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Abstract: We establish that by parameterizing the configuration space of a one-

dimensional quantum system by polynomial invariants of q-deformed Coxeter groups it

is possible to construct exactly solvable models of Calogero type. We adopt the previ-

ously introduced notion of solvability which consists of relating the Hamiltonian to finite

dimensional representation spaces of a Lie algebra. We present explicitly the Gq

2
-case for

which we construct the potentials by means of suitable gauge transformations.

1. Introduction

One of the ultimate goals in the study of quantum mechanical systems is to find explicit

and possibly exact solutions for the eigensystem of Hamiltonian systems. The Calogero

[1, 2, 3] and Sutherland [4, 5, 6, 7] models are some of the well known examples for

theories which are integrable and can be solved exactly, classically as well as quantum

mechanically. The integrability of the models was established more systematically by

relating them to Lie algebraic structures, in the so-called Hamiltonian reduction method

[8, 9, 10] or by formulating Lax pairs and zero curvature conditions [11, 12, 13, 14, 15, 16].

Relatively recent [17, 18, 19, 20] the procedure to establish their exact solvability (which

is conceptionally different from integrability) was put on a more systematic ground by

relating first the coordinates of the configuration space of the Hamiltonians to invariant

polynomials. It was shown that the differential operators in these polynomials form a

representation for certain algebras, albeit not uniquely. Having an algebraic version of the

model, solvability can be established thereafter by noting that the eigenfunctions form a

flag which coincides with the finite dimensional representation space of a gl(N)-Lie algebra.

This approach has turned out to be successful in many cases and could even be extended

to theories which are supersymmetric [21].

http://arXiv.org/abs/hep-th/0405147v2
mailto:A.Fring@city.ac.uk
mailto:C.Korff@ed.ac.uk
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In a sequence of publications [22, 23, 24, 25] this procedure was reversed. Instead

of starting with a concrete potential for a theory, Haschke and Rühl proposed to start

with a Hamiltonian already formulated in terms of invariant polynomials and construct

the potential from it. Hence, in this approach the solvability is already build in from the

very start and the question is addressed if possibly one obtains new types of potentials

which are related to solvable models, which are potentially also integrable. For several

examples of models formulated in terms of invariants of the Weyl Group [22, 23, 24] and

even for Coxeter groups which are not Weyl groups [25, 26] it was shown that this is indeed

possible.

The main purpose of this paper is to demonstrate that this procedure can also be

carried out successfully for models which are related to q-deformed Coxeter groups. We

demonstrate this for Gq
2. At the same time we show that also for these groups the associ-

ated Hamiltonians can be formulated in terms of the gl(N)-Lie algebra generators, hence

guaranteeing their solvability.

We shall focus here mainly on the construction of new potentials of Calogero type,

adopting to a large extent the point of view of the aforementioned papers. The obvious

question of solving the associated Schrödinger problem similar as it has been done for the

AN case in [1, 2, 3] shall not be our concern here. While this is an interesting problem

for future work, it appears that it is still open even for almost all of the non-deformed Lie

algebras other than the AN -series.

Our manuscript is organized as follows: In the next section we recall the notion of

solvability based on the fact that certain types of Hamiltonians can be formulated in terms

of the generators of the Borel subalgebra of the gl(N)-Lie algebra. We show how from

this formulation one may systematically construct potentials. In section 3 we assemble the

main mathematical properties about polynomial invariants of the Coxeter group, which

play the crucial role of coordinates in this context. In section 4 we extend these ideas to

the q-deformed Coxeter groups. In section 5 we discuss how certain choices of the pre-

potential lead to Cologero type potentials. In sections 6 and 7 we discuss the Calogero

model for G2 and its q-deformed version, respectively, deriving some explicit Calogero type

potentials. We state our conclusions in section 8.

2. Construction of exactly solvable potentials

We start by recalling the notion of exact solvability as proposed originally by A. Turbiner

[17] about ten years ago. For this we require polynomial spaces of the form

Vn = span

{

Ik2
2 Ik3

3 . . . IkN

N

∣

∣

∣

∣

∑N

i=2
ki = n

}

. (2.1)

The Ii constitute some generic set of variables not further specified at this point. Evidently,

these spaces are embedded into each other V0 ⊂ V1 ⊂ V2 ⊂ . . ., hence forming an infinite

flag. A Hamiltonian operator H acting on such spaces and respecting

H : Vn 7→ Vn (2.2)
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possesses an infinite family of polynomial eigenfunctions. Therefore, it is natural to refer

to such type of Hamiltonians as exactly solvable.

It is now a matter of identifying the spaces Vn, which of course allows for numerous

solutions. It was noticed that many known models can be fitted into this scheme when

one identifies Vn with a finite dimensional representation space of a gl(N)-Lie algebra. A

simple representation of this algebra in terms of first order differential operators is found

when expressing the usual gl(N)-generators Eij as

Eij ≡ J0
ij = Ii∂j, Ei0 ≡ J−

i = ∂j , E0i ≡ J+
i = κIi −

N
∑

k=2

IiIk∂k for κ ∈ R
+, (2.3)

where κ is an arbitrary constant and ∂i = ∂/∂Ii. It is easy to check that these differential

operators satisfy indeed the usual gl(N)-commutation relations

[Eij, Ekl] = δjkEil − δliEkj . (2.4)

According to the representation (2.3) all Hamiltonians which are expressible in terms of

the Borel subalgebra of gl(N), i.e. involving only the generators J0 and J−, will respect

(2.2) and are therefore exactly solvable. Remarkably, it has turned out that many known

solvable models of Calogero and Sutherland type can be brought into the general form

H =
∑

ckl
ijJ

0
ijJ

0
kl +

∑

c̃kijJ
0
ijJ

−
k +

∑

ĉiJ
−
i +

∑

čijJ
0
ij , (2.5)

with ckl
ij , c̃

k
ij , ĉi, čij ∈ R being some coupling constants.

Unfortunately not all models, in particular the ones we shall discuss below, can be fitted

into the gl(N)-framework. Nonetheless, following the same ideology as outlined above, one

can appeal to some other algebras which can be realized with different types of differential

operators than those provided in (2.3). For our purposes the semi-direct sum gl2(R)⋉R
ℓ+1

will be rather useful [17]. It may be realised by the ℓ+ 5 generators

J1 = ∂1, J2 = I1∂1 −
κ

3
, J3 = I2∂2 −

κ

3ℓ
, (2.6)

J4 = I2
1∂1 + ℓI1I2∂2 − κI1, J5+i = Ii

1∂2 for 1 ≤ i ≤ ℓ, κ ∈ R
+ . (2.7)

The further condition κ ∈ Z
+ guarantees that the representation is finite dimensional.

Expressing now Hamiltonians in terms of the Borel subalgebra of gl2(R) ⋉ R
ℓ+1, i.e. the

J i for 1 ≤ i ≤ ℓ+ 5 with i 6= 4, the flag space of the form

V̄n = span
{

Ik1
1 Ik2

2 |0 ≤ k1 + ℓk2 ≤ n
}

(2.8)

will be left invariant in the sense (2.2).

