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1 Introduction

In the context of 1 + 1-dimensional integrable quantum field theories (IQFTs), form factors are
defined as tensor valued functions representing matrix elements of some local operator O(x)
located at the origin x = 0 between a multi-particle in-state and the vacuum:

F
O|µ1...µn
n (θ1, . . . , θn) := 〈0|O(0)|θ1, . . . , θn〉inµ1,...,µn

. (1.1)

Here |0〉 represents the vacuum state and |θ1, . . . , θn〉inµ1,...,µn
the physical “in” asymptotic states.

The latter carry indices µi, which are quantum numbers characterizing the various particle
species, and depend on the real parameters θi, which are called rapidities. The form factors
are defined for all rapidities by analytically continuing from some ordering of the latter; a fixed
ordering provides a complete basis of states.

The form factor program for integrable models was pioneered by P. Weisz and M. Karowski
[1, 2] in the late 70s and thereafter developed to a large extent by F. A. Smirnov, who also
formulated some of the consistency equations for form factors and noticed that they corresponded
to a particular deformation of the Knizhnik-Zamolodchikov equations [3]. It was found that the
form factors of local operators can be obtained as the solutions to a set of consistency equations
which characterize the analyticity and monodromy properties of the form factors and constitute
what is known as a Riemann-Hilbert problem. It is therefore a priori possible, by solving these
equations, to compute all n-particle form factors associated to any local field of a massive IQFT.
This is however a very difficult mathematical problem which has only been fully completed for
free theories. However, even partial solutions to the problem have proven over the years to
be extremely useful for the computation of physical quantities. The reason is that all these
quantities are related in a way or another to correlation functions of local fields. At the same
time, it is a very well known fact that correlation functions can be expressed as infinite sums
depending on the form factors of the fields involved. Although such sums can not be performed
analytically, they happen to converge very quickly in terms of the number of particles of the
form factors involved. Indeed, convergence is often so good that the knowledge of the two
particle form factors is enough to get extremely precise results (see e.g. [4, 5]). This is one of
the main reasons why, since it first appeared, the bulk form factor program has attracted so
much attention and has been employed successfully for the computation of correlation functions
of many integrable models (see [6] for a recent review).

A natural generalisation of these ideas is their extension to integrable theories with bound-
aries. The study of IQFTs with boundaries goes back to the works of I. V. Cherednik [7] and
E. V. Sklyanin [8], where the conditions for a boundary to preserve integrability were estab-
lished in the form of generalized Yang-Baxter equations which, given the bulk S-matrix, can
be solved for the reflection amplitudes off the boundary. These pioneering works were followed
by [9, 10, 11], where the authors were concerned with the computation of reflection amplitudes
in ATFTs, and by [12], where the crossing property of the reflection amplitudes as well as an
explicit realization of the boundary were proposed. The latter work provided in fact the first
tool for the computation of form factors in the presence of a boundary. The main idea is to
realize the boundary as a “boundary state” located at the origin of time (t = 0) and expressible
in terms of the same creation-annihilation operators used to build the bulk Hilbert-space. The
drawback of this approach is that the boundary state is in fact an infinite sum of particle states
of the bulk theory, which makes computations very involved, even for free theories [13, 14]. It
is worth saying that within this approach, only form factors of fields sufficiently far from the
boundary can be obtained, e.g. form factors of fields sitting at the boundary are not accessible.
A complementary approach which allows the computation of form factors of fields sitting at
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the boundary has been proposed recently [15]. It turns out that if one considers the bound-
ary as a point-like object sitting at the origin of space (x = 0), then a natural generalisation
of the bulk form factor program for IQFTs is possible. We will call this the boundary form
factor program. Within this program the form factors of fields sitting at the boundary can be
computed for particular models by solving a Riemann-Hilbert problem which is reminiscent of
the bulk case. Indeed, as for the bulk case, this Riemann-Hilbert problem is very similar to
the set of equations employed previously for the computation of the form factors of integrable
spin chains with boundaries [16]-[20]. The latter equations result from a generalisation of the
approach developed by M. Jimbo, T. Miwa and their collaborators [21, 22, 23] for bulk models.
The first form factors obtained by means of the boundary form factor program were found in
[15] for several theories with a single-particle spectrum. An extension of this work followed
in [24] where higher particle form factors of the sinh-Gordon model were obtained and in [25]
where a precise counting of the number of solutions to the boundary form factor equations of
the sinh-Gordon and Yang-Lee models was performed. In this paper we intend to extend this
program to a class of multi-particle theories: the An-affine Toda field theories.

Affine Toda field theories (ATFTs) have been studied since a long time and have played
a prominent role in the development of the field of integrable field theories [26, 27]. Notably,
the picture proposed by A. B. Zamolodchikov whereby IQFTs may be regarded as conformal
field theories perturbed by relevant fields was first illustrated on the example of the E8-ATFT
[28, 29]. From this example and from extended work on classical Toda theory it was expected
that a different theory should exist for each simple Lie algebra and that this Lie algebraic
structure would be crucial in the understanding of these models. Subsequently, a lot a work was
carried out in order to compute the S-matrices of ATFTs related to each simple Lie algebra.
Much of this work was reviewed and extended in [30], where expressions for the S-matrices of all
ATFTs can be found. More recently a closed universal formula for the S-matrices of all ATFTs
which depends solely on Lie algebraic quantities has been obtained [31].

Amongst the large class of ATFTs the An-case is probably the one for which structures are
most simple. For example, two-particle scattering amplitudes have poles in the physical sheet
whose order is at most two (in contrast to other ATFTs where poles of up to order 12 occur). As
a consequence the pole structure of both bulk [32, 33] and boundary form factors is less involved.
The S-matrices of the An-series were first obtained in [34], where it was suggested that they
should be given by the S-matrices of the corresponding minimal An-Toda field theories (higher
rank generalisations of the Ising model, then known as Zn-models) obtained originally in [35],
multiplied by a CDD factor which contained the dependence on the coupling constant.

In the specific context of ATFTs with boundaries, a great deal of work has been carried
out in the last years to compute the corresponding reflection probabilities and to classify the
boundary conditions that are consistent with integrability. The first reflection probabilities for
ATFTs associated to simply-laced Lie algebras were obtained by A. Fring and R. Köberle in a
series of papers [9, 10, 11]. Notably, the last of these papers dealt for the first time with the
case of dynamic boundaries. Another series of papers by members of the Durham and York
mathematics groups [36, 37, 38] achieved the full classification of boundary conditions which
are compatible with integrability. Later on, many authors have computed further reflection
amplitudes for various ATFTs (a quite complete list of references can be found in [39]). Given
the topic of this paper, it is worth emphasizing those contributions which dealt with the An-case.
Besides the work cited above, solutions for all An-ATFTs in terms of hyperbolic functions were
obtained in [36, 40]. The specific A2-case was studied in detail in [41]. Integral representations of
the solutions obtained in [36], as well as solutions for other algebras were given in [42]. Finally, it
is worth emphasizing that the A1-case (that is, the sinh-Gordon model) has, independently from
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other An-ATFTs, attracted a lot of interest as its reflection amplitudes exhibit some properties
that single them out from those of all other An-ATFTs [43]-[49].

One of the main differences between the solutions in [9, 10, 11] and those in [41, 40, 42, 36]
is the fact that whereas the former are invariant under a duality transformation (we will see
later what this means) the latter are not. However it was found in [39] that these two types
of solutions can be related to each other in a simple fashion (see section 2.2). In fact that
work provided the first closed solution for the boundary reflection amplitudes which holds for
all ATFTs and which can be related via CDD factors to all known solutions in the literature so
far. In this paper we will take the reflection amplitudes computed in [36, 42] as starting point.

The paper is organized as follows: In section 2 we review the expressions and several proper-
ties of the S-matrices and reflection amplitudes of the An-ATFTs. In section 3 we introduce the
boundary form factor program [15] and compute the minimal one- and two-particle form factors
for all An-ATFTs. We also give a general ansatz for the higher particle form factors, thereby
characterizing their pole structure. In section 4 we concentrate on the derivation of recursive
equations for the form factors of A2-ATFT and find solutions for them at the self-dual point,
B = 1, and up to four particles. We show that some of our solutions correspond to the same
class of fields whose bulk form factors were computed by T. Oota in [32]. In addition, we also
construct the form factors up to four particles for another class of fields which correspond to
spin-1 operators of the bulk theory. In section 5 we present our conclusions and outlook.

