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ABSTRACT 

For small earthfill dams exposed to climate scenarios such as those defined in UKCP09, 

deterministic assessments are insufficient and more sophisticated models are required. This paper 

presents a hybrid probabilistic methodology that quantitatively measures the notional reliability 

index against upstream and downstream slope failure for such dams exposed to variable 

precipitation. Upstream and downstream slope stability are selected here as representative 

significant limit states governing the dam’s long-term performance. The governing equations for 

the limit states are defined using the sliding block method incorporating the effects of infiltration 

through the embankment. Using standard and sloping Green-Ampt and closed form van 

Genuchten methods, the rainfall effects on soils with variable saturation are considered and the 

standard First Order Second Moment method applied. The probabilistic model encompasses 

uncertainties associated with soil properties, dam geometry and rainfall parameters. The paper 

demonstrates notional reliability indices for the dam for selected precipitation scenarios. A 

benchmark is developed that reflects the critical conditions conducive to slope failure. The paper 

reflects on the implication of inclusion of probabilistic climate models on associated risks. 

Therefore, the analysis is an effective new management tool for risk assessment of embankment 

dams as categorized by the Flood and Water Management Act 2010. 

 

 

Keywords: Embankments; Risk & probability analysis; Public policy 
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Notation: 

c' Effective cohesion 

CDF Cumulative Distribution Function 

CW Crest width 

e Void ratio 

FM Failure mode 

FORM Hasofer-Lind transformation 

method 

FOSM First Order Second Moment 

Reliability Method 

Fp Cumulative infiltration at tp 

Fx Cumulative infiltration  

G-A Green Ampt 

H Height of embankment 

Hf  Depth of foundation 

Hw Headwater height 

i Infiltration rate 

K Unsaturated hydraulic conductivity 

Kr Relative hydraulic conductivity 

Ks Saturated hydraulic conductivity 

LC London Clay fill 

Lx Depth water has infiltrated 

ns Porosity 

Pa Total active pressure 

      Total active pressure downstream 

section before rainfall event 

        Total active pressure downstream 

section during rainfall event 

       Total active pressure upstream 

section during rainfall event 

     Total active pressure upstream 

section before rainfall event 

Pf Probability of failure 

Pp Passive earth pressure 

      Total active pressure downstream 

section before rainfall event 

        Total active pressure downstream 

section during rainfall event 

       Total active pressure upstream 

section during rainfall event 

     Total active pressure upstream 

section before rainfall event 

Ps Structure’s reliability 

Pw Pore water pressure 

RIfc Rainfall Intensity Factor 

Sr Degree of saturation 

SWCC Soil-Water Characteristic Curve 

t Rainfall duration 

te Equivalent time to infiltrate a given 

volume of infiltration  

tp Time to surface ponding 

UKCIP UK Climate Impacts Programme 

UKCP09 UK Climate Projections 

Xi Uncertain random variable 

µ Mean 

αslp Slope angle 

γd Dry unit weight of soil 

γfc Unit weight of soil factor 

γm Moist unit weight of soil 

γsat Saturated unit weight of soil 

γsub Submerged unit weight of soil 

θr Residual moisture content 

θs Saturated moisture content 

σ Standard deviation 

φ' Effective internal friction 

Φ Standard normal distribution 

function 

ψ Wetting front suction head 

 Effective saturation of the soil 

i Sensitivity factor 

 Reliability index 

HL Hasofer-Lind reliability index 

 Moisture Content 

φ',c' Correlation coefficient for φ' and c' 

variables

 Coulomb’s shear strength
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1 INTRODUCTION 

In this paper we will address issues that are emerging for the built infrastructure in the presence 

of envisaged climate changes (Gething, 2010). Climate changes will affect embankment dams in 

general, but very significantly those dams, which are well established and were previously 

outside the Reservoir Act 1975, but now subject to the new Flood and Water Management Act 

2010. Due to insufficient data, decision makers are faced with the problem of obtaining 

quantitative performance measures for such dams. This paper therefore presents a hybrid 

probabilistic methodology that quantitatively measures the notional reliability for established 

small earthfill embankment dams against slope failure when exposed to variable seasonal 

precipitation. Here, the slope failure represents the significant limit state governing the 

embankment’s long-term performance. As an extension, the methodology will be applicable to 

other limit states that could develop as well as to other dam types. 

 

In previous years any reservoir with a capacity greater than 25,000 m
3
 had to comply with the 

Reservoir Act 1975, whereas now only those reservoirs whose capacities are below 10,000 m
3
 

are legally outside the Flood and Water Management Act 2010 (The UK Statute Law Database, 

2010). This new legislation also includes new arrangements for reservoir safety based on risk 

rather than the reservoir’s size. 

 

For those earthfill embankment dams, which until now were not covered by the Act, it is unlikely 

that detailed, consistent, data is available. This could be due to inconsistent monitoring of the 

dam and/or only a small number of data samples taken over the course of its lifecycle. Therefore, 

certain properties will either be largely unknown or noticeably differ between the data samples. 
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By implementing the hybrid probabilistic method, it will be possible to determine how such 

earthfill embankment dams could be classified according to risk within the Flood and Water 

Management Act 2010.  

 

In addition, a probabilistic model for future climate projections has been recently established in 

the form of UKCP09 that will inevitably lead to dam evaluation in terms of climate projections. 