The above observations inspired the starting point of the approach in [22, 23, 24, 25]

which is the eigenvalue equation for the function ϕ(~I)

Dϕ = Eϕ (2.9)

– 3 –
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with D being a symmetric Schrödinger operator of the form

D = −
∑

k,l

∂kg
−1
kl ∂l +

∑

k

rk∂k . (2.10)

Here g−1
kl denotes the inverse of the curvature free symmetric Riemannian tensor gkl = glk,

which, in view of (2.5), is at most quadratic in the coordinates Ii. The functions rk are

assumed, again in view of (2.5), to be linear in the coordinates Ii. In many cases these

coordinates are taken to be invariant polynomials (for more details see below), albeit some-

times re-parameterizations are needed to guarantee the quadratic and linear dependence

of gkl and rk, respectively.

Clearly, the operator (2.10) is not of the usual form of a Hamiltonian, that is Laplacian

plus potential. In order to extract a potential from this Hamiltonian one has to carry out

a gauge transformation ϕ = eχψ to bring the equation (2.9) into the more standard form

(−∆ + V )ψ = Eψ (2.11)

involving the Laplace-Beltrami operator in general Riemannian space

∆ =
1√
G

∑

k,l

∂k

√
Gg−1

kl ∂l with G−1 = det g−1 (2.12)

and a potential V . Extracting then from the equality e−χDeχ = −∆ +V the terms of first

and zeroth order in ∂l, one finds

rk =
∑

l

g−1
kl ∂l(2χ− ln

√
G) (2.13)

V =
∑

k

rk∂kχ−
∑

k,l

[

∂k(g
−1
kl ∂lχ) + g−1

kl ∂kχ∂lχ
]

, (2.14)

respectively. Multiplying now (2.13) with g−1
lk and differentiating thereafter with ∂m one

realizes that the right hand side is symmetric under the exchange m ↔ l. Therefore, one

deduces immediately for the left hand side the same symmetry

∂m

∑

l

(gklrl) = ∂k

∑

l

(gmlrl) . (2.15)

This equation constraints the values of rk and can be solved by

rk =
∑

l

g−1
kl ∂lρ . (2.16)

The function ρ introduced at this point is referred to as pre-potential. It should be stressed

that there is no compelling argument in this approach, which fixes this pre-potential and

it remains subject to a convenient ansatz. Substituting (2.16) back into (2.13) and (2.14)

one then finds

χ =
1

2
(ρ+ ln

√
G) (2.17)

V =
1

4

∑

k,l

g−1
kl ∂kρ∂lρ−

1

4

∑

k,l

g−1
kl ∂k(ln

√
G)∂l(ln

√
G) −

∑

k,l

∂k(g
−1
kl ∂lχ) . (2.18)
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It will turn out below that the term in V which involves χ is zero or constant. Provided that

g−1
kl ∂l(ln

√
G) is linear in ~I, this would follow directly as a consequence of the assumption

already made on rk, namely that it is linear in the variables ~I. In that case we can deduce

that this term in the potential would be constant and omitting it just amounts to a constant

shift of the ground state energy.

Before we can specify in more detail the ansatz for the pre-potential ρ proposed in [24],

we have to gather various facts about invariant polynomials. This will make the suggested

ansatz look very natural, albeit not entirely compelling.

3. Polynomial invariants of the Coxeter group

We specify here in more detail the nature of the variables ~I and assemble some of their

mathematical properties. First we recall the well known fact, that to each simple root αi

in a root system ∆ one can associate a reflection on the hyperplane through the origin

orthogonal to αi

σi(~x) = ~x− 2
~x · αi

α2
i

αi for 1 ≤ i ≤ ℓ, ~x ∈ R
ℓ. (3.1)

These reflections constitute the Coxeter group W of rank ℓ or more specifically when

2α · β/β2 ∈ Z for all α, β ∈ ∆ a Weyl group. One may then express each vector ~x ∈ R
ℓ as

~x =
∑ℓ

i=1 xiαi and associate to it a polynomial P (x1, . . . , xℓ). The action of the Coxeter

group on these polynomials is defined as

σiP (x1, . . . , xℓ) = P (σ−1
i (x1), . . . , σ

−1
i (xℓ)) . (3.2)

From the defining relations (3.1) and (3.2) it follows directly that by taking the simple

roots as a basis for R
ℓ the action of the simple Weyl reflections acquires a particularly

simple form

σiP (x1, ..., xℓ) = P (x1, ..., xi−1, xi −
∑

j

xjKji, xi+1, ..., xℓ) . (3.3)

Here K denotes the Cartan matrix Kij = 2αi ·αj/α
2
j . The special set of polynomials which

does not change under the action of W, i.e. for which

σiIs(x1, . . . , xℓ) = Is(x1, . . . , xℓ) for all σi ∈ W (3.4)

are the polynomial invariants of the Coxeter group. It turns out that a basic set of linear

independent polynomials {I1+s1, . . . , I1+sℓ
} can be graded by the ℓ exponents si of the

Coxeter group, with 1 ≤ i ≤ ℓ. The subscripts 1 + si indicate here the degrees of the

polynomials. It is this set of basic invariants which one takes as the coordinates of the

previously described Hamiltonian system.

Let us now establish and recall some of their main properties, which we shall exploit

below:
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3.1 Eigenbasis of the Coxeter element

It is clear that the choice of the basis for the coordinates will alter the form of the potential

and a priori there is no coordinate system which is more special than another one. However,

certain choices make the final expressions very simple and one can take here the search

for simplicity as a guiding principle. A particularly suitable choice is the eigenbasis of the

Coxeter element. We will see that in this basis the expressions for the polynomial invariants

simplify considerably.

Adopting the notations of [27] (see also references therein), we first define the Coxeter

element σ in terms of the two special elements of the Weyl group

σ± :=
∏

αi∈Φ±

σi , (3.5)

as σ := σ−σ+. Here we have partitioned the set of simple roots into two disjoint sets, say

αk ∈ Φ+ and βk ∈ Φ−, by associating the values ci = ±1 to the vertices i of the Dynkin

diagram of the Lie algebra, in such a way that no two vertices related to the same set are

linked together. The eigensystem of the Coxeter element can then be brought into the form

σvj = e
2πi
h

sjvj and vj = e−i π
h

sj

∑

k

ξjkαk +
∑

k

ξjkβk , (3.6)

where we denote by ξ the matrix of left eigenvectors of the Cartan matrix, i.e.