2 The An-ATFTs : Generalities

The An-ATFTs are a family of IQFTs whose exact S-matrices [34], R-matrices [9, 36, 10, 11,
41, 40, 42] and mass spectrum [35] are completely characterized by an underlying Lie algebraic
structure related to the simply-laced algebra An. The theory has n stable particles in the
spectrum with masses

ma = 2m sin
aπ

h
a = 1, . . . , n, (2.1)

in terms of a fundamental mass scale m and the Coxeter number of An, h = n + 1. If we
arrange these masses into a vector (m1, . . . ,mn) then this is the Perron-Frobenius eigenvector
of the Cartan matrix of An. It is common to relate these particles to the nodes of the Dynkin
diagram of An. In accordance with the symmetry of the latter, the anti-particle of a particle i
corresponds to the h − i node, as shown in the figure:

3̄ 2̄ n = 1̄321
v v vv v v

Figure 1: The Dynkin diagram of the simply-laced algebra An

2.1 The S-matrices

The S-matrices admit both an integral [50, 51] and a block representation [34]. The integral
representation takes the form

Sab(θ,B) = exp

[
∫ ∞

0

dt

t
Φab(t, B) sinh

(

tθ

iπ

)]

, (2.2)
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with

Φab(t, B) =
8 sinh

(

tB
2h

)

sinh
(

t(2−B)
2h

)

sinh
(

t min(a,b)
h

)

sinh
(

t(h−max(a,b))
h

)

sinh
(

t
h

)

sinh t
, (2.3)

where B is the effective coupling constant which is a function of the coupling constant β which
appears in the classical Lagrangian of the theory . By construction the S-matrices are invariant
under the transformation B → 2 − B, which is equivalent to week-strong duality, β → 4π/β of
the Lagrangian [30]. The point B = 1 is known as the self-dual point. The kernel above admits
an alternative representation, based on the identity

sinh
(

t min(a,b)
h

)

sinh
(

t(h−max(a,b))
h

)

sinh
(

t
h

) =

a+b−1
∑

p = |a − b| + 1

step 2

sinh

(

t(h − p)

h

)

, (2.4)

which allows us to bring the S-matrix into the block product form

Sab(θ,B) =

a+b−1
∏

p = |a − b| + 1

step 2

{p}θ, (2.5)

with blocks

{x}θ =
(x + 1)θ(x − 1)θ

(x + 1 − B)θ(x − 1 + B)θ
, and (x)θ =

sinh 1
2

(

θ + iπx
h

)

sinh 1
2

(

θ − iπx
h

) , (2.6)

or

{x}θ = exp



8

∫ ∞

0

dt sinh
(

tB
2h

)

sinh
(

t(2−B)
2h

)

sinh t
(

1 − x
h

)

t sinh t
sinh

(

tθ

iπ

)



 . (2.7)

From the block form above it is easy to see that these S-matrices possess simple and double
poles. As usual in this context, simple poles are related to the presence of bound states in the
theory which result from fusing processes of the form a+ b → c̄ whenever a+ b+ c equals either
h or 2h. If such fusing occurs the amplitude Sab(θ) will have a pole θ = iuc̄

ab located at

uc̄
ab =

{

π(a+b)
h if a + b + c = h

π(2h−a−b)
h if a + b + c = 2h

. (2.8)

Closed formulae for the associated S-matrix residua, which are closely related to the on-shell
three-point coupling Γc̄

ab, can be easily obtained. For example, for the process 1 + 1 → 2:

(Γ2
11)

2 = −i lim
θ→iu2

11

(θ − iu2
11)S11(θ) =

2 sin
(

2π
h

)

sin
(

(2−B)π
2h

)

sin
(

Bπ
2h

)

sin
(

(2+B)π
2h

)

sin
(

(4−B)π
2h

) . (2.9)
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2.2 The reflection amplitudes

A particular set of solutions for the R-matrices of An-ATFTs was constructed in [36] in a block
product representation,

Ra(θ,B) = Rā(θ,B) =

a
∏

p=1

‖p‖θ, (2.10)

with

‖x‖θ =

(

x−1
2

)

θ

(

x+1
2 − h

)

θ
(

x−1+B
2 − h

)

θ

(

x+1−B
2

)

θ

. (2.11)

The corresponding integral representation was given in [42]

Ra(θ,B) = Rā(θ,B) = exp

[
∫ ∞

0

dt

t
ρa(t, B) sinh

(

tθ

iπ

)]

, (2.12)

with

ρa(t, B) = ρā(t, B) =
8 sinh

(

t(2−B)
4h

)

sinh
(

t(2h+B)
4h

)

sinh
(

ta
2h

)

sinh
(

t(h−a)
2h

)

sinh
(

t
2h

)

sinh t

=
8 sinh

(

t(2−B)
4h

)

sinh
(

t(2h+B)
4h

)

sinh t

a
∑

p=1

sinh

(

t(h − 2p + 1)

2h

)

. (2.13)

A feature of these solutions is that, contrary to the S-matrices (2.2), they are not invariant
under the duality transformation B → 2 − B. As a result, they have the property of having
different classical limits in the weak (B → 0) and strong (B → 2) coupling limits, namely

Ra(θ, 0) =

n
∏

b=1

Sab(θ, 1), Ra(θ, 2) = 1. (2.14)

This means that in the classical limit the amplitudes Ri(θ, 0) correspond to a theory with
fixed Dirichlet boundary conditions whereas Ri(θ, 2) correspond to a theory with von Neumann
boundary conditions [36, 37, 38]. How the breaking of duality invariance occurs can be explicitly
seen by writing the corresponding R-matrices as

Ra(θ,B) = R̃a(θ,B)
n
∏

b=1

Sba

(

θ, 1 − B

2

)

, (2.15)

where R̃ are the duality invariant R-matrices constructed in [39] and the identity (2.15) was also
found there.∗

∗The R-matrices constructed in [39] admit an integral representation of the form (2.12) with

ρj(t,B) =
8 sinh

“

t(2−B)
4h

”

sinh
`

tB
4h

´

sinh
“

t(1−h)
2h

”

sinh
`

tj

2h

´

sinh
“

t(h−j)
2h

”

sinh2
`

t
2h

´

sinh t

Notice that this kernel differs from the one given in [39] which contained several typos.
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3 The boundary form factor consistency equations

A set of consistency equations whose solutions are the form factors of boundary fields of an
IQFT was recently proposed in [15]. There the equations were presented for the special case of
a theory with a single particle species, but it is trivial to write them for the general case. The
first three relations

F
O|...µiµi+1...
n (. . . , θi, θi+1, . . .) = Sµiµi+1

(θi − θi+1)F
O|...µi+1µi...
n (. . . , θi+1, θi, . . .), (3.1)

F
O|µ1...µn−1µn
n (θ1, . . . , θn−1, θn) = Rµn

(θn)F
O|µ1...µn−1µn
n (θ1, . . . , θn−1,−θn), (3.2)

F
O|µ1µ2...µn
n (θ1, θ2 . . . , θn) = Rµ1

(iπ − θ1)F
O|µ1µ2...µn
n (2πi − θ1, θ2, . . . , θn), (3.3)

express the fact that exchanging two particles in a form factor amounts to the scattering of those
particles, which is appropriately taken into account by the two-particle S-matrix. In addition if
one of the particles a form factor depends upon is scattered off the boundary with probability
Rµi

(θi), the value of the form factor should remain unchanged, which is expressed by the second
equation. Finally, the particle might be scattered off the boundary after a 2πi rotation, which
is expressed by the last equation. For n = 1 and n = 2 the minimal solutions to these equations
(that is, solutions with no poles in the physical sheet) will play a crucial role in the formulation
of a general ansatz for the n-particles form factors and details on their computation will be
provided in the coming sections.

In addition to these three equations we have two more relations which fix the pole structure
of the form factors: the kinematic residue equation

lim
θ̄0→θ0

F
O|µ̄µµ1...µn

n+2 (θ̄0 + iπ, θ0, θ1, . . . , θn) = i

(

1 −
n
∏

k=1

Sµµk
(θ0 − θk)Sµµk

(θ0 + θk)

)

× F
O|µ1...µn
n (θ1, . . . , θn), (3.4)

and the bound state residue equation

lim
ǫ→0

ǫF
O|abµ1...µn

n+2 (θ +
iuc

ab

2
+ ǫ, θ − iuc

ab

2
− ǫ, θ1, . . . , θn) = iΓc

abF
O|cµ1...µn

n+1 (θ, θ1, . . . , θn), (3.5)

where particles a and b fuse to produce particle c which implies that the scattering amplitude
Sab(θ) has a pole at θ = iuc

ab with residue given by (Γc
ab)

2.