Such an approach will put emphasis on variability of risk that a sample dam is subject to over 

diverse time horizons. The envisaged procedure is illustrated in Figure 1, which presents the key 

stages in the hybrid probabilistic slope stability analysis. 

 

 
Figure 1. Flowchart for hybrid probabilistic analysis 

 

START

END

Embankment Geometry; 

Soil & Hydraulic Properties; 

Met Office Records; 

Future UKCP09 Precipitation Projections

Embankment model with steady seepage & 

variable saturation levels

For each Precipitation Scenario

HYBRID PROBABILISTIC SLOPE 

STABILITY ANALYSIS

Infiltration Model

Reliability Index, Probability of event, 

Sensitivity Factors for all precipitation scenarios

(, Pf & i)

Use output for management decisions associated with dam safety

1

2

3
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Recorded failures of earthfill dams can be attributed to seepage, piping, foundation instability, 

deformation etc. (Johnston et al., 1999), which are all influenced by changes in the surrounding 

environment due to climate change (Preziosi & Micic, 2009; 2011) and the same probabilistic 

approach would be applicable. As it will be important to ascertain how environmental factors 

affect the performance of the infrastructure, for the current analysis, failure due to slope 

instability (structural failure), seepage failure and environmental factors are selected for 

consideration, as a representative form of failure. Here only the environmental factor 

precipitation, in the form of rainfall, is considered as it directly influences the embankment’s 

slope stability. From an experimental study Leong et al. (1999) confirmed that slope failure 

occurred during or after rainfall and was dependent on the total amount and/or intensity of the 

rainfall. The probabilistic model will be developed for upstream and downstream slope failure of 

well established dams where effects, such as the changing climate were not initially considered 

at the dam’s design and construction stage. Uncertainties associated with soil properties, 

embankment geometry and rainfall parameters, as indicated by step 1 in Figure 1 represent input 

parameters. Traditional steady seepage model is implemented to establish saturation levels of the 

fill, step 2 in Figure 1. For the probabilistic analysis of the embankment, the specific infiltration 

model, step 3 in Figure 1, is defined. As considered embankment dams are assumed to be old and 

well established, the effect of construction, compaction and settlement of the embankment fill 

have not been included in the probabilistic analysis. In the same manner an issue could arise 

about changes to the fill composition over time and due to associated uncertainties probabilistic 

analysis would be needed to quantify these effects. At present there isn’t sufficient data available 

to account for these effects. 
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The output of the hybrid probabilistic analysis will represent a tool for decision-makers 

(Undertakers, Panel Engineers, Environment Agency, etc.), step 4 in Figure 1. The aim is not to 

replace existing risk assessments, but to improve the quality of data used by the decision-makers. 

While in this paper a sample limit state is considered, for infrastructure management other limit 

states would need to be addressed in the probabilistic manner as well so that rational and 

comprehensive account of uncertainties is made. 

 

2 EMBANKMENT PHYSICAL MODEL 

The model is based on a generic long established small homogenous earthfill embankment dam 

where no drainage was adopted at the downstream toe. It has a known foundation depth (Hf) and 

an embankment height (H), whose reservoir has reached its maximum allowable capacity (Hw), 

Figure 2. These forms of embankments are not impervious, causing water to steadily seep 

through the embankment from the reservoir and/or its foundation over its lifetime. By 

implementing the standard seepage theory (Cedergren, 1989), the trajectory of the phreatic line 

through the embankment is expressed as a function of the embankment’s slope gradients, 

geometry and the reservoir’s headwater height and used to define the physical model of the 

embankment. The expression for the position of the phreatic line is thus set out to reflect the site 

specific uncertainties associated with the dam. As the height of the phreatic line fluctuates, 

variations in the unit weights of the embankment fill (dry, moist, saturated & submerged) above 

and below the phreatic line, as illustrated in Figure 2, including the pore water pressures present 

within the fill are also taken into account. 
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Figure 2. Embankment model 

 

As the dam geometry and the seepage line position are dependant on uncertain variables and 

therefore uncertain themselves, for application of common limit equilibrium methods (i.e. 

Method of Slices, Circular Arc Method, etc.) computational meshing would have to reflect the 

variability in slope domain that needs to be discretized and variability of the soil properties 

within the domain. Bowles (1984) has pointed out that for Method of Slices errors are associated 

with the soil properties and the location of the slope’s failure, rather than the shape of the 

assumed failure surface. Both probabilistic modelling and variable hydraulic conductivity within 

the slope would have been likely to affect the accuracy of this method so it was not implemented. 

To respond to modelling requirements in the presence of uncertainties and with the view of 

precipitation scenarios that are due to be implemented, the Sliding Block Method is selected as 

illustrated in Figure 3 (Tancev, 2005). This incorporates the embankment’s geometry, the 

updated position of the phreatic line, pore pressures acting on the slope and the varying soil 

conditions as demonstrated by Preziosi & Micic (2009). As outlined by Bowles (1984) and 

Preziosi & Micic (2009), the vertical and horizontal forces acting on the slope are dependent on 

its shear strength and resultant active (Pa) and passive (Pp) earth pressures, which are themselves 

sensitive to the soil’s strength parameters and pore water pressures present within the 

embankment fill. The fill above the phreatic line will have variable saturation levels and 

corresponding pore water pressures will be included in the formulation. Due to beneficial pore 
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water pressures within the partially saturated fill zone, effective shear strength parameters for the 

embankment fill above and below the phreatic line, as illustrated in Figure 3, are incorporated 

into the Sliding Block Method for the formulation of the forces acting on the slope. 

