (fulfilment of batches
of seats) which are met by resources (seats). In both cases, if patient or travel bookings
cannot be met, they are placed on waiting list in case allocations of existing bookings

occur.
Allocate
Travel Bookings -] mass booking
Groups I g;ﬁ . to seats if Aircraft
' avatlable seats
Cancelled
bookings
Airline
Bookings
Waiting List
groups =—'_— Allocate groups
if no seats if seats come
avallable Unmet available
groups
Allocate
- | [In-Patlents }{.] applications
Patients n gren S top places if Hospital
available I@ W Beds
I I I l Cacelled
bookings
Reqd Patient Hospital
operations § Ward
Save Y, Waiting List Allocate
patients " patients
if no beds if beds come
available available
Unbedded

patients

13 Object Allocation, Grouped Resources

A set of requirements are allocated to a larger set of resources if a paired
requirement and resource share the same properties. Resources are grouped

to provide larger resources for meeting more complex requirements. Allocation

is optimised if resources can be exploited in groups otherwise groups must be
broken down into smaller resources before being allocated. Subgrouped resources
can occur for multiple or single object allocation domains with or without waiting
lists for unmet allocations.

Allocate objects
to resources if
availa ;

A set of
resources,
subdivided
into groups

Requirement

requiremen

Example: This abstraction supports an analogy between domains involving staff
allocation to new projects within an organisation and allocating freight stock to
compose goods trains needed on British Railways. In both domains requirements
(project members or rolling stock) may be grouped into subsets (e.g. project teams or
preassembled trains) which can be allocated on mass, thus simplifying and improving
the benefits from the allocation.

Allocate

projects

to staff
if available

U'nﬂ'P
Il |

Required new projects, Project staff,

each requiring many some divided

staff into teams
Allocate

trains to
rolling stock e Yy
if availabl

Required Avallable rolling
freight trains stock , some divided
into part trains

14: Route Scheduling

In route scheduling domains objects move between spaces to meet a set of
predetermined requirements. Routes between these spaces can be optimised to
minimise travel time or length while still ensuring all requirements are still met.
This domain type is similar to object allocation domains with the addition of a
temporal element, in that both domains have constraint satisfaction as a central
issue.

Route scheduling
of objects to
requirements

L

Starting position & Final position
required positions demonstrating
to be met (*) final route

Example: This abstraction supports an analogy between domains involving the
management of a lift serving a small appartment block and route planning of lorries
making deliveries to customers on a daily basis. Both domains have a set of
constraints (e.g. destination floor, waiting time, order due-by-date) which limit
options for scheduling routes for the object (lift or lorry). The aim of both systems

is to optimise route length and time for both the lift and each lorry.

i S S G GES SN SuE a G | } SN G 2 L L 1 L Xl i Ll 1 1 I 1 1 1 1

Route scheduling
of lift to meet
requirements

©)

Starting position & Route for lift to
required positions meet its requirements
of the lift

Route scheduling
of lorry to meet
delivery

L LJ 8
Starting position Route for lorry deliveries
and required positions on the day
for the delivery lorry

15: Manual Collection or Allocation

Objects are collected (or allocated) to sets by moving them from the source group to

the slots. At any time there can be many objects in one or many sub-groups which must
be collected to the current slot, so the concept of checking is included to ensure that
collection is correct. This abstraction differs from that of the Allocation domains in

that collection is beyond the scope of the information system while Allocation is carried
out by the information system.

Groupings
of objects Objects
3 collected
Collect in slots
objects

Example: This abstraction supports an analogy between order fulfillment picking
and poll tax (or community charge) collection domains. Both domains have a large
number of objects (poll tax payments or order items) which must be manually
collected. These collections may be incorrect, so they are validated by the
information system upon collection and before placing them in the slots (bins or
payment).

Item Qty
Collect p—— e
§ : objects el Bancd
_h
Items held in bins within Daily picking
the warehouse list

Collect
objects

Local authority accepting
payment

Poll tax payers within
houses in the local
authority area

16: Commodity Transfer

A source space and sink space each contain varying amounts of an object.
Specified quantities of this object move from the source to the sink space as shown

in the figure below, reducing and increasing the levels of the object in the source
and sink slots.

Transfer some
bjects '
o0 © © | m— e © g :
@ 09 @
Source of Sink of
objects objects

Example: This abstraction supports an analogy between financial transfer domains
such as withdrawl of money from a current account using an ATM, and monthly
transfer of order payment between a raw materials supplier and its customers.
Transfer will not occur in both applications at any time if there is insufficient objects
in the source to satisfy the transaction.

Transfer some
&) money from

QSi| current account
*® to client

l

Money held in

current account Money withdrawn

by client at ATM
Transfer some

money from
V customer to — ? l
== VN supplier === QO
== &0 account, == ¢
Money held in Money held in
customer's supplier's
current account current account

17: Object Distribution

Assembled objects are distributed to individual sources as specified in predetermined
requirements. Objects enter the system on mass and are then distributed to their
destinations. In exceptional circumstances objects can be sent to the incorrect
destination, in which cases they may be returned to the destination.

A space containing

many objects

Distribute
objects to

many spaces

Spaces containing
objects

Example: This abstraction supports an analogy between domains for goods
received distribution and distributing student grants within a university at
the beginning of every term. In both domains the goods/grants arrive in

batch and must be given to many sources, each of which may or may not reach
its destination. As such, in exceptional circumstances, objects may be returned

to the original source.

An incoming load
containing many
goods

An incoming batch
containing many

grant cheques

many stunts

Distribute
goods to
many bins

Bins containing
many goods

Distribute
grants to

Many students,
each with a grant
cheque

18: Input Object Validation

Objects are input to a space from the outside world if they meet specific validity
constraints. In exceptional circumstances, if objects are incorrect or invalid , they
are returned to their original source in the outside world. If valid they are moved to
the space.

Validate
Input
Objects

Objects held
in space

Example: This abstraction supports an analogy between sales order input validation

and verficiation of goods-received from suppliers within a manufacturer's warehouse.

If orders/goods fail to meet requirements they are returned to the suppliers or customers/
salesmen respectively. Orders are checked for validity, customer credit rating etc. while
goods-received are also checked for breakages and defects, so in exceptional circumstances
objects and goods-in do not enter the space.

Customers/salesmen

producing orders Company 'order
book’, containing

many valid orders

Validate
Input
Goods

Received

Goods-received held

Many good received within the warehouse
needing validation

19: Object Monitoring

Many objects move in an area divided into many spaces, and move between spaces,
although each object can only reside in one space at a time. They risk collision if
two objects share the same space at the same time, so warning is necessary if any
space simultaneously contains two or more objects. Correcting space violations

is beyond the scope of the information system.

Objects in «——

Objects in
Spaces

Spaces

Monitor
Objects
Jor
| Collision
World of Spaces World of Spaces

Example: This abstraction supports an analogy between air traffic control and
flexible manufacturing domains. In both domains aircraft and products move
and risk collision, so a system is required to warn of violations of an aircraft's
air space and of a product's track sections respectively.

Monitor
Aircraft
for
Space
Infringement

Alrspaces

Airspaces

Machines within
‘ track sections

. % Machines within

-

Track Sections) Product Track Sections
within Tracks Sfp?lz . within Tracks

Infringement

20: Plan Adherence

Objects move within a space and are guided by a predetermined plan which leads them
through a series of temporal or positional steps. Objects can contradict plans and
deviate from the predetermined steps, which must be corrected by prompting a warning
or message leading to corrective action.

location

Object at
current
location

location(s)

Example: This abstraction supports an analogy between domain for plan adherence
during air traffic control and flexible manufacturing systems. In both domains aircraft
and products move (freely) in spaces despite being constrained by steps laid down in the
flight or production plans. Divergence from the plans is corrected elsewhere, but warning
is initially necessary to wamm of such divergences.

v,
) -~ ™, Location

7
Location{{
beacon A B~
gLocation
/} beacon C
Prouduction

Machine B .

Prouduction
Machine A

Prouduction
Machine C

21: Object Positioning

Objects are positioned in a world divided into discrete spaces. The aim of the information
system is to ensure that all spaces in the world are occupied by at least one object. Vacant
spaces may occur because of object movement between or from spaces, so vacancies must
be monitored for to provide warning for their correction, although correction itself is
beyond the scope of the domain.

Monitor objects
to identify
vacant spaces

A world A world
of spaces of spaces &
containing containing
many objects many objects

Example: This abstraction supports an analogy between coastguard patrol boat
and modification of school timetabling domains. Both domains have objects
(patrol boats or teacher monitors) which should be allocated to spaces
represented as coatal areas or playtime sessions as appropriate. However, such
initial allocations can change, so the domains must be monitored to identify and
report vacant areas and sessions.

Monitor coastal
areas to identify
vacant spaces ,

World of Patrol Zones World of Patrol Zones
containing many boats containing many boats

Day Morning | Lunch Day Morning | Lunch
Monday $mith/HUl Jones | Monitor coastal Monday | Smith | Jones
Tuesday | Peters }| Maiden areas to identify Tuesday | Peters | Maiden-

vacant spaces

Wednesday | Martin

Wednesday|:

Thursday Thursday Sims
Friday : Sandth: Simg/ Bill Friday |[:
Timetable of playground) Timetable of playground

supervision supervision

22: Object History Recording

An object in a space undergoes a series of positive changes or additions to its state
over time or geographic position. All changes to the object state are recorded by the
information system.

Incrementally add

Space with the Space with the
initial object state final object state

Example: This abstraction supports an analogy between domains for recording

the history of development of an aircraft and the career development of each employee
within an organisation. In both domains the object (aircraft/employee) gradually
attain attributes representing their advancement within the organisation, either

in terms of components (e.g. wing, cockpit) or achievements (e.g. grade 4 accoutancy
exams). In the general case object accumulate attributes rather than loose them,
although losses can occur in exceptional cases.

Incrementally add
to the development
of the aircraft

Alircraft in hanger Alircraft in hanger
without portside wing with portside wing

Qualif- Incrementally add
ications to the development
of the aircraft

|

Employee in organisation Employee in organisation
with n qualifications & with n+m qualifications &
grading grading

Appendix B - Experimental Material for the
First Empirical Study, Chapter 4

Plumbline Problem Statement

Foreword

| have prepared this extension to your original report, in order to meet a specific
requirement which has since arisen, concerning Plumbline's requirements. | believe
that it is imperative that you should consider the following, important task as your
priority during this session.

Recent discussions with Mr O'Leary, the warehouse manager have highlighted the
importance of improving our delivery and transportation system. The aim of this
document is to provide you with specific details of the present delivery system, so that
you may consider possible improvements, computer based or otherwise, concerning
delivery operations.

From initial discussions with you and your colleagues | understand that
computerisation of many of Plumbline's systems will take place. In your analysis should
assume that the order entry and warehousing systems will be computerised. As such,
work from the basis that input to the delivery system will include the forthcoming
week's picking schedule, which idenifies all goods requiring delivery during that time.

The Existing Delivery System

Deliveries are made to customers by both Leyland Diesel lorries and Ford Transit Vans.
All of these vehicles are owned by Plumbline Discounts. Input into the existing delivery
system is the pink Scheduling Note, sent directly from the orders clerk, and the goods
from the warehouse, accompanied by the orange Delivery Note and the yellow Delivery
Advice.

Presently vehicles are loaded according to a schedule worked out by Mr O'Leary. Mr
O'Leary is very experienced in this task, having worked in the warehouse since the
company moved to Clerkenwell, but his rule-of-thumb methods have sometimes been
unable to cope with the recent growth in orders, leading to lorries starting out half
empty, and ceratin orders being delivered late. Upon arrival at customer sites drivers
have sometimes found that the required goods are at the back of the lorry, making it very
difficult to retrieve them.

The increased turnover has in turn put a strain on the delivery fleet: at certain times
employees have complained of the need for extra lorries and vans, although Mr O'Leary
has dismissed this solution as cost-ineffective, based on the estimated level of expected
orders. These problems have led to a certain personal friction between Mr O'Leary and
Mr Tallboys, since it is Mr Tallboys whom customers complain to if their orders are
late.

Due to the heavy workload of the Plumbline fleet vehicles sometimes breakdown. Mr
O'Leary has often complained of not knowing of breakdowns until he has already prepared
his daily schedules.

All pink Scheduling Notes are held on a spike by Mr O'Leary until delivery has been
made, at which time they are filed in date of delivery order in ring binders in Mr
O'Leary's office.

if customers refuse delivery of any orders or items then the orange Delivery Note is
amended to show to amount actually delivered. Similarly requested items found to be
missing upon delivery should be recorded, and an urgent order raised when the lorry
returns.

Mr O'Leary has comlained to me recently that he is given inadequate warning of what
orders are in the pipeline, and that if the pink Scheduling Note were received in Goods
Out before the rest of the warehouse set then the delivery scheduling could be started
earlier (ie. before picking begins). The computerisation of the warehousing system
will provide such timely information. Indeed Mr O'Leary has expressed an interest in
computers assisting him during the delivery scheduling task.

Mr O'Leary has also expressed an interest in scheduling deliveries, based on their
required date. Both he and the sales manager, Mr Flynn, feel the existence of such
information will benefit the Plumbline’s systems in a number of ways. It will ensure
that urgent orders are given priority during both picking and delivery. With such a
system Mr O'Leary believes that it will be possible to develop a provisional weekly
schedule, indicating all known deliveries required for the coming week, and a series of
daily schedules, planning the daily deliveries of each vehicle.

Mr O'Leary has proposed the following format for a Daily Delivery Schedule:

DAILY LOADING AND DELIVERY SCHEDULE

Date: 24/10/88 Vehicle: C414 DEF Driver: N. Mansell
Delivery Region: North London
Customer Address Part No| Qty Package Description
Hari Central X25413] 004 | Boxes | Stand. Taps
anngey enira A743 | 020 Indiv. | Shank Toilets
Council Office

D7693 | 001| Indiv. | T3 Water Tank
S774 | 150 | Boxes | Stand. Washers
J. Bloggs, | 2, Muswell Hill |X25413| 001]Box Stand. Taps
Plumbers | Broadway, N10 | E3481 [006]Crates | 12" Piping
w1089 002|Indiv. | Stand. Baths

Objectives of the Overall Study

In order to ease your task and to save time | have repeated the major objectives of the
initial study, outlined in your initial report:

- Reduce the turnaround time for Customers,

- Reduce the costs of order processing, warehousing and delivery,

- Reduce the paperwork and the time wasted in doing it,

- Distribute information around the company more speedily and accurately,

- Allow greater management control by providing more accurate and
up-to-date information for regular and ad hoc queries,

- Provide management information by making available historic data in a
form suitable for future decision making,

- Provide quicker and better scheduling methods.

| look forward to hearing your conclusions,

A. Noakes.

Plumbline Expert Solution

Cust. Dept

Provisional

Provisional Deliveries

provisional
daily orders

Provisional
grders

Provisiona
deliveries

Valid Customers
Orders

Packaging

Packaging data
deliveries by

Lorry info. Sorted
(breakdowns, deliverie Regions for

repairs, etc) '\ deliveries
Sorted Provisional deliveries

Address
Sorted deliveries g —_—

Temporary
delivery-loads

delivery route
& load pattern

allocations

Stock

Picking

Delivery 1.6
Addresses Schedule 'qls oroduce the
Addresses Delive picking and

Delivery
data

loading plans
or warehouse

Picking &
loading
plans

deliv. schedule

per lorry, per
run

Delivery

Note Delivery

Note

Delivery Note

Retw‘m

D?\lrgt):ry @ustomer) @Varehouse)

Delivery schedule,
per load per run

Loading Bay

. List of components checked for completeness
Stlldy 1 Checklist in subjects' solutions. The list represents a combined

solutions developed by 3 expert software engineers

Components to be Included in the Specification

In?

Goals: Improve existing delivery and transportation system

Partly computerise the loading scheduling function

Accept earlier computerised order information into the system

Define the necessary daily delivery route

Input breakdown knowledge into the system

Input refused order information into the system

Input information concerning missing delivery goods

Delivery scheduling should be based on order's required date

To develop a new daily delivery schedule

To develop a weekly delivery schedule

The scheduling sub-system must be flexible (m/m interface)

data store: A weekly schedule file

A daily schedule file

A vehicle file

A driver/mate file

An incoming orders file

A customer file

A delivery address file

A delivery-in-progress file

An archived delivery file

Inputs: Incoming sales orders

Information relating to the availability of vehicles

Information relating to driver/mate availability

Amendments to the returned delivery note

Input to create urgent orders

Override facility to permit human intervention in schedule

Outputs: Selection of most appropriate goods on each day

Efficient loading layout for the lorries

Route determination for most effective delivery route

Human check of delivery schedules

Update the delivery notes for missing/surplus goods

Identify possible problems for future week's deliveries

Processes: Select the appropriate goods for the appropriate day

Determine most efficient loading layout for the lorries

Route determination for most efficient delivery route

System may validate human-created schedules

Update the delivery notes for missing/surplus goods

Identify possible problems for the future week's deliveries

Study 1 Example Protocol

Behaviour

Assert

Create Hypl
Dev Hypl

Test Hypl
Modify Hyp

Create Hyp2
Dev Hyp2

Test Hyp2
Discard Hyp2
Create Hyp3
Test Hyp3

Dev Hyp3
Test Hyp3

Discard Hyp3
Plan

Goal/Requ
Create Hyp4
Dev Hyp4
Test Hyp4

Protocol

Yeabh, the first thing to notice is, that he has got two inputs from
the orders dept, which is the actual pink scheduling note it says
here, but it doesn't matter, he's just got some note from orders,

so he needs some information from orders, and also he needs....
obviously the goods from the warehouse as well, with some
information again of what has been paid, and what's in the
goods, so he's getting some information from the warehouse,
and then, ...

once those inputs are there, he, er, he's working out, then,
schedule for delivery of goods, things that are ready, ..

so after he receives that information he does the schedule, ...

um I assume that he does the schedule daily, so he, ...

he schedules everything for everything that he receives in the
morning, or by sometime in the morning, say 10 O'clock,
anything else that comes after, or at any, any orders, or anything
from the warehouse that comes after 10, ...

he would not schedule until next, er, next morning....

no I think that's impractical. ...

Er, but we must have some kind of clue as to when we have
enough information to make a schedule...

Er, because we don't need to say too much on the schedule until
about 10 O'clock, it would seem that, ...

in order to make it to north London you need to send them, ..

but that may include an empty van going, or half empty van
going, so,

you need to, to make some decision about that, er, ..

I think that's something we will have to discuss with Mr O'Leary
and the rest of the company,..

of what kind of service do thay want to provide to their
customers, or how critical it is that something goes morning or
afternoon, or maybe the next morning instead.

So we need to make a decision about when schedule occurs,..
does it depend on time, or does it depend on the number of orders
and goods we have to deliver ? Er, ..

then, once the schedule is done, the lorries make the deliveries,
er,...

Figure 1a: Example of a protocol transcript showing model based reasoning -
subject K.The duration of this segment is just under 5 minutes

Hypothesis life cycle: Model based reasoning Key
T = Test Hypothesis

ﬁa;t Il = Discard Hypothesis
Hyp1l Dev TMod
———r—>
Hyp2 Dev T
H
yp3 TDev Tl
H
yp4 Dey TI
Diagramming
e — —_
Notes

The thematic link betweeen hypotheses 1-3 is planning delivery of goods, the
need to schedule delivery and the information necessary to create a schedule.
Hypothesis 4 returns to this theme although planning and goal recognition
happen in the interim.

Figure 1b: Model of the sequential behaviour exhibited in Figure 1a by Subject K.

Appendix C: Experimental Material for Second Empirial
Study, Chapter 4:

Target VI library problem and solution,
Source Template Solution for Object Allocation
Problem,

Concrete Source Specification for Roker
Manufacturing Systems

Target: Video I ional Problem § l

As a member of the analysis team charged with the development of Video
International's systems, your role is to analyse and develop the Video-to-Hotel
allocation function. As a priority you should :

1- Develop a JSD-type Entity Process Structure for the Video-to-Hotel
allocation function,

2 - Describe in any form you choose the process to most appropriately allocate
the necessary video copies to each hotel. This process should ensure the
maximum use of existing video copies, as well as meeting all hotel

requirements,

3 - List the constraints that should be applied to the Video-to-Hotel allocation
function.

Secondly you should :

4 - Identify other events which are important to the allocation of videos to
hotels, possibly through the construction of other key, Entity Process
Structures.

Initially VI intends to implement a simple computerised system. In this system
copies of videos are allocated to hotels for a monthly period. Computerised
video allocation should consider the following constraints when deciding
whether a video can be allocated to a hotel:

the video and television systems (eg. VHS) of each hotel must be consistent,
ensure that the number of video copies available is sufficient,

- VI's distribution rights in the hotel's territory are valid,

a particular video title should not be shown twice at a particular hotel.

Outside the scope for this computerised Video-to-Hotel allocation function are:

- 'pre-specified’ barred videos for a particular hotel,
- linguistic and ethnic constraints,
- the film's distributor, and the film's length.

You should mention or introduce other, as yet unanalysed constraints to refine
the function. The decision as to which constraints have priority will be made by
the Distribution Manager: this order is not changed once the system is
implemented. If a hotel's requirement cannot be met, based on existing video
stock, new video copies should be requested from the distributors.

Each differently-shaded
box represents an
. individual hotel
Vlieos

H Hotel Allocation

hiSe

NN
NN

v iioNe Nl Mo

1 2 3 4 5 6 Time\ months

Fig 1 - Video-Hotel
Allocation Example

s91d0d axmnbax

‘093p1A 93ed0[E
8]

0} 3[qeur)

0)

}97S Uy 09pIA
U 31800V

(

(A1dde syurerisuo) ¥ soumssy)

oopiA
O9pIA JUIISU0D JUnSuo0d JLIISU0D JNLISU0d Jleprpued
ay} jo Adoo YD pin=liig) bieslife) pinsliig) pue 1bax 1?9104y
Y31 33edorvy PIU IANIY
uopedo[e uopeoo[e
[myssatonsun Myssa00ns
2 upy o s0d
uerd SI3PIO [3)oy L (815 0] 1\ %4
pajedo[e pajedoqeun Anuapr
0 Ay 0 .
/\ P31E30[[e S03PJA [[e [jun
ueid uopouny uofjedo[e J0§
uopedo[e UOT}RI0[[Y P10 Kyrrord uy
mndino sibax 1930y 109

uopouny
uopedo[e
03DIA-[3]0H

uotjouny uonedojie A Yl Joy qSd

. List of components checked for completeness and errors
Stlldy 2 Checklist in subjects’ solutions. The component list represents a combined
solution developed by 2 expert software engineers

Completeness Checks In?

Components: Sort hotels by their priority
Retrieve the next hotel/video to match
Allocate a video copy to a hotel
Allocate a video in stock to a hotel
Request new videos to be allocated to hotels
Output the allocation plan
Output the completed allocation plan
QOutput the partially allocation plan
Constraint: video systems must be consistent

Constraint: sufficient number of videos available

Constraint: distribution rights are okay
Constraint: same video must not be shown twice
Constraint: order the films shown at the hotel
Constraint: valid match under managment policy decisions
Constraint: film censorship ratings
Structures: An allocation sequence
An iterative allocation matching
A selection between a matched and unmatched allocation

Errors Checks
Syntax Semantic
Confuse data stores and sources on Ctxt DFD Failure to identify major processes
Missing data flow labels\arrow (>4) Determine wrong data stores for processes
Misuse of other data flow DFD symbols ailure to recalculate air space
Breaking DFD rules Combine P4 & PS5 unnecessarily
Failure to draw both DFDs [Failure to recognise the problem scope
Too many data stores for processes
Source rather than target objects in spec

PSD for the 'Video Copy'
and 'Booking' Entities

Copy of
Video
New copy Withdraw copy
received in stock Copy life

Whilst copy usable /\
o

0]

*

Event Normal Abnormal
withdraw withdrawl

/’\

0O (o)
Withdraw Normal
from service lend
Copy Copy
lent remrn-ed
(6] (0]
Retum Return
Book okay not okay

_—— AN

(6]
Make Complete Video lost Video
Booking Booking Damaged
0] 6]

Normal Loan Abnormal Loan

Completion Completion
Confirm 0] 0]
complete Archive Video Video

loan loan refused not returned

PSDs for the entities Video Title'

and 'Hotel'
Video
Title
Acquire the Loan End
video title life life
until title is no longer available
»
Evertt
Loan Retumn
Hotel
Acquire a
new hotel as Hotel Remove hotel
customer life as customer
while the hotel is still
a customer
]
Event
0] 0] O
Add anew Update a Delete a

constraint constraint constraint

C Source Roker Manufacturine Production Planning Svst

The production planning function allocating required production jobs to available machines is
described in more detail in the following paragraphs.

This allocation function is central to the production planning process. The relevant constraints, in
no particular order, are :

- suitability of the machine to fulfil a job's manufacturing requirement,

- processing capacity of a machine,

- the number of machines available for use,

- safety and legal constraints imposed upon the use of a machine,

- machine operator availability for a machine,

- the Rating of the machine's speed to handle certain manufacturing job
quantities,

- production management policy decisions on machine loading and working,

- the sequence in which manufacturing jobs on a product must be carried
out.

The allocation of jobs to machine takes place by job. In all cases all of the
constraints on the job and the machine must be met. Priority jobs must be
allocated to machines before all others. Roker priority jobs are :

- those jobs for which the necessary machines are regarded as rare, and
- those jobs for which required trained operator availability is stated as rare.

Therefore jobs meeting these two criteria should be selected and allocated to
machines first. The order in which the constraints are applied to the proposed
job-machine match is given in the accompanying function structure.

Outstanding machine idle time and unfulfilled production orders must then be
reported to the Production Manager.

During reallocation of an existing function the production manager has the ability
to 'LOCK' certain parts of the production plan, so that it is not changed during
reallocation.

N BUIPEO] O\ Aoeded| [orqerea o\

0} qof uo Aoprod a\uzjoasnuo| | suop sqo ygnoua 10jeredo ‘pued p qof

ay INOY S[0I1U0D [e59] pbai-axd sey o\t bo \i4 ydur 3sowr
9}EBD0[V] Hooud \Ajoyes I3UD J¥ 303y JE3O?YD JE{O_/YD XU 343}

Y
lou Uo)ed0[[®] O uoredo[[e
o\uI - qof ay} o\ux - qof oy
& ¥euwy Jwupy & ¥y Nsod
O j0u s§ uonedo[e i O ST uopedo[re i
Jou A[(ny axe | |sqof -oofreun o\ure 0}
s "poid | | sapnpur uey qof ayedoqy
(@) (0] .
< uopedoe armbax sqof iIsyum.
ued
uoponpoid uopoun g
WIom-g 9} UORNBIO[[Y
ARd uorponpoid ur sqof pog
SO\Ww 0}
sqof ujonpol
3y} IedoqV

uorpunyg uonedo[[y I\A-qof
Suluueld uondNpoiyg [[BIAQ 3Y) 10) qSd

PSD for the Production Planning Enitity 'Machine'

ﬂ\

Machine

Install M\c Remove m\c
M\c life from service
until the m\c
removed from service
s (o) O
M\c Normal end Abnorm. end
life tom\c life tom\c life
o) o)
Change m\c Allocate
specification
(@) O
M\cis M\c is not
available available
o) O
Under repair Inuse
Machine Machine
Breakdown Return to applied to completes
Service Jjob

PSD's for the Production Planning Entities
Operator'and Production\M\c Job

Operator
Begin work
for productn Operator Leave the
planning Life Product. dept

until operator leaves the production dept

Operatoris O Operatoris O O
temporarily temporarily Operator
m transferred retums
Production
m\cJob

Job Job life Job
if job abandoned
until job is terminated
i o O
Possible Normal Job Abnorm Job
delay completion completion
o o
Delay S Confirm job Archive
completed Job

Abstract Source Scheduling System Template
Overview of the Scheduling Function:

The goal of the general scheduling function is to allocate a limited number of
Resources, each with a finite Capacity, to fulfil a pre-specified number of Tasks,
either at or before a stated Time.

This allocation of Resources is controlled by one or many Constraints, which apply
both to the Tasks to be fulfilled, and the Resources used to fulfil them. These
constraints exist in 3 dimensions; the conceptual, spatial and temporal dimensions.

The detailed Scheduling function is controlled by the nature of and sequence that one
or many of the Constraints are applied both to the outstanding Tasks to be completed,
and the Resources available to complete them with. Those schedule allocations which
are regarded as priority, either due to the scarcity of Resource or importance of the
Task, are fulfilled first. This is achieved by sorting both the Tasks and the Resources.

The 3 major Entity Process Structures of a Scheduling function are :
- the Schedule function,

- the Resource entity, and, to a lesser extent,
- the Required Task entity.

The following page includes the general Entity Process Structures for these 3
structures.

Schedule

Create Schedule

Schedule

Delete
Schedule

Sort tasks by
their difficulty

Process
Schedule

Schedule an
Allocation

— N\

Template Entity Process Structures
for a Scheduling Function

Resource

?
Posit that the
allocation okay

?
Admit that the
alloc. not okay

(0]
Resouce is
unavailable

Allocate the |
Retrieve Check the Check the resource to
the task first constraint| | 2nd constraint the task
|]
! !
(This model assumes only two Task
constraints are applicable
to this scheduling function)

Resource is
available

o)

/\

Complete
Task

Define
Task
(0]
Normal task
Completion

/\

T~

(o)
Abnormal task
Completion

Complete
Task

Archive

Task

Appendix D -Experimental Material
for Empirical Studies 3&4, Chapter 4

Sunderland Air Traffic Control System

System Overview

Sunderland Air Traffic Control Centre is implementing a computerised
system to control commercial flights using Sunderland airport. This
computer system is replacing a manual air traffic control system which can
no longer cope with the increased traffic. The new system is being
implemented in 2 phases:

i) development of a sub-system controlling airport traffic (i.e. landings,
takeoffs and taxiing),

ii) development of a sub-system monitoring the current position of
aircraft flying to and from Sunderland airport.

The first step has been completed and implemented: it will not be
discussed any further. Your task is to focus on the second phase:
developing a sub-system to monitor aircraft flying to and from Sunderland

airport.

The Existing Sub-system

The sky around Sunderland airport is structured to improve the control of
aircraft movements. Aircraft fly along unidirectional air corridors, to the
airport and other destinations. Aircraft fly at different heights along these
air corridors, so that many aircraft can use one air corridor at any one
time: these heights are predetermined and carefully controlled, and
usually exist at intervals of 1000 feet. Aircraft follow each other along
these air corridors, separated by a distance presently determined by the
type, size and speed of each aircraft. Several air corridors exist within a
geographical area; an example of one such geographical area containing
three air corridors is given in figure 1.

3 Air Corridors

S

Air Corridors

exist at different Aircraft g
heights fly wi
air corridors

To
Destination

3-dimensional

Air space 1

protecting - :

one aircraft T
Destination

B

To
Destination
C

Simplified 3-dimensional model of the airways within one geographical area:
aircraft fly at different heights along air corridors.

Figure 1

The air traffic controller directs aircraft to fly at certain heights within air
corridors, from decisions based on the data available to him: current
aircraft positions are indicated from radar signals displayed on the air
traffic controller's radar screen. The air traffic controller also records
important data about each aircraft (e.g. flight number, details of flight plan,
instructions to pilot, etc.) on cardboard strips, kept next to the radar
screen. The air traffic control console used in the existing system is given
in figure 2. To control aircraft movements the air traffic controller issues
verbal commands to aircraft pilots, who repeat the command for
confirmation before directing the aircraft accordingly. An air traffic
controller controls several flights within a single geographic area: several

air traffic controllers control all aircraft in one geographic area.

Aircraft
identification

..... strips

A\c GX-123, Flight No. BA40S5,
8 and details of the flight plan) .
Existing Air Traffic Control Console

Figure 2

The air traffic controller must instruct the pilot to ensure the safety and
timely arrival of each aircraft. Each flight of an aircraft is guided by a flight
plan, which has been determined jointly beforehand by air traffic control
and the airline. The air traffic controller must ensure an aircraft follows
the plan as closely as possible, by issuing commands to the pilot to change

course at the appropriate times. An example flight plan is given in figure
3.

Time Air corridor Height

16:04 1-23 10,000t [
., ¥ Individual flight steps
................ | s in the flight plan.
16:19 1-23 11,0001t /
16:34 1-19 15,000ft

Example Flight Plan
for one aircraft on
one flight.

Figure 3

The air traffic controller must keep aircraft sufficiently far apart to
minimise the danger of midair collisions: this is achieved by redirecting
aircraft to different air corridors or heights, whenever two or more
aircraft are observed to be too close together.

The Required Sub-system

The new computerised system must support existing system features and
automate some of the manual processes originally undertaken by the air
traffic controller. The sub-system has two major objectives: (i) avoid
collisions between aircraft approaching and leaving Sunderland Airport,
(i) ensure aircraft reach their destination on time. Required features of
the system are described in turn.

As with the existing system the new system must be able to interpret
incoming radar signals from aircraft. It should also produce the
computerised radar screen described in figure 4: data originally recorded
on cardboard strips is now displayed in computerised form on the radar
screen.

Permitted
air corridors

The required air traffic controller screen for each air traffic controller
(screen shows all aircraft in geographical area, not just aircraft under an
individual's control).

Figure 4

To ensure aircraft safety the system must alert the air traffic controller
whenever two aircraft come too close. Aircraft are surrounded and
protected by an air space which no other aircraft is legally permitted to
enter. This air space is a three-dimensional area which exists within a
given air corridor and height (for example, see figure 1). The dimensions
of this air space are dependent upon aircraft type, speed, height, elevation
and direction. Aircraft identity, position and height are determined from
radar signals whereas its speed and direction must be calculated from the
aircraft's trace (the previous series of aircraft positions, see figure 3). All
aircraft's air spaces should be recalculated and monitored whenever data
updating aircrafts' positions become available. When the air spaces of two
aircraft overlap the air traffic controller must be informed as a matter of

urgency.

The system must also monitor each aircraft to ensure it does not deviate
from either the air corridor or the flight plan. Each flight plan is divided
into a number of flight steps, which are given by the air traffic controller
to direct the aircraft to use given air corridors at certain times during the
flight. Whenever the aircraft strays from the required path the system
must inform the air traffic controller immediately.

Aircraft monitoring can result in unexpected changes to an aircraft's
direction, which must be reflected in the system; the air traffic controller
must be able to update the flight plan accordingly whenever such a change
is made.

Your Instructions

You are required to develop a context and level-O DFD to represent the
required logical system described in this document. If necessary describe
some of the processes of your level-O DFD with a narrative description.

Scope of the Required Sub-system

The following are beyond the scope of the sub-system that you should
develop:

(i) airport control, including the management of aircraft during taxiing,
landing and takeoff,

(i) aircraft flying over Sunderland airspace, without landing at
Sunderland airport,

(i) communications between the pilot and air traffic controller (all
input to the system from the pilot enters through the air traffic
controller),

(ivi emergency flights requiring special clearance and priority,

(v) the effects of severe weather, and other exceptional conditions
which might require aircraft to take unexpected actions.

Solution to Sunderland's Air Traffic Control Problem

Raw data describing
a\c posns

Sunderland
airport air
traffic control
system

Air traffic
controller

< Update details of
the flight plan or
the aircraft flight
Context DFD for Sunderland Airport ATC System

Original
flight plan

Translate the
Aircraft's
Position

Afircraft's
position

hCurrent aircraft position

Aircraft's

Aircraft's

hAircraft type
position

4

Ae the Flight

y Alrcraft \daia

Completed
steps in the
flight plan

2
Monitor
for
collisions
between
Alrcraft

\¢
\ 4 trace

Previous Aircraft
M Positions

N—

A\c position
trace

aircraft

aircraft
positions

'A\c
positon

%Current aircraft position

Data describing the flight

Controller
Level-0 DFD for Sunderland ATC System

i List of components checked for completeness in
Stlldy 3&4 Checklist subjects' solutions. A list of error types looked for

in subjects' solutions is also included.

Completeness Checks

Context DFD

1 - Previous A\c Positions

Process - Sunderland ATC

P1 - Current A\c Positions

Source - Radar

Current A\c Position - P2

Source - Airline

Current A\c Position - P3

Source - Air Traffic Controller

Current A\c Position - P4

[nput - Raw data for radar

Aircraft Type - P2

[nput - Original flight plan

[Previous A\c Position - P2

Input - Update details from the ATC

Air Space Model - P2

Output - Details from radar screen Aircraft - P2

Level-0 DFD P2 - P6

Process 1 - Receive aircraft position Aircraft - P3

Process 2 - Monitor for collisions [Flight Plan - P3
Process 3 - Monitor against flight plan Air Space Model - P3
Process 4 - Update flight plan IP3 - P6

Process 5 - Update a\c and flight plan details

P4 - Flight Plan

Process 6 - Display Radar Screen

[PS - Flight Plan

Source - Radar

Air Space Model - P6

Source - Airline

Aircraft - P6

Source - Air Traffic Controller

Flight Plan - P6

[nput - Raw data for radar

Previous A\c Positions - P6

[nput - Original flight plan

Current A\c Positions - P6

[nput - Update details from the ATC

[nput - ATC - Previous Aircraft Positions

Output - Details from radar screen

Errors Checks

Syntax

Semantic

Confuse data stores and sources on Ctxt DFD

Failure to identify major processes

Missing data flow labels\arrow (>4)

[Determine wrong data stores for processes

Misuse of other data flow DFD symbols

Failure to recalculate air space

Breaking DFD rules

Combine P4 & PS5 unnecessarily

Failure to draw both DFDs

Failure to recognise the problem scope

[Too many data stores for processes

Source rather than target objects in spec

Description of Flexible Manufacturing System

Brockville Flexible Manufacturing System

Brockville Precision Tools is a high-tech company manufacturing products
(precision tools) using the latest computerised production techniques. The
company is moving towards full automation of production facilities, in order to
keep human operator intervention to a minimum.

Recently a new system was installed, to monitor production. The system
identifies delays and potential accidents during production, so that the
automated handling system can take appropriate action. The production
monitoring system is described in the 2 accompanying data flow diagrams,
and in the supporting narrative.

Product's
Infra-red m\c sition
sensors

New products
entering the

system
Production Production
operators controller

Context DFD for Brockville Flexible Manufacturing System

Flexible

Reports & warnings

WVENBEMQE.&

Product being

Machine

Track
section o
machine

Monitor the
position of all
products, to
identify

New products
entering the

Production Product's

track positio

Detalls of
all track
sections

Changes
products, to made by
check them the production
against the controller
production

Halt or Requirements
restart so that misrouted
product or delayed products
still meet the productn
Product being
.Vamb_._mmoﬁsda
M\c
features

Product's

Product's position

Monitor the
position of all

New products
entering the
system

1
Receive

Production
operators

Level-0 DFD for

& record Brockville Flexible

both product Manufacturing

Wwﬂhm Product's ¥ Product history System
position

“Current product position

Product's
Product's position

Product's osition

position

4
Update the
production

Changes for

Product being product details
'Bm::?oﬁc_dn <4

identify the
production
detalls

e product Prod. floor layout

duction
floor layout

Existing product positions, &

Warnings
halted and restarted products

& reports

This narrative explains 3 processes of the level-0 DFD in more detail.

Process 2 - Monitor the position of all products, to avoid collisions

The aim of this process is to ensure no two products being manufactured
come together during the manufacturing process.

During production products are passed along lines of manufacturing

machines by a complicated series of conveyor belts and automatic handlers.
Each individual line of machines is called a track, and each track is divided
into many sections, which can only legally contain one product at any time.
Product positions are determined by infra-red sensors laid along the tracks.

This process invesitgates the current position of all products to ensure no
track section contains more than one product. If two products are in the
same section one product is halted automatically, and restarted again once
the other product has cleared that section. The production controller is
warned of any potential accidents, so that he may reroute products.

Process 3 - Monitor the position of all products, to check the production

lan is m

A production plan determines the order of machines which a product must
follow during manufacture. This process checks to ensure that the tracks
followed by a product are those intended, by comparing the current product
position with that given in the production plan. Diversions of any sort from
the plan are reported to the production controller.

Process 4 - Update the production plan

When sensors detect an individual manufacturing job using one machine has
been completed on a product the production plan for that product is
updated to indicate a further step in the plan has been fulfilled.

Subject Experience in Study 4

Analytic Programming
Subject experience experience
El 15-yrs local govt\financial 12-yrs CICS COBOL, RPGII
E3 20-yrs local govt\civil service 20-yrs COBOL, GMAP
E4 10-yrs with local govt 18-yrs COBOL
ES 6-months with local govt 6-yrs COBOL
E7 5-yrs local govt, & SSADM 3.5-yrs FORTRAN, FORTH
E8 7-yrs hands on with SSA Unknown
E9 3-yrs hands-on with CASE Little
El0 2-yrs teaching SSA techniques 12-yrs LISP, PROLOG, etc
Ell 7-yrs hands-on with SSA 7-yrs COBOL
E12 15-yrs hands-on, 4 of SSA 6-yrs COBOL & PASCAL

Previous pogramming and analysis experience of all subjects

Example Protocol Transcript for Studies 3&4

Analytic Mental Physical
Strategy Category Behaviour
-~ fenerate General Plan

kg., ; Read the

§ § reusable
?: DFD for

S

3 15 seconds

Assertion

iGenerate Source Hypothesis
Test Source Hypothesis
Extend Source Hypothesis
Test Source Hypothesis
Extend Source Hypothesis
Extend Analogy Hypothesis
Test Analogy Hypothesis
Extend Analogy Hypothesis
Extend Target Hypothesis

SN

Test Target Hypothesis
Extend Target Hypothesis

enerate General Plan
end General Plan

briefly
enerate Target Hypothesis

end Target Hypothesis
est Target Hypothesis

onnsuo)d

solution
enerate Target Hypothesis

end Target Hypothesis

Draw the
process on
target solution

Read problem
requirements
document

Draw the
data store and
flow on target

Mental
Behaviour
I'm going to read the reusable DFD.

So the FMS has a process to monitor
products for collisions,

there is a process to monitor collisions,
so how is that analogous ?

products pass along lines of machines,
er,

these are sequential lines of machines,
machine lines are analogous to air corridors,
and aircraft are analogous to, um ?
aircraft are analogous to products,

so the monitor process becomes monitor
products for collisions,

er, yeh, that's correct,

so monitor products to avoid collisions
among aircraft.

Let's add the data stores from this process,
so look at the air traffic control requirements
again.

We need the aircraft details to calculate the
air space,

so we need a data store access to ‘aircraft’,
yep. that's right.

Air Corridor tends to provide important
information for this process,
it does seem to be relevant somehow.

Analytic Mental Physical
Strategy Category Behaviour
Generate General Plan

Look at the
solution DFD

Model-based Testing
Model-based Testing
Model-based Testing

uopnjos
asupwwNg

Model-based Testing
Model-based Testing
Model-based Testing
Model-based Testing

Read the
problem
requirements
document
Generate Target Hypothesis

the solution
Test Target Hypothesis

Eodify Target Hypothesis

g Extend Target Hypothesis

3

:é Other

8 Extend Target Hypothesis

g Draw the

o data store
?: and flow on

end Target Hypothesis
Redraw the

data flow
Generare General Plan

Read the
reusable

DFD
Generate Analogy Hypothesis

Extend Analogy Hypothesis
Extend Analogy Hypothesis,
Test Analogy Hypothesis,
Test Analogy Hypothesis,
Extend Analogy Hypothesis,
Generate General Plan
Fenerate Analogy Hypothesis

hbopup a3 3suibbo aypnpazy

Mental
Behaviour
So let's run through what I've got so far.

We have a radar,

which input the position of aircraft,

this records the position and does something
with it,

then it passes this to the monitor process

to check for collisions,

which then accesses the data stores,
ummmm....

Calculation of the air space needs data
about the aircraft type,

so we need to have aircraft type in this
process,

so this is something which is missing,
aircraft type receives data from the process,

er, no, that's not right !!
the data flow should be the other way around,
so data flow from the data store.

Let's check that against the analogy.

Aircraft type is equivalent to product type,
however there is no equivalent on the FMS,

we have a machine type which can be mapped,

I think,

yeah, okay,

lets say that aircraft type maps to machine type.
So what else have I missed from the analogy ?
there is no mapping to this data flow,

so let me think....

Appendix E - Paper-Based Evaluation of
the Problem Identifier Module

Production Planning in the Roker Manufacturing Company

Roker Manufacturing is a medium-sized company making heavy equipment
for shipbuilding. Their plant consists of several workshops, each containing
specialised machines for the construction of different types of equipment.
Production is planned monthly by allocating manufacturing jobs to
appropriate machines in the workshops. This document focuses on the
monthly production planning process. You are required to analyse this
process and model it using techniques described in the accompanying
document. Do not consider other aspects of the Roker manufacturing
system.

The production planning process is carried out at the beginning of every
month by a computerised scheduling system. The aim of this system is to
allocate the monthly quota of manufacturing jobs to machines in a way that:

* maximises the use of machines,
* ensures that a maximum number of jobs are completed by their deadline.

The allocation of a job to a machine is constrained by several important
limitations, including;:

* the suitability of a machine to manufacture a product,

* the availability of skilled operators to use machines,

* the sequence in which manufacturing jobs must be carried out,

* the ability of certain machines to complete a job in the time allowed.

In addition, certain jobs are given priority allocation to machines. Priority
jobs occur when:

* the necessary machines are rare,

* the necessary skilled operators are rare.

In this study you are required to describe facts about the production planning
domain by following instructions given in the Ira Toolkit. To enter Ira use
the instructions given on the accompanying sheet.

Machines &

operators Production
jobs

Roker Production
Planning Domain

Help Document

This document is intended to help you develop a simple description of Roker’s
Production Planning domain. The model is developed by following instructions in the
seven steps below. Your description of the Production Planning domain should be written
on the accompanying Answer Sheet. Each step in the instructions is accompanied by an
example of a Personnel System in which the arrival of staff in an organisation is
recorded.

Step 1 - Identify the Most Important System Goal

Steps 1 & 2 encourage you to identify some background information about the
Production Planning domain. Firstly identify the most important goal of the system. Use
your own terminology to describe the goal, and add it to Step 1 on the Answer Sheet.

Example
The major purpose of the Personnel System is to record data about staff joining and
leaving the organisation, so the goal is:

‘Record data about Staff arrivals’.

Step 2 - Identify the Main System Functions

Select up to four functions which best represent Roker’s computerised Production
Planning system. Focus on functions which support the major system goal identified in
Step 1 and ignore functions which only occur in exceptional circumstances. Underline
your selected functions in Step 2 on the Answer Sheet. Note that many systems will have
fewer than four major functions.

Example
The Personnel system records the movement of staff to and from the organisation, so the
most appropriate function in this system is Record.

Step 3 - Identify the Domain Entities

This step identifies the major entities in the Production Planning domain. You may
identify up to four domain entities. This can be achieved in two ways:

* entities may be physical objects, so identify physical entities in the Production Planning
domain. Prefer entities which are linked to the major goal identified in Step 1,

* entities are related to functions. Each function processes or does something to an entity.
Identify entities which are directly processed by the functions underlined in Step 2.

Add these entities to the entity list in Step 3 on the Answer Sheet.

Example:
In the Personnel domain Outside-world and Organisation are physical entities relevant to
the system goal. In addition, the Recgrd function acts upon the Staff entity, since it
records staff joining the organisation, so Staff is another candidate entity. This suggests
that the personnel system domain has three important entities:

Staff, Organisation & Outside-world.

Step 4 - Identify the Domain Structure

The three parts of Step 4 identify the structure of the Production Planning domain by

specifying relationships between entities identified in Step 3. How to identify these
relationships is described below.

Step 4(a) - Specify the Structure of the Domain

This step specifies the structure of entities identified during the previous step. You may
want to sketch the Production Planning domain in a similar way to the Personnel domain
example in Figure 4. This step consists of three mini-steps. If necessary you should go
back and change facts about the Production Planning domain identified during Steps 1-3.

i)

Consider each function underlined in Step 2. Each function processes one major
entity, so select that entity from the list of entities in Step 3 of the Answer Sheet, and
add it twice to the Entity-2 column of Step 4 on the Answer Sheet. In the Personnel
example the computer system Records Staff movements in and out of the
Organisation, so the Record function processes Staff.. The staff entity was added
twice to the list, see Figure 1.

Entity-1 Entity-2 Relation

Staff
Staff

Figure 1

For each function there is an initial position and a final position for the entity
processed by the function. You should identify the initial and final position of the
entity processed by each function. Give the starting and final entities for each entity
processed by each function and add them to the relevant Entity-1 columns in Step 4 in
the Answer Sheet. The resulting list should identify the starting and final entities for
each main entity, see Figure 2.

Entity-1 | Entity-2 | Relation

Organistn Staff
OutsideWd Staff

Figure 2

iii) The relationship between each entity processed by a function and the starting and

final positions of that entity can be specified in more detail. At any time the starting
and final positions for each entity may contain one or many entities, so for each pair
of entities in the list in Step 4 use one of the following relationships between entities
to describe their starting and final positions, and add these entity-relations to the final
column in step 4:

* A contains-one B (B contains one entity A),

* A contains-many B (B contains many As),

where B is the entity processed by the function and A represents the initial and final
positions of the entity. In the Personnel domain many staff can either be in the
Outside-world or in the Organisation, so see Figure 3.

Entity-1 | Entity-2 Relation

Organistn Staff contains-many
Outsidewd Staff contains-many

Figure 3
The final version of the list in Step 4(a) is shown in Figure 4.

Outside-

World Organisation
aff Stajf .
l- u
m H
Figure 4

Step 4(b) - Number of Entities in the Domain

Your model of the production planning domain can be further developed by stating how
many times entities exist in the production planning domain. Each entity may exist one or
many times in the Production Planning domain. For each different entity in the Entity-1
column state either that:

* World has-one ‘entity’ (there is only one ‘entity’ in the World), or

* World has-many ‘entity’ (there are many ‘entities’ in the World).

Add each entity and the appropriate relation to the relevant lines in Step 4 on the Answer
Sheet.

Example
In the Personnel domain the Organisation and Outside-world entities only occur once, so
two more facts about the domain were identified, see Figure 5.

Entity-1 Entity-2 Relation

World Organistn |has-many
World OutsideWd [has-many

Figure 5
This can be represented graphically in Figure 6:
Outside-
World Organisation

aff Stajf H
||

|
worp | @ M

Figure 6
Step 4(c) - Complete the Structure of the Domain

You may want to identify other relations between entities which were not identified
during Steps 4(a) and 4(b). These features of the domain are best recognised by sketching
the Production Planning domain, if you have not already done so. Use the following two
relations to describe any additional features of the Production Planning domain:

* A has-one B (there is one B in A),
* A has-many B (there are many B in A),

Add each fact (entity-relation-entity).to the list in Step 4 on the Answer Sheet in a similar
way to facts identified in Steps 4(a) and 4(b).

Example
The final version of the list for Step 4 in Figure 7 is:

Entity-1 Entity-2 Relation

Organistn Staff contains-many

OutsideWd Staff contains-many
World Organistn |has-many
World Outside Wd has-many

Figure 7
Step 5(a) - Specify Functions in terms of Entities

This step formally describes the functions identified in Step 2 in terms of entities and
structures identified in Steps 3 & 4. List each function selected during Step 2 in the left-
hand column of Step 5 in the Answer Sheet, then for each function you should identify:

* the entity processed by that function,
* initial position of the entity,
* final position of the entity.

Add these entities to the second,third and fourth columns in Step 5 on the Answer Sheet.
The source and destination entities should correspond to initial and starting positions of
main entities identified in the previous Step.

You may find it useful to sketch the functions as demonstrated by the Personnel
example, see Figure 9.

Example
The list of function descriptions for the Personnel domain is given in Figure 8, and these
functions are represented graphically in Figure 9:

- Organis
Function | Entity | Source |Destntn |Move-one O‘;(t)ﬁ?ie rganisation
Record | Staff Outsde W|Organstn. - mov;zaﬁ .

Figure 8

Figure 9

Step 5(b) - Detail the Functions

Function definitions can be specified in more detail by identifying each function as
either:

* asingle movement (move-one), so that only one entity can be moved at any time, or
* a multiple movement (move-many), so that many entities can be moved at any time.

Add these movements to the relevant right-hand columns of each function in Step 5 on
the Answer Sheet.

Example
In the personnel domain many staff may arrive in the organisation at any time, so:
* move-many staff from the outside world to the organisation.

[

See Figure 10:

Function | Entity | Source |Destntn | Move-one

Record Staff pPutsde W.[Organstn | move-many

Figure 10
Step 6 - Categorise each Entity
So far little has been said about the nature of entities identified in Step 3. Step 6 suggests

some features of these entities by categorising them. Select categories which describe the
role of entities in the Production Planning domain. Three categories are:

* resource: the entity acts as a resource with which system requirements
are fulfilled. Resources are often contained in a resource-
container,

* resource-container: the entity is a container in which other entities are held,

* different-object-types: each instance of the entity may have many different values
which play an important role in processing the entity, for
example in a cinema seating domain both the reservation and
the seat must be the same type (less than £3, etc).

You should assign one category to each entity and add these categories to Step 6 on the
Answer Sheet. Note that not all entities will be described by one of these three categories.

Example
None of the above problem categories aptly describe the Staff, Organisation and Outside-
world entities, so no entity categories are selected.

Step 7 - Identify Conditions on System Functions

Functions sometimes often only occur when certain conditions are met. Consider each
function identified in Step 2 and, where appropriate, select one of the following
conditions which best describes the conditions under which the function occurs:

* Minimum-qty: the function occurs when an entity has reached a minimal level of
contents,

* Maximum-qty: the function occurs when an entity has reached a maximum level
of contents,

* Same-properties: the function occurs when two entities have the same values, for
example a theatregoer is allocated to a seat if it meets his needs,
i.e. seat price and his requirements are both < £20,

* Date/Time-limit: the function only occurs when a given date or time is reached, or
after a specific length of time has passed.

Each function may only have one condition value, and a maximum of two functions may

have conditions linked to them. Add each function and its condition to the list in Step 7

on the Answer Sheet. '

Example

The Personnel system only records the coming and going of employees, so the

ifnformation system has no specific conditions in the above list which control system
unctions.

Summary

You should now have developed an appropriate model of the Production Planning
domain. Reexamine this model to correct any omissions or contradictions. Specifically:

* Check the domain structure modelled in Step 4,
* Check the functional descriptions given in Step 5.

Finally inform the experimenter that you have completed your model of the Production
Planning domain.

Name: Answer Sheet

Step 1- Major System Goal:
Step 2- Select functions Loan Return Input Assign Record
by underlining them: Borrow Lend Goods-in Place Finish-loan
Dispatch Goods-out Addition Connect Change-allocation [
Send Receipt Allocate Join Change-positio "
ST — — ; ;
Domain Entities: Entity:
Entity:
Entity:
Entity:
Step 4-Domain Structure: Sketch:
Entity-1 Entity-2 Relation
WORLD
WORLD
WORLD
WORLD
Step 5-Function Definitions: Sketch:
Function| Entity | Source |Desitntn ﬁ,‘,’,‘,’gﬁ’},ﬂg

Step 6- Identify Entity Types:
Entity Type Entity Type

Step 7- Identify Conditions
on System Functions Function Condition

Question 1

Please identify how easy you found it to describe the production planning
domain with each of the problem descriptors provided for you (circle a number).
Also make comments on these descriptors where appropriate:

(a) The Object-relation Structure, Comment:
e.g. Organisation contains-many Staff

I | | I
1 2 3 4 5 6 7

very very
difficult easy
(b) Entity Categories Comment:

e.g. Entity-A is a resource

r | |

1 2 3 4 5 6 7

—

very very
difficult easy
(c) Functional Descriptions Comment:
e.g. move_many Staff from
Outside-world to Organisation

L I |
1 2 3 4 5 6 7

very very
difficult easy
(d) Functions, e.g. Record Comment:

| | I I
1 2 3 4 5 6 7

very very
difficult easy
(e) Functions beyond the system scope, e.g. Record Comment:

| I | I
1 2 3 4 5 6 7

very very
difficult easy
(P System requirements Comment:

| | | |
1 2 3 4 5 6 7

very very
difficult easy
(g) Labels, e.g. stock control system Comment:

I | | I

1 2 3 4 5 6 7
very very
difficult easy

Question 2

(a) Did you find it easy to use the windows and dialogues provided by the tool to describe
the production planning domain (if not, why not) ?

(b) Did you enter data in the order suggested by the tool, or did you use the
pull-down menus to add facts about the domain after the appropriate window
had been quit ?

Question 3

How easy or difficult did you find it to use and understand the example
Personnel domain provided (circle a number). Comment on any difficulties
encountered while using the example:

l |] ! ! {
1 2 3 4 5 6 7

very very

difficult easy
Comment:
Question 4

Were you able to describe all the features of the Production Planning that you wanted to
describe ? If not, what other features would you like to have mentioned ?

Question 5

What other help would you like to have received when trying to describe the production
planning domain with the instructions provided ?

Question 6

Please identify how easy you found it to use the following features of
the Ira toolkit (circle a number). Also make comments on these descriptors
where appropriate:

(a) the windows describing the different knowledge types Comment:
elicited by Ira (e.g. the ‘Introduction to Ira’ window):

! | | |

1 2 3 4 5 6 7
very very
difftcult easy

(b) the dialogues provided for inputting specific types of data Comment:
(e.g. the dialogue eliciting object-relations):

| I I I
1 2 3 4 5 6 7

very very
difficult easy
(c) the ‘See Target window which described the current Comment:

description of the new problem:
I ! | |

1 2 3 4 5 6 7

very very
difficult easy
(d) the ‘General Help’ ‘'window describing an overview of the Comment:

windows provided by the tool:
| | I |

1 2 3 4 5 6 7

very very
difftcult easy
(e) the abstraction domain descriptions retrieved by Comment:

Ira’s search mechanism:

| I ! I
1 2 3 4 5 6 7

very very
difficult easy
() the analogical mappings identified by Ira’s Comument:
search mechanism:
I L I |
1 2 3 4 5 6 7

very
difficult , easy

Question 8

Please give your reasons for the following facts
identified about the production planning domain:

Entity Relation Entity Reason
Entity Entity-Category Reason

Entity | Source | Destination |(Condition) Reason
Function Reason

Other Features Reason

Appendix F - Experimental Material for Empirical
Investigation of the Prototype Problem Identifier
Module

Problem: Production Planning in the Roker Manufacturing Company

Roker Manufacturing is a medium-sized company making heavy equipment
for shipbuilding. Their plant consists of several workshops, each containing
specialised machines for the construction of different types of equipment.
Production is planned monthly by allocating manufacturing jobs to
appropriate machines in the workshops. This document focuses on the
monthly production planning process. You are required to analyse this
process and model it using techniques described in the accompanying
document. Do not consider other aspects of the Roker manufacturing

system.