ℓ
∑

j=1

ξijKjk = 4 sin2 πsi

2h
ξik , (3.7)

and the si are the aforementioned exponents. Then we implicitly define a variable substi-

tution {xi} → {wi} by the basis transformation

~x =
∑

i

xiαi =
∑

i,j

ζijwjαi =
∑

i

wivi . (3.8)

with

ζkj :=

{

e−i π
h

sjξjk , for αk ∈ Φ+

ξjk , for βk ∈ Φ−
. (3.9)

Defining then also polynomials in these new variables, we obtain as a consequence of (3.6)

the action of the Coxeter element on these polynomials

σP (w1, ..., wℓ) = P (w1e
2πi
h , w2e

2πi
h

s2, ..., wℓe
− 2πi

h ) . (3.10)

Recall here that si + sℓ−i = h for 1 ≤ i ≤ ℓ. Since the Coxeter element is build from

simple Weyl reflections it follows from (3.4) that the invariants of the Coxeter group are

also invariant under the action of the Coxeter element

σIs(x1, . . . , xℓ) = Is(x1, . . . , xℓ) = Is

(

∑

i

ζ1iwi, . . . ,
∑

i

ζℓiwi

)

. (3.11)

To be able to compute the action of the Weyl reflections we have to express the polynomials

in terms of the x-variables. Nonetheless, by means of (3.8) we can also translate the action

of the Weyl reflections in the x-variables to an action in terms of the w-variables which

allows for a more concise and possibly generic formulation of the invariants (see below).

– 6 –
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3.2 Universal formulae for invariants

It is a natural question to ask, whether there exist formulae which express the invariants

in a universal fashion, that is valid for all algebras. Indeed for invariants of degree 2 this

is possible and we find

I2(~x) =

ℓ
∑

i=1

tix
2
i +

∑

i<j

xiKijtjxj, Kijtj = Kjiti, ti > 1 . (3.12)

Here the ti denote the symmetrizers of the Cartan matrix, which could be avoided in the

above expression by absorbing them into the roots, which amounts to taking the simple

co-roots instead of the simple roots as a basis. For higher degrees we did not succeed to

find universal formulae for the invariants.

Changing, however, to the eigenbasis of the Coxeter element it is far more obvious how

to write down a universal expression. From (3.10) it is clear that any invariant has to be

of the form

Is(~w) =
s
∑

a1,...,aℓ=1

cs(a1, . . . , aℓ)w
a1
1 . . . waℓ

ℓ (3.13)

where the constants cs(a1, . . . , aℓ) are constrained as

cs(a1, . . . , aℓ) =

{

6= 0 if
∑ℓ

i=1 ai = s,
∑ℓ

i=1 aisi = nh, n ∈ Z

= 0 otherwise
. (3.14)

Consequently, this means for instance that the quadratic invariant has to be of the form

I2 =
∑

i

c2(ai, aℓ−i+1)wiwℓ−i+1 . (3.15)

One can proceed similarly for higher degrees, but it is then less obvious how to fix the

constants cs(a1, . . . , aℓ). Hence, for the time being we have to rely on case-by-case studies,

but even for explicit algebras the most generic expressions are difficult to find in the

literature. See [28] for a complete list.

3.3 Jacobians and Riemannians

It will turn out that a key quantity in this scheme is the Jacobian determinant related to

the polynomial invariants

J = det (j) with jkl =
∂I1+sk

∂ul
. (3.16)

The determinant J is known to possess various important properties, see e.g. [29]:

i) The polynomials I1+s1, . . . , I1+sℓ
in u1, . . . , uℓ are algebraically independent if and only

if J 6= 0.

– 7 –
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ii) Defining for each root α a linear polynomial

pα(u1, . . . , uℓ) =
ℓ
∑

i=1

γ̃(i)
α ui with γ̃(i)

α ∈ R , (3.17)

such that pα(u1, . . . , uℓ) = 0 defines the hyperplane through the origin orthogonal to

α. Then one can factorize J as

J = µ
∏

α∈∆+

pα(u1, . . . , uℓ) with µ ∈ R , (3.18)

where ∆+ denotes the set of positive roots.

iii) Defining the inverse Riemannian in terms of the basic invariants {I1+s1 , . . . , I1+sℓ
}

g−1
kl =

ℓ
∑

i=1

∂Ik
∂ui

∂Il
∂ui

, (3.19)

the Jacobian determinant is related to the determinant of the inverse Riemannian as

J2 = G−1 = det g−1 . (3.20)

The factorization properties (3.18) and (3.20) for J and G−1, respectively, will make the

ansatz for the pre-potential ρ appear very natural.

It is worth pointing out that the choice of the metric (3.19) guarantees that the Lapla-

cian in the variables ~u is flat. This is easily seen by considering the change of the Euclidean

metric tensor, i.e. g(~u)mn = δmn, under a coordinate transformation. For this we just have

to multiply

g(I)ij =
∑

m,n

∂um

∂Ii

∂un

∂Ij
g(u)mn =

∑

m

∂um

∂Ii

∂um

∂Ij
, (3.21)

with (3.19). This choice avoids the entire analysis which is needed in this approach to

guarantee the flatness of the Laplacian as carried out in [22].

4. Polynomial invariants of the q-deformed Coxeter group

We extend now the previous discussion and seek polynomials which are invariant under

q-deformed Weyl reflections. We adopt here the notation of [27], (see also [30]), for more

details on q-deformed Weyl reflections and the general context in which they emerged.

When acting on a simple root they are defined as

σq
i (αj) = αj − (2δij − [Iji]q)αi (4.1)

with I = 2−K being the incidence matrix of some Lie algebra and [n]q = (qn − q−n)/(q−
q−1) being the standard notation for a q-deformed integer. According to the notions out-

lined in the previous section the invariants are obviously defined by

σq
i Is(x1, . . . , xℓ) = Is(x1, . . . , xℓ) for 1 ≤ i ≤ ℓ . (4.2)

– 8 –
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Once again for polynomials of degree 2 we can write down a universal formula

Iq
2 =

ℓ
∑

i=1

[ti]qx
2
i +

∑

i<j

xi[Kij ]q[tj ]qxj (4.3)

which is invariant under the q-deformed Weyl reflections. As in the non-deformed case

higher invariants are difficult to write down in a universal form. Note also that the q-

deformed invariants in the sense of (4.2) are not invariants of the q-deformed Coxeter

elements as defined in [30, 27], as the latter does not just consist of transformations σq
i .

However, we can alter this definition slightly to achieve this, see section 7.