3.1 The minimal one-particle form factors

As explained in [15], starting with the boundary reflection amplitudes, it is possible to find a
minimal solution, wa(θ), to the one-particle form factor equations†

wa(θ) = Ra(θ)wa(−θ) and wa(θ + iπ) = Ra(−θ)wa(iπ − θ), (3.6)

which takes the form
wa(θ) = ga(θ)ga(iπ − θ), (3.7)

where ga(θ) satisfies the equations

ga(θ) = Ra(θ)ga(−θ) and ga(θ) = ga(2πi − θ). (3.8)

†From here onwards we will omit the explicit dependence of the reflection amplitudes, S-matrix and form
factors in B.
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These are the same equations as for the two-particle minimal form factor, with the S-matrix
replaced by the reflection amplitudes. Therefore they can be solved in a systematic way, namely

ga(θ) = gā(θ,B) = exp

[

−1

2

∫ ∞

0

dt

t sinh t
ρa(t, B) cosh t

(

1 +
iθ

π

)]

. (3.9)

We can write (3.9) as an infinite product of Euler’s gamma functions by employing the identities:

∫ ∞

0

dt

t

sinh(αt) sinh(βt)e−γt

sinh(ut)
=

1

2
log





Γ
(

α+β+γ+u
2u

)

Γ
(

−α−β+γ+u
2u

)

Γ
(

−α+β+γ+u
2u

)

Γ
(

α−β+γ+u
2u

)



 , (3.10)

and
1

sinh t
= 2e−t

∞
∑

k=0

e−2kt. (3.11)

We obtain

ga(θ,B) = gā(θ,B) =
a
∏

p=1

sinh 1
2

(

θ − iπ(2p−B)
2h

)

cosh 1
2

(

θ − iπ(B+2p−2)
2h

)

̺1
p−1(θ)̺

1
2
p (θ)

sinh 1
2

(

θ − iπ(p−1)
h

)

cosh 1
2

(

θ − iπp
h

)

̺1
2p−B

2

(θ)̺
1
2
B+2p−2

2

(θ)
, (3.12)

where

̺n
x(θ) =

∞
∏

k=1

Γ
(

k + n − x
2h + iθ

2π

)

Γ
(

k + n − x
2h − iθ

2π

)

Γ
(

k − n + x
2h − iθ

2π

)

Γ
(

k − n + x
2h + iθ

2π

) , x ∈ [0, 2h), n ∈ Q. (3.13)

The following identity will be useful for later purposes:

wā(θ + iπ)wa(θ) =
a
∏

p=1

̺0
2p(2θ)̺1

2p−2(2θ)

̺0
B+2p−2(2θ)̺1

2p−B(2θ)
. (3.14)

3.2 The two-particle form factors

The two-particle form factors are the solutions of the two-particle form factor equations

F ab
2 (θ1, θ2) = Sab(θ)F ba

2 (θ2, θ1) = Rb(θ2)F
ab
2 (θ1,−θ2) = Ra(iπ − θ1)F

ab
2 (2πi − θ1, θ2). (3.15)

It was shown in [15] that solutions to these equations take the general form

F ab
2 (θ1, θ2) = fab(θ12)fab(θ̂12)wa(θ1)wb(θ2)Φ(y1, y2), with yi = eθi + e−θi . (3.16)

Here θ12 = θ1 − θ2, θ̂12 = θ1 + θ2 and fab(θ) is the bulk two-particle minimal form factor, that
is a solution of the equations

fab(θ) = Sab(θ)fba(−θ) = fab(2πi − θ), (3.17)

with no poles in the physical strip Im(θ) ∈ [0, π]. The function Φ(y1, y2) characterizes the
particular operator and is a symmetric function of the variables y1, y2, which is the constraint
given in [15] for models with a single particle spectrum. In particular, the minimal boundary
two-particle form factors correspond to Φ(y1, y2) = 1. Solutions to (3.17) for An-ATFTs were
first found by T. Oota [32] in the form of an infinite product of Γ-functions. Such representation
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can be obtained in the usual way: for an S-matrix which admits an integral representation of
the type (2.2) it is easy to show that a solution to (3.17) is given by

fab(θ) = exp

[

−1

2

∫ ∞

0

dt

t sinh t
Φab(t, B) cosh t

(

1 +
iθ

π

)]

. (3.18)

As for the one-particle form factors, we can use (3.10) and (3.11) to express the form factor
above as an infinite product of gamma functions

fab(θ) =
a+b−1
∏

p = |a − b| + 1

step 2

̺1
p+1(θ)̺1

p−1(θ)

〈−p〉θ ̺1
p+1−B(θ)̺1

p−1+B(θ)
, (3.19)

where

〈p〉θ =
sinh 1

2

(

θ + iπ(p−1)
h

)

sinh 1
2

(

θ + iπ(p+1)
h

)

sinh 1
2

(

θ + iπ(p−1+B)
h

)

sinh 1
2

(

θ + iπ(p+1−B)
h

) . (3.20)

It is easy to check that the function inside the product above equals the function Fmin
p (θ)

introduced by T. Oota in [32], as it should be. A useful identity involving the minimal form
factors above is

fab(θ)fāb(θ + iπ) =

a+b−1
∏

p = |a − b| + 1

step 2

〈p〉θ , (3.21)

which was also obtained in [32]. In addition, it is easy to show from (3.19) that

fāa(2θ + iπ) =

min(a,ā)
∏

p=1

̺0
B+2p−2(2θ)̺0

2p−B(2θ)

̺0
2p(2θ)̺0

2p−2(2θ)
. (3.22)

Combining this with (3.14) we find that

fāa(2θ + iπ)wā(θ + iπ)wa(θ) =

min(ā,a)
∏

p=1

sinh
(

θ + iπ(p−1)
h

)

sinh
(

θ − iπ(p−1)
h

)

sinh
(

θ + iπ(B−2p)
2h

)

sinh
(

θ − iπ(B−2p)
2h

) . (3.23)

Also
f11(θ + iπ

h )f11(θ − iπ
h )

f21(θ)
=

sinh 1
2

(

θ + iπ
h

)

sinh 1
2

(

θ − iπ
h

)

sinh 1
2

(

θ + iπ(1−B)
h

)

sinh 1
2

(

θ − iπ(1−B)
h

) . (3.24)

These identities will be very important in order to bring the kinematic and bound state residue
equations into a simple form.

3.3 Higher particle form factors
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For reflection matrices which have no poles at θ = iπ/2 (as is our case here) it is natural to
make the following ansatz for the n-particle form factors

F
O|µ1...µn
n (θ1, . . . , θn) = H

O|µ1...µn
n Q

O|µ1...µn
n (y1, . . . , yn)

n
∏

k=1

wµk
(θk)

×
∏

1≤i<j≤n

fµiµj
(θij)fµiµj

(θ̂ij)

Pµiµj
(θij)Pµiµj

(θ̂ij)(yi + yj)
δµiµ̄j

, (3.25)

where H
O|µ1...µn
n are constants which are invariant under any permutation of the indices µ1, . . . , µn,

and Q
O|µ1···µn
n (y1, . . . , yn) are entire functions of yi = 2cosh θi with i = 1, . . . , n. The factors in

the denominator encode the full pole structure of the form factors. More precisely, the kinematic
poles are encoded in the (yi + yj) factor, whereas the functions Pab(θ) account for the bound
state poles in the theory. The form of these functions was determined in [32] for the bulk case.
They are exactly the same in the boundary theory and can be written as,

Pab(θ) = Pāb̄(θ) =
a+b−1
∏

p = |a − b| + 1, p 6= h − 1

step 2

2

[

cosh θ − cos

(

π(p + 1)

h

)]

, (3.26)

which is equivalent to Oota’s expression (up to constant factors). The value p = h − 1 needs
to be excluded as it would produce extra poles at θ = iπ. The main difference in the way
of encoding the bound state pole structure with respect to the bulk theory is the presence
of products Pab(θab)Pab(θ̂ab) rather than a single factor Pab(θab). This must be so in order to
guarantee invariance under change of sign of one of the rapidities. Such prescription was already
used in [15] for the Yang-Lee theory for which (3.26) is simply 2 cosh θ + 1 (corresponding to
a = b = 1 and h = 3) and the same holds for the A2-ATFT.

The ansatz (3.25) satisfies all form factor consistency equations by construction, provided
that Qn(y1, . . . , yn) has the extra property

Q
O|...µaµa+1...
n (. . . , ya, ya+1, . . .) = Q

O|...µa+1µa...
n (. . . , ya+1, ya, . . .). (3.27)

From this property we deduce that Q
O|µ1···µn
n (y1, . . . , yn) must be a symmetric function of all

variables related to the same particle type. Therefore we expect that the corresponding form
factors can be expressed in terms of elementary symmetric polynomials on the variables related
to each particle type. Plugging the ansatz (3.25) into the kinematic residue equation we obtain

recursive relations for the polynomials Q
O|µ1···µn
n (y1, . . . , yn) of the form

Q
O|µ̄µµ1···µn

n+2 (−y, y, y1, . . . , yn) = Pn(y, y1, . . . , yn)Q
O|µ1···µn
n (y1, . . . , yn), (3.28)

where y = 2cosh θ and Pn(y, y1, . . . , yn) is a polynomial on the variables y, y1, . . . , yn. In addi-
tion, if two particles a, b fuse to produce a particle c, then also a second set of equations of the
form

Q
O|abµ1...µn

n+2 (y+, y−, y1, . . . , yn) = Wn(y, y1, . . . , yn)Q
O|cµ1···µn

n+1 (y, y1, . . . , yn), (3.29)

must be satisfied, where y± = 2cosh
(

θ ± iuc
ab

2

)

and Wn+1(y, y1, . . . , yn) is a polynomial of its

variables. We will now proceed to compute the polynomials Pn and Wn for the simplest model
of this class: the A2-ATFT.
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4 Boundary form factors for A2-ATFT

We will now write down the equations (3.28)-(3.29) for the particular case h = 3 and n = 2. We
have then a two-particle theory with 1̄ = 2 and the following fusing processes

1 + 1 → 2 with u2
11 =

2π

3
, (4.1)

2 + 2 → 1 with u1
22 =

2π

3
. (4.2)

Before writing down the recursive equations for this case, it is convenient to introduce some

notation. We will write F
O|m,n
m+n ({y}m; {y′}n) to denote an n + m-particle form factor where

m particles are of type 1 and n particles are of type 2. We choose to order indices in such a
way that all particles of type 1 appear first and all particles of type 2 appear at the end. In
addition, we will group all variables related to particles of type 1 or particles of type 2 into
sets {y}m = {y1, . . . , ym} and {y′}n = {y′1, . . . , y′n} = {ym+1, . . . , yn+m}, respectively. Similar
notation will be used for the polynomials Q. Employing this notation, we can rewrite equation
(3.28) as follows