The production planning process is carried out at the beginning of every
month by a computerised scheduling system. The aim of this system is to
allocate the monthly quota of manufacturing jobs to machines in a way that:

* maximises the use of machines,
* ensures that a maximum number of jobs are completed by their deadline.

The allocation of a job to a machine is constrained by several important
limitations, including:

* the suitability of a machine to manufacture a product,

* the availability of skilled operators to use machines,

* the sequence in which manufacturing jobs must be carried out,

* the ability of certain machines to complete a job in the time allowed.

In addition, certain jobs are given priority allocation to machines. Priority
jobs occur when:

* the necessary machines are rare,

* the necessary skilled operators are rare.

In this study you are required to describe facts about the production planning
domain by following instructions given in the Ira Toolkit. To enter Ira use
the instructions given on the accompanying sheet.

Machines &
operators Production
jobs
Type
A
Tyé)e Roker Production
Planning Domain

Identify the

Overview of the problem
name & goal elicitation steps employed
of the system by Ira

L 4
Select
system

functions

Define system
functions & M

related object '
structures t
v

Define other
object-

structures in
the domain

v

Categorise [
objects

v

Identify
conditions
on functions

v

Identify the
Reqts & Scope
of the system

v

Identify

Labels which
describe the
system '

v

Identify
physical
attributes of
the domain

Retrospective Questioning: Question 1

Please identify how easy you found it to describe the production planning

domain with each of the problem descriptors provided for you (circle a number).

Also make comments on these descriptors where appropriate:

(a) The Object-relation Structure, Comment:
e.g. Organisation contains-many Staff
| | | !
1 2 3 4 5 6 7
very very
difficult easy
(b) Entity Categories Comment:
e.g. Entity-A is a resource
r I ! I |
1 2 3 4 5 6 7
very very
difficult easy
(c) Functional Descriptions Comment:
e.g. move_many Staff from
Outside-world to Organisation
I | | |
1 2 3 4 5 6 7
very very
difficult easy
(d) Functions, e.g. Record Comment:
| I | I
1 2 3 4 5 6 7
very very
difficult easy
(e) Functions beyond the system scope, e.g. Record Comment:
1 I I |
1 2 3 4 5 6 7
very very
difficult easy
(fl System requirements Comment:
! | | |
1 2 3 4 5 6 7
very very
difficult easy
(g) Labels, e.g. stock control system Comment:
’ | | | |
1 2 3 4 5 6 7
very very
difficult easy

Question 2

(a) Did you find it easy to use the windows and dialogues provided by the tool to describe
the production planning domain (if not, why not) ?

(b) Did you enter data in the order suggested by the tool, or did you use the
pull-down menus to add facts about the domain after the appropriate window
had been quit ?

Question 3

How easy or difficult did you find it to use and understand the example
Personnel domain prouvided (circle a number]. Commernt on any difficui{tes
encountered while using the example:

| I | | |
1 2 3 4 5 6 7

very very

difficult easy
Comment:
Question 4

Were you able to describe all the features of the Production Planning that you wanted to
describe ? If not, what other features would you like to have mentioned ?

Question 5

What other help would you like to have received when trying to describe the production
planning domain with the instructions provided ?

Question 6

Please identify how easy you found it to use the following features of
the Ira toolkit (circle a number). Also make comments on these descriptors
where appropriate:

(a) the windows describing the different knowledge types Comment:
elicited by Ira (e.g. the ‘Introduction to Ira’ wmdow):

| | I |

1 2 3 4 5 6 7
very very
difficult easy

(b) the dialogues provided for inputting specific types of data Comment:
(e.g. the dialogue eliciting object-relations):

| I | |
1 2 3 4 5 6 7

very very
difficult easy
(c) the 'See Target window which described the current Comment:

description of the new problem:
| I | |

1 2 3 4 5 6 7

very very
difficult easy
(d) the ‘General Help’ ‘window describing an overview of the Comment:

windows provided by the tool:
| | I |

1 2 3 4 5 6 7

very very
difficult easy
(e) the abstraction domain descriptions retrieved by Comment:

Ira’s search mechanism:

! ! | I
1 2 3 4 5 6 7

very very
difficult easy
() the analogical mappings identifled by Ira’s Comment:

search mechanism:

| | | |
1 2 3 4 5 6 7
very
difficult . easy

Question 7

(a) Did you modify your description of the problem domain as a result of
feedback from the analogical search ? (If not, why ?7)

(b) Were you able to select between the retrieved abstract domains which Ira retrieved
from searching ? (If not, how ?)

(c) Did you have any other difficulties in understanding the abstract domain models
retrieved by Ira ?

A

Question 8

Please give your reasons for the following facts
identified about the production planning domain:

Entity Relation Entity Reason
Entity Entity-Category Reason

Entity | Source | Destination | (Condition) Reason
Function Reason

Other Features Reason

Appendix G - Results from the Experimental
Evaluation of the Analogy Engine using Instances of
Partial Target Domain Descriptions

Abstract Test Test
Domain Matched Domain Without Without
Class Structure Transition
Stock Control System OCP-BA Perfect Perfect
Personnel System OCP-BB Fail Partial®
Library System OCP-AB Perfect OCP Only
Air Traffic Control System OMP Fail Perfect
Coastguard Patrol System OPP Fail Fail
Simple Theatre System OAP Perfect Perfect
Complex Theatre System OAP-AA Perfect Perfect
Appendix G -

Results of First-pass Evaluation of the Example Search Space

*Partial
match with
OCP, OMP

& OAP
classes

Appendix H - Bug Library of Errors
made during Analogical Comprehension and
Transfer of Specifications by Inexperienced Software
Engineers

Bug Description

Fail to return of omitted
analogical mappings for
completion

Falil to distinguish between
similar reusable components
in the solution specification
due to syntactic similarities

Abandon hypothesis about
source domain concepts due to
lack of source domain knowledge

Develop required target
components incorrectly, based
on structural similarity of

the reusable specification rather
than underlying analogical
understanding

Failure to distinguish between
source concepts which have
stmtlar roles in both domains

Incorrect solution component
reuse due to direct syntactic
similarity between target source
components.

Incorrect solution component
reuse due to indirect syntactic
similarity between target source
components.

Poor analogical reasoning

Confuse synomynous source
domain concepts

Evidence of Occurence

Transfer reusable processes with
which analogical mappings were
identified, ignore those which were
not transferred

Failure to transfer all reusable
components which share syntactic
similarities with other, recently
transferred components

Failure to transfer reusable
components which share no other
syntactic similarities with other
reusable solution components

Incorrect analogical transfer
without any syntactic similarity
implied by the erroneous analogical
match

Failure to reuse all solution
components due to equivalent
roles in both domains

Incorrect reuse of components,
with syntactic similarity between
target and reused components

Incorrect reuse of components,
with syntactic similarity between
target and reused components

No external effect

Incorrect component reuse

with reusable components whose
underlying source concepts are
close to the correct analogical
match

Bug library of analogical reuse errors exhibited by inexperienced
software engineers during understanding and transfer of
unfamiliar specifications

Appendix I- Key Algorithms
in the Analogy Engine

Object Structural Knowledge (A , is Abstract object structure, T , is Target object structure)

object_structure_mapping (Ao , To o) <--
alternative_target_structure (To . Too)y
same_relation_type (A0 . T00)
correct_level_objects (T 00)

best_candidate_mapping (T 00" T others).

State transitions (A, is Abstract state transition, T, is Target state transition):

state_transition_mapping (At . Tt) <--
correct_level_objects (T[)
same_transition_type (At , T[)
best_candidate_mapping (Tt , T others).

Best candidate mapping is defined as for mappings besween object struciure kmowledge and siate ransiions .
best_candidate_mapping (T , Others) <--

count_neighbouring_matches (T, Count.[)
count_neighbouring_matches (T, Coumol.hers)s

CountI > C°“mothers'

Object type Mappings:

object_type_mapping (Ao . To) <
correct_level_objects ('I'0)
object_structure_mapping (Ao , To),
same_object_type (Ao . T0)t

object_type_mapping (A, , T,) <--
correct_level_objects (T[)
state_transition_mapping (A, T,),
same_object_type (At y Tt).

where additional constraints on the matching heuristics are:
correct_level_objects (To) <--!
alternative_target_structure (To, Too) <--!

Revised structural coherence algorithms to incorporate matching within a hierarchy of
abstract domain classes

!

Object Structural Knowledge (A , is Abstract object structure, T, is Target object structure):

object_structure_mapping (Ao . T0) <--
same_relation_type (Ao yToh

best_candidate_mapping (T, » Topors)-

State transitions (A, is Abstract state transition, T, is Target state transition):

state_transition_mapping (At . TL) <--
same_transition_type (A, T,),
best_candidate_mapping (T, T ;...)-

Best candidate mapping is defined as for mappings between object structure knowledge and state transitions is:
best_candidate_mapping (T, Others) <--

count_neighbouring_matches (T, Coumt)
count_neighbouring matches (T, C°umothers)
Countt > C°“mothers'

Object type Mappings:

object_type_mapping (A, Ty) <~
object_structure_mapping (Ao . To)
same_object_type (A, T,).!.

object_type_mapping (A, T[) <--
state_transition_mapping (AI , Tt)

same_object_type (A Tt).

Algorithms to determine structural coherence between two isolated domain models

Perfect_Coherence_Structure (Am T) <
Addup_Mappings (T, , Mappingsl)
Total_Mappings (A, , Mappings),

(Mappings, / Mappings ,) 2 81%.

Good_Coherence_Structure (A, T m) <--
Addup_Mappings (T, . Mappings[)
Total_Mappings (A , Mappings__),
50% 2 (Mappings[/ Mappingsm) < 81%.

Effective_Abstract_Difference (Am . Tm) <—-
Addup_Differences (T, , Differences[»
Total_Differences (Am R Differencesm)

(Differences, / Differences) > 33%.

Effective_Alternative_Match (Am R Tm) <--'
System_Requirement_Mapping ((A o'Ar) , (T 0,'1‘1,))
System_Scope_Mapping ((A,A,), (T, T,)).l

Effective_Alternative_Match (Am , Tm) <--
Addup_Terms (Tm » Terms,),

Total_Terms (Am . Termsm),
(Terms, /Terms)> 66%.

Figure - algorithms determining the degree of structural coherence and critical
difference between candidate abstract domain classes

System_Requirement_Mapping ((A,,A)), (T, T,)) <--
object_structure_mapping (A, , T,)

same_requirement_type (Ar . Tr).

System_Scope_Mapping ((AA,) , (T, T,)) <-
state_transition_mapping (A, , Tt)

same_scope_type (A, TS)

Figure - algorithms determining analogical similarity between system requirements
and information system scope

Good_Maich (Am , Trn) <--
Perfect_Coherence_Structure (A m’ Tm PAN

Good_Maich (Am ’ Tm) <--
Good_Coherence_Structure (Am . Tm)
Effective_Abstract_Difference (An. Tm M.

Good_Match (A, T,) <--
Good_Coherence_Structure (Am . Tm),
Effective_Alternative_Match (Am . Tm).

Partial_Match (Am . Tm) <--
Good_Coherence_Structure (Am . Tm).

Figure - algorithms determining a good or partial analogical fit from the degree of
structural fit and the extent of critical differences between abstractions

Appendix J - Domain Abstraction
Hierarchy Implemented by the Analogy
Engine

1
object
allocation

1
object
containment

{1 2 basic 5 non- 10
renewable }{renewable multiple
resouce [-{ resource allocation

3 structured 4
renewable object
reosurce }:jrecording

rialeests

Domain abstraction hierarchy implemented by the prototype version of Ira

Appendix K - Aggregated Domain
Abstractions Representing Common,
Larger Domain Types

Example of a Typical Sales Organisation,
encompassing 5 domain abstractions indicated
by different shaded areas. t object

resupply

stock
input object
. validation
customers
& salesmen
. (request
orders for orders)
orders book
(routes) distribute @
\ stoc

Picking list

non-renewable
resource mgmt

\ (identify
Delivery Ne delivery needs)

Example of a video hiring
store, typical of many library-
type organisations involved
with maintenance of a lending
stock

Appendix L - Source Listing of Prototype
Implementation of Ira, using Prolog

Descriptions of the Domain Abstractions

ACP Descriptions
/* Description of all aspects of the ocp, omp and oap ACPs */

/* Static Knowledge Descriptors */

acp_sdata(space,slot,has_one,ocp).
acp_sdata(space,space2,has_many,ocp).
acp_sdata(slot,object,contains_many,ocp).
acp_sdata(space2,object,has_many,ocp).

acp_sdata(space,slot,has_many,omp).
acp_sdata(slot,object,contains_no,omp).
acp_sdata(slot,object,contains_one,omp).
acp_sdata(slot,object,contains_many,omp).
acp_sdata(space,object,has_no,omp).

acp_sdata(space,allocation,has_one,oap).
acp_sdata(space,object,has_many,oap).
acp_sdata(allocation,object,contains_many,oap).

acp_sdata(allocation,slot,has_many,oapaa).
acp_sdata(slot,object,contains_no,0apaa).
acp_sdata(slot,object,contains_one,oapaa).

acp_sdata(space,spacel,has_one,ocpaa).
acp_sdata(space1,object,has_many,ocpaa).

acp_sdata(smallslot,object,contains_many,ocpba).
acp_sdata(slot,smallslot,has_many,ocpba).

acp_sdata(space,slot,has_one,opp).
acp_sdata(spacel,object,has_one,opp)-
acp_sdata(space2,object,has_one,opp).
acp_sdata(slot,object,contains_no,opp).
acp_sdata(slot,object,contains_one,opp).

/* Dynamic knowledge Descriptors */

acp_ddata(dispatch,object,slot,space2 move_many,ocp).
acp_ddata(receipt,object,spacel,slot,move_many,ocpaa).
acp_ddata(return,object,space2,slot,move_many,ocpab).
acp_ddata(receipt,object,spacel,smallslot,move_many,ocpba).

acp_ddata(dispatch,object,smallslot,space2,move_many,ocpba).

acp_ddata(monitor,object,slot,slot,move_one,omp).
acp_ddata(allocate,object,space,allocation,move_many,oap).
acp_ddata(allocate,object,space,slot,move_many,oapaa).
acp_ddata(monitor,object,spacel,slot,move_one,opp).
acp_ddata(monitor,object,slot,space2,move_one,opp).

/* Property features of each object/slot in the system. */

acp_pdata(ocp,object,resource).
acp_pdata(ocp,slot,resource_container).
acp_pdata(ocpba,smallslot,resource_container).
acp_pdata(oap,object,different_object_types).
acp_pdata(oap,allocation,recepticable).
acp_pdata(oapaa,slot,different_object_types).

/* Condition Knowledge Descriptors */

Thu, Nov 28, 1991 Page 1

ACP Descriptions.2

acp_cdata(return,date_limit,ocpab).
acp_cdata(receipt,minimum_qty,ocpba).
acp_cdata(allocate,same_properties,oapaa).

/* Scope of influence of the computerised system for each ACP -
all scope refers to the movement of objects, no other
knowledge types - it identifies what is beyond the scope of
the computerised system */

acp_scope(dispatch,ocp).
acp_scope(return,ocpab).
acp_scope(monitor,opp).
acp_scope(monitor,opp).
acp_scope(monitor,omp).
acp_scope(record,ocpbb).

/¥ Requirements relate to the static knowledge
structures, and include additional features to identify needs */

acp_reqt(slot,object,contains_many,minimum_qty,ocp).
acp_reqt(slot,object,contains_many,minimum_qty,ocpaa).
acp_reqt(space2,object,contains_many,date_limit,ocpab).
acp_reqt(smallslot,object,contains_many,minimum_qty,ocpba).
acp_reqt(slot,object,contains_one,opp).
acp_reqt(slot,object,contains_no,omp).
acp_reqt(slot,object,contains_one,omp).
acp_reqt(object,space,has_no,oap).
acp_reqt(slot,object,contains_one,same_properties,oapaa).

acp_reqt_total(ocp,4).
acp_reqt_total(ocpaa,1).
acp_reqt_total(ocpab,1).
acp_reqt_total(ocpba,1).
acp_reqt_total(ocpbb,0).
acp_reqt_total(omp,2).
acp_reqt_total(oap,1).
acp_reqt_total(oapaa,l).

/* Objects describing each ACP - 'Space’ objects are not included. */

acp_object(object,ocp).
acp_object(slot,ocp).
acp_object(object,ocpaa).
acp_object(slot,ocpaa).
acp_object(object,ocpab).
acp_object(slot,ocpab).
acp_object(object,ocpba).
acp_object(slot,ocpba).
acp_object(smallslot,ocpba).
acp_object(object,ocpbb).
acp_object(slot,ocpbb).
acp_object(object,opp)- '
acp_object(slot,opp).
acp_object(object,omp).
acp_object(slot,omp).
acp_object(object,0ap).
acp_object(allocation,0ap).
acp_object(slot,oap).
acp_object(object,oapaa).

Thu, Nov 28, 1991 Page 2

ACP Descriptions.3

acp_object(allocation,0apaa).
acp_object(slot,0apaa).

/* Physical features of specific acps in the problem space */

acp_phyprop(object,are_borrowed,ocpab).
acp_phyprop(object,taken_away, ocpab).
acp_phyprop(slot,is_building,ocpba).

acp_ phyprop(smallslot,m building,ocpba).
acp_phyprop(smallslot,is_container,ocpba).
acp_phyprop(smallslot,different_properties,ocpba).
acp_phyprop(object,different_properties,ocpba).
acp_phyprop(object,moves_physically,opp).
acp_phyprop(object,are_manned_vehicle,opp).
acp_phyprop(slot,adjacent_in_space,opp).
acp_phyprop(object,moves_physically,omp).
acp_phyprop(slot,in_sequence,omp).
acp_phyprop(slot,construct_network,omp).

/* Total of physical structures in each ACP. */

acp_phymappings(ocp,0).
acp_phymappings(ocpaa,0).
acp_phymappings(ocpab,2).
acp_phymappings(ocpba,5).
acp_phymappings(ocpbb,0).
acp_phymappings(opp,3).
acp_phymappings(omp,3).
acp_phymappings(oap,0).
acp_phymappings(oapaa,0).

/* Other knowledge supporting the identification of critical differences
between the acps */

acp_data(information_system,ocp).
acp_data(safety_critical,omp).

/* Labels allocated to each acp to describe different facets of each acp -
there are three labels allocated to each ACP */

acp_label(stock_control,ocp).
acp_label(object_containment,ocp).
acp_label(resource_management,ocp).
acp_label(stock_control,ocpaa).
acp_label(object_containment,ocpaa).
acp_label(renewable_resource_management,ocpaa).
acp_label](library_system,ocpab).
acp_label(non-renewable_resource_management,ocpab).
acp_label(object_hiring,ocpab).
acp_label(object_recording,ocpbb).
acp_label(organisation_content,ocpbb).
acp_label(personnel,ocpbb).
acp_label(stock_control,ocpba).
acp_label(object_containment,ocpba).
acp_label(resource_management,ocpba).
acp_label(space_occupation,opp).
acp_label(single_object_containment,opp).
acp_label(space_management,opp).
acp_label(object_monitoring,omp).

'

Thu, Nov 28, 1991 Page 3

ACP Descriptions.4

acp_label(collision_detection,omp).
acp_label(plan_adherence,omp).
acp_label(object_allocation,oap).
acp_label(constraint_satisfaction,oap).
acp_label(requirement_matching,0ap).
acp_label(object_allocation,oapaa).
acp_label(constraint_satisfaction,oapaa).
acp_label(requirement_matching,oapaa).

/* Hierarchical Structure of the ACPs */

father(ocp,ocpaa).
father(ocp,ocpab).
father(ocpaa,ocpba).
father(ocpaa,ocpbb).
father(top,ocp).
father(top,omp).
father(top,0ap).
father(oap,0apaa).
father(top,opp).

/* Total number of possible analogical mappings with each ACP, and the
total number of possible differences. */

acp_total_mappings(ocp,9).
acp_total_mappings(ocpaa,5).
acp_total_mappings(ocpab,4).
acp_total_mappings(ocpba,8).
acp_total_mappings(ocpbb,0).
acp_total_mappings(opp,11).
acp_total_mappings(omp,5).
acp_total_mappings(oap,8).
acp_total_mappings(oapaa,7).

/* Note - when calculating these totals the number of possible function
mappings for each ACP is considered so that the full possible number
of ACP differences is known - functional transformations introduce a
degree of variability into these totals. */

acp_total _differences(ocp,11).
acp_total_differences(ocpaa,s).
acp_total_differences(ocpab,5).
acp_total_differences(ocpba,1).
acp_total_differences(ocpbb,3).
acp_total_differences(opp,8).
acp_total_differences(omp,10).
acp_total_differences(oap,8).
acp_total_differences(oapaa,0).

/* Valid Acps and names, including a dummy to assist in dialogue list
construction. */

anS(",").

acps(ocp,'Object Containment Problem').

acps(ocpaa,’ Non-renewable Resource Mgmt Problem’).

acps(ocpab, Renewable Resource Mgmt Problem').

acps(ocpba,'Structured Non-renewable Resource Mgmt Problem').

acps(ocpbb,'Object Recording Problem').

acps(opp,'Single Object Spatial Management Problem’).

Thu, Nov 28, 1991 Page 4

ACP Descriptions.5

acps(omp,'Object Monitoring Problem’).
acps(oap, Object Allocation Problem").
acps(oapaa,'Constrained Object Allocation Problem’).

/* The high-level functional thesaurus, which retrieves correct and other
most likely example model for each function which was input. One
input exists for each function in the thesaurus. */

mainfunctions(loan,ocp,0ap).
mainfunctions(borrow,ocp,o0ap).
mainfunctions(dispatch,ocp,oap).
mainfunctions(send,ocp,opp).
mainfunctions(lend,ocp,oap).
mainfunctions(goods_out,ocp,0ap).
mainfunctions(receipt,ocp,0ap).
mainfunctions(input,ocp,0ap).
mainfunctions(goods_in,ocp,opp).
mainfunctions(arrival,ocp,omp).
mainfunctions(addition,oap,ocp).
mainfunctions(allocate,oap,ocp).
mainfunctions(assign,oap,opp)-
mainfunctions(place,oap,ocp).
mainfunctions(correct,oap,ocp).
mainfunctions(join,oap,ocp).
mainfunctions(return,ocp,0ap).
mainfunctions(finish_loan,ocp,0ap).
mainfunctions(check_position,omp,opp).
mainfunctions(monitor,omp,opp).
mainfunctions(record,ocp,0ap).

Thu, Nov 28, 1991 Page 5

Reset Data Base Program Thu, Nov 28, 1991 Page 138

/* This program resets the recorded analogous mappings and the target
domain data base through commands accessed on the 'Run Ira menu'. */

/* Series of heuristics to remove all generated analogous mappings. A
dummy rule is included that the rule fires even when no mappings
exist in the data base. Findall is necessary to ensure that all deletions
are carried out in the one call to a routine. */

removeall_mappings :-
disable_item('Control','Tdentify Mappings’),
banner(findall(_,remove_eachmapping,_),[Please be patient - Ira is removing all previous analogous

mappings'],150,110).

remove_eachmapping :-
retractall(rec_acpmatch(_)).
remove_eachmapping :-
retractall(rec_statmapping(_,_s_s_s—s_>))-
remove_eachmapping :-
retractall(rec_dynmapping(_—s—»—s—s_s—s—)-
remove_eachmapping :-
retractall(rec_propmapping(L,——._))-
remove_eachmapping :-
retractall(rec_condmapping(_s—s——))-
remove_eachmapping :-
retractall(rec_funcmapping(_.))-
remove_eachmapping :-
retractall(rec_objectmatch(_,_.—._))-
remove_eachmapping :-
retractall(rec_reqtmapping 1 (_s_,_s—s—s_))-
remove_eachmapping :-
retractall(rec_reqtmapping2(_,_,_s—s—s—s))-
remove_eachmapping :-
retractall(rec_scopemapping(_,_,_s—s—s—s—)
remove_eachmapping :-
retractall(rec_funcmapping(_,_)).
remove_eachmapping :-
retractall(rec_labelmapping(_,_)).
remove_eachmapping :-
retractall(rec_phymapping(_,_,_,_)).
remove_eachmapping :- !.

/* Series of heuristics to remove all target data from data base. A dummy
rule is included to ensure firing when no target rules exist. */

removeall_target :-
retractall(target_object()).
removeall_target :-
retractall(target_sdata(_,_._))-
removeall_target :-
retractall(target_ddata(_,_,——))-
removeall_target :-
retractall(target_cdata(_,_))-
removeall_target :-
retractall(target_pdata(_._))-
removeall_target :-
retractall(target_scope(_._))-
removeall_target :-
retractall(target_reqt(_._,_))-
removeall_target :-

Reset Data Base Program.2

retractall(target_reqt(_,_,_,)).
removeall_target :-
retractall(target_phyprop(_,_)).
removeall_target :-
retractall(target_label()).
removeall_target :-
retractall(target_goal(_)).
removeall_target :-
retractall(target_name(_)).
removeall_target :-
assertz(target_object(world)).

Thu, Nov 28, 1991 Page 139

Descriptions of the Matching Algorithms
of the Analogy Engine

Difference Matching Program Thu, Nov 28, 1991 Page 15

/* Program to examine the critical differences between ACPs, looking
at each selected_acp in turn - the critical differences are implicitly
built into the rules */

/* First layer of rules identifies the level of success for each Acp. */

perfect_difference(Selected_acp) :-
calc_difference(Selected_acp,Diffscore),
Diffscore >= 80.

good_difference(Selected_acp) :-
calc_difference(Selected_acp,Diffscore),
Diffscore >= 50,

Diffscore < 80.

poor_difference(Selected_acp) :-
calc_difference(Selected_acp,Diffscore),
Diffscore >= 0,

Diffscore < 50.

fail_difference(Selected_acp) :-
calc_difference(Selected_acp,Diffscore),
Diffscore < 0.

/* First-level comparision program which identifies the scale of
difference between problems, to decide whether the difference is
effective for the matching process. It analyses all scores for all
abstractions in the search space, sorts them, then checks the difference
to establish a gap of at least 33% between the best and other
abstractions. A special rule is included to permit the OAPAA to pass this
rule successfully, since the generic version of the rule fails with only
one son at the level of the hierarchy. */

effective_difference(oapaa) :- !.

effective_difference(Selected_acp) :-
findall((Score,Candidate_acp),(

father(Father,Selected_acp),

father(Father,Candidate_acp),
calc_difference(Candidate_acp,Score)),

Acplist),

sort(Acplist,Newlist,[],1),
Newlist=[(Scorel,Selected_acp),(Score2,Second_acp)IRest],
Difference is Scorel-Score2,

Difference>=33.

/* Second layer of rules to count the totals of good and bad differences
for each selected_acp. A specific version of the rule is given for OAPAA
since it has 0 differences, and the program must not be allowed to
divide by zero. */
calc_difference(oapaa,0) :- !. '
calc_difference(Selected_acp,Diffscore) :-
good_diffscore(Selected_acp,Difftotal),
acp_total_differences(Selected_acp,Total),
Diffscore is (Difftotal/Total)*100.

/* Third layer of rules to develop a list of good matches and to count

Difference Matching Program.2
this list to give a total of all good difference matches. */

good_diffscore(Selected_acp,Good_score) :-
findall(Diffs,difference_matches(Diffs,Selected_acp),Diff_list),
length(Diff_list,Good_score).

/* Fourth layer of rules to identify the good differences for each acp
in turn. Double-strength, important differences are possible if the
difference rule is repeated and an additional DIFF is put into the
Diff-list. */

/* Differences to distinguish OCP, OMP, OAP & OPP structures. Several
complex rules are used here to assist in the matching process. */

/* Difference 1- the number of slots in the world. */

difference_matches(Diffs,ocp) :-
static_mapping(_._,space,slot,has_one,Score,ocp),
Diffs = ml.

difference_matches(Diffs,oap) :-
static_mapping(_,_,space,allocation,has_one,Score,0ap),
Diffs = ml.

difference_matches(Diffs,opp) :-
static_mapping(_,_,space,slot,has_one,Score,opp),
Diffs = m1.

difference_matches(Diffs,omp) :-
static_mapping(_,_,space,slot,has_many,Score,omp),
Diffs = ml.

/* Difference 2- the number of objects held in the external world. */

difference_matches(Diffs,omp) :-
static_mapping(_,_,space,object,has_no,Score,omp),
Diffs = m2.

difference_matches(Diffs,opp) :-
static_mapping(_,_,space,object,has_one,Score,opp),
Diffs = m2.

difference_matches(Diffs,ocp) :-
static_mapping(_,_,space2,object,has_many,Score,ocp),
Diffs = m2.

difference_matches(Diffs,oap) :-
static_mapping(_,_,space,object,has_many,Score,oap),
Diffs = m2.

/* Difference 3- the scope of object movements external to the world. */
difference_matches(Diffs,omp) :-
target_scope(_,0Obj1,0b;j2,0bj3,move_one),
object_matching(Obj1,object,_),

object_matching(Obj2,slot,_),

object_matching(Obj3,slot,_),

Diffs = m3.

Thu, Nov 28, 1991 Page 16

Difference Matching Program.3

/* Difference 4- safety-critical systems. */
/*

difference_matches(Diffs,ocp) :-

not target_data(safety_critical),

Diffs = m4.

sk

/* Difference 5- real-time systems. */
/*

difference_matches(Diffs,omp) :-
target_data(realtime_system),

Diffs = m5.

*

/* Difference 6- the importance of properties to the object movement.
This rule is double strength in order to differentiate between similar
OAP and OCP structures. */

difference_matches(Diffs,oap) :-
property_mapping(_,object,different_object_types,oap),
Diffs = m6.

difference_matches(Diffs,oap) :-
property_mapping(_,object,different_object_types,oap),
Diffs = m6.

difference_matches(Diffs,oap) :-
property_mapping(_,object,different_object_types,oap),
Diffs = m6.

difference_matches(Diffs,ocp) :-
property._mapping(_,object,resource,ocp),
Diffs = m6.

difference_matches(Diffs,ocp) :-
property_mapping(_,object,resource,ocp),
Diffs = m6.

difference_matches(Diffs,ocp) :-
property_mapping(_,object,resource,ocp),
Diffs = m6.

difference_matches(Diffs,ocp) :-
property_mapping(_,slot,resource_container,ocp),
Diffs = m6.

difference_matches(Diffs,ocp) :-
property_mapping(_,slot,resource_container,ocp),
Diffs = m6.

difference_matches(Diffs,ocp) :-
property_mapping(_,slot,resource_container,ocp),
Diffs = m6.

difference_matches(Diffs,omp) :-
object_matching(Tobj,object,omp),

not target_pdata(Tobj,_),
Diffs = m6.

difference_matches(Diffs,omp) :-
object_matching(Tobj,object,omp),

Thu, Nov 28, 1991 Page 17

Difference Matching Program.4

not target_pdata(Tobj,_),
Diffs = m6.

difference_matches(Diffs,omp) :-
object_matching(Tobj,object,omp),
not target_pdata(Tobj,_),

Diffs = m6.

/* Difference 7- Direction of movements between slots for OCP & OAP.

These rules are also double strength, since it is important to
discriminate between the OCP and OAP structures which have few

structures. */

difference_matches(Diffs,ocp) :-
dynamic_mapping(_,_,_.object,slot,space2,move_many,_,0cp),
Diffs = m7.

difference_matches(Diffs,ocp) :-
dynamic_mapping(_,_,_.object,slot,space2,move_many,_,0Cp),
Diffs = m7.

difference_matchcs(Diffs,oap) - '
dynamic_mapping(_,_._.object,space,allocation,move_many,_,0ap),

Diffs = m7.

difference_matches(Diffs,0ap) :- _
dynamic_mapping(_,_,_,object,space,allocation,move_many,_,oap),

Diffs = m7.

[* Difference 8- Difference to identify simple moves of the OPP
structure, in particular to differentiate it from the OMP structure. */

difference_matches(Diffs,opp) :-
dynamic_mapping(_,_,_,object,spacel,slot,move_one,_,opp),
Diffs = mS8.

difference_matches(Diffs,opp) :-
dynamic_mapping(_,_,_,object,spacel,slot,move_one,_,opp),
Diffs = m8.

difference_matches(Diffs,opp) :-
dynamic_mapping(_,_,_,object,slot,space2,move_one,_,0pp),
Diffs = m8.

difference_matches(Diffs,opp) :-
dynamic_mapping(_,_,_.object,slot,space2,move_one,_,opp),
Diffs = m8.

/* Difference 9- Difference to identify simple moves of the OMP
structure. */

difference_matches(Diffs,omp) :- '
dynamic_mapping(_,_,_.object,slot,slot,move_one,_,omp),
Diffs = m9.

difference_matches(Diffs,omp) :-
dynamic_mappin g(_,_,_,object,slot,slot,move_one,_,omp),
Diffs = m9.

Thu, Nov 28, 1991 Page 18

Difference Matching Program.5

difference_matches(Diffs,omp) :-
dynamic_mapping(_,_,_,object,slot,slot,move_one,_,omp),

Diffs = m9.
/* Differences based on the functionality of the problem. */

difference_matches(Diffs,ocp) :-
function_mapping(F,ocp),
Diffs = m9a.

difference_matches(Diffs,omp) :-
function_mapping(F,omp),
Diffs = m9a.

difference_matches(Diffs,oap) :-
function_mapping(F,oap),
Diffs = m9a.

difference_matches(Diffs,opp) :-
function_mapping(F,opp),
Diffs = m9a.

/* Differences between the OCPAA and OCPAB structures. */

/* Difference 1- important difference on the movements into the slot. */

difference_matches(Diffs,ocpaa) :-

dynamic_mapping(_,_,_,object,space1,slot,move_many,Score,ocpaa),

Diffs = m10.

difference_matches(Diffs,ocpaa) :-

dynamic_mapping(_,_,_.object,spacel,slot,move_many,Score,ocpaa),

Diffs = m10.

difference_matches(Diffs,ocpaa) :-

dynamic_mapping(_,_,_.object,spacel,slot,move_many,Score,ocpaa),

Diffs = m10.

difference_matches(Diffs,ocpaa) :-

dynamic_mapping(_,_,_.object,spacel,slot,move_many,Score,ocpaa),

Diffs = m10.

difference_matches(Diffs,ocpab) :-

dynamic_mapping(_,_,_,objcct,space2,slot,move_many,Score,ocpab),

Diffs = m10.

difference_matches(Diffs,ocpab) :-

dynamic_mapping(_,_,_.0bject,space2,slot,move_many,Score,ocpab),

Diffs = m10.
difference_matches(Diffs,ocpab) :-

dynamic_mapping(_,_,_.object,space2,slot,move_many,Score,ocpab),

Diffs = m10.

/* Difference 2- difference between the requirements for two problems. */

difference_matches(Diffs,ocpaa) :-

calc_reqt2(_,_,slot,object,contains_many,minimum_qty,ocpaa),

Diffs = m11.

Thu, Nov 28, 1991 Page 19

Difference Matching Program.6

difference_matches(Diffs,ocpab) :-
calc_reqt2(_,_,space2,object,contains_many,date_limit,ocpab),
Diffs =ml1.

/* Difference 3- difference on functionality of state transitions. */

difference_matches(Diffs,ocpab) :-
function_mapping(F,ocpab),
Diffs =ml1a.

difference_matches(Diffs,ocpaa) :-
function_mapping(F,ocpaa),
Diffs =mlla.

/* Differences between the OCPBA & BB structures. */
/* Difference 1- the structure of objects within the major slot. */

difference_matches(Diffs,ocpba) :-
static_mapping(_,_,slot,smallslot,has_many,Score,ocpba),
Diffs = ml2.

difference_matches(Diffs,ocpbb) :-
static_mapping(_,_,slot,object,contains_many,Score,ocpbb),
Diffs = m12.

/* Difference 2- the space of object movement out of the slot. */

difference_matches(Diffs,ocpbb) :-
target_scope(_,0bj1,0bj2,0bj3,move_many),
object_matching(Obj1,object,_),
object_matching(Obj2,slot,_),
object_matching(Obj3,space2,_),

Diffs = m13.

/* Difference 3 - the functional mapping on state transformations. */

difference_matches(Diffs,ocpbb) :-
function_mapping(F,ocpbb),
Diffs =ml3a.

difference_matches(Diffs,ocpba) :-
function_mapping(F,ocpba),
Diffs = m13a.

Thu, Nov 28, 1991 Page 20

Label Matching Program

[* These are the rules to match the labels assigned to each acp
to assist the analogous matching process */

[* First layer of rules to identify the category of label match which has
occured */

perfect_label(Selected_acp) :-
calc_label(Selected_acp,Label_score),
Label_score =:= 3.

good_label(Selected_acp) :-
calc_label(Selected_acp,Label_score),
Label_score =:= 2.

poor_label(Selected_acp) :-
calc_label(Selected_acp,Label_score),
Label_score =:= 1.

fail_label(Selected_acp) :-
calc_label(Selected_acp,Label_score),
Label_score =:=0.

[* Second layer to generate a list of matched labels then count the list */

calc_label(Selected_acp,Label_score) :-
setof(Acp_label,labels_match(Acp_label,Selected_acp),Labels_list),
length(Labels_list,Label_score).

calc_label(Selected_acp,Label_score) :-
not labels_match(Acp_label,Selected_acp),
Label_score is 0.

f* Third layer checks each acp-label for membership of the target labels
list */

labels_match(Acp_label,Selected_acp) :-
acp_label(Acp_label,Selected_acp),
target_label(Target_label),
compare(=,Acp_label, Target_label).

Thu, Nov 28, 1991 Page 70

Object Mapping Program

/¥ Program to infer the analogical existence of addition domain facts
- this program only checks the static and dynamic knowledge
mappings since they identify all possible relations linking mapped
objects */

create_data(Tobj1,Tobj2,Trelation) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Trelation,Acp).

create_data(Tobj1,Tobj2,Tobj3,Srelation) :-

- dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Trelation,Acp).

Thu, Nov 28, 1991 Page 102

Physical Matching Program

/* Program to examine the match with non-critical physical aspects of
a good-matching acp, in order to further justify and extend the
analogy */

/* The first rule identifies basic match with the physical structure of the
acp */

physical_acp(Acp) :-
findall(Prop,prop_phymatch(_,_,Prop,Acp),List),
length(List, Total_matches),
acp_phymappings(Acp,All_matches),
Total_matches/All_matches >= 0.65.

/* Second level rules to actually match physical features. A match only
occurs if there is an object match identified in the recorded mappings,
so need to develop this component. */

prop_phymatch(Tobj,Sobj,Tproperty,Acp) :-
target_phyprop(Tobj,Tproperty),
acp_phyprop(Sobj,Sproperty,Acp),
compare(=,Tproperty,Sproperty),
rec_objectmatch(Tobj,Sobj,_,_).

Thu, Nov 28, 1991 Page 106

Record Matched ACP Program Thu, Nov 28, 1991 Page 127

/* This program identifies confirmed analogous mappings and records
these mappings in the data base in order to use for explanation and
support of the analogy. Ira only records successful analogies - i.e. those
which are a good analogous match. The program also records the name
of the matched acp. There is a findall to ensure that all relevant and
good mappings with an ACP are recorded. */

record_acpmatch(Acp) :-
findall(Acp,record_match(Acp),Anylist).

record_match(Acp) :-
enable_item('Control', Identify Mappings'’),
assertz(rec_acpmatch(Acp)).

record_match(Acp) :-
static_mapping(Tobj1,Tobj2,Sobj1,Sobj2, Trelation,Score,Acp),
assertz(rec_statmapping(Tobj1,Tobj2,Sobj1,Sobj2, Trelation,Score,Acp)).

record_match(Acp) :-
dynamic_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Trelation,
Score,Acp),
assertz(rec_dynmapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,
Trelation,Score,Acp)).

record_match(Acp) :-
property_mapping(Tobj1,Sobjl,Sproperty,Acp),
assertz(rec_propmapping(Tobj1,Sobj1,Sproperty,Acp)).

record_match(Acp) :-
condition_mapping(Tobj1,Tobj2,Tobj3,Sobjl,
Sobj2,Sobj3,Rel,Condition,Acp),
assertz(rec_condmapping(Tobj1,Tobj2,Tobj3,Sobj1,
Sobj2,Sobj3,Rel,Condition,Acp)).

record_match(Acp) :-
function_mapping(Amvmt,Acp),
assertz(rec_funcmapping(Amvmt,Acp)).

record_match(Acp) :-
calc_reqt1(Tobj1,Tobj2,Sobj1,Sobj2,Relation,Acp),
assertz(rec_reqtmapping1(Tobj1,Tobj2,Sobj1,Sobj2,Relation,Acp)).

record_match(Acp) :-
calc_reqt2(Tobj1,Tobj2,Sobj1,Sobj2,Relation,Ident,Acp),
assertz(rec_reqtmapping2(Tobj1,Tobj2,Sobj1,Sobj2,Relation,Ident,Acp)).

record_match(Acp) :-
calc_scope(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Acp),
assertz(rec_scopemapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Acp)).

record_match(Acp) :-
labels_match(Label,Acp), '
assertz(rec_labelmapping(Label, Acp)).

record_match(Acp) :-
prop_phymatch(Tobj,Sobj,Property,Acp),
assertz(rec_phymapping(Tobj,Sobj,Property,Acp)).

/* Set of rules to record all object matches upon completion of a match.

Record Matched ACP Program.2 Thu, Nov 28, 1991 Page 128

These rules are similar to those which operate on current acp, but to
avoid unnecessary complexities it is necessary to develop and identify
them separately. A FINDALL rule is used to ensure all of the necessary
assertions are achieved. These call rules which identify specific
matchings which examine the recorded predicates determined above.
The first, high-level rule is the FINDALL rule which operates two
searches. */

record_match(Acp) :-
findall(Acp,record_oldmapping(Acp),Otherlist),
findall(Acp,record_newmapping(Acp),Anylist).

/* The second-level ruleset which identifies each object-matching pair.
There are two rules here. The first updates existing object matches
while the second creates new object matches which did not exist. The
critical control in this mechanism is recording the ACP in the object
matching. The firing loop in each of these rules in determined by the
ACP label in the match - do not fire in the object match has been
altered to the current ACP. */

record_oldmapping(Acp) :-

objrec_match(Tobj,Sobj,_,Acp),
rec_objectmatch(Tobj,Sobj,Oldscore,Oldacp),
Acp=\=Oldacp,change_objectmatch(Tobj,Sobj,0Oldscore,Acp).

change_objectmatch(Tobj,Sobj,Oldscore,Acp) :-
current_matches(Tobj,Sobj,Score,Acp),

Newscore is Oldscore + Score,
retract(rec_objectmatch(Tobj,Sobj,Oldscore,_)),
assertz(rec_objectmatch(Tobj,Sobj,Newscore,Acp)),!.

record_newmapping(Acp) :-
objrec_match(Tobj,Sobj,_,Acp),

not rec_objectmatch(Tobj,Sobj,_,_),
current_matches(Tobj,Sobj,Score,Acp),
assertz(rec_objectmatch(Tobj,Sobj,Score,Acp)).

/* The third-level ruleset which identifies specific recorded matchings,
from those which were previously recorded for the acp, or those
identified during mapping with previous acps. */

objrec_match(Tobj,Sobj,Score,Acp) :-
rec_statmapping(Tobj,_.Sobj,_,_,Score,Acp).

objrec_match(Tobj,Sobj,Score,Acp) :-
rec_statmapping(_,Tobj,_.Sobj,_,Score,Acp).

objrec_match(Tobj,Sobj,Score,Acp) :-
rec_dynmapping(Tobj,_,_,Sobj,_,_,_,Score,Acp).

objrec_match(Tobj,Sobj,Score,Acp) :-
rec_dynmapping(_,Tobj,_,._,Sobj,_,_,Score,Acp).

objrec_match(Tobj,Sobj,Score,Acp) :-
rec_dynmapping(_,_,Tobj,_,_,Sobj,_,Score,Acp).

/* Rule to determine object scores for the match with the current acp
only. This stage in the program must only identify the score for the
current acp matches, so not to cummulate the score twice. It is a

Record Matched ACP Program.3 Thu, Nov 28, 1991 Page 129

separate routine based on that used in the static and dynamic-mapping
routines. It repeats the same techniques, and omits to count the
previous other object totals, so large numbers of the processes are
matched. */

/* Basic rule for identifying all possible current object matches. */

current_matches(Tobj,Sobj, Totalscore,Acp) :-
findall(Score,current_match(Tobj,Sobj,Score,Acp),Scorelist),
object_scores(Scorelist,0,Totalscore).

current_match(Tobj,Sobj,Score,Acp) :-
current_static(Tobj,_,Sobj,_,_,Score,Acp).

current_match(Tobj,Sobj,Score,Acp) :-
current_static(_,Tobj,_,Sobj,_,Score,Acp).

current_match(Tobj,Sobj,Score,Acp) :-
current_dynamic(Tobj,_,_,Sobj,_,_,_,Score,Acp).

current_match(Tobj,Sobj,Score,Acp) :-
current_dynamic(_,Tobj,_,_,Sobj,_,_,Score,Acp).

current_match(Tobj,Sobj,Score,Acp) :-
current_dynamic(_,_,Tobj,_,_,Sobj,_,Score,Acp).

/* Matching techniques borrowed from structure mapping program. It
remains similar expect the routine names called from above. One
result from using this technique is that abjects score double in the
event of a tie, so leave this in the system for the moment, although
may need fixing at a later date. */

/* Four basic matching rules called by the above techniques. */

current_static(Tobj1,Tobj2,Sobj1,Sobj2,Trelation,Score,Acp) :-
acp_sdata(Sobj1,Sobj2,Srelation,Acp),
target_sdesc(Tobj1,Tobj2,Trelation),

compare(=,Srelation, Trelation),

not rec_statmapping(T1,T2,Sobj1,Sobj2,Trelation,Any),

not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),
structure_scurrent(Sobj1,Sobj2,Tobj1,Tobj2,Trelation,Score,Acp),
possible_scurrents(Sobj1,Sobj2,Tobj1,Tobj2, Trelation,Scores,Acp),
sort(Scores,Sorted_scores,[],1),

Sorted_scores = [Other_scorelRest],

Score >= Other_score.

current_static(Tobj1,Tobj2,Sobj1,Sobj2,Trelation,Score,Acp) :-
acp_sdata(Sobj1,Sobj2,Srelation,Acp),
target_sdesc(Tobj1,Tobj2,Trelation),
compare(=,Srelation,Trelation),

not rec_statmapping(T1,T2,Sobj1,Sobj2, Trelation,Any),

not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),

not multi_stmapping(Trelation,Acp),
structure_scurrent(Sobj1,Sobj2,Tobj1,Tobj2, Trelation,Score,Acp).

curreqt_dynamic(Tobj 1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,
Trelation,Score,Acp) :-

Record Matched ACP Program.4 Thu, Nov 28, 1991 Page 130
acp_ddata(_,Sobj 1,Sobj2,Sobj3,_Srclatioq,Acp),
target_ddesc(_,Tobj1,Tobj2,Tobj3,Trelation),

compare(=,Srelation, Trelation), ' _

not rec_dynmapping(T1,T2,T3,Sobj1 ,Sobj2,Sobj3,Trelation,Any),
not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),

not detailed_object(Tobj3,Acp), _)
structure_dcurrent(Sobj1,S0bj2,Sobj3,Tobj1,Tobj2,Tobj3,
Trelation,Score,Acp), _)
possible_dcurrents(Sobj1,Sobj2,S0bj3,Tobj1,Tobj2,Tob;j3,
Trelation,Scores,Acp),

sort(Scores,Sorted_scores,[],1),

Sorted_scores = [Other_scorelRest],

Score >= Other_score.

current_dynamic(Tobj1,Tobj2,Tobj3,Sobj1,50bj2,Sobj3,
Trelation,Score,Acp) :-
acp_ddata(_,Sobj1,Sobj2,Sobj3,Srelation,Acp),
target_ddesc(_,Tobj1,Tobj2,Tobj3,Trelation),
compare(=,Srelation, Trelation),

not rec_dynmapping(T1,T2,T3,Sobj1,Sobj2,S0bj3,Trelation,Any),
not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),

not detailed_object(Tobj3,Acp),

not multi_dymapping(Trelation,Acp),
structure_dcurrent(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,
Trelation,Score,Acp).

/* Rules to match the candidate structure. */

structure_scurrent(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Score,Acp) :-
findall(Rel,object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Acp),
Slist),length(Slist,Score).

structure_dcurrent(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Score,Acp) :-
findall(Rel,object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Acp),
Dlist),length(Dlist,Score).

/* Rules to identify the alternative options required for consideration. */

possible_scurrents(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Scorelist,Acp) :-
findall(Score,(

target_sdesc(Toth1,Toth2,Rel),
possible_scurrent(Sobj1,Sobj2,Toth1,Toth2,Rel,Score,Acp),

not same_ staticobjects(Tobj1,Tobj2,Toth1,Toth2)),

Scorelist),!.

possible_scurrent(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Score,Selected_acp) :-
target_sdesc(Tobj1,Tobj2,Rel),
findall(Rel,object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp),Slist),
length(Slist,Score).

possible_dcurrents(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Slist,Acp) :-
findall(Score,(
target_ddesc(_,Toth1,Toth2,Toth3,Rel),
possible_dcurrent(Sobj1,Sobj2,Sobj3,Toth1,Toth2,Toth3,Rel,Score,Acp),
gcl).t s;n'ne_dynamicobj ects(Tobj1,Tobj2,Tobj3,Toth1,Toth2,Toth3)),

ist),!.

Record Matched ACP Program.5 Thu, Nov 28, 1991 Page 131

possible_dcurrent(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Score,Acp) :-
target_ddesc(_,Tobj1,Tobj2,Tobj3,Rel),
findall(Rel,object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Acp),
Dlist),length(Dlist,Score).

Requirements Matching Program

/* Program to investigate matching between requirements for a selected
acp - as with scoping the requirements features are quite simplistic,
and the program is directly linked to the features of each acp */

/* First layer of rules to determine the level of requirements matching */

perfect_requirements(Selected_acp) :-
calc_requirements(Selected_acp,Reqts_score),
Reqts_score > 75.

good_requirements(Selected_acp) :-
calc_requirements(Selected_acp,Reqts_score),
Reqts_score =< 75,

Reqts_score > 50.

poor_requirements(Selected_acp) :-
calc_requirements(Selected_acp,Reqts_score),
Reqts_score =< 50,

Reqts_score > 25.

fail_requirements(Selected_acp) :-
calc_requirements(Selected_acp,Reqts_score),
Reqts_score =< 25,!.

/* Second layer of rules to identify the Requirements score for
each acp. Two rules fire, one to get either type of requirement
which may exist in the system. An initial version of the rule is needed
to allow for the possibility of no available requirements. */

calc_requirements(Selected_acp,100) :-
acp_reqt_total(Selected_acp,0),!.

calc_requirements(Selected_acp,Reqts_score) :-
get_reqtl(Selected_acp,Scorel),
get_reqt2(Selected_acp,Score2),

Total = Scorel + Score2,
acp_reqt_total(Selected_acp,Acp_total),
Reqts_score is (Total/Acp_total) * 100.

/* Get_reqt rules for each requirement type give a score for the total
number of matches which occur for both types of requirement. This
program counts up the instances pf matches, then gets rid of
duplicates to give the true number of matches for the program */

get_reqt1(Selected_acp,Score) :-
findall(calc_reqt1(_,_,_,_._,Selected_acp),L1),
length(L1,Score).

get_reqt2(Selected_acp,Score) :-
ﬁnda.ll (C a]c_reqt2(_,_,_,_,_,_,seleCted_aCP) 7L 1)9
length(L1,Score).

/* Third layer of rules to identify individual instances of matches with
the requirements - three rules exist to cater for the possible
descriptions of the requirements in the system. Note that the target
description is the reformulated description, so that the target may
successfully match as possible. */

calc_reqt1(Tobj1,Tobj2,Sobj1,Sobj 2,Relation,Selected_acp) :-

Thu, Nov 28, 1991 Page 136

Requirements Matching Program.2

acp_reqt(Sobj1,Sobj2,Relation,Selected_acp),
target_reqts(Tobj1,Tobj2,Relation),
static_mapped(Tobj1,Tobj2,Sobj1,Sobj2,Relation,Score,Selected_acp).

calc_reqt2(Tobj1,Tobj2,Sobj1,Sobj2,Relation,Identifier,Selected_acp) :-
acp_reqt(Sobj1,Sobj2,Relation,Identifier,Selected_acp),
target_reqts(Tobj1,Tobj2,Relation,Identifier),
static_mapped(Tobj1,Tobj2,Sobj1,Sobj2,Relation,Score,Selected_acp).

Thu, Nov 28, 1991 Page 137

Scope Matching Program Thu, Nov 28, 1991 Page 145

/* Programs to determine the scope details of each selected acp -
due to the limited extent played by problem scope, these rules are
purely acp-dependent, and directly identify the match_scope value
without the need for a calc_scope to be done. */

perfect_scope(Selected_acp) :-
calc_scope(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Relation,Selected_acp).

calc_scope(Tobj1,Tobj2,Tobj3,0bject,slot,space2,move_many,ocp) :-
acp_scope(Atran,ocp),
acp_ddata(Atran,object,slot,space2,move_many,ocp),
target_scope(Ttran),
target_ddesc(Ttran,Tobj1,Tobj2,Tobj3,move_many),
dynamic_mapping(Tobj1,Tobj2,Tobj3,
object,slot,space2,move_many,_,ocp).

calc_scope(Tobj1,Tobj2,Tobj3,0bject,space2,slot,move_many,ocpab) :-
acp_scope(Atran,ocpab),
acp_ddata(Atran,object,space2,slot,move_many,ocpab),
target_scope(Ttran),
target_ddesc(Ttran,Tobj1,Tobj2,Tobj3,move_many),
dynamic_mapping(Tobj1,Tobj2,Tobj3,
object,space2,slot,move_many,_,ocpab).

calc_scope(Tobj1,Tobj2,Tobj3,0bject,spacel,slot,move_many,ocpbb) :-
acp_scope(Atran,ocpbb),
acp_ddata(Atran,object,spacel,slot,move_many,ocpaa),
target_scope(Ttran),
target_ddesc(Ttran,Tobj1,Tobj2,Tobj3,move_many),
rec_dynmapping(Tobj1,Tobj2,Tobj3,
object,spacel,slot,move_many,_,ocpaa).

calc_scope(Tobj1,Tobj2,Tobj3,0bject,slot,slot,move_one,omp) :-
acp_scope(Atran,omp),

acp_ddata(Atran,object,slot,slot,move_one,omp),

target_scope(Ttran),

target_ddesc(Ttran,Tobj1,Tobj2,Tobj3,move_one),
dynamic_mapping(Tobj1,Tobj2,Tobj3,0bject,slot,slot,move_one,_,omp).

calc_scope(Tobj1,Tobj2,Tobj3,0bject,spacel,slot,move_one,opp) :-
acp_scope(Atran,opp),

acp_ddata(Atran,object,spacel,slot,move_one,opp),

target_scope(T'tran),

target_ddesc(Ttran,Tobj1,Tobj2,Tobj3,move_one),
dynamic_mapping(Tobj1,Tobj2,Tobj3,object,spacel,slot,move_one,_,0pp).

calc_scope(Tobj1,Tobj2,Tobj 3,object,slot,space2,move_one,opp) :-
acp_scope(Atran,opp),

acp_ddata(Atran,object,slot,space2,move_one,opp),

target_scope(Ttran),

target_ddesc(Ttran,Tobj1,Tobj2,Tobj3,move_one),
dynamic_mapping(Tobj1,Tobj2,Tobj3,0bject,slot,space2,move_one,_,0pp).

good_scope(Selected_acp) :- !,fail.
poor_scope(Selected_acp) :- !,fail.
fail_scope(Selected_acp) :- ! fail.

Selection Control Program Thu, Nov 28, 1991 Page 146

/* There are two major sequential goals to the selection control program.
The first goal (checking) works down to identify the appropriate
additional processing which is necessary to identify final good match, &
provide additional interaction with analyst. Second sequential goal
(matching) works from the new data about problem, and either searches
then search space or accepts to agreed input from the analyst (requiring
no further processing. These goals are distributed about the processing
of the search mechanism. Here we identify goal for first-pass search of
of the space, and the goal which researches the space once the analyst
has been prompted, and the engine has received guidance from the
analyst. */

/* The first rule (check a new sub-tree in the search space) checks for
correct father and searches for matches with the existing data. It calls
a second rule to do summarisation of good and partial searches. It
is also important to check for bottom of the search tree, i.e. no
candidate sons to be searched, so a check is made initially in the
rule. The second version of this rule is included to stop the search if
no system name has been input - this is obligatory for the system to
run. */

searching_acps(Prev_acp) :-
not father(Prev_acp,_),
stop_searching(Prev_acp),!.

searching_acps(Prev_acp) :-

not target_name(Name),

beep(60),mdialog(85,130,140,350,

[button(100,127,20,100,'Continue’),

text(20,20,64,310,"You must identify the name of the system before attempting an analogous match. Please
CONTINUE then use the OTHER INPUTS menu to identify the name of the system.")],Btn),!.

searching_acps(Prev_acp) :-

target_name(Name),

banner(acp_checking(Prev_acp),['Please be patient - Ira is reasoning analogously to match
the',Name,'problem'],150,110).

/* Second-level search rules which react to results from search and
if necessary elicit additional knowledge from the analyst. */

/* One good match - the easiest case. Record ACP match and search at
next level. */

acp_checking(Prev_acp) :-
good_match(Prev_acp,Glist),
length(Glist,T),T =1,

Glist = [New_acpINone],
record_acpmatch(New_acp),
searching_acps(New_acp),!.