5. Ansatz for the pre-potential

Having fixed a set of basic invariants {I1+s1, . . . , I1+sℓ
} one assumes that the wavefunctions

in (2.9) and (2.11) depend on these coordinates, that is ϕ→ ϕ(~I) and ψ → ψ(~I). Naturally

one can then also view the potential as a function of the invariants, i.e. V → V (~I) and

understand that ∂k ≡ ∂/∂Ik. Defining the inverse Riemannian as in (3.19) and using

(3.20), we can re-write the potential (2.18) in the form

V =
1

4

∑

k,l

g−1
kl ∂kρ∂lρ−

1

4J2

∑

k,l

g−1
kl ∂kJ∂lJ − 1

2

∑

k,l

∂k

[

g−1
kl

(

∂lρ−
1

J
∂lJ

)]

. (5.1)

For the above mentioned reason the last term will usually drop out. It is apparent from

this formulation, that re-scaling J by a constant will not alter the potential, a fact which

is important with regard to the occurrence of possible coupling constants. To be more

specific about the potential one has to choose a suitable pre-potential. In [23, 24, 25] the

following ansatz was proposed

ρ =
ℓ
∑

i=0

γi lnPi(~I). (5.2)

The Pi(~I) for 1 ≤ i ≤ ℓ are defined by the factorization of the determinant of the inverse

Riemannian

J2 = G−1 = det g−1 =
ℓ
∏

i=1

Pi(~I) . (5.3)

Evidently, this ansatz (5.3) is inspired by the properties ii) and iii). However, there is an

additional significant constraint namely that the Pi(~I) are functions of the invariants ~I,

which as was argued above is needed to guarantee the solvability. Often one would like to

obtain also an additional harmonic confining term proportional to
∑

i
u2

i in V . This is

easily achieved by including also a factor of the form P0 ∼ exp(
∑

i
u2

i ) into the ansatz for

the pre-potential (5.2). For the reasons outlined in section 2, the entire Hamiltonian, that

means also this term, has to be expressed in terms of invariant polynomials. Usually we

can take P0 = exp(I2).

– 9 –
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Substituting the ansatz (5.3) into (2.18), the potential acquires the form

V =
1

4

∑

i,j,k,l

(

γiγj −
1

4

)

g−1
kl ∂k(lnPi)∂l(lnPj) −

1

2

∑

i,k,l

(

γi −
1

2

)

∂k

[

g−1
kl ∂l(lnPi)

]

. (5.4)

As was pointed out in [24], it will turn out that the terms with i 6= j in the first term

are constants (even zero) most of the time, which therefore can be dropped safely by just

shifting the ground state. The other motivation for the ansatz (5.3) is that one would like

the two terms in (5.1) or (2.18) to combine naturally.

Comparing now (5.3), (3.18) and (3.20) we can proceed and exploit the fact that the

Pi factorize further into linear polynomials

Pi =
∏

α∈∆
(i)
+

[pα(~u)]2 . (5.5)

The relation (5.5) is here the defining relation for the set of positive roots ∆
(i)
+ . Exploit-

ing the fact that the pα(~u) are linear in ~u, see (3.17), and changing from the invariant

polynomials as coordinates to the ~u-variables, we obtain

V =
∑

i,j







(

γiγj −
1

4

)

∑

α∈∆
(i)
+ ,β∈∆

(j)
+

∑

k γ̃
(k)
α γ̃

(k)
β

pα(~u)pβ(~u)






. (5.6)

Recall that the γ̃
(k)
α are defined in (3.17). The expression (5.6) constitutes a general for-

mula for potentials when starting with any Coxeter group. This structure will survive

in different coordinate systems, as clearly the pα(~u) remain linear after linear coordinate

transformations. Often one changes the coordinate system by using an explicit represen-

tations for the roots in an orthogonal basis, which one may find in various places of the

literature, e.g. [29]. Then (5.6) enables one to write down directly the potentials associated

to any Coxeter group. In practice it turns out that only the diagonal terms in the sum

survive, i.e. α = β, such that the potentials will always be of Calogero type. We omitted

in (5.6) the term resulting from the last term in (5.4) and also a possible constant.

6. From G2-polynomial invariants to the Calogero models

In [19] it was shown that the Calogero models for three particles exhibit an underlying

G2-structure, which can be exploited to establish their solvability. In [24] this procedure

was reversed and it was shown that the approach outlined in section 2 and 3 indeed yields

potentials of the Calogero type when one starts with a G2-structure. Here we recall briefly

the procedure, mainly to set the scene for the q-deformed treatment below, but also to

establish a few facts not pointed out so far. In particular, in [19] as well as in [24] not the

most general G2-invariants were used. As we will show below the most generic invariants

involve some arbitrary constants. The obvious question to ask is whether one obtains a

new type of potential when using the procedure outlined above in terms of these generic

coordinates, possibly involving additional coupling constants.
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Exactly solvable potentials for q-deformed Coxeter groups

Let us start with the action of the G2-Weyl reflections on the simple roots

σ1(α1) = −α1 σ1(α2) = 3α1 + α2 (6.1)

σ2(α1) = α1 + α2 σ2(α2) = −α2 . (6.2)

Then for a general vector ~x = x1α1 + x2α2 in R
2 we have

σ1(~x) = (3x2 − x1)α1 + x2α2 (6.3)

σ2(~x) = x1α1 + (x1 − x2)α2, (6.4)

such that

σ1P (x1, x2) = P (3x2 − x1, x2) (6.5)

σ2P (x1, x2) = P (x1, x1 − x2) . (6.6)

The equations (6.5) and (6.6) follow also directly from (3.3).

Using (6.5) and (6.6) we can now generate solutions to the equation (3.4), i.e. construct

the invariant polynomials. The procedure is straightforward. We simply write down the

most generic expression for a potential candidate for a polynomial invariant Is(~x) of degree

s similar to the form as in (3.13) with arbitrary coefficients cs, but now in terms of the x-

variables. Acting then with all simple Weyl reflections on this polynomial and demanding

invariance (3.4) leads to a system of equations which determine the cs. Depending on the

degree and the algebra this might not yield enough equations to fix all constants and one

ends up with expressions still involving free parameters. In this manner we find as generic

invariants

I2 = κ2

(

1

3
x2

1 + x2
2 − x1x2

)

(6.7)

I6 = κ6

(

− 2

27
x6

1 +
2

3
x5

1x2 −
5

3
x4

1x
2
2 + 5x2

1x
4
2 − 6x1x

5
2 + 2x6

2

)

+ κ̃6I
3
2 . (6.8)

Here κ2, κ6 and κ̃6 remain arbitrary constants. We see that besides an overall constant,

which is naturally always present, I6 also involves an additional free parameter κ̃6.

A first restriction on possible values the constants might take comes from the fact that

we want I2 and I6 to be algebraically independent. To establish this we compute first the

Jacobian determinant for these invariants according to the definition (3.16)

J =
2

3
κ2κ6x1x2(x1 − x2)(x1 − 2x2)(x1 − 3x2)(2x1 − 3x2) . (6.9)

As we expect from property i) stated in section 3 and the explicit expression in (6.8) we have

to keep κ6 6= 0 in order to guarantee the algebraic independence of I2 and I6. Obviously,

for κ6 = 0 we have I6 = κ̃6I
3
2 . We also note that κ̃6 can remain completely arbitrary in

this context, but as we see below, we can not simply set it to zero for our purposes.