 

 
Figure 3. Application of Sliding Block Method for slope stability analysis (Preziosi & Micic, 2011) 

 

By using the Sliding Block Method, a realistic model for the overall stability of the upstream and 

downstream sections of the embankment when rainfall has traversed through the embankment is 

established. As explained by el-Ramley et al. (2002), deterministic limit equilibrium methods for 

slope stability analysis do not consider uncertainties, aleatory and epistemic. Aleatory 

uncertainty refers to the inherent randomness or natural variations in the physical world 

(Hartford & Baecher, 2004). This includes geological processes such as the soil properties of the 

embankment fill (Huber et al., 2011). Epistemic uncertainty relates to the lack of representative 

data, simplifications and approximations adopted in the geotechnical modelling, etc. (Hartford & 

Baecher, 2004). This stems from our lack of perfect knowledge due to limited data about the 

structure, effectiveness of the selected equilibrium method, scale of site tests, etc. (Baecher & 

Christian, 2003; Faber & Vrouwenvelder, 2008). As the selected analytical model (Sliding 

Block) is implemented for all analyses, we limit the probabilistic modelling to aleatory 

uncertainties associated with: 
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 The embankment geometry. 

 The fill’s soil properties. 

 The reservoir’s headwater height. 

 Climate effects, specifically diverse precipitation scenarios. 

 

In the current study only soil properties derived from the London Clay type soil have been 

considered as the embankment’s fill, in order to demonstrate the applied methodology. It is a 

well characterised soil model that could establish a benchmark for future research when effects 

of the embankment age, fill composition due to any deterioration or strengthening are taken into 

account. For reference, the probabilistic approach to slope stability problems has been used for 3 

clay like soils in Preziosi & Micic (2009), demonstrating that the defined soil model is able to 

capture the effect of different soil properties. The standard, deterministic, London Clay fill 

properties, derived unit weights of soil (dry, moist, saturated & submerged), effective internal 

friction and cohesion of the soil are listed in Table 1.  

 

Table 1. Soil properties & unit weights of soil for London Clay fill (LC) 

Soil Properties Units LC* 

Void ratio (e)  0.79 

Moisture content () % 27 - 29 

Cohesion (c') kN/m
2
 7 

Internal friction (φ') ° 20 

Unit weight of 

soil 

γd 

kN/m
2
 

14.9 

γm 16.0 – 16.6 

γsat 19.3 

γsub 9.5 

*Data extracted from (Davis et al., 2008) 
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3 MODELLING OF PRECIPITATION THROUGH THE EMBANKMENT  

Detailed modelling for slope instability due to variable precipitation is now presented, as the 

fundamental mechanisms of rainfall infiltration through unsaturated soils are still not easily 

understood (Ng et al., 2003). Variable precipitation is expected to have a noticeable impact on 

the embankment’s reliability.  

 

3.1 Infiltration and Infiltration rate 

Infiltration of the water through the embankment fill is considered, as it affects both the 

properties and behaviour of the soil. The rate water infiltrates through the soil is dependent on 

the condition of the embankment’s surface and vegetation cover, the fill’s soil properties such as 

its porosity, moisture content and hydraulic conductivity (Chow et al., 1988). As stated by 

Preziosi & Micic (2011), during rainfall the surface layers of the embankment fill become 

saturated causing the soil’s unit weight within these layers to change. Once the water has 

infiltrated the soil, it advances through the fill saturating further soil layers until the phreatic line 

is reached, as illustrated in Figure 4. The amount of rainfall absorbed by the soil is dependent on 

the soil’s hydraulic conductivity and corresponding infiltration rate and the time until ponding 

occurs on the soil’s surface.  
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Figure 4. Sketch showing the infiltration of water through the embankment’s upstream section 

 

The infiltration rate through the partially saturated slope is initially high, but when the soil layers 

become more saturated the infiltration rate gradually decreases. This is a direct consequence of 

changes in soil hydraulic conductivity. To capture the variability in the soil’s hydraulic 

properties for our embankment model in relation to the specific moisture content, we use the van 

Genuchten method (van Genuchten, 1980). Firstly, we establish the expressions for the 

unsaturated hydraulic conductivity as a function of the moisture content, also known as soil-

water retention curve, (SWCC). The depth water will permeate through the soil depends to a 

large extent on the soil’s hydraulic properties (Wang et al., 2003) and is represented as the 

wetting front. Due to the high variability of the soil’s hydraulic conductivity through the depth of 

the embankment, representing it as random variable would be too significant a simplification. 

Thus, we use the soil-water retention curve to characterise the relative hydraulic conductivity at 

specific depth (function of the moisture content effectively).  

 

3.2 Soil-water retention function (SWCC) 

The SWCC can be obtained either experimentally or by using well established empirical 

methods. However, when taking soil samples from the site, the data obtained may be incomplete 

due to the great diversity of experimental methods and the quantity of data that needs to be 

collected. Thus, we apply empirical models to predict the unsaturated hydraulic conductivity 

from more easily available soil properties, e.g. saturated hydraulic conductivity and fitting 

parameters (Zhang & van Genuchten, 1994), such as those proposed by Brookes and Corey 

(1964), Mualem (1976) & van Genuchten (1980) as they produce relatively simple analytical 

expressions. As a result, the wetting front suction head (ψ) and the unsaturated hydraulic 
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conductivity (K) of the soil at varying moisture contents (θ) are established using the soil-water 

characteristic curve, SWCC. The ability to model this process is imperative to perform an 

accurate assessment of slope stability (Gavin & Xue, 2008).  