/* Two good matches - analyst decision between possible options */
acp_checking(Prev_acp) :-

good_match(Prev_acp,Glist),

length(Glist,T), T >= 1,

goodmatches_dialogue(Glist),!.

/* One partial match, eliciting further target knowledge then search */

Selection Control Program.2 Thu, Nov 28, 1991 Page 147

acp_checking(Prev_acp) :-
partial_match(Prev_acp,Plist),
length(Plist,T),T = 1,

Plist = [Acp|None],
partmatchl_dialogue(Acp),!.

/* Select between several partial matches presented to analysts */

acp_checking(Prev_acp) :-
partial_match(Prev_acp,Plist),
length(Plist,T),T >=1,
partmatch2_dialogue(Plist),!.

/* Failed match - stop searching */

acp_checking(Prev_acp) :-
stop_searching(Prev_acp).

/* First-level rule to research problem space once additional
knowledge elicited from analyst. */

matching_acps(Prev_acp) :-

target_name(Name),

banner(acp_matching(Prev_acp),['Please be patient - Ira is reasoning analogously to match
the',Name,'problem'],150,110).

/* Second level rules to identify results of searching space after
additional knowledge elicited from analyst. There are fewer routines
here than for the first pass checking-acp due to the possible
nature of the knowledge. */

/* Single good match - the easiest case. Record the matched ACP and
search at the next level of hierarchy. */

acp_matching(Prev_acp) :-
good_match(Prev_acp,Glist),
length(Glist,T),T =1,

Glist = [New_acplNone],
record_acpmatch(New_acp),
searching_acps(New_acp),!.

/* Two good matches - analyst decision between possible options */

acp_matching(Prev_acp) :-
good_match(Prev_acp,Glist),
length(Glist,T), T >=1,
goodmatches_dialogue(Glist),!.

/* One partial match - unable to extend searching any further. */

acp_matching(Prev_acp) :-
partial_match(Prev_acp,Plist),
length(Plist,T),T = 1,

Plist = [New_acplNone],
acceptmatches_dialogue(Plist),!.

/* Several partial matches - unable to extend searching any further. */

acp_matching(Prev_acp) :-

Selection Control Program.3 Thli, Nov 28, 1991 Page 148

partial_match(Prev_acp,Plist),
length(Plist,T),T >=1,
acceptmatches_dialogue(Plist),!.

/* Failed match, due to much changed target domain data. */

acp_matching(Prev_acp) :-
stop_searching(Prev_acp).

Structure Mapping Program Thu, Nov 28, 1991 Page 157

/* This program is central to identifying the analogy with an acp. It
determines analogous mappings between object-relations, and checks
the validity of each relation mapping against all other associated
mappings to ensure a coherent structure to the analogy */

/* Rules to map object-relations for static structural knowledge. There
are two rules - the first is more complex and decides between
‘Relations' which have several possible sets of object mappings which
must be added up and compared. The system maps the objects
around the relation which best fit into the remainder of the analogy
structure. There are two separate rules which are needed: i) to
ensure the program does not compare identical analogous mappings,
& ii) to check for the existence of several possible mappings in an
acp to decide which version of the mapping rule is required. If two
object mappings have equal best fit in the structure, then both are
analogously-mapped. */

static_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Trelation,Score,Acp) :-
acp_sdata(Sobj1,Sobj2,Srelation,Acp),
target_sdesc(Tobj1,Tobj2,Trelation),

compare(=,Srelation, Trelation),

not rec_statmapping(T1,T2,Sobj1,Sobj2,Trelation,Any),

not detailed_object(Tobjl,Acp),

not detailed_object(Tobj2,Acp),
static_structure(Sobj1,Sobj2,Tobj1,Tobj2, Trelation,Score,Acp),
static_possibles(Sobj1,Sobj2,Tabjl,Tobj2,Trelation,Scores,Acp),
sort(Scores,Sorted_scores,[],1),

Sorted_scores = [Other_scorelRest],

Score >= Other_score.

static_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Trelation,Score,Acp) :-
acp_sdata(Sobj1,Sobj2,Srelation,Acp),
target_sdesc(Tobj1,Tobj2,Trelation),

compare(=,Srelation, Trelation),

not rec_statmapping(T1,T2,Sobj1,Sobj2, Trelation,Any),

not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),

not multi_stmapping(Trelation,Acp),
static_structure(Sobj1,Sobj2,Tobj 1,Tobj2,Trelation,Score,AGP).

/* Check rule to support the above two analogous mappings */

multi_stmapping(Relation,Acp) :-
findall(Relation,target_sdesc(_,_,Relation), Tlist),
findall(Relation,acp_sdata(_,_,Relation,Acp),Slist),
length(Tlist,T),

length(Slist,S),

T+S>2.

/* Rules to map object-relation for dynamic structural knowledge. There
are two rules - the first is more complex and decides between
'Relations' which have several possible sets of object mappings which
must be added up and compared. The system maps the objects
around the relation which best fit into the remainder of the analogy
structure. There are two separate rules which are needed: i) to
ensure the program does not compare identical analogous mappings,
& ii) to check for the existence of several possible mappings in an
acp to decide which version of the mapping rule is required. */

Structure Mapping Program.2 Thu, Nov 28, 1991 Page 158

dynamic_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,
Trelation,Score,Acp) :-
acp_ddata(_,Sobj1,Sobj2,Sobj3,Srelation,Acp),
target_ddesc(_,Tobj1,Tobj2,Tobj3,Trelation),
compare(=,Srelation, Trelation),

not rec_dynmapping(T1,T2,T3,Sobj1,Sobj2,Sobj3,Trelation,Any),
not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),

not detailed_object(Tobj3,Acp),
dynamic_structure(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,
Trelation,Score,Acp),
dynamic_possibles(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,
Trelation,Scores,Acp),

sort(Scores,Sorted_scores,[],1),

Sorted_scores = [Other_scorelRest],

Score >= Other_score.

dynamic_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,
Trelation,Score,Acp) :-
acp_ddata(_,Sobj1,Sobj2,Sobj3,Srelation,Acp),
target_ddesc(_,Tobj1,Tobj2,Tobj3,Trelation),
compare(=,Srelation,Trelation),

not rec_dynmapping(T1,T2,T3,Sobj1,Sobj2,Sobj3,Trelation,Any),
not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),

not detailed_object(Tobj3,Acp),

not multi_dymapping(Trelation,Acp),
dynamic_structure(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,
Trelation,Score,Acp).

/* Check rule to support the above two analogous mappings */

multi_dymapping(Relation,Acp) :- _ .
ﬁndall(Relation,target_ddeSC(_,_,_,_,RC!aUOH),nISt?,
findall(Relation,acp_ddata(_,_,_,_.Relation,Acp),Slist),
length(Tlist,T),

length(Slist,S),

T+S>2.

/* Rules to map objects which have analogous property features */

property_mapping(Tobj1,Sobj1,Sproperty,Acp) :-
acp_pdata(Acp,Sobj1,Sproperty),
target_pdata(Tobj1,Tproperty),
compare(=,Sproperty, Tproperty),

not detailed_object(Tobj1,Acp),
object_matching(Tobj,Sobj,Acp),

not rec_propmapping(T,Sobj1,Sproperty,_).

/* Rules to map conditions which control the movement of objects */

condition_mapping(Tobj1,Tobj2,Tobj3,So0bj1,Sobj2,Sobj3,
Rel,Condition,Acp) :-

acp_cdata(Amvmt,Condition,Acp),
acp_ddata(Amvmt,Sobj1,Sobj2,Sobj3,Rel,Acp),
target_cdata(Tmvmt,Condition),

target_ddata(Tmvmt, Tobj1,Tobj2,Tobj3,Rel),
dynamic_mapped(Tobj1,Tobj2,Tobj3,S0bj1,Sobj2,Sobj3,Rel,Score,Acp),
not rec_condmapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,

Structure Mapping Program.3 Thu, Nov 28, 1991 Page 159
Sobj3,Rel,Condition,_).

/* Sub-program to identify the number of all identified analogous
mappings with neighbouring relations identified by the connecting
mappings - i.e. testing the extent of analogous match around the
currently validated analogous matching - the programs static_
structure and dynamic_structure are incorporated into the original
matching rules, depending upon the original static or dynamic mapping.
For each rule type there are two instances: (i) assumption that recorded
mappings exist, retrieved by a rule called object total s, (ii) no object
mappings prevelant to that mapping. */

static_structure(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Score,Selected_acp) :-
findall(Rel,object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp),
Slist),length(Slist,Scorel),
object_totall(Sobj1,Sobj2,Tobj1,Tobj2,Scorelist),
object_scores(Scorelist,0,Score2),

Score is Scorel + Score2,!.

static_structure(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Score,Selected_acp) :-
findall(Rel,object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp),
Slist),length(Slist,Score).

dynamic_structure(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Score,Acp) :-
findall(Rel,object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Acp),
Dlist),length(Dlist,Scorel),
object_total2(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Scorelist),
object_scores(Scorelist,0,Score2),

Score is Scorel + Score2,!.

dynamic_structure(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Score,Acp) :-
findall(Rel,object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Acp),
Dlist),length(Dlist,Score).

* Corresponding sub-program to get other target mappings which might
map to the abstract acp relation being mapped. It is more complex
than the above rules, in that it has to retrieve a single list of all scores
from other, different mappings, which are then passed to the main
program for comparing. The top-rule (possiblES) obtains the list of
scores for all object-mappings with same relation except that being
matched in the main program (hence not-same rule). The lower rule
(possiblE) passes takes each alternative option, and counts number of
mappings to check whether it is the highest score for the relation or
not. Note that in case of empty set (no possibles) scorelist should be
set to 0 to avoid higher-level rules. This is achieved by additional rule
included at static_possibleS level to identify no static_possible matches.
x/

[* Static mapping possibles (two rules exist). The first rule runs when
there is no empty set, the second rule defaults to required empty set. */

static_possibles(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Scorelist,Acp) :-
findall(Score,(

target_sdesc(Toth1,Toth2,Rel),
static_possible(Sobj1,Sobj2,Toth1,Toth2,Rel, Score JAcp),

not same_staticobjects(Tobj1 TOb_]2 Toth1,Toth2)),

Scorelist),!.

static_possible(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Score,Selected_acp) :-

Structure Mapping Program.4 Thu, Nov 28, 1991 Page 160

target_sdesc(Tobj1,Tobj2,Rel),
findall(Rel,object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp),Slist),
length(Slist,Scorel),

object_totall(Sobj1,Sobj2,Tobjl,Tobj2,Scorelist),
object_scores(Scorelist,0,Score2),

Score is Scorel + Score2,!.

static_possible(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Score,Selected_acp) :-
target_sdesc(Tobj1,Tobj2,Rel),
findall(Rel,object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp),Slist),
length(Slist,Score).

/* Dynamic mapping possibles (two rules exist as for statics). */

dynamic_possibles(Sobj1,Sobj2,Sobj3,Tobjl,Tobj2,Tobj3,Rel,Slist,Acp) :-
findall(Score,(

target_ddesc(_,Toth1,Toth2,Toth3,Rel),
dynamic_possible(Sobj1,Sobj2,Sobj3,Toth1,Toth2,Toth3,Rel,Score,Acp),
not sar'ne_dynamicobjects('[‘ obj1,Tobj2,Tobj3,Tothl,Toth2, Toth3)),

Slist),!.

dynamic_possible(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Score,Acp) :-
target_ddesc(_,Tobj1,Tobj2,Tobj3,Rel),
findall(Rel,object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Acp),
Dlist),length(Dlist,Scorel),
object_total2(Sobj1,Sobj2,Sobj3,Tobjl,Tobj2,Tobj3,Scorelist),
object_scores(Scorelist,0,Score2),

Score is Scorel + Score2,!.

dynamic_possible(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Score,Acp) :-
target_ddesc(_,Tobj1,Tobj2,Tobj3,Rel),
findall(Rel,object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Acp),
Dlist),length(Dlist,Score).

/* Check rules to support the static_ and dynamic_possible programs. */

same_staticobjects(Tobj1,Tobj2,Toth1,Toth2) :-
compare(=,Tobjl,Toth1),
compare(=,Tobj2,Toth2).

same_dynamicobjects(Tobj1,Tobj2,Tobj3,Toth1,Toth2,Toth3) :-
compare(=,Tobj1,Toth1),
compare(=,Tobj2,Toth2),
compare(=,Tobj3,Toth3).

[* Third level of rules to assimilate previous object mappings during ACP
mapping. */

object_total1(Sobj1,Sobj2,Tobj1,Tobj2,Scorelist) :-
findall(Score,rec_objectmatch(Tobj1,Sobj1,Score,_),List1),
findall(Score,rec_objectmatch(Tobj2,Sobj2,Score,_),List2),
append(List1,List2,Scorelist).

object_total2(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Scorelist) :-
findall(Score,rec_objectmatch(Tobj1,Sobj1,Score,_),List1),
findall(Score,rec_objectmatch(Tobj2,Sobj2,Score,_),List2),
findall(Score,rec_objectmatch(Tobj3,Sobj3,Score._),List3),
append(List1,List2,List12),

append(List12,List3,Scorelist).

Structure Mapping Program.5 Thu, Nov 28, 1991 Page 161

/* Additional rule to calculate a total object score from a list of object
scores. Based on Shapiro's book pp 129. */

object_scores([ScorelScores],T1,Sumscore) :-
T2 is T1+Score,

object_scores(Scores, T2,Sumscore).
object_scores([],Sumscore,Sumscore).

/* Third level of rules which identify the instances when two objects
correctly correspond to the candidate set of objects.

This set of rules are quite numerous and complex for several

reasons. The rules call static- and dynamic-mapping rules with

different names so that prolog is able to terminate. Several aspects
of these rules make them complex and numerous:

i) need different rules to check a static-mapping versus a dynamic-
mapping - they must be redefined here so that these rules have
the appropriate variables to reason with,

ii) each static and dynamic rule must be checked against several
combinations of neighbouring static and dynamic rules, and

iii) neighbouring mappings calculated in the current acp against
those determined from recorded mappings in the previously
matched acps.

These sections are broken down with comments to make these
rules are more obvious */

/* static_mapping, same acp */

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
stat_mapping(Tnew,_,Snew,_,_,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobjl).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
stat_mapping(_,Tnew,_,Snew,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
dyn_mapping(Tnew,_,_,Snew,_,_,_,Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobj1).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobjl,Sobj2,Rel,Selected_acp),
dyn_mapping(Tnew,_,_,Snew,_,_,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobjl,Sobj2,Rel,Selected_acp),
dyn_mapping(_,Tnew,_,_,Snew,_,_,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobj1).

Structure Mapping Program.6 Thu, Nov 28, 1991 Page 162

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
dyn_mapping(_,Tnew,_,_,Snew,_,_,Selected_acp),
compare(=,Snew,S0bj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
dyn_mapping(_,_,Tnew,_,_,Snew,_,Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobjl).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
dyn_mapping(_,_,Tnew,_,_,Snew,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
prop_mapping(Tnew,Snew,_,Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobj1).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
prop_mapping(Tnew,Snew,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),

compare(=,Tnew,Tobj1).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
cond_mapping(_,Tnew,_, ,_, , ,_, Snew,_,_,_, ., Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobj1).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
cond_mapping(_,_,Tnew,_, , , , , ,Snew,_, , , , ,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobj1).

object_stmap(Sobj1,S0bj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
cond_mapping(_,_,_,_, [In€W,_,_,_,_,_,_,Snew,_,_,_,Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobjl).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
cond_mapping(_,_,_,_,_,Inew,_,_, , , ., .Snew, , Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobjl).

Structure Mapping Program.7 Thu, Nov 28, 1991 Page 163

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobjl,Sobj2,Rel,Selected_acp),
cond_mapping(Tnew,_,_,_, , ,_, Snew,_, , . s s s, Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobjl,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
cond_mapping(_,Tnew,_,_,_, ,_,_, Snew,_,_,_, ., , Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
cond_mapping(_,_,Tnew,_, , , , , ,Snew,_,_,_, , ,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Selected_acp),
cond_mapping(_,_,_,_,Inew,_, , , , , ,Snew,_, , ,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_stmap(Sobj1,Sobj2,Tobj1,Tobj2,Rel,Selected_acp) :-
stat_mapping(Tobj1,Tobj2,Sobj1,S0bj2,Rel,Selected_acp),

C Ond_m apping(__,_,_,_,_,Tﬂew,_,_,_,_,_,_, S new,_,_, SCICCth_acp) ’
compare(=,Snew,So0bj2),

compare(=,Tnew,Tobj2).

/* Dynamic mapping, same acp */

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
stat_mapping(Tnew,_,Snew,_,_,Selected_acp),

compare(=,Snew,Sobjl),

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,Sobj2,Sobj3,Tobjl,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
stat_mapping(Tnew,_,Snew,_, ,Selected_acp),

compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
stat_mapping(Tnew,_,Snew,_,_,Selected_acp),

compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobjl,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
stat_mapping(_,Tnew,_,Snew,_,Selected_acp),

compare(=,5new,Sobj1), .

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,50bj2,Sobj3,Rel,Selected_acp),

Structure Mapping Program.8 Thu, Nov 28, 1991 Page 164

stat_mapping(_,Tnew,_,Snew,_,Selected_acp),
compare(=,Snew,Sobj2),
compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
stat_mapping(_,Tnew,_,Snew,_,Selected_acp),

compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(Tnew,_,_,Snew,_,_,_,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected _acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,S0bj2,S0bj3,Rel,Selected_acp),
dyn_mapping(_,Tnew,_,_,Snew,_,_,Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,S0bj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tob;j3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(_._,Tnew,_,_,Snew_,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(Tnew,_,_,Snew,_,_,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(_,Tnew,_,_,Snew,_,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(_,_,Tnew,_,_,Snew_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(Tnew,_,_,Snew,_,_,_,Selected_acp),
compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(_,Tnew,_,_,Snew,_,_,Selected_acp),
compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-

Structure Mapping Program.9 Thu, Nov 28, 1991 Page 165

dyn_mapping(Tobj1,Tob;j2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
dyn_mapping(_,_,Tnew,_,_,Snew_,Selected_acp),
compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tob;j3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
prop_mapping(Tnew,Snew_,Selected_acp),

compare(=,Snew,Sobjl),

compare(=,Tnew,Tobjl).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
prop_mapping(Tnew,Snew_,Selected_acp),

compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
prop_mapping(Tnew,Snew_,Selected_acp),

compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(Tnew,_, , , , , ,Snew,_,_, , , , , ,Selected_acp),

compare(=,Snew,Sobj1),
compare(=,Tnew,Tobj1).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(_,Tnew,_,_, , , , ,Snew,_,_, ,_, , ,Selected_acp),
compare(=,Snew,Sobj1),

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,S0bj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tob;j3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(_,_,Tnew,_, , , . . ,Snew,_,_,_,_, ,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(_,_,_,_,Inew,_, , , , , ,Snew,_,_, ,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobjl).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(_,_,_,_,_, Tnew,_,_,_,_,_,_, Snew,_,_,Selected_acp),
compare(=,Snew,Sobjl),

compare(=,Tnew,Tobj1).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
compare(=,Snew,Sobj2),_ ___________
compare(=,Tnew,Tobj2).

Structure Mapping Program.10 Thu, Nov 28, 1991 Page 166

object_dymap(Sobj1,Sobj2,S0bj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,S0bj2,Sobj3,Rel,Selected acp),
compare(— Snew SOb]2) ______
compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(_,_,Tnew,_,_, , , ., Snew,_,_, , ,_, Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(_,_,_,_,Inew,_, , , , ,, Snew,_,_,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2, SOb_]3 Rel,Selected_acp),
cond_mapping(_,_ ,_,_, ,Tnew,_,_, , ., ,, Snew,_,_,Selected_acp),
compare(=,Snew,Sobj2),

compare(=,Tnew,Tobj2).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(Tnew,_,_,_, , ,_, Snew, _,_, . , s ., Selected_acp),
compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected acp)
compare(=,Snew SObJ3),_ ___________
compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond_mapping(_,_,Tnew,_,_, , , ,_, Snew,_,_,_,_,_, Selected_acp),
compare(=,Snew SObj3)

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
cond, mappmg(_,_,_,_,Tnew,_,_,_,_,_,_,Snew,_,_,_,Selected acp),
compare(=,Snew,Sobj3),

compare(=,Tnew,Tobj3).

object_dymap(Sobj1,Sobj2,Sobj3,Tobj1,Tobj2,Tobj3,Rel,Selected_acp) :-
dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Selected_acp),
compare(— Snew SOb_]3), ______

compare(=,Tnew,Tobj3).

/* Fourth level identifying stat-mapping, dyn-mapping, prop-mapping
and cond-mapping, the basic mapping programs to identify isloated
chunks of matching structure. */

stat_mapping(Tobj1,Tobj2,Sobjl,Sobj2,Trelation,Acp) :-

Structure Mapping Program.11 Thu, Nov 28, 1991 Page 167

acp_sdata(Sobj1,Sobj2,Srelation,Acp),
target_sdesc(Tobj1,Tobj2,Trelation),
compare(=,Srelation, Trelation).

dyn_mapping(Tobj1,Tobj2,Tobj3,Sobj1,S0bj2,Sobj3, Trelation,Acp) :-
acp_ddata(_,Sobj1,Sobj2,Sobj3,Srelation,Acp),
target_ddesc(_,Tobj1,Tobj2,Tobj3,Trelation),

compare(=,Srelation, Trelation).

prop_mapping(Tobj,Sobj,Property,Acp) :-
acp_pdata(Acp,Sobj,Property),
target_pdata(Tobj,Property).

cond_mapping(Tobj1,Tobj2,Tobj3,Rell, Tobj4,Tobj5,Rel2,
Sobj1,Sobj2,Sobj3,Rell,Sobj4,Sobj5,Rel2,Condition,Acp) :-
acp_cdata(Tobj1,Tobj2,Tobj3,Rell,Tobj4,Tobj5,Rel2,Condition,Acp),
target_cdata(Sobj1,Sobj2,Sobj3,Rell,Sobj4,Sobj5,Rel2,Condition).

/* Subroutines to identify static and dynamic mappings which occured
during either the current or previous acps. */

static_mapped(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Score,Acp) :-
static_mapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Score,Acp).

static_mapped(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Score,Acp) :-
rec_statmapping(Tobj1,Tobj2,Sobj1,Sobj2,Rel,Score,Oldacp),
Acp=\=0ldacp.

dynamic_mapped(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Score,Acp) :-
dynamic_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Score,Acp).

dynamic_mapped(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Score,Acp) :-
rec_dynmapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Rel,Score,Oldacp),

Acp=\=0Oldacp.

/* The following is a partly separate program which processes object
mappings during several phases of analogous matching. These programs
are used in several places using different components.

/* Rules which identify analogous mappings between specific pairs of
objects. This rule is required in this window by the property-matching
rule, since mapped objects must first be analogous before the mapping
can be achieved. */

object_matches(Tobj,Sobj,Totalscore,Acp) :-
findall(Score,object_match(Tobj,Sobj,Score,Acp),Scorelist),
object_scores(Scorelist,0, Totalscore).

/* Sub-routines to identify different types of object match, based on
different knowledge structures. These rules are mapped directly by
the property matching program until a match is achieved. */

object_match(Tobj,Sobj,Score,Acp) :-
static_mapping(Tobj,_,Sobj,_,_,Score,Acp).

object_match(Tobj,Sobj,Score,Acp) :-
static_mapping(_,Tobj,_,Sobj,_,Score,Acp).

object_match(Tobj,Sobj,Score,Acp) :-

Structure Mapping Program.12 Thu, Nov 28, 1991 Page 168
dynamic_mapping(Tobj,_,_,Sobj,_,_,_,Score,Acp).

object_match(Tobj,Sobj,Score,Acp) :-
dynamic_mapping(_,Tobj,_,_,Sobj,_,_,Score,Acp).

object_match(Tobj,Sobj,Score,Acp) :-
dynamic_mapping(_,_,Tobj,_,_,Sobj,_,Score,Acp).

/* Object-property matching program, called by the property_mapping
routine, to check the validity of an object match using both matches
between current ACP matches and previous matches */

object_matching(Tobj,Sobj,Acp) :-
object_match(Tobj,Sobj,_,Acp),!.

object_matching(Tobj,Sobj,Acp) :-
rec_objectmatch(Tobj,Sobj,_,_).

/* The following routine identifies mappings between labels on
movements. This program is thesaurus-based, and uses membership
of relevant lists to identify equivalent functionality on the movement
of processes. A mapping occurs if structure-mapping has already
identified an analogous mapping. A second-level rule is used to search
all the possible lists of equivalent functionality. */

function_mapping(Tmvmt,Acp) :-
dynamic_mapping(Tobj1,Tobj2,Tobj3,Sobj1,Sobj2,Sobj3,Relation,_,Acp),
acp_ddata(Amvmt,Sobj1,Sobj2,Sobj3,Relation,Acp),
target_ddesc(Tmvmt, Tobj1,Tobj2,Tobj3,Relation),

not rec_funcmapping(Amvmt,_),

function_list(Samelist),

on(Amvmt,Samelist),

on(Tmvmt,Samelist).

/* Second-level lists, which represent a thesaurus describing the
equivalence of state transitions in the models. */

function_list(Flist) :-
Flist=[loan,borrow,dispatch,send,lend,goods_out].

function_list(Flist) :-
Flist=[receipt,input,goods_in,arrival,addition].

function_list(Flist) :-
Flist=[allocate,assign,place,connect,join].

function_list(Flist) :-
Flist=[return,finish_loan].

function_list(Flist) :-
Flist=[record].

functon_list(Flist) :-
Flist=[check_position,monitor].

Structure Matching Program Thu, Nov 28, 1991 Page 169

/* Rules to determine interrelated structure of analogous match
the rules are quite lenghy because they are Acp-dependent */

/* First layer of rules to determine the type of analogous
similarity between two object-relation structures */

perfect_structure(Matched_acp) :-
calc_structure(Matched_acp,Matching_score),
Matching_score >= 81.

good_structure(Matched_acp) :-
calc_structure(Matched_acp,Matching_score),
Matching_score >=50,

Matching_score < 81.

poor_structure(Matched_acp) :-
calc_structure(Matched_acp,Matching_score),
Matching_score >=33,

Matching_score < 50.

fail_structure(Matched_acp) :-
calc_structure(Matched_acp,Matching_score),
Matching_score <33.

/* Second layer of rules to calculate the %age match for selected_acp. An
initial rule is required to identify the need for a division by zero
(equivalence to 100% perfect match). */

calc_structure(Selected_acp,100) :-
acp_total_mappings(Selected_acp,0),!.

calc_structure(Selected_acp,Relation_score) :-
relation_matches(Selected_acp,Total_score),
acp_total_mappings(Selected_acp,Total_mappings),
Relation_score is Total_score/Total_mappings * 100.

/* Third layers of rules to generate and count the relations list for the
total of relations mappings */

relation_matches(Selected_acp,Relation_score) :-
findall(Relation,relation_match(Relation,Selected_acp),Relation_list),
length(Relation_list,Initial_score),
total_mapties(Selected_acp, Totaltes),

Relation_score is Initial_score-Totalties.

/* Fourth layer of rules to determine extent of match with selected_acp */

relation_match(Relation,Selected_acp) :-
static_mapping(_,_,_,_,Relation,_,Selected_acp).

relation_match(Relation,Selected_acp) :-
dynamic_mapping(_,_,_,_,_,_,Relation,_,Selected_acp).

relation_match(Property,Selected_acp) :-
property_mapping(_,_,Property,Selected_acp).

relation_match(Condition,Selected_acp) :-
condition_mapping(_, __s_s_s_s_s_sss_sss_s Condition,Selected_acp).

Structure Matching Program.2

relation_match(Movement,Selected_acp) :-
function_mapping(Movement,Selected_acp).

/* Fourth-level routine to identify mapping ties - it runs the same two
routines for structure-mapping and dynamic-mapping to specify ties,
which are then used to determine the score by which the total number
of mappings must be reduced. This is the number of mappings which
occur divided by two because each tie will be identified twice, once for

each version. ¥/

/* Total level rule counts the number of tie firings and divides by 2 to
correct this total. */

total_mapties(Acp, Totalties) :-
findall(Acp,mapping_tie(Acp),Tlist),
length(Tlist,T),

Totalties is T/2.

/* Second-level rule identify both instances of tie-mappings which may
occur. */

mapping_tie(Acp) :-
staticmapping_tie(Acp).

mapping_tie(Acp) :-
dynamicmapping_tie(Acp).

/* Third-level rules, which identify the specific instances of ties, which
are copied from the static- and dynamic-mapping rules. */

staticmapping_tie(Acp) :-
acp_sdata(Sobj1,Sobj2,Srelation,Acp),
target_sdesc(Tobj1,Tobj2,Trelation),

compare(=,Srelation, Trelation),

not rec_statmapping(T1,T2,Sobj1,Sobj2,Trelation,Any),

not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),
static_structure(Sobjl,Sobj2,Tobj1,Tobj2,Trelation,Score,Acp),
static_possibles(Sobj1,Sobj2,Tobj1,Tobj2,Trelation,Scores,Acp),
sort(Scores,Sorted_scores,[],1),

Sorted_scores = [Other_scorelRest],

Score = Other_score.

dynamicmapping_tie(Acp) :-
acp_ddata(_,Sobj1,Sobj2,Sobj3,Srelation,Acp),
target_ddesc(_,Tobj1,Tobj2,Tobj3,Trelation),
compare(=,Srelation,Trelation),

not rec_dynmapping(T1,T2,T3,Sobj1,Sobj2,Sobj3,Trelation,Any),
not detailed_object(Tobj1,Acp),

not detailed_object(Tobj2,Acp),

not detailed_object(Tobj3,Acp),
dynamic_structure(Sobj1,Sobj2,5S0bj3,Tobj1,Tobj2,Tobj3,
Trelation,Score,Acp),
dynamic_possibles(Sobj1,Sobj2,Sobj3,Tobj1,Tob;j2,Tobj3,
Trelation,Scores,Acp),
sort(Scores,Sorted_scores,[],1),
Sorted_scores = [Other_scorelRest],
Score = Other_score.

)

Thu, Nov 28, 1991 Page 170

Target Levelling Program

/* Program to select the most appropriate level of the target structure
for the first-pass matching. The aim of the program is to select the
most appropriate level of the target domain so that it matches the high
level descriptions of the abstract ACPs. The heuristic is to only select
components at one level of detail below the space components. It
attempts to identify components in the structural space rather than
objects, so an additional qualifier is built into the rule, to ensure that
any low-abstraction feature in a slot rather than object, i.e. the feature
contains\has another feature. This program identifies abstraction levels
of objects rather than structure, so host programs identify object levels
within a structure. */

detailed_object(Low_object,Acp) :-

father(top,Acp),

target_sdata(High_object,Middle_object,R1),
target_sdata(Middle_object,Low_object,R2),
target_sdata(Low_object,Base_object,R3),

Rlist = [has_no,has_one,has_many,contains_no,contains_one,
contains_many],on(R1,Rlist),on(R2,Rlist),on(R3,Rlist).

/* Target restructuring program. It infers missing structure in the target
problem from the existing description of the problem.
This is useful for two functions: (i) identify existing target facts to
assist the matching process, (ii) identify additional facts to assist in
correct levelling of the problem during the initial matching process.
It uses the structure of the target (A->B,B->C so A->C) to identify
obligatory structural combinations from the known structure of the
domain.

The following programs work at several layers:

i) contains_many --> contains_many,

ii) contains_one/has_many --> contains_many,
iii) contains_one/has_one --> contains_one,

iv) has_one/many --> has_rules combinations. */

/* Top-level rule to identify two sources of the target description. */

target_sdesc(Tobj1,Tobj2,Relation) :-
target_sdata(Tobj1,Tobj2,Relation).

target_sdesc(Tobj1,Tobj2,Relation) :-
restructure_target(Tobj1,Tobj2,Relation,_),
Tobjl1=\=world.

/* Series of second-level rules for possible combinations. The
reconstructed static structure also includes the bypassed object, to
permit these programs to be used in other routines described below. */

restructure_target(Tobj1,Tobj3,contains_many,Tobj2) :-
target_sdata(Tobj1,Tobj2,contains_many),
target_sdata(Tobj2,Tobj3,Any_relation),

not target_sdata(Tobj1,Tobj3,contains_many),!.

restructure_target(Tobj1,Tobj3,contains_many,Tobj2) :-
target_sdata(Tobjl,Tobj2,Any_relation),
target_sdata(Tobj2,Tobj3,contains_many),

not target_sdata(Tobj1,Tobj3,contains_many),!.

restructure_target(Tobj1,Tobj3,contains_many,Tobj2) :-

Thu, Nov 28, 1991 Page 176

Target Levelling Program.2

target_sdata(Tobj1,Tobj2,contains_one),
target_sdata(Tobj2,Tobj3,has_many),
not target_sdata(Tobj1,Tobj3,contains_many),!.

restructure_target(Tobj1,Tobj3,contains_many,Tobj2) :-
target_sdata(Tobj1,Tobj2,has_many),
target_sdata(Tobj2,Tobj3,contains_one),

not target_sdata(Tobj1,Tobj3,has_many),!.

restructure_target(Tobj1,Tobj3,has_many,Tobj2) :-
target_sdata(Tobj1,Tobj2,Any_relation),
target_sdata(Tobj2,Tobj3,has_many),

not target_sdata(Tobj1,Tobj3,has_many),!.

restructure_target(Tobj1,Tobj3,has_many,Tobj2) :-
target_sdata(Tobj1,Tobj2,has_many),
target_sdata(Tobj2,Tobj3,Any_relation),

not target_sdata(Tobj1,Tobj3,has_many),!.

restructure_target(Tobj1,Tobj3,has_one,Tobj2) :-
target_sdata(Tobj1,Tobj2,has_one),
target_sdata(Tobj2,Tobj3,has_one),

not target_sdata(Tobj1,Tobj3,has_one),!.

/* Similar rule to permit the restructuring of the requirements
descriptions for the target domain. */

target_reqts(Tobj1,Tobj2,Relation) :-
target_reqt(Tobj1,Tobj2,Relation).

target_reqts(Tobj1,Tobj2,Relation,Value) :-
target_reqt(Tobj1,Tobj2,Relation, Value).

target_reqts(Tobj1,Tobj2,Relation) :-
target_reqt(Tobj1,Tobj3,Relation),
restructure_target(Tobj1,Tobj2,Relation, Tobj3).

target_reqts(Tobj1,Tobj2,Relation,Value) :-
target_reqt(Tobj1,Tobj3,Relation,Value),
restructure_target(Tobj1,Tobj2,Relation,Tobj3).

target_reqts(Tobj2,Tobj1,Relation,Value) :-
target_reqt(Tobj3,Tobj1,Relation,Value),
restructure_target(Tobj2,Tobjl,Relation,Tobj3).

/* A similar program is used to reconstruct dynamic knowledge from
the structural changes which occur. The first rule identifies which
can be replaced in the target domain. The rule is: replace(new,old). */

replace_objects(Tobj1,Tobj2) :-
restructure_target(Tobj1,Tobj3,Relation,Tobj2).

/* A top-level rule to redescribe the dynamic target domain, in a similar
way that the static domain is described. There are several options for
restructuring the dynamic movements, so they must be catered for
in a series of rules. Due to nature of the OBJECT moved in dynamic
structures, it cannot be restructured and so is not catered for. This
leaves us with three possible options for the reconstructed dynamic
target domain: replace 1st object, replace 2nd object, & replace both

Thu, Nov 28, 1991 Page 177

Target Levelling Program.3 Thu, Nov 28, 1991 Page 178
1st & 2nd objects. */

target_ddesc(Function,Tobj1,Tobj2,Tobj3,Relation) :-
target_ddata(Function,Tobj1,Tobj2,Tobj3,Relation).

target_ddesc(Function,Tobj1,Tobj2,Tobj3,Relation) :-
target_ddata(Function,Tobj1,Tobj4,Tobj3,Relation),
replace_objects(Tobj2,Tobj4),

not target_ddata(Function,Tobj1,Tobj2,Tobj3,Relation).

target_ddesc(Function,Tobj1,Tobj2,Tobj3,Relation) :-
target_ddata(Function, Tobj1,Tobj2,Tobj4,Relation),
replace_objects(Tobj3,Tobj4),

not target_ddata(Function,Tobj1,Tobj2,Tobj3,Relation).

target_ddesc(Function,Tobj1,Tobj2,Tobj3,Relation) :-
target_ddata(Function,Tobj1,Tobj4,Tobj3,Relation),
replace_objects(Tobj2,Tobj4),
target_ddata(Function,Tobj1,Tobj2,Tobj5,Relation),
replace_objects(Tobj3,Tobj5),

not target_ddata(Function,Tobj1,Tobj2,Tobj3,Relation).

Descriptions of the Problem Elicitation
Dialogue within the Problem Identifier

Conditions Elicitation Program Thu, Nov 28, 1991 Page 6

/* The conditions elicitation program involves several levels of window,
to allow to installation of a number of menus (3 in all), which can be
used to offer a choice of static knowledge states, dynamic knowledge
states and a value for the condition. */

/* Window definition */

conditions_window('Conditions Window') :-
wgcreate('Conditions Window',40,0,440,570,70,0,0,1,0),
setup_winF('Conditions Window'),

gviewer('Conditions Window',off),

wfront(‘Conditions Window").

setup_winF(Win) :-

gsplit(Win,70),

gecursor(Win,hand),

present_conditions(Presconditions),

add_tools(Win,[

conditions(textbox('Chicago’,12,0,4,0,32,32,1,'Enter Cond- ition")),
general_help(textbox('Chicago’,12,0,6,0,32,32,1,'General Help")),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem")),
pass_requirements(textbox('Chicago’,12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinF,[

box(25,5,145,260),

box(175,5,245,260),

box(25,270,135,210),

box(165,270,210,210),

textline('Times',14,1,5,90, Identifying Conditions on System Functions’),

textline('Times',12,1,30,30,'Conditions on System Functions'),
textbox('Times',12,0,45,10,36,250,0,'Some system functions only occur under specific conditions. This
window allows you to identify such conditions for appropriate functions."),
textbox("Times',12,0,87,10,36,250,0, To enter a condition double click ENTER CONDITION, then select a
function and the most appropriate condition for the function.’),

textbox('Times',12,0,129,10,24,250,0,'Ira limits you to only selecting conditions for two of your system
functions.'),

textline('Times',12,1,180,65,'Possible Conditions'),

textbox("Times',12,0,195,10,36,250,0, Four types of condition are available for triggering system
functions:'),

textline('Times',12,0,225,10,"*"),

textline('Times',12,0,261,10,'*"),

textline('Times',12,0,297,10,'*",

textline('Times’,12,0,357,10,'*"),

textbox('Times',12,0,225,15,36,245,0, MINIMUM_QTY: the function occurs when an associated entity
has reached a minimal level of contents,'),

textbox('Times',12,0,261,15,36,245,0, MAXIMUM_QTY: the function occurs when an associated entity
has reached a maximum level of contents,’),
textbox('Times',12,0,297,15,60,245,0,'SAME_PROPERTIES: the function occurs when two associated
entities have the same values, for example a theatre-goer is allocated to a seat if it meets his needs, i.e. seat
price & requirements are both less than >£20,"),

textbox('Times',12,0,357,15,36,245,0, DATE_LIMIT: the function occurs when a given date or time is
reached, or after a specific length of time.'),

textline('Times’,12,1,30,360,'Hints"),

textline('Times',12,0,45,275,'*"), '

textbox('Times',12,0,45,285,24,190,0, Think to yourself why each function in the system occurs,'),
textline('Times',12,0,75,275,'*"),

textbox('Times',12,0,75,285,36,190,0,'A selected condition must apply to all instances of the function,"),

Conditions Elicitation Program.2 Thu, Nov 28, 1991 Page 7

textline('Times',12,0,105,275,'*"),
textbox('Times',12,0,105,285,24,190,0,'Ira tentatively suggests the following condition:"),
textbox('Times',12,1,135,285,24,190,1,Presconditions),

textline("Times',12,1,170,320, Personnel Example'),
box(200,280,80,185),
textline('Times',12,2,203,420,'World"),
speckled(fillcircle(240,305,20)),
speckled(fillcircle(240,425,22)),
fillbox(230,295,10,10),

fillbox(241,306,10,10),

fillbox(222,420,10,10),

fillbox(243,412,10,10),

fillbox(230,429,10,10),

fillbox(248,427,10,10),
textline('Times',12,2,260,395,'Organisation’),
textline('Times',12,2,260,282,'Agency),
line((240,330), (240 350)),
line((235,345),(240,350)),
line((245,345),(240,350)),

fillbox(235,360,10,10),

line((240,375),(240,400)),
line((235,395),(240,400)),
line((245,395),(240,400)),
textline('Times',12,2,245,350,'Many’),
textline('Times',12,2,223,350,'Staff’),
textbox('Times',12,0,300,275,60,200,0,'None of the four available conditions control the arrival and
departure of staff from the organisation, so no conditions are allocated to the Record function."]),
wkill("Categories Window'),

enable_item('Other Inputs’,’Add Condition’),
enable_item('Other Inputs’,'Del Condition’).

/* Subroutine necessary to determine likely condition based on best
function selection. */

present_conditions(P) :-
get_prop(acp,selection1,Acp),
acp_cdata(F,C,Acp),
concat(F,".",A),
concat(A,C,P),!.

present_conditions('Ira is uncertain of conditions !!') :- 1.

/* This program describes the program to elicit all three types of
knowledge from the user to construct the condition - note the use of
set-prop to store and pass data between the 4 screens. */

conditions(double,Win) :-

del_prop(cond,fn),

del_prop(cond,val),

mdialog(48,78,220,240,

[button(190, 10 20, 140 ’Create Condition"),

button(190,170,20,60, 'Cancel),

text(10,10,80,220, Use both buttons to call a menu from which to select definitions of each condition. You
are advised to select the menus in the order glven then click CREATE CONDITION?:",
button(110,50,20,150,'Function’),

button(140, 50 20,150, 'Condmon Value'),

],Button,condition_menu),

get_prop(cond,fn,F),

Conditions Elicitation Program.3 Thu, Nov 28, 1991 Page 8

get_prop(cond,val,Value),
assertz(target_cdata(F,Value)).

/* Sub-windows containing windows for the three options in the main
window. The first rules control the firing of the buttons, then validation
control rules */

condition_menu(D,4) :- !,
condition_menul(F),
set_prop(cond,fn,F),fail.
condition_menu(D,5) :- !,
condition_menu2(Value),
set_prop(cond,val, Value),fail.

condition_menu(D,B) :-

not get_prop(cond,fn,F),

beep(60),message(["You must select details using both buttons before trying to create the condition']),!,fail.
condition_menu(D,B) :-

not get_prop(cond,val, Value),

beep(60),message(["You must select details using both buttons before trying to create the condition']),!,fail.
condition_menu(D,B) :-

findall(Mvmt,target_cdata(Mvmt,_),Clist),

length(Clist,L),L>=2,

beep(60),message(['You have already created two conditions - delete existing conditions']),!,fail.
condition_menu(D,B) :-

get_prop(cond,fn,F),

get_prop(cond,val,Value),

target_cdata(F,Value),

beep(60),message(['This condition is already known to Ira']),!,fail.

condition_menu(D,1) :- !.

/* This first window offers a menu of the movements. To display
movements on the list it is necessary to concat data into single data
atoms: 1) concat each data, then 2) use findall to put this data in the
list. get_ddata puts the target_ddata in the right format */

/* Two rules for eliciting data about the movement. The additional rule
is necessary to identify when no target_ddata exist to construct a menu
scroll bar for the necessary selection. Check rules are also included
after each of these sub-dialogues. */

condition_menul(F) :-

not target_ddata(_,_,_,_,_),beep(60),

mdialog(250,300,200,300,

[button(170,100,20,100,'Continue’),

text(10,10,96,280,"You have not yet input any functions from which to select. A condition on a function
cannot be created until it has been input to the system.")],Bm),!.

condition_menul(F) :-

findall(Mvmt,target_ddata(Mvmt,_,_,_,_),Datalist),

Datalist = [FirstIRest],

mdialog(250,300,200,300,

[button(170,30,20,60,'0k"),

button(170,210,20,60,'Cancel'),

text(10,10,32,280,'Select the required function between two knowledge states:"),
menu(80,30,66,240,Datalist,[First], Mlist)],Btn,check_cmenu(Mlist)),

Mlist = [FlAllrest].

check_cmenu(D,B,Mlist) :-

Conditions Elicitation Program.4 Thu, Nov 28, 1991 Page 9

length(Mlist,Total), Total=\=1,
beep(30),message(["You should select one function from the menu']),! fail.

check_cmenu(D,B,Mlist) :-
Mlist=[FuncIR],target_cdata(Func,_),
beep(30),message(['This function has already been given a condition']),! fail.

check_cmenu(D,B,) :- !.
/* Program to display and elicit the values for a selection */

condition_menu2(Value) :-

mdialog(250,300,200,200,

[button(170,20,20,60,'0Ok"),

button(170,120,20,60,'Cancel’),

text(10,10,48,180,'Select the appropriate value of the condition:'),
menu(80,30,66,140,[minimum_qty,maximum_qty,same_properties,date_limit],[minimum_qty], Vlist)],Btn,
check_value(Vlist)),

Vlist = [ValuelRest].

check_value(D,B, Vlist) :-

length(Vlist, Total),Total =\=1,

beep(30),message(["You should select one condition value from the menu'),! fail.
check_value(D,B,_) :- \.

/* Routine to pass control to the next window */

pass_requirements(double,Win) :-
requirements_window('Requirements Window').

Final Elicitation Window Thu, Nov 28, 1991 Page 43

/* This is the final window of the knowledge elicitation process, which
remains as a background to all remaining inputs\searching\
examination by the analyst during the process. The window also has a
function to check the completeness of solutions - see at the end of the
window. */

/* Window definition. */

final_window('Searching\Update Window') :-
wgcreate('Searching\Update Window',40,0,440,570,0,0,0,1,0),
setup_winL('Searching\Update Window"),
gviewer('Searching\Update Window',off),
wfront('Searching\Update Window").

setup_winL(Win) :-

gsplit(Win,0),

gcursor(Win,hand),

control_menu,

add_tools(Win,[

see_target(textbox("Chicago’,12,0,4,0,32,32,1,'See Target Problem’))],1),
add_pic(Win,picwinL,[

box(25,5,170,260),

box(200,5,220,260),

box(25,270,395,280),

textline('Times',14,1,5,110,'Searching & Updating your Problem Description’),

textline('Times',12,1,30,110,'Searching'),

textbox('Times',12,0,45,10,60,250,0,'Once the description of the domain has been input Ira can be
instructed to search for appropriate abstractions and reusable specifications. This is achieved by using the
SEARCH selection on the CONTROL menu (see below)."),

textbox('Times',12,0,117,10,36,250,0, The description of your domain can also be altered at any time using
the two menus OBJECTS & OTHER INPUTS, as described below."),

textline("Times',12,1,205,35, Updating the Domain Description’),
textbox('Times',12,0,220,10,48,250,0, The OBJECT & OTHER INPUTS menus can be used to change the
definition of the new application at any time. However, there are two instances during which this definition
cannot be changed:"),

textline("Times',12,0,274,10,'*"),

textbox('Times',12,0,274,20,24,240,0,'if the definition supports other facts about the domain, or'),
textline('Times',12,0,298,10,"*"),

textbox('Times',12,0,298,20,24,220,0,'it is a basis for analogous mappings resulting from a search (see
CONTROL menu)."),

textline('Times',12,1,30,340, The CONTROL menu'),

textbox('Times',12,0,45,275,24,260,0, The Control menu offers you several options regarding Iras
searching abilities:"),

textline('Times',12,2,73,275,'SEARCH),

textbox('Times',12,0,85,285,36,260,0,'Search matches the current domain description to identify the most
likely abstraction for the domain. To do this Ira deletes any previous analogous matches."),
textline('Times',12,2,127,275,'’ABSTRACTION"),

textbox('Times',12,0,139,285,36,260,0,' Abstraction retrieves an explanation of the previously-matched
abstraction if Ira had successfully matched the domain."),

textline('Times',12,2,181,275,'IDENTIFY MAPPINGS"),
textbox('Times',12,0,193,285,60,260,0, Identify Mappings allows you to impose specific analogous
mappings with a mapped abstraction before rematching the domain description. This facility allows you to
experiment with the matching mechanism and overcome incorrect mappings identified by Ira."),
textline('Times',12,2,259,275,'SEE TARGET"),

textbox('Times',12,0,271,285,12,260,0,'See a description of your domain."),
textline('Times',12,2,288,275,'CONSISTENCY CHECKER'),

Final Elicitation Window.2 Thu, Nov 28, 1991 Page 44

textbc;lx()'Times',12,0,300,285,24,260,0,'Ask Ira to check your problem description before attempting a
search.’),

textline('Times',12,2,330,275,'RESET SEARCH),

textbox("Times',12,0,342,285,24,260,0, Delete the mappings with the previously matched abstraction."),
textline(‘Times',12,2,372,275,'NEW APPLICATION),

textbox('Times',12,0,384,285,24,260,0, Delete the description of the current problem domain."),

1), wkill('Physical Window").

/* Two controls to help the user develop a more complete model by doing
some basic consistency checks on the input model, with regard to the
all-important structural featrures. */

consistency_check :-

unheaded_objects(01,02,03,04),

write_unheadobjects(01,02,03,04,A,B,C,D),

missing_objrelations(Olist),

write_missingobjects(Olist,E,F,G,H),

mdialog(48,78,380,350,

[button(350,125,20,100,'Continue"),

text(10,10,64,330,'Ira believes that you may want to address the following aspects of your description
before searching the knowledge base. Consider each fact carefully before changing your description:'),
text(90,10,32,330,'If necessary, use ADD STRUCTURE to input to following facts:"),
text(130,20,16,310,A),text(150,20,16,310,B),

text(170,20,16,310,C),text(190,20,16,310,D),

text(220,10,32,330,'Also use ADD STRUCTURE to possibly input to following structural relations between
objects:"),

text(260,20,16,310,E),text(280,20,16,310,F),

text(300,20,16,310,G),text(320,20,16,310,H)

],Btn).

/* Here is the routine to identify relational spaces between object
structures and state transtion definitions. */

missing_objrelations(Olist) :-
findall((O1,02),missing_relations(01,02),0list).

missing_relations(01,02) :-
target_ddata(F,01,02,_,),
not target_sdata(02,01,_).

missing_relations(01,02) :-
target_ddata(F,01,_,02,),
not target_sdata(02,01,_).

/* Two subroutines to write objects on the dialogue screen. They are
both sequential and simple. */

write_unheadobjects(01,02,03,04,A,B,C,D) :-
writeA(O1,A),writeB(02,B),writeB(03,C),writeB(04,D).

writeA(O,A) :- O=\=",concat('world has_one/many ',O0,A),!.
writeA(O,A) :- O=",A="No changes necessary'.

writeB(O,B) :- O=\=",concat('world has_one/many ',0,B),!.
writeB(O,B) :- B=".

write_missingobjects(Olist,E,F,G,H) :-

Olist=[],E='No changes necessary',F=",G=",H=",!.

Final Elicitation Window.3

write_missingobjects(Olist,E4,F4,G4,H4) :-
length(Olist,1),0list=[E],E=(E1,E2),
concat(E2,' contains_one/many ',E3),
concat(E3,E1,E4),F4=",G4="H4=",!,

write_missingobjects(Olist,E4,F4,G4,H4) :-
length(Olist,2),0list=[E,F],E=(E1,E2),F=(F1,F2),
concat(E2,' contains_one/many ',E3),
concat(E3,E1,E4),

concat(F2,' contains_one/many ',F3),
concat(F3,F1,F4),G4=",H4=",!.

write_missingobjects(Olist,E,F,G,H) :-
length(Olist,3),0list=[E,F,G],
E=(E1,E2),F=(F1,F2),G=(G1,G2),
concat(E2,' contains_one/many ',E3),
concat(E3,E1,E4),

concat(F2,' contains_one/many ',F3),
concat(F3,F1,F4),

concat(G2,' contains_one/many ',G3),
concat(G3,G1,G4),H4=",!.

write_missingobjects(Olist,E,F,G,H) :-
length(Olist,4),0list=[E,F,G,H],
E=(E1,E2),F=(F1,F2),G=(G1,G2),H=(H1,H2),
concat(E2,' contains_one/many ',E3),
concat(E3,E1,E4),

concat(F2,' contains_one/many 'F3),
concat(F3,F1,F4),

concat(G2,' contains_one/many ',G3),
concat(G3,G1,G4),

concat(H2,' contains_one/many 'H3),
concat(H3,H1,H4).

Thu, Nov 28, 1991 Page 45

Function Definition Elicitation Program Thu,

/* This program is quite complex, and attempts to elicit the dynamic
structural relations between the objects. */

/* Window definition */

dynamic_window("Function Definition Window') :-
wgcreate('Function Definition Window',40,0,440,570,70,0,0,1,0),
setup_winD('Function Definition Window"),

gviewer('Function Definition Window',off),

wfront('Function Definition Window").

setup_winD(Win) :-

gsplit(Win,70),

gecursor(Win,hand),

get_prop(function,list,L),

L=[FunctioniRest],

prepare_selector(Function, Text),

prepare_introduction(Function,Intro),

add_tools(Win,[
dynamic_relations(textbox('Chicago’,12,0,4,0,32,32,1,Text)),
general_help(textbox(‘Chicago’,12,0,6,0,32,32,1,'General Help"),
function_help(textbox('Chicago',12,0,6,0,32,32,1,'Function Help')),
stop_addfn(textbox('Chicago’,12,0,4,0,32,32,1,'Restart Function Input’),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem")],1),
add_pic(Win,picwinD,[

box(25,5,140,260),

box(170,5,250,260),

box(25,270,155,210),

box(185,270,235,210),

textline('Times',14,1,5,170,Text),

textline('Times',12,1,30,70,'Function Definitions'),
textbox('Times',12,0,45,10,48,250,0,Intro),

Nov 28, 1991

Page 46

textbox(‘Times',12,0,99,10,60,250,0, To define a function double click DEFINE FUNCTION, then enter
the data requested by the dialogue. Before entering this data read the remainder of the guidelines given in this

window and sketch each function as suggested below."),

textline('Times',12,1,175,60, Defining Each Function'),

textbox('Times',12,0,190,10,36,250,0,'Each function is represented as a change in the state of an object.

Firstly sketch the function on paper using the following terms:"),
circle(252,70,25),

fillbox(242,50,10,10),

fillbox(257,70,10,10),

fillbox(240,75,10,10),

circle(252,200,25),

fillbox(242,180,10,10),

fillbox(257,200,10,10),

fillbox(237,205,10,10),

fillbox(252,135,10,10),
line((257,100),(257,130)),
line((257,150),(257,170)),
line((257,130),(252,125)),
line((257,130),(262,125)),
line((257,170),(252,165)),
line((257,170),(262,165)),
textline('Times',12,2,277,30,'Starting Position’),
textline('Times',12,2,277,165, Final Position'),
textline('Times',12,2,227,115, Processed’),
textline('Times',12,2,239,120,'Object’),

Function Definition Elicitation Program.2 Thu, Nov 28, 1991 Page 47
textline('Times',12,2,267,125,'Single"),

textbox(‘'Times',12,0,293,10,48,250,0, Each function processes one or many objects. When the function
occurs this object moves from one state (Starting Position) to a new state (Final Position)."),
textbox('Times',12,0,335,10,24,250,0,'You can view functions as physically moving the object from one
position to another in the domain."),

textbox('Times',12,0,365,10,36,250,0, For each function you should identify the processed object, its start
and final positions and the number of objects processed."),

textline('Times',12,0,401,10,'See FUNCTION HELP for more guidance.),

textline("Times’,12,1,30,305,'Single or Many Objects’),

textbox('Times',12,0,45,275,60,190,0,'Each occurence of a function processes SINGLE or MANY
objects. Selecting a SINGLE object indicates that the function only processes one object at a time.),
textbox('Times',12,0,105,275,36,190,0,'Selecting MANY objects represents the processing of more than
one object at any time.'),

textbox(‘Times',12,0,141,275,36,190,0,'You should identify whether each function processes SINGLE or
MANY objects each time the process is run.’),

textline(‘Times',12,1,190,320, Personnel Example’),
speckled(fillcircle(240,315,20)),
speckled(fillcircle(240,435,20)),
fillbox(230,305,10,10),
fillbox(241,316,10,10),
fillbox(222,430,10,10),
fillbox(243,422,10,10),
fillbox(230,439,10,10),
fillbox(245,437,10,10),)
textline('Times',12,2,260,405, Organisation’),
textline('Times',12,2,260,292,'Agency’),
line((240,340),(240,360)),
line((235,355),(240,360)),
line((245,355),(240,360)),
fillbox(235,370,10,10),
line((240,385),(240,410)),
line((235,405),(240,410)),
line((245,405),(240,410)),
textline('Times’,12,2,245,360,'Many"),
textline('Times',12,2,223,360,'Staff"),

textbox(‘Times',12,0,284,275,60,190,0, The RECORD function records STAFF joining the organisation.
During RECORDING many staff move from the agency to the organisation, as represented diagrammatically
above.'),

textline('Times',12,0,350,275, The functional definition is:’),

textline("Times',12,0,362,275,'* Object: Staff,"),

textline('Times',12,0,374,275,"* Start Position: Agency,’),

textline('Times',12,0,386,275,'* Final Position: Organisation,'),

textline('Times',12,0,398,275,* Number: Many")]),

wkill(Function Examples Window"),

wkill('Structural Window').

/* Prepare_selector routine in order to describe the function narrative
in pretty form for output on the left-hand selection boxes. Also routine
to prepare the introduction paragraph. */
prepare_selector(Function,Text) :-
concat('Define ',Function,A),
concat(A,' Function',Text).

prepare_introduction(Function,Intro) :-

Function Definition Elicitation Program.3 Thu, Nov 28, 1991 Page 48

concat('Use this window to define the 'Function,A),
concat(A,' function selected in the previous window. This is achieved by describing the change which takes
place to an object when it is processed by that function.'Intro).