Alternatively, we can compute the Jacobian determinant by an entirely different for-

mula, namely (3.18), and thus confirm the computation which led to (6.9). To be able to

use (3.18), we recall that the positive roots of G2 are, (see e.g. [31, 29]))

∆G2
+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} , (6.10)
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Exactly solvable potentials for q-deformed Coxeter groups

such that the hyperplanes result to

pα1 = 2x1 − 3x2, pα1+α2 = x1 − 3x2, p2α1+α2 = x1,

p3α1+α2 = x1 − x2, pα2 = x1 − 2x2, p3α1+2α2 = x1.
(6.11)

Assembling the pα into the product (3.18) the result confirms our findings (6.9) with

µ = (2/3)κ2κ6. Notice, that the constants κ2 and κ6 organize in a separate factor in J ,

such that different choices, apart from κ2 = 0 or κ6 = 0, will not alter the polynomial

structure of J . From (5.1) we deduce that in the second term of the potential the overall

factor in J just cancels, such that the constants κi completely drop out from this term.

So far, we have only two coordinates. To incorporate a three body interaction we need

one more coordinate. Let us therefore choose an orthogonal basis in R
3 for the simple

roots α1 = ε1− ε2 and α2 = −2ε1+ ε2+ ε3, with εi · εj = δij (see e.g. [29]). Then we can

introduce a new set of variables via the relation

~x = x1α1 + x2α2 = (x1 − 2x2)ε1 + (x2 − x1)ε2 + x2ε3 = y1ε1 + y2ε2 + y3ε3 , (6.12)

with the built-in constraint y1 + y2 + y3 = 0. In these variables the action of the Weyl

group on the same polynomials becomes

σ1P (y1, y2, y3) = P (y2, y1, y3) (6.13)

σ2P (y1, y2, y3) = P (−y1,−y3,−y2) . (6.14)

In principle, we could proceed as above, i.e. writing down generic expression with arbi-

trary coefficients and use directly (6.13) and (6.14) to find invariant polynomials in the

y-variables. However, since we have increased the number of coordinates also the amount

of unknown coefficients grows and we will end up with polynomials involving many more

free constants than just the three we are left with when using the x-variables. Instead, as

we know the invariants already, we can also use in (6.7) and (6.8) directly the substitutions

x1 → −y1 − 2y2 and x2 → −y1 − y2, such that we obtain

I2 = κ2(y
2
2 + y2

1 + y1y2)/3 (6.15)

I6 =
1

27
(κ̃6 − 2κ6)(y

6
1 + y6

2) +
1

9
(κ̃6 − 2κ6)(y

5
1y2 + y1y

5
2)

+
1

9
(5κ6 + 2κ̃6)(y

4
1y

2
2 + y2

1y
4
2) +

1

27
(40κ6 + 7κ̃6)y

3
1y

3
2. (6.16)

Only for the special choice κ2 = −3, κ̃6 = 2κ6 and κ6 = 1 the expressions (6.15) and (6.16)

reduce to the coordinates λ1, λ2 used in [19]. Notice, that in the y-variables the invariants

become symmetric polynomials [32].

In order to reproduce the Calogero potentials we need to make yet another coordinate

transformation and introduce Jacobi relative coordinates

yi = zi −
1

3

3
∑

j=1

zj , (6.17)
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which separate off the center of mass motion. The constraint in the y-coordinates is now

replaced by z1 + z2 + z3 = 3Z, where Z is constant. In these coordinates we compute the

inverse Riemannian (3.19) to

g−1
ij =

3
∑

k=1

∂Ii
∂zk

∂Ij
∂zk

= κ2

(

2/3I2 2I6
2I6 6I2

2/κ
3
2

[

2κ̃6I6 + I3
2 (4κ2

6 − κ̃2
6)/κ

3
2

]

)

ij

. (6.18)

Apparently g−1
ij is not quadratic in the variables Ii, which as we discussed is a necessary

requirement to be able to bring the Hamiltonian into the form (2.5) and hence ensuring

the solvability of the model. However, for κ̃6 = 2κ6 one can choose a different set of

variables I2 = τ2, I6 = τ2
3, see [19], such that ∂ig

−1
ij ∂j is of the desired form in the

τ variables. Alternatively, one can also use the representation of a different algebra to

establish solvability [19]. Let us from now on take κ̃6 = 2κ6 and κ2 = 1 but leaving κ6

arbitrary. Then we compute from (6.18)

G−1 = det g−1 = 4I6
(

4κ6I
3
2 − I6

)

. (6.19)

For the pre-potential we make now an ansatz according to (5.3), where we also include the

previously mentioned P0-term

P0 = eI2 , P1 = 4κ6I
3
2 − I6, P2 = I6 . (6.20)

From this we compute with formula (5.4) the potential to

V =
γ2

0

6
I2 + 3λ1κ6

I2
2

4κ6I3
2 − I6

+ 3λ2κ6
I2
2

I6
(6.21)

=
1

2
ω2

3
∑

k=1

z2
k + λ1

∑

1≤i<j≤3

1

(zi − zj)2
+ 3λ2

∑

1≤i<j≤3
i,j 6=k

1

(zi + zj − 2zk)2
, (6.22)

where the coupling constants are ω = γ0/(3
√

2) and λi = 2γ2
i − 1/2 for i = 1, 2. The

potential in the form (6.22) corresponds to so-called rational G2-model [33], which reduces

to the Calogero model [1, 2, 3] when the three-particle interaction is switched off, i.e. for

λ2 → 0. Notice that the coupling constants γ0, γ1 and γ2 which enter the scheme through

the ansatz for the pre-potential just reparameterize the coupling constants of the G2-model.

Note also that the constant κ6 has dropped out completely, such that any choice, apart

from κ6 = 0, will yield the same potential (6.22). Hence, the ambiguity in the choice of

the invariant polynomials as coordinates has no bearing on the physics.

The invariants acquire a particularly simple form when we use the eigenbasis of the

Coxeter element. The transformations outlined above yield for the G2-case

x1 =
√

3(e−iπ/6w1 − e−iπ5/6w2), x2 = w1 +w2 , (6.23)

such that the invariants simplify considerably

I2 = κ2w1w2 and I6 = κ6(w
6
1 + w6

2) + κ̃6w
3
1w

3
2 . (6.24)
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We then find for the Jacobian

J = −6κ2κ6(w
6
1 − w6

2) (6.25)

= −6κ2κ6(w1 + w2)(w1 − w2)(w
2
1 − w1w2 + w2

2)(w
2
1 + w1w2 + w2

2) , (6.26)

which could of course be used to construct the potential in these variables. As this type of

factorization of J involves quadratic polynomials we will end up with potentials not quite

of Calogero type. To achieve this we would have to factorize the last two terms further

involving complex coefficients, but in that case the individual two particle interactions

terms would be complex. Solvability is only guaranteed when we can express the factors

in terms of the invariant polynomials.