Q
O|m+1,n+1
m+n+2 (y, {y}m;−y, {y′}n) = Pm+n(y, {y}m, {y′}n)Q

O|m,n
m+n ({y}m; {y′}n), (4.3)

where

Pn+m(y, {y}m, {y′}n) = a(y)

m
∑

k,p,r=0

n
∑

a,b,c=0

(

ωm−k
− ηm−p

+ λm−r
+

ω̃a−n
− η̃b−n

+ λ̃
c−n
+

− ωm−k
+ ηm−p

− λm−r
−

ω̃a−n
+ η̃b−n

− λ̃
c−n
−

)

σrσpσkσ̂aσ̂bσ̂c,

(4.4)
with

a(y) =
cosh(2θ) − cos

(

π(2−B)
3

)

i
√

3 sinh θ
, (4.5)

ω± = −2 cosh

(

θ ± 2πi

3

)

, ω̃± = −2 cosh

(

θ ± πi

3

)

, (4.6)

η± = −2 cosh

(

θ ± iπ(2 − B)

3

)

, λ± = −2 cosh

(

θ ± iπB

3

)

, (4.7)

η̃± = −2 cosh

(

θ ± iπ(3 − B)

3

)

, λ̃± = −2 cosh

(

θ ± iπ(1 + B)

3

)

, (4.8)

and σ and σ̂ are elementary symmetric polynomials on the variables {y}m and {y′}n respectively.
These polynomials can be defined by means of the generating function,

n
∏

k=1

(x + yi) =

n
∑

k=0

xn−kσk, (4.9)

where the subscript k is the degree of the polynomial σk which depends on the n variables
y1, . . . , yn. Also from the kinematic residue equations it follows that

H
O|m+1,n+1
m+n+2 =

√
3f21(iπ)−1H

O|m,n
m+n . (4.10)

In addition, due to the presence of bound states there is an additional set of recursive equations
of the form (3.29). Employing our new notation, we will write these equations as

Q
O|m+2,n
m+n+2 (y+, y−, {y}m; {y′}n) = Wm+n(y, {y}m, {y′}n)Q

O|m,n+1
m+n+1 ({y}m; y, {y′}n), (4.11)

10



where

Wm+n(y, {y}m, {y′}n) = g(B)

(

y2 − 2 − 2 cos

(

πB

3

)) m
∑

k,r,s=0

ym−kτm−r
+ τm−s

− σkσrσs, (4.12)

with

τ± = −2 cosh

(

θ ± iπ(1 − B)

3

)

, g(B) =
2Γ2

11

31/4
sin

(

π(2 + B)

6

)

. (4.13)

Notice that g(1) = 1 and that Wm+n does only depend on the variables related to the type 1
particles. This surprising property is due to (3.24) and to the following identities

f11(2θ)w1(θ + iπ
3 )w1(θ − iπ

3 )

w1(θ)P11(2θ)
=

1

y2 − 2 − 2 cos
(

Bπ
3

) , (4.14)

f12(θ + iπ
3 )f12(θ − iπ

3 )

f22(θ)
= 1, P12(θ) = 1, (4.15)

which hold specifically for the h = 3 case. The bound state residue equation provides also the
following recursive relations between the constants:

H
O|m+2,n
n+m+2 = −

√ √
3

f21(iπ)
H

O|m,n+1
m+n+1 , (4.16)

were we have used the identity

f21(iπ) =
4f11(2πi/3)2

3
sin2

(

π(2 + B)

6

)

, (4.17)

which is valid for h = 3. Equations (4.10)-(4.16) are solved by

H
O|n,n+3k
2n+3k = (−1)k

[ √
3

f21(iπ)

]n+3k/2

H
O|0,0
0 , (4.18)

H
O|n,n+1+3k
2n+3k+1 = (−1)k

[ √
3

f21(iπ)

]n+3k/2

H
O|0,1
0 , (4.19)

H
O|n,n+2+3k
2n+3k+2 = (−1)k+1

[ √
3

f21(iπ)

]n+(3k+1)/2

H
O|0,1
0 , (4.20)

for k ∈ Z+ ∪ {0}.

4.1 Solving the form factor recursive equations

Finding solutions to (4.3)-(4.11) is very involved, even for the lower particle form factors. For
this reason here we have made a further simplification and consider only the B = 1 case. We

will start by introducing some useful definitions. We define the order of the form factor F
O|m,n
m+n

as the number [F
O|m,n
m+n ] which characterizes the asymptotic behaviour

lim
s→∞

F
O|m,n
m+n ({θ + s}m; {θ + s}n) ∼ es[F

O|m,n
m+n ], (4.21)
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where by θ + s we mean that each rapidity is shifted by the same amount s. If we were dealing
with bulk form factors, this would be simply the spin of the operator under investigation. The

order of the polynomial Q
O|m,n
m+n can be defined in a similar fashion.

It will also be useful to introduce some particular combinations of elementary symmetric
polynomials, which we will denote by K [m,0] and Z [m,n] and which are defined by the following
properties:

Z [m+1,n+1](y, {y}m;−y, {y′}n) = 0, K [m+2,0](y+, y−, {y}m) = 0, (4.22)

namely, they are the kernels of the equations (4.3)-(4.11) for B = 1. As it turns out, the K [1,n]

and K [n,1] polynomials admit a simple closed form

Z [1,n] =
n
∑

k=0

σ̂kσ
n−k
1 , Z [n,1] =

n
∑

k=0

σkσ̂
n−k
1 , (4.23)

and each of the terms in the sums has order n. Here we will also need

Z [2,2] = σ̂2
2 + σ̂1σ̂2σ1 + σ̂2σ

2
1 + σ̂2

1σ2 − 2σ̂2σ2 + σ̂1σ1σ2 + σ2
2. (4.24)

These polynomials are in fact the same introduced in [32] and denoted there by K [m,n]. The K-
polynomials defined by the property (4.22) become soon rather complex and no obvious pattern
in terms of elementary symmetric polynomials seems to emerge. For example:

K [2,0] = 3 − σ2
1 + σ2, (4.25)

K [3,0] = σ3
1(3σ1 + σ3) − σ2

1(3 + σ2)(6 + σ2) + (3 + σ2)
3, (4.26)

K [4,0] = −3K [2,0](3σ2
1 − (3 + σ2)

2)
2
+ K [3,0]σ3(9σ1 + σ3)

−3σ3((σ1((3 + σ2)
2 − 3σ2

1) − 4σ3(3 + σ2))(3 + σ2) + (σ4
1 + 4(3 + σ2)

2)σ3)

+σ4(−27σ4
1 + (3 − σ2)(3 + σ2)

3 + σ2
1(3 + σ2)(27 + σ2(6 + σ2)) (4.27)

−σ1σ3(−9 + σ2
2 + 3σ1(6σ1 + σ3)) + ((3 + σ2)(3 + 2σ2) + 3σ1(3σ1 + σ3) − σ4)σ4).

Similarly, we define the K [0,n] polynomials as identical to the ones above up to the replacement
σ → σ̂. Like those, they have order n(n − 1). In this case, not all terms involved are of order
n(n− 1) but only the leading ones. In fact if we select out only the leading terms we get a new
set of polynomials which will be related to structures occurring in the bulk form factors:

K
[2,0]
bulk = σ2 − σ2

1, (4.28)

K
[3,0]
bulk = σ3

1σ3 + σ2
2K

[2,0]
bulk, (4.29)

K
[4,0]
bulk = σ2

3K
[3,0]
bulk − σ3

2σ4K
[2,0]
bulk − σ4σ1σ3(σ

2
2 + 3σ1σ3 − 3σ4) + σ2

4(2σ
2
2 − σ4). (4.30)

These “bulk” polynomials are in fact equivalent (up to a sign) to the polynomials B1[m,n] in-
troduced in [32] and can be expressed as determinants of elementary symmetric polynomials in
the way described there. We have now all the tools to find explicit solutions to the form factor
equations.

4.2 Form factors of “spinless” fields

In this subsection we will compute all form factors up to four particles of a family of fields, which
we will denote by O2 and which we will try to identify later. In the title of this subsection we
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have used the word “spinless” to indicate that the order of the form factors associated to these
fields is zero and therefore they should correspond to spinless fields in the bulk theory. Indeed,
it will turn out that this family of operators is nothing but the boundary counterpart of the

fields whose form factors were obtained by T. Oota [32]. The condition [F
O2|m,n
m+n ] = 0 fixes the

order of each polynomial Q
O|m,n
m+n as

[Q
O|m,n
m+n ] = m2 + (m + n)(n − 1). (4.31)

4.2.1 Vacuum expectation values and 1-particle form factors

Here we will normalize Q
O2|0,0
0 = 1 and choose

Q
O2|0,1
1 = A[0,1], (4.32)

with A[0,1] an arbitrary constant.