/* This program describes the program to elicit static structural relations
to describe the new target problem. Note that this routine passes
control directly the structure window without returning to the func.
window. It does not remove the current function from the function list.
This is carried out when structure for that function is being entered. */

dynamic_relations(double,Win) :-

get_prop(function,list,List),

List=[FunclRest],

build_objects(Obijlist),

remove(world,Objlist,Olist),

Olist = [01,02,03,04],

mdialog(48,78,280,400,

[button(250,130,20,60,'Create"),
button(250,230,20,60,'Cancel’), . ‘
text(10,10,80,380,'Consider the following function. You should identify the main object processed by the
function, its initial and final positions and the number of objects (Single vs Many) processed by the function.
Click CREATE to record this functional definition:"),
text(106,10,16,65, Function:'),

text(106,75,16,150,Func),

text(140,10,16,120, Processed Object:'),
edit(140,135,16,100,",gread(Object)),
text(215,10,16,120,'Quantities Moved:'),
edit(215,135,16,40,'many',Rel),

text(165,80,16,55, Initial:"),
edit(165,135,16,100,",gread(Source)),
text(190,90,16,45,'Final:"),
edit(190,135,16,100,",gread(Destination)),
text(106,260,16,110,'Known Entities:"),
text(136,275,16,100,01),

text(152,275,16,100,02),

text(168,275,16,100,03),

text(184,275,16,100,04),
],Button,dynamic_check(Rel,Object,Source,Destination)),
createall_objects(Object,Source,Destination),
translate_manyone(Rel,Relation),
assertz(target_ddata(Func,Object,Source,Destination,Relation)),
pass_static(double,Win).

/* Rules to constrain the maximum number of permitted dynamic
relations. A sub-rule is required to calculate the total number of new
entities which would have to be created when firing the rule (see below)

*/

dynamic_check(D,B,_,Object,Source,Destination) :-

findall(Obj,target_object(Obj), Tlist),

length(Tlist,Total1),

findall(Object,newfound_objects(Object,Source,Destination),Nlist),

length(Nlist,Total2),

Total is Totall+Total2,Total>5,

beep(60), message(["You are trying to identify more than 4 objects. Delete other objects first']),!,fail.

/* Rules to control input data, to validate and maintain consistency */

dynamic_check(D,B,_,Object,_,_) :-

Function Definition Elicitation Program.4 Thu, Nov 28, 1991 Page 49

Object="end_of_file',
beep(60), message(["You must enter the name of the object to be processed']),!,fail.

dynamic_check(D,B,_,_,Source,_) :-
Source='end_of file',
beep(60), message(["You must enter the name of the starting position of the object']),!,fail.

dynamic_check(D,B,_,_, ,Destination) :-
Destination="end_of _file',
beep(60), message(["You must enter the name of the final position of the object]),!,fail.

dynamic_check(D,B,Rel,_,_,) :-
Rel='end_of_file',
beep(60), message(["You must enter the type of movement (single or many']),! fail.

dynamic_check(D,B,Rel,_,_,) :-
Rel =\= 'single’, Rel =\= 'many’,
beep(60), message(['You must enter the number of objects moved (single or many)1),!,fail.

dynamic_check(D,B,_,Object,_,) :-
not valid_character(Object),
beep(60),message(['An object must begin with a small letter and only contain letters or numbers')),! fail.

dynamic_check(D,B,_,_,Source,_) :-
not valid_character(Source),
beep(60),message(['An object must begin with a small letter and only contain letters or numbers']),! fail.

dynamic_check(D,B,_,_,_,Destination) :-
not valid_character(Destination),
beep(60),message(['An object must begin with a small letter and only contain letters or numbers']),!,fail.

dynamic_check(D,B,Func,Rel,Object,Source,Destination) :-
target_ddata(Func,_,_,_,_),
beep(60),message(['This function has already been input into Ira. ~MPlease try again'),!,fail.

dynamic_check(D,B,_,_ , , ,) :-

findall(Fn,target_ddata(Fn,_,_,_,),Currents),

length(Currents,C),C>=4,

beep(60),message(['Ira is sorry but you have already input four functional definitions']),!,fail.

/* The following few rules ensure the consistency of the input
describing the dynamic relation rules. Look for direction contradictions
between rules in the same direction, then contradictions between
opposing objects */

dynamic_check(D,B,Rel,Object,Source,Destination) :-

Rel='single’,

target_ddata(_,Object,Source,Destination,'move_many'),

beep(60),message([This number of moved objects contradicts previous functional definitions describing
your problem domain']),!,fail.

dynamic_check(D,B,Rel,Object,Source,Destination) :-

Rel='many’,

target_ddata(_,Object,Source,Destination,'move_one'),

beep(60),message(['This number of moved objects contradicts previous functional definitions describing
your problem domain']),!,fail. '

dynamic_check(D,B - L

LI B - ’—) .

Function Definition Elicitation Program.5

/* A subroutine is required for the creation of objects which may not
already exist as domain objects. The program must ensure that all
objects are processed when validating these components. */

createall_objects(Obj1,0bj2,0bj3) :-
findall(Obj1,createach_object(Obj1,0bj2,0bj3),Anylist).

createach_object(Obj,_,) :-
not target_object(Obj),
assertz(target_object(Obj)).

createach_object(_,Obj,_) :-
not target_object(Obj),
assertz(target_object(Obj)).

createach_object(_,_,Obj) :-
not target_object(Obj),
assertz(target_object(Obj)).

/* A similar set of rules is required to calculate the number of uncreated
entities to prempt the generation of more than four entities. */

newfound_objects(Obj1,0b;j2,0bj3) :-
not target_object(Obj1).

newfound_objects(Obj1,0b;j2,0bj3) :-
not target_object(Obj2).

newfound_objects(Obj1,0bj2,0b;3) :-
not target_object(Obj3).

/* A simple ruleset to translate input from the analyst to the move_one
or move_many predicates required by the AE. */

translate_manyone(Rel,Relation) :-
Rel='single',Relation="move_one',!.

translate_manyone(Rel,Relation) :-
Rel='many’,Relation="move_many',!.

/* The additional window required to provide examples of and support
sketching of the system functions. It is a small window but has all the
same characteristics as main windows, without tools. */

function_help(double,Win) :-

wgcreate('Function Help Window',40,0,440,355,70,0,0,1,0),
setup_winDH('Function Help Window"),

gviewer('Function Help Window',off),

wfront('Function Help Window').

setup_winDH(Win) :-

get_functionlist(F1,F2,F3,F4),

gsplit(Win,70),

gecursor(Win,hand),

add_tools(Win,[
funchelp_return(textbox('Chicago',12,0,8,0,32,32,1,'Return'))],1),
add_pic(Win,picwinDH,[

box(25,5,115,260),

box(145,5,175,260),

Thu, Nov 28, 1991 Page 50

Function Definition Elicitation Program.6 Thu, Nov 28, 1991 Page 51

box(325,5,95,260),
textline('Times',14,1,5,80, Function Help'),

textline('Times',12,1,30,90, Functions'),
textbox(‘Times',12,0,45,10,24,250,0,"You input the following functions:'),
textline("Times',14,0,63,90,F1),

textline('Times’,14,0,81,90,F2),

textline("Times',14,0,97,90,F3),

textline("Times',14,0,115,90,F4),

textline("Times’,12,1,150,80,'Example Sketch'),

textbox("Times',12,0,168,10,60,250,0,"You should sketch each system function before entering its
description into Ira. Below is the final sketch of the Record function for the personnel example. It suggests
the scope and scale of these sketches:'),

textline('Times',12,1,190,320,'Personnel Example'),
box(240,40,70,180),
textline('Times',12,2,228,190,'World"),
speckled(fillcircle(270,65,20)),
speckled(fillbox(250,165,40,40)),
fillbox(260,55,10,10),
fillbox(271,66,10,10),
fillbox(252,180,10,10),
fillbox(273,172,10,10),
fillbox(260,189,10,10),
fillbox(278,187,10,10),
textline('Times',12,2,290,155,'Organisation’),
textline('Times',12,2,290,42,'Agency’),
line((270,90),(270,110)),
line((265,105),(270,110)),
line((275,105),(270,110)),
fillbox(265,120,10,10),
line((270,135),(270,160)),
line((265,155),(270,160)),
line((275,155),(270,160)),
textline(‘Times',12,2,275,110,'Many"),
textline("Times',12,2,253,110,'Staff’),

textbox('Times',12,0,330,10,48,250,0,'ra will display two windows for each function input. The first
window elicits a description of the function, then the second window requests further descriptions of certain
objects."),

textbox('Times',12,0,386,10,24,250,0, These two windows are displayed for each function input into
Ira.)]).

/* Routine to determine list of functions necessary to be displayed. */

get_functionlist(F1,F2,F3,F4) :-
get_prop(saved,list,List),
length(List,1),List=[F1],F2=",F3="F4=",!.

get_functionlist(F1,F2,F3,F4) :-
get_prop(saved,list,List),
length(List,2),List=[F1,F2],F3="F4=",!.

get_functionlist(F1,F2,F3,F4) :-
get_prop(saved,list,List),
length(List,3),List=[F1,F2,F3],F4=",!.

get_functionlist(F1,F2,F3,F4) :-

Function Definition Elicitation Program.7

get_prop(saved,list,List),
length(List,4),List=[F1,F2,F3,F4],!.

/* Return tool for the function help window. */

funchelp_return(double,Win) :-
wkill('Function Help Window").

/* The program to pass control to the next window in the dialogue */

pass_static(double,Win) :-
structural_window('Structural Window').

Thu, Nov 28, 1991 Page 52

Function Elicitation Window Thu, Nov 28, 1991 Page 53

/* This program elicits up to 4 functions from the analyst. Note that when
the window is called the function list in the property (function,list,List)
is created as an empty list - this is a vital feature of the window. */

/* Window definition */

functions_window('Functions Window') ;-
wgcreate(Functions Window',40,0,440,570,70,0,0,1,0),
setup_winFF('Functions Window"),

gviewer('Functions Window',off),

wfront(Functions Window').

setup_winFF(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

add_function(textbox('Chicago',12,0,4,0,32,32,1,'Add Func- tion)),
general_help(textbox('Chicago’,12,0,6,0,32,32,1,'General Help"),
stop_addfn(textbox('Chicago’,12,0,4,0,32,32,1, Restart Function Input')),
pass_dynamic(textbox('Chicago',12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinFF,[

box(25,5,127,260),

box(157,5,165,260),

box(170,270,175,210),

box(327,5,73,260),

textline('Times',14,1,5,135,'Identifying System Functions'),

textline('Times',12,1,30,70,'Selecting Functions'),

textbox('Times',12,0,45,10,60,250,0,'Select one or two functions which best represent the required
system. Focus on functions which support the major system goal identified in the previous window and
ignore functions which only occur in exceptional circumstances.’),
textbox('Times',12,0,111,10,36,250,0,'Select functions by double clicking on the command Add Function,
then choosing functions from the menu provided. Select one function at a time."),

textline("Times',12,1,162,80,'Similar Functions'),

textbox('Times',12,0,177,10,48,250,0,'If you recognise two functions which are similar only select the
most appropriate function. Do not select several functions in Ira which are intended to represent one function
in your system, so:'),

textbox(‘'Times',14,2,245,30,40,210,0,'Be Conservative When Selecting Functions !'),
textbox("Times',12,0,291,10,24,250,0,'Note that many systems may only have one major function."),

textline("Times',12,1,330,80, Restart Function Input’),

textbox("Times',12,0,345,10,48,250,0,'You may restart input of all functions by double-clicking
RESTART FUNCTION INPUT. Please note that all existing functions and structures are deleted when
restarting."),

textline('Times',12,1,175,320,'A Simple Example'),

textbox("Times',12,0,190,275,48,200,0,'A simple example is provided to suggest how facts should be
entered into Ira. The example represents a typical personnel domain within an organisation.’),
textbox('Times',12,0,244,275,36,200,0, The personnel system RECORDS staff who join the organisation,
so the major system function is:"),

textline('Times',12,0,284,275,'* Record."),

textbox('Times',12,0,302,275,36,200,0, This function is selected from the list of functions provided when
Add Function command is double-clicked."),

D, '

res_open('iralogo"),

add_pic(Win,logoname,picture(40,310,100,145 resource(iralogo,iralogo))),
set_prop(function,list,[]),

Function Elicitation Window.2 Thu, Nov 28, 1991 Page 54
wkill('Ira Introduction").

/* This program describes the program to elicit up to 4 functions of the
target system. Functions are recorded in a list held in prop identified
by (function,list,List), which is deleted and recreated with the new
function every time. */

add_function(double,Win) :-

mdialog(48,78,200,300,

[button(170,30,20,60,'Save’),

button(170,210,20,60,'Cancel'),

text(10,10,48,280, Please select one or two functions describing your system. Enter and SAVE one function
at a time:'),
menu(70,70,66,160,[loan,borrow,dispatch,send,lend,goods_out,receipt,input,goods_in,arrival,addition,all
ocate,assign,place,connect,join,return,finish_loan,monitor,check_position,record],[loan],Flist)],Btn,check _
functions(Flist)),

Flist=[FunclRest],

get_prop(function,list,List),

del_prop(function,list),

Newlist=[FunclList],

set_prop(function,list,Newlist).

check_functions(D,B,Flist) :-

length(Flist,Length),Length=\=1,

beep(60),message(['Select one function at a time.~MPlease try again']),
! fail.

check_functions(D,B,Flist) :-

get_prop(function,list,List),

length(List,Length),Length=2,

beep(60),message(["You have already selected two functions.~MPlease continue']),!,fail.

check_functions(D,B,Flist) :-

get_prop(function,list,List),

Flist=[Func],

on(Func,List),

beep(60),message(['You have already selected this function.~MPlease try again']),
! fail.

check_functons(D,B,Flist) :-
Flist=[Func],target_ddata(Func,_,_,_,_),

beep(60),message(["You have already entered this function.~MPlease try again']),
! fail.

check_functions(D,B,Flist) :- !.

/* Function to restart input of functions from the beginning, removing all
from the earlier input. There is a two-part control to stop accidental
deletions of inputs. It is accessed from four windows. */

stop_addfn(double,Win) :-

mdialog(100,150,110,300,

[text(10,10,64,280, Note that restarting the input of function definitions with delete all existing definitions
1,

button(80,220,20,60,'Cancel"),

button(80,20,20,60,'Restart’)],Btn), '

retractall(target_ddata(_,_,_,_,_)),

retractall(target_sdata(_,_,_)),

remove_stopobjects,wkill(Win),

Function Elicitation Window.3 Thu, Nov 28, 1991 Page 55

functions_window('Functions Window").

remove_stopobjects :-
retractall(target_object()),
assertz(target_object(world)).

/* Pass Control to the next window. Initially a check is made to ensure
that at least one function has been entered, otherwise the remaining
dialogue falls flat. When passing control store the list of functions in
a second prop (saved,list,L), which is used for display purposes at a
later date. */

pass_dynamic(double,Win) :-

get_prop(function,list,[]),

beep(60),mdialog(145,130,130,300,

[button(100,100,20,100,'Continue’),

text(20,20,64,260,You must identify at least one system function before continuing to describe the
remainder of the domain.")],Btn),!.

pass_dynamic(double,Win) :-
get_prop(function,list,L),

reverse(L,R),

del_prop(function,list),

set_prop(function,list,R),

set_prop(saved,list,R),
funcexample_window('Function Examples Window').

Function Example Window Thu, Nov 28, 1991 Page 56

/* This program elicits up to 4 functions from the analyst. Note that when
the window is called the function list in the property (function,list,List)
is created as an empty list - this is a vital feature of the window. */

/* Window definition */

funcexample_window('Function Examples Window') :-
wgcreate('Function Examples Window',40,0,440,570,70,0,0,1,0),
setup_winFE('Function Examples Window"),

gviewer('Function Examples Window',off),

wfront('Function Examples Window').

setup_winFE(Win) :-

gsplit(Win,70),

geursor(Win,hand),

printable_functions(Functions),

add_tools(Win,[
general_help(textbox(‘Chicago',12,0,6,0,32,32,1,'General Help")),
stop_addfn(textbox(‘Chicago’,12,0,4,0,32,32,1,'Restart Function Input’)),
pass_fromexample(textbox('Chicago',12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinFE,[

box(25,5,80,475),

box(110,5,130,475),

box(260,5,135,475),

textline('Times',14,1,5,135,'Similar Example Problems'),

textline('Times',12,0,30,10,"Your system functions were:'),

textline('Times’,12,1,42,20,Functions),

textbox('Times',12,0,54,10,48,220,0, Y our problem should be similar to one of the two example problems
presented here. If not you may wish to re-enter your system functions."),
textbox('Times',12,0,30,250,72,220,0, Note the format of the two examples, You will be required to define
your problem in a similar format. Sketch these examples for future reference before double-clicking NEXT
WINDOW.]),

get_prop(function,list,L),L=[Function[Rest],

mainfunctions(Function,Selection1,Selection2),

set_prop(acp,selectionl,Selection1),

set_prop(acp,selection2,Selection2),

display_topexample(Selection1,Win),

display_bottomexample(Selection2,Win),

wkill('Functions Window').

/* A short, concat routine is included to get the input functions in a
listable form. */

printable_functions(F) :-
get_prop(function,list,L),
length(L,1),L=[F],F2=",!.

printable_functions(F) :-
get_prop(function,list,L),
length(L,2),L=[F1,F2],
concat(F1," & ',A),
concat(A,F2,B),
concat(B,".",F).

/* Two sets of routines to display the four possible selections of the
available - first set for the top selection, second set for the bottom
selection. */

Function Example Window.2 Thu, Nov 28, 1991 Page 57
/* Top-level: OCP Display */

display_topexample(ocp,Win) :-
add_pic(Win,picwinDT1,[
textline("Times',12,1,120,210, First Example'),
speckled(fillbox(150,30,60,60)),
speckled(fillcircle(180,200,30)),
fillbox(170,40,13,13),

fillbox(185,60,13,13),

fillbox(165,70,13,13),
fillbox(165,180,13,13),
fillbox(180,200,13,13),
line((180,95),(180,165)),
line((175,160),(180,165)),
line((185,160),(180,165)),
fillbox(165,120,13,13),
textline('Times',12,0,210,20,'Store of Items'),

textline('Times’,12,0,210,160,'Source for Items'), .) _ o
textbox(‘Times',12,0,150,270,72,200,0, This example describes a simple system in which items and held

then leave a store to some outside source. The aim of the system is to maintain a store of objects which can be
used.)]),!.

/* Top-level: OMP Display */

display_topexample(omp,Win) :-

add_pic(Win,picwinDT2,['

textline('Times',12,1,120,210,'First Example’),

speckled(fillbox(150,30,60,100)),

speckled(fillbox(150,140,60,100)),

fillbox(170,40,20,20),

fillbox(170,75,20,20),

fillbox(170,180,20,20),

line((180,95),(180,165)),

line((175,160),(180,165)),

line((185,160),(180,165)),

textline('Times',12,0,135,40,'Trains’),

line((140,70),(165,80)),)) .) L
textbox('Times',12,0,210,30,36,100,1, Track section protecting trains against collisions’),
textbox('Times',12,0,210,140,36,100,1,'Track section protecting trains against collisions’),
textbox("Times',12,0,150,270,36,200,0, This example describes a system which controls the safety of
trains moving along tracks in order to avoid collisions.’), o . _ .
textbox(‘Times',12,0,186,270,36,200,0,'Only one train is permitted in each section, and the signalman is
warned whenever a track section contains two or more trains.")]),!.

/* Top-level: OPP Display */

display_topexample(opp,Win) :-

add_pic(Win,picwinDT3,[

textline('Times',12,1,120,210,'First Example’),
speckled(fillbox(150,30,60,100)),

speckled(fillbox(150,140,60,100)),

fillbox(170,75,20,20),

line((180,95),(180,165)),

line((175,160),(180,165)),

line((185,160),(180,165)),

textline('Times',12,0,135,40,'Boat’),

line((140,70),(165,80)), .
textbox('Times',12,0,210,30,24,100,1,'Zone patrolled by coastguard boat’),
textbox('Times',12,0,210,140,24,100,1,'Zone patrolled by coastguard boat’),

Function Example Window.3 Thu, Nov 28, 1991 Page 58

textbox(‘Times',12,0,150,270,36,200,0, This example describes a system which monitors the position of
coastguard boats to ensure they maintain a tight cordon."),

textbox(‘Times',12,0,186,270,36,200,0, Each patrol zone is monitored to ensure it is being patrolled: if not
the coordinator directs a boat to patrol that area.”)]),!.

/* Top-level: OAP Display */

display_topexample(oap,Win) :-

add_pic(Win,picwinDT4,[

textline('Times’,12,1,120,210, First Example’),

speckled(fillbox(150,30,60,60)),

speckled(fillbox(150,170,60,60)),

hash(fillbox(170,40,13,13)),

hash(fillcircle(195,60,7)),

filloval(165,180,17,12),

fillbox(165,205,17,17),

hash(fillbox(167,207,13,13)),

fillcircle(195,210,11),

line((180,95),(180,165)),

line((175,160),(180,165)),

line((185,160),(180,165)),

hash(fillbox(165,120,13,13)),

textline('Times',12,0,210,20,'Theatre bookings"),

textbox('Times',12,0,210,130,24,140,1,'Seats for performance, containing bookings'),
textbox(‘Times',12,0,150,270,72,200,0,'A simple theatre reservation system allocates seat bookings for
performances. Allocation is constrained by seat availability and price, smoking etc (as indicated by different
booking shapes in the figure).")]),!.

/* Bottom-level: OCP Display */

display_bottomexample(ocp,Win) :-

add_pic(Win,picwinDB1,[

textline('Times',12,1,270,205,'Second Example'),

speckled(fillbox(300,30,60,60)),

speckled(fillcircle(330,200,30)),

fillbox(320,40,13,13),

fillbox(335,60,13,13),

fillbox(315,70,13,13),

fillbox(315,180,13,13),

fillbox(330,200,13,13),

line((330,95),(330,165)),

line((325,160),(330,165)),

line((335,160),(330,165)),

fillbox(315,120,13,13),

textline('Times',12,0,360,20,'Store of Items'),

textline('Times',12,0,360,160,'Source for Items'),

textbox('Times',12,0,300,270,72,200,0, This example describes a simple system in which items and held
then leave a store to some outside source. The aim of the system is to maintain a store of objects which can be
used."]),!.

/* Bottom-level: OMP Display */

display_bottomexample(omp,Win) :-
add_pic(Win,picwinDB2,[
textline('Times',12,1,270,205,'Second Example'),
speckled(fillbox(300,30,60,100)),
speckled(fillbox(300,140,60,100)),
fillbox(320,40,20,20),

fillbox(320,75,20,20),

Function Example Window.4 Thu, Nov 28, 1991 Page 59

fillbox(320,180,20,20),

line((330,95),(330,165)),

line((325,160),(330,165)),

line((335,160),(330,165)),

textline('Times',12,0,285,40, Trains'),

line((290,70),(315,80)),

textbox('Times',12,0,360,30,36,100,1, Track section protecting trains against collisions’),
textbox('Times',12,0,360,140,36,100,1, Track section protecting trains against collisions'),
textbox('Times',12,0,300,270,36,200,0, This example describes a system which controls the safety of
trains moving along tracks in order to avoid collisions.’),

textbox('Times',12,0,336,270,36,200,0,'Only one train is permitted in each section, and the signalman is
warned whenever a track section contains two or more trains.")]),!.

/* Bottom-level: OPP Display */

display_bottomexample(opp,Win) :-

add_pic(Win,picwinDB3,[

textline('Times',12,1,270,205,'Second Example’),

speckled(fillbox(300,30,60,100)),

speckled(fillbox(300,140,60,100)),

fillbox(320,75,20,20),

line((330,95),(330,165)),

line((325,160),(330,165)),

line((335,160),(330,165)),

textline("Times',12,0,285,40, Boat"),

1ine((290,70),(315,80)),

textbox('Times',12,0,360,30,24,100,1,'Zone patrolled by coastguard boat'),
textbox('Times',12,0,360,140,24,100,1,Zone patrolled by coastguard boat’),
textbox('Times',12,0,300,270,36,200,0, This example describes a system which monitors the position of
coastguard boats to ensure they maintain a tight cordon."),

textbox(‘Times',12,0,336,270,36,200,0, Each patrol zone is monitored to ensure it is being patrolled: if not
the coordinator directs a boat to patrol that area.’)]),!.

/* Bottom-level: OAP Display */

display_bottomexample(oap,Win) :-

add_pic(Win,picwinDB4,[

textline('Times',12,1,270,205,'Second Example'),

speckled(fillbox(300,30,60,60)),

speckled(fillbox(300,170,60,60)),

hash(fillbox(320,40,13,13)),

hash(fillcircle(345,60,7)),

filloval(315,180,15,10),

fillbox(320,205,13,13),

fillcircle(345,210,7),

line((330,95),(330,165)),

line((325,160),(330,165)),

line((335,160),(330,165)),

hash(fillbox(315,120,13,13)),

textline("Times',12,0,360,20, Theatre bookings'),

textbox("Times',12,0,360,150,24,100,1,'Seats available for performance’),
textbox("Times',12,0,300,270,72,200,0,'A simple theatre reservation system allocates seat bookings for
performances. Allocation is constrained by seat availability and price, smoking etc (as indicated by different
booking shapes in the figure).)]),!.

/* Pass Control to the next window - simple and nothing complex here. */

pass_fromexample(double,Win) :-
dynamic_window('Function Definition Window").

Ira Introduction Program Thu, Nov 28, 1991 Page 64

/* This window is includes several programs to initialise the data input
and to elicit some basic target problem information from the user.
Initial interaction uses a window describing Ira, then calls several
windows to accept data input */

/* Initialising window definition */

initial_window('Ira Introduction') :-

wgcreate('Ira Introduction',40,0,440,570,70,0,0,1,0),
setup_winA('Ira Introduction'),

gviewer('Ira Introduction’,off),

wfront('Ira Introduction’).

setup_winA(Win) :-

gsplit(Win,70),

gecursor(Win,hand),

add_tools(Win,[
name_target(textbox('Chicago’,12,0,4,0,32,32,1,'Enter System Name')),
elicit_goal(textbox('Chicago’,12,0,4,0,32,32,1,'Enter System Goal')),
general_help(textbox("Chicago’,12,0,6,0,32,32,1,'General Help')),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem')),
pass_function(textbox('Chicago',12,0,6,0,32,32,1,'Next Window")),
pass_control(textbox(‘Chicago’,12,0,6,0,32,32,1,'Go to Search"))],1),
add_pic(Win,picwinA,[

box(25,5,132,240),

box(162,5,258,240),

box(25,250,260,230),

b0x(290,250,130,230),

textline('Times’,18,1,5,150,'Welcome to Ira’),

textline('Times',14,1,25,70,'What is Ira ?7'),

textbox(‘Times',12,0,45,10,48,230,0,Ira (the Intelligent Reuse Advisor) will help you to specify a new
computer system by retrieving old specifications for you to reuse. Ira has two major functions:),
textline('Times',12,0,111,10,'ii) Searching for a reusable specification."),
textline('Times',12,0,99,10,'i)) Eliciting facts about a new problem,),
textbox(‘'Times',12,0,129,10,24,230,0, Initially Ira will guide you to input a description of the problem
which you wish to solve."),

textline('Times',14,1,162,20,'How to Input Facts using Ira’),

textbox('Times',12,0,182,10,60,230,0,'Ira provides windows to input different facts about the problem,
Each window provides a description and examples of the facts to be entered. Two sets of commands exist,
one for fact entry and one for fact modification:'),

textbox('Times',12,0,248,20,24,220,0,'fact entry is achieved by double-clicking commands on the left of
the window,’),

textline('Times’,12,0,248,10,'*"),

textline('Times',12,0,272,10,'*"),

textbox('Times',12,0,272,20,24,220,0,'modifying facts is achieved by pulling down two menus to the right
of the window."),

textbox(‘'Times',12,0,302,10,36,230,0,'Every window also has three additional commands found on this
and most other windows:"),

textline('Times',12,0,344,10,'*"),

textline('Times',12,0,368,10,'*"),

textline('Times',12,0,392,10,'*"),

textbox('Times',12,0,344,20,24,220,0,'General Help provides an overview of the facts which are input at
each window,'),

textt()iox('Times',l2,0,368,20,36,220,0,'See Target Problem allows you to see facts input through earlier
windows,"),

gextbo:;('Times',12,0,392,20,24,220,0,'Next window allows you to move onto the next window for data
input."),

Ira Introduction Program.2 Thu, Nov 28, 1991 Page 65

textline('Times',14,1,25,290,'The First Window'),

textbox('Times',12,0,45,255,72,220,0, This first window requires you to input the name and most
important goal of the new system. The system name is the name which your problem will be called by Ira.
The main system goal provides a context with which to view future data input."),
textbox('Times',12,0,123,255,60,220,0, To input data double click on the command on the left of this
window. A dialogue requesting the data to be input will appear. Clicking SAVE will record any data input,
while CANCEL will abandon the input."),

textbox('Times',12,0,189,255,60,220,0, The system name and goal can be modified using the OTHER
INPUTS menu - try this and see. Greyed-out menu options become available as you enter the relevant data
about the problem."),

textbox('Times',12,0,255,255,24,220,0, To complete this window enter the system goal and name, then
click Next Window."),

textline('Times',14,1,290,270,'The Next Four Windows'),
textbox(‘Times',12,0,315,255,72,220,0, The next 4 windows encourage you to model the main functions

of the system. Initially you will be asked to sketch each function on paper, then Ira will ask you to input
descriptions of these sketched functions into Ira, i.e.:"),
textbox('Times',14,2,383,295,35,160,1,'Sketch first, then input the description !")]),

enable_menu('Other Inputs'),
enable_item('Other Inputs',' Mod Name'),
enable_item('Other Inputs',' Mod Goal').

/* The program to elicit the name of the target system */

name_target(deactivate,Win) :-
gcursor(Win,hand).

name_target(double,Win) :-

mdialog(48,78,160,250,

[button(130,30,20,60,'Save"),

button(130,160,20,60,'Cancel’),

text(10,10,64,230, Please enter the name of the new problem domain, then click SAVE:",

edit(80,25,16,200,",gread(Targetname))],Btn,check_name(Targetname)),
assertz(target_name(Targetname)).

check_name(D,B,Targetname) :-
target_name(X),nonvar(X),
beep(30),message(['The system has already been named']),! ,fail.

check_name(D,B,Targetname) :-

not valid_character(Targetname),

beep(30),message([The system name must begin with a small letter and only contain letters or
numbers']),! fail.

check_name(D,B,_) :- !.
/* The program to elicit the purpose or goal of the target system */

elicit_goal(deactivate,Win) :-
geursor(Win,hand).

elicit_goal(double,Win) :-
mdialog(120,78,160,250,
[button(130,30,20,60,'Save’),
button(130,160,20,60,'Cancel'),

Ira Introduction Program.3 Thu, Nov 28, 1991 Page 66

text(10,10,48,230, Please input the most important goal of the new system, then click SAVE:"),
edit(80,25,16,200,",gread(Targetgoal))],Btn,check_goal(Targetgoal)),
assertz(target_goal(Targetgoal)).

check_goal(D,B,Goal) :-

target_goal(X),nonvar(X),

beep(60),message(['The goal of the system already exists']),

,fail.

check_goal(D,B,Goal) :-

not valid_character(Goal),

beep(60),message([The system goal must begin with a small letter and only contain letters or
numbers']),! fail.

check_goal(D,B,Goal) :- !.

/* The program to pass control to the next window in the dialogue, or to
the search mechanism at the end of the data input phase (requiring all
the menus to their selecttions to be enabled. There is the additional
complication involving existence of already 4 functions, so functions
loop must be avoided. */

pass_function(double,Win) :-
findall(F,target_ddata(F,_,_,_,),Flist),length(Flist,4),
enable_item('Objects’,’Add Structure),
enable_item('Objects’,Del Structure'),
enable_item('Objects’,’Add Extra Object’),
enable_item('Objects’, Delete Extra Object’),
wkill(Win),structures_window('Structures Window"),!.

pass_function(double,Win) :-
wkill(Win),functions_window('Functions Window").

pass_control(double,Win) :-

wkill(Win),

enable_menu('Other Inputs’),
enable_menu('Objects’),
enable_item('Other Inputs','Mod Name'),
enable_item('Other Inputs','Mod Goal'),
enable_item('Other Inputs','’Add Condition'),
enable_item('Other Inputs’,Del Condition"),
enable_item('Other Inputs',’Add Label’),
enable_item('Other Inputs','Del Label),
enable_item('Other Inputs',’Add Reqt'),
enable_item('Other Inputs',Del Reqt’),
enable_item('Other Inputs','’Add Scope’),
enable_item('Other Inputs','Del Scope’),
enable_item('Other Inputs','’Add Physical’),
enable_item('Other Inputs’,'Del Physical’),
enable_item('Objects’, Mod Object),
enable_item('Objects’,'Change Categories'),
enable_item('Objects',’Add Structure’),
enable_item('Objects’, Del Structure’),
enable_item('Objects’,’Add Function'),
enable_item('Objects’, Del Function'),
enable_item('Objects','’Add Extra Object’),
enable_item('Objects’, Delete Extra Object’),
control_menu,final_window('Searching\Update Window").

Label Elicitation Program

/* A simple window to elicit up to three labels from the analyst describing
general features of the target system */

/* Initialising window definition */

label_window('Label Window") :-

wgcreate('Label Window',40,0,440,570,70,0,0,1,0),
setup_winJ('Label Window"),

gviewer('Label Window',off),

wfront('Label Window").

setup_winJ(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[
elicit_labels(textbox('Chicago',12,0,6,0,32,32,1, Enter Labels')),
general_help(textbox(‘Chicago’,12,0,6,0,32,32,1,'General Help)),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem)),
pass_physical(textbox('Chicago’,12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinI,[

box(25,5,130,260),

box(175,270,245,210),

textline('Times',14,1,5,110,Labels to Describe the Problem Domain'),

textline('Times',12,1,30,90,'What are Labels'),

Thu, Nov 28, 1991 Page 67

textbox('Times',12,0,45,10,36,250,0, Labels are general descriptors of information system problems. You
should select up to three labels which best describe the current problem domain."),
textbox('Times',12,0,87,10,48,250,0, To input a label describing your problem double click ENTER

LABELS then select the most relevant label(s) to describe the domain."),

textline('Times',12,1,180,320, Personnel Example'),
box(215,280,65,185),
textline("Times',12,2,203,420,'World"),
speckled(fillcircle(240,305,20)),
speckled(fillcircle(240,425,22)),
fillbox(230,295,10,10),
fillbox(241,306,10,10),
fillbox(222,420,10,10),
fillbox(243,412,10,10),
fillbox(230,429,10,10),
fillbox(248,427,10,10),)
textline('Times',12,2,260,395,'Organisation’),
textline('Times',12,2,260,282,'Agency’),
line((240,330),(240,350)),
line((235,345),(240,350)),
line((245,345),(240,350)),
fillbox(235,360,10,10),
line((240,375),(240,400)),
line((235,395),(240,400)),
line((245,395),(240,400)),
textline('Times',12,2,245,350,'Many"),
textline('Times',12,2,223,350,'Staff’),

textbox('Times',12,0,284,275,24,200,0, Two labels can be identified to describe the Personnel domain:'),

textline(‘Times',12,0,314,275,'*"),
textline('Times',12,0,326,275,'*"),
textline('Times',12,0,314,285,'Object_recording’),
textline('Times',12,0,326,285, Recording’),

textbox("Times',12,0,344,275,36,200,0, These two labels are selected from the list obtained by double

Label Elicitation Program.2 Thu, Nov 28, 1991 Page 68

clicking ENTER LABELS."]),

res_open(‘iralogo’),
add_pic(Win,logoname,picture(40,310,100,145,resource(iralogo,iralogo))),
wkill('Scope Window'),

enable_item('Other Inputs',’Add Label’),

enable_item('Other Inputs', Del Label’).

/* The program to elicit the name of the target system */

elicit_labels(double,Win) :-

mdialog(48,78,200,350,

[button(170,30,20,60,'Save’),

button(170,260,20,60,'Cancel’),

text(10,10,64,330, 'Please select one or more labels from the menu to describe the new system. You may
select up to 3 labels, and record them by clicking SAVE:),
menu(80,20,66,310,[stock_control,object_containment,resource_management,renewable_resource_mgmt,li
brary_system,nonrenewable_resource_mgmt,object_hiring,space_occupation,single_object_containment,obj
ect_monitoring,collision_detection,plan_adherence,object_allocation,constraint_satisfaction,requirement_mat
ching,object_recording,recording],[stock_control],Selection)],Btn,check_label(Selection)),
assert_labels(Selection).

/* The following program is required to update 1,2 or 3 new labels, as
input by the analyst */

assert_labels(Selection) :-
Selection = [Sell,Sel2,Sel3IRest],
assertz(target_label(Sell)),
assertz(target_label(Sel2)),
assertz(target_label(Sel3)),!.

assert_labels(Selection) :-
Selection = [Sell,Sel2IRest],
assertz(target_label(Sell)),
assertz(target_label(Sel2)),!.

assert_labels(Selection) :-
Selection = [SelllRest],
assertz(target_label(Sell)).

/* Checks on the firing of this rule are quite complex, & include controls
on the total number of labels selected and existing, as well as checks on
the existence of these labels already. Checking here relies strongly on
the order of the checks - verify the third item in the list first, then cut
if it fails, so that the program does not require any additional checking
*/

check_label(D,B,Selection) :-

length(Selection,Total),Total =0,

beep(60),message(["You must choose at least one label from the menu']),! fail.
check_label(D,B,Selection) :-

length(Selection,Total),Total > 3,

beep(60),message(['You can only choose up to three labels from the menu']),! fail.
check_label(D,B,Selection) :-

length(Selection,Length),

findall(Labels,target_label(Labels),Lablist),

length(Lablist, Total),

Total + Length > 3,

beep(60),message(["You can only chosen to create a total of more than three labels']),!,fail.
check_label(D,B,Selection) :-

Label Elicitation Program.3 Thu, Nov 28, 1991 Page 69

Selection = [Sell,Sel2,Sel3IRest],

target_label(Sel3),

beep(60),message(['Your third selection menu has already been selected as a label'),! fail.
check_label(D,B,Selection) :-

Selection = [Sell,Sel2IRest],

target_label(Sel2),

beep(60),message(["Your second selection menu has already been selected as a label']),! fail.
check_label(D,B,Selection) :-

Selection = [SelllRest],

target_label(Sell),

beep(60),message(["Your first selection menu has already been selected as a label]),!,fail.
check_label(D,B,Selection) :- !.

/* Control of access to the next window */

pass_physical(double,Win) :-
physical_window('Physical Window").

Menu Modifications Program Thu, Nov 28, 1991 Page 83

/* Programs to control modification menus and all calls from the General
Menu */

/* This program is quite obvious - it creates the series of menus
which permit the analyst to modify appropriate information. The
menus are disabled initially, so that they can be introduced during
the input dialogue */

create_menus :-

install_menu('Objects’,[Mod Object; Add Function;Del Function;Add Structure;Del Structure;Change
Categories;Add Extra Object;Delete Extra Object’]),
install_menu('Other Inputs',['Mod Name;Mod Goal;Add Condition;Del Condition;Add Reqt;Del Reqt;Add
Scope;Del Scope;Add Label;Del Label; Add Physical;Del Physical']),
disable_menu('Other Inputs'),

disable_menu('Objects’),

disable_item('Other Inputs',Mod Name"),

disable_item('Other Inputs','Mod Goal'),

disable_item('Other Inputs','’Add Condition'),

disable_item('Other Inputs',Del Condition'),

disable_item('Other Inputs','’Add Label'),

disable_item('Other Inputs',Del Label'),

disable_item('Other Inputs',’Add Reqt'),

disable_item('Other Inputs','Del Reqt'),

disable_item('Other Inputs',’Add Scope'),

disable_item('Other Inputs','Del Scope'),

disable_item('Other Inputs',’Add Physical'’),

disable_item(‘Other Inputs’,Del Physical’),
disable_item(‘Objects’,'Mod Object’),
disable_item('Objects','Change Categories’),
disable_item('Objects',’Add Structure’),
disable_item('Objects','Add Extra Object’),
disable_item('Objects’, Delete Extra Object’),
disable_item('Objects’,'Del Structure'),
disable_item('Objects’,’Add Function'),
disable_item('Objects’,Del Function').

/* Menu calls to programs which permit input of data from the menus */

'Other Inputs'('Mod Name') :- modify_name.

'Other Inputs'('Mod Goal') :- modify_goal.

'Other Inputs'('Add Condition’) :- conditions(double,A).
'Other Inputs'('Del Condition') :- delete_condition.
'Other Inputs'('Add Label’) :- elicit_labels(double,A).
'Other Inputs'('Del Label') :- delete_label.

'Other Inputs'('Add Reqt') :- requirements(double,A).
'Other Inputs'(Del Reqt') :- del_reqt.

'Other Inputs'('Add Scope') :- scope(double,A).

'Other Inputs'(Del Scope') :- del_scope.

'Other Inputs'('Add Physical’) :- elicit_physical(double,A).
'Other Inputs'('Del Physical') :- del_physical.
'Objects'('Mod Object’) :- modify_object.
'Objects'('Change Categories') :- properties(double,A).
'Objects'('Add Structure') :- static_relations(double,A).
'Objects'('Del Structure') :- del_structure.

'Objects'('Add Function') :- add_movement.
‘Objects'('Del Function') :- del_movement.
'Objects'('Add Extra Object’) :- add_object(double,A).
'Objects'('Delete Extra Object') :- delete_object.

Menu Modifications Program.2 Thu, Nov 28, 1991 Page 84

x**k* Modify the name of the system. There are two versions for this
rule, the first for the case where no problem name entered,
so the dialogue acts as a name creation screen. ***k*/

modify_name :-

not target_name(Oname),

centred(T,L,280,250),

mdialog(T,L,130,250,

[button(100,30,20,60,'Create’),

button(100,160,20,60,'Cancel'),

text(10,10,32,230, Please enter the new name of the system, then click CREATE:"),
edit(60,10,16 230,",gread(New name))],Btn,

check_modname(New_name)),

assertz(target_name(New_name)),!.

modify_name :-

target_name(Old_name),

centred(T,L,280,250),

mdialog(T,L,130,250,

[button(100,30,20,60,'Modify’),
button(100,160,20,60,'Cancel’),

text(10,10,32,230,'Please enter the new name of the system, then click MODIFY?:"),
edit(60,10,16,230,write(Old_name),gread(New_name))],Btn,
check_modname(New_name)),
assertz(target_name(New_name)),
retract(target_name(Old_name)).

check_modname(D,B,New_name) :-

New_name = 'end_of_file',

beep(60),message(["You must enter a new name']),! fail.
check_modname(D,B,New_name) :- !.

[¥*¥** Modify the goal of the system. There is an optional window
provided to stop goal modification if no goal had already been
entered, ¥***¥/

modify_goal :-

not target_goal(Old_goal),

centred(T,L,280,250),

mdialog(T,L,110,250,

[button(80,75,20,100,'Continue’),

text(10,20,64,220,'You have not yet entered the system goal, so it cannot be modified.")],Btn),!.

modify_goal :-

target_goal(Old_goal),

centred(T,L,280,250),

mdialog(T,L,130,250,

[button(100,30,20,60,'Modify"),
button(100,160,20,60,'Cancel’),

text(10,10,32,230, Please enter the changed goal of the system, then click MODIFY:",
edit(60,10,16,230,write(Old_goal),gread(New_goal))],Btn,
check_modgoal(New _goal)),
assertz(target_goal(New_goal)),
retract(target_goal(Old_goal)),!.

check_modgoal(D,B,New_goal) :-

New_goal = 'end_of _file',

beep(60),message(['You must enter a new goal']),! fail.
check_modgoal(D,B,New_goal) :- !.

Menu Modifications Program.3 Thu, Nov 28, 1991 Page 85

Jx**x** Select and delete a label for the system. An option is required
in case of no labels currently existing to be deleted. ****x*/

delete_label :-

not target_label(L),

mdialog(160,140,90,250,

[button(60,75,20,100,'Continue’),

text(10,10,32,230, There are currently no labels to be deleted.”)],Btn).

delete_label :-

findall(L,target_label(L),List),

List=[FirstIRest],

mdialog(160,140,170,260,

[button(140,30,20,60, Delete’),

button(140,170,20,60,'Cancel’),

text(10,10,32,240, Please select the label to be deleted then click DELETE:"),
menu(60,10,50,240,List,[First],Slist)

],Btn,check_delabel(Slist)),

Slist=[Label],retract(target_label(Label)).

check_delabel(D,B,Slist) :-
length(Slist,L),L=\=1,
beep(60),message(["You should select one label to delete’]),!,fail.

check_delabel(D,B,_) :- L.

/*****

Delete an existing definition of the problem scope. This program is a
variation on a theme - i.e. construction and matching must use the scope
list rather than target_ddata rules, so we require alternative subroutines
to process these features. Delete scope also has an optional dialogue
which identifies situations in which there are no scopes to delete.

*****/

del_scope :-

not target_scope(Fn),

mdialog(130,150,110,300,

[button(80,100,20,100,'Continue’),

text(10,10,48,280, There are currently no functions which have been identified as beyond the scope of the
information system.")],Btn),!.

del_scope :-)

findall(Data,target_scope(Data),Datalist),

Datalist = [FirstIRest],

mdialog(58,125,210,260,

[button(180,20,20,100,'Delete Scope'),

button(180,180,20,60,'Cancel’),

text(10,10,48,240,'Select an object movement beyond the control of the computer system to be deleted, then
click DELETE:"),

menu(70,10,98,240,Datalist,[First],Mlist)],Btn,check_scope(Mlist)),

Mlist = [M],retract(target_scope(M)).

check_scope(D,B,Mlist) :-

length(Mlist,Total),Total =\=1,

beep(60),message(["You must select one function from the menu']),!,fail.
check_scope(D,B,_) :- !.

Menu Modifications Program.4 Thu, Nov 28, 1991 Page 86

/* Specialised program to match selected list contents to the original
target item */

get_scope(T7) :-
target_scope(01,02,03,R),
concat(',',R,T1),
concat(O3,T1,T2),
concat(',', T2,T4),
concat(02,T4,T5),
concat(',',TS,T6),
concat(O1,T6,T7).

find_scope(01,02,03,R,Selected) :-
target_scope(01,02,03,R),
concat(',',R,T1),
concat(O3,T1,T2),
concat(',',T2,T4),
concat(02,T4,T5),
concat(',',T5,T6),
concat(O1,T6,T7),
compare(=,T7,Selected).

/*****

Deletion of an existing requirement. This is simplified from the
addition program since there is no need for a second button, since

values are shown on the initial window
*****/

del_reqt :-

not target_reqt(A,B,C),

not target_reqt(D,E,F,G),

mdialog(100,150,110,300,

[button(70,100,20,100,'Continue’),

text(10,10,36,280, There are currently no requirements for the system to be deleted')],Bm),!.

del_reqt :-

findall(Data,get_reqt(Data),Datalist),

Datalist = [FirstiRest],

mdialog(58,125,230,400,

[button(200,20,20,160, Remove Requirement'),
button(200,320,20,60,'Cancel'),
text(10,10,64,380,'Select the requirement which you wish to undo, then click REMOVE
REQUIREMENT:"),
menu(80,50,98,300,Datalist,[First],List)],Btn,
check_delreqts(List)),

List = [L],find_reqt(Objectl,0bject2,Relation, Value,L),
retract_reqts(Object1,0bject2,Relation, Value).

retract_reqts(Object1,0bject2,Relation, Value) :-

on(Value, Vlist),
Vlist=[minimum_qty,maximum_qty,same_properties,date_limit],
retract(target_reqt(Object1,0bject2,Relation, Value)),!.
retract_reqts(Object1,0bject2,Relation,Value) :-
retract(target_reqt(Object1,0Object2,Relation)).

check_delreqts(D,B,List) :-

length(List,Total), Total =\= 1,

beep(60),message(['You must select one requirement from menu')),!,fail.
check_delreqts(D,B,_) :- !.

Menu Modifications Program.5 Thu, Nov 28, 1991 Page 87

/* Specialised version of the string-matching menu eliciter, to read the
correct selection from the menu. This program is made more complex
by the possibility of two types of requirement - those with and without
values to the requirements */

/* Two rules to get both kinds of requirement into the menu */

get_reqt(T7) :-
target_reqt(O1,02,R),
concat("'vR’T 1)’
concat(02,T1,TS),
concat(',', T5,T6),
concat(O1,T6,T7).

get_requ(T7) :-
target_reqt(O1,02,R,V),
concat(,",V,T1),
concat(R,T1,T2),
concat(',',T2,T4),
concat(02,T4,T5),
concat(',’, T5,T6),
concat(O1,T6,T7).

/* Two programs to retranslate the selected menu item from the single
atom to the original requirement */

find_reqt(O1,02,R,V,Selected) :-
target_reqt(O1,02,R,V),
concat(',',V,T1),
concat(R,T1,T2),
concat(’,',T2,T4),
concat(02,T4,TS),

concat(',', T5,T6),
concat(01,T6,T7),
compare(=,T7,Selected),!.

find_reqt(O1,02,R,V,Selected) :-
target_reqt(O1,02,R),
concat(',,R,T1),
concat(O02,T1,TS),
concat(',',TS5,T6),
concat(O1,T6,T7),
compare(=,T7,Selected).

/*******

Deletion of a physical attribute from a simpler menu format than
that required during the larger data items which needed to be
selected. The usual optional dialogue exists to block dialogue if no

physical attributes are available to deletion.
Ak ok ok /

del_physical :-

not target_phyprop(A,B),

mdialog(110,150,110,300,

[button(70,100,20,100,'Continue’),

text(10,10,36,280, There are currently no physical attributes to be deleted')],Btn),!.

del_physical :-

Menu Modifications Program.7

delcheck(D,3,F,C) :-
retract(target_cdata(F,C)),!.

delcheck(D,B,_,_) :- !.

/* Fetch conditions, which retrieve relevant condition for display. A
set-prop counter is used to alternate between the condition which
is displayed to the analyst at a time. The counter is originally set in
the main program when Ira is accessed, i.e. in the bootup routine. */

fetch_condition(F,C) :-
findall((F,C),target_cdata(F,C),Clist),
length(Clist,1),Clist=[(F,C)],!.

fetch_condition(F,C) :-
findall((F,C),target_cdata(F,C),Clist),
length(Clist,2),fetch_condchoice(Clist,F,C),!.

fetch_condchoice(Clist,F,C) :-
get_prop(delete,condition, 1),
set_prop(delete,condition,2),
Clist=[(F,C)IRest],!.

fetch_condchoice(Clist,F,C) :-
get_prop(delete,condition,2),
set_prop(delete,condition, 1),
reverse(Clist,Nlist),
Nlist=[(F,C)IRest],!.

Thu, Nov 28, 1991 Page 89

Menu Objects Program
/* Programs called by the Objects Menu */

Thu, Nov 28, 1991 Page 90

/* Add a new object to the data base */

add_object(double,A) :-

build_objects(Objlist),
Objlist=[01,02,03,04,05],
mdialog(100,150,230,250,
[button(200,30,20,60,'Add"),
button(200,160,20,60,'Cancel’),
text(10,10,32,230, Please enter the name of the new object, then click ADD:"),
edit(55,70,16,100,",gread(Object)),
text(80,40,16,200, Existing objects include:"),
text(100,70,16,100,01),
text(116,70,16,100,02),
text(132,70,16,100,03),
text(148,70,16,100,04),
text(164,70,16,100,05)],Btn,
check_addobject(Object)),
assertz(target_object(Object)).

check_addobject(D,B,Object) :-
Object = 'end_of_file',
beep(60),message(["You must enter a new object]),! fail.

check_addobject(D,B,Object) :-
target_object(Object),
beep(60),message(['l am sorry but this object already exists']),!,fail.

check_addobject(D,B,Object) :-
not valid_character(Object),

beep(60),message(['An object must begin with a small letter and only contain letters or numbers']),! fail.

check_addobject(D,B,Object) :-
findall(Objects,target_object(Objects),Objlist),
length(Objlist, Total), Total = 5,

beep(60),message(['You have already created 4 objects.~MPlease modify one of the existing objects']),! fail.
check_addobject(D,B,Object) :- !.

/* Modify an existing object. This is quite a complex program because it
requires the tool to make considerable modifications to the following
knowledge structures:

- object,

- structure (x2),

- function (x3),

- requirement ((x2)x2),

- property,

- physical attribute. All these knowledge types must be changed a new
object name is entered via modifications. */

modify_object :-

mdialog(120,140,180,250,

[button(150,30,20,60,' Modify"),

button(150,160,20,60,'Cancel’),

text(10,10,48,230, Please enter the object to be changed and the new version of the object, then click
MODIFY:",

text(70,20,16,100,'01d object:"),

edit(70,125,16,100,",gread(Old_object)),

text(100,20,16,100,'New object:"),

Menu Objects Program.2 Thu, Nov 28, 1991 Page 91

edit(100,125,16,100,",gread(New_object))],Btn,
check_modobject(Old_object,New_object)),
change_objects(Old_object,New_object).

check_modobject(D,B,0ld_object,_) :-
Old_object = 'end_of_file',
beep(60),message(['You should enter objects for both fields"),! fail.

check_modobject(D,B,_,New_object) :-
New_object = 'end_of_file',
beep(60),message(['You should enter objects for both fields')),! fail.

check_modobject(D,B,0Old_object,_) :-
not target_object(Old_object),
beep(60),message(["The old object is not recognised by the ~Msystem']),! fail.

check_modobject(D,B,0ld_object,_) :-
Old_object=world,
beep(60),message(['I am sorry but you cannot modify the WORLD object),!,fail.

check_modobject(D,B,_,New_object) :-

not valid_character(New_object),

beep(60),message([The new object must begin with a small letter and only contain letters or
numbers']),! fail.

check_modobject(D,B,_,New_object) :-
target_object(New_object),
beep(60),message([The new object already exists - try again']),!,fail.

check_modobject(D,B,_,New_object) :-
New_object=world,
beep(60),message(['You cannot enter the WORLD object - it exists already']),!,fail.

check_modobject(D,B,_,) :- !.

/* The following suite of routines modify all the relevant knowledge
structures linked to the name of the object. */

change_objects(O,N) :-
findall(O,change_object(O,N),Olist).

change_object(O,N) :-
retract(target_object(0O)),
assertz(target_object(N)).

change_object(O,N) :-
retract(target_sdata(Q,A,B)),
assertz(target_sdata(N,A,B)).

change_object(O,N) :-
retract(target_sdata(A,O,B)),
assertz(target_sdata(A,N,B)).

change_object(O,N) :-
retract(target_ddata(A,O,B,C,D)),
assertz(target_ddata(A,N,B,C,D)).

change_object(Q,N) :-
retract(target_ddata(A,B,0,C,D)),

Menu Objects Program.3 Thu, Nov 28, 1991 Page 92
assertz(target_ddata(A,B,N,C,D)).

change_object(O,N) :-
retract(target_ddata(A,B,C,0,D)),
assertz(target_ddata(A,B,C,N,D)).

change_object(O,N) :-
retract(target_reqt(O,A,B)),
assertz(target_reqt(N,A,B)).

change_object(O,N) :-
retract(target_reqt(A,0,B)),
assertz(target_reqt(A,N,B)).

change_object(O,N) :-

retract(target_reqt(0, A, B,C)),
assertz(target_reqt(N »A,B,0)).

change_object(O,N) :-
retract(target_reqt(A,0,B,C)),
assertz(target‘reqt(A,N,B,C)).

change_object(O,N) :-
retract(target_pdata(O,A)),
assertz(target_pdata(N,A)).

change_object(O,N) :-
retract(target_phyprop(O,A)),
assertz(target_phyprop(N,A)).

/* Delete an existing object. This routine only allows deletion of existing
objects which were created as such and are no longer part of a
functional definition, so the menu only displays such objects. Two
sections of routine are provided, the first if no objects are suitable
for deletion. ¥/

delete_object :-

not get_extraobjects(Obyj),

centred(T,L,280,250),

mdialog(T,L,110,250,

[button(80,75,20,100,'Continue’),

text(10,10,48,230, There are currently no extra objects to be deleted - click CONTINUE')],Btn),!.

delete_object :-)
findall(Obj,get_extraobjects(Obj),Olist),
Olist=[FirstiRest],

centred(T,L,280,250),
mdialog(T,L,150,250,
[button(120,30,20,60,'Ok"),
button(120,160,20,60,'Cancel’),
text(10,10,32,230,'Please enter the name of the object to be deleted:"),
menu(50,50,50,150,0list,[First],Slist)],Btn,
check_delobject(Slist)),Slist=[Object],
retract(target_object(Object)).

check_delobject(D,B,Slist) :-
length(Slist,L),L=\=1,
beep(60),message(['Please select one object from the list']),!,fail.

Menu Objects Program.4 Thu, Nov 28, 1991 Page 93

check_delobject(D,B,Slist) :-

Slist=[Object],used_object(Object),

beep(60),message([This object cannot currently be deleted because it supports existing structure, mvmt,
properties & physical structure']),!,fail.

check_delobject(D,B,Slist) :- !.

/* An additional routine is required to determine all of the additional
objects to put them in a list for the menu. */

get_extraobjects(Object) :-
target_object(Object),
Object=\=world,

not function_object(Object).

function_object(Object) :-
target_ddata(_,Object,_,_,_),!.
function_object(Object) :-
target_ddata(_,_,Object,_,),!.
function_object(Object) :-
target_ddata(_,_,_,Object,).