7. Exactly solvable potentials from q-deformed G2-polynomial invariants

Let us now extend the previous analysis to the q-deformed case. To commence we need

to evaluate the q-deformed Weyl reflections σq
i as defined in (4.1) for which we require the

q-deformed Cartan matrix. In our conventions it reads for the G2-case

Kq =

(

2 −1

−[3]q 2

)

. (7.1)

With Kq at hand we can now seek invariant polynomials according to the definitions (4.1)

and (4.2). We proceed in the same manner as for the non-deformed case and start with

generic expressions Iq
s (~x) for polynomials of degree s as in (3.13) and fix the constants as

outlined above. For generic deformation parameters q we did not find invariants. However,

if we parameterize the q’s as

q2 =
1

2

(

1 + 2 cos
2π

h

)

+

√

(

1 + 2 cos
2π

h

)2

− 4 (7.2)

with h being some integer, the q-deformed Cartan matrix becomes

(Kq)ij =
2αq

i · α
q
j

αq
j · α

q
j

=

(

2 −1

−4 cos2 π
h 2

)

ij

. (7.3)

Implicitly, we used here (7.3) to define some q-deformed roots αq
i . Clearly for h = 3 we

recover the Cartan matrix of A2, for h = 4 we obtain the one of C2 and h = 6 corresponds

to G2. For the values (7.2) of q we find there exist always the invariants Iq
2 and Iq

h. From

the above mentioned arguments this suggests that the exponents of this algebra Gq
2 are 1

and h− 1. This assertion is supported by the observation that the formula for eigenvalues

of the Cartan matrix (3.7) still holds for the q-deformed case (7.3) when taking s1 = 1 and

s2 = h− 1.

As we argued in the previous section, it is difficult to find generic expressions for the in-

variants in the x-variables. However, as we will see in the eigenbasis of the Coxeter element

this task simplifies drastically. According to (3.8) and (3.9) we have the transformations

~x =

(

1 + e−
2πi
h 1 + e

2πi
h

1 1

)

~w ⇔ ~w =
i

2 sin 2π
h

(

1 −1 − e
2πi
h

−1 1 + e−
2πi
h

)

~x , (7.4)
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such that the q-deformed Weyl reflections in the w-variables simplify to

σq
1(w1) = w2, σq

1(w2) = w1, σq
2(w1) = e

2πi
h w2, σq

2(w2) = e−
2πi
h w1 . (7.5)

The σq
1-transformations dictate that the invariants have to be symmetric in w1, w2 and the

σq
2-transformations constrain their overall degree. With (7.5) we can easily find the most

generic expressions for the invariants

Iq
2 = κ2w1w2 and Iq

h = κh(wh
1 + wh

2 ) + κ̃h(w1w2)
h/2. (7.6)

where κ̃h = 0 for h being an odd integer. We can now transform back to the x-variables

and confirm for instance the generic formula (4.3) for the invariant of degree 2, which still

takes on a fairly simple form

Iq
2 =

κ2

4 sin2(2π/h)

(

x2
1 + 4cos2 π

h
x2

2 − 4 cos2 π

h
x1x2

)

. (7.7)

On the other hand, the expressions for the Iq
h are already quite cumbersome, albeit it is

clear how to construct them from (7.6) and (7.4).

As we saw in the previous section it was crucial to change the coordinate system yet

further to recover the Calogero potentials in the usual form. We proceed here similarly.

Let us choose first an orthogonal basis for the two simple q-deformed roots in R
3

αq
1 = (

√
3 cos

2π

h
+ sin

2π

h
,−2 sin

2π

h
, sin

2π

h
−
√

3 cos
2π

h
)/
√

3 (7.8)

αq
2 = (−

√
3 −

√
3 cos

2π

h
− sin

2π

h
, 2 sin

2π

h
,
√

3 +
√

3 cos
2π

h
− sin

2π

h
)/
√

3 . (7.9)

The inner products of these roots are αq
1 ·α

q
1 = 2, αq

2 ·α
q
2 = 8cos2 π

h and αq
1 ·α

q
2 = −4 cos2 π

h

such that we recover the q-deformed Cartan matrix according to (7.3). Of course the

choices (7.8) and (7.9) are not uniquely determined. As an additional selection criterion

we demand that Iq
2 will be of an analogous form (6.15) as in the non-deformed case for

all choices of h, such that it will be ensured that we can express g−1
22 in terms of Iq

2 . At

the same time this will ensure that P0 = exp(Iq
2) yields the harmonic confining potential,

similarly as for the standard G2-case. The above choice for the simple roots induces a

definition for new variables

~y = x1α
q
1 + x2α

q
2 , (7.10)

which satisfy the constraint y1 + y2 + y3 = 0. In turn this means that we can replace in

(7.7)

~x = −1

2

(

2 (1 +
√

3 cot π
h )

2 (1 +
√

3 cot 2π
h )

)

~y (7.11)

such that Iq
2 is indeed always of the form (6.15)

Iq
2 =

κ2

4 sin2(2π/h)

(

y2
1 + y2

2 + y1y2

)

=
3κ2

8 sin2(2π/h)

(

3
∑

i=1

z2
i − 3Z2

)

. (7.12)

Again it is obvious how to obtain the expressions for Iq
h, but they turn out to be more

cumbersome. From (7.6) it is apparent that the case of even and odd Coxeter number

exhibit different behaviour. We treat them now separately and supply for each case an

explicit example.
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7.1 Even Coxeter numbers, h=8

As the obvious difference between the odd and even case we found that in the even case

the additional constant κ̃h is entering the procedure. We shall see that there are also other

more profound differences. We present the case h = 8 in detail. For this the relation (7.2)

simply yields

q2 =
1

2
(1 +

√
2) +

√

2
√

2 − 1, and [3]q = 2 +
√

2. (7.13)

We can now take the invariants as given by the relations (7.6) and carry out the substitu-

tions ~w → ~x→ ~y → ~z specified above. In terms of the Jacobian relative coordinates zi the

inverse Riemannian (3.19) results to

g−1
ij =

3
∑

k=1

∂Ii
∂zk

∂Ij
∂zk

= κ2

(

I2 4I8
4I8 16I3

2/κ
4
2

[

2κ̃8I8 + I4
2 (κ̃2

8 − 4κ2
8)/κ

4
2

]

)

ij

. (7.14)

At this point we are facing a similar problem as in the non-deformed case, that is

h = 6, namely that g−1
ij is not of degree two in the variables Ii. Whereas for h = 6 one may

find a suitable variable transformation, we did not succeed in this case. Nonetheless, the

solvability of the model may now be guaranteed now by relating the model to gl2(R) ⋉ R
4,

rather than gl(N), see (2.6) and (2.7).