 

3.3 van Genuchten method 

The van Genuchten method is widely used (Zhou & Yu, 2005) to obtain the relative hydraulic 

conductivity at a given depth as a function of the saturated hydraulic conductivity (Ks) and the 

effective saturation of the soil K(Θ) or corresponding soil water potential K(). The effective 

saturation of the soil Eqn. (1) and soil water potential are given in Eqns. (2 & 3) respectively, 

(Jaynes & Taylor, 1984). Hence, the relative hydraulic conductivity (Kr) is given in Eqn. (4). 

   
 

       
 
 

  or   
    

     
      (1) 

      
 
        

 
   

 
 
 

     (m/s)   (2) 

     
                      

 

         
 
  

     (m/s)   (3) 

      
    

  
  or         

    

  
   (m/s)   (4) 

Where: θs = Saturated moisture content; θr = Residual moisture content; θ = Measured moisture content; 

Θ = Effective saturation of the soil; n & α are the empirical fitting parameters of the soil; & m is related to 

n as m=(1-1/n) 

 

To determine K(Θ) and K(), the fitting parameters, Table 2, provided by Carsel & Parrish 

(1988) were implemented. It is these fitting parameters that determine the shape of the SWCC. 

By applying the soil specific fitting parameters, the value for relative hydraulic conductivity (Kr) 

at specific depths is determined for partially and/or completely saturated conditions. Even though 
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the derived soil properties of the London Clay fill are variable, Davis et al. (2008) and Rouainia 

et al. (2009) applied the same fitting parameters so we have adopted the same parameters in this 

paper.  

 

Table 2. Soil water retention & hydraulic conductivity parameters for LC 

Soil Model 

Saturated Hydraulic 

Conductivity (Ks)** 

Fitting parameters 

(van Genuchten method)*** 

(m/s) n m Α 

LC 2.8x10
-7

 1.443 0.307 0.458 

** Extracted from (Chow et al., 1988); *** Extracted from (Rouainia et al. 2009) 

 

Once the relative hydraulic conductivity Kr and the wetting front suction head  are obtained for 

the soil’s saturation level, the specific depth of rainfall infiltration through the embankment 

needs to be established and, therefore, the slope failure investigated as a function of realistic 

physical properties. Thus, for depth dependent relative hydraulic conductivity associated with 

partially saturated soil, the depth that the water has permeated for specific rainfall durations and 

intensities using actual infiltration rate (i) through the soil will be quantified using the Green-

Ampt method. 

 

3.4 Applied Green-Ampt method (G-A) 

To establish the depth that the water has permeated vertically through the embankment, subject 

to rainfall, the Green-Ampt (G-A) method has been applied (Maidment, 1993). This provides an 

appropriate formulation for determining the depth rainfall has traversed through the embankment 

fill over the rainfall’s duration while still taking into account the hydraulic properties of the soil 

and the time till ponding (tp) occurs on the soil’s surface. Ponding only occurs once the 

infiltration rate is greater than the infiltration capacity of the soil (Chow et al., 1988). The G-A 
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method produces an analytical solution for Richards equation, which is the partial differential 

equation of infiltration in unsaturated soils for one dimensional vertical flow (Chow et al., 1988). 

Thus, during and after ponding the surface layers of the soil become saturated causing either 

overtopping or surface runoff to develop. Since the embankment’s crest and slopes are 

incorporated into the modified slope stability model, the standard G-A method is applied to the 

crest while the modified G-A method developed by Chen & Young (2006) is applied to both 

slopes to take into account the slope angle. Hence, when the modified formulation is used the 

depth of water infiltrated can be expressed in the direction normal to embankment’s surface.  

 

The G-A methods must be applied in a consistent manner as illustrated in Table 3. Here, Case 1 

refers to circumstances when all rainfall is infiltrated & ponding does not occur; Case 2 refers to 

situations when ponding can & will occur, where Case 2a defines conditions when all rainfall has 

infiltrated prior to ponding (t < tp) and Case 2b denotes when ponding occurs & runoff develops 

(t ≥ tp). Table 3 lists the detailed expressions required to calculate the depth of infiltrated water 

through the flat and sloped surfaces, bearing in mind that the results obtained using the G-A 

method rely on values for Kr, ψ and θ obtained above.   
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Table 3. Equations implemented to determine the depth of water infiltrated through a flat and sloped 

surface, as defined by Maidment (1993) and Chen & Young (2006) respectively 

EMBANKMENT 

SURFACE 
CASE 1 

CASE 2 

CASE 2A  CASE 2B  

(    ) (      

FLAT                     

 

      
    

    
 

      
       

 
    

  
    

   ;           
     
    

 

      
     
  

 
       

  
     

     
       

  

      
    

    
 

              
     
  

 
       

  

     
     

       
  

      
     

    
 

SLOPED 
                             

                

 

      
    

    
 

      
       

 
    

  
         

   ;           
     

    
 

      
     

         
 
       

         
     

            

       
  

      
    

    
 

                            

      
       

       
     

            

       
  

      
     

    
 

Where: iflt, islp = Infiltration rate for flat and sloped surfaces respectively; t = Rainfall duration; tpflt, tpslp = 

Time to surface ponding for flat and sloped surfaces respectively; teflt, teslp = Equivalent time to infiltrate a 

given volume of infiltration for flat and sloped surfaces respectively; Fxflt, Fxslp = Cumulative infiltration 

for flat and sloped surfaces respectively; Fpflt, Fpslp = Cumulative infiltration at time of ponding for flat 

and sloped surfaces respectively; Lxflt Lxslp = Wetting front depth in the direction normal to the surface; ns 

= Porosity; αslp = Slope angle. 