4.2.2 Two-particle form factors

The recursive equations for the two-particle form factors are:

Q
O2|1,1
2 (−y; y) = 0, (4.33)

Q
O2|2,0
2 (y+, y−) = (y2 − 3)A[0,1]. (4.34)

Both equations admit many solutions (in fact, the first equation admits infinitely many). We
will start by selecting those solutions whose order (4.21) is minimal. We then obtain

Q
O2|1,1
2 (y1; y

′
1) = σ1 + σ̂1, (4.35)

Q
O2|2,0
2 (y1, y2) = A[0,1](σ

2
1 − 3) + A[2,0]K

[2,0], (4.36)

with A[2,0] constant.

4.2.3 Three-particle form factors

There are three different three-particle form factors that can be obtained from the solutions

above: Q
O2|1,2
3 , Q

O2|3,0
3 and Q

O2|0,3
3 . The first one is the solution of the equations

Q
O2|1,2
3 (y;−y, y1) = (y2 − 3)(3 + yy1 − y2

1)A[0,1], (4.37)

Q
O2|1,2
3 (y1; y+, y−) = (y2 − 3)(A[0,1]((y + y1)

2 − 3) + A[2,0](3 − y2 − y2
1 − yy1)). (4.38)

The most general solution of these equations with the required order is

Q
O2|1,2
3 (y1; y

′
1, y

′
2) = A[1,2]Z

[1,2]K [0,2] − σ̂2(A[2,0] − A[0,1])Z
[1,2] + A[0,1](σ̂2σ̂1σ1 − 3K [0,2]),(4.39)

which once again involves a new arbitrary constant A[1,2]. Let us consider now the three-particle
form factor involving only type 1 particles. The equation we need to solve is:

Q
O2|3,0
3 (y+, y−, y1) = (y2 − 3)(y2 − y2

1)
2, (4.40)

and the most general solution reads

Q
O2|3,0
3 ({y}3) = σ1J

[3,0] + A[3,0]K
[3,0], (4.41)
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with

J [3,0] = σ1((3 + σ2)
2 − 3σ2

1) − 4σ3(3 + σ2), (4.42)

and A[3,0] an arbitrary constant. Finally, since the form factor (4.35) is symmetric in its variables,

Q
O2|0,3
3 is given by exactly the same function as Q

O2|3,0
3 .

4.2.4 Four-particle form factors

There are three four-particle form factors which are related to the solutions above by the bound-

ary and kinematic residue equations: Q
O2|3,1
4 , Q

O2|0,4
4 and Q

O2|2,2
4 . The polynomial Q

O2|3,1
4 is

the solution to

Q
O2|3,1
4 (y1, y2,−y; y) = Q

O2|2,0
2 (y1, y2)P0+2(y, y1, y2), (4.43)

Q
O2|3,1
4 (y+, y−, y1; y2) = Q

O2|1,2
3 (y1; y2, y)W1+1(y, y1), (4.44)

which is given by

Q
O2|3,1
4 ({y}3; y

′
1) = (A[0,1] − A[2,0])[σ1σ3(σ

2
1(−9 + σ2) + 12(3 + σ2) − 4σ1σ3)σ̂1

+J [3,0](3 + σ2)σ̂
2
1 − 3K [3,0](σ1 + 4σ̂1)] − A[0,1](3Z

[2,1]σ1(3σ
2
1 − (3 + σ2)

2)

+3σ3(4(3 + σ2)
2 + σ3

1σ̂1) + σ3(σ1(9 − σ2) + 4σ3)(3(σ̂1 − σ1) + σ̂1(σ2 + σ1σ̂1)))

−(A[3,1]K
[3,0] + A[1,2](K

[3,0] + σ1J
[3,0]))Z [3,1], (4.45)

where A[3,1] is a new arbitrary constant. Let us now compute

Q
O2|0,4
4 (y+, y−, y1, y2) = Q

O2|1,2
3 (y; y1, y2)W2+0(y, y1, y2), (4.46)

which is solved by,

QO2|0,4({y′}4) = A[0,4]K
[0,4] − A[2,0]σ̂4(−6σ̂2

1 + (3 + σ̂2)(9 + σ̂2) − 2σ̂1σ̂3 + 2σ̂4)
2

+ A[0,1][3(σ̂
2
1(−9 + σ̂2) + 12(3 + σ̂2) − 4σ̂1σ̂3)((3σ̂1 + σ̂3)

2 − 3(3 + σ̂2)
2)

+σ̂4(36σ̂
4
1 + (3 + σ̂2)

2(−45 + σ̂2(24 + σ̂2)) − 3σ̂2
1(9 + σ̂2(36 + 7σ̂2))

+σ̂3(24σ̂
3
1 − 3σ̂1(−1 + σ̂2)(9 + σ̂2) + 4σ̂3(σ̂

2
1 − σ̂2))

+σ̂4(σ̂2(−3 − 4σ̂2
1 + 7σ̂2) + 4σ̂1σ̂3 − 8(9 + σ̂4)))]

+ A[1,2][−3(3 + σ̂2)(σ̂
2
1(−9 + σ̂2) + 12(3 + σ̂2))(3σ̂

2
1 − (3 + σ̂2)

2)

−σ̂3(3 + σ̂2)(6σ̂
3
1(−15 + σ̂2) + σ̂2

1(−33 + σ̂2)σ̂3 + 12(3 + σ̂2)σ̂3)

−4σ̂1σ̂3(3 + σ̂2)(3(3 + σ̂2)(9 + σ̂2) − σ̂2
3) + 12σ̂4

1σ̂4(−3 + σ̂2)

+σ̂4(3 + σ̂2)(−6σ̂2
1(3 + 5σ̂2) + (3 + σ̂2)(81 + 42σ̂2 + σ̂2

2))

−2σ̂3σ̂4(2σ̂
3
1(9 − σ̂2) + 3σ̂1(1 + σ̂2)(3 + σ̂2) + 2(3 + σ̂2 + 2σ̂2

1)σ̂3)

+σ̂2
4(4σ̂

2
1(9 − σ̂2) + (3 + σ̂2)(−15 + 7σ̂2) + 8(2σ̂1σ̂3 − σ̂4))], (4.47)

where A[0,4] is another arbitrary constant. Finally, we need to solve for the polynomial Q
O2|2,2
4 .

It is the solution of the following three equations:

Q
O2|2,2
4 (y+, y−; y1, y2) = (y2 − 3)Q

O2|0,3
3 (y, y1, y2), (4.48)

Q
O2|2,2
4 (y1, y2; y+, y−) = (y2 − 3)Q

O2|3,0
3 (y, y1, y2), (4.49)

Q
O2|2,2
4 (y, y1;−y, y2) = P1+1(y, y1, y2)Q

O2|1,1
2 (y1; y2). (4.50)
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Since the polynomials Q
O2|0,3
3 and Q

O2|3,0
3 are identical, the problem is reduced to solving the

last two equations and imposing invariance under the transformation σ ↔ σ̂. The result is

Q
O2|2,2
4 ({y}2; {y′}2) = 9σ̂2(3σ

2
1 − σ4

1 − 2σ2) − 3σ1σ2(−6σ̂1 + 2σ̂1σ
2
1 + σ1σ2)

+ σ̂3
1(σ̂1 + 2σ1)(−3K [2,0] + σ2

2) + 3K [2,0](3σ1(2σ̂1 + σ1) + σ2
2)

+ σ̂2
1(3(K

[2,0])2 + 3K [2,0]σ2 + σ3
2) + σ̂2

2(9 + σ̂1σ1
3 + (3 + σ̂2

1)σ2)

− 3σ1σ̂
2
2(1 + σ2)(σ̂1 + σ1) + σ̂2(3(3σ

2
1 − 2σ2)σ2 − σ̂1σ

3
1(12 − σ2))

+ σ̂2(3(4 − σ2)(3 + σ2) + σ̂2
1(9 − σ2

1(3 − 5σ2) − σ2(6 + 5σ2 − 2σ̂1σ1)))

+ K [2,0]Z [2,2](A[2,2]K
[2,0] − 3(2 − A[3,0]) − σ̂2(1 − A[3,0]))

− Z [2,2]A[3,0](9 − 3σ2
1 + σ̂2

1σ2 − σ̂2σ2), (4.51)

with A[2,2] constant.