Keeping from now on κ̃8 = 2κ8 and also κ2 = 1, we can bring the Hamiltonian into

the desired form for the Schrödinger operator (2.5), (2.10)

D = −J2J1 − 8J3J1 − 64κ8J
3J8 +

[

4(γ1 + γ2) − 5 − 11

9
κ8

]

J1

−16κ8

[

(1 − γ2) +
4κ8

9

]

J8 + γ0J
2 + 4γ0J

3 . (7.15)

To turn this operator into the standard form (2.11) we follow the procedure outlined in

section 2. First, we compute

G−1 = det g−1 = −16I8(I8 − 4κ8I
4
2 ) . (7.16)

Before we proceed further to compute the potential, let us see if we still have a relation

between J and G−1 of the type (3.20) for the q-deformed algebra. In particular, we wish

to see whether a relation of the type (3.18) still holds. For this purpose we need first of

all a notion of positive q-deformed roots. We assume that these roots are generated in a

similar way as the ordinary roots, i.e. by repeated action of the Coxeter element. Defining

a q-deformed version of this1

σq = σq
2σ

q
1 (7.17)

1This q-deformed Coxeter element differs slightly from the one defined in [30, 27], as here there is no

τ -transformation involved. The Coxeter element in [30, 27] is only of order h up to some factors of q.
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we compute the entire set of q-deformed roots ∆q lying in the orbits of the simple q-

deformed roots αq
i , σ

1
q(α

q
i ), σ

2
q(α

q
i ), . . .

σ0
q αq

1 αq
2

σ1
q −αq

3 = −(αq
1 + αq

2) αq
6 = (2 +

√
2)αq

1 + (1 +
√

2)αq
2

σ2
q − αq

4 = −(1 +
√

2)αq
1 −

√
2αq

2 αq
7 = (2 + 2

√
2)αq

1 + (1 +
√

2)αq
2

σ3
q −αq

5 = −(1 +
√

2)αq
1 − αq

2 αq
8 = (2 +

√
2)αq

1 + αq
2

σ4
q −αq

1 −αq
2

. (7.18)

Note that the order of the Coxeter element (7.17) is indeed h = 8, i.e. σ8
q = 1. We adopt

now the same notion for positive and negative roots as in the non-deformed case, that is

we call α =
∑

niα
q
i a positive root if all coefficients ni are positive. With this notion the

set of the 2h roots can be separated equally into h positive and h negative roots. We have

verified this statement up to h = 20 of even Coxeter numbers, which strongly suggests that

it holds in general. Using now (7.18) we can compute the hyperplanes through the origin

to all positive q-deformed roots

pαq
1

= 2x1 − (2 +
√

2)x2 pαq
2

= x1 − 2x2

pαq
3

=
√

2x1 − (2 +
√

2)x2 pαq
6

=
√

2x1 − 2(1 +
√

2)x2

pαq
4

= x2 pαq
7

= x1

pαq
5

= x1 − x2 pαq
8

= (2 +
√

2)x1 − 2(1 +
√

2)x2 .

(7.19)

Comparing now with (7.16) we have once again a relation between J and G−1of the type

(3.20) where J can be expressed as a product of hyperplanes (3.18)

G−1 =
κ2

8

4(3 + 2
√

2)

∏

αq∈∆+
q

(pαq)2 (7.20)

The two factors in (7.16) admit yet a further interpretation. Organizing the roots into two

sets ∆q
s and ∆q

l of short and long roots, respectively, we find the identities

−κ8

4

∏

αq∈∆s

(pαq)2 = I8 − 4κ8I
4
2 and

κ8

16(3 + 2
√

2)

∏

αq∈∆l

(pαq)2 = I8 . (7.21)

According to (5.3) we make now the following ansatz for the pre-potential

P0 = eI2 , P1 = I8 − 4κ8I
4
2 , P2 = I8. (7.22)

From formula (5.4) and including also the P0-term we then compute the potential to

V =
γ2

0

4
I2 − 16λ1κ8

I3
2

I8 − 4κ8I4
2

+ 16λ2κ8
I3
2

I8
(7.23)

with λi = (γ2
i − 1/4) for i = 1, 2. Using the above mentioned identities or directly (5.6),

we can also re-write this potential in terms of the z-variables. First of all we compute

P1 =
1

4233
(z1 − z3)

2 (z1 + z3 − 2z3)
2
∏

ε=±1

[

(1 + ε
√

3)z1 + (1 − ε
√

3)z3 − 2z2

]2
(7.24)

P2 =
1

4334

∏

ε,ε̄=±1

[

(1 − ε̄
√

3 − ε
√

6)z1 + (1 + ε̄
√

3 + ε
√

6)z3 − 2z2

]2
. (7.25)
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We find

V =
1

2
ω2

3
∑

k=1

z2
k +

λ1

(z1 − z3)
2 +

3λ1

(z1 + z3 − 2z2)
2

+
∑

ε=±1

6λ1
[

(1 + ε
√

3)z1 + (1 − ε
√

3)z3 − 2z2
]2 (7.26)

+
∑

ε,ε̄=±1

6(2 + εε̄
√

2)λ2
[

(1 − ε̄
√

3 − ε
√

6)z1 + (1 + ε̄
√

3 + ε
√

6)z3 − 2z2
]2

with ω = γ0

√
3/(2

√
2). We omitted here a constant which contains the center of mass

coordinate. Remarkably, all off-diagonal terms, that is terms in (5.4) with i 6= j, cancel

each other. This potential has a very similar structure as the usual Calogero potentials

(6.22), but it involves now deformed two and three-particle interactions. We find similar

structures for higher values of h. Responsible for this structure is the fact that we can still

factorize J , and thereforeG−1 in terms of products of hyperplanes as in (7.20). Remarkably,

these potentials are all exactly solvable by construction.

7.2 Odd Coxeter numbers, h=5

The structure for theories with odd values of the Coxeter number is somewhat different. Let

us consider h = 5 in more detail. In that case the relation for the deformation parameter

(7.2) simply yields a root of unity

q = eiπ/10 and [3]q =
3 +

√
5

2
. (7.27)

Replacing now in equation (7.6) the variables ~w → ~x, the invariant of degree 5 in the

x-variables is still not too lengthy, unlike for greater values of h, and reads in this case

Iq
5 = κ5

(

1

2
(3 −

√
5)x4

1x2 − 2x3
1x

2
2 + (1 +

√
5)x2

1x
3
2 −

1

2
(1 +

√
5)x1x

4
2

)

. (7.28)

Obviously Iq
2 and Iq

5 are algebraically independent as one is of even and the other of odd

degree, respectively. As for the even case, we can proceed and carry out in (7.28) the

substitutions ~x → ~y → ~z such that the invariants are expressed in terms of the Jacobian

relative coordinates zi. In these coordinates the inverse Riemannian (3.19) results to

g−1
ij =

3
∑

k=1

∂Ii
∂zk

∂Ij
∂zk

= κ2(5 −
√

5)

(

1
5I2

1
2I5

1
2I5 5I4

2κ
2
5/κ

5
2

)

ij

. (7.29)