 

3.5 Met Office and UKCP09 data 

The UK has a relatively humid climate, thus, precipitation occurs primarily as rain and is 

recorded by the Meteorological Office, Met Office. The Met Office also keeps detailed climate 

records dating from 1854 to the present day, including extreme past and historic weather events, 

and data obtained from weather stations that use the standard instruments and exposure practices. 
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From these records the Met Office Hadley Centre, for Climate Change Research, developed the 

climate model HadCM3 simulating future climate change projections (Murphy et al., 2009).  

 

Based on these projections, a detailed assessment of the uncertainties associated with future 

Climate Projections (UKCP09), for specific variables, was further developed by the UK Climate 

Impacts Programme (UKCIP). UKCP09 presents these projections as probabilistic ranges 

(Gething, 2010), which reflect the uncertainties associated with the limitations of the climate 

model as well as the climate’s natural variability (Jenkins et al., 2009). By applying UKCP09, 

future trends for UK seasonal, annual and monthly temperature, precipitation, etc. can be 

obtained in probabilistic form (Jenkins et al., 2008). However, UKCP09 cannot be used to 

estimate probabilistic projections of future changes relating to snowfall rate, latent heat flux, 

wind speed or soil moisture (Hulme et al., 2002). Yet variations in the soil’s moisture content are 

also dependent on changes in temperature, precipitation, wind speed and solar radiation (Hulme 

et al., 2002) and will be simulated in simple terms in the following analysis. 

 

As reported in UKCP09, since 1766 the recorded annual mean precipitation over England and 

Wales has remained relatively consistent. However, (Jenkins et al., 2009) and (Gething, 2010) 

report that there is a clear shift in seasonal rainfall patterns, including an increase in average 

rainfall intensity over winter and a change in average seasonal rainfall durations. To determine 

the future precipitation projections, UKCP09 combines the probabilistic climate change 

projections with the precipitation recorded during the baseline period (1961-1990). Using the 

UKCP09 User Interface, these projections are plotted as a Cumulative Distribution Function 

(CDF) providing the projected distributions for specific climate variables relative to the baseline 

http://ukclimateprojections.defra.gov.uk/content/view/728/690/
http://ukclimateprojections.defra.gov.uk/content/view/533/690/
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climate. The CDFs are available for the projected annual/monthly/seasonal change in 

precipitation for a given emission scenario, probability level, 30 year time period and location 

(Jenkins et al., 2009). Sample CDF graphs for seasonal (Winter) and monthly (January) changes 

in precipitation for high emission scenarios as defined by UKCP09 for the London region are 

shown in Figure 5.  

 

 
Figure 5. CDF of change in precipitation for high emission scenarios for the Winter and for January: data 

source UKCP09 

 

It is well understood that the soil’s average moisture content will vary noticeably both between 

the seasons and the regions. Using UKCP09 climate projections and specific past extreme events 

such as those reported by the Met Office, including short and prolonged rainfalls, different 

scenarios will be developed to understand their impact on embankment’s slope stability. 

 

3.6 Selected Precipitation Patterns  

We have considered extensive Met Office data including records of extreme events, such as the 

Hampstead storm on 14
th

 August 1975 (Met Office, 2010). A selection of past daily, monthly 

http://ukclimateprojections.defra.gov.uk/content/view/593/690/
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and extreme precipitation scenarios, labelled A - F, including their average rainfall rates, are 

presented in Table 4. These rainfall rates were subsequently incorporated into our hybrid 

probabilistic slope stability analysis to represent relevant events.  

 

Table 4. Past daily, monthly and extreme UK rainfall patterns 

Precipitation 

Scenario 
Location & Date 

Rainfall 

Intensity (mm) 

Rainfall 

Duration 

Average 

Rainfall Rate 

A
#
 Martinstown 18

th
 July 1955 279.00 24 hrs 11.63 mm/hr 

B
##

 England 22
nd

 August 2010 29.25 24 hrs 1.22 mm/hr 

C
#
 Maidenhead on 12

th
 July 1901 92.00 60 min 92.00 mm/hr 

D
#
 Hampstead 14

th
 August 1975  169.00 2.5 hrs 67.60 mm/hr 

E
##

 S England November 1940 185.60 30 days 6.19 mm/day 

F
##

 SE England January 1988 158.20 31 days 5.10 mm/day 
#
Extreme events not used for precipitation statistics (Met Office, 2010); 

##
Extracted from UK 

Climate Summaries (Met Office, 2011)  

 

Future precipitation patterns, specifically for the London region, were identified using UKCP09 

climate projections for high emission scenarios, such as those in Figure 5. High emission 

scenarios were selected, as they indicate the 90 % probability level or extreme possible case. As 

illustrated in Figure 5, the change in precipitation for the winter season and January over selected 

30 year periods, 2010-2039 and 2070-2099, would follow diverging trends. Such results are then 

used to extrapolate extreme future rainfall events for January and July between 2010-2039 and 