4.2.5 Remarks on operator identification

In the previous subsection, all our form factors have “descended” either from Q
O2|0,1
1 or from

Q
O2|0,0
0 , so that we had no need to fix Q

O2|1,0
1 . One obvious option is to choose Q

O2|0,1
1 = Q

O2|1,0
1

and, more generally, to consider form factor solutions which are completely symmetric under the
exchange of the names of the particles. Such form factors should correspond to a particular type
of operators which we will call “symmetric”. We mean by this, that they should be symmetric
on the fundamental fields, such as O12 = φ1 + φ2 and Ô12 = φ1∂xφ2 + φ2∂xφ1. But there are of
course many fields which are not symmetric, for example those that depend only either on φ1

(“type-1 fields”) or on φ2 (“type-2 fields”). It is natural to assume that for any such fields the

one particle form factors Q
O2|0,1
1 (for type-1) or Q

O2|1,0
1 (for type 2) should vanish. Therefore,

the solutions which we just constructed could correspond to a “type-2 field” O2 if we impose

the condition that all form factors descending from Q
O2|1,0
1 are vanishing. In order to identify

the precise operator our solutions correspond to we should analyze the UV behaviour of the
two-point function. We can however get some idea by just analyzing the order of the form
factors obtained. As anticipated before

[F
O2|m,n
m+n ] = 0. (4.52)

This indicates that the boundary field to which the solutions correspond to is a spinless field

in the bulk theory. If we assume, as mentioned above, that this field has F
O2|1,0
1 = 0, then

a natural candidate is the fundamental field φ2 and any powers thereof. This constitutes an
infinite countable set of fields, in correspondence with the infinite countable set of solutions
which the form factor equations seem to have. We should now provide some more reasoning to
justify our last statement: notice that in all our examples each new form factor involves a new
arbitrary constant. If we assume that this phenomenon will continue for higher particle form
factors, then the full set of solutions to our equations will depend on a infinite but countable
number of arbitrary parameters. One way of understanding this is to assume that the solutions
obtained correspond in fact to a field which is a linear combination of an infinite but countable
set of “type-2” fields, in one-to-one correspondence with the constants A[m,n] (since the form
factor of a sum of fields equals the sum of their form factors).

4.2.6 From boundary to bulk form factors

It is easy to see that from every boundary form factor solution, a bulk form factor solution can
be obtained by the simple procedure of shifting all rapidities to infinity and selecting out the
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leading order terms [25]. A way to see this is to notice that when such shift is performed, the
boundary form factor consistency equations tend to the bulk equations because of the properties

lim
θ→∞

Ri(θ) = lim
θ→∞

wi(θ) = lim
θ→∞

Sij(θ) = lim
θ→∞

fij(θ) = 1. (4.53)

These imply that equations (3.2) and (3.3) become equivalent to each other and equal to the
standard crossing relation for the bulk form factors. At the same time, the S-matrix product
depending on the sum of rapidities becomes 1 in (3.4) rendering it in its bulk form [2, 3].

It is therefore interesting to consider the limit described above for the solutions we have just
obtained

Q
O2|0,1
1;bulk (y′1) = A[0,1], (4.54)

Q
O2|2,0
2;bulk ({y}2) = A[0,1]σ

2
1 + A[2,0]K

[2,0]
bulk, (4.55)

Q
O2|1,1
2;bulk (y1; y

′
1) = σ1 + σ̂1, (4.56)

Q
O2|1,2
3;bulk (y1; y

′
1, y

′
2) = (A[1,2]K

[0,2]
bulk − σ̂2(A[2,0] − A[0,1]))Z

[1,2] + A[0,1]σ̂2σ̂1σ1, (4.57)

Q
O2|3,0
3;bulk ({y}3) = σ1σ2(σ1σ2 − 4σ3) + A[3,0]K

[3,0]
bulk, (4.58)

Q
O2|3,1
4;bulk ({y}3; y

′
1) = σ̂1(A[0,1] − A[2,0])(σ

2
1σ3 + σ2

2σ̂1)(σ1σ2 − 4σ3) − A[3,1]K
[3,0]
bulkZ

[3,1]

−A[1,2]K
[3,0]
bulkZ

[3,1] + (σ1σ2 − 4σ3)(A[0,1]σ̂1σ3(σ2 + σ1σ̂1) − A[1,2]σ1σ2Z
[3,1]), (4.59)

Q
O2|0,4
4;bulk ({y′}4) = A[0,4]K

[0,4]
bulk − A[2,0]σ̂4(σ̂

2
2 − 2σ̂1σ̂3 + 2σ̂4)

2

+A[0,1]σ4[4(σ1σ3 − σ4)(σ1σ3 + 2σ4) + σ2
2(σ

2
2 − 3σ1σ3 + 7σ4) − 4σ2(σ

2
3 + σ2

1σ4)]

+A[1,2][−σ1σ2σ
2
3(σ1σ2 − 4σ3) + σ2

2σ4(σ
2
2 − 6σ1σ3) + (4σ2(σ

3
1 − σ3)σ3 − 8σ2

1σ
2
3)σ4

+(7σ2
2 − 4σ1(σ1σ2 − 4σ3))σ

2
4 − 8σ3

4], (4.60)

Q
O2|2,2
4;bulk ({y}2; {y′}2) = σ̂1σ̂2σ2(2σ̂

2
1σ1 + σ1(σ

2
1 − 3σ2) − 5σ̂1K

[2,0]
bulk)

+σ2
2(σ̂

2
1(σ̂1(σ̂1 + 2σ1) + σ2) + σ2

1(σ̂1σ1 − 3σ2) + σ̂1(σ̂1 − 3σ1)σ2)

+Z [2,2]((A[2,2]K
[0,2]
bulk − σ̂2)K

[2,0]
bulk + A[3,0](σ̂2K

[2,0]
bulk + σ2K

[0,2]
bulk)). (4.61)

We can now compare these solutions to the ones obtained in [32]. It turns out that, up to
the three-particle form factors, they completely agree with those when setting q = 1 (which
is equivalent to B = 1 in our notation) and matching the constants appropriately. There is
also agreement for the four-particle form factor (4.59) but there are some important differences
between our solutions and those of T. Oota for other four-particle form factors, even though
their orders agree. The precise differences are:

Q
O2|0,4
4;bulk ({y′}4) − Q

O2|0,4
4;Oota({y′}4) = 2A[0,1]σ

2
4(σ1σ3 − σ4) + (A[0,1] − A[2,0])σ

2
2σ4(σ

2
2 + 2σ4),(4.62)

and

Q
O2|2,2
4;bulk ({y}2; {y′}2) − Q

O2|2,2
4;Oota({y}2; {y′}2) = 3Z [2,2](1 − A[3,0])(K

[2,0] − σ̂2
1)

+σ̂2
1σ̂2(σ

2
1 + σ2)(3 − K [2,0]) − σ̂2σ1(σ̂1σ2(σ̂2 + σ2) + σ1(σ̂

2
1σ

2
1 + σ̂2σ2)). (4.63)

We believe that Oota’s solutions for these two cases must be wrong, as the agreement of all
other form factors with ours strongly suggests that we are dealing with the same class of fields.
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4.3 Form factors of “spin-1” fields

In this section we want to find further solutions to the boundary form factors equations and, as
a by-product, also new solutions to the bulk form factor equations. We will characterize those
solutions by the choice

Q
Ô2|0,1
1 (y) = B[0,1]y, (4.64)

where B[0,1] is an arbitrary constant. In addition, we would like our form factors to have

[F
Ô2|m,n
m+n ] = 1, ⇔ [Q

Ô2|m,n
m+n ] = m2 + (m + n)(n − 1) + 1, (4.65)

such that the field Ô2 can be matched to a spin-1 field of the bulk theory. If we choose Q
Ô2|1,0
1 =

0, we can identify this field as being of “type-2” again (like ∂xφ2). An obvious solution to these
constraints is obtained by multiplying all solutions of the previous subsection by the polynomial
σ1 + σ̂1. If we do so we can identify Ô2 = ∂xO2, but other less trivial solutions also exist, as we
show below.

4.3.1 Two-particle form factors

A set of solutions, which is compatible with (4.64) is

Q
Ô2|1,1
2 (y1, y

′
1) = σ̂1(σ1 + σ̂1), (4.66)

Q
Ô2|2,0
2 (y1, y2) = B[0,1]σ1(σ

2
1 − 3) + (Â[2,0] + B[2,0]σ1)K

[2,0], (4.67)

where Â[2,0] and B[2,0] are constants.

4.3.2 Three-particle form factors

The three-particle form factors are given by

Q
Ô2|1,2
3 (y1, y

′
1, y

′
2) = (Â[1,2] + (B[1,2] − B[2,0])σ1 + C[1,2]σ̂1)Z

[1,2]K [0,2]

−σ̂2(Â[2,0] + B[2,0](σ1 + σ̂1))Z
[1,2] − B[0,1][3K

[0,2]σ̂1 + σ2
1σ̂1(−6 + 2σ̂2

1 − 5σ̂2)

+σ3
1(−6 + 2σ̂2

1 − 3σ̂2) − σ̂1σ̂
2
2 − 3σ1(−3 + σ̂2

1 + σ̂2 + σ̂2
2)], (4.68)

Q
Ô2|3,0
3 ({y}3) = (σ2 + 3)J [3,0] + σ1Â[3,0]K

[3,0], (4.69)

Q
Ô2|0,3
3 ({y′}3) = σ̂3(σ̂

2
1 − 2(3 + σ̂2))

2 + (B[0,3] + C[0,3]σ̂1)K
[0,3], (4.70)

where all variables Â[a,b], B[a,b] and C[a,b] are constants. Notice that, since (4.66) is not anymore

a symmetric function, the polynomials Q
Ô2|3,0
3 and Q

Ô2|0,3
3 are now different from each other.
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4.3.3 Four-particle form factors

The four-particle form factors are given by

Q
Ô2|3,1
4 ({y}3, y

′
1) = (Â[3,1] + B[3,1]σ1 + C[3,1]σ̂1)K

[3,0]Z [3,1]

−Â[1,2]((3 + σ2)(−3σ2
1 + (3 + σ2)

2) + σ1(σ
2
1 − 4(3 + σ2))σ3)Z

[3,1]