/* Properties Management Window - for all four objects simultaneously. It
constructs the right screen using build objects & set properties to
obtain the required property ons\offs */

manage_properties(double,A) :-
build_objects(Objlist),

Objlist = [Ob1,0b2,0b3,0b4,0b5],
findall(Result,set_properties(Objlist,Result) Proplist),
Proplist = [15,14,13,12,I1],
mdialog(48,78,260,250,
[button(230,30,20,60,'Ok"),
button(230,160,20,60,'Cancel’),
text(10,10,80,230, Please click any object to change its status - ON implies that the object has properties
while OFF implies that object properties are not critical:’),
check(100,80,20,130,0b1,11,01),
check(120,80,20,130,0b2,12,02),
check(140,80,20,130,0b3,13,03),
check(160,80,20,130,0b4,14,04),
check(180,80,20,130,0b5,15,05),
],Button),

set_prop(prop,il,I1),
set_prop(prop,i2,12),
set_prop(prop,i3,13),
set_prop(prop,i4,14),
set_prop(prop,is,I5),
set_prop(prop,01,01),
set_prop(prop,02,02),
set_prop(prop,03,03),
set_prop(prop,04,04),
set_prop(prop,05,05),
set_prop(prop,0b1,0b1),
set_prop(prop,0b2,0b2),
set_prop(prop,0b3,0b3),
set_prop(prop,ob4,0b4),
set_prop(prop,obS,ObS),
findall(Obj,change_properties(Obj),Dlist).

Menu Objects Program.5 Thu, Nov 28, 1991 Page 94

/* Set_properties program is initially required to set the properties
from the existing target_pdata facts. It uses findall to check each object
in the objlist and put ‘on’ or 'off’ in the resulting list, which is then read
by the program to put the relevant check boxes on */

set_properties(Objlist,Result) :-
Objlist = [_,_,_,_,Obj],
nonvar(Obj),

tar get_Pdata(ObJ ’_) »

Result = 'on'.
set_properties(Objlist,Result) :-
Objlist = [_,_,_,_,Obj],
nonvar(Obj),

not target_pdata(Obj,_),

Result = 'off.
set_properties(Objlist,Result) :-
Objlist = [_,_,_,0bj,],
nonvar(Obj),
target_pdata(Obj,_),

Result = 'on'.
set_properties(Objlist,Result) :-
nonvar(Obj),

not target_pdata(Obj,_),

Result = 'off".
set_properties(Objlist,Result) :-
Objlist = [_,_,0Obj,_,_],
nonvar(Obj),
target_pdata(Obj,_),

Result = ‘on'.
set_properties(Objlist,Result) :-
Objlist = [_,_,Oby,_,_],
nonvar(Obj),

not target_pdata(Obj,_),

Result = 'off".
set_properties(Objlist,Result) :-
Objlist = {_,0bj,_,_,_],
nonvar(Obj),
target_pdata(Obj,_),

Result = 'on'.
set_properties(Objlist,Result) :-
Objlist = [_,0bj,_,_,_1,
nonvar(Obj),

not target_pdata(Obj,_),

Result = 'off".
set_properties(Objlist,Result) :-
Objlist = [Obj,_,_,_,_],
nonvar(Obj),
target_pdata(Obj,_),

Result = ‘on'.
set_properties(Objlist,Result) :-
Objlist = [Obj,_,_,_,_1,
nonvar(Obj),

not target_pdata(Obj,_),

Result = 'off".

/* Program called by findall to modify each of the property values if it
has been altered during the use of the window. The cases for retract
come first, then the cases for asserting a non-existent property */

Menu Objects Program.6

/* Retraction programs */

change_properties(Ob]1) :-
get_prop(prop,il,I1),
get_prop(prop,01,01),
get_prop(prop,0b1,0b1),
[1\=01,

01 = 'off’,
retract(target_pdata(Obl1,)

change_properties(Ob2) :-
get_prop(prop,i2,12),
get_prop(prop,02,02),
get_prop(prop,0b2,0b2),
12\=02,

02 = 'off,
retract(target_pdata(ObZ,_)),

change_properties(Ob3) :-
get_prop(prop,i3,I3),
get_prop(prop,03,03),
get_prop(prop,ob3,0b3),
[3\=03,

03 = 'off,
retract(target_pdata(Ob3,)),

change_properties(Ob4) :-
get_prop(prop,i4,14),
get_prop(prop,04,04),
get_prop(prop,ob4,0b4),
[4\= 04,

04 = 'off,
retract(target_pdata(Ob4,_)).

change_properties(ObS) ;-
get_prop(prop,is,I5),
get_prop(prop,05,05),
get_prop(prop,obs,0bs),
[5\= 05,

05 = 'off,
retract(target_pdata(Ob3,)).

/* Assertion programs */

change_properties(Ob1) :-
get_prop(prop,il,I1),
get_prop(prop,01,01),
get_prop(prop,ob1,0bl),
[1\=01,.

01 ="'on',

assertz(target_pdata(Ob1 different_properties)).

change_properties(Ob2) :-
get_prop(prop,i2,12),
get_prop(prop,02,02),
get_prop(prop,o0b2,0b2),
2\=02,

02 = 'on',

Thu, Nov 28, 1991 Page 95

Menu Objects Program.7

assertz(target_pdata(Ob2,different_properties)).

change_properties(Ob3) :-
get_prop(prop,i3,I3),
get_prop(prop,03,03),
get_prop(prop,0b3,0b3),
3\=03,

03 ='on',

assertz(target_pdata(Ob3,different_properties)).

change_properties(Ob4) :-
get_prop(prop,i4,14),
get_prop(prop,04,04),

get_prop(prop,ob4,0b4),
14\= 04,

04 = 'on',

assertz(target_pdata(Ob4,different_properties)).

change_properties(ObS5) :-
get_prop(prop.i5,IS),
get_prop(prop,05,05),
get_prop(prop,ob5,0b5),
I5\= 05,

05 = 'on’,

assertz(target_pdata(ObS different_properties)).

Thu, Nov 28, 1991 Page 96

Menus Program Thu, Nov 28, 1991 Page 97

/* This window describes the definition of initial 'Run Ira' menu, and
the 'Control' menu for interaction with analysts once guided data
input has been completed. This window also includes simple routines
called by these menus. */

/* Initial Ira Menu, with one choice in order to get the system working,
and another two choices to reset search and target predicates in the
data base. An interrupt dialogue is included to avoid accidental
deletions. */

'<LOAD>'(D) :-
install_menu('Run Ira',['Run Ira/R;Reset Search/S;New Application/N').

'Run Ira'('Run Ira') :-
set_counters,

create_menus,

kill_menu('Run Ira'),
initial_window('Ira Introduction').

'Run Ira'('Reset Search') :-
removeall_dialoguel.

'Run Ira'('New Application’) :-
removeall_dialogue?2.

/* Control menu permitting searching, additional data input and
browsing of the selected or partial matches determined by the
analogy engine. A check routine is included to disable the Tdentify
Mappings' routine if no current acpmatches exist. */

control_menu :-

install_menu('Control',['Search; Abstraction;Identify Mappings;See Target;General Help;Consistency
Checker;Reset Search;New Application;Quit from Ira’),

check_idmappings.

check_idmappings :-

not rec_acpmatch(Acp),
disable_item('Control', Tdentify Mappings’),!.
check_idmappings :- .

‘Control'(‘Search’) :-
removeall_dialogue3,
searching_acps(top).

'Control'('Abstraction') :-
get_abstraction.

'Control'('Reset Search') :-
removeall_dialoguel.

'Control'(:New Application’) :-
removeall_dialogue?2.

'Control'('Identify Mappings') :-
inputmapping_dialogue.

'Control'('See Target’) :-
set_prop(menu,control,on),
menu_target.

Menus Program.2 Thu, Nov 28, 1991 Page 98

'Control'('General Help') :-
general_help(double,A).

'Control'('Consistency Checker') :-
consistency_check.

'‘Control'('Quit from Ira') :-
quit_from_ira.

/* Subroutine to quit and reset Ira. */

quit_from_ira :-

wkill('Searching\Update Window"),

wkill('General Help Window'),

kill_menu('Objects'),

kill_menu('Other Inputs'),

kill_menu(‘Control'),

install_menu('Run Ira',['Run Ira/R;Reset Search/S;New Application/N']).

* Deletion control dialogues - simply checking that analysts do not
accidentally delete work\mappings. They insert an additional dialogue
to give users a chance to quit before deleting important data. */

removeall_dialoguel :-

mdialog(100,150,110,300,

[text(10,10,64,280,'Are you sure that you want to remove all previously identified analogous mappings ?7'),
button(80,220,20,60,'Cancel’),

button(80,20,20,60, Delete’)],

Btm,removeall_check1).

removeall_check1(D,3) :-
removeall_mappings,!.

removeall_dialogue?2 :-

mdialog(100,150,110,300,

(text(10,10,64,280,'Are you sure that you want to remove the existing target domain description ?'),
button(80,220,20,60,'Cancel’),

button(80,20,20,60, Delete")],

Btn,removeall_check?2).

removeall_check2(D,3) :-

banner(findall(_,removeall_target,),['Please be patient - Ira is removing the definition of the current
problem'],150,110),!.

removeall_dialogue3 :-

mdialog(100,150,130,300,

[tg&t(lo,10,64,280,'Searchin g will delete all previous analogous mappings and begin matching from scratch
- Okay 7",

button(100,200,20,80, Halt’),

button(100,20,20,80,'Proceed")],

Btm,removeall_check3).

removeall_check3(D,3) :-
removeall_mappings,!.

/* The following routine is the dialogue to tell the analyst when no
abstraction is available to analyse or retrieve the abstraction which
was identified by the search mechanism. */

Menus Program.3 Thu, Nov 28, 1991 Page 99

get_abstraction :-
rec_acpmatch(Selected_acp),

not father(Selected_acp,No_son),
fetch_explanation(Selected_acp),!.

get_abstraction :-
noabstraction_dialogue.

noabstraction_dialogue :-

mdialog(100,150,130,300,

[text(10,10,64,280,Tra has not yet identified any retrieved abstractions - please use the search mechanism to
identify abstractions."),

button(100,75,20,100,'Continue’)],Btn).

Object Elicitation Program Thu, Nov 28, 1991 Page 100

/* This program is quite simple - it attempts to elicit up to 4 basic objects
from the analyst, to guide the modelling of the target problem. */

/* Window definition */

objects_window('Objects Window') :-
wgcreate('Objects Window',40,0,440,570,70,0,0,1,0),
setup_winB('Objects Window"),

gviewer('Objects Window',off),

wfront('Objects Window").

setup_winB(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[
add_object(textbox('Chicago',12,0,6,0,3
general_help(textbox(‘Chicago’,12,0,6,
see_target(textbox(‘Chicago’,12,0,4,0,
pass_static(textbox('Chicago',12,0,6,0,
add_pic(Win,picwinB,[
box(25,5,170,260),
box(200,5,220,260),
b0x(210,270,210,210),
textline('Times’,14,1,5,25,Tdentifying Problem Objects’),

2,32,1,'Add Objects")),
0,32,32,1,'General Help')),
2,32,1,'See Target Problem')),
32,32,1,'Next Window"))1,1),

textline('Times',12,1,30,70, Inputting Objects'),

textbox('Times',12,0,45,10,48,250,0,'In this window Ira requests you to identify up to four important
entities or objects in the problem domain. In particular you should identify objects which are linked to
meeting the major system goal."),

textbox("Times',12,0,93,10,60,250,0,'You may be assisted in identifying important problem objects by
developing a simple entity- relationship model for the domain. Again, focus on the central objects of the
domain rather than those which are peripheral to meeting the system goal."),
textbox(Times',12,0,153,10,36,250,0, Enter objects by double clicking on the command Add Objects.
Modify and Delete Objects using the Objects menu.’),

textline('Times',12,1,205,70,' The WORLD object’),

textbox("Times',12,0,220,10,48,250,0,'Ira automatically creates a fifth entity with which to describe the
problem domain. The World entity represents the entire problem space, and is needed to describe the number
of other entities in the problem."),

textbox('Times',12,0,268,10,60,250,0,' When identifying your four entities you are advised to ensure that
you do not create an entity which overlaps with Iras World entity."),

textline('Times',12,1,215,320,'A Simple Example’),

textbox("Times',12,0,230,275,48,200,0,'A simple example is provided to suggest how facts should be
entered into Ira. The example represents a typical personnel domain within an organisation."),
textbox("Times',12,0,284,275,72,200,0, The major goal of the personnel system is to record data about
staff who work for then leave an organisation. Staff joins from agencies then leave the company. Some
important entities in modeling the personnel domain are:"),

textline('Times',12,0,360,275,'* Staff,"),

textline('Times',12,0,372,275,"* Organisation,’),

textline('Times',12,0,384,275,'* Agency,"),

textline("Times',12,0,396,275,'* Outside World."),

speckled(fillbox(10,295,130,160)),

blank(fillbox(140,295,60,160)),

textbox('‘Bookman',14,2,147,296,51,158,1,'HINT: Draw an Entity-Relationship Diagram'),
blank(fillbox(40,365,20,30,5,5)),

blank(fillbox(70,395,20,30,5,5)),

blank(fillbox(100,365,20,30,5,5)),

Object Elicitation Program.2 Thu, Nov 28, 1991 Page 101

line((60,385),(70,410)),
1ine((90,410),(100,380))]),

wkill('Ira Introduction).

/* This program describes the data input program to elicit an initial
series of 3/4 critical objects describing the key aspects of the target
system */ ’

elicit_objects(double,Win) :-

mdialog(48,78,170,300,

[button(140,30,20,60,'Save’),

button(140,210,20,60,'Cancel’),

text(10,10,48,280, Please input up to four objects or entities describing the system. Enter and SAVE one
object at a time:'),

text(80,40,16,60,'Object:"),

edit(80,110,16,100,",gread(Object))],Btn,check_objects(Object)),

assertz(target_object(Object)).

check_objects(D,B,Object) :-

Object = 'end_of_file',)
beep(60),message(['You must enter the name of the object]),
! fail.

check_objects(D,B,Object) :-

target_object(Object),

beep(60),message(['You have already input this object']),
! fail.

check_objects(D,B,Object) :-
not valid_character(Object),

beep(60),message(['An object must begin with a small letter and only contain letters or numbers']),
! ,fail.

check_objects(D,B,Object) :-

findall(Objects,target_object(Objects),Obijlist),

length(Objlist,Length),

Length >=§,

beep(60),message(["You have already input four items.~MPlease delete or modify existing objects']),
! fail.

check_objects(D,B,Object) :- !.

Physical Elicitation Window Thu, Nov 28, 1991 Page 103
/* A window to elicit physical attributes of specific objects in the problem

*/
/* Initialising window definition */

physical_window('Physical Window') :-
wgcreate('Physical Window',40,0,440,570,70,0,0,1,0),
setup_winK("Physical Window"),

gviewer('Physical Window',off),

wfront('Physical Window').

setup_winK(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

elicit_physical(textbox('Chicago’,12,0,4,0,32,32,1, Enter Physical Desc."),
general_help(textbox('Chicago',12,0,6,0,32,32,1,'General Help')),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem)),
pass_final(textbox('Chicago',12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinK,[

box(25,5,170,260),

box(200,5,220,260),

box(25,270,145,210),

box(175,270,245,210),

textline('Times',14,1,5,50, Identifying Physical Attributes of the Domain"),

textline('Times',12,1,30,40, Physical Attributes of the Domain’),
textbox('Times',12,0,45,10,72,250,0, This is the final window to elicit facts about your application.
Matching your problem description can be enhanced by knowledge of physical domain features. You should
identify physical attributes of objects identified in earlier windows."),
textbox('Times',12,0,117,10,48,250,0, To enter a physical attribute double click ENTER PHYSICAL
DESC. then enter an object and select the most appropriate physical attribute for that object.”),

textline('Times',12,1,205,75,'Physical Attributes’),

textbox('Times',12,0,220,10,60,250,0, Physical attributes represent known types of common applications.
These applications include Warehousing, Libraries and Air Traffic Control systems. Think of your specific
application when selecting physical attributes.’),

textbox(‘Times',12,0,288,10,36,250,0,"You can enter a maximum of five physical attributes, and only one
physical attribute for each object."),

textline('Times',12,1,30,355,'Hints"),

textline('Times',12,0,45,275,'*"),

textbox('Times',12,0,45,285,24,190,0, Think of the specific application in more detail.’),
textline('Times',12,0,75,275,'*"),

textbox('Times',12,0,75,285,36,190,0, Sketch the physical features of the application to help you identify
attributes more clearly."),

textline("Times’,12,0,117,275,'*'),

textbox(‘'Times',12,0,117,285,36,190,0, Ensure that the attribute correctly represents the application before
entering it.'),

textline('Times',12,1,180,320, Personnel Example'),
box(215,280,65,185),
textline('Times',12,2,203,420,'World"),
speckled(fillcircle(240,305,20)),
speckled(fillcircle(240,425,22)),
fillbox(230,295,10,10),

fillbox(241,306,10,10),

fillbox(222,420,10,10),

fillbox(243,412,10,10),

Physical Elicitation Window.2 Thu, Nov 28, 1991 Page 104

fillbox(230,429,10,10),
fillbox(248,427,10,10), o
textline('Times',12,2,260,395,'Organisation’),
textline('Times',12,2,260,282,'Agency’),
line((240,330),(240,350)),
line((235,345),(240,350)),
line((245,345),(240,350)),
fillbox(235,360,10,10),
line((240,375),(240,400)),
line((235,395),(240,400)),
line((245,395),(240,400)),
textline('Times',12,2,245,350,'Many"),
textline('Times',12,2,223,350,'Staff"),

textbox('Times',12,0,284,275,72,200,0,'Attributes appropriate to the Personnel system are:'),
textline('Times',12,0,314,275,"* Organisation - company, or’),
textline('Times',12,0,326,275,'* Organisation - place_of_work.")]),

wkill('Label Window"),

enable_item('Other Inputs','’Add Physical’),

enable_item('Other Inputs’,Del Physical’).

[* The program to elicit the name of the target system */

elicit_physical(double,Win) :-

build_objects(Objlist),

remove(world,Objlist,Olist),

Olist=[01,02,03,04],

mdialog(48,78,230,350,

[button(170,160,20,140,'Save Attribute'),

button(200,200,20,60,'Cancel’),

text(10,10,48,330, Please select one object and a physical attribute for that object, then record the attribute by
clicking SAVE ATTRIBUTE:"),

text(74,20,16,100,'Object:"),

edit(94,20,16,100,",gread(Object)),

text(74,200,16,120,'Attributes'),
menu(90,140,66,200,[in_sequence,in_building,different_properties,are_borrowed,taken_away,is_container
;moves_physically,are_manned_vehicle,adjacent_in_space,construct_network,company,place_of_work],[in
_sequence],Selection),

text(119,20,16,100,'Objects are:'),

text(134,20,16,100,01),

text(150,20,16,100,02),

text(166,20,16,100,03),

text(182,20,16,100,04),

],Btn,check_physical(Object,Selection)),

Selection = [SellRest],

assertz(target_phyprop(Object,Sel)).

check_physical(D,B,Object,Selection) :-
Object = 'end_of_file',
beep(60),message(["You must enter an object to which to add an attribute. ~MPlease try again']),! fail.

check_physical(D,B,Object,Selection) :-
not target_object(Object),
beep(60),message([This object is not known to the system. ~MPlease try again']),!,fail.

check_physical(D,B,Object,Selection) :-
length(Selection,Total), Total =\= 1,
beep(60),message(["Y ou must choose one attribute from the menu']),!,fail.

Physical Elicitation Window.3 Thu, Nov 28, 1991 Page 105

check_physical(D,B,Object,Selection) :-

findall(Obj,target_phyprop(Obj,_),Objlist),

length(Objlist,L),L>=5,

beep(60),message(["'You have already entered S physical attributes - delete or modify existing
attributes']),!,fail.

check_physical(D,B,Object,_) :-
target_phyprop(Object,_),

beep(60),message([This object has already been allocated an attribute. ~MRemove the existing attribute
first']),!,fail.

check_physical(D,B,Object,Selection) :-
Selection = [SellRest],

target_phyprop(Object,Sel),
beep(60),message([This attribute has already been allocated to the object']),!,fail.

check_physical(D,B,Object,Selection) :- !.
/¥ Control of access to the next window */

pass_final(double,Win) :-
final_window('Searching\Update Window").

Properties Elicitation Program Thu, Nov 28, 1991 Page 123

/* This program is simple in comparison to other programs, and
permits the analyst to identify objects which are critically effected
by properties. */

/* Window definition */

properties_window('Categories Window') :-
wgcreate('Categories Window',40,0,440,570,70,0,0,1,0),
setup_winE('Categories Window'),

gviewer('Categories Window',off),

wfront('Categories Window"').

setup_winE(Win) :-

gsplit(Win,70),

geursor(Win,hand),

possible_categories(Presobject),

add_tools(Win,[

properties(textbox('Chicago’,12,0,4,0,32,32,1,'Enter

Categ- ories")),
general_help(textbox('Chicago’,12,0,6,0,32,32,1,'General Help")),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem’));
pass_conditions(textbox('Chicago',12,0,6,0,32,32,1,'Next Window'))],1)
add_pic(Win,picwinE,[

box(25,5,170,260),

b0x(200,5,220,260),

box(25,270,135,210),

box(165,270,255,210),

textline('Times',14,1,5,100, Identifying Object Categories’),

textline('Times',12,1,30,70,'Object Properties’),

textbox('Times',12,0,45,10,60,250,0,'So far little has been said about the nature of objects identified in
earlier windows. This window suggests some features of these objects by categorising them. Select entities
which describe the roles of objects in the problem domain."),

textbox('Times',12,0,115,10,36,250,0, To enter an object category double click ENTER CATEGORIES
then enter the object and select the relevant category from the scroll menu.’),
textbox('Times',12,0,157,10,36,250,0,"You may only identify one category per object, and only identify
two objects which are categorised."),

textline("Times',12,1,205,45, Permitted Object Categories'),
textbox("Times',12,0,220,10,24,250,0, The following object categories can be selected:’),
textline('Times',12,0,244,10,'*"),

textline('Times',12,0,304,10,'*"),

textline('Times',12,0,328,10,'*"),

textline(‘Times',12,0,364,10,"*"),

textbox('Times',12,0,244,15,60,245,0, DIFFERENT_OBJECT_TYPES: each object may have many
different values and these values play an important role in processing the object, for example in a cinema
seating domain both the reservation and the seats must be of the same type,),
textbox('Times',12,0,304,15,24,245,0,RESOURCE_CONTAINER: the object is a container in which
other objects are held,"),

textbox('Times',12,0,328,15,36,245,0,RESOURCE: the object acts as a resource with which system
requirements are fulfilled. Resources are often contained in a resource_container,),
textbox('Times',12,0,364,15,36,245,0,RECEPTICABLE: the object receives other objects, ie. it is their
final destination."),

textline("Times',12,1,30,360,'Hints"),

textline('Times',12,0,45,275,'*"),

textbox(‘Times',12,0,45,285,24,190,0,'Only apply a category to an object if it applies to the object in all
cases,"),

textline('Times',12,0,75,275,'*"),

Properties Elicitation Program.2 Thu, Nov 28, 1991 Page 124

textbox('Times',12,0,75,285,24,190,0,'Only identify categories for objects dependent upon functions
identified earlier,"),

textline("Times',12,0,105,275,"*"), _
textbox('Times',12,0,105,285,24,190,0,'Ira tentatively proposes the following object categorisation:'),
textline("Times’,12,1,135,285,Presobject),

textline("Times',12,1,170,300, Personnel Example'),
box(185,290,65,160),
speckled(fillcircle(210,315,20)),
speckled(fillcircle(210,390,22)),
fillbox(200,305,10,10),
fillbox(211,316,10,10),
fillbox(192,380,10,10),
fillbox(203,372,10,10),
fillbox(198,394,10,10),
fillbox(213,390,10,10),
textline('Times',12,2,230,355,'Organisation’),
textline('Times',12,2,230,292,'Agency"’),
textline('Times',12,2,185,413,'World'),

textbox('Times',12,0,255,275,36,200,0, There are no object categories which are applicable to the
personnel domain, for several reasons:"),

textline('Times',12,0,297,275,'*"),)
textbox ('Times',12,0,297,285,60,190,0, DIFFERENT_OBJECT_TYPES: the type of staff (e.g. clerical or
mgmt) does not affect their joining the organisation,’),

textline("Times',12,0,345,275,'*"),)

textbox (‘Times',12,0,345,285,24,190,0, RESOURCE: Staff are not resources which populate the
organisation,"),

textline('Times',12,0,369,275,'*"),

textbox('Times',12,0,369,285,36,190,0,RESOURCE_CONTAINER: the organisation does not treat staff
as a resource.")]),

wkill('Structures Window'),

enable_item('Objects’,'Change Categories').

/¥ A routine to determine possible problem categories based solely on the
best match with the domain functionality. It uses the target_ddata
match to guess object matches. To simplify the model just select one,

'randomly-chosen’ category. A dummy rule is included to ensure firing
of the rule. */

possible_categories(Presobject) :-
get_prop(acp,selectionl,Acp),
findall((O,C),acp_pdata(Acp,0,C),Plist),
Plist=[(Obj,Cat)IRest],
fetch_tobject(Obj, Tobj),
concat(Tobj,":',A),
concat(A,Cat,Presobject),!.

possible_categories('No categories applicable’).
fetch_tobject(Obj, Tobj) :-
acp_ddata(F,0bj,_,_,—.ACP),
target_ddata(F,Tobj,_,_»_)s!-
fetch_tobject(Obj,Tobj) :-

acp_ddata(F,_,Obj ,_,_._,Acp),
target_ddata(F,_,Tobj,_,_).!.

fetch_tobject(Obj, Tobj) :-

Properties Elicitation Program.3 Thu, Nov 28, 1991 Page 125

acp_ddata(F,_,_,Obj,_,Acp),
target_ddata(F,_,_,Tobj,_).

/* This program describes the program to elicit static structural relations
to describe the new target problem. It also permits the deletion and
modification of properties as necessary. */

properties(double,Win) :-

build_objects(Objlist),

remove(world,Objlist,Olist),

Olist=[01,02,03,04],

mdialog(48,78,240,350,

[button(185,200,20,60,'Save'),

button(215,200,20,60,'Cancel’),

text(10,20,64,310,Input the object name then select a property which describes the object (deselect all
properties to remove a property from an object. Clicking SAVE records the change:"),
text(90,20,16,60,'Object:"),

edit(110,20,16,100,",gread(Object)),

text(90,165,16,130,'Object Categories'),
menu(106,145,50,180,[different_object_types,resource,resource_container,recepticable],[different_object_t
ypes],Plist),

text(135,20,16,100,'Objects are:’),

text(155,20,16,100,01),

text(171,20,16,100,02),

text(187,20,16,100,03),

text(203,20,16,100,04),

],Button,property_check(Object,Plist)),

save_properties(Object,Plist).

/* Several rules to permit appropriate recording\changing of given
object properties. */

save_properties(Object,Plist) :-
Plist=[PropIRest],not target_pdata(Object,_),
assertz(target_pdata(Object,Prop)),!.

save_properties(Object,Plist) :-
target_pdata(Object,_),Plist=[],
retract(target_pdata(Object,)),!.

save_properties(Object,Plist) :-
target_pdata(Object,_),Plist=[PropIRest],
retract(target_pdata(Object,_)),
assertz(target_pdata(Object,Prop)),!.

/* Rule to constrain number of objects with properties in the system. */

property_check(D,B,Object,Plist) :-

Plist=[ProplRest],not target_pdata(Object,Prop),

findall(Obj,target_pdata(Obj,_),Tlist),length(Tlist,T),T = 2,

beep(60), message(["You cannot enter any more new objects with properties to Ira. Delete existing properties
first']),!,fail.

/* Rules to control input data, to validate and maintain consistency. There
are several combinations of possibilities here, depending upon whether
the object selects any menu selection or not. */

property_check(D,B,Object,_) :-
Object = 'end_of_file',

Properties Elicitation Program.4 Thu, Nov 28, 1991 Page 126
beep(60), message(['You must enter the name of the object']),! fail.
property_check(D,B,Object,_) :-

not target_object(Object),
beep(60),message(['Enter an object which is known to Ira),! fail.

property_check(D,B,Object,Plist) :-
Object='end_of_file',Plist=[],
beep(60),message(['Please enter the object name and select a property for the object]),! fail.

property_check(D,B,_,Plist) :-

length(Plist,L),L>1,

beep(60),message(['Please only select one property from the menu'l),! fail.
property_check(D,B,_,_) :- I.

/* Routine to pass control to the next window */

pass_conditions(double,Win) :-
conditions_window('Conditions Window").

Requirements Elicitation Program Thu, Nov 28, 1991 Page 132

/* The program to elicit system requirements from the analyst - it leans
heavily on techniques used in the conditions elicitation program */

/* Window definition */

requirements_window('Requirements Window') :-
wgcreate('Requirements Window',40,0,440,570,70,0,0,1,0),
setup_winG('Requirements Window"),
gviewer('Requirements Window',off),

wfront('/Requirements Window").

setup_winG(Win) :-

gsplit(Win,70),

geursor(Win,hand),

present_reqt(Reqts),

add_tools(Win,[

requirements(textbox('Chicago’,12,0,4,0,32,32,1, Enter Requlre- ments')),
general_help(textbox('Chicago’,12,0,6,0,32,32,1,'General Help")),
see_target(textbox('Chicago’,12,0,4,0,32,32,1 'See Target Problem')),
pass_scope(textbox('Chicago',12,0,6,0,32,32,1,'Next Window")],1),
add_pic(Win,picwinG,[

box(25,5,145,260),

box(175,5,245,260),

box(25,270,225,210),

box(268,270,102,210),

textline('Times',14,1,5,100,'Identifying System Requirements’),

textline('Times',12,1,30,40,' What are System Requirements’),

textbox('Times',12,0,45,10,48,250,0, The previous windows elicited basic facts about your domain. This
window and those which follow identify how these facts relates to the information system to be
implemented."),

textbox('Times',12,0,99,10,24,250,0, This window requests you to identify requirements of this system
(see What are Reqmrements) ",

textbox('Times',12,0,129,10,36,250,0, Double click ENTER REQUIREMENTS, then select the required
knowledge state and an opnonal value (see below)."),

textline("Times',12,1,180,90 ,'Requirements ",

textbox('Times',12,0, 195 10,36,250,0,'Requirements are defined as states which the information system
attempts to achieve, These states are described by object relations input previously.’),
textbox(‘'Times',12,0,237,10,12,250,0,'States can also be specially defined:"),
textline('Times',12,0,249,10,'*"),

textline('Times',12,0,297,10,'*"),

textline('Times',12,0,333,10,'*'),

textline('Times’,12,0,393,10,'*"),

textbox(‘Times',12 0 249,15,48,245,0,MINIMUM_QTY implies that the system should attempt to always
hold a minimum quantity of objects, for example a stock bin contains a minimum quantity of items,'),
textbox('Times',12,0,297,15,36,245,0,MAXIMUM_QTY implies that the system should attempt to always
hold a maximal quantity of objects,’),

textbox("Times',12,0,333,15,60,245,0,,SAME_PROPERTIES implies both objects described in the
knowledge state should have the same properties or values, for example a theatre-goer should be allocated to
a seat meeting his needs, i.e. both are less than >£20,"),

textbox('Times',12,0,393,15,24,245,0, DATE_LIMIT implies that a state only occurs for a given length of
time."),

textline('Times',12,1,30,300,'What are Requirements’),
textbox(‘'Times',12,0,45,275,60,200,0,' Requirements are high-level goals for the information system. First
think of states which your system is attempting to attain, then describe these requirements in
object-relationship terms."),

textbox('Times',12,0,111,275,72,200,0,'Requirements states can be defined in more detail by allocating

Requirements Elicitation Program.2 Thu, Nov 28, 1991 Page 133

requirement types. These types describe specific details of a requirement. Requirements are shown in the
bottom-left box in this window.'),

textbox('Times',12,0,189,275,24,200,0,'Ira tentatively suggests the following requirement:"),
textbox('Times',12,1,219,275,24,200,1,'Reqts"),

textline("Times',12,1,273,320,'Personnel Example'),

textbox('Times',12,0,288,275,72,200,0, The personnel system monitors the movement of staff into and out
of the organisation, so it has no specific domain states which it must help to achieve. This demonstrates the
importance of purpose on identifying the scope of the domain.")]),

wkill('Conditions Window"),

enable_item('Other Inputs','’Add Reqt'),

enable_item('Other Inputs', Del Reqt").

/* Subroutine necessary to guess at a possible requirement state for the
problem domain. */

present_reqt(P) :-
get_prop(acp,selectionl,Acp),
acp_reqt(O1,02,R,Acp),
concat('Object ',R,A),
concat(A,' Object',P),!.

present_reqt(P) :-
get_prop(acp,selection1,Acp),
acp_reqt(O1,02,R,Q,Acp),
concat(‘Object ',R,A),
concat(A,' Object',B),
concat(B,' when ',C),
concat(C,Q,P),!.

present_reqt('Ira is uncertain of requirements') :- !.

[* This program describes the program to elicit the static knowledge
structure and value to identify the requirment. Note the need to delete
properties when there exists partially-completed transactions, so done
at beginning of each dialogue rule */

requirements(double,Win) :-

del_prop(reqt,ol),

del_prop(reqt,02),

del_prop(reqt,rel),

del_prop(reqt,val),

mdialog(48,78,250,240,

[button(220,10,20,150,'Create Requirements’),

button(220,170,20,60,'Cancel’),

text(10,10,112,220,'Use each button to call a menu from which to select the required knowledge or the value
which controls that knowledge state. You do not need to select a value before clicking CREATE?:"),
button(140,50,20,150,'Object-Relation’),

button(170,50,20,150,'Requirement Type'),

],Button,requirement_menu),

assert_reqts.

/* Additional rule required to assert requirements, since they can be
generated with or without a value */

assert_reqts :-
get_prop(reqt,01,01),
get_prop(reqt,02,02),
get_prop(reqt,rel,R),

Requirements Elicitation Program.3 Thu, Nov 28, 1991 Page 134

get_prop(reqt,val, Value),
assertz(target_reqt(O1,02,R, Value)),!.

assert_reqts :-
get_prop(reqt,01,01),
get_prop(reqt,02,02),
get_prop(reqt,rel,R),

not get_prop(reqt,val, Value),
assertz(target_reqt(O1,02,R)).

[* Sub-windows containing windows for the three options in the main
window */

requirement_menu(D,4) :- !,
requirement_menul(01,02,R),
set_prop(reqt,01,01),
set_prop(reqt,02,02),
set_prop(reqt,rel,R),fail.

requirement_menu(D,5) :- !,
requirement_menu2(Value),
set_prop(reqt,val,Value),fail.

requirement_menu(D,B) :-
findall(O1,target_reqt(O1,_,),Listl),
findall(O2,target_reqt(O2,_,_,_),List2),
length(List1,L1),length(List2,L.2),
L=L1+L2,L>=2,

beep(60),message(["You have already entered two requirements - delete existing requirements'}),! fail.

requirement_menu(D,B) :-

get_prop(reqt,01,01),

get_prop(reqt,02,02),

get_prop(reqt,rel,R),

not get_prop(reqt,val, Value),

target_reqt(O1,02,R),

beep(60),message(['This requirement is already known to Ira']),! fail.

requirement_menu(D,B) :-

get_prop(reqt,01,01),

get_prop(reqt,02,02),

get_prop(reqt,rel,R),

get_prop(reqt,val, Value),

target_reqt(O1,02,R,Value),

beep(60),message([‘'This requirement is already known to Ira']),! fail.

requirement_menu(D,B) :-

not get_prop(reqt,01,01),

beep(60),message(["You must select an object-relation’]),! fail.
requirement_menu(D,1) :- !.

[* This first window offers a menu of the movements. To display
movements on the list it is necessary to concat data into single data
atoms: 1) concat each data, then 2) use findall to put this data in the
list. get_ddata puts the target_ddata in the right format */

/* Rule for eliciting the static knowledge - it calls on the standard
program for putting fields in scroll menus then matching on that
selection. An option program allows for the possibility of no target

Requirements Elicitation Program.4 Thu, Nov 28, 1991 Page 135
structures being input. */

requirement_menul(Object1,0bject2,Relation) :-

not target_sdata(_,_,_),beep(60),

mdialog(250,300,200,300,

[button(170,100,20,100,'Continue’),

text(10,10,96,280,'You have not yet input any object-relations from which to select. A requirement cannot
be created until the object-relations has been input to the system.")],Btn),!.

requirement_menul (Object1,0bject2,Relation) :-

findall(Data,get_sdata(Data),Datalist),

Datalist = [FirstiRest],

mdialog(250,300,200,300,

[button(170,30,20,60,'0k"),

button(170,210,20,60,'Cancel"),

text(10,10,32,280,'Select the object-relation which must be achieved by the computer system:'),
menu(60,30,98,240,Datalist,[First],Slist)],Btn,check_reqts(Slist)),
rmenu1(Slist,Object1,0bject2,Relation).

rmenul(Slist,Object1,0bject2,Relation) :-
Slist = [S1IRest],
find_sdata(Object1,0bject2,Relation,S1).

check_reqts(D,B,List) :-

length(List,Total),Total =\=1,

beep(60),message(["You must select one object-relation']),! fail.
check_reqts(D,B,_) :- !.

/¥ Program to display and elicit the values for a selection */

requirement_menu2(Value) :-

mdialog(250,300,200,200,

[button(170,20,20,60,'0k"),

button(170,120,20,60,'Cancel’),

text(10,10,48,180,'Select the appropriate requirement type for the object-relation:"),
menu(80,30,66,140,[minimum_qty,maximum_qty,same_properties,date_limit],[minimum_gqty], Vlist)],Btn,
check_rvalue(Vlist)),

Vlist = [ValuelRest].

check_rvalue(D,B, Vlist) :-

length(Vlist,L),L=\=1,

beep(60),message(["You must select only one requirement type'),!,fail.
check_rvalue(D,B, Vlist) :- !.

/* Routine to pass control to the next window */

pass_scope(double,Win) :-
scope_window('Scope Window").

Rollback Search Program Thu, Nov 28, 1991 Page 140

/* This program rolls back the search when necessary after a one partial
or two partial match condition has been fired and the target description
is altered. In cases where the analyst undermines the previous match
by changing the matched target descriptions, the tool must halt
searching & either:

1- roll back the search (i.e. delete mappings and start again), or

2- delete mappings and stop the searching process.

The analyst is offered this choice and selects via a dialogue buttons.
This program also requires a careful match between target data and
recorded analogous matches. */

/* Dialogue to offer the analyst the choice of halting or restarting the
search process. */

rollback_dialogue :-

beep(60),mdialog(85,100,230,350,

[button(200,20,20,120,'Search Again'),

text(20,20,160,310,'You have modified some facts about the new system which were critical to identifying
the existing analogous match. Ira will have to undo these matches and begin the search again:"),
button(200,270,20,60,'Halt"),

].Btn,rollback_buttons).

rollback_buttons(D,1) :-
removeall_mappings,
searching_acps(top),!.

rollback_buttons(D,3) :-
removeall_mappings,!.

/* The top-level rule included in partial match windows to identify

whether the target domain supporting analogous mappings has been
modified. */

check_targetchange(Win) :-
changed_target,wkill(Win),
rollback_dialogue,!.

check_targetchange(Win) :- !.

/* Second level rule which identifies changes to the target facts which
support analogous mappings. */

changed_target :-
rec_statmapping(Tobj1,Tobj2,_,_,Relation,_,_),
not target_sdesc(Tobj1,Tobj2,Relation),!.

changed_target :- .
rec_dynmapping(Tobj1,Tobj2,Tobj3,_,_,_,Relation,_,_),
not target_ddesc(_,Tobj1,Tobj2,Tobj3,Relation),!.

changed_target :-
rec_propmapping(Tobj1,_,Property,_),
not target_pdata(Tobj1,Property),!.

changed_target :-
rec_condmapping(Tobj1,Tobj2,Tobj3,Rell,Tobj4,Tobj5,Rel2,
——ss—s—s_s_,Condition,_),

not target_cdata(Tobj1,Tobj2,Tobj3,Rell ,Tobj4,Tobj5,Rel2,Condition),!.

Rollback Search Program.2

changed_target :-
rec_reqtmapping1(Tobj1,Tobj2,_,_,Relation,_),
not target_reqt(Tobj1,Tobj2,Relation),!.

changed_target :-
rec_reqtmapping2(Tobj1,Tobj2,_,_,Relation,Property,_),
not target_reqt(Tobj1,Tobj2,Relation,Property),!.

changed_target :-
rec_scopemapping(Tobj1,Tobj2,Tobj3,_,_,_,Relation,_),
not target_scope(Tobj1,Tobj2,Tobj3,Relation),!.

changed_target :-
rec_labelmapping(Label,_),
not target_label(Label),!.

changed_target :-
rec_phymapping(Tobj1,_,Property,_),
not target_phyprop(Tobj1,Property),!.

Thu,

Nov 28, 1991 Page 141

Scope Elicitation Program Thu, Nov 28, 1991 Page 142

/* The program to elicit the system scope from the analyst. It is simpler
than previous programs in that it only requires one window ans scroll
menu */

/* Window definition */

scope_window('Scope Window') :-

wgcreate('Scope Window',40,0,440,570,70,0,0,1,0),
setup_winH('Scope Window"),

gviewer('Scope Window',off),

wfront('Scope Window").

setup_winH(Win) :-

gsplit(Win,70),

geursor(Win,hand),

present_scope(Prescope),

add_tools(Win,[

scope(textbox(‘Chicago’,12,0,4,0,32,32,1,'Enter System Scope')),
general_help(textbox(‘Chicago',12,0,6,0,32,32,1,'General Help')),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem’)),
pass_label(textbox('Chicago',12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinH,[

box(25,5,170,260),

box(200,5,220,260),

box(25,270,135,210),

box(165,270,220,210),

textline('Times',14,1,5,50, Identifying the Scope of the Information System’),

textline('Times',12,1,30,40,"'What is the Scope of the System’),
textbox('Times',12,0,45,10,36,250,0, This window encourages you to identify the scope of control of the
information system. This is done by examining each function."),
textbox(‘'Times',12,0,87,10,36,250,0, Each function can be described as either initiated by the information
system or initiated by other events beyond the information system.’),
textbox('Times',12,0,129,10,48,250,0, To enter a function not initiated by the information system double
click ENTER SYSTEM SCOPE then enter the function not initiated by the system."),

textline('Times',12,1,205,75,'System Scope'),

textbox('Times',12,0,220,10,12,250,0,'Each function is initiated either by:"),
textline("Times',12,0,238,10,'*"),

textline('Times',12,0,250,10,'*"),

textbox(Times',12,0,238,20,24,240,0,'the information system, or'),
textbox('Times',12,0,250,20,24,240,0,'events outside the information system."),
textbox(‘'Times',12,0,268,10,48,250,0,'Many events are initiated by the information system, for example
the allocation of engine drivers to trains at the beginning of every shift. These events are not beyond the
control of the information system."),

textbox("Times',12,0,322,10,48,250,0,'Other functions only occur when events in the outside world cause
them to occur. These functions are beyond the scope of the information system and should be identified in
this window."),

textline('Times',12,1,30,340, Hints"),

textline('Times',12,0,45,275,'*"),

textbox("Times',12,0,45,285,36,190,0, Think of your domain in physical terms (see example below) and
sketch it out beforehand."),

textline('Times',12,0,87,275,'*"),

textbox(‘Times',12,0,87,285,12,190,0,'Consider each function in turn.'),
textline('Times',12,0,105,275,'*"),

textbox('Times’,12,0,105,285,36,190,0,'Ira tentatively suggests that the following function may be beyond
the system scope:’),

textline('Times',12,1,146,295,Prescope),

Scope Elicitation Program.2 Thu, Nov 28, 1991 Page 143

textline('Times',12,1,170,320, Personnel Example’),
b0x(200,280,80,185),
textline('Times',12,2,203,420,'World"),
speckled(fillcircle(240,305,20)),
speckled(fillcircle(240,425,22)),
fillbox(230,295,10,10),
fillbox(241,306,10,10),
fillbox(222,420,10,10),
fillbox(243,412,10,10),
fillbox(230,429,10,10),
fillbox(248,427,10,10), o
textline("Times’,12,2,260,395,'Organisation’),
textline('Times',12,2,260,282,'Agency"),
line((240,330),(240,350)),
line((235,345),(240,350)),
line((245,345),(240,350)),
fillbox(235,360,10,10),
line((240,375),(240,400)),
line((235,395),(240,400)),
line((245,395),(240,400)),
textline('Times',12,2,245,350,'Many"),
textline('Times',12,2,223,350,'Staff"),

textbox(‘Times',12,0,300,275,72,200,0,'The personnel system is a monitoring system and does not affect
staff joining the organisation. As a result movement of staff into the organisation is beyond the scope of the
information system, and should be identified as such.")]),

wkill('Requirements Window'),

enable_item('Other Inputs',’Add Scope’),

enable_item('Other Inputs’,'Del Scope').

/* Subroutine needed to approximate the possible scope of the current
system. */

present_scope(Function) :-
get_prop(acp,selection,Acp),
acp_scope(Function,Acp),!.

present_scope('Ira is uncertain of functions').

/* This program describes the program to elicit the dynamic knowledge
structure and value to identify the scope. Note the need to delete
properties when there exists partially-completed transactions, so done
at beginning of each dialogue rule. There is also a control version of the
rule included if there are no input object movements. */

scope(double,Win) :-

not target_ddata(_,_,_,_,_),

mdialog(48,78,160,260,

[button(130,80,20,100,'Continue'),

text(10,10,112,240,"You have not yet input any object movements which may be used to identify the scope

of the required computer system. Please input object movements before identifying the system
scope.’)],Btn),!.

scope(double,Win) :-
findall(Mvmt,target_ddata(Mvmt,_,_, ,),Datalist),
Datalist = [FirstIRest],

mdialog(48,75,270,260,

Scope Elicitation Program.3 Thu, Nov 28, 1991 Page 144

[button(240,10,20,150,'Create Scope'),

button(240,190,20,60,'Cancel’),

text(10,10,112,240,'Select object movements which are beyond the control of the computer system. You
may select more than one movement, however only one movement can be selected at a time before clicking
CREATE:",

menu(130,10,98,240,Datalist,[First],Mlist)],

Btn,scope_menu(Mlist)),

Mlist = [Movement],

assertz(target_scope(Movement)).

scope_menu(D,B,Mlist) :-
length(Mlist, Total),Total =\= 1,
beep(60),message(['You must select one function from the scroll menu']),! fail.

scope_menu(D,B,_) :-

findall(M,target_scope(M),Mlist),

length(Mlist,L),L>=2,

beep(60),message(['You have already entered 2 functions beyond the scope of the information
system']),!,fail.

scope_menu(D,B,Mlist) :-

Mlist=[MIRest],target_scope(M),

beep(60),message(['This function beyond the system scope has already been entered into Ira']),! fail.
scope_menu(D,B,_) :- !.

/* Routine to pass control to the next window */

pass_label(double,Win) :-
label_window('Label Window").

Structure Elicitation Program Thu, Nov 28, 1991 Page 149

/* This program is quite complex, and attempts to elicit the static
structural relations. It includes a scrolling menu from which to select
the most appropriate structural relation.

It also has two windows created for the two phases in the development
of structural relations: (i) elicitation of structures pertaining to specific
state tranistions, (ii) structures added beyond the scope of these
transitions, i.e. WORLD and additional structures. The first is called

the STRUCTURAL window and the second is called the STRUCTURES
window. However, both windows call the same dialogue routines. The
windows are differentiated by the contents of the windows, which

directs the analysts to input different types of structural relations. */

[* First STRUCTURAL window definition. This window includes the simple
five-line routine to remove the current function from the function list
ready for the next cycle of the function definition process. */

structural_window('Structural Window') :-
wgcreate('Structural Window',40,0,440,570,70,0,0,1,0),
setup_winCa('Structural Window"),

gviewer('Structural Window',off),

wiront('Structural Window").

setup_winCa(Win) :-

get_prop(function,list,List),

List=[FuncIRest],

prepare_line1(Func,Linel),

prepare_line2(Func,Line2),

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[
contains_relations(textbox(‘Chicago’,12,0,4,0,32,32,1,'Enter Stru- cture')),
general_help(textbox(‘Chicago’,12,0,6,0,32,32,1,'General Help"),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem")),
stop_addfn(textbox('Chicago’,12,0,4,0,32,32,1,' Restart Function Input')),
pass_funcontrol(textbox('Chicago’,12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinCa,[

box(25,5,181,350),

box(234,5,186,260),

box(215,270,175,210),

textline('Times',14,1,5,100, Identifying the Structure of Objects"),

textbox("Times"',12,0,30,10,36,340,0,'Use this window to identify and input the structure of objects which
were identified in the previous window. This is done by expressing the relationship between pairs of these
objects."),

textbox(‘'Times',12,0,78,10,36,340,0,'Tra suggests that, in this instance, you input the following two
structural relations (definitions of these relations are defined in more detail below):"),
textbox("Chicago',12,0,120,10,10,340,1,Linel),

textbox('Chicago’,12,0,135,10,10,340,1,Line2),

textbox("Times',12,0,165,10,36,340,0, To enter an object structure double click ENTER STRUCTURE
then identify two objects and select a relationship between them. Possible relationships are described
below."),

textline('Times',12,1,239,20, Types of relationships between objects’),
textbox(‘'Times',12,0,254,10,24,250,0, Two relationships are available to describe the link between
objects:"),

textline('Times"',12,0,286,30,"* X contains_one Y'),

textline('Times',12,0,286,130,'* X contains_many Y'),

textbox(‘'Times',12,0,304,10,48,250,0, These relationships represent the structure of objects described in

Structure Elicitation Program.2 Thu, Nov 28, 1991 Page 150

your sketch of the function. They detail the relationship between objects in the sketch."),
textbox('Times',12,0,346,10,60,250,0,'At any moment in time X may contain one or many Y, which must
be specified by the selected relationship. If X may only even contain one Y then select Contains _one,
otherwise select Contains _many.'),

textline('Times',12,1,220,310, Personnel Example’),
speckled(fillcircle(260,325,20)),
speckled(fillcircle(260,400,22)),
fillbox(250,315,10,10),
fillbox(261,326,10,10),
fillbox(242,390,10,10),
fillbox(263,382,10,10),
fillbox(250,409,10,10),
fillbox(263,405,10,10),
textline('Times',12,2,280,365,'Organisation’),
textline('Times',12,2,280,302,'Agency’),

textline("Times',12,0,302,275,' Appropriate structural relations are:'),
textline("Times',12,0,320,275,'* organisation contains_many staff,’),
textline('Times',12,0,332,275,'* agency contains_many staff."),
textbox('Times',12,0,350,275,36,200,0, That is, at any time, the agency can contain many staff and the
organisation can also contain many staff.")]),

wkill('Function Definition Window'),

enable_item('Objects’,’Add Structure'),

enable_item('Objects’, Del Structure’),

get_prop(function,list,List),

List=[FunciRest],

remove(Func,List,Newlist),

del_prop(function,list),

set_prop(function,list,Newlist).

[* Two simple subroutines to prepare the two Prompt lines to improve the
final display & usability of the system. */

prepare_line1(Func,Line) :-
target_ddata(Func,Object,Source,Destination,_),
concat(Source,’ contains_one/many ',A),
concat(A ,Object,Line).

prepare_line2(Func,Line) :-
target_ddata(Func,Object,Source,Destination,_),
concat(Destination,' contains_one/many ',A),
concat(A,Object,Line).

[* Separate input dialogue window, to permit more control over the
objects displayed for selection, and to support tighter control over the
relations offered to users. Apart from this, it is the same as the static
relations dialogue, using the same error controls, etc. */

contains_relations(double,Win) :-

build_objects(Objlist),

remove(world,Objlist,Olist),

Olist = [Object1,0bject2,0bject3,0bject4],

mdialog(48,78,280,370,

[button(250,60,20,100,'Create"),

button(250,240,20,100,'Cancel’),

text(10,10,80,350,'Please choose two objects then select the most appropriate relation between them. To
generate the relation between the objects click the CREATE button:'),

text(90,119,16,135,'Structural Relations'),

Structure Elicitation Program.3 Thu, Nov 28, 1991 Page 151

text(90,10,16,85, First Object:"),
text(90,260,16,100,'Second Object:"),
edit(130,10,16,100,",gread(ObjectA)),
edit(130,260,16,100,",gread(ObjectB)),
menu(118,125,34,120,['contains_one','contains_many'],['contains_one'],Relation),
text(170,70,16,190,'0Objects to choose from are:’),
text(170,260,16,100,0bject1),
text(185,260,16,100,0bject2),
text(201,260,16,100,0bject3),
text(217,260,16,100,0bject4),
],Button,static_check(Relation,ObjectA,ObjectB)),
Relation = [RellRest],
assertz(target_sdata(ObjectA,ObjectB,Rel)).

/* Second STRUCTURES window definition. */

structures_window('Structures Window') :-
wgcreate('Structures Window',40,0,440,570,70,0,0,1,0),
setup_winCb('Structures Window'),

gviewer('Structures Window',off),

wfront('Structures Window').

setup_winCb(Win) :-
unheaded_objects(Obj1,0bj2,0bj3,0bj4),
gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[
static_relations(textbox('Chicago’,12,0,4,0,
general_help(textbox('Chicago’,12,0,6,0,32,32,1,'General Help")),
see_target(textbox(‘Chicago’,12,0,4,0,32,32,1,'See Target Problem")),
pass_properties(textbox('Chicago’,12,0,6,0,32,32,1,'Next Window"))],1),
add_pic(Win,picwinCb,[

box(25,5,187,260),

box(217,5,203,260),

box(25,270,205,210),

box(235,270,185,210),

textline("Times',14,1,5,90, Identifying further Structures between Objects’),

32,32,1,'Enter Stru- cture")),

textline('Times',12,1,30,45,Relationships between Objects'),

textbox('Times"',12,0,45,10,36,250,0, Your sketch of system functions can be developed further to describe
more of the problem domain. Develop your sketch in the following ways:"),

textline('Times',12,0,87,10,* combine function sketches into a single diagram,’),
textline('Times',12,0,99,10,* draw a boundary (WORLD) around this diagram,’),
textline('Times',12,0,111,10,'* add addtional structures to the diagram,’),
textbox("Times',12,0,129,10,48,250,0,'Each of these changes to your sketch can be described by an
entity-relationship which should be input into Ira. See the remainder of this window for details."),
textbox('Times',12,0,183,10,12,250,0, Enter relationships into Ira as before."),

textline('Times',12,1,222,20, Types of relationships between objects’), _
textbox(‘'Times',12,0,237,10,32,250,0, Four relationships are available to describe the link between two
objects:"),

textline('Times',12,0,261,30,'* has_one'),

textline('Times',12,0,273,30,'* has_many'),

textline('Times',12,0,261,130,"* contains_one’),

textline('Times’,12,0,273,130," contains_many'),

textbox(‘'Times',12,0,291,10,48,250,0, Has_one and Has_many relations represent static relationships
between objects which never change. They describe relationships between objects which are not processed
by system functions."),

textbox("Times',12,0,345,10,24,250,0,'Contains_one & Contains_many relations were described in the

Structure Elicitation Program.4 Thu, Nov 28, 1991 Page 152

previous window."),
textbox('Times',12,0,375,10,36,250,0,'You should use these 4 relationships to describe new structures
created by linking function structures and adding the domain boundary (see World entity)."),

textline('Times’,12,1,30,310,”The WORLD entity"),

textbox('Times',12,0,45,275,60,190,0, The WORLD entity represents the entire domain. It is shown
graphically on your sketch by the boundary around your diagram, and has been automatically created by
Ira.'),

textbox('Times',12,0,111,275,24,190,0,'Ira recommends that you enter the following mappings:’),
textline("Chicago',12,0,141,275,'world has_one/many:"),

textline('Chicago’,12,0,156,390,0bj1),

textline("Chicago’,12,0,171,390,0bj2),

textline("Chicago',12,0,186,390,0bj3),

textline("Chicago’,12,0,201,390,0bj4),

textline("Times',12,1,240,320,'Personnel Example’),
box(255,290,65,185),
speckled(fillcircle(280,335,20)),
speckled(fillcircle(280,410,22)),
fillbox(270,325,10,10),
fillbox(281,336,10,10),
fillbox(262,400,10,10),
fillbox(273,392,10,10),
fillbox(268,414,10,10),
fillbox(283,410,10,10),
textline('Times',12,2,300,375,'Organisation’),
textline('Times',12,2,300,312,'Agency’),
textline("Times’,12,2,260,440,'World'),

textbox('Times',12,0,325,275,24,200,0,' The domain boundary was added to the record function, so:"),
textline('Times',12,0,349,275,'* world has_one organisation,’),

textline('Times',12,0,361,275,'* world has_one agency.'),
textbox(‘Times',12,0,379,275,36,200,0, The personnel domain has one organisation and one agency, so it
can be represented and described quite simply.")]),

wkill('Structural Window"),

enable_menu('Objects"),

enable_item('Objects','/Add Function'),

enable_item('Objects', Del Function'),

enable_item('Objects’,’Add Extra Object’),

enable_item('Objects’, Delete Extra Object’),

enable_item(‘Objects’','Mod Object’).

/* The analysis routine to identify objects not yet connected to the
hierarchical structural model via the WORLD entity. There can only be
a maximum number of 4 such entities, due to constraints on number of
objects and functional structuring. This is done is the following way
(since difficult to fire rules which identify when they do not occur):

- develop list of all objects, then exclude world from it,

- develop list of object which fit into the hierarchical structure,

- remove these objects from original list to identify the unlinked
entities,

- fill out list with spaces to give it ability to easily dump it on the
screen. */

unheaded_objects(Obj1,0bj2,0bj3,0bj4) :-
findall(Allobjects,target_object(Allobjects),Allist),
remove(world,Allist,Newlist),
findall(Okobjects,target_sdata(_,Okobjects,_),Oklist),
remove_all(Oklist,Newlist,Finalist),

Structure Elicitation Program.5 Thu, Nov 28, 1991 Page 153
space_objects(Finalist,Obj1,0bj2,0bj3,0pj4).

space_objects(Finalist,Obj1,0bj2,0bj3,Qpj4) :- .
length(Finalist,O),Obj1=",Obj2=",0bj3,",Obj4= .

space_objects(Finalist,Obj1,0bj2,0bj3,Qpj4) -
length(Finalist,1),Finalist=[Obj1],0bj2<",0bj3=",0bj4=",!1.

space_objects(Finalist,0Obj1,0bj2,0b;j3,0pj4) :- o
length(Finalist,2),Finalist=[Obj1,0bj2],gbj3=",0bj4=",!.

space_objects(Finalist,Objl,Obj2,0bj3,0bj4) S
length(Finalist,3),Finalist=[Obj1,0bj2,0p;3],0bj4=",!.

space_objects(Finalist,0bj1,0bj2,0bj3,0bj4) :-
length(Finalist,4),Finalist=[Obj1,0bj2,0bj3,0bj4],!.