2070-2099 for the London region. We selected the 95th fractile of the percentage increase in 

average rainfall for UKCP09 climate projections for high emission scenarios, to provide 

quantitative measure of change in precipitation. Thus, Table 5 shows the predicted future rainfall 

intensities for January and July between 2010-2039 and 2070-2099, which were generated and 

incorporated into the probabilistic model.  
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Table 5. Probable future rainfall intensities over London incorporating UKCP09 climate projections 

UKCP09 

Precipitation 

Scenario 

Month &  

30 year period  

UKCP09 Change in 

precipitation for 

High Emission (%)
###

 

Predicted 

future  

RI (mm) 

Rainfall 

Duration 

Average 

Rainfall Rate 

F1 January 2010-2039 16.98 % 174.13 31days 5.62/ mm/day 

F2 January 2070-2099 53.46 % 238.47 31days 7.69 mm/day 

C1 July 2010-2039 44.23 % 133.61 1hr 133.61 mm/hr 

C2 July 2070-2099 26.81 % 113.33 1hr 113.33 mm/hr 
###

95
th

 fractile of the percentage increase in average rainfall for UKCP09 climate projections for 

High Emission Scenarios  

 

Different rainfall patterns and intensities defined in Tables 4 & 5 will be used to establish the 

variations in the depth of water infiltrated through the dam’s embankment fill, see Figure 4. 

Thus, it will be possible to establish if the embankment’s slopes are vulnerable when subject to 

specific conditions. For the embankment fill above the phreatic line we will consider variable 

soil saturation levels that would be particularly relevant during the wetter months in winter and 

at the beginning of spring. 

 

4 APPLICATION OF RELIABILITY ANALYSIS 

Firstly, the relevant failure modes (FM) that are assumed to govern the dam’s long-term 

performance are assumed to be failures of the upstream and downstream slopes (FM1 & FM2). 

Thus, their linear limit state functions prior to and during the rainfall event, Eqns. (5a & 5b) and 

Eqns. (6a & 6b) respectively, with reference to Figure 3 and Table 3. 

g                                     (5a) 

g                                          (5b) 

g                         
      

       (6a) 
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g                             
        

       (6b) 

Where:         
  Total active pressure acting on the upstream/downstream sections;         

 = Total 

passive earth pressure on the upstream/downstream sections; Pw = Pore water pressure from the reservoir 

acting on the upstream section; up/dwn = Coulomb’s shear strength acting on the upstream/downstream 

sections;             
  Total active pressure acting on the upstream/downstream sections during the 

rainfall event;             
  Total passive earth pressure on the upstream/downstream sections; RIup/RIdwn 

= Coulomb’s shear strength during rainfall event. 

 

While Eqns. (5a to 6b) appear linear, in reality they are non-linear and include a number of 

variables that depend on the position of the phreatic line, soil properties and the rainfall intensity. 

Subsequently, the input variables are identified. Those assumed as deterministic are defined in 

terms of their characteristic value (e.g. the saturated hydraulic conductivity and saturated 

moisture content), whereas the variables taken as probabilistic are defined in terms of their mean 

(µ) and standard deviation (σ) or they have been derived as a function of the random variables, 

such as the position of the phreatic line. Probabilistic variables are selected to represent the 

aleatory uncertainties concerned with the embankment’s geometry, embankment fill’s soil 

properties and rainfall parameters. For the uncertain variables, we would like to be able to 

establish a joint probability density function (fg(x)) for g(Xi), where ‘g’ is a limit state function of 

the uncertain variables (Xi) and has some distribution function itself. However, that is not 

feasible in most cases. Therefore, for the limit state functions as defined in Eqns. (5 & 6) a 

generic notation Xi was introduced and the probability of failure (Pf) for FM1 and FM2 

evaluated, Eqn. (7). As a complement to Pf, the structure’s reliability (Ps) can also be obtained, 

Eqn. (8), and a commonly used reliability index, Eqn. (9). 

     g                       
           (7) 
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where Φ is the standard normal distribution function 

                  (8) 

From Eqn. (7) it can be shown that  is related to the probability of failure by: 

                    (9) 

Equation 7 is deceptively simple, as the integral includes uncertainties associated with the joint 

density function, fg(x), and with the failure domain (when g(X) ≤ 0). From Eqn. (9) it can be 

observed that the higher reliability index reflects low probability of failure. For the evaluation of 

the integral in Eqn. (7) the Advanced First Order Second Moment Reliability Method that was 

developed by Hasofer & Lind (1974) is implemented. The methodology includes the Hasofer-

Lind transformation method (FORM/SORM) that could be applied to linear and nonlinear limit 

state functions, (Haldar & Mahadevan, 2000). Standard Rackwitz-Fiessler iterative approach 

(Haldar & Mahadevan, 2000) is implemented to determine the most probable failure point within 

the domain, thus the one with the lowest reliability index.  

 

The reliability methodology is here integrated with the modified deterministic slope stability 

model to create the hybrid probabilistic slope stability model. This methodology can be applied 

when the limit state functions, such as Eqns. (5 & 6), have correlated or non-correlated random 

variables. The results obtained for each failure mode include the reliability index (β), failure 

probability (Pf) and sensitivity factors (i) that reflect the importance of uncertain variables 

(Haldar & Mahadevan, 2000). Thus, the sensitivity indices reflect the contribution of the inherent 

variability of the random variable on the reliability in respect to each limit state.  
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Finally, the overall safety of the dam, in relation to its slopes, can be expressed in terms of 

engineering risk. Risk is commonly defined as the product of the probability of the event and the 

consequence of the event (Hartford & Baecher, 2004), Eqn. (11).  