−(B[1,2] − B[2,0])(−4K [3,0]σ̂1 + (σ2
1 − 2(3 + σ2))

2
σ3)Z

[3,1]

−C[1,2]((3 + σ2)(J
[3,0] − σ̂1(3σ

2
1 − (3 + σ2)

2)) + σ̂1σ1(σ
2
1 − 4(3 + σ2))σ3)Z

[3,1]

+B[2,0](σ̂1 + σ1)[3K
[3,0](4σ̂1 + σ1) − J [3,0]σ̂2

1(3 + σ2) − 12σ̂1σ1σ3K
[2,0]

−σ̂1σ1σ3(σ
2
1(3 + σ2) − 4σ1σ3)] + B[0,1][9K

[3,0]σ̂4
1 + 3σ2

1(3 − σ2
1)(3σ

2
1 − (3 + σ2)

2)

−3σ̂1σ1(18σ
4
1 + (3 + σ2)

2(15 + 4σ2) − 3σ2
1(33 + 16σ2 + 2σ2

2))

+σ̂2
1(3(3 + σ2)

3(−4 + 3σ2) + 3σ4
1(−21 + 8σ2) + σ2

1(297 + 9σ2 − 54σ2
2 − 8σ3

2))

−3σ1(σ
4
1 + σ2

1(−9 + σ2) + 4(3 + σ2)
2)σ3 − 2(σ4

1 + 4(3 + σ2)
2 − 2σ2

1(9 + 2σ2))σ
2
3

+σ̂1σ3(−σ4
1σ2 + (3 + σ2)

2(15 + σ2) − 18σ2
1(7 + 3σ2) + σ3

1σ3(5σ
2
1 − 4σ2))

−σ̂2
1σ3(2σ

5
1 + σ3

1(9 − 19σ2) + 11σ1(3 + σ2)
2 + 8σ2

1σ3 + 4(3 + σ2)σ3)

+σ̂3
1(σ1(−33 + 9σ2

1 − 10σ2)(3σ
2
1 − (3 + σ2)

2)

+σ3(7σ
4
1 − 12(3 + σ2)

2 + 3σ2
1(5 + 3σ2) − 4σ1σ3))], (4.71)

Q
Ô2|2,2
4 ({y}2, {y′}2) = 9σ̂1(K

[0,2]σ̂2
1 − K [0,2]σ̂2 − σ̂2

2)9K
[0,2](2σ̂2

1 − 3σ̂2)σ1

−3σ̂2(−18 + 6σ̂2
1 + σ̂2

2)σ1 + 3K [0,2]σ̂1(K
[0,2] − σ̂2)σ

2
1

+(−6K [0,2]σ̂2
1 + σ̂2

2(6 + σ̂2))σ
3
1 + σ̂1(−3K [0,2] + σ̂2(K

[0,2] + σ̂2))σ
4
1

+K [0,2]σ̂2σ
5
1 + σ1(27 + 27σ̂2 + 9σ̂2

2 + 4σ̂3
2 − 9σ2

1 − 9σ̂2σ
2
1 − σ̂2

2σ
2
1)

+σ̂1(9K
[0,2] + 3(3σ̂2

1 + σ̂2
2) − (9 + 6σ̂2 + 4σ̂2

2)σ
2
1 + (K [0,2] + σ̂2

1)σ
4
1)

+σ̂3
1(−(σ2

1(−3 + σ2
1)) + 3σ̂2(−1 + σ2

1)) − σ̂4
1(3σ̂1 + σ1(3 − σ̂2 + σ2

1))

+σ̂2
1σ1(−5σ̂2

2 + 6σ2
1 + σ̂2(−12 + 5σ2

1))σ2 + σ2
2(−3σ̂1(2 + σ̂2

1 − σ̂2)σ̂2) (4.72)

+σ2
2(−σ̂2σ1(6 + 5σ̂2 − 3σ̂1σ1) + K [0,2](3σ̂1 + σ3

1) − σ̂2(3σ̂1 − σ1)σ2)

+K [0,2]Z [2,2][(−1 + Â[3,0] + C[0,3])σ1(−3 + σ2
1) + (B[0,3] + C[0,3]σ̂1)σ2]

−Z [2,2][K [0,2]K [2,0](Â[2,2] + B[2,2]σ̂1) − Â[3,0](K
[0,2]σ1(3 − σ2

1) + σ̂2(σ̂1 + σ1)K
[2,0])],
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and

Q
Ô2|0,4
4 ({y}3, y

′
1) = (Â[0,4] + B[0,4]σ̂1)K

[0,4]

−(Â[2,0] + B[1,2]σ̂1)σ̂4(27 − 6σ̂2
1 + 12σ̂2 + σ̂2

2 − 2σ̂1σ̂3 + 2σ̂4)
2

+B[0,1][3σ̂1(9σ̂
4
1(15 + σ̂2) + 2(3 + σ̂2)

3(27 + σ̂2(6 + σ̂2))

−9σ̂2
1(3 + σ̂2)(33 + σ̂2(10 + σ̂2))) + 6(−4(3 + σ̂2)

4 + 3σ̂4
1(21 + σ̂2))σ̂3

−12σ̂2
1(54 + 27σ̂2 + 6σ̂2

2 + σ̂3
2)σ̂3 + σ̂1(270 + 198σ̂2 + 30σ̂2

2 − 2σ̂3
2 + 3σ̂2

1(39 + σ̂2))σ̂
2
3

+4(3σ̂2
1 + 2(3 + σ̂2)

2)σ̂3
3 + 3σ̂1(36σ̂

4
1 − σ̂2

1(585 + σ̂2(180 + 7σ̂2)))σ̂4

+3σ̂1(3 + σ̂2)(567 + σ̂2(231 + σ̂2(25 + σ̂2)))σ̂4 + 4σ̂1(−30 + 3σ̂2
1 − 7σ̂2)σ̂

2
3σ̂4

+3(234 + 24σ̂4
1 + 114σ̂2 + 6σ̂2

2 − 2σ̂3
2 − σ̂2

1(303 + 80σ̂2 + σ̂2
2))σ̂3σ̂4

+(−4σ̂3
1(12 + σ̂2) + 3σ̂1(168 + 63σ̂2 + 5σ̂2

2) − 12σ̂2
1σ̂3 + 24(4 + σ̂2)σ̂3)σ̂

2
4]

+Â[1,2][3(−9σ̂6
1 − 18σ̂2

1(3 + σ̂2)
2(5 + σ̂2) + (3 + σ̂2)

4(15 + σ̂2) + 3σ̂4
1(54 + 21σ̂2 + σ̂2

2))

−3σ̂1(9σ̂
4
1 + 6(3 + σ̂2)

2(7 + σ̂2) − σ̂2
1(135 + 48σ̂2 + σ̂2

2))σ̂3

−(9σ̂4
1 − 39σ̂2

1(3 + σ̂2) + (3 + σ̂2)
2(15 + σ̂2))σ̂

2
3 + σ̂1(−σ̂2

1 + 4(3 + σ̂2))σ̂
3
3

+(3σ̂4
1(−3 + 4σ̂2) + 2(3 + σ̂2)

2(36 + 21σ̂2 + σ̂2
2) − σ̂2

1(135 + 153σ̂2 + 39σ̂2
2 + σ̂3

2))σ̂4

+σ̂1(−27 − 24σ̂2 − 5σ̂2
2 + 2σ̂2

1(−9 + 2σ̂2))σ̂3σ̂4 − (5σ̂2
1 + 4(3 + σ̂2))σ̂

2
3σ̂4

+(−54 + σ̂2
1(27 − 4σ̂2) − 3σ̂2 + 5σ̂2

2 + 13σ̂1σ̂3 − 7σ̂4)σ̂
2
4]

+(B[2,0] − B[1,2])[−3σ̂1(108σ̂
4
1 − 3σ̂2

1(3 + σ̂2)(9 + σ̂2)
2 + (3 + σ̂2)

3(45 + σ̂2(6 + σ̂2)))

+6(−54σ̂4
1 + 2(3 + σ̂2)

4 + σ̂2
1(3 + σ̂2)(45 + σ̂2(6 + σ̂2)))σ̂3 + 4σ̂1(−2σ̂2

1 + 3(5 + σ̂2))σ̂
2
3σ̂4

+σ̂1(−108σ̂2
1 + (3 + σ̂2)(−27 + (−18 + σ̂2)σ̂2))σ̂

2
3 − 4(3σ̂2

1 + (3 + σ̂2)
2)σ̂3

3

−σ̂1(3483 + 72σ̂4
1 + 2565σ̂2 + 603σ̂2

2 + 51σ̂3
2 + 2σ̂4

2 − 12σ̂2
1(99 + 30σ̂2 + σ̂2

2))σ̂4

+(−48σ̂4
1 + 4σ̂2

1(144 + 39σ̂2 + σ̂2
2) + 3(−117 − 57σ̂2 − 3σ̂2

2 + σ̂3
2))σ̂3σ̂4

−4σ̂2
4(−12σ̂3

1 − 4σ̂2
1σ̂3 + 3(4 + σ̂2)σ̂3 + σ̂1(99 + 2σ̂2(18 + σ̂2) + 2σ̂4))]

+C[1,2][−9σ̂1(3σ̂
6
1 − 4σ̂2(3 + σ̂2)