/* This program describes the program to elicit static structural relations
to describe the new target problem */

static_relations(double,Win) :-

build_objects(Objlist),

Objlist = [Object1,0bject2,0bject3,0bjectd4,ObjectS],
mdialog(48,78,310,370,

[button(280,60,20,100,'Create’),

button(280,240,20,100,'Cancel’),

text(10,10,80,350, Please choose two objects then select the most appropriate relation between them. To
generate the relation between the objects click the CREATE button:’),
text(90,119,16,135,'Structural Relations'),

text(90,10,16,85, First Object:"),

text(90,260,16,100,'Second Object:"),
edit(130,10,16,100,",gread(ObjectA)),
edit(130,260,16,100,",gread(ObjectB)),
menu(110,125,66,120,['has_one','has_many','contains_one','contains_many'],['has_one'],Relation),
text(186,70,16,190,'Objects to choose from are:’),
text(186,260,16,100,0bjectl),

text(201,260,16,100,0bject2),

text(217,260,16,100,0bject3),

text(233,260,16,100,0bject4),

text(249,260,16,100,0bjects),
],Button,static_check(Relation,ObjectA,ObjectB)),

Relation = [RellRest],

assertz(target_sdata(ObjectA,ObjectB,Rel)).

[* Rule to constrain the number of static relations to eight static structure.
This is a simple input validation mechanism based on desire not to have
more than two good matches for a structure. */

static_check(D,B,_,_,) :-

findall(Rel,target_sdata(_,_,Rel),Tlist),

length(TTist,T),T = 8,

beep(60), message(["You cannot enter any more enter-relations. Delete existing relations first']),! fail.

/* Rules to control input data, to validate and maintain consistency.
Consistency is checked within the applciation of relations between
a specific set of objects - i.e. mutual exclusion between 'has_no',
'has_one' and 'has_many'.*/

static_check(D,B,_,Obj1,_) :-

Structure Elicitation Program.6 Thu, Nov 28, 1991 Page 154

Objl ='end_of_file',
beep(60), message(["You must enter the name of an object']),!,fail.

static_check(D,B,_,_,0bj2) :-
Obj2 ='end_of_file',
beep(60), message(["You must enter the name of an object’]),!,fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

target_sdata(Obj1,0bj2,Rel),

beep(60),message(['l am sorry but this entity-relation is already known to Ira']),!,fail.

/* Sequence of rules to check the program consistency within static
structure. The first six rules identify the existence of contradictory
structures, then these are followed are nine rules which identify
circular definitions of data, i.e. A is-in B and B is-in A, which just
cannot happen in the hierarchy model of the physical world */

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_no',

target_sdata(Obj1,0bj2,'has_one'),

beep(60),message(['] am sorry but this entity-relation contradicts existing relations']),!,fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_no',

target_sdata(Obj1,0bj2,'has_many’),

beep(60),message(['I am sorry but this entity-relation contradicts existing relations'),! fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_one’,

target_sdata(Obj1,0bj2,'has_no"),

beep(60),message(['I am sorry but this entity-relation contradicts existing relations']),! fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_one',

target_sdata(Obj1,0bj2,'has_many"),

beep(60),message(['] am sorry but this entity-relation contradicts existing relations']),! fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_many',

target_sdata(Obj1,0bj2,'has_no’),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations']),! fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_many’,

target_sdata(Obj1,0bj2,'has_one"),

beep(60),message(['I am sorry but this entity-relation contradicts existing relations']),! fail.

/* Circular definition consistency rules (9 rules - 3x3 relations) */
[* Testing the 'has-no' structure */

static_check(D,B,Relations,Obj1,0bj2) :-

Structure Elicitation Program.7 Thu, Nov 28, 1991 Page 155

Relations = [RellRest],

Rel = 'has_no',

target_sdata(Obj2,0bj1,'has_no'),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new
system']),! fail.

static_check(D,B,Relations,Obj1,0b;2) :-

Relations = [RellRest],

Rel = 'has_no',

target_sdata(Obj2,0bj1,'has_one'),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new
system']),!,fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_no',

target_sdata(Obj2,0bj1,'has_many’),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new
system']),!,fail.

/* Testing the 'has-one' structure */

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_one’,

target_sdata(Obj2,0bj1,'has_no’),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new

system']),!,fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_one’,

target_sdata(Obj2,0bj1,'has_one"),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new
system']),! fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_one',

target_sdata(Obj2,0bj1,'has_many’),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new
system']),!,fail.

[* Testing the 'has-many' structure */

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_many’,

target_sdata(Obj2,0bj1,'has_no’),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new

system']),!,fail.

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_one',

target_sdata(Obj2,0bj1,'has_many'),

Eeeg(6(')])),n'n;s§zlxge([’l am sorry but this entity-relation contradicts existing relations describing the new
ystem']),! fail.

Structure Elicitation Program.8 Thu, Nov 28, 1991 Page 156

static_check(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

Rel = 'has_many',

target_sdata(Obj2,0bj1,'has_many"),

beep(60),message(['T am sorry but this entity-relation contradicts existing relations describing the new
system']),! fail.

/* Remaining basic validation rules, similar to those used in other
screeens */

static_check(D,B,Relations,Obj1,0bj2) :-
length(Relations,Total),Total = 1,
target_object(Obj1),
target_object(Obj2),!.

static_check(D,B,Relations,_,_) :-
length(Relations,Total),Total =\= 1,
beep(60), message(['Enter one relation to describe the link between the objects']),!,fail.

static_check(D,B,_,Obj1,_) :-
not target_object(Obj1),
beep(60),message(['Enter an object from the list displayed'),!,fail.

static_check(D,B,_,_,0bj2) :-
not target_object(Obj2),
beep(60),message(['Enter an object from the list displayed']),!,fail.

/* Routine to control the input and definition of functions, or the
input of additional structural predicates at the end of the functions-
input loop. The current function has already been deleted before this
stage in the iteration. */

pass_funcontrol(double,Win) :-
get_prop(function,list,[]),
structures_window('Structures Window'),!.

pass_funcontrol(double,Win) :-
dynamic_window('Function Definition Window").

/* Routine to pass control to the next window */

pass_properties(double,Win) :-
properties_window('Categories Window").

Structure\Mvmt Menu Program Thu, Nov 28, 1991 Page 171
/* Programs which are called by the Structure\Mvmt Menu */

/* Delete an existing static relation. This program includes two validation
checks which prohibit the analyst from deleting a structural
component which currently supports a system requirement or an
identified condition, thus maintaining system consistency. */

del_structure :-

build_objects(Objlist),

Objlist = [Object1,0bject2,0bject3,0Object4,Object5],
mdialog(60,200,310,400,

[button(280,60,20,100, Delete’),
button(280,240,20,100,'Cancel’),
text(10,10,80,380, Please choose two objects and the relation between them which is to be deleted, then
click the DELETE button:"),
text(90,119,16,135,'Structural Relations'),
text(90,10,16,85, First Object:"),
text(90,260,16,100,'Second Object:"),
edit(130,10,16,100,",gread(ObjectA)),
edit(130,260,16,100,",gread(ObjectB)),
menu(110,125,66,120,['has_one','has_many','contains_one','contains_many'],['has_one'],Relation),
text(186,70,16,190,'Objects to choose from are:’),
text(186,260,16,100,0bjectl),
text(201,260,16,100,0bject2),
text(217,260,16,100,0bject3),
text(233,260,16,100,0bject4),
text(249,260,16,100,0bjectS),
],Button,del_stcheck(Relation,ObjectA,ObjectB)),
Relation = [RellRest],
retract(target_sdata(ObjectA,ObjectB,Rel)).

del_stcheck(D,B,_,0Obj1,_) :-
Objl ='end_of_file',
beep(60), message(['You must enter the name of an object’]),!,fail.

del_stcheck(D,B,_,_,0bj2) :-
0bj2 ='end_of_file’,
beep(60), message(['You must enter the name of an object']),!,fail.

del_stcheck(D,B,_,Obj1,_) :-
not target_object(Obj1),
beep(60),message([‘Enter an object from the list displayed']),! fail.

del_stcheck(D,B,_,_,0bj2) :-
not target_object(Obj2),
beep(60),message(['Enter an object from the list displayed'),!,fail.

del_stcheck(D,B,Relations,_,_) :-
length(Relations, Total),Total =\= 1,
beep(60), message(['Enter one relation to describe the link between the objects')),! fail.

del_stcheck(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

not target_sdata(Obj1,0bj2,Rel),

beep(60),message(['T am sorry but this structure is not known to Ira']),! fail.

del_stcheck(D,B,Relations,Obj1,0bj2) :-
Relations = [RellRest],
target_reqt(Obj1,0bj2,Rel),

Structure\Mvmt Menu Program.2 Thu, Nov 28, 1991 Page 172

beep(60),message([This structure cannot currently be deleted since it identifies a system
requirement']),! fail.

del_stcheck(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

target_reqt(Obj1,0bj2,Rel,Value),

beep(60),message(['This structure cannot currently be deleted since it identifies a system
requirement’]),! fail.

del_stcheck(D,B,Relations,Obj1,0bj2) :-

Relations = [RellRest],

target_cdata(_,_,_,_,Obj1,0bj2,Rel,_),

beep(60),message(['This structure cannot currently be deleted since it supports a system condition']),!,fail.

del_stcheck(D,B,_,_,) :- .

/* Create an existing dynamic relation representing a function. This
dialogue must be separate from the dialogue describing functions in the
controlled dialogue due to the inbuilt subroutines which control the
iteration for the development of the functional definitions. */

add_movement :-
build_objects(Objlist),

Objlist = [01,02,03,04,05],
mdialog(48,78,340,400,
[button(310,130,20,60,'Create’),

button(310,230,20,60,'Cancel’),
text(10,10,96,380, First select a function from the selection. You should then identify the main object

processed by the function, its initial and final positions and the number of objects processed by the function.
Finally click CREATE to record this functional definition:’),

text(120,10,16,65, Function:’),
menu(120,78,66,160,[loan,borrow,dispatch,send,lend,goods_out,receipt,input,goods_in,arrival,addition,al
locate,assign,place,connect,join,return,finish_loan,check_position,monitor,record],[loan],Flist),
text(200,10,16,120, Processed Object:’),

edit(200,135,16,100,",gread(Object)),

text(275,10,16,120,'Quantities Moved:'),

edit(275,135,16,100,'move_many',Relation),

text(225,80,16,55,'Initial:"),

edit(225,135,16,100,",gread(Source)),

text(250,90,16,45,'Final:"),

edit(250,135,16,100,",gread(Destination)),

text(120,270,16,110,'Known Objects:'),

text(145,280,16,100,01),

text(161,280,16,100,02),

text(177,280,16,100,03),

text(193,280,16,100,04),

text(209,280,16,100,05),

],Button,addmvmt_check(Flist,Relation,Object,Source,Destination)),

Flist=[FuncIRest],

createall_objects(Object,Source,Destination),
assertz(target_ddata(Func,Object,Source,Destination,Relation)).

/* Rules to control input data, to validate and maintain consistency. */ .
addmvmt_check(D,B,Flist,_,_,_,) :- |
length(Flist,L),L=\=1,

beep(60), message(["You must select one function from the available menu']),! fail.

addmvmt_check(D,B,_,_,Object,_,_) -

Structure\Mvmt Menu Program.3 Thu, Nov 28, 1991 Page 173

Object = 'end_of_file',
beep(60), message(["You must enter the name of the object to be processed']),! fail.

addmvmt_check(D,B,_,_,_,Source,_) :-
Source = 'end_of_file', _
beep(60), message(["You must enter the name of the initial position of the object]),!,fail.

addmvmt_check(D,B,_,_,_, ,Destination) :-
Destination = 'end_of_file', _
beep(60), message(["You must enter the name of the final position of the object]),!,fail.

addmvmt_check(D,B,_,Relation,_,_,) :-
Relation = ‘end_of_file’,
beep(60), message(['You must enter the type of movement (move_one or move_many']),! fail.

addmvmt_check(D,B,_,Relation,_,_,) :-
Relation=\= 'move_one',Relation=\="move_many',
beep(60), message(["You must enter the type of movement (move_one or move_many)']),! fail.

addmvmt_check(D,B,_,_,Object,_,_) :-

not valid_character(Object),
beep(60),message(['An object must begin with a small letter and only contain letters or numbers']),! fail.

addmvmt_check(D,B,_,_,_,Source,_) :-

not valid_character(Source),
beep(60),message(['An object must begin with a small letter and only contain letters or numbers'),! fail.

addmvmt_check(D,B,_,_,_,_,Destination) :-

not valid_character(Destination),
beep(60),message(['An object must begin with a small letter and only contain letters or numbersT),! fail.

addmvmt_check(D,B,Flist,Relation,Object,Source,Destination) :-
Flist=[Func],target_ddata(Func,_,_,_,_),
beep(60),message([This function has already been input into Ira. ~MPlease try again']),!,fail.

addmvmt_check(D,B,_,_,_._,) :-

findall(F,target_ddata(F,_,_,_,_),Flist),

length(Flist,L),L=2,

beep(60),message(['You have already entered two functions. ~MDelete existing functions first']),! fail.

* The following few rules ensure the consistency of the input
describing the dynamic relation rules. Look for direction contradictions
between rules in the same direction, then contradictions between
opposing objects */

addmvmt_check(D,B,_,Relation,Object,Source,Destination) :-

Relation = 'move_one',

target_ddata(_,Object,Source,Destination,'move_many'),

beep(60),message([This movement contradicts previous movement describing the new system’]),! fail.

addmvmt_check(D,B,_,Relation,Object,Source,Destination) :-

Relation = 'move_many',

target_ddata(_,Object,Source,Destination,'move_one'),

beep(60),message([This movement contradicts previous movement describing the new system']),! fail.

addmvmt_check(D,B,_,_, , ,.) - L

[* Delete an existing dynamic relation representing a function. Since
function is the central concept of this system, all other structures are

Structure\Mvmt Menu Program.4 Thu, Nov 28, 1991

dependent upon the function, so structures and objects also disappear
when the functions go. The functions deletes all which is solely
dependent upon the definition of the function: all deletions are

linked to the knowledge dependency graph provided in the
documentation. */

del_movement :-
findall(Mvmt,target_ddata(Mvmt,_,_,_,_),Datalist),
Datalist=[FirstlRest],

mdialog(58,125,300,200,

[button(270,20,20,60, Delete"),
button(270,120,20,60,'Cancel’),

Page 174

text(10,10,160,180, Please enter the name of the function to be deleted, then click the DELETE button.
Please note that deleting a function is powerful and will also delete all objects and object-structures depend

upon this function:'),
menu(180,25,66,150,Datalist,[First],Mlist)],
Button,check_dyrelations(Mlist)),
Mlist=[Func],delete_everything(Func).

/* Rules to control input data, to validate and maintain consistency. They
include two consistency checking rules which prohibits the deletion
of a movement if it currently supports an identified system scope or
a system condition. */

check_dyrelations(D,B,Mlist) :-
Mlist=[],

beep(60), message(['You must enter the name of the movement to be deleted’]),! fail.

check_dyrelations(D,B,Mlist) :-
length(Mlist, T),T>1,

beep(60), message(['Please only select one movement at a time to be deleted']),! fail.

check_dyrelations(D,B,Mlist) :- !.

/* The following series of rules control the deletion of knowledge
dependent solely upon the function to be deleted. Basic routine for
identifying the extent of object dependence upon the function
structure is the first rule given below. */

other_function(Func,Object) :-
target_ddata(F1,0bject,_,_,_),
Func=\=F1,!.
other_function(Func,Object) :-
target_ddata(F2,_,Object,_,_),
Func=\=F2,!.
other_function(Func,Object) :-
target_ddata(F3,_,_,Object,_),
Func=\=F3.

/* The basic rule for deleting all candidate structures. Note the subroutine
to remove all functional-dependent structures (scope & condition). */

delete_everything(Func) :-
target_ddata(Func,01,02,03,),
findall(Func,remove_fncdepend(Func),Anylist),
delmvmt_object(Func,01),
delmvmt_object(Func,02),
delmvmt_object(Func,03),
delmvmt_structure(Func,01,02),

Structure\Mvmt Menu Program.5

delmvmt_structure(Func,01,03),
delmvmt_structure(Func,02,03),
delmvmt_structure(Func,world,01),
delmvmt_structure(Func,world,02),
delmvmt_structure(Func,world,03),
retractall(target_ddata(Func,01,02,03,)).

remove_fncdepend(Func) :-
retract(target_cdata(Func,_)).
remove_fncdepend(Func) :-
retract(target_scope(Func)).
remove_fncdepend(Func) :- !.

/* Deletion of individual objects dependent only on this function. If a
function is deleted a subroutine exists to delete all dependents on
that function. */

delmvmt_object(Func,Object) :-

not other_function(Func,Object),

Object=\=world,
findall(Object,remove_objdepend(Object),Anylist),
retract(target_object(Object)),!.
delmvmt_object(Func,Object) :- !.

remove_objdepend(Object) :-
retract(target_pdata(Object,_)).
remove_objdepend(Object) :-
retract(target_phyprop(Object,_)).
remove_objdepend(Object) :- !.

/* Deletion of knowledge structures dependent only on this function. Note
the subroutine to delete requirements knowledge structure depending
on the object structures, included in the main structure delete. */

delmvmt_structure(Func,0Obj1,0b;j2) :-

not other_function(Func,0Obj1),

not other_function(Func,0bj2),
findall(Obj1,remove_structure(Obj1,0bj2),Anylist),!.
delmvmt_structure(Func,Obj1,0b;2) :- !.

remove_structure(Obj1,0bj2) :-
retractall(target_sdata(Obj1,0bj2,)).
remove_structure(Obj1,0bj2) :-
retractall(target_sdata(Obj2,0bj1,_)).
remove_structure(Obj1,0bj2) :-
retractall(target_reqt(Obj1,0bj2,_)).
remove_structure(Obj1,0b;2) :-
retractall(target_reqt(Obj2,0bj1,_)).
remove_structure(Obj1,0bj2) :-
retractall(target_reqt(Obj1,0bj2,_,).
remove_structure(Obj1,0bj2) :-
rerractall(target_reqt(0bj2,0b51,_,)).

/* All other deletions are dependent upon these deletions occuring, */

Thu, Nov 28, 1991 Page 175

Descriptions of the Explanation Dialogues
for Retrieved Domain Abstractions

Dialogue Construction Program Thu, Nov 28, 1991 Page 1

/* This program constructs the window frames to elicit additional
knowledge from the analyst in cases of a partial match. It creates four
slots which exist in different positions on the window. The complexity
of this program comes in adding the windows correctly rather than
additional analogous matching to identify potential matches.

The dialogue slots are determined by type of knowledge recorded
in the slot:

slot 1 & 2 - state transitions,

slot 3 & 4 - domain structures.

When dialogue for a slot is not necessary the slot dialogue is omitted,
just leaving a space in the window. A dummy rule for each line is still
required to permit window rule to be successful. Below there are

two sets of diagramming rules, one for one partial match window, &
one for two partial matches window. This is due to the different rules
necessary to identify omitted analogous mappings with one partial
match and several partial matches. */

/* Add_pictures1-4 describe the simpler rules for one partial match. */

add_picture1(Win,Acp) :-
no_dynamicmapping(Obj1,0bj2,0bj3,Rel,Acp),
add_pic(Win,piccy1d,[textbox('‘Bookman',12,0,155,35,16,100,1,0bj2)]),
add_pic(Win,piccy le,[textbox('Bookman',12,0,155,295,16,100,1,0bj3)]),
add_pic(Win,piccy1f,[textbox('Bookman’,12,0,180,165,16,100,1,Rel)]),
add_pic(Win,piccyla,[oval(145,30,30,110)]),
add_pic(Win,piccylb,[oval(145,290,30,110))),
add_pic(Win,piccylc,[line((160,140),(160,290))]),)
add_pic(Win,piccy1g,[textbox('Bookman',12,0,155,165,16,100,1,0bj 1)1),
add_pic(Win,piccylh,[box(145,165,30,100)]),
add_pic(Win,piccyli,[line((160,165),(155,160))1),
add_pic(Win,piccylj,[line((160,165),(165,160))D),
add_pic(Win,piccylk,[line((160,290),(155,285))]),
add_pic(Win,piccy1l,[line((160,290),(165,285))1).!.

add_picture1(Win,Acp) :-

approximate_dynamictarget(Rel,Acp),
add_pic(Win,piccy1d,[textbox('Bookman',12,0,155,35,16,100,1,'?)]),
add_pic(Win,piccy le,[textbox('‘Bookman',12,0,155,295,16,100,1,"?)]),
add_pic(Win,piccy If,[textbox('Bookman',12,0,180,165,16,100,1,ReD)]),
add_pic(Win,piccyla,[oval(145,30,30,110)]),
add_pic(Win,piccylb,[oval(145,290,30,110)]),
add_pic(Win,piccylc,[line((160,140),(160,290))1), '
add_pic(Win,piccy1g,[textbox('Bookman',12,0,155,165,16,100,1,'?)1),
add_pic(Win,piccy1h,[box(145,165,30,100)]),
add_pic(Win,piccy1i,[line((160,165),(155,160)))),
add_pic(Win,piccy1j,[line((160,165),(165,160)))),
add_pic(Win,piccy1k,[line((160,290),(155,285))]),
add_pic(Win,piccy11,[line((160,290),(165,285))),!.

add_picture1(Win,Acp) :- !.

add_picture2(Win,Acp) :-
no_dynamicmapping(Obj1,0bj2,0bj3,Rel,Acp), .
add_pic(Win,piccy2d, [textbox(‘Bookman',12,0,230,35,16,100,1,0bj2)]),
add_pic(Win,piccy2e,[textbox('Bookman’,12,0,230,295,16,100,1,0bj3)]),
add_pic(Win,piccy?2f,[textbox('Bookman',12,0,255,165,16,100,1,ReDD),
add_pic(Win,piccy2a,[oval(220,30,30,110)]),

Dialogue Construction Program.2 Thu, Nov 28, 1991 Page 2

add_pic(Win,piccy2b,[oval(220,290,30,110)]),
add_pic(Win,piccy2c,[line((235,140),(235,290))]),
add_pic(Win,piccy2g,[textbox (‘Bookman',12,0,230,165,16,100,1,0bj1)]),
add_pic(Win,piccy2h,[box(220,165,30,100)]),
add_pic(Win,piccy2i,{line((235,165),(230,160))]),
add_pic(Win,piccy2j,[line((235,165),(240,160))]),
add_pic(Win,piccy2k,[line((235,290),(230,285))1),
add_pic(Win,piccy2l,[line((235,290),(240,285))).!.

add_picture2(Win,Acp) :-

approximate_dynamictarget(Rel,Acp),
add_pic(Win,piccy2d,[textbox('Bookman',12,0,230,35,16,100,1,'?")])),
add_pic(Win,piccy2e,[textbox('Bookman’,12,0,230,295,16,100,1,'?)]),
add_pic(Win,piccy2f,[textbox('Bookman',12,0,255,165,16,100,1,ReD)]),
add_pic(Win,piccy2a,[oval(220,30,30,110)]),
add_pic(Win,piccy2b,[oval(220,290,30,110)]),
add_pic(Win,piccy2c,[line((235,140),(235,290))1),
add_pic(Win,piccy2g,[textbox('Bookman’,12,0,230,165,16,100,1,'?)1),
add_pic(Win,piccy2h,[box (220,165,30,100)]),
add_pic(Win,piccy2i,[line((235,165),(230,160))1),
add_pic(Win,piccy2j,[line((235,165),(240,160))]),
add_pic(Win,piccy2k,[line((235,290),(230,285)))),
add_pic(Win,piccy2l,[line((235,290),(240,285))]).!.

add_picture2(Win,Acp) :- !.

add_picture3(Win,Acp) :-

no_staticmapping(Obj1,0bj2,Rel,Acp), .
add_pic(Win,piccy3d,[textbox('Bookman',12,0,305,65,16,100,1,0bj D]),
add_pic(Win,piccy3e,[textbox(‘Bookman',12,0,305,265,16,100,1,0bj2)]),
add_pic(Win,piccy3f,[textbox('Bookman’,10,0,295,165,16,90,1,ReD)]),
add_pic(Win,piccy3a,[oval(295,60,30,110)]),
add_pic(Win,piccy3b,[oval(295,260,30,110)]),
add_pic(Win,piccy3c,[line((310,170),(310,260))1),!.

add_picture3(Win,Acp) :-

approximate_statictarget(Rel,Acp),
add_pic(Win,piccy3d,[textbox('Bookman',12,0,305,65,16,100,1,'?)1),
add_pic(Win,piccy3e,[textbox('Bookman',12,0,305,265,16,100,1,'?)1),
add_pic(Win,piccy3f,[textbox('Bookman',10,0,295,165,16,90,1,Re)]),
add_pic(Win,piccy3a,[oval(295,60,30,110)]),
add_pic(Win,piccy3b,[oval(295,260,30,110)]),
add_pic(Win,piccy3c,[line((310,170),(310,260))]),!.

add_picture3(Win,Acp) :- !

add_picture4(Win,Acp) :-

no_staticmapping(Obj1,0bj2,Rel,Acp),)
add_pic(Win,piccy4d, [textbox('Bookman',12,0,380,65,16,100,1,0bj)]),
add_pic(Win,piccyde,[textbox('Bookman',12,0,380,265,16,100,1,0bj2)]),
add_pic(Win,piccy4f,[textbox('Bookman',10,0,370,165,16,90,1,Rel)]),
add_pic(Win,piccy4a,[oval(370,60,30,110)]),
add_pic(Win,piccy4b,[oval(370,260,30,110)]),

add_pic(Win.piccy4c, [line((385.170),(385,260))).!.

add_picture4(Win,Acp) :-

approximate_statictarget(Rel, Acp),
add_pic(Win,piccy4d,[textbox('Bookman',12,0,380,65,16,100,1,'?)]),
add_pic(Win,piccyde,{textbox('Bookman’',12,0,380,265,16,100,1,'?)]),

Dialogue Construction Program.3 Thu, Nov 28, 1991 Page 3

add_pic(Win,piccy4f,[textbox('Bookman',10,0,370,165,16,90,1,Rel)]),
add_pic(Win,piccy4a,[oval(370,60,30,110)]),
add_pic(Win,piccy4b,[oval(370,260,30,110)]),
add_pic(Win,piccy4c,[line((385,170),(385,260))]),!.

add_picture4(Win,Acp) :- !.

/* Add_pictures5-8 describe drawing rules for the more complex several
partial matches. Each rule has a get best partial match, to identify the
partially matched ACP with best calc-score, which is pursued further
to attempt to match it. */

add_picture5(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),
no_dynamicmapping(Obj1,0bj2,0bj3,Rel,Acp),
add_pic(Win,piccy5d,[textbox('Bookman',12,0,155,35,16,100,1 ,Obj2)]),
add_pic(Win,piccySe,[textbox('Bookman',12,0,155,295,16,100,1 ,;Obj3)]),
add_pic(Win,piccy5f,[textbox('Bookman',12,0,180,165,16,100, 1,Rel)]),
add_pic(Win,piccy5a,[oval(145,30,30,110)]),
add_pic(Win,piccy5b,[oval(145,290,30,110)]),
add_pic(Win,piccy5c,(line((160,140),(160,290))]),
add_pic(Win,piccy5g,[textbox('Bookman',12,0,155,165,16,100,1 ,0bj1)]),
add_pic(Win,piccy5h,[box(145,165,30,100)]),
add_pic(Win,piccy5i,[line((160,165),(155,160)))),
add_pic(Win,piccyS5j,[line((160,165),(165,160)))),
add_pic(Win,piccy5k,[line((160,290),(155,285))]),
add_pic(Win,piccy51,[line((160,290),(165,285))]),!.

add_picture5(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),

approximate_dynamictarget(Rel,Acp),
add_pic(Win,piccy5d,[textbox('Bookman',12,0,155,35,16,100,1 > D,
add_pic(Win,piccySe,[textbox('Bookman’,12,0,155,295,16,100,1 » D,
add_pic(Win,piccy5f,[textbox('Bookman',12,0,180,165,16,100,1 ,LReD)]),
add_pic(Win,piccySa,[oval(145,30,30,110))),
add_pic(Win,piccy5b,[oval(145,290,30,110)]),
add_pic(Win,piccySc,[line((160,140),(160,290)))),
add_pic(Win,piccy5g,[textbox('Bookman',12,0,155,165,1 6,100,1,'7D),
add_pic(Win,piccy5h,[box(145,165,30,100)]),
add_pic(Win,piccy5i,[line((160,165),(155,160)))),
add_pic(Win,piccy5j,[line((160,165),(165,160))]),
add_pic(Win,piccy5k,[line((160,290),(155,285))),
add_pic(Win,piccy5l,[line((160,290),(165,285)))),!.

add_picture5(Win,Acplist) :- !.

add_picture6(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),
no_dynamicmapping(Obj1,0bj2,0bj3,Rel,Acp),

add_pic(Win,piccyéd, [textbox(‘Bookman’, 12,0,230,35,16,100,1,0bj2)1),
add_pic(W in,piccy6e,[textbox('Bookman',12,0,230,295,16,100,1 ;Obj3)1),
add_pic(Win,piccy6f,[textbox('Bookman',12,0,25 5,165,16,100,1,Rel)]),
add_pic(Win,piccy6a,[oval(220,30,30,1 100D,
add_pic(Win,piccy6b,[oval(220,290,30,1 100D,
add_pic(Win,piccy6c,[line((235,140),(235 ,2900)D),
add_pic(Win,piccy6g,[textbox(‘Bookman', 12,0,230,165,16,100,1,0bj1)),
add_pic(Win,piccy6h,[box(220, 165,30,100)]),
add_p}c(Win,piccy6i,[line((235, 165),(230,160))]),
2dd_pic(Win,piccy6;j,[line((235, 165),(240,160)))),

Dialogue Construction Program.4

add_pic(Win,piccy6k,[line((235,290),(230,285))]),
add_pic(Win,piccy6l,[line((235,290),(240,285))]),!.

add_picture6(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),

approximate_dynamictarget(Rel,Acp),
add_pic(Win,piccy6d,[textbox('Bookman',12,0,230,35,16,100,1,'?"]),
add_pic(Win,piccy6e,[textbox('Bookman',12,0,230,295,16,100,1,'?")]),
add_pic(Win,piccy6f,[textbox('Bookman',12,0,255,165,16,100,1,Rel)]),
add_pic(Win,piccy6a,[oval(220,30,30,110)]),
add_pic(Win,piccy6b,[oval(220,290,30,110)]),
add_pic(Win,piccyé6c,[line((235,140),(235,290))D),
add_pic(Win,piccy6g,[textbox('Bookman',12,0,230,165,16,100,1,'?")]),
add_pic(Win,piccy6h,[box(220,165,30,100)]),
add_pic(Win,piccy6i,[line((235,165),(230,160))]),
add_pic(Win,piccy6j,[line((235,165),(240,160))]),
add_pic(Win,piccy6k,[line((235,290),(230,285))]),
add_pic(Win,piccy6l,[line((235,290),(240,285))]),!.

add_picture6(Win,Acplist) :- !,

add_picture7(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),

no_staticmapping(Obj1,0bj2,Rel,Acp),)
add_pic(Win,piccy7d,[textbox('Bookman',12,0,305,65,16,100,1,0bj1)]),
add_pic(Win,piccy7e,[textbox('Bookman’,12,0,305,265,16,100,1,0bj2)]),
add_pic(Win,piccy7f,[textbox('Bookman',10,0,295,165,16,90,1,ReD))),
add_pic(Win,piccy7a,[oval(295,60,30,110)]),
add_pic(Win,piccy7b,[oval(295,260,30,110)]),
add_pic(Win,piccy7c,[line((310,170),(310,260))]),!.

add_picture7(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),

approximate_statictarget(Rel,Acp),
add_pic(Win,piccy7d,[textbox('Bookman',12,0,305,65,16,100,1,'?)]),
add_pic(Win,piccy7e,[textbox('Bookman',12,0,305,265,16,100,1,'7)]),
add_pic(Win,piccy7f,[textbox('Bookman',10,0,295,165,16,90,1,ReD)]),
add_pic(Win,piccy7a,[oval(295,60,30,110))),
add_pic(Win,piccy7b,[oval(295,260,30,110))),
add_pic(Win,piccy7c,[line((310,170),(310,260))]1),!.

add_picture7(Win,Acplist) :- !.

add_picture8(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),

no_staticmapping(Obj1,0bj2,Rel,Acp),
add_pic(Win,piccy8d,[textbox('Bookman',12,0,380,65,16,100,1,0bj1)]),
add_pic(Win,piccy8e,[textbox('Bookman',12,0,380,265,16,100,1,0bj2)1),
add_pic(Win,piccy8f,[textbox('Bookman',10,0,370,165,16,90,1,Rel)}),
add_pic(Win,piccy8a,[oval(370,60,30,110)]),
add_pic(Win,piccy8b,[oval(370,260,30,110)]),
add_pic(Win,piccy8c,[line((385,170),(385,260)]),!.

add_picture8(Win,Acplist) :-

getbest_partialmatch(Acplist,Acp),

approximate_statictarget(Rel,Acp),
add_pic(Win,piccy8d,[textbox('Bookman',12,0,380,65,16,100,1,'?")]),
add_pic(Win,piccy8e, [textbox('Bookman',12,0,380,265,16,100,1,'?)]),
add_pic(Win,piccy8f,[textbox('Bookman',10,0,370,165,16,90,1,Rel))),

Thu, Nov 28, 1991 Page 4

Dialogue Construction Program.5 Thu, Nov 28, 1991 Page §

add_pic(Win,piccy8a,[oval(370,60,30,110)]),
add_pic(Win,piccy8b,[oval(370,260,30,110)]),
add_pic(Win,piccy8c,[line((385,170),(385,260))]),!.

add_picture8(Win,Acplist) :- !.
/* Definition of the header text to describe possible options */

add_header(Win) :-

add_pic(Win,headerwin,[

textline('Times',14,4,5,105,'Additional Domain knowledge Required’),
textbox('Times',12,0,30,15,36,450,0,Tra has identified several possible matches with your new problem
description. However, Ira still requires some additional information about the problem in order to confirm or
reject these matches.'),

textbox(‘Times',12,0,72,15,48,450,0,Ira has identified some additional features about the new problem
below which you should consider. If these or any facts about the new problem can be identified, use the
OBJECTS & OTHER INPUTS menus to input these facts, then click CONTINUE SEARCH."]).

/* Analogous matching rules to identify possible areas for elaboration by
the analyst with single partial match identified. Rules examine lack of
static mappings, dynamic mappings and critical differences of
partially-matched Acp. This section of the program is quite complex,
and works in the following stages:

i) identify source (ACP) concepts which have not been matched (i.e.
they have not got related static_mapping (gives the relations),

ii) identify target mappings for the source objects at either end of the
unmapped relations (from other object mappings from successful
mappings,

ili) propose new target structures based on these inferences.

Separate rules exist for the static and dynamic structures. */

[* First-level rules which are called by add_picture programs. There are
two sets of rules operating on static and dynamic mappings. A control
is included to ensure that the rules do not fire if no static, dynamic
or property mappings are identified. */

no_staticmapping(Tobj1,Tobj2,Rel,Acp) :-
target_structure,

acp_sdata(Sobj1,Sobj2,Rel,Acp),

not static_mapping(T1,T2,Sobj1,Sobj2,Rel,Score,Acp),
object_mappings(Sobj1,Tobjl,Acp),
object_mappings(Sobj2,Tobj2,Acp),

not already_static(Tobj1,Tobj2,Rel),
record_static(Tobj1,Tobj2,Rel),!.

no_dynamicmapping(Tobj1,Tobj2,Tobj3,Rel,Acp) :-

target_structure,

acp_ddata(_,Sobj1,Sobj2,Sobj3,Rel,Acp),

not dynamic_mapping(T1,T2,T3,Sobj1,Sobj2,Sobj3,Rel,Score,Acp),
object_mappings(Sobj1,Tobjl,Acp),
object_mappings(Sobj2,Tobj2,Acp),
object_mappings(Sobj3,Tobj3,Acp),

not already_dynamic(Tobj1,Tobj2,Tobj3,Rel),
record_dynamic(Tobj1,Tobj2,Tobj3,Rel),!.

/* Target_structure rule to ensure target structure exists. */

target_structure :-

Dialogue Construction Program.6

target_sdesc(01,02,R),!.
target_structure :-
target_ddesc(F,01,02,03,R),!.
target_structure :-
target_pdata(O,P).

/* Second-level rules employed to identify mapped objects which
must then be combined into structure identified above. Note the check

to ensure that the object is not checked against itself. */

object_mappings(Sobj,Tobj,Acp) :-
target_object(Tobj),
mapped_objects(Sobj,Tobj,Score,Acp),
other_objects(Sobj,Tobj,Scores,Acp),
sort(Scores,Sorted_scores,[],1),
Sorted_scores = [Other_scorelRest],
Score >= Other_score.

/* Third-level rules employed to identify Object & Other_scores.
The basic counter uses findall for each source of object mappings (i.e.
basic mapping processes) while other_objects counts mappings with
all objects except the current one to ensure that only the best object

match is retrieved. */

mapped_objects(Sobj,Tobj,Score,Acp) :-
findall(R,static_mapping(Tobj,_,Sobj,_.R,_,Acp),S1),
findall(R,static_mapping(_,Tobj,_,Sobj,R,_,Acp),S2),
findall(R,dynamic_mapping(Tobj,_,_.Sobj,_._,R,_,Acp),S3),
findall(R,dynamic_mapping(_,Tobj,_._,S0bj,_.R,_,Acp),S4),
findall(R,dynamic_mappin g(_,__,Tobj,__,_,SObJ :R,_,Acp),S5),
findall(R,property_mapping(Tobj,Sobj,R,Acp),S6),
length(S1,T1),length(S2,T2),length(S3,T3),length(S4,T4),
length(S5,T5),length(S6,T6),

Score is T1+T2+T3+T4+T5+T6.

other_objects(Sobj,Tobj,Scores,Acp) :-)
findall(Score, (target_object(Toth),mapped_objects(Sobj,Toth,Score,Acp),

Tobj=\=Toth),Scores).

/* Approximation rules to propose weaker relations when the above
program is unable to identify missing target object structures. It works
in a similar way, but just retrieves unmatched relations which are
displayed on the screen and invites object structures to be input. */

approximate_dynamictarget(Rel, Acp) :-
acp_ddata(_,Sobj1,Sobj2,Sobj3,Rel,Acp),

not dynamic_mapping(_,_,_,Sobj1,Sobj2,Sobj3,Rel,Score,Acp),
not already_dynamic('?','?",'?",Rel),
record_dynamic('?','?",'?",Rel),!.

approximate_statictarget(Rel,Acp) :-
acp_sdata(Sobj1,Sobj2,Rel,Acp),

not static_mapping(_,_,Sobj1,Sobj2,Rel,Score,Acp),
not already_static('?','?",Rel),
record_static('?",'?",Rel),!.

/* More complex rules to identify the best-matched partial matching
when two or more matchings are identified, based on structure score,
then select that acp as basis for describing additional requirements for

Thu, Nov 28, 1991

Page 6

Dialogue Construction Program.7 Thu, Nov 28, 1991 Page 7
the problem. */

getbest_partialmatch(Acplist,Selected_acp) :-
count_partialmatches(Acplist,Scorelist),
best_partialmatch(Scorelist,Selected_acp).

/* Rule to count score for each partial match, and put score with Acp
identifier in the list. */

count_partialmatches(Acplist,Scorelist) :-
findall((Score,Acp),(calc_structure(Acp,Score),on(Acp,Acplist)),Scorelist).

/* Rule to check the contents of the Scorelist to identify best match
based on analogous structure. */

best_partialmatch(Scorelist,Selected_acp) :-
sort(Scorelist,Newlist,[],1),
Newlist = [(Score,Selected_acp)IRest].

/* Subroutines to avoid repetition in the dialogue definitions, and to
record mappings to avoid repetition by checking against them. */

already_static(Tobj1,Tobj2,Rel) :-
get_prop(static,obj1,Tobjl),
get_prop(static,obj2,Tobj2),
get_prop(static,rel,Rel).

record_static(Tobj1,Tobj2,Rel) :-
del_prop(static,obj1),
del_prop(static,obj2),
del_prop(static,rel),
set_prop(static,obj1,Tobj1),
set_prop(static,0bj2,Tobj2),
set_prop(static,rel,Rel).

already_dynamic(Tobj1,Tobj2,Tobj3,Rel) :-
get_prop(dynamic,obj1,Tobjl),
get_prop(dynamic,obj2,Tobj2),
get_prop(dynamic,obj3,Tobj3),
get_prop(dynamic,rel,Rel).

record_dynamic(Tobj1,Tobj2,Tobj3,Rel) :-
del_prop(dynamic,obj1),
del_prop(dynamic,obj2),
del_prop(dynamic,obj3),
del_prop(dynamic,rel),
set_prop(dynamic,obj1,Tobjl),
set_prop(dynamic,obj2,Tobj2),
set_prop(dynamic,obj3,Tobj3),
set_prop(dynamic,rel,Rel).

/* Rule inserted into windows to initially clear variables. */

clear_acpvariables :-
del_prop(static,obj1),
del_prop(static,0b;j2),
del_prop(static,rel),
del_prop(dynamic,obj1),
del_prop(dynamic,obj;2),

Dialogue Construction Program.8 Thu, Nov 28, 1991 Page 8

del_prop(dynamic,obj3),
del_prop(dynamic,rel).

Dialogue Good Matches Program Thu, Nov 28, 1991 Page 9

/* This program is the program fired to provide a window to explain
and elicit a choice between two or more good matches identified
by the analogy engine at a specific search level in the problem space. It
provides a window to elicit the relevant data from the analyst, which
passes relevant data to the searching goals which already exist for the
program. It also has a subroutine to identify the best good match for
the two good matches based on the calc-structure score. */

goodmatches_dialogue(Acplist) :-

Acplist = [Acpl,Acp2],

bestname(Acpl,Acp2,Name),

concat(Name,'.',Nametext),

acps(Acpl,Acp_namel),

acps(Acp2,Acp_name2),

mdialog(40,85,250,400,[

text(10,10,32,380,Tra has identified two possible abstractions, although it has identified that the best
abstraction may be the'),

text(42,10,16,380,Nametext),

text(58,10,48,380,Please use the following buttons to examine each of these options, then select the most
appropriate option below:'),

button(220,170,20,60,'Select’),

button(130,310,20,70,'Examine"),

button(160,310,20,70,'Examine"),

radio(130,20,16,285,Acp_namel,on,Acpsell),
radio(160,20,16,285,Acp_name2,off,Acpsel2)],Btn,
valid_goodmatches(Acpsell,Acpsel2,Acpl,Acp2)).

valid_goodmatches(D,B,Acpsell,Acpsel2,_,_) :-
Acpsell = ‘on',Acpsel2 = 'on’,
beep(60), message(["You must choose one abstraction. ~MPlease try again']),!,fail.

valid_goodmatches(D,B,Acpsell,Acpsel2,_,_) :-
Acpsell = 'off ,Acpsel2 = 'off,
beep(60), message(['You must choose one abstraction. ~MPlease try again'),!,fail.

valid_goodmatches(D,5,_,_,Acpl,Acp2) :-
set_prop(reset,dialogue,manygood),
set_prop(reset,list,[Acpl,Acp2)),
fetch_explanation(Acpl),!.

valid_goodmatches(D,6,_,_,Acpl,Acp2) :-
set_prop(reset,dialogue,manygood),
set_prop(reset,list,[Acpl,Acp2]),
fetch_explanation(Acp2),!.

valid_goodmatches(D,4,Acpsell,Acpsel2,Acpl,Acp2) :-
identify_selection(Acpsell,Acpsel2,Acpl,Acp2,Selected_acp),

target_name(Name),

banner(record_acpmatch(Selected_acp),['Please be patient - Ira is reasoning analogously to match
the',Name, 'problem’],150,110),

del_prop(best_name),searching_acps(Selected_acp).

/* Subroutine to identify the label of the selected ocp */
identify_selection(Acpsell,Acpsel2,Acpl,Acp2,Selected_acp) :-
Acpsell = 'on',

Selected_acp is Acpl,!.

identify_selection(Acpsell,Acpsel2,Acpl,Acp2,Selected_acp) :-

Dialogue Good Matches Program.2 Thu, Nov 28, 1991 Page 10

Acpsel2 = 'on/,
Selected_acp is Acp2.

/* Subroutine to identify the actual best match from the two candidates.
To reduce the response time of this lengthly search process it is
necessary to save the best fit in a property value, and retrieve it
whenever it exists. */

bestname(Acp1,Acp2,Name) :-
get_prop(best,name,Name),!.

bestname(Acp1,Acp2,Name) :-

not get_prop(best,name,Name),
calc_structure(Acp1,S1),calc_structure(Acp2,S2),
sort([(S1,Acp1),(52,Acp2)],[(S3,Acp3),(S4,Acp4)1.[1,1),
givename(S3,Acp3,54,Acp4,Name),
set_prop(best,name,Name).

givename(S3,Acp3,54,Acp4,Name) :-
S3=S4,Name='either abstraction',!.

givename(S3,Acp3,54,Acp4,Name) :-
acps(Acp3,Name).

/* A second version of this program is necessary to provide and describe
partial matches after the second pass of the selection control program.
It is based on the above program structure however the ACP selection
screen is different and simpler to program, requiring more input from
the analyst. */

acceptmatches_dialogue(Acplist) :-
get_fournames(Acplist,Newlist),
Newlist=[Acpl,Acp2,Acp3,Acp4],
acps(Acpl,Acp_namel),
acps(Acp2,Acp_name2),
acps(Acp3,Acp_name3),
acps(Acp4,Acp_named),
mdialog(40,85,260,400,[
text(10,10,80,380,'Several possible abstractions of the new problem have been identified. Please enter the
abstraction identifier and EXAMINE each option to investigate it. CHOOSE the best option to select an
abstraction:'),

text(240,5,16,10,"),
button(205,270,20,60,'Examine’),
button(230,270,20,60,'Choose"),
text(100,10,16,50,Acpl),
text(100,60,16,5,"),
text(100,70,16,315,Acp_namel),
text(120,10,16,50,Acp2),
text(120,60,16,5,"),
text(120,70,16,315,Acp_name?2),
text(140,10,16,50,Acp3),
text(140,60,16,5,"),
text(140,70,16,315,Acp_name3),
text(160,10,16,50,Acp4),
text(160,60,16,5,"),
text(160,70,16,315,Acp_name4),
text(219,145,16,50,'option:"),
edit(219,205,16,50,'Acp1',Acp)],Btn,

Dialogue Good Matches Program.3 Thu, Nov 28, 1991 Page 11
valid_acceptmatches(Acplist,Acp)).

[* Validation and control routines from the partial matches dialogue. Note
the strange behaviour of this ruleset. If a partial match is chosen as the
appropriate ACP then the rule must record the good match then
display the abstraction again on the screen. */

valid_acceptmatches(D,B,Acplist,Acp) :-
not on(Acp,Acplist),) 1 .
beep(60), message(['Please choose a label from the options provided]),!.fail.

valid_acceptmatches(D,3,Acplist,Acp) :-
set_prop(reset,dialogue,acceptparts),
set_prop(reset,list,Acplist),
fetch_explanation(Acp),!.

valid_acceptmatches(D,4,Acplist,Acp) :-

set_prop(reset,dialogue,finalgood),)) \
banner(record_acpmatch(Acp),['Please be patient - Ira 1s recording the selected analogous match'],150,110),
fetch_explanation(Acp),!.

Dialogue One Partial Match Thu, Nov 28, 1991 Page 12

/* This program describes the dialogue provided to elicit additional
knowledge from the analyst when one partial match is identified by
the search mechanism. The dialogue is based around a window which
permits access to menus for data input, and explanations in the window
to identify which knowledge should be input by the analyst. */

partmatch1_dialogue(Acp) :-
set_prop(part,match,Acp),

install_menu('Objects’,['Add Object;Mod Object;Del Object;Change Properties; Add Structure;Del
Structure;Add Movement;Del Movement']),

install_menu('Other Inputs',['Mod Name;Mod Goal;Add Reqt;Del Reqt;Add Scope;Del Scope;Mod Fn; Add
Label;Mod Label;Add Physical;Del Physical7),

Win = 'Partial Match Window',

wgcreate(Win,40,00,440,570,70,0,0,1,0),

gviewer(Win,off),

wfront(Win),

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

continue_search(textbox('Chicago',12,0,4,0,32,32,1,'Cont- inue Search')),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem’)],1),

clear_acpvariables,

add_header(Win),
banner(add_picture1(Win,Acp),['Please wait while Ira creates this window'],150,110),

banner(add_picture2(Win,Acp),['Please wait while Ira creates this window'],150,110),
banner(add_picture3(Win,Acp),['Please wait while Ira creates this window'],150,110),
banner(add_picture4(Win,Acp),['Please wait while Ira creates this window'],150,110),beep(60).

/* Upon completing the window several functions are needed:
- kill the window,
- kill the data input menus,
- obtain partially-matched acp, get father,
and restart search mechanism. */

continue_search(double, Partial Match Window"') :-
wkill('Partial Match Window'),
kill_menu('Objects'),

kill_menu('Other Inputs'),
get_prop(part,match,Acp),

father(Father,Acp),

matching_acps(Father).

Dialogue Two Partial Matches Thu, Nov 28, 1991 Page 13

/* This program describes the dialogue provided to elicit additional
knowledge from the analyst when two or more partial matches are
identified by the search mechanism. The dialogue is based around a
window which permits access to menus for data input, and explanations
in the window to identify which knowledge should be input by the
analyst. */

partmatch2_dialogue(Acplist) :-

del_prop(part,matches),

set_prop(part,matches,Acplist),

install_menu('Objects',['Add Object;Mod Object;Del Object;Change Properties;Add Structure;Del
Structure;Add Movement;Del Movement']),

install_menu('Other Inputs',['Mod Name;Mod Goal;Add Reqt;Del Reqt;Add Scope;Del Scope;Mod Fn; Add
Label;Mod Label; Add Physical;Del Physical']),

Win = 'Partial Matches Window',

wgcreate(Win,40,00,440,570,70,0,0,1,0),

gviewer(Win,off),

wfront(Win),

gsplit(Win,70),

gecursor(Win,hand),

add_tools(Win,[

continue_searches(textbox('Chicago’,12,0,4,0,32,32,1,'Cont- inue Search")),
see_target(textbox('Chicago’,12,0,4,0,32,32,1,'See Target Problem'))],1),

clear_acpvariables,

add_header(Win),

banner(add_pictureS(Win,Acplist),['Please wait while Ira creates this window'],150,110),
banner(add_picture6(Win,Acplist),['Please wait while Ira creates this window'],150,110),
banner(add_picture7(Win,Acplist),['Please wait while Ira creates this window'],150,110),
banner(add_picture8(Win,Acplist),['Please wait while Ira creates this window'],150,110),beep(60).

/* Upon completing the window several functions are needed:
- kill the window,
- kill the data input menus,
- obtain partial list, get father, and restart search mechanism. */

continue_searches(double, Win) :-
wkill(Win),

kill_menu('Objects’),
kill_menu('Other Inputs’),
get_prop(part,matches,Acplist),
Acplist = [First_acpiRest],
father(Father,First_acp),
matching_acps(Father).

Dialogues Successful/Failed Matches Thu, Nov 28, 1991 Page 14

/* The first programs manages the end of search, to send the process
to a successful or unsuccessful match - if, when searching is stopped,
ACP = "top' then match has failed, otherwise matching succeeded. */

stop_searching(Resulting_acp) :-
Resulting_acp = 'top/,
unsuccessful_match,!.

stop_searching(Resulting_acp) :-
successful_match(Resulting_acp).

/* The program for a successful match works in two ways. A mdialogue is
presented to state successful match, then the relevant explanation
window is retrieved to describe the analogy. This is as far as the tool
goes. */

successful_match(Selected_acp) :-

beep(60),mdialog(85,100,250,350,

[button(210,127,20,100,'Continue’),

text(20,20,96,310,'Tra has successfully retrieved a candidate abstraction for your new problem. This
abstraction can be retrieved by pressing CONTINUE. You should consider this abstraction to decide whether
it sufficiently represents your new computer system."),

text(120,20,64,310,'If the abstraction is appropriate Ira will retrieve candidate reusable specifications with
which to develop a specification for the new problem.")],Btn),

del_prop(reset,dialogue),

del_prop(reset,list),

set_prop(reset,dialogue,finalgood),

set_prop(reset,list,Selected_acp),

fetch_explanation(Selected_acp).

/* The window also contains the relevant dialogue for a failed match.
When the analogy engine fails it invites the analyst to input more data
about the new problem */

unsuccessful_match :-

beep(60),mdialog(85,100,150,350,

{button(120,127,20,100,'Continue'),

text(20,20,100,310,'Ira was unable to retrieve any candidate abstractions for the new problem. Input more
data about the new problem then search again. To do this CONTINUE then use pull down menus to input

more data about the problem.")],Btn),!.

Explanation 'OAP' Program Thu, Nov 28, 1991 Page 21

/* Window to explain the OAP structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_oap('Explain Object Allocation Problem') :-
wgcreate('Explain Object Allocation Problem', 40,0,440,570,70,0,0,1,0),
explain_oap('Explain Object Allocation Problem’),

gviewer('Explain Object Allocation Problem',off),

wfront('Explain Object Allocation Problem’).

explain_oap(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

oap_return(textbox('Chicago’,12,0,8,0,32,32,1,'Return’)),
oap_help(textbox('Chicago',12,0,6,0,32,32,1,'More Help'))],1),

add_pic(Win,exp_oap,[

textbox('Times',14,4,5,5,20,280,1, The Object Allocation Problem’),
textbox('Times',12,0,30,10,60,260,0, The Object Allocation Problem represents a type of domain which
involves allocating objects to an allocation providing that they meet given constraints. Objects are only moved
to the allocation if they have properties which meet the necessary constraints."),
textbox("Times',12,0,96,10,36,260,0,'In general this domain involves moving many objects to an allocation
rather than only moving a single object."),

textbox(Times',12,0,138,10,60,260,0, The movement of objects to the allocation is controlled by the
information system, so the system must allocate objects. The information system must check the properties of
objects before attempting to allocate them."),

textbox('Times',12,0,150,285,24,195,0,'In the diagram below many objects move from Spacel to the
Allocation."),

D,

mappings_list(Win),

check_seetarget(Win),

res_open('exploap’),

add_pic(Win,exploap,picture(250,10,155,260,resource(exploap,exploap))).

oap_return(double,Win) :-
wkill(Win),
reset_dialogue.

oap_help(double,Win) :-
oap_helpwindow(Window).

oap_helpwindow('OAP Help Window') :-

wgcreate('OAP Help Window', 40,0,440,570,70,0,0,1,0),
help_oap('OAP Help Window"),

gviewer(OAP Help Window',off),

wiront("OAP Help Window").

help_oap(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

oap_return(textbox('Chicago’,12,0,8,0,32,32,1,'Return’))],1),

add_pic(Win,exp_oap,[

textbox(‘'Times’,14,4,5,5,20,280,1,'The Object Allocation Problem'),
textbox('Times',12,0,30,10,60,400,0, There is no additional help for the Object Allocation Problem.’)])-

oaphelp_return(double,Win) :-
wkillCOAP Help Window"').

Explanation 'OAPAA' Program

/* Window to explain the OAP structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

Thu, Nov 28, 1991 Page 22

explanation_oapaa('Explain Constrained Object Allocation Problem’) :-
wgcreate('Explain Constrained Object Allocation Problem’, 40,0,440,570,70,0,0,1,0),
explain_oapaa('Explain Constrained Object Allocation Problem),

gviewer('Explain Constrained Object Allocation Problem',off),

wfront('Explain Constrained Object Allocation Problem’).

explain_oapaa(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

oapaa_return(textbox('Chicago',12,0,8,0,32,32,1,'Return")),
oapaa_help(textbox('Chicago’,12,0,6,0,32,32,1,'More Help))],1),

add_pic(Win,exp_oapaa,[

textbox('Times',14,4,5,5,20,280,1, The Constrained Object Allocation Problem'),
textbox('Times',12,0,30,10,36,260,0, The Constrained Object Allocation Problem represents a type of
domain in which objects are allocated to slots if they meet given constraints."),

textbox('Times',12,0,72,10,60,260,0,'Requirements are fulfilled by resources if each requirement and

resource share the same constraints, so this problem is a matching problem. Allocation of requirements to
resources is maximised in several possible ways:"),

textline('Times’,12,0,138,10,"* Initially sorting objects and slots by their priority"),
textline('Times’,12,0,150,10,* A two-pass matching process,'),

textline('Times',12,0,162,10,'* Linear Programming Techniques."),
textbox('Times',12,0,180,10,36,260,0, This problem type is similar to the childrens test in which the child
must place the correctly-shaped peg in the same-shaped slot."),

textbox(Times',12,0,150,285,60,195,0,'In the diagram below Requirements are allocated to an Allocation
containing many Resources. Both Requirements and Resources have different properties or constraints.")]),
mappings_list(Win),

check_seetarget(Win),

res_open(‘exploapaa’),

add_pic(Win,exploapaa,picture(250,10,155,250,resource(exploapaa,

exploapaa))).

oapaa_return(double,Win) :-
wkill(Win),
reset_dialogue.

oapaa_help(double,Win) :-
oapaa_helpwindow(Window).

oapaa_helpwindow('OAPAA Help Window") :-
wgcreate('OAPAA Help Window', 40,0,440,570,70,0,0,1,0),
help_oapaa('OAPAA Help Window"),

gviewer(OAPAA Help Window',off),

wfront('OAPAA Help Window').

help_oapaa(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

oapaahelp_return(textbox('Chicago',12,0,8,0,32,32,1,Return'))],1),

add_pic(Win,hoapaa,

textbox('Times',14,4,5,5,20,280,1,' The Constrained Object Allocation Problem'),
textbox('Times',12,0,30,10,36,400,0,'One example of the Object Allocation Problem is a video hiring
function in which videos are hired to hotels on a monthly basis. However, allocation only occurs if hotel
requirements match video details, i.e. both share the same constraints."),

Explanation 'OAPAA' Program.2 Thu, Nov 28, 1991 Page 23

textbox('Times',12,0,72,10,24,400,0, The allocation system is run at the beginning of each month. It has a
list of all hotel requirements to be met and video copies (resources) with which to filfil them.”),
textbox('Times',12,0,102,10,48,400,0,' The system compares each video copy to a hotel requirement and
allocates the copy if it meets the hotels requirements. This process can be refined by priority scheduling and
sorting. Constraints applicable to both video copies and hotel needs include:’),
textline('Times',12,0,156,10,'* language, €.g. french and english language films only,"),
textline('Times',12,0,168,10,* censorship rating, e.g. no X-rated films."),
textline('Times’,12,0,186,10, The following mappings exist:"),

textline('Times',12,0,204,10,"* Hotel Requirements map to Requirements,'),
textline('Times',12,0,216,10,'* Video Copies map to Resources.")]),

res_open('egoapaa’),

add_pic(Win,egoapaa,picture(240,10,175,300,resource(egoapaa,

egoapaa))).

oapaahelp_return(double,Win) :-
wkill'OAPAA Help Window").