                            (11) 

Here the term ‘consequence’ will inevitably relate to the consequences caused by the dam 

failure. These are associated with impacts in the downstream section, including any areas 

surrounding the dam or appurtenances (Hartford & Baecher, 2004). Currently dam failures are 

said to be low probability, high-consequence events. However, by analysing the notional 

reliability and probability of failure of the dam slopes, subject to precipitation, the overall risk 

arising from climate projections can be assessed for specific failure events, by using Eqn. (11) 

and therefore, the true risk exposure quantified. 

 

5 PROBABILISTIC SLOPE STABILITY ASSESSMENT OF EMBANKMENT DAM 

Probabilistic slope analysis is carried out for failure modes defined in Eqns. (5a to 6b) 

 

5.1 Probabilistic modelling of uncertain variables 

It is difficult to accurately measure the embankment’s geometry, especially if the dam is still 

operational. So, indirectly, the embankment’s physical model has to be treated as uncertain. Here 

the mean values and standard deviation of the embankment’s height, crest width and foundation 

are modelled using normal distribution, Table 6. As an extension, by probabilistically modelling 

the geometry the position of the trajectory of the phreatic line would reflect variations in the 

upstream and downstream slope gradients caused by localised changes such as dipping or crest 
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reduction due to soil degradation at the embankment’s surface, external erosion of the slopes, 

bulging at the downstream toe and improvements to the slopes during maintenance or repair.  

 

When modelling the phreatic line, it was assumed that the dam’s headwater height was 

maintained at its maximum allowable level over a significant period time. However, the reservoir 

level is subject to change due to environmental effects, such as rainfall or evaporation, or due to 

inaccuracies in measurements of the reservoir’s water level by the Inspecting Engineer. For that 

reason, the headwater height is presumed to be uncertain and modelled as probabilistic with 

normal distribution, as in Table 6. Larger, visible, changes are more commonly associated with 

rapid drawdown of the reservoir or overtopping due to flooding so would initiate a separate 

failure mode and are not taken into account here.  

 

For the soil properties relating to the London Clay fill, it is difficult to obtain reliable 

experimental data samples, so probabilistic modelling of the soil parameters was developed from 

reported sample soils assuming homogenous embankment dam. Derived unit weights of soil 

(dry, moist, saturated & submerged), above and below the phreatic line are directly affected by: 

 The soil’s moisture content or degree of saturation. 

 The relative hydraulic conductivity and suction head of the soil. 

Therefore, for modelling the unit weight of soil within the upstream, core and downstream 

sections of the embankment, a unit weight of soil factor (fc) is introduced to account for 

variations between soil samples. It is assumed that the unit weight of soil is normally distributed 

and its mean value and standard deviation are presented in Table 6. 
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As defined in the JCSS Probabilistic Model Code (Baker & Calle, 2006) and by Liang et al. 

(1999), for any geotechnical reliability analysis, the uncertainties resulting from the unit weight, 

internal friction and cohesion of the soil are assumed to have normal (Gaussian) probability 

distribution. Pumjan & Young (1999) observed that when modelling the geotechnical strength 

parameters (cohesion, internal friction and density variables), cohesion and internal friction were 

found to be interdependent and negatively correlated. Cherubini (2000) also noted that when 

performing a probabilistic analysis on shallow foundations, when cohesion and internal friction 

were negatively correlated (φ',c' = 0 to -0.75) the evaluated reliability index was higher than that 

obtained when the variables were uncorrelated. Therefore, the soil’s internal friction (φ') and 

cohesion (c') are said to be normally distributed and assumed to be negatively correlated (-0.5), 

see Table 6. 

 

It is evident that probabilistic modelling is site specific, so if this approach is applied to many 

sites, specific guidelines from the regulatory body would be required to address the sources of 

information and appropriate modelling techniques that should be used. 

 

Table 6. Probabilistic modelling of the input parameters: Variables are normally distributed 

Variable Unit Mean (μ) Standard deviation (σ) 

Height (H) m 3.0 0.150 

Crest Width (CW) m 2.8 0.028 

Height of foundation (Hf) m 0.5 1.000 

Headwater height (Hw) m 2.0 0.100 

Internal friction (φ')  ° 20.0 2.000 

Cohesion (c')  kN/m
2
 5.0 0.500 

Unit weight of soil factor (γfc) kN/m
2
 1.0 0.100 

Rainfall Intensity factor (RIfc) mm 1.0 0.100 

Negatively correlated (-0.5) 
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5.2 Probabilistic analysis for selected precipitation scenarios: 

Over its lifetime, the dam is continually exposed to changes in its surrounding environment. This 

will result in a variable degree of saturation, relative hydraulic conductivity and unit weight of 

soil above the phreatic line. As an example, when the moisture content (θr) of the London Clay 

fill’s surface layers increases from 56 % to 76 %, its relative hydraulic conductivity will vary 

from 4.9x10
-8

 to 5.7x10
-7

 m/s, while the wetting front suction head (ψ) decreases from 

approximately 7.3 to 2.8 cm. To account for the high variability in relative hydraulic 

conductivity the coupled Van Genuchten-Green Ampt approach described earlier has been 

implemented to model the variation over the depth. For instance, during the winter months the 

fill’s saturation level will be high resulting in a higher unit weight of soil, compared to those 

recorded over the summer months. Therefore, the shear stress of the slopes will increase while 

simultaneously decreasing their shear strength. This will result in the reliability indices, up & 

dwn, for upstream (FM1) and downstream (FM2) slope failure to differ. For the current 

parametric study, since the soil’s degree of saturation (Sr) vary between seasons, two extreme 

soil saturation levels were considered, Sr = 57 % & 86 %. Thus, for each precipitation scenario 

and degree of saturation, the reliability index and associated depth of water infiltrated for each 

failure mode as defined in Eqns. (5a to 6b) were obtained.  