Once again we have the problem that g−1
ij is not of degree two in the variables Ii. As for

h = 8 we can relate once more to the gl2(R) ⋉ R
5algebra, see (2.6) and (2.7). From now

on we keep κ2 = 1 and bring the Hamiltonian into the desired form (2.5), (2.10)

D = (
√

5−5)

(

1

5
J2J1 + J1J3 + 5κ2

5J
5J9 −

(

γ1 −
7

10
− 2κ

3

)

J1 − γ0

5
J2 +

γ0

2
J3

)

(7.30)
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We proceed similarly as in the previous subsection and compute from (7.29)

G−1 = det g−1 =
5

2
(
√

5 − 3)(I2
5 − 4κ2

5I
5
2 ) . (7.31)

In order to obtain Calogero type potentials it is vital to factorize G−1 further into linear

polynomials. Let us proceed analogously as for even Coxeter numbers and compute the

orbits of the q-deformed Coxeter element (7.17). We find

σ0
q αq

1 αq
2

σ1
q αq

3 = −(αq
1 + αq

2) αq
7 = 1

2(3 +
√

5)αq
1 + 1

2 (1 +
√

5)αq
2

σ2
q αq

4 = −1
2(1 +

√
5)αq

1 − 1
2(
√

5 − 1)αq
2 αq

8 = 1
2(1 +

√
5)αq

1

σ3
q αq

5 = 1
2 (
√

5 − 1)αq
2 αq

9 = −1
2(1 +

√
5)(αq

1 + αq
2)

σ4
q αq

6 = 1
2(1 +

√
5)αq

1 + αq
2 αq

10 = −1
2(3 +

√
5)αq

1 − αq
2

σ5
q αq

1 αq
2

(7.32)

Note that the order of the Coxeter element (7.17) is still h, that is in this case σ5
q = 1.

For odd values of the Coxeter number we can still separate the roots into positive and

negative roots, but now the negative roots can no longer be obtained by reversing the

signs of all positive roots. There are now positive roots without a negative counterpart.

Unfortunately, as a consequence of this the factorization property (3.18) does no longer

hold in its stated form. Nonetheless, one can still select some hyperplanes obtained from

the root system (7.32) and factorize G−1, albeit now the selection principle does no longer

favour the positive roots and is less clear. We compute

pαq
1

= x1 − 1
4(3 +

√
5)x2 pαq

2
= x1 − 2x2

pαq
3

= x1 − (2 +
√

5)x2 pαq
7

= x1 + 1
2(1 +

√
5)x2

pαq
4

= 1
2 (1 +

√
5)x1 − x2 pαq

8
= x1 − 1

4(3 +
√

5)x2

pαq
5

= x1 − 2x2 pαq
9

= x1 + 1
2(1 −

√
5)x2

pαq
6

= 1
2 (
√

5 − 1)x1 + x2 pαq
10

= x1 − 1
2(
√

5 − 1)x2

(7.33)

and construct from this

J = pαq
1
pαq

2
pαq

3
pαq

7
pαq

10
. (7.34)

Now, unlike as in the even case, the splitting into long and short roots no longer corresponds

to factors in terms of hyperplanes.

For the pre-potential we make now the ansatz

P0 = eI2 , P1 = I2
5 − 4κ2

5I
5
2 . (7.35)

With formula (5.4) we then compute the potential in terms of invariant polynomials to

V =
γ2

0

4

(

1 − 1√
5

)

I2 + 5(
√

5 − 5)λκ2
5

I4
2

I2
5 − 4κ2

5I
5
2

, (7.36)

with λ = (γ2
1 − 1/4). Once again we can also re-write V in terms of the z-variables. First

we factorize

P1 =
52

3445
(z1 − z3)

2
∏

ε̄,ε=±1

[

(1 +

√

3 +
6ε√
5
)z2+ε̄ + (1 −

√

3 +
6ε√
5
)z2−ε̄ − 2z2

]2

(7.37)
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from which we deduce the potential to

V =
1

2
ω2

3
∑

k=1

z2
k +

λ

(z1 − z3)2
+
∑

ε̄,ε=±1

6(1 + ε/
√

5)λ
[

(1 +
√

3 + 6ε√
5
)z2+ε̄ + (1 −

√

3 + 6ε√
5
)z2−ε̄ − 2z2

]2

(7.38)

with ω2 = 3(3 −
√

5)γ2
0/20. Once again all off-diagonal terms cancel each other and as in

the even case this potential is also of Calogero type. We find similar types of potentials for

higher values of the Coxeter number.

8. Conclusions

It has been shown previously that solvability of certain types of Hamiltonians can be es-

tablished [17, 18, 19, 20] by relating the differential operators inside the Hamiltonians,

that is essentially the Laplace operator, to a representation of the gl(N)-Lie algebra. This

formulation can be made very systematic by associating the differential structure to poly-

nomial invariants of Coxeter groups. This led the authors of [22, 23, 24, 25] to propose

a procedure which allows to construct solvable Hamiltonians by taking the structure of

the polynomial invariants as a starting point. Here we showed that this procedure can

be extended successfully to polynomial invariants of q-deformed Coxeter groups. We con-

structed some potentials resulting from these type of invariants. Due to the fact that the

Jacobian determinant can still be factorized in terms of linear polynomials the resulting

potentials are of Calogero type.

There are several open issues and unanswered questions which deserve further inves-

tigations. Clearly it would be interesting to carry out the outlined procedure explicitly

for other algebras than Gq
2. The presented example indicates that one can expect similar

structures beyond Gq
2. Eventually one should aim at a unified formulation, as opposed to

case-by-case studies, analogously to the non-deformed case as indicated in section 5. Cru-

cial will be here the factorization of the Jacobian determinant J . In the presented example

this works nicely for even Coxeter numbers, but for odd h the example hints that one

possibly has to employ a different q-deformed Coxeter transformation in order to obtain a

definite criterion for the selection of the hyperplanes which yields the factorization of J .

To achieve a unified formulation it will be important to have systematic and generic

expressions for the polynomial invariants [28]. In the above analysis we have seen that

the choice of a suitable basis is absolutely crucial for this task. The favoured one is the

eigenbasis of the Coxeter element as we have demonstrated.

Since we have shown that one can extend the approach from Coxeter to q-deformed

Coxeter groups, it is also natural to suspect that one might as well employ it for reflection

groups the general type introduced in [34].

Naturally it appears also possible to construct potential of Sutherland type by using

different types of coordinates [28].

To find the explicit wavefunction for the above Hamiltonians is now also an obvious

question to ask. Following the quoted literature there is a straightforward procedure to

construct them from the above mentioned results. In this context one might also address
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technical questions as for instance self-adjointness similar as it has been done in Calogero’s

original work for hardcore boundary conditons [1, 2, 3]. For slightly more general boundary

conditions, see e.g. [35]. Conceptionally one should stress that solvability in the sense

provided here is far more constructive with regard to this question than integrability. The

latter usually just guarantees the existence of exact solutions, whereas solvability is already

tied closely to the explicit solutions.
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