Menu Modifications Program.6 Thu, Nov 28, 1991 Page 88

findall(Data,get_physical(Data),Datalist),
Datalist = [FirstIRest],
mdialog(58,125,230,300,
[button(200,20,20,160, Remove Attribute'),
button(200,220,20,60,'Cancel’),
text(10,10,64,280,'Select the requirement which you wish to undo, then click REMOVE ATTRIBUTE:"),
menu(80,50,98,200,Datalist,[First],List)],Btn,
check_delphy(List)),

List = [LIRest],
find_physical(Object,Attribute,L),
retract(target_phyprop(Object,Attribute)).

check_delphy(D,B,List) :-

length(List, Total),Total=\=1,

beep(60),message(["You must select one attribute from the menu']),! fail.
check_delphy(D,B,_) :- .

/* Specialised version of the string-matching menu eliciter, to read the
correct selection from the menu. This program is simple, since there
are basically only two objects to concatenate. */

get_physical(T2) :-
target_phyprop(O,A),
concat(',',A,T1),
concat(O,T1,T2).

find_physical(O,A,Selected) :-
target_phyprop(O,A),
concat(',',A,T1),
concat(O,T1,T2),
compare(=,T2,Selected).

/* Deletion of a condition program - it is constructed differently from the
program to input conditions. An additional control is necessary to say
when no conditions are available to be deleted. */

delete_condition :-

not target_cdata(_,_),

mdialog(100,100,100,300,

[button(70,100,20,100,'Continue"’),

text(10,10,48,280, There are no conditions to be deleted. Please click CONTINUE to return to the
menu.')],Btn),!.

delete_condition :-

fetch_condition(F,C),
target_ddata(F,0O,_,_,_),
mdialog(100,100,170,300,
[button(80,210,20,60,'Next"),
button(140,210,20,60,'Cancel"),
button(110,210,20,60, Delete"),
text(10,10,48,280, Please use the next button to select the condition which you wish to remove, then click
DELETE:"),

text(80,10,16,100,F),
text(100,10,16,100,0),
text(120,10,16,40,'when"),
text(140,10,16,190,C)],Btn,delcheck(F,C)),
delete_condition.

/* We shall attempt to do the deletions during the button selections. */

Explanation 'OCP' Program Thu, Nov 28, 1991 Page 24

/* Window to explain the OCP structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_ocp(‘Explain Object Containment Problem’) :-
wgcreate('Explain Object Containment Problem’',40,0,440,570,70,0,0,1,0),
explain_ocp(’Explain Object Containment Problem’),

gviewer('Explain Object Containment Problem’,off),

wfront('Explain Object Containment Problem’).

explain_ocp(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[

ocp_return(textbox('Chicago’,12,0,8,0,32,32,1,'Return’)),
ocp_help(textbox('Chicago’,12,0,6,0,32,32,1,'More Help'))],1),

add_pic(Win,exp_ocp,[

textbox('Times',14,4,5,5,20,280,1, The Object Containment Problem (OCP)"),
textbox('Times',12,0,30,10,36,260,0, The OCP represents a general type of problem in which objects leave
a slot which acts as a store for these objects."),

textbox('Times',12,0,72,10,48,260,0,'In the diagram below objects are held in a slot which acts as a store
then move from the slot to an area outside the store, represented here as Space2. There are no conditions
which control movement of objects from the store.’),

textbox('Times',12,0,126,10,36,260,0, The OCP can represent a wide range of known problems and
information systems, including stock control and library problems."),
textbox('Times',12,0,168,10,36,260,0,'In the diagram below Objects move from a container called to a Slot
to a space outside the Slot called Space2."),

D,

mappings_list(Win),

check_seetarget(Win),

res_open('explocp),

add_pic(Win,explocp,

picture(250,10,165,300,resource(explocp,explocp))).

ocp_return(double,Win) :-
wkill(Win),
reset_dialogue.

ocp_help(double,Win) :-
ocp_helpwindow(Window).

ocp_helpwindow('OCP Help Window') :-

wgcreate('OCP Help Window!', 40,0,440,570,70,0,0,1,0),
help_ocp('OCP Help Window'),

gviewer('OCP Help Window',off),

wfront('OCP Help Window').

help_ocp(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[

ocphelp_return(textbox('Chicago’,12,0,8,0,32,32,1,'Return’))],1),

add_pic(Win,hocp,[

textbox(‘Times',14,4,5,85,20,280,1,'The Object Containment Problem (OCP)'),
textline('Times',12,0,30,60, There is no additional help to describe the Object Containment Problem.")

D.

ocphelp_return(double,Win) :-
wkill('OCP Help Window").

Explanation 'OCPAA' Program Thu, Nov 28, 1991 Page 25

/* Window to explain the OCP-AA structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_ocpaa('Explain Non-renewable Resource Mgmt Problem') :-
wgcreate('Explain Non-renewable Resource Mgmt Problem', 40,0,440,570,70,0,0,1,0),
explain_ocpaa(’Explain Non-renewable Resource Mgmt Problem')s

gviewer('Explain Non-renewable Resource Mgmt Problem',off),

wfront('Explain Non-renewable Resource Mgmt Problem’).

explain_ocpaa(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[

ocpaa_return(textbox(‘Chicago’,12,0,8,0,32,32,1,'Return")),
ocpaa_help(textbox('Chicago’,12,0,6,0,32,32,1,'More Help'))l1,1),

add_pic(Win,exp_ocpaa,[

textbox('Times',14,4,5,5,32,280,1, The Non-renewable Resource Management Problem (RMP)')
textbox('Times',12, 0 45,10,60, 260 0,"The non-renewable RMP represents problems which maintain a store
of objects. Objects are held in a slot which"acts as a store and leave the slot to go into the world. They are
replenished by objects from a different source."),

textbox('Times',12,0,111,10,24,260,0,'Objects which leave the slot are beyond the control of the associated
information system.'),

textbox('Times',12,0,141,10,60,260,0,'When the number of objects in the slot reaches a level (often a
minimum quantity of objects) the information system initiates a movement of objects from the world to the
slot This replenishment always ensures that the slot has sufficient objects."),
textbox('Times',12,0,207,10,60,260,0, The requirement of the information system is to ensure that the store
always contains a minimum quantity of objects."),

textbox('Times',12,0,146,290,36,195,0, Information system functions for this problem type include
Receive, Dispatch and Accept.'),

textbox(‘'Times',12,0,195,290,60,195,0,'In this diagram the world is represented as a space. Objects move
into the slot (the store) from Spacel and move out of the slot into Space2."),

D,

mappings_list(Win),

check_seetarget(Win),

res_open('explocpaa’),

add_pic(Win,explocpaa,
picture(250,10,165,400,resource(explocpaa,explocpaa))).

ocpaa_return(double,Win) :-
wkill(Win),
reset_dialogue.

ocpaa_help(double,Win) :-
ocpaa_helpwindow(Window).

ocpaa_helpwindow('Non-renewable Resource Help Window') :-
wgcreate('Non-renewable Resource Help Window', 40,0,440,570,70,0,0,1,0),
help_ocpaa('Non-renewable Resource Help Window'),
gviewer('Non-renewable Resource Help Window',off),
wfront('Non-renewable Resource Help Window').

help_ocpaa(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[

ocpaahelp_return(textbox('Chicago',12,0,8,0,32,32,1, Return’))],1),

add_pic(Win,hocpaa,[

textbox('Times',14,4,5,5,32,280,1, The Non-renewable Resource Management Problem (RMP)"),
textbox(‘Times', 12,0, 45 10 36, 360 0,'The non-renewable RMP is typical of types of stock control

Explanation 'OCPAA' Program.2 Thu, Nov 28, 1991 Page 26

problem, including warehousing and hospital supplies maintenance. An example hospital supplies problem is
described below.'),

textbox('Times',12,0,88,10,36,360,0,'A Hospital Cancer ward has a supply of medicines and drugs used
for treating patients in the ward. The level of these drugs is monitored by a computer system which informs
staff when levels are low.'),

textbox('Times',12,0,130,10,48,360,0,'Staff request new drug consignments from suppliers of the drug
when indicated to do so by the information system. Suppliers then send the consignment to restock the wards
drug supplies. The Ward domain is represented graphically below."),

textline('Times',12,0,184,10,'In the example the following mappings exist:"),
textline('Times',12,0,196,10,'* Drugs/Medicines map to Objects,’),

textline('Times',12,0,208,10,"* Ward Supply maps to Store,'),

textline('Times',12,0,220,10,'* Supplier maps to Spacel,’),

;c;xtlinc(‘Times',12,0,232,10,'* Patients maps to Space2.’),

res_open(‘egocpaa’),

add_pic(Win,egocpaa,picture(250,10,170,440,resource(egocpaa,

egocpaa))).

ocpaahelp_return(double,Win) :-
wkill(Win).

Explanation 'OCPAB' Program Thu, Nov 28, 1991 Page 27

/* Window to explain the OCP-AB structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms. */

explanation_ocpab(‘'Explain Renewable Resource Mgmt Problem) :-
wgcreate('Explain Renewable Resource Mgmt Problem', 40,0,440,570,70,0,0,1,0),
explain_ocpab('Explain Renewable Resource Mgmt Problem’),

gviewer('Explain Renewable Resource Mgmt Problem’,off),

wfront('Explain Renewable Resource Mgmt Problem’).

explain_ocpab(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[

ocpab_return(textbox('Chicago',12,0,8,0,32,32,1,'Return’)),

ocpab_help(textbox (‘Chicago’,12,0,6,0,32,32,1,'More Help'))},1),

add_pic(Win,exp_ocpab,[

textbox('Times',14,4,5,5,32,280,1,'The Renewable Resource Management Problem (RRMP)"),
textbox('Times',12,0,45,10,48,260,0, The RRMP represents problems involved in maintaining a store of
objects which are taken from and returned to the store or slot. These problems are often referred to as Library
problems."),

textbox('Times',12,0,99,10,48,260,0,' The movement of objects to and from the slot is not initiated by the
information system. Rather this system monitors and records the whereabouts of objects outside the slot."),
textbox('Times',12,0,153,10,36,260,0, The return of objects from the outside world to the slot is often
controlled by a time-limit or date by which the return must be made.’),
textbox('Times',12,0,195,10,36,260,0,'Information system functions for this problem type include lend,
borrow and return.’),

textbox('Times',12,0,153,290,60,200,0,'In the diagram below the world is represented as a space, and
objects move into and out of the Space2.")]),

mappings_list(Win),

check_seetarget(Win),

res_open(‘explocpab’),

add_pic(Win,explocpab,

picture(250,10,165,300,resource(explocpab,explocpab))).

ocpab_return(double,Win) :-
wkill(Win),
reset_dialogue.

ocpab_help(double,Win) :-
ocpab_helpwindow(Window).

ocpab_helpwindow('OCP Help Window") :-

wgcreate('Renewable Resource Help Window', 40,0,440,570,70,0,0,1,0),
help_ocpab('Renewable Resource Help Window'),

gviewer('Renewable Resource Help Window',off),

wfront('Renewable Resource Help Window').

help_ocpab(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[

ocpabhelp_return(textbox('Chicago',12,0,8,0,32,32,1,Return’))},1),

add_pic(Win,hocpab,[

textbox('Times',14,4,5,5,32,280,1,' The Renewable Resource Management Problem (RRMP)"),
textbox('Times',12,0,45,10,36,350,0, The RRMP represents most types of library or hiring problems. The
example below describes a company which hires heavy-duty machinery to builders."),
textbox('Times',12,0,87,10,72,350,0, The tool-hiring company has a store of machines which are lent to
building companies and private individuals. A machine is lent for a specified length of time then returned to
the company. The system monitors these loans and checks for overdue loans."),

Explanation 'OCPAB' Program.2 Thu, Nov 28, 1991 Page 28

textline('Times',12,0,141,10, The following mappings exist:"),
textline('Times',12,0,159,10,* Tool maps to Object,’),
textline('Times’,12,0,171,10,'* Company maps to Slot,"),
textline('Times’,12,0,183,10,* Builder maps to Space2.")]),
res_open(‘egocpab’),
add_pic(Win,egocpab,picture(230,10,175,370,resource(egocpab,
egocpab))).

ocpabhelp_return(double,Win) :-
wkill(Win).

Explanation 'OCPBA' Program Thu, Nov 28, 1991 Page 29

/* Window to explain the OCP-BA structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_ocpba(’Explain Structured Resource Mgmt Problem’) :-
wgcreate('Explain Structured Resource Mgmt Problem’,40,0,440,570,70,0,0,1,0),
explain_ocpba(‘Explain Structured Resource Mgmt Problem’),

gviewer('Explain Structured Resource Mgmt Problem',off),

wfront('Explain Structured Resource Mgmt Problem’).

explain_ocpba(Win) :-

gsplit(Win,70),

gecursor(Win,hand),

add_tools(Win,[
ocpba_return(textbox('Chicago’,12,0,
ocpba_help(textbox('Chicago’,12,0,6,
phymatch_ocpba(Win),
add_pic(Win,exp_ocpba,[
textbox(‘Times',14,4,5,5,32,280,1, The Structured Non-renewable Resource Management Problem
(RMP)"),

textbox('Times',12,0,45,10,48,260,0, The non-renewable RMP represents problems involved in
maintaining a store of objects. This store is divided into many small slots, each of which contains objects."),
textbox('Times',12,0,99,10,48,260,0, Many objects leave each small slot to go into the world and are
replenished by objects from a different source. Objects which leave the small slot are beyond the control of
the associated information system.'),

textbox('Times',12,0,153,10,60,260,0,When the number of objects in any small slot reaches a level (often
a minimum quantity of objects) the system initiates a movement of objects from the world to that small slot.
This replenishment ensures that small slots have sufficient objects.’),
textbox('Times',12,0,219,10,60,260,0, The requirement of the information system is to ensure that each

small slot always contains a minimum quantity of objects."),
textbox(‘Times',12,0,146,290,36,200,0, Information system functions for this problem type include

Receive, Dispatch and Accept.’),
textbox('Times',12,0,188,290,60,195,0,'In this diagram the world is represented as a Space. Objects move
into the Smallslot via the Slot from Spacel and move out of the Smallslot via the Slot into Space2."),

D,

mappings_list(Win),

check_seetarget(Win),

res_open(‘explocpba’),

add_pic(Win,explocpba,
picture(250,10,170,400,resource(explocpba,explocpba))).

8,0,32,32,1,'Return"),
0,32,32,1,'More Help'))],1),

ocpba_return(double,Win) :-
wkill(Win),
reset_dialogue.

ocpba_help(double,Win) :-
ocpba_helpwindow(Window).

ocpba_helpwindow('Structured Non-renewable Resource Problem Help Window') :-
wgcreate('Structured Non-renewable Resource Problem Help Window', 40,0,440,570,70,0,0,1,0),
help_ocpba('Structured Non-renewable Resource Problem Help Window'),

gviewer('Structured Non-renewable Resource Problem Help Window',off),

wfront('Structured Non-renewable Resource Problem Help Window').

help_ocpba(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[
ocpbahelp_return(textbox('Chicago',12,0,8,0,32,32,1,'Return’))],1),
add_pic(Win,hocpba,[

Explanation 'OCPBA' Program.2 Thu, Nov 28, 1991 Page 30

textbox('Times',14,4,5,5,32,280,1,'The Structured Non-renewable Resource Management Problem
(RMP)),

textbox('Times',12,0,45,10,36,350,0, The non-renewable RMP represents most types of complex stock
control problems. The following example describes one instance of this stock control problem: maintaining a
stock of office stationary.'), .
textbox(‘Times',12,0,87.10,36,350,0,'A large organisation uses an information system to control use of its
stationary. When levels of each item (e.g. biros) reach a given limit a new quantity of that item is ordered
from the relevant wholesalers."),

textbox('Times',12,0,129,10,48,350,0,'Staff in the organisation use stationary from the cupboards are
necessary, and once a week the stationary is checked to identify current levels of each item. The information
system then decides upon the need for new stationary and prints supplier orders."),
textline("Times’,12,0,183,10, The following mappings exist:"),

textline("Times',12,0,195,10,'* Stationary maps to Objects,’),

textline('Times',12,0,207,10,'* Slot maps to Organisation,’),

textline('Times',12,0,219,10,'* Smallslot maps to Container of each Stationary Type,),
textline('Times’,12,0,231,10,* Spacel maps to Stationary Suppliers,’),

textline('Times',12,0,243,10,'* Space2 maps to Employees.")]),

res_open(‘egocpba’),

add_pic(Win,egocpba,picture(253,10,175,370,resource(egocpba,

egocpba))).

ocpbahelp_return(double,Win) :-
wkill(Win).

/* Routines for physical match option. */

phymatch_ocpba(Win) :-

physical_acp(ocpba),

add_tools(Win,[

physical_ocpba(textbox(‘Chicago',12,0,6,0,32,32,1, Physical Match'))],1),!.

phymatch_ocpba(Win) :- !,

physical_ocpba(double,Win) :-
fetch_explanation(pocpba).

Explanation 'OCPBB' Program Thu, Nov 28, 1991 Page 31

/* Window to explain the OCP-AA structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_ocpbb('Object Recording Problem') :-
wgcreate('Object Recording Problem', 40,0,440,570,70,0,0,1,0),
explain_ocpbb('Object Recording Problem’),

gviewer('Object Recording Problem',off),

wiront('Object Recording Problem’).

explain_ocpbb(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[

ocpbb_return(textbox('Chicago’,12,0,8,0,32,32,1,'Return")),
ocpbb_help(textbox('Chicago',12,0,6,0,32,32,1,'More Help'))],1),

add_pic(Win,exp_ocpbb,[

textbox('Times',14,4,5,5,32,280,1,'The Object Recording Problem'),
textbox('Times',12,0,45,10,48,260,0, The Object Recording Problem represents domains which record the
existence of objects in a slot. It monitors the movements of objects in the domain and does not initiate these
object movements itself."),

textbox('Times',12,0,99,10,48,260,0, The information system is interested in two types of movement -
those into the slot and those out of the slot again. The system records data about each object in the slot."),
textbox("Times',12,0,153,10,48,260,0,'Ira differentiates between the original source and final destination of
the objects. Generally objects will not return to their original location upon leaving the slot, although this may

happen.'),
textbox('Times',12,0,207,10,24,260,0, The functions of the information system associated with this

problem type include Record and Update."),
textbox("Times',12,0,153,285,60,195,0,'In the diagram below Objects exist in a Slot. Objects originally
enter the Slot from a source Spacel and leave it for a destination Space2.")]),

mappings_list(Win),

check_seetarget(Win),

res_open(‘explocpbb’),

add_pic(Win,explocpbb,

picture(250,10,165,400,resource(explocpbb,explocpbb))).

ocpbb_return(double,Win) :-
wkill(Win),
reset_dialogue.

ocpbb_help(double,Win) :-
ocpbb_helpwindow(Window).

ocpbb_helpwindow('Object Recording Help Window') :-
wgcreate('Object Recording Help Window', 40,0,440,570,70,0,0,1,0),
help_ocpbb(‘Object Recording Help Window"),

gviewer('Object Recording Help Window',off),

wfront('Object Recording Help Window").

help_ocpbb(Win) :-

gsplit(Win;70),

gecursor(Win,hand),

add_tools(Win,[

ocpbbhelp_return(textbox('Chicago',12,0,8,0,32,32,1,'Return’))], 1),

add_pic(Win,hocpbb,[

textbox('Times',14,4,5,5,32,280,1,'The Object Recording Problem’),
textbox(‘Times',12,0,45,10,48,350,0, The Personnel System described during the problem elicitation phase
of Ira is one instance of an Object Recording Problem. This system monitors the movement of staff to and
from a company, and records data on staff in the company."),
textbox("Times',12,0,99,10,48,350,0,'Object Recording Systems are quite simple. They only monitor the

Explanation 'OCPBB' Program.2 Thu, Nov 28, 1991 Page 32
movements of objects such as personnel. It is possible that objects such as Staff can return to the same place
from where they came (e.g. the job agency)."), :
textline('Times',12,0,153,10, The following mappings with the Personnel System exist:'),
textline('Times',12,0,165,10,'* Staff map to Objects,’),

textline("Times',12,0,177,10,'* Organisation maps to Slot,’),

textline("Times',12,0,189,10,"* Outside World maps to Spacel.’)]),

res_open(‘egocpbb’),

add_pic(Win,egocpbb,picture(230,10,155,450,resource(egocpbb,

egocpbb))).

ocpbbhelp_return(double,Win) ;-
wkill(Win).

Explanation 'OMP' Program Thu, Nov 28, 1991 Page 33

/* Window to explain the OMP structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_omp(’Explain Object Monitoring Problem') :-
wgcreate('Explain Object Monitoring Problem',40,0,440,570,70,0,0,1,0),
explain_omp(’Explain Object Monitoring Problem’),

gviewer('Explain Object Monitoring Problem’,off),

wiront('Explain Object Monitoring Problem’).

explain_omp(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[
omp_return(textbox('Chicago',12,0,
omp_help(textbox("Chicago’,12,0,6,
phymatch_omp(Win),
add_pic(Win,exp_omp,[
textbox('Times',14,4,5,5,20,280,1,' The Object Monitoring Problem'),
textbox('Times',12,0,30,10,60,260,0, The Object Monitoring Problem represents domains in which many
objects move in a space and risk collision. The purpose of the information system is to monitor object
movement and provide imminent warning of potential collisions."),
textbox('Times',12,0,96,10,60,260,0, Each object in the domain is surrounded by a space or slot which
protects the object from collision. No other object may enter this space else the space controller is warned and
makes the neccesary actions to avoid the collision.’),

textbox('Times',12,0,162,10,48,260,0,'When a slot contains more than two objects controllers must act to
remove additional objects from each slot. This is done by issuing commands which affect the movement of
objects."),

textbox('Times',12,0,216,10,36,260,0, The information system is limited to monitoring and controlling the
domain. Object movement is beyond control of the system."),

textbox('Times',12,0,162,285,84,195,0,'In the diagram below many objects move freely in and between
slots. Each slot may contain none, one or many objects, although the system should warmn controllers when
many objects are in the same slot.")

Ds

mappings_list(Win),

check_seetarget(Win),

res_open(‘explomp’),

add_pic(Win,explomp,

picture(250,10,160,300,resource(explomp,explomp))).

8,0,32,32,1,'Return")),
0,32,32,1,'More Help"))],1),

omp_return(double,Win) :-
wkill(Win),
reset_dialogue.

omp_help(double,Win) :-
omp_helpwindow(Window).

omp_helpwindow('Object Monitoring Help Window') :-
wgcreate('Object Monitoring Help Window', 40,0,440,570,70,0,0,1,0),
help_omp('Object Monitoring Help Window'),

gviewer(‘Object Monitoring Help Window',off),

wfront('Object Monitoring Help Window').

help_omp(Win) :-

gsplit(Win,70),

gcursor(Win,hand),

add_tools(Win,[
omphelp_return(textbox('Chicago',12,0,8,0,32,32,1,'Return’))],1),
add_pic(Win,homp,[

textbox('Times',14,4,5,105,20,200,0, The Object Monitoring Problem"),

Explanation 'OMP' Program.2 Thu, Nov 28, 1991 Page 34

textbox('Times',12,0,30,10,36,400,0, The Object Monitoring Problem can be extended to monitor for plan
adherence as well as collision detection. Objects often move according to a predetermined plan, and many
instances of this problem type incorporate plan adherence monitoring."),
textbox('Times',12,0,72,10,24,400,0, The following example can be extended to incorporate plan
adherence as well as collision detection monitoring.’),

textbox('Times',12,0,102,10,48,400,0,'An underground railway is broken down into a number of track
sections to ensure passenger safety. Each track section may only contain one train, otherwise the signalman
keeps trains apart by changing relevant signals and informing drivers."),
textbox("Times',12,0,156,10,24,400,0,' The information system can also monitor the direction of trains to
ensure they are travelling in the right direction according to the railway timetable. Mappings are:"),
textline('Times',12,0,186,10, Train maps to Object’),

textline("Times',12,0,198,10,'* Space maps to Track Section.”)]),

res_open(‘egomp’), '
add_pic(Win,egomp,picture(230,10,175,420,resource(egomp,egomp))).

omphelp_return(double,Win) :-
wkill(Win).

/* Routines for physical match option. */

phymatch_omp(Win) :-

physical_acp(omp),

add_tools(Win,[
physical_omp(textbox(‘Chicago’,12,0,6,0,32,32,1,'Physical Match"))],1),!.

phymatch_omp(Win) :- !,

physical_omp(double,Win) :-
fetch_explanation(pomp).

Explanation 'OPP' Program Thu, Nov 28, 1991 Page 35

/* Window to explain the OCP-AA structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_opp(Explain Simple Spatial Object Problem') :-
wgcreate('Explain Simple Spatial Object Problem', 40,0,440,570,70,0,0,1,0),
explain_opp(‘Explain Simple Spatial Object Problem’),

gviewer('Explain Simple Spatial Object Problem',off),

wfront('Explain Simple Spatial Object Problem").

explain_opp(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

opp_return(textbox('Chicago',12,0,8,0,32,32,1,'Return’)),
opp_help(textbox('Chicago’,12,0,6,0,32,32,1,'More Help'))],1),

phymatch_opp(Win),

add_pic(Win,exp_opp,[

textbox('Times',14,4,5,5,20,280,1, The Object Positioning Problem’),
textbox('Times',12,0,30,10,48,260,0, The Object Positioning Problem monitors the position of objects with
regard to a specific space or slot. The aim of the information system is to ensure that the slot is always
occupied by an object.”),

textbox(‘'Times',12,0,84,10,60,260,0, The information system monitors the movement of objects with
regard to the slot, and if the slot is unattended then the system informs the controller who takes appropriate
action to reoccupy the slot with another object.’),

textbox('Times',12,0,150,10,48,260,0,'It is possible that the object which vacated the slot may also be
directed by the controller to reoccupy the slot."),

textbox('Times',12,0,180,10,24,260,0, The information system is restricted to monitoring the domain and
advising a controller when necessary."),

textbox(‘'Times',12,0,150,285,60,195,0,'In the diagram below the objects must be positioned in a Slot. The
Object leaves the Slot to Space2, then a new Object enters the Slot from Spacel.’)]),

mappings_list(Win),

check_seetarget(Win),

res_open(‘explopp’),

add_pic(Win,explopp,

picture(250,10,165,300,resource(explopp,explopp))).

opp_return(double,Win) :-
wkill(Win),
reset_dialogue.

opp_help(double,Win) :-
opp_helpwindow(Window).

opp_helpwindow('Simple Spatial Object Help Window') :-
wgcreate('Simple Spatial Object Help Window', 40,0,440,570,70,0,0,1,0),
help_opp('Simple Spatial Object Help Window"),

gviewer('Simple Spatial Object Help Window',off),

wiront('Simple Spatial Object Help Window").

help_opp(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

opphelp_return(textbox(‘Chicago',12,0,8,0,32,32,1, Return’))],1),

add_pic(Win,hopp,[

textbox(‘Times',14,4,5,5,20,280,1,'The Object Positioning Problem’),
textbox(‘Times',12,0,30,10,36,350,0,'An example of an Object Positioning Problem is Coastguard patrols.
Patrol boats monitor coastal waters to ensure that no small craft pass by unnoticed.’),
textbox('Times',12,0,72,10,24,350,0, The information system checks the position of boats to ensure they

Explanation 'OPP' Program.2 Thu, Nov 28, 1991 Page 36

maintain an effective cordon through which no boats may pass illegally."),
textbox('Times',12,0,102,10,48,350,0,'If radar suggests that a boat is found to be out of position then the
system informs the controller who advises other boats to fill the space vacated by the original boat. The same

boat may be redirected back to the same patrol zone."),)
textline('Times',12,0,156,10,'In this example the following mappings occured:'),

textline('Times',12,0,174,10,"* Object maps to Coastguard Boat,’),
textline('Times',12,0,186,10,'* Slot maps to Patrol Zone.")]),

res_open(‘egopp’),
add_pic(Win,egopp,picture(230,10,175,370,resource(egopp,€gopp))).

opphelp_return(double,Win) :-
wkill(Win).

/* Routines for physical match option. */

phymatch_opp(Win) :-
physical_acp(opp),

add_tools(Win,[.
physical_opp(textbox('Chicago',12,0,6,0,32,32,1,' Physical Match'))],1),!.

phymatch_opp(Win) :- !,

physical_opp(double,Win) :-
fetch_explanation(popp).

Explanation 'POCP-BA' Program

/* Window to explain the OCP-BA structure to the analyst - it is a standard
window accessed by all explanation\retrieval mechanisms */

explanation_pocpba(’Explain Warehousing Problem’) :-
wgcreate('Explain Warehousing Problem',40,0,440,570,70,0,0,1,0),
explain_pocpba(’Explain Warehousing Problem’),

gviewer('Explain Warehousing Problem',off),

wiront('Explain Warehousing Problem’).

explain_pocpba(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[
pocpba_return(textbox(‘Chicago',12,0,8,0,32,32,1,'Return’))],1),
add_pic(Win,exp_pocpba,[
textbox('Times',14,4,5,5,32,280,1,' The Warehousing Problem’),

Thu, Nov 28, 1991 Page 37

textbox('Times',12,0,33,10,72,260,0,'The warehousing problem is a typical stock control problem. A
warehouse contains stock which is used by an organisation for sales or manufacturing. Stock is held in many
bins which are replenished from incoming supplies when these stocks begin to run low."),
textbox("Times',12,0,111,10,60,260,0,'Stock enters the warehouse through the good-in where it is
normally checked. It leaves the warehouse to the sales, delivery or manufacturing departments. The
information system monitors levels of stock in the bins to warn of low stock levels."),

textline('Times',12,0,147,285, The following mappings exist:’),
textline('Times',12,0,159,285,'* Stock map to Objects,’),
textline('Times',12,0,171,285,'* Warehouse maps to Store,’),
textline("Times',12,0,183,285,'* Stock Bin maps to Smallslot,’),
textline('Times',12,0,195,285,* Supplier maps to Spacel,’),
textline('Times',12,0,207,285,* Goods-out maps to Space2.)]),
mappings_list(Win),

res_open(‘explpocpba’),

add_pic(Win,explpocpba,
picture(220,10,200,400,resource(explpocpba,explpocpba))).

pocpba_return(double,Win) :-
wkill(Win),
reset_dialogue.

Explanation 'POMP' Program Thu, Nov 28, 1991 Page 38
/* Window to explain transport instantiation of the OMP domain. */

explanation_pomp(Explain Network Transport Collision Problem’) :-
wgcreate('Explain Network Transport Collision Problem’,
40,0,440,570,70,0,0,1,0),

explain_pomp('Explain Network Transport Collision Problem’),
gviewer('Explain Network Transport Collision Problem',off),
wfront('Explain Network Transport Collision Problem’).

explain_pomp(Win) :-

gsplit(Win,70),

gecursor(Win,hand),

add_tools(Win,[

pomp_return(textbox('Chicago’,12,0,8,0,32,32,1,'Return’))],1),

add_pic(Win,exp_pomp,[

textbox('Times',14,4,5,5,20,280,1,'The Network Transport Collision Problem’),
textbox('Times',12,0,30,10,60,260,0, The Network Transport Collision Problem represents many transport
domains in which vehicles, such as ships, aircraft and trains, may collide. The aim of the information system
is to monitor vehicle movement and warn of potential collisions."),
textbox('Times',12,0,96,10,48,260,0,'Vehicle movement is constrained by a network of unidirectional lanes
along which vehicles should move. Lanes may by two-dimensional (Railways) or three-dimensional
(Airways)."),

textbox('Times',12,0,150,10,48,260,0,'In either case vehicles are still protected by a space which limits the
number of vehicles in the space. A controller warns vehicle operators in the space is violated."),
textline("Times',12,0,150,285, The following mappings exist:"),

textline('Times’,12,0,162,285,'*"),

textline("Times’,12,0,174,285,'*"),

textline('Times',12,0,186,285,'*"),

textline('Times',12,0,162,295,'Vehicle maps to Object,"),

textline('Times',12,0,174,295,'Space maps to Safety Zone,'"),

textline('Times',12,0,186,295, Path maps to Airlane/Railway Track."]),

mappings_list(Win),

res_open(‘explpomp’),

add_pic(Win,explpomp,

picture(200,10,220,380,resource(explpomp,explpomp))).

pomp_return(double,Win) :-
wkill(Win),
reset_dialogue.

Explanation 'POPP' Program Thu, Nov 28, 1991 Page 39

/* Window to explain the physical instantiation of the OCP-BB abstraction.
*/

explanation_popp(Explain Transport Positioning Problem) :-
wgcreate('"Explain Transport Positioning Problem'’, 40,0,440,570,70,
0,0,1,0),

explain_popp(Explain Transport Positioning Problem’),
gviewer('Explain Transport Positioning Problem',off),
wfront(‘Explain Transport Positioning Problem’).

explain_popp(Win) :-

gsplit(Win,70),

gecursor(Win,hand),

add_tools(Win,[

popp_return(textbox('Chicago',12,0,8,0,32,32,1,'Return’))],1),

add_pic(Win,exp_popp,[

textbox('Times',14,4,5,5,20,280,1,' The Transport Positioning Problem’),
textbox(‘Times',12,0,30,10,60,260,0,'A Transport Positioning System monitors the position of manned
vehicles with regard to physical spaces. The aim of the system is to ensure that these spaces are always
occupied by at least one vehicle, such as a boat or plane.’),

textbox('Times',12,0,96,10,60,260,0, The physical spaces occupied by vehicles are often adjacent, so
vehicles can be instructed when necessary to move from neighbouring spaces to the vacant space. As such
the vehicles attempt to form a protective net or barrier.”),

textbox('Times',12,0,162,10,24,260,0,'A vehicle may be instructed to return to the space which it
vacated."),

textline('Times',12,0,162,285, The following mappings were identified:"),
textline(‘Times',12,0,180,285,'Vehicle maps to Object,’),

textline('Times',12,0,192,285,'Space maps to Slot.")]),

mappings_list(Win),

res_open(‘explpopp"),

add_pic(Win,explpopp,

picture(220,10,200,400,resource(explpopp,explpopp))).

popp_return(double,Win) :-
wkill(Win),
reset_dialogue.

Explanation Management Program

/* This program is simple but important - it controls the management of
windows (i.e. selection etc) from various calls throughout Ira. The main
program is called 'fetch_explanation'. There are two groups of the
fetch program - first retrieve the basic ACPs, while the second
retrieves the physical explanations for the ACPs. */

/* Basic ACP fetches */

fetch_explanation(ocp) :-
disable_menu('Control"),
explanation_ocp('Explain Object Containment Problem’).

fetch_explanation(ocpaa) :-
disable_menu('Control’),
explanation_ocpaa(’Explain Non-renewable Resource Mgmt Problem').

fetch_explanation(ocpab) :-
disable_menu(‘Control’),
explanation_ocpab(’Explain Renewable Resource Mgmt Problem’).

fetch_explanation(ocpba) :-
disable_menu('Control’),
explanation_ocpba(’Explain Structured Resource Mgmt Problem").

fetch_explanation(ocpbb) :-
disable_menu('Control’),
explanation_ocpbb('Object Recording Problem').

fetch_explanation(omp) :-
disable_menu('Control’),
explanation_omp(’Explain Object Monitoring Problem').

fetch_explanation(oap) :-
disable_menu('Control’),
explanation_oap('Explain Object Allocation Problem").

fetch_explanation(oapaa) :-
disable_menu(‘Control’),
explanation_oapaa('Explain Constrained Object Allocation Problem").

fetch_explanation(opp) :-
disable_menu('Control’),
explanation_opp('Explain Simple Spatial Object Problem’).

/* Physical match ACP fetches. Only three physical description windows
are accessed - otherwise control is returned to original abstract

windows. */

fetch_explanation(pocp) :-

disable_menu('Control'),

del_prop(reset,dialogue),
set_prop(reset,dialogue,physical),
explanation_ocp(’Explain Object Containment Problem').

fetch_explanation(pocpaa) :-

disable_menu('Control’),

del_prop(reset,dialogue),

set_prop(reset,dialogue,physical),

explanation_ocpaa(’Explain Non-renewable Resource Mgmt Problem’).

Thu, Nov 28, 1991 Page 40

Explanation Management Program.2 Thu, Nov 28, 1991 Page 41

fetch_explanation(pocpab) :-

disable_menu('Control"),

del_prop(reset,dialogue),

set_prop(reset,dialogue,physical),

explanation_ocpab('Explain Renewable Resource Mgmt Problem’).

fetch_explanation(pocpba) :-
disable_menu('Control’),

del_prop(reset,dialogue),
set_prop(reset,dialogue,physical),
explanation_pocpba(’Explain Warehousing Problem’).

fetch_explanation(popp) :-

disable_menu('Control’),

del_prop(reset,dialogue),
set_prop(reset,dialogue,physical),
explanation_popp(‘Explain Transport Collision Problem').

fetch_explanation(pomp) :-

disable_menu('Control"),

del_prop(reset,dialogue),

set_prop(reset,dialogue,physical),

explanation_pomp('Explain Network Transport Collision Problem’).

fetch_explanation(poap) :-

disable_menu('Control’),

del_prop(reset,dialogue),
set_prop(reset,dialogue,physical),
explanation_oap('Explain Object Allocation Problem’).

/* Another small set of programs is required to control the use of
explanations in sequential processing. It is necessary to record the
state of a dialogue before an explanation is accessed, so that the same
state can be retumned to afterwards. This is achieved using a coded set
of set-props and get-props. They represent i) which dialogue you were
ifr}, %) a list of candidate ACPs of interest to the dialogue (i.e. candidate

its).

Several dialogue options exist:

- two good matches to be selected between (manygood),

- one partial match to be expanded upon (onepart),

- several partial matches to be selected between (manypart),
- final acceptance of partial matches (acceptparts),

- final good fit upon completion of search (finalgood),

- explanation for user identification of analogous mappings.

The program is called ‘reset dialogue' */

reset_dialogue :-)
get_prop(reset,dialogue,Dialogue),
get_prop(reset,list,Acplist),
Dialogue = manygood,
enable_menu('Control’),
goodmatches_dialogue(Acplist),!.

reset_dialogue :-
get_prop(reset,dialogue,Dialogue),
get_prop(reset,list,Acplist),

Explanation Management Program.3

Dialogue = onepart,
enable_menu('Control'),
partmatch_dialogue(Acplist),!.

reset_dialogue :-
get_prop(reset,dialogue,Dialogue),
get_prop(reset,list,Acplist),
Dialogue = manypart,
enable_menu('Control'),
partmatches_dialogue(Acplist),!.

reset_dialogue :-
get_prop(reset,dialogue,Dialogue),
get_prop(reset,list,Acplist),
Dialogue = acceptparts,
enable_menu('Control’),
acceptmatches_dialogue(Acplist),!.

reset_dialogue :-
get_prop(reset,dialogue,Dialogue),
enable_menu('Control'),

Dialogue = finalgood,!.

reset_dialogue :-
get_prop(reset,dialogue,Dialogue),
Dialogue = physical,!.

/* The following routine is called by all explanation windows. It provides
the 'see target' tool if the explanations are called as part of two good
matches dialogue. All windows call one routine which adds the 'see
target' tool if the reset-dialogue variable is correct. */

check_seetarget(Win) :-
get_prop(reset,dialogue,manygood),

add_tools(Win,[see_target(textbox('Chicago’,
12,0,4,0,32,32,1,'See Target Problem'))],1),!.

check_seetarget(Win) :- !.

Thu, Nov 28, 1991 Page 42

Mapping Identification Program Thu, Nov 28, 1991 Page 72

/* This program allows analysts to identify specific mappings with objects
in retrieved ACPs, then rerun analogous mappings based on these fixed
analogical features. There are three features to this dialogue:

(1) dialogue to select from available ACPs (maximum choice 3),
(ii) display of explanation window for selected ACP,
(iii) display of dialogue for inputting object mappings. */

/* Initial dialogue to select the required ACP. Three dialogues exist:
(1) standard dialogue when several acps already exist,
(ii) skip the dialogue when only one ACP exists,
(iii) dialogue when no ACPs are known, and the dialogue must fail. */

inputmapping_dialogue :-
findall(Acp,rec_acpmatch(Acp),Acplist),
obtain_acps(Acplist).

/* Dialogue when no recorded acp matches can be called for object
matching. */

obtain_acps(Acplist) :-

Acplist =[],

mdialog(100,100,130,300,[

text(10,10,80,280, There are currently no matched abstractions which can be retrieved. Search using the
current problem description in order to obtain some abstractions."),
button(105,100,20,100,'Continue’)],Btn),!.

/* Dialogue when one recorded acp match is retrieved. The initial window
is not necessary so control is passed immediately to the object mapping

window. */

obtain_acps(Acplist) :-
length(Acplist,T),T=1,
Acplist = [Acp],
mapobjects_dialogue(Acp),!.

/* Dialogue necessary when two or more recorded acp matches are
identified. */

obtain_acps(Oldlist) :-

length(Oldlist,T),T>1,

acplist_spaces(Oldlist,Acplist),

Acplist =[A1,A2,A3],

mdialog(40,85,260,400,[

text(10,10,80,380,Ira has identified two possible types of problem for your system. Please use the
following buttons to examine each of these options, then select the most appropriate option below:"),
button(230,310,20,60,'Cancel’),

button(230,30,20,60,'Select’),

radio(120,20,16,375,A1,0n,Sell),

radio(150,20,16,375,A2,0ff,Sel2),

radio(180,20,16,375,A3,0ff,Sel3)],Btn,

valid_inputmapping(Sell,Sel2,Sel3,A1,A2,A3)).

/* Several rules are required to manage valid selection of ACPs */
valid_inputmapping(D,B,Sel1,Sel2,Sel3,_,_,) :-

Sell='on',Sel2='on’,

beep(60), message(['You must choose one abstraction. ~MPlease try again']),!,fail.

valid_inputmapping(D,B,Sel1,Sel2,Sel3,_,_,) :-

Mapping Identification Program.2 Thu, Nov 28, 1991

Sell='on',Sel3='on’,
beep(60), message(['You must choose one abstraction. ~MPlease try again']),!,fail.

valid_inputmapping(D,B,Sell,Sel2,Sel3,_,_,_) :-
Sel3='on',Sel2="on’,

beep(60), message(["You must choose one abstraction. ~MPlease try again']),!,fail.
valid_inputmapping(D,B,Sell,Sel2,Sel3,_,_,) :-
Sell='on',Sel2='on",Sel3='on',

beep(60), message(["You must choose one abstraction. ~MPlease try again']),! fail.
valid_inputmapping(D,B,Sell,Sel2,Sel3,_,_,) :-
Sell="off",Sel2="off",Sel3="off",

beep(60), message(["You must choose one abstraction. ~MPlease try again']),!,fail.
valid_inputmapping(D,B,Sel1,Sel2,Sel3,_, ,A3) :-

Sel3='on',A3=",
beep(60), message([This radio cannot be selected. ~MPlease try again']),!,fail.

valid_inputmapping(D,3,Sel1,Sel2,Sel3,A1,A2,A3) :-
identify_selectacp(Sell,Sel2,Sel3,A1,A2,A3,Selected_acp),

mapobjects_dialogue(Selected_acp).
/* Subroutine to add spaces to ACP list if necessary. */

acplist_spaces(Oldlist,Newlist) :-
length(Oldlist,T),T=2,

Oldlist =[01,02],
acps(O1,N1),acps(O2,N2),
Newlist = [N1,N2,' '],!.

acplist_spaces(Oldlist,Newlist) :-
length(Oldlist, T),T=3,

Oldlist = [01,02,03],
acps(O1,N1),acps(02,N2),acps(O3,N3),
Newlist = [N1,N2,N3).

/* Subroutine to identify the label of chosen ocp */

identify_selectacp(Sell,Sel2,Sel3,A1,A2,A3,Selected_acp) :-
Sell = 'on',acps(Name,A1),Selected_acp is Name,!.

identify_selectacp(Sell,Sel2,Sel3,A1,A2,A3,Selected_acp) :-
Sel2 = 'on',acps(Name,A2),Selected_acp is Name,!.

identify_selectacp(Sell,Sel2,Sel3,A1,A2,A3,Selected_acp) :-
Sel3 = 'on',acps(Name,A3),Selected_acp is Name.

/* Dialogue which inputs specific analogous mappings with objects
belongingto each ACP. The objects are retrieved through a complicated
subroutine in order to allow for one, two three or four ACP objects &

a variable number of object mappings with these objects.

User-identified analogous mappings are identified by increasing the
score of the object mapping by 1000, so all object mappings with
scores => 1000 are prespecified by the analyst. When generating

a fixed mapping either increase the score of an existing mapping or
create a new mapping with score 1000. */

Page 73

Mapping Identification Program.3 Thu, Nov 28, 1991 Page 74

mapobjects_dialogue(Acp) :-
getobjects(Olist,Acp),

getmappings(Mlist,Olist,Acp),

Olist = [01,02,03,04,05],

Mlist = [M1,M2,M3,M4,M5],

mdialog(40,85,280,300,(

button(250,40,20,60,'Save'),
button(250,200,20,60,'Quit"),

text(10,10,64,280, Please input target objects which map to abstract objects identified in the dialogue:"),
text(90,45,16,100,'Source’),

text(115,40,16,100,01),

text(136,40,16,100,02),

text(157,40,16,100,03),

text(178,40,16,100,04),

text(199,40,16,100,05),

text(90,170,16,100, Target'),
edit(115,140,16,100,M1,T1),
edit(136,140,16,100,M2,T2),
edit(157,140,16,100,M3,T3),
edit(178,140,16,100,M4,T4),
edit(199,140,16,100,M5,T5)],Btn,
valid_objmappings(01,02,03,04,05,T1,T2,T3,T4,T5)),
save_mappings(01,02,03,04,05M1,M2 M3,M4,M5,T1,T2,T3,T4,T5,Acp),
mapobjects_dialogue(Acp).

/* Rules to retrieve and set up ACP objects and mappings on the original
screen. Each rule is determined by the number of objects available
for a given ACP, so initially a findall counts the descriptors to select
the appropriate builder rule. */

/* Rules to list ACP objects on the screen (range 2-5 objects per slot). */

getobjects(Olist,Acp) :-
findall(Object,acp_object(Object,Acp), Tlist),
length(Tlist,T),T=2,

Tlist=[01,02], Olist=[01,02,",","],!.

getobjects(Olist,Acp) :-
findall(Object,acp_object(Object,Acp), Tlist),
length(Tlist,T), T=3,

Tlist=[01,02,03], Olist=[01,02,03,","],!.

getobjects(Olist,Acp) :-
findall(Object,acp_object(Object,Acp), Tlist),
length(Tlist,T), T=4,

Tlist=[01,02,03], Olist=[01,02,03,04,"],!.

getobjects(Olist,Acp) :-
findall(Object,acp_object(Object,Acp),Olist),
length(Tlist,T),T=5.

/* Rules to list mappings on the screen. */

getmappings(Mlist,Olist,Acp) :-
Olist=[01,02,03,04,05],
getmapping1(O1,M1,Acp),
getmapping2(02,M2,Acp),
getmapping3(03,M3,Acp),
getmapping4(04,M4,Acp),

Mapping Identification Program.4 Thu, Nov 28, 1991 Page 75

get_mappingS(OS,MS,Acp),
Mlist=[M1,M2,M3,M4,M5].

getrnappingl(Ol,Ml,Acp) -
rec_objectmatch(M1,01,Score,Acp),
Score >= 1000,!.

getmapping1(01,M1,Acp) :- M1=",1.

getmapping2(02,M2,Acp) :-
rec_objectmatch(M2,02,Score,Acp),
Score >= 1000,!.

getmapping2(02,M2,Acp) :- M2="1.

getmapping3(03,M3,Acp) -
rec_objectmatch(M3,03,Score,Acp),
Score >= 1000,!.

getmapping3(03,M3,Acp) :- M3=",\.

getmapping4(0O4,M4,Acp) :-
rec_objectmatch(M4,04,Score,Acp),
Score >= 1000,!.

getmapping4(04,M4,Acp) :- M4=",!.

getmappingS(05,M5,Acp) :-
rec_objectmatch(MS5,05,Score,Acp),
Score >= 1000,!.

getmapping5(05,M5,Acp) :- M5=",".

/* Validation rules to control data input. Checks ensure that objects not
input for blank space objects, that input target objects exist, and target
objects are not input for several different mappings. There is no need
for any other more complex controls, since analysts can input any
combination of mappings, and the subsequent screen and saving
mechanisms cater for all possible events from analyst inputs. */

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,T5) :-

Ol = ",Tl =\= n,
beep(60), message(['Input objects must have corresponding objects: - Please try again'),!,fail.

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,TS) :-

02 ="T2 =\=",
beep(60), message(['Input objects must have corresponding objects: - Please try again'),!,fail.

valid_objma}ppiqlgs(D,B,O1,02,03,04,05,T1,T2,T3,T4,T5) -

03 ="T3 =\="1,
beep(60), message(['Input objects must have corresponding objects: - Please try again'),!,fail.

valid_objmap\pings(D,B,O1,02,03,04,05,T1,T2,T3,T4,T5) -
04 = "’T4 =\= ",
beep(60), message(['Input objects must have corresponding objects: - Please try again']),! fail.

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,T5) :-

05 = n’TS =___ n’
beep(60), message(['Input objects must have corresponding objects: - Please try again']),!,fail.

Mapping Identification Program.5 Thu, Nov 28, 1991 Page 76

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,TS) :-
T1 =\=",not target_object(T1),
beep(60), message(['The object’,T1,'does not exist - Please try again']),! fail.

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,T5) :-
T2 =\=",not target_object(T2),
beep(60), message(['The object',T2,'does not exist - Please try again") 1 fail,

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,T5) :-
T3 =\=",not target_object(T3),
beep(60), message(['The object’,T3,'does not exist - Please try again') 1 fail,

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,T5) :-
T4 =\=",not target_object(T4),
beep(60), message(['The object',T4,'does not exist - Please try again"),! fajl.

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,T5) :-
T5 =\=",not target_object(T5),
beep(60), message(['The object’,T5,'does not exist - Please try again']) ! fail.

valid_objmappings(D,B,01,02,03,04,05,T1,T2,T3,T4,TS) :- ..

/* Rules to record valid object mappings: There are 7 branches to

process for each of 4 lines of input:
1- nothing before, nothing now, so ignore (no saves!!),

2- score=1000 before, nothing now, delete predicate,

3- score>1000 before, nothing now, subtract1000,delete & assert,

4- something before, same now, so leave alone (no saves!!),

5- nothing before, something now, & no existing mapping as result
of matching, so create rule with score 1000,

6- nothing before, something now, however previous predicate existed
from matching, so add 1000 to score and change predicate,

7- something before, changed now, a secondary level of rules is
employed to process the two possible events for the old mapping,
and the two possible events for the new mapping. */

save_mappings(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,TS,Acp) :-
findall(Acp,save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp),List).

/* Set of four rules to fulfil condition-2, ¥/

save_mapping(01,02,03,04,05M1,M2 M3 M4 M5,T1,T2,T3,T4,TS5,Acp) :
rec_objectmatch(M1,01,Score,_),Score=1000,T1=",
delete_mapping(M1,01,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(M2,02,Score,_),Score=1000,T2=",
delete_mapping(M2,02,Score,Acp).

save_rr_lapping(Ol,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,A0p) :
rec_objectmatch(M3,03,Score,_),Score=1000,T3=",
delete_mapping(M3,03,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2 M3 ,M4,M5,T1,T2,T3,T4,TS,Acp) :
rec_objectmatch(M4,04,Score,_),Score=1000,T4=",
delete_mapping(M4,04,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :

Mapping Identification Program.6 Thu, Nov 28, 1991 Page 77

rec_objectmatch(M5,05,Score,_),Score=1000,T5=",
delete_mapping(M5,05,Score,Acp).

/* Set of four rules to fulfil condition-3. */

save_mapping(01,02,03,04,05,M1,M2,M3 M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(M1,01,Score,_),Score>1000,T1=",M1=\=",
subtract_mapping(M1,01,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3 M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(M2,02,Score,_),Score>1000,T2=",M2=\=",
subtract_mapping(M2,02,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(M3,03,Score,_),Score>1000,T3="M3=\=",
subtract_mapping(M3,03,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3 M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(M4,04,Score,_),Score>1000,T4="M4=\=",
subtract_mapping(M4,04,Score,Acp).

save_mapping(01,02,03,04,05.M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(MS5,05,Score,_),Score>1000,T5=",M5=\=",
subtract_mapping(M5,05,Score,Acp).

/* Set of four rules to fulfil condition-5. */

save_mapping(01,02,03,04,05,M1,M2,M3 M4,M5,T1,T2,T3,T4,T5,Acp) :
not rec_objectmatch(T1,01,Score,_),T1=\=",M1=",
create_mapping(T1,01,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
not rec_objectmatch(T2,02,Score,_),T2=\=",M2=",
create_mapping(T2,02,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
not rec_objectmatch(T3,03,Score,_),T3=\=",M3=",
create_mapping(T3,03,Score,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3, M4,M5,T1,T2,T3,T4,T5,Acp) :
not rec_objectmatch(T4,04,Score,_),T4=\="M4=",
create_mapping(T4,04,Score,Acp).

save_miapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
not rec_objectmatch(T5,05,Score,), T5=\="M5=",
create_mapping(T5,05,Score,Acp).

/* Set of four rules to fulfil condition-6. */

save_mapping(01,02,03,04,05M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(T1,01,0ldscore,_),Oldscore<1000,M1=",T1=\=",
add_mapping(T1,01,0ldscore,Acp)-

save_mapping(01,02,03,04,05,M1,M2,M3,M4, M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(T2,02,0ldscore,_),0ldscore<1000,M2=",T2=\=",
add_mapping(T2,02,0ldscore,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
rec_objectmatch(T3,03,0ldscore,_),0Oldscore<1000,M3=",T3=\=",

Mapping Identification Program.7 Thu,
add_mapping(T3,03,0ldscore,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :-
rec_objectmatch(T4,04,0ldscore,_),Oldscore<1000,M4=",T4=\=",
add_mapping(T4,04,0ldscore,Acp).

Save_mapping(ol ,02’03,04’05 ,M 1 ,M2,M3 ,M4,M5,T1 ,T2,T3 ,T4’T5 ,Acp) -
rec_objectmatch(T5,05,01dscore,_),0ldscore<1000,M5=",T5=\=",
add_mapping(T5,05,0ldscore,Acp).

/* Set of four rules to fulfil condition-7. */

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :-
T1=\="M1=\="M1=\=T1,
process_oldmapping(O1,M1,T1,Acp).

save_mapping(01,02,03,04,05M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
T1=\=",M1=\="M1=\=T1,
process_newmapping(O1,M1,T1,Acp).

save_mapping(01,02,03,04,05M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
T2=\="M2=\=",M2=\=T2,
process_oldmapping(02,M2,T2,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
T2=\=",M2=\="M2=\=<T2,
process_newmapping(02,M2,T2,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,TS5,Acp) :
T3=\=",M3=\=",M3=\=T3,
process_oldmapping(0O3,M3,T3,Acp).

save_mapping(01,02,03,04,05,M1,M2,M3,M4,M5,T1,T2,T3,T4,T5,Acp) :
T3=\=",M3=\=",M3=\=T3,
process_newmapping(O3,M3,T3,Acp).

save_mapping(01,02,03,04,05,M1,M2, M3 ,M4,M5,T1,T2,T3,T4,T5,Acp) :
T4=\=",M4=\=",M4=\=T4,
process_oldmapping(04,M4,T4,Acp).

save_mapping(01,02,03,04,05M1,M2,M3,M4,M5,T1,T2,T3,T4,TS5,Acp) :
T4=\="M4=\="M4=\=T4,
process_newmapping(0O4,M4,T4,Acp).

/* Four updates to the rules necessary to process the conditions described
in the above eight sections:
1- delete a mapping,
2- subtract 1000 from a score and modify mapping,
3- create a mapping,
4- add 1000 to score and modify mapping. */

delete_mapping(01,02,Score,Acp) :-
retract(rec_objectmatch(01,02,Score,_)),!.

subtract_mapping(01,02,Score,Acp) :-
rec_objectmatch(01,02,0ldscore,_),

Newscore is Oldscore-1000,
retract(rec_objectmatch(O1,02,0ldscore,_)),
assertz(rec_objectmatch(01,02,Newscore,Acp)),!.

Nov 28, 1991 Page 78

Mapping Identification Program.8

create_mapping(01,02,Score,Acp) :-
assertz(rec_objectmatch(01,02,1000,Acp)),!.

add_mapping(01,02,0ldscore,Acp) :-
rec_objectmatch(01,02,0ldscore,_),

Newscore is Oldscore+1000,
retract(rec_objectmatch(01,02,0ldscore,_)),
assertz(rec_objectmatch(0O1,02,Newscore,Acp)),!.