 

5.3 Deterministic results: Depth of water infiltrated for precipitation scenarios 

For both limit states and saturation cases, the depth to which the water has infiltrated through the 

slopes, Lup & Ldwn, was obtained for different rainfall durations and intensities, and are shown in 

Table 7. When Sr = 57 % the amount of rainfall infiltrated through the embankment is relatively 

small. Meaning the residual rainfall retained on the embankment’s surface could instigate slope 
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failure in the form of runoff or overtopping. In the case of precipitation scenarios A – D, C1 & 

C2, high rainfall intensity over a short duration, only the surface layers of the embankment are 

completely saturated as the depth of water infiltrated is small. However, the rainfall duration 

clearly influences the depth of water infiltrated, as shown by results for precipitation scenarios E, 

F, F1 & F2 in Table 7. This demonstrates the effect of prolonged rainfall, on the depth of water 

infiltrated as a function of the fill saturation, rainfall intensity and duration.  

 

Table 7. Depth of water infiltration through the slope, including time taken to reach the phreatic line for 

the precipitation scenarios with varying Sr 

Precipitation 

Scenarios
++

 

Depth of water infiltration through embankment slopes (cm) 

or time to complete failure 

Sr = 57% Sr = 86 % 

Lup Ldwn Lup Ldwn 

No Rainfall - - - - 

Past 

precipitation 

Scenarios 

A 3.42 3.42 49.40 50.31 
B 3.39 3.40 47.72 48.68 
C 0.66 0.66 3.89 3.92 
D 1.05 1.05 7.49 7.58 
E 24.98 25.17 9 days

+ 9 days
+ 

F 25.45 25.65 11 days
+ 11 days

+ 

UKCP09 

precipitation 

Scenarios 

F1 25.50 25.70 10 days
+ 10 days

+ 

F2 25.60 25.79 8 days
+ 7 days

+ 

C1 0.66 0.66 3.89 3.93 

C2 0.66 0.66 3.89 3.93 
+
Approximate time required for infiltrated water to reach the phreatic line; 

++
 Defined in Table 4 & 5. 

 

By recording the depth water has infiltrated through the embankment fill for each scenario it will 

be possible to obtain quantitative information about the dam’s performance as well as time to 

failure, as for scenarios E & F. While extreme saturation scenarios are considered here, in 

practice it is possible to consider genuine site specific conditions. 
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5.4 Reliability index (β) for FM1 & FM2 

From the reliability analyses, the reliability indices, up and dwn, for the two failure modes were 

obtained and are shown in Table 8. The results presented show that variable rainfall intensity and 

duration greatly affect the slope’s overall reliability. By comparing up and dwn with the depth 

rainfall has infiltrated through the embankment slopes, there is a clear correlation between their 

reliability index and the precipitation scenario. This is evident when the embankment is deemed 

saturated, Sr = 86 %. As expected, prolonged rainfall over a month (precipitation scenario E, F, 

F1 & F2) will cause both the upstream and downstream slopes to eventually fail, however the 

indication is that time to perceived failure is shorter then that obtained from deterministic 

analysis. 

 

Table 8. Reliability index for FM1 & FM2 for the different precipitation scenarios with varying Sr 

Precipitation 

Scenario
++

 

Reliability Index () 

Sr = 57% Sr = 86 % 

U D U D 

No Rainfall 3.19 2.79 3.15 2.79 

Past 

precipitation 

Scenario 

A 2.93 2.47 F
†
 (18 hrs) 1.02 

B 2.92 2.47 F
†
 (19 hrs) 1.07 

C 3.08 2.57 2.83 2.52 

D 3.06  2.56 2.63 2.40 

E 1.70 1.73 F
†
 (6 days) F

†
 (8 days) 

F 1.68 1.71 F
†
 (7 days) F

†
 (10 days) 

UKCP09 

precipitation 

Scenario 

F1 1.68 1.71 F
†
 (6 days) F

†
 (9 days) 

F2 1.67 1.71 F
†
 (5 days) F

†
 (7 days) 

C1 3.08 2.57 2.83 2.52 

C2 3.08 2.57 2.83 2.52 
++

 Defined in Table 4 & 5; 
†
 Indicates slope failure has occurred as    1.0 (F = Slope Failure) 

 

From Table 8, short rainfall scenarios C1 and C2 will not significantly affect the reliability index 

of the individual slopes irrespective of the moisture content. Yet, for scenarios A and B (24 hrs) 

both slopes are close to failure even with low rainfall intensities when the fill is highly saturated. 
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As expected, for the considered embankment model, slope failure is more likely to occur during 

prolonged rainfall. However, when we compare outcomes shown in Tables 7 & 8, the 

probabilistic approach provides further information that reveals that slope failure will be deemed 

to occur prior to the embankment fill above the phreatic line becoming completely saturated. In 