3 − σ̂4
1(18 + 21σ̂2 + σ̂2

2) + σ̂2
1(27 + 99σ̂2 + 45σ̂2

2 + 5σ̂3
2))

−3(9σ̂6
1 − 4(3 + σ̂2)

4 − σ̂4
1(27 + 48σ̂2 + σ̂2

2) + 4σ̂2
1(27 + 45σ̂2 + 15σ̂2

2 + σ̂3
2))σ̂3

−3σ̂1(3σ̂
4
1 − σ̂2

1(3 + 13σ̂2) + 12(6 + 5σ̂2 + σ̂2
2))σ̂

2
3 − (σ̂4

1 − 4σ̂2
1σ̂2 + 4(3 + σ̂2)

2)σ̂3
3

+σ̂1(3σ̂
4
1(−15 + 4σ̂2) − σ̂2

1(−729 − 63σ̂2 + 39σ̂2
2 + σ̂3

2))σ̂4

+σ̂1(3 + σ̂2)(−702 + σ̂2(−135 + σ̂2(24 + σ̂2)))σ̂4 + σ̂1(−9σ̂2
1 + 8(6 + σ̂2))σ̂

2
3σ̂4

+(σ̂4
1(−42 + 4σ̂2) + σ̂2

1(441 + 84σ̂2 − 5σ̂2
2) + 3(−117 − 57σ̂2 − 3σ̂2

2 + σ̂3
2))σ̂3σ̂4

−σ̂2
4(σ̂

3
1(−51 + 4σ̂2) − 21σ̂2

1σ̂3 + 12(4 + σ̂2)σ̂3 + σ̂1(342 + 99σ̂2 − σ̂2
2 + 11σ̂4))]. (4.73)
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4.3.4 From boundary to bulk form factors

The bulk counterparts of the solutions above are:

Q
Ô2|1,1
2;bulk (y1, y

′
1) = σ̂1(σ1 + σ̂1), (4.74)

Q
Ô2|2,0
2;bulk (y1, y2) = σ1(B[0,1]σ

2
1 + B[2,0]K

[2,0]
bulk), (4.75)

Q
Ô2|1,2
3;bulk (y1, y

′
1, y

′
2) = [(B[1,2] − B[2,0])σ1 + C[1,2]σ̂1]Z

[1,2]K
[0,2]
bulk − σ̂2B[2,0](σ1 + σ̂1)Z

[1,2]

+ B[0,1][(σ1 + σ̂1)(σ̂
2
2 − 2σ2

1σ̂
2
1 + 3σ̂2σ

2
1) + 2σ̂2σ1(σ̂2 + σ1σ̂1)], (4.76)

Q
Ô2|3,0
3;bulk ({y}3) = σ2

2(σ1σ2 − 4σ3) + σ1Â[3,0]K
[3,0]
bulk, (4.77)

Q
Ô2|0,3
3;bulk ({y′}3) = 4σ̂2

2σ̂3 + σ̂1C[0,3]K
[0,3]
bulk, (4.78)

Q
Ô2|3,1
4;bulk ({y}3, y

′
1) = (B[3,1]σ1 + C[3,1]σ̂1)K

[3,0]
bulkZ

[3,1]

+ (B[2,0] − B[1,2])((σ
2
1 − 2σ2)

2
σ3 − 4K

[3,0]
bulkσ̂1)Z

[3,1]

− C[1,2](σ
2
2(σ1σ2 − 4σ3) + σ3

2σ̂1 + σ1(σ
2
1 − 4σ2)σ3σ̂1)Z

[3,1]

− B[2,0]σ̂1(σ1 + σ̂1)(σ1σ2 − 4σ3)(σ
2
1σ3 + σ2

2σ̂1)

+ B[0,1][−2(σ2
1 − 2σ2)

2
σ2

3 + σ3(−σ4
1σ2 + σ3

2 + σ1(5σ
2
1 − 4σ2)σ3)σ̂1 (4.79)

+ (σ1σ
3
2(9σ2 − 8σ2

1)(19σ
2
1σ2 − 11σ2

2 − 2σ4
1)σ3 − 4(2σ2

1 + σ2)σ
2
3)σ̂

2
1

+ (σ1σ
2
2(10σ2 − 9σ2

1) + σ3(7σ
4
1 + 9σ2

1σ2 − 12σ2
2 − 4σ1σ3) + 9K

[3,0]
bulkσ̂1)σ̂

3
1],

Q
Ô2|0,4
4;bulk ({y′}4) = B[0,4]σ̂1K

[0,4]
bulk − B[1,2]σ̂1σ̂4(σ̂

2
2 − 2σ̂1σ̂3 + 2σ̂4)

2

+ (B[2,0] − B[1,2])[σ̂
2
2(σ̂1σ̂2 − 4σ̂3)σ̂

2
3 − 2σ̂1σ̂

4
2σ̂4 + σ̂2

2(4σ̂
2
1 + 3σ̂2)σ̂3σ̂4

− 4σ̂1(2σ̂
2
1 − 3σ̂2)σ̂

2
3σ̂4 + 4(4σ̂2

1 − 3σ̂2)σ̂3σ̂
2
4 − 8σ̂1(σ̂

2
2 + σ̂4)σ̂

2
4]

+ B[0,1][−2σ̂2
2(σ̂1σ̂2 − 4σ̂3)σ̂

2
3 + (3σ̂1σ̂

4
2 − 3σ̂2

2(σ̂
2
1 + 2σ̂2)σ̂3 (4.80)

+ 4σ̂1(3σ̂
2
1 − 7σ̂2)σ̂

2
3)σ̂4 − (σ̂1(4σ̂

2
1 − 15σ̂2)σ̂2 + 12(σ̂2

1 − 2σ̂2)σ̂3)σ̂
2
4]

+ C[1,2][−(σ̂2
1 − 2σ̂2)

2
σ̂3

3 − σ̂1(σ̂
2
1 − σ̂2)σ̂

3
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1σ̂2 + 3σ̂2
2)
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2
1 − 8σ̂2)σ̂3)σ̂4 − σ̂2

4(σ̂1(4σ̂
2
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1 − 4σ̂2)σ̂3 + 11σ̂1σ̂4)],

Q
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1 + σ̂2(σ̂2 + σ̂1σ1)) + 4σ̂2

2σ1(σ̂2 − σ̂1σ1)σ2

+ σ̂2σ1(σ̂
4
1 − σ̂2σ

2
1)σ2 + 3σ̂1σ̂

2
2σ

2
2 + 3σ̂1σ̂2(σ

2
1 − σ2)σ2(σ̂

2
1 + σ2)

+ K [0,2]σ̂1σ
4
1(σ̂2 + σ2) − 5σ̂2σ1σ2(σ̂

2
1(σ̂2 − σ2

1) + σ̂2σ2)

− σ1σ2(σ̂
4
1σ

2
1 − σ̂2σ

2
2) + Z [2,2]Â[3,0](K

[2,0]σ̂2(σ̂1 + σ1) − K [0,2]σ3
1)

+ K [0,2]Z [2,2]((Â[3,0] + C[0,3] − 1)σ3
1 + σ̂1(C[0,3]σ2 − K [2,0]B[2,2])). (4.81)

Equations (4.74)-(4.81) provide a set of solutions to the bulk form factor equations hitherto
unknown.

5 Conclusions and outlook

In this paper we have initiated the boundary form factor program for theories with many par-
ticles, concentrating on the example of An-ATFTs. We have computed all minimal one- and
two-particle form factors and provided a description of the pole structure of higher particle form
factors for these theories. We have then specialize our study to the self-dual point, B = 1, and

20



to the A2-theory, which possesses a pair of particles, 1 = 2̄, that can be regarded as bound states
resulting from the processes 1 + 1 → 2 and 2 + 2 → 1. The presence of bound states implies
that besides the kinematic residue equations also the bound state residue equations need to be
satisfied, which makes the computation of form factors a lot more involved.

For the A2-case we have obtained all form factors, up to four particles, of two families of
fields which correspond to spinless and spin-1 fields of the bulk theory, respectively. Indeed we
have shown that the form factors of our first family of solutions reduce to those obtained in [32]
for bulk spinless fields in the appropriate limit. In addition, we have obtained all form factors
up to four particles of another class of fields which correspond to spin-1 bulk fields other than
simple derivatives of the previous ones. The bulk form factors of these fields were not known up
to now and have been obtained as a certain limit of our boundary solutions.

This work provides further support to the statement that the boundary form factor program
[15] is a very useful tool for the computation of form factors of boundary fields, even for multi-
particle theories. The fact remains however that the structure of these solutions is a lot more
involved than for the bulk case and identifying general patterns is still a challenge, even for
single particle models.

We would like to finish by emphasizing that the boundary form factor program for IQFTs is
still at its early stages of development. The study of more models should provide further insight
into the mathematical structures of the form factors and applications of the program to the
computation of correlation functions should be further explored. Focusing on the present work,
a natural follow up would be to look at ATFTs related to other simple Lie algebras, including
the completion of the study of the An-case which we hope to carry out in a near future.

Acknowledgments: The author is grateful to Benjamin Doyon and Andreas Fring for their
insightful comments and careful reading of this manuscript.
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