/* Two option-control rules to allow more complex processing during
condition 7 . */

process_oldmapping(0O1,M1,T1,Acp) :-
rec_objectmatch(M1,01,0ldscore,_),
Oldscore=1000,delete_mapping(M1,01,0ldscore,_),!.

process_oldmapping(O1,M1,T1,Acp) :-
rec_objectmatch(M1,01,0ldscore,_),
Oldscore>1000,subtract_mapping(M1,01,0ldscore,Acp),!.

process_newmapping(O1,M1,T1,Acp) :-
not rec_objectmatch(T1,01,_,_),
create_mapping(T1,01,_,Acp),!.

process_newmapping(O1,M1,T1,Acp) :-
rec_objectmatch(T1,01,Score,_),
add_mapping(T1,01,Score,Acp),!.

Thu, Nov 28, 1991 Page 79

Mapping Presentation Program Thu, Nov 28, 1991 Page 80

/* This window describes two programs which are called by all
explanation windows to identify and present the most likely
analogous mappings for each object in the source. The first program
draws the mappings table on to the calling explanation window. The
second program develops the mapping list from known analogous
mappings. */

/* The first program is called by all windows. It draws the object
list of mappings in the same position within each window. */

mappings_list(Win) :-
allmapping(Acp,Mappinglist),
add_pic(Win,maplist,[
brick(fillbox(25,287,118,196)),
blank(fillbox(28,320,16,130)),
text('Bookman’,12,0,40,323,'Analogical Mappings"),
blank(fillbox(50,290,90,190)),
line((50,360),(140,360)),
line((65,290),(65,480)),
line((80,290),(80,480)),
line((95,290),(95,480)),
line((110,290),(110,480)),
line((125,290),(125,480))]),
displaymapping(Win,Mappinglist).

/* Series of subroutines to list all options for the mappings. */
displaymapping(Win,List) :- List={],!.

displaymapping(Win,List) :-
length(List,T),T=1,
List=[(A1,A2,A3)],
add_pic(Win,maplist1,[
text('Bookman',12,0,61,295,A2),
text('Bookman',12,0,61,365,A1)]),!.

displaymapping(Win,List) :-
length(List, T), T=2,
List=[(A1,A2,A3),(B1,B2,B3)],
add_pic(Win,maplist2,[
text('Bookman',12,0,61,295,A2),
text('Bookman',12,0,61,365,A1),
text('Bookman',12,0,76,295,B2),
text('Bookman’',12,0,76,365,B1)]),!.

displaymapping(Win,List) :-

length(List, T),T=3,
List=[(A1,A2,A3),(B1,B2,B3),(C1,C2,C3)],
add_pic(Win,maplist3,[
text('Bookman',12,0,61,295,A2),
text('Bookman',12,0,61,365,A1),
text('Bookman',12,0,76,295,B2),
text('Bookman',12,0,76,365,B1),
text('Bookman’',12,0,91,295,C2),
text('Bookman',12,0,91,365,C1)]),!.

displaymapping(Win,List) :-
le.n gth(List,T),T=4,
List=[(A1,A2,A3),(B1,B2,B3),(C1,C2,C3),(D1,D2,D3)],

Mapping Presentation Program.2 Thu, Nov 28, 1991 Page 81

add_pic(Win,maplist4,[
text('Bookman',12,0,61,295,A2),
text('Bookman',12,0,61,365,A1),
text('Bookman’',12,0,76,295,B2),
text('Bookman',12,0,76,365,B1),
text('Bookman’,12,0,91,295,C2),
text('Bookman',12,0,91,365,C1),
text('Bookman',12,0,106,295,D2),
text('Bookman',12,0,106,365,D1)]),!.

displaymapping(Win,List) :-
length(List,T),T=S,
List=[(A1,A2,A3),(B1,B2,B3),(C1,C2,C3),(D1,D2,D3),(E1,E2,E3)],
add_pic(Win,maplist5,[
text('Bookman',12,0,61,295,A2),
text('Bookman',12,0,61,365,A1),
text('‘Bookman’,12,0,76,295,B2),
text('Bookman',12,0,76,365,B1),
text('Bookman',12,0,91,295,C2),
text('Bookman',12,0,91,365,C1),
text('Bookman’,12,0,106,295,D2),
text('Bookman',12,0,106,365,D1),
text('Bookman',12,0,121,295,E2),
text('Bookman',12,0,121,365,E1)]),!.

displaymapping(Win,List) :-
length(List,T),T=6,
List=[(A1,A2,A3),(B1,B2,B3),(C1,C2,C3),(D1,D2,D3),(E1,E2,E3),(F1,F2,F3)],
add_pic(Win,maplist6,[
text('Bookman',12,0,61,295,A2),
text('Bookman',12,0,61,365,A1),
text('Bookman',12,0,76,295,B2),
text('Bookman’,12,0,76,365,B1),
text('Bookman',12,0,91,295,C2),
text('Bookman',12,0,91,365,C1),
text('Bookman',12,0,106,295,D2),
text('Bookman’,12,0,106,365,D1),
text('Bookman',12,0,121,295,E2),
text('Bookman',12,0,121,365,E1),
text('Bookman’,12,0,136,295,F2),
text('Bookman',12,0,136,365,F1)]),!.

/* The second program is called by the window drawing program to
identify object mappings. Only the best candidate mapping for each
abstract object is provided. The program is based around two
possibilities:

1- only mapping which exists for a source, so present that,
2- several mappings exist for a source, so arrange in list, sort list, and

take the top object. _
All object inappings come from valid rec_objectmatches. */

/* Rule to elicit the list of matches for each source object. */

allmapping(Acp,Mappinglist) :- . . ' o
findall((Obj1,0bj2,Score),get_mappings(Obj1,0bj2,Score),Mappinglist).

/* Rules to identify specific mappings added to the list. The first version
of the rule identifies single mappings by attempting to develop a list
of other mappings with the same source object, and hopefully

Mapping Presentation Program.3

failing. The second version of the rule identifies source objects with
several candidate mappings. These mappings are added to a list and
sorted by their score, so that the best mapping is at the head and list
to be taken as the best match. In turn there are two versions of this
second rule, to allow for ties on object scores, so that both objects

are displayed on the explanation window. */

/* Simplest rule to identify a single mapping with a source object. */

get_mappings(Obj1,0bj2,Score) :-
rec_objectmatch(Obj1,0bj2,Score,_),
findall(Ob;j2,(
rec_objectmatch(Obj1,0bj2,_,_),
rec_objectmatch(Oth1,0bj2,_,),
Obj1=\=0th1),List),

List=[].

/* Rule to process the best match between several mappings with a
source goal. */

get_mappings(Obj1,0bj2,Score) :-
rec_objectmatch(Obj1,0bj2,Score,_),
findall((S,01,0bj2),many_mappings(01,0b;j2,5),Mlist),
length(Mlist,L),L>1,sort(Mlist,Nlist,[],1),
Nlist=[(Score,Obj1,0bj2),(Score2,_,_)IRest],
Score>Score2.

/* Rule to process a tie between two good object scores. */

get_mappings(Obj1,0bj2,Score) :-
rec_objectmatch(Obj3,0bj2,Score,_),
rec_objectmatch(Obj4,0bj2,Score,_),
findall((S,01,0bj2),many_mappings(O1,0bj2,S),Mlist),
length(Mlist,L),L>1,sort(Mlist,Nlist,[],1),
Nlist=[(Score,0bj3,0bj2),(Score2,0bj4,0bj2)IRest],
Score=Score2,

concat(Obj3,' or ',Objtemp),
concat(Objtemp,0Obj4,0bj1).

/* Subrule required for findall in both second versions of the rule. */

many_mappings(01,0bj2,S) :-
rec_objectmatch(Obj1,0bj2,Score,_),
rec_objectmatch(01,0bj2,S,_),
01=\=0bj1.

Thu, Nov 28, 1991 Page 82

Descriptions of the Routines to Graphically
Describe the Target Domain

Problem Drawing Program-1 Thu, Nov 28, 1991 Page 107

/* This window models the target problem to help the analyst to better
understand their domain. There are two windows - the first window
called lists all target facts using the basic notation, whilst a second
window attempts to model this description in an explanation-like
format to better assist the analyst to understand his description of the
target. Problem drawing program-1 describes the target-list program,
while Problem drawing program-2 describes the target picture program.

*/
/* Call to the Window used in all relevant windows. */

see_target(double,Win) :-
disable_menu('Objects’),
disable_menu('Other Inputs'),
target_list("Target Domain').

/* Additional routine included to show target from the CONTROL menu,
when the menu must be disabled. */

menu_target :-
disable_menu('Control’),
see_target(double,Win).

/* Definition of the List Window called by all target windows. */

target_list(Win) :-
wgcreate(Win,40,0,440,570,0,0,0,1,0),
setup_targetlist(Win),
gviewer(Win,off),

wfront(Win).

setup_targetlist(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[

targetlist_quit(textbox('Chicago’,12,0,8,0,32,32,1,'Return’)),
targetlist_pic(textbox('Chicago',12,0,6,0,32,32,1,'Picture Target’))],1),
add_pic(Win,listheads,[

textline('Bookman',12,1,5,120, Target Domain'),
textline('Bookman',10,1,20,5,'Structure of the target domain:'),
textline('Bookman',10,1,90,5, Functions in the target domain:'),
textline('Bookman',10,1,160,5,'Object categories in the target domain:'),
textline('Bookman',10,1,194,5,'Conditions on Functions in the target domain:"),
textline('Bookman',10,1,240,5,'Requirements of the target system:’),
textline('Bookman',10,1,286,5, Functions not initiated by the information system:"),
textline('Bookman',10,1,320,5,'Physical attributes of objects in the target domain:’),
textline('Bookman',10,1,390,5,' Labels describing the target system:')]),
list_structure(Win),

list_movement(Win),

list_property(Win),

list_condition(Win),

list_requirement(Win),

list_scope(Win),

list_physical(Win),

list_label(Win).

/* Definition of the Quit from the List Window */

targetlist_quit(double,Win) :-

Problem Drawing Program-1.2 Thu, Nov 28, 1991 Page 108

check_control,
enable_menu('Objects'),
enable_menu('Other Inputs'),
wkill('Target Domain').

check_control :-
get_prop(menu,control,on),
set_prop(menu,control,off),
enable_menu('Control'),!.

check_control :- !,

targetlist_pic(double,Win) :-
target_problem('Target Problem’).

/* Definitions of list rules which construct a listing of the target domain.
Due to the possible length of specific descriptors in the problem we
have used a findall and list length check to simplify the processing of
this program, even if the resulting code looks a bit unwieldy. */

/* Write up to 8 options for the static target structure. */

list_structure(Win) :-
findall((O1,02,R),target_sdata(01,02,R),Tlist),
list_structures(Win, Tlist).

list_structures(Win, Tlist) :-
length(Tlist,0),!.

list_structures(Win, Tlist) :-
length(Tlist, 1), Tlist=[(A1,B1,R1)],
write_structure(S1,A1,B1,R1),
add_pic(Win,Is1,[
textline('Bookman',10,0,32,10,S1)]).

list_structures(Win, Tlist) :-
length(Tlist,2),Tlist=[(A1,B1,R1),(A2,B2,R2)],
write_structure(S1,A1,B1,R1),
write_structure(S2,A2,B2,R2),
add_pic(Win,lIs2,[
textline('Bookman’,10,0,32,10,S1),
textline('Bookman',10,0,44,10,52)]).

list_structures(Win, Tlist) :-
length(Tlist,3),Tlist=[(A1,B1,R1),(A2,B2,R2),(A3,B3,R3)],
write_structure(S1,A1,B1,R1),
write_structure(S2,A2,B2,R2),
write_structure(S3,A3,B3,R3),

add_pic(Win,Is3,{

textline('Bookman',10,0,32,10,S1),
textline('Bookman',10,0,44,10,S2),
textline('Bookman',10,0,56,10,S3)1).

list_structures(Win, Tlist) :-
length(Tlist,4),Tlist=[(A1,B1,R1),(A2,B2,R2),(A3,B3,R3),(A4,B4,R4)],
write_structure(S1,A1,B1,R1),

write_structure(S2,A2,B2,R2),

write_structure(S3,A3,B3,R3),

write_structure(S4,A4,B4,R4),

Problem Drawing Program-1.3 Thu, Nov 28, 1991 Page 109

add_pic(Win,Is4,[

textline('Bookman',10,0,3
textline('Bookman’',10,0,4
textline('Bookman',10,0,5
textline('Bookman',10,0,6

2,10,S1),
4,10,S2),
6,10,S3),

8,10,S4))]).

list_structures(Win, Tlist) :-
length(Tlist,5),Tlist=[(A1,B1,R1),(A2,B2,R2),(A3,B3,R3),(A4,B4,R4),
(A5,B5,R5)],

write_structure(S1,A1,B1,R1),

write_structure(S2,A2,B2,R2),

write_structure(S3,A3,B3,R3),

write_structure(S4,A4,B4,R4),

write_structure(S5,A5,B5,R5),

add_pic(Win,IsS,[

textline('Bookman',10,0,32,10,S1),
textline('Bookman’',10,0,44,10,5S2),
textline('Bookman',10,0,56,10,S3),
textline('Bookman’,10,0,68,10,54),
textline('Bookman',10,0,32,250,S5)]).

list_structures(Win, Tlist) :-
length(Tlist,6),Tlist=[(A1,B1,R1),(A2,B2,R2),(A3,B3,R3),(A4,B4,R4),
(A5,B5,R5),(A6,B6,R6)],
write_structure(S1,A1,B1,R1),
write_structure(S2,A2,B2,R2),
write_structure(S3,A3,B3,R3),
write_structure(S4,A4, B4,R4),
write_structure(S5,A5,B5,RS),
write_structure(S6,A6,B6,R6),
add_pic(Win,ls6,[
textline('Bookman',10,0,32,10,S1),
textline('Bookman’,10,0,44,10,S2),
textline('Bookman’,10,0,56,10,S3),
textline('Bookman’',10,0,68,10,5S4),
textline('Bookman’',10,0,32,250,S5),
textline('Bookman',10,0,44,250,S6)]).

list_structures(Win, Tlist) :-
length(Tlist,7),Tlist=[(A1,B1,R1),(A2,B2,R2),(A3,B3,R3),(A4,B4,R4),
(A5,B5,R5),(A6,B6,R6),(A7,B7,R7)],
write_structure(S1,A1,B1,R1),
write_structure(S2,A2,B2,R2),
write_structure(S3,A3,B3,R3),
write_structure(S4,A4,B4,R4),
write_structure(S5,A5,B5,RS),
write_structure(S6,A6,B6,R6),
write_structure(S7,A7,B7,R7),
add_pic(Win,lIs7,[
textline('Bookman’,10,0,32,10,S1),
textline('Bookman’,10,0,44,10,S2),
textline('Bookman',10,0,56,10,S3),
textline('Bookman’',10,0,68,10,54),
textline('Bookman',10,0,32,250,S5),
textline('"Bookman',10,0,44,250,56),
textline('Bookman',10,0,56,250,S7)1).

list_structures(Win, Tlist) :-
length(Tlist,8),Tlist=[(A1,B1,R1),(A2,B2,R2),(A3,B3,R3),(A4,B4,R4),

Problem Drawing Program-1.4

(A5,B5,R5),(A6,B6,R6),(A7,B7,R7),(A8,B8,R8)],
write_structure(S1,A1,B1,R1),
write_structure(S2,A2,B2,R2),
write_structure(S3,A3,B3,R3),
write_structure(S4,A4,B4,R4),
write_structure(S5,A5,B5,RS),
write_structure(S6,A6,B6,R6),
write_structure(S7,A7,B7,R7),
write_structure(S8,A8,B8,R8),
add_pic(Win,Is8,[
textline('Bookman',10,0,32,10,S1),
textline('Bookman’,10,0,44,10,52),
textline('Bookman',10,0,56,10,S3),
textline('Bookman’,10,0,68,10,S4),
textline('Bookman',10,0,32,250,S5),
textline('Bookman’,10,0,44,250,S6),
textline('Bookman’',10,0,56,250,57),
textline('Bookman',10,0,68,250,S8)]).

/* Routines to output the movements in the target domain. */

list_movement(Win) :-
findall((T,01,02,03,R),target_ddata(T,01,02,03,R),Tlist),

list_movements(Win, Tlist).

list_movements(Win,Tlist) :-
length(Tlist,0),!.

list_movements(Win,Tlist) :-

length(Tlist, 1), Tlist=[(T1,A1,B1,C1,R1)],
write_movement(S1,T1,A1,B1,C1,R1),
add_pic(Win,Im1,[
textline('Bookman’,10,0,102,10,S1)]).

list_movements(Win, Tlist) :-
length(Tlist,2),Tlist={(T1,A1,B1,C1,R1),(T2,A2,B2,C2,R2)],
write_movement(S1,T1,A1,B1,C1,R1),
write_movement(S2,T2,A2,B2,C2,R2),

add_pic(Win,lm2,[

textline('Bookman’,10,0,102,10,S1),
textline('Bookman’,10,0,114,10,S2)]).

list_movements(Win, Tlist) :-
length(Tlist,3),Tlist=[(T1,A1,B1,C1,R1),(T2,A2,B2,C2,R2),
(T3,A3,B3,C3,R3)],

write_movement(S1,T1,A1,B1,C1,R1),
write_movement(S2,T2,A2,B2,C2,R2),
write_movement(S3,T3,A3,B3,C3,R3),

add_pic(Win,Im3,[

textline('Bookman',10,0,102,10,S1),
textline('Bookman',10,0,114,10,S2),
textline('Bookman’,10,0,126,10,S3)]).

list_movements(Win, Tlist) :-
length(Tlist,4),Tlist=[(T1,A1,B1,C1,R1),(T2,A2,B2,C2,R2),
(T3,A3,B3,C3,R3),(T4,A4,B4,C4,R4)],
write_movement(S1,T1,A1,B1,C1,R1),
write_movement(S2,T2,A2,B2,C2,R2),
write_movement(S3,T3,A3,B3,C3,R3),

Thu, Nov 28, 1991

Page 110

Problem Drawing Program-1.5 Thu, Nov 28, 1991 Page 111
write_movement(S4,T4,A4,B4,C4,R4),

add_pic(Win,lm4,[

textline('Bookman’,10,0,102,10,S1),

textline('Bookman',10,0,114,10,S2),

textline('Bookman',10,0,126,10,S3),

textline('Bookman’,10,0,138,10,54)]).

/* Routines to output the properties of objects in the target domain. */

list_property(Win) :-
findall((O,P),target_pdata(O,P),Tlist),
list_properties(Win, Tlist).

list_properties(Win, Tlist) :-
length(Tlist,0),!.

list_properties(Win, Tlist) :-
length(Tlist,1), Tlist=[(O1,P1)],
write_properties(S1,01,P1),
add_pic(Win,Ip1,[
textline('Bookman’,10,0,172,10,S1)]).

list_properties(Win, Tlist) :-
length(Tlist,2),Tlist=[(O1,P1),(02,P2)],
write_properties(S1,01,P1),
write_properties(S2,02,P2),
add_pic(Win,Ip2,[
textline('Bookman',10,0,172,10,S1),
textline('Bookman',10,0,172,250,S2)]).

/* Routines to output the conditions in the target domain. */

list_condition(Win) :-
findall((F,Cond),
target_cdata(F,Cond),Tlist),
list_conditions(Win, Tlist).

list_conditions(Win, Tlist) :-
length(Tlist,0),!.

list_conditions(Win,Tlist) :-
length(Tlist,1), Tlist=[(F,C)],
write_conditions(S1,F,C),
add_pic(Win,lc1,[
textline('Bookman',10,0,206,10,S1)]).

list_conditions(Win, Tlist) :-
length(Tlist,2), Tlist=[(F1,C1),(F2,C2)],
write_conditions(S1,F1,C1),
write_conditions(S2,F2,C2),
add_pic(Win,Ic2,[
textline('Bookman',10,0,206,10,51),
textline('Bookman’',10,0,218,10,S2)]).

/* Write up to two system requirements. */

list_requirement(Win) :-
findall((O1,02,R,"),target_reqt(O1,02,R),L1),
ﬁndall((O3,04,S,T),target_reqt(03,04,s,T),Lz),

Problem Drawing Program-1.6

append(L1,L2,Tlist),
list_requirements(Win, Tlist).

list_requirements(Win, Tlist) :-
length(Tlist,0),!.

list_requirements(Win, Tlist) :-
length(Tlist,1),Tlist=[(A1,B1,R1,P1)],
write_requirements(S1,A1,B1,R1,P1),
add_pic(Win,Irel,[
textline('Bookman’',10,0,252,10,S1)]).

list_requirements(Win, Tlist) :-
length(Tlist,2),Tlist=[(A1,B1,R1,P1),(A2,B2,R2,P2)],
write_requirements(S1,A1,B1,R1,P1),
write_requirements(S2,A2,B2,R2,P2),
add_pic(Win,Ire2,[
textline('Bookman',10,0,252,10,S1),
textline('Bookman’',10,0,264,10,52)]).

/* Routines to output the movements beyond the scope of the target
domain. */

list_scope(Win) :- -
findall(Mvmt,target_scope(Mvmt), Tlist),
list_scopes(Win,Tlist).

list_scopes(Win,Tlist) :-
length(Tlist,0),!.

list_scopes(Win, Tlist) :-
length(Tlist,1),Tlist=[Mvmt1],
add_pic(Win,Is1,[
textline('Bookman’',10,0,298,10,Mvmt1)]).

list_scopes(Win, Tlist) :-

length(Tlist,2), Tlist=[Mvmt1 ,Mvmt2],
add_pic(Win,ls2,[
textline('Bookman’,10,0,298,10,Mvmt1),
textline('Bookman',10,0,310,10,Mvmt2)]).

/* Routines to output up to a maximum of 5 physical object properties. */

list_physical(Win) :-)
findall((O,P),target_phyprop(O,P),Tlist),
list_physicals(Win,Tlist).

list_physicals(Win, Tlist) :-
length(Tlist,0),!.

list_physicals(Win, Tlist) :-
length(Tlist,1), Tlist=[(A1,P1)],
write_properties(S1,A1,P1),
add_pic(Win,If1,[
textline('Bookman',10,0,344,10,S1)]).

list_physicals(Win,Tlist) :-
length(Tlist,2), Tlist=[(A1,P1),(A2,P2)],
write_properties(S1,A1,P1),

Thu, Nov 28, 1991 Page 112

Problem Drawing Program-1.7

write_properties(S2,A2,P2),
add_pic(Win,If2,[
textline('Bookman',10,0,344,10,S1),
textline('Bookman’',10,0,356,10,5S2)]).

list_physicals(Win,Tlist) :-

length(Tlist,3), Tlist=[(A1,P1),(A2,P2),(A3,P3)],
write_properties(S1,A1,P1),
write_properties(S2,A2,P2),
write_properties(S3,A3,P3),

add_pic(Win,If3,[
textline('Bookman',10,0,344,10,S1),
textline('Bookman’,10,0,356,290,S2),
textline('Bookman',10,0,368,10,S3)]).

list_physicals(Win, Tlist) :-
length(Tlist,4), Tlist=[(A1,P1),(A2,P2),(A3,P3),(A4,P4)],
write_properties(S1,A1,P1),
write_properties(S2,A2,P2),
write_properties(S3,A3,P3),
write_properties(S4,A4,P4),
add_pic(Win,If4,[
textline('Bookman’,10,0,344,10,S1),
textline('Bookman',10,0,356,10,S2),
textline('Bookman’,10,0,368,10,S3),
textline('Bookman’',10,0,344,250,S4))).

list_physicals(Win, Tlist) :-
length(Tlist,5),Tlist=[(A1,P1),(A2,P2),(A3,P3),(A4,P4),(A5,P5)],
write_properties(S1,A1,P1),
write_properties(S2,A2,P2),
write_properties(S3,A3,P3),
write_properties(S4,A4,P4),
write_properties(S5,A5,P5),
add_pic(Win,If5,[
textline('Bookman',10,0,344,10,S1),
textline('Bookman',10,0,356,10,S2),
textline('Bookman',10,0,368,10,S3),
textline('Bookman',10,0,344,250,S4),
textline('Bookman',10,0,356,250,S5)]).

/* Routines to output functions and labels. */

list_label(Win) :-
findall(L,target_label(L),List),
list_funcs(Win,List).

list_funcs(Win,List) :-
length(List,0),!.

list_funcs(Win,Tlist) :-
length(Tlist,1),Tlist=[A],
add_pic(Win,l11,[
textline('Bookman',10,0,402,10,A)]).

list_funcs(Win,Tlist) :-
length(Tlist,2), Tlist=[A,B],
add_pic(Win,l12,[
textline('Bookman',10,0,402,10,A),

Thu, Nov 28, 1991 Page 113

Problem Drawing Program-1.8
textline('Bookman',10,0,414,10,B)]).

list_funcs(Win,Tlist) :-

length(Tlist,3), Tlist=[A,B,C],
add_pic(Win,l13,[
textline('Bookman',10,0,402,10,A),
textline('Bookman',10,0,414,10,B),
textline('Bookman',10,0,402,230,C))).

/* Routines to write the sentences for each target description, ie to
organise the layout of each descriptive sentence depending upon the
data described in the sentence. */

write_structure(Sentencel,0bj1,0bj2,Rel) :-
concat(Objl," 'A),

concat(A,Rel,B),

concat(B,' ',C),
concat(C,0bj2,Sentencel).

write_movement(Sentence2,Tran,0bj1,0bj2,0bj3,Rel) :-
Concat(Tran,' - ',X),

concat(X,Rel,Y),

concat(Y,' ',A),

concat(A,0Obj1,B),

concat(B,' from ',C),

concat(C,0bj2,D),

concat(D,' to 'E),

concat(E,Obj3,Sentence2).

write_properties(Sentence3,0bj,Property) :-
concat(Obj,' is ',A),
concat(A,Property,Sentence3).

write_conditions(Sentence4,Func,Cond) :-
concat(Func,’ when 'A),
concat(A,Cond,Sentence4).

write_requirements(Sentence5,0bj1,0bj2,Rel,Prop) :-
write_structure(S1,0bj1,0bj2,Rel),

concat(S1," with "A),

concat(A,Prop,Sentence5).

Thu, Nov 28, 1991 Page 114

Problem Drawing Program-2 Thu, Nov 28, 1991 Page 115

/* Definition of the Second 'Picture' Window, which develops a model of
the target problem to support the list of the target problem. */

target_problem('Target Problem') :-

wgcreate('Target Problem’',40,250,250,320,0,0,0,1,0),
setup_targetwin('Target Problem’),

findall('Target Problem',draw_problem('Target Problem'),Dlist),
gviewer('Target Problem',off),

wfront(‘Target Problem').

setup_targetwin(Win) :-

gsplit(Win,70),

geursor(Win,hand),

add_tools(Win,[
targetpic_quit(textbox('Chicago’,12,0,8,0,32,32,1,'Return’))],1).

/* Definition of the Quit from the Picture Window. */

targetpic_quit(double,Win) :-
wkill('Target Problem').

/* The 'draw-problem’ rule identifies input parts of the problem and draws
them on the above window. A considerable number of such rules are
required to properly model likely descriptions of the target problem.
The drawing is separated from the rules which decide the drawing
of objects, so to simplify the problem and permit simpler modification
of the program as necessary. Do not include object properties at the

present */

draw_problem(Win) :-

target_name(Name),

add_pic(Win,wl,[

textline('Bookman’,12,2,5,20,Name),

textbox('Bookman',11,0,195,5,36,200,0,'Ira is sorry that it may be unable to construct a complete model of

the target domain')]).
/* Add objects to the world */

draw_problem(Win) :-
singobj_inspace(Object),
add_pic(Win,wla,[

fillbox(39,40,13,13),
textline('Bookman',10,2,29,20,0bject)]).

draw_problem(Win) :-
singobjs_inspace(Object1,0bject2),
add_pic(Win,wlb,[
fillbox(179,180,13,13),
textline('Bookman',10,2,169,160,0bjectl),
fillbox(39,40,13,13),
textline('Bookman',10,2,29,20,0bject2)]).

draw_problem(Win) :-
mulobj_inspace(Object),
add_pic(Win,wlc,[
fillbox(31,51,13,13),
fillbox(45,65,13,13),
text('Bookman',10,2,25,34,0bject)]).

Problem Drawing Program-2.2 Thu, Nov 28, 1991 Page 116

draw_problem(Win) :-
mulobjs_inspace(Object1,0bject2),
add_pic(Win,wld,[

fillbox(31,51,13,13),
fillbox(45,65,13,13),
text('Bookman',10,2,25,34,0bjectl),
fillbox(181,201,13,13),
fillbox(195,215,13,13),
text(Bookman',10,2,175,184,0bject2)]).

/* Add the slots to the problem space */

draw_problem(Win) :-
oneslot_inspace(Object),
add_pic(Win,w2a,[
speckled(fillbox(80,80,90,90)),
text('Bookman',10,2,74,150,0bject)]).

draw_problem(Win) :-
mulslot_inspace(Object),
add_pic(Win,w2b,[
speckled(fillbox(80,80,45,45)),
speckled(fillbox(130,130,45,45)),
text('Bookman’',10,2,125,165,0bject),
text('Bookman',10,2,75,90,0bject)]).

/* Add the second layer of slots to the diagram - four rules to add one or
many slots to the single slot or many slots for the system */

draw_problem(Win) :-
oneslot_inoneslot(Object),
add_pic(Win,w3a,[
blank(fillbox(110,110,30,30)),
text('Bookman’,10,2,105,120,0bject)]).

draw_problem(Win) :-
manyslot_inoneslot(Object),
add_pic(Win,w3b,[
blank(fillbox(82,82,26,26)),
blank(fillbox(82,112,26,26)),
blank(fillbox(82,142,26,26)),
blank(fillbox(112,82,26,26)),
blank(fillbox(112,112,26,26)),
blank(fillbox(112,142,26,26)),
blank(fillbox(142,82,26,26)),
blank(fillbox(142,112,26,26)),
blank(fillbox(142,142,26,26)),
line((154,168),(154,190)),)
text('Bookman',10,2,153,191,0bject)]).

draw_problem(Win) :-
oneslot_inmanyslot(Object),
add_pic(Win,w3c,[
blank(fillbox(87,87,30,30)),
blank(fillbox(137,137,30,30)),
line((117,95),(139,95)),
line((137,145),(125,145)),
text('Bookman',10,2,150,90,0bject),
text('Bookman',10,2,125,140,0bject)]).

Problem Drawing Program-2.3

draw_problem(Win) :-
manyslot_inmanyslot(Object),
add_pic(Win,wdc,[
blank(fillbox(82,82,20,20)),
blank(fillbox(103,103,20,20)),
blank(fillbox(132,132,20,20)),
blank(fillbox(153,153,20,20)),
text('‘Bookman',10,2,110,125,0bject),
text('Bookman',10,2,160,175,0bject)]).

/* Add Objects to the 12 possible combinations of objects in the
structure (one object or many objects) -
1 - single slot in space,
2 - several slots in space,
3 - single slot in single slot,
4 - several slots in single slot,
5 - single slot in several slots,
6 - several slots in several slots. The program is described in
corresponding pairs. */

draw_problem(Win) :-
oneobj_inoneslot(Object),
add_pic(Win,w5c,[
fillbox(120,120,13,13),
text('Bookman',10,2,115,110,0bject)]).

draw_problem(Win) :-
manyobj_inoneslot(Object),
add_pic(Win,wéc,[
fillbox(100,105,13,13),
fillbox(120,120,13,13),
text('Bookman',10,2,115,120,0bject)]).

draw_problem(Win) :-
oneobj_inmanyslot(Object),
add_pic(Win,w7c,[
fillbox(96,96,13,13),
fillbox(146,146,13,13),)
text('Bookman',10,2,100,110,0bject),
text('Bookman',10,2,150,160,0bject)]).

draw_problem(Win) :-
manyobj_inmanyslot(Object),
add_pic(Win,w8c,[
fillbox(85,85,13,13),
fillbox(107,107,13,13),
fillbox(135,135,13,13),
fillbox(157,157,13,13),
text('Bookman',10,2,91,98,0bject),
text('Bookman',10,2,165,170,0bject)}).

draw_problem(Win) :-

Thu, Nov 28, 1991 Page 117

Problem Drawing Program-2.4 Thu, Nov 28, 1991 Page 118

oneobj_inoneslotslot(Object),
add_pic(Win,w9c,[
fillbox(118,118,13,13),
text('Bookman',10,2,125,131,0bject)]).

draw_problem(Win) :-
manyobj_inoneslotslot(Object),
add_pic(Win,w10c,[
fillbox(112,112,13,13),
fillbox(125,125,13,13),)
text('Bookman',10,2,120,125,0bject)]).

draw_problem(Win) :-
oneobj_inmanyslotoneslot(Object),
add_pic(Win,wllc,[
fillbox(88,88,13,13),
fillbox(118,118,13,13),
fillbox(88,148,13,13),
line((94,161),(94,180)),
text('Bookman’,10,2,88,178,0bject)]).

draw_problem(Win) :-
manyobj_inmanyslotoneslot(Object),
add_pic(Win,w12c,[
fillbox(84,84,13,13),
fillbox(93,93,13,13),
fillbox(114,114,13,13),
fillbox(123,123,13,13),
fillbox(144,84,13,13),
fillbox(153,93,13,13),
text('Bookman',10,2,90,97,0bject)]).

draw_problem(Win) :-
oneobj_inoneslotmanyslot(Object),
add_pic(Win,w13c,[
fillbox(95,95,13,13),
fillbox(145,145,13,13),)
text('Bookman',10,2,150,158,0bject)]).

draw_problem(Win) :-
manyobj_inoneslotmanyslot(Object),
add_pic(Win,wldc,[
fillbox(89,89,13,13),
fillbox(102,102,13,13),
fillbox(139,139,13,13),
fillbox(152,152,13,13),
text('Bookman',10,2,94,102,0bject),
text('‘Bookman',10,2,157,165,0bject)]).

Problem Drawing Rules Program

/* The first series of rules identifies the requirements to add objects to
the problem space, and slots to the object space. They are called from
programs which draw the concepts onto the picture window */

/* Adding a single object to the picture. Two sets of rules are needed to
cater for both sets of possible objects. */

singobj_inspace(QObject) :-
findall(Objects,singobject_inspace(Objects),Olist),
length(Olist,1),0Olist=[Object].

singobjs_inspace(Object1,0bject2) :-
findall(Objects,singobject_inspace(Objects),Olist),
length(Olist,2),0list=[Object1,0bject2].

singobject_inspace(Object) :-
target_sdata(world,Object,has_one),

not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

/* Add many objects to the picture. Two rules are needed, to account for
one set of objects or two sets of objects. */

mulobj_inspace(Object) :-
findall(Objects,mulobject_inspace(Objects),Olist),
length(Olist, 1),0Olist=[Object].

mulobjs_inspace(Objectl,0Object2) :-
findall(Objects,mulobject_inspace(Objects),Olist),
length(QOlist,2),0list=[Object1,0bject2].

mulobject_inspace(Object) :-
target_sdata(world,Object,has_many),

not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

/* Adding a single slot to the space */

oneslot_inspace(Slot) :-
target_sdata(world,Slot,has_one),
target_sdata(Slot,_,contains_one).

oneslot_inspace(Slot) :-
target_sdata(world,Slot,has_one),
target_sdata(Slot,_,contains_many).

/* Adding many slots to the space */ .

mulslot_inspace(Slot) :-
target_sdata(world,Slot,has_many),
target_sdata(Slot,_,contains_one).

mulslot_inspace(Slot) :-
target_sdata(world,Slot,has_many),
target_sdata(Slot,_,contains_many).

/* Rules to add second layer of slots to the diagram, which tend to
overwrite the original slots where necessary. Two rules for each case,
to ensure that the Slot2s contain something - so they are slots and not

Thu, Nov 28, 1991

Page 119

Problem Drawing Rules Program.2
objects */

oneslot_inoneslot(Slot2) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,_,contains_one).

oneslot_inoneslot(Slot2) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,_,contains_many).

manyslot_inoneslot(Slot2) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slotl,Slot2,contains_many),
target_sdata(Slot2,_,contains_one).

manyslot_inoneslot(Slot2) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slot1,Slot2,contains_many),
target_sdata(Slot2,_,contains_many).

oneslot_inmanyslot(Slot2) :-
target_sdata(world,Slot1,has_many),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,_,contains_one).

oneslot_inmanyslot(Slot2) :-
target_sdata(world,Slot1,has_many),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,_,contains_many).

manyslot_inmanyslot(Slot2) :-
target_sdata(world,Slot1,has_many),
target_sdata(Slot1,Slot2,contains_many),
target_sdata(Slot2,_,contains_one).

manyslot_inmanyslot(Slot2) :-
target_sdata(world,Slot1,has_many),
target_sdata(Slot1,Slot2,contains_many),
target_sdata(Slot2,_,contains_many).

/* Rules to add objects to the drawn slots. They are numbered one
to six, in order to link them to the document support about the nature
of such diagrams. For each rule there are two instances, to identify

contains_one and contains_many. */

oneobj_inoneslot(Object) :-
target_sdata(world,Slot,has_one),
target_sdata(Slot,Object,contains_one),

not target_sdata(Slot,Object,contains_many),

not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

manyobj_inoneslot(Object) :-

Thu, Nov 28, 1991 Page 120

Problem Drawing Rules Program.3

target_sdata(world,Slot,has_one),
target_sdata(Slot,Object,contains_many),
not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

oneobj_inmanyslot(Object) :-
target_sdata(world,Slot,has_many),
target_sdata(Slot,Object,contains_one),

not target_sdata(Slot,Object,contains_many),
not target_sdata(Object,_,contains_one),

not target_sdata(Object,_,contains_many).

manyobj_inmanyslot(Object) :-
target_sdata(world,Slot,has_many),
target_sdata(Slot,Object,contains_many),
not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

oneobj_inoneslotslot(Object) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,0Object,contains_one),

not target_sdata(Slot,Object,contains_many),
not target_sdata(Object,_,contains_one),

not target_sdata(Object,_,contains_many).

/¥ 3emmemena¥]

manyobj_inoneslotslot(Object) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,0bject,contains_many),
not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

oneobj_inmanyslotoneslot(Object) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slot1,Slot2,contains_many),
target_sdata(Slot2,0bject,contains_one),

not target_sdata(Slot2,0bject,contains_many),
not target_sdata(Object,_,contains_one),

not target_sdata(Object,_,contains_many).

manyobj_inmanyslotoneslot(Object) :-
target_sdata(world,Slot1,has_one),
target_sdata(Slot1,Slot2,contains_many),
target_sdata(Slot2,0bject,contains_many),
not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

Thu, Nov 28, 1991 Page 121

Problem Drawing Rules Program.4

oneobj_inoneslotmanyslot(Object) :-
target_sdata(world,Slot1,has_many),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,0bject,contains_one),

not target_sdata(Slot2,0bject,contains_many),
not target_sdata(Object,_,contains_one),

not target_sdata(Object,_,contains_many).

manyobj_inoneslotmanyslot(Object) :-
target_sdata(world,Slotl,has_many),
target_sdata(Slot1,Slot2,contains_one),
target_sdata(Slot2,0bject,contains_many),
not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

oneobj_inmanyslotmanyslot(Object) :-
target_sdata(world,Slot1,has_many),
target_sdata(Slot1,Slot2,contains_many),
target_sdata(Slot2,0bject,contains_one),

not target_sdata(Slot2,0bject,contains_many),
not target_sdata(Object,_,contains_one),

not target_sdata(Object,_,contains_many).

P —

manyobj_inmanyslotmanyslot(Object) :-
target_sdata(world,Slot1,has_many),
target_sdata(Slot1,Slot2,contains_many),
target_sdata(Slot2,0bject,contains_many),
not target_sdata(Object,_,contains_one),
not target_sdata(Object,_,contains_many).

Thu, Nov 28, 1991 Page 122

Description of Other Useful Routines

General Routines Thu, Nov 28, 1991 Page 60

/* The general help routine accessible by every window. The first access
creates the window, then subsequent accesses call the window up from
closed position using 'wfront'. There are a couple of buffer rules
(openhelp) and (showhelp) to ensure that the rules fire without
outputting the standard error messages associated with window rules. */

general_help(double,Win) :-
get_prop(help,window,0),
set_prop(help,window,1),
openhelp.

general_help(double,Win) :-
get_prop(help,window,1),
showhelp.

openhelp :-
help_window('General Help Window'),!.

showhelp :-
wiront('General Help Window'),!.

help_window(Win) :-
wgcreate(Win,130,72,300,300,0,0,300,1,1),
setup_genhelp(Win),

wfront(Win),

gviewer(Win,off),

gscroll_to(Win,-300,0).

setup_genhelp(Win) :-

gsplit(Win,0),

geursor(Win,hand),

add_pic(Win,genhelp,[

textbox('Times',14,4,-295,5,32,250,1,'General Help’),

textbox("Times',12,0,-270,5,48,280,0,'General help gives an overview of the 10 windows for inputting
data about your new problem. Most windows identify facts about the problem domain while several later
windows request data about the computer system.'),

textbox('Times',12,0,-216,5,48,280,0, During the early stages of data input you are encouraged to sketch
specific features of your problem on the paper provided. Descriptions of these sketches are used as a basis

for describing the problem domain."),

textline('Times',12,2,-162,5,'1- Introduction to Ira'),

textbox('Times',12,0,-150,5,24,280,0, This window describes how to input data using Ira, and requests the
name and major goal of your new system."),

textline('Times',12,2,-120,5,'2- Functions Window"),

textbox('Times',12,0,-108,5,24,280,0, This window requests you to select up to four functions which
accurately describe the required system."),

textline('Times',12,2,-78,5,'3- Function Defn and Structural Windows'),
textbox('Times',12,0,-66,5,24,280,0, These two windows are displayed for each function entered in the
Functions Window:"), '

textline('Times',12,2,-36,5,'3(a)- Function Definition Window'),
textbox('Times',12,0,-24,5,24,280,0,'Sketch the function using the terminology provided by the window,
then enter this definition using the dialogue provided."),

textline('Times',12,2,6,5,'3(b)- Structural Window'),

textbox('Times',12,0,18,5,24,280,0,'Enter additional features about the structural relationships between
objects identified for that function."),

textline('Times',12,2,48,5,'4- Structures Window'),

textbox(‘Times',12,0,60,5,36,280,0,'Expand and combine all your sketches of system functions, then enter
descriptions representing additional facts resulting from these changes."),

textline('Times',12,2,102,5,'5- Categories Window'),

textbox('Times',12,0,114,5,12,280,0,'Categorise objects identified during previous windows."),

General Routines.2 Thu, Nov 28, 1991 Page 61

textline('Times',12,2,132,5,'6- Conditions Window"),

textbox('Times',12,0,144,5,12,280,0,'Identify conditions under which system functions occur.'),
textline('Times',12,2,162,5,'7- Requirements Window'),

textbox('Times',12,0,174,5,48,280,0,'Select specific requirements to be achieved by the new system. These
requirements are described in terms of states to be achieved, represented as object-relations entered in earlier
windows."),

textline('Times',12,2,228,5,'8- Scope Window’),

textbox('Times',12,0,240,5,24,280,0,' Identify each system as either initiated by the computer system or
responsive to events beyond the system.”),

textline('Times',12,2,270,5,'9- Labels Window'),

textbox('Times',12,0,282,5,12,280,0,'Select general terms which best describe the system.'),
textline('Times',12,2,300,5,'10- Physical Window'),

textbox('Times',12,0,312,5,24,280,0,'Select physical attributes which best describe the objects in your
problem application."),

textline('Times',12,2,342,5,'10- Searching/Update Window"),

textbox('Times’,12,0,354,5,48,280,0, This final window gives you the option of using pulldown menus to
modify any descriptions of your problem or of matching your problem description to sofware engineering

problem types known to Ira.")]).

/* Routines to display complex structures on scroll menus, then
match the selected menu item to that structure once control is
returned to the machine.

The get program concats each variable in a structure to develop a
composite variable, T7.

The find program concatenates each target rule, then matches the
concatenated structure until it equal to the structure selected from
the menu - it is quite simple really. */

get_ddata(T7) :-
target_ddata(01,02,03,R),
concat(',',R,T1),
concat(O3,T1,T2),
concat(',', T2,T4),
concat(02,T4,T5),
concat(',',T5,T6),
concat(O1,T6,T7).

get_sdata(T7) :-
target_sdata(O1,02,R),
Concat(""R’Tl)’
concat(02,T1,TS),
concat(',',T5,T6),
concat(O1,T6,T7).

find_ddata(01,02,03,R,Selected) .
target_ddata(O1,02,03,R),
concat(',',R,T1),
concat(O3,T1,T2),

concat(',', T2,T4),
concat(O02,T4,T5),
concat(',’,T5,T6),
concat(O1,T6,T7),
compare(=,T7,Selected).

find_sdata(O1,02,R,Selected) :-
target_sdata(O1,02,R),

General Routines.3

concat(',',R,T1),
concat(O2,T1,TS),
concat(',',T5,T6),
concat(O1,T6,T7),
compare(=,T7,Selected).

/* Subroutine to build the list of all objects, accessed by many programs
to get the objects on to the screen without causing the dialogue to
fail. This is achieved by constructing a newlist from the findall list,
and filling in the spaces behind the objects so that the list always has
four objects, albeit blank ones */

build_objects(Newlist) :-
findall(Objects,target_object(Objects),Oldlist),
get_objects(Oldlist,Newlist).

get_objects(Oldlist,Newlist) :-
length(Oldlist,1),

Oldlist = [O1],

Newlist = [O1,",",","].
get_objects(Oldlist,Newlist) :-

length(Oldlist,2),

Oldlist = [01,02],

Newlist = [01,02,",","].
get_objects(Oldlist,Newlist) :-
length(Oldlist,3),

Oldlist = [01,02,03],
Newlist = [01,02,03,","].
get_objects(Oldlist,Newlist) :-
length(Oldlist,4),

Oldlist = [01,02,03,04],
Newlist = [01,02,03,04,"].
get_objects(Oldlist,Newlist) :-
length(Oldlist,S),

Newlist = Oldlist.

/* The following routine is used to control input of objects, functions &
labels, to ensure they begin with a small letter, and do not include any
control characters. This is most easily achieved by stating what is
allowed. There are 3 levels of control in the program. The first checks
the first character, the second checks other characters. The third level
is built into the stringof command and weeds out other unnecessary
characters at an early stage. */

valid_character(Name) :-
stringof(Namelist,Name),
check_firstcharacter(Namelist),
check_characters(Namelist).

check_firstcharacter(Namelist) :-
Namelist=[CharlRestlist],
Smalletters=[a,b,c,d,e,f,g,h,1,j,
k,1,m,n,0,p,q,r,s,t,u,V,W,X,y,z],
on(Char,Smalletters),!.

check_characters([Charl[]]) :- !.
check_characters([Char|Namelist]) :-
Okletters=[a,b,c,d,e,f,g,h,i,],
k,l,m,n,0,p,q,1,8,t,u,v,W,X,Y,Z2,

Thu, Nov 28, 1991 Page 62

General Routines.4 Thu, Nov 28, 1991 Page 63
'A"IBI,ICI,ID|,IEI’IFl’lGl,IHI’lII’IJI’lKl’lLl’IMl,
IN"IOI’IPI’lQl’lRl,lSI’ITI’lUl,lvl"wl,'xl,lYl,IZl’

'1',IZ','3"'4',I5','6"'7','8','9','0|"_'],

on(Char,Okletters),

check_characters(Namelist).

/* Generic routine used on a number of occasions to identify when an
object is part of an existing structure, especially during maintenance of
target knowledge consistency. It checks for existence in structure,
movement, physical and properties. */

used_object(Object) :-
target_sdata(Object,_,_),!.

used_object(Object) :-
target_sdata(_,Object,_),!.

used_object(Object) :-
target_ddata(_,Object,_,_,),!.

used_object(Object) :-
target_ddata(_,_,Object,_,_),!.

used_object(Object) :- .
target_ddata(_,_._,Object,_),!.

used_object(Object) :-
target_pdata(Object,),!.

used_object(Object) :-
target_phyprop(Object,_),!.

/* The set counters routine ran at the beginning of a session with Ira. */

set_counters :-
set_prop(help,window,0),
set_prop(delete,condition,1).

/* Routine used by the second-pass ACP matches to construct a list of
partially-fitting ACPs for the dialogue selections. */

get_fournames(Acplist,Newlist) :-
length(Acplist,1),
Acplist=[A],Newlist=[A,",","],!.

get_fournames(Acplist,Newlist) :-
length(Acplist,2),
Acplist=[A,B],Newlist=[A,B,","],!. '
get_fournames(Acplist,Newlist) :-
length(Acplist,3),
Acplist=[A,B,C],Newlist=[A,B,C,"],!.

get_fournames(Acplist,Newlist) :-
length(Acplist,4),
Newlist=Acplist.

	DX173363_2_0001.tif
	DX173363_2_0003.tif
	DX173363_2_0005.tif
	DX173363_2_0007.tif
	DX173363_2_0009.tif
	DX173363_2_0011.tif
	DX173363_2_0013.tif
	DX173363_2_0015.tif
	DX173363_2_0017.tif
	DX173363_2_0019.tif
	DX173363_2_0021.tif
	DX173363_2_0023.tif
	DX173363_2_0025.tif
	DX173363_2_0027.tif
	DX173363_2_0029.tif
	DX173363_2_0031.tif
	DX173363_2_0033.tif
	DX173363_2_0035.tif
	DX173363_2_0037.tif
	DX173363_2_0039.tif
	DX173363_2_0041.tif
	DX173363_2_0043.tif
	DX173363_2_0045.tif
	DX173363_2_0047.tif
	DX173363_2_0049.tif
	DX173363_2_0051.tif
	DX173363_2_0053.tif
	DX173363_2_0055.tif
	DX173363_2_0057.tif
	DX173363_2_0059.tif
	DX173363_2_0061.tif
	DX173363_2_0063.tif
	DX173363_2_0065.tif
	DX173363_2_0067.tif
	DX173363_2_0069.tif
	DX173363_2_0071.tif
	DX173363_2_0073.tif
	DX173363_2_0075.tif
	DX173363_2_0077.tif
	DX173363_2_0079.tif
	DX173363_2_0081.tif
	DX173363_2_0083.tif
	DX173363_2_0087.tif
	DX173363_2_0089.tif
	DX173363_2_0091.tif
	DX173363_2_0093.tif
	DX173363_2_0095.tif
	DX173363_2_0097.tif
	DX173363_2_0099.tif
	DX173363_2_0101.tif
	DX173363_2_0103.tif
	DX173363_2_0105.tif
	DX173363_2_0107.tif
	DX173363_2_0109.tif
	DX173363_2_0111.tif
	DX173363_2_0113.tif
	DX173363_2_0115.tif
	DX173363_2_0117.tif
	DX173363_2_0119.tif
	DX173363_2_0121.tif
	DX173363_2_0123.tif
	DX173363_2_0125.tif
	DX173363_2_0127.tif
	DX173363_2_0129.tif
	DX173363_2_0131.tif
	DX173363_2_0133.tif
	DX173363_2_0135.tif
	DX173363_2_0137.tif
	DX173363_2_0139.tif
	DX173363_2_0141.tif
	DX173363_2_0143.tif
	DX173363_2_0145.tif
	DX173363_2_0147.tif
	DX173363_2_0149.tif
	DX173363_2_0151.tif
	DX173363_2_0153.tif
	DX173363_2_0155.tif
	DX173363_2_0157.tif
	DX173363_2_0159.tif
	DX173363_2_0161.tif
	DX173363_2_0163.tif
	DX173363_2_0165.tif
	DX173363_2_0167.tif
	DX173363_2_0169.tif
	DX173363_2_0171.tif
	DX173363_2_0173.tif
	DX173363_2_0175.tif
	DX173363_2_0177.tif
	DX173363_2_0179.tif
	DX173363_2_0181.tif
	DX173363_2_0183.tif
	DX173363_2_0185.tif
	DX173363_2_0187.tif
	DX173363_2_0189.tif
	DX173363_2_0191.tif
	DX173363_2_0193.tif
	DX173363_2_0195.tif
	DX173363_2_0197.tif
	DX173363_2_0199.tif
	DX173363_2_0201.tif
	DX173363_2_0203.tif
	DX173363_2_0205.tif
	DX173363_2_0207.tif
	DX173363_2_0209.tif
	DX173363_2_0211.tif
	DX173363_2_0213.tif
	DX173363_2_0215.tif
	DX173363_2_0217.tif
	DX173363_2_0219.tif
	DX173363_2_0221.tif
	DX173363_2_0223.tif
	DX173363_2_0225.tif
	DX173363_2_0227.tif
	DX173363_2_0229.tif
	DX173363_2_0231.tif
	DX173363_2_0233.tif
	DX173363_2_0235.tif
	DX173363_2_0237.tif
	DX173363_2_0239.tif
	DX173363_2_0241.tif
	DX173363_2_0243.tif
	DX173363_2_0245.tif
	DX173363_2_0247.tif
	DX173363_2_0249.tif
	DX173363_2_0251.tif
	DX173363_2_0253.tif
	DX173363_2_0255.tif
	DX173363_2_0257.tif
	DX173363_2_0259.tif
	DX173363_2_0261.tif
	DX173363_2_0263.tif
	DX173363_2_0265.tif
	DX173363_2_0267.tif
	DX173363_2_0269.tif
	DX173363_2_0271.tif
	DX173363_2_0273.tif
	DX173363_2_0275.tif
	DX173363_2_0277.tif
	DX173363_2_0279.tif
	DX173363_2_0281.tif
	DX173363_2_0283.tif
	DX173363_2_0285.tif
	DX173363_2_0287.tif
	DX173363_2_0289.tif
	DX173363_2_0291.tif
	DX173363_2_0293.tif
	DX173363_2_0295.tif
	DX173363_2_0297.tif
	DX173363_2_0299.tif
	DX173363_2_0301.tif
	DX173363_2_0303.tif
	DX173363_2_0305.tif
	DX173363_2_0307.tif
	DX173363_2_0309.tif
	DX173363_2_0311.tif
	DX173363_2_0313.tif
	DX173363_2_0315.tif
	DX173363_2_0317.tif
	DX173363_2_0319.tif
	DX173363_2_0321.tif
	DX173363_2_0323.tif
	DX173363_2_0325.tif
	DX173363_2_0327.tif
	DX173363_2_0329.tif
	DX173363_2_0331.tif
	DX173363_2_0333.tif
	DX173363_2_0335.tif
	DX173363_2_0337.tif
	DX173363_2_0339.tif
	DX173363_2_0341.tif
	DX173363_2_0343.tif
	DX173363_2_0345.tif
	DX173363_2_0347.tif
	DX173363_2_0349.tif
	DX173363_2_0351.tif
	DX173363_2_0353.tif
	DX173363_2_0355.tif
	DX173363_2_0357.tif
	DX173363_2_0359.tif
	DX173363_2_0361.tif
	DX173363_2_0363.tif
	DX173363_2_0365.tif
	DX173363_2_0367.tif
	DX173363_2_0369.tif
	DX173363_2_0371.tif
	DX173363_2_0373.tif
	DX173363_2_0375.tif
	DX173363_2_0377.tif
	DX173363_2_0379.tif
	DX173363_2_0381.tif
	DX173363_2_0383.tif
	DX173363_2_0385.tif
	DX173363_2_0387.tif
	DX173363_2_0389.tif
	DX173363_2_0391.tif
	DX173363_2_0393.tif
	DX173363_2_0395.tif
	DX173363_2_0397.tif
	DX173363_2_0399.tif
	DX173363_2_0401.tif
	DX173363_2_0403.tif
	DX173363_2_0405.tif
	DX173363_2_0407.tif
	DX173363_2_0409.tif
	DX173363_2_0411.tif
	DX173363_2_0413.tif
	DX173363_2_0415.tif
	DX173363_2_0417.tif
	DX173363_2_0419.tif
	DX173363_2_0421.tif
	DX173363_2_0423.tif
	DX173363_2_0425.tif
	DX173363_2_0427.tif
	DX173363_2_0429.tif
	DX173363_2_0431.tif
	DX173363_2_0433.tif
	DX173363_2_0435.tif
	
	DX173363_2_0439.tif
	DX173363_2_0441.tif
	DX173363_2_0443.tif
	DX173363_2_0445.tif
	DX173363_2_0447.tif
	DX173363_2_0449.tif
	DX173363_2_0451.tif
	DX173363_2_0453.tif
	DX173363_2_0455.tif
	DX173363_2_0457.tif
	DX173363_2_0459.tif
	DX173363_2_0461.tif
	DX173363_2_0463.tif
	DX173363_2_0465.tif
	DX173363_2_0467.tif
	DX173363_2_0469.tif
	DX173363_2_0471.tif
	DX173363_2_0473.tif
	DX173363_2_0475.tif
	DX173363_2_0477.tif
	DX173363_2_0479.tif
	DX173363_2_0481.tif
	DX173363_2_0483.tif
	DX173363_2_0485.tif
	DX173363_2_0487.tif
	DX173363_2_0489.tif
	DX173363_2_0491.tif
	DX173363_2_0493.tif
	DX173363_2_0495.tif
	DX173363_2_0497.tif
	DX173363_2_0499.tif
	DX173363_2_0501.tif
	DX173363_2_0503.tif
	DX173363_2_0505.tif
	DX173363_2_0507.tif
	DX173363_2_0509.tif
	DX173363_2_0511.tif
	DX173363_2_0513.tif
	DX173363_2_0515.tif
	DX173363_2_0517.tif
	DX173363_2_0519.tif
	DX173363_2_0521.tif
	DX173363_2_0523.tif
	DX173363_2_0525.tif
	DX173363_2_0527.tif
	DX173363_2_0529.tif
	DX173363_2_0531.tif
	DX173363_2_0533.tif
	DX173363_2_0535.tif
	DX173363_2_0537.tif
	DX173363_2_0539.tif
	DX173363_2_0541.tif
	DX173363_2_0543.tif
	DX173363_2_0545.tif
	DX173363_2_0547.tif
	DX173363_2_0549.tif
	DX173363_2_0551.tif
	DX173363_2_0553.tif
	DX173363_2_0555.tif
	DX173363_2_0557.tif
	DX173363_2_0559.tif
	DX173363_2_0561.tif
	DX173363_2_0563.tif
	DX173363_2_0565.tif
	DX173363_2_0567.tif
	DX173363_2_0569.tif
	DX173363_2_0571.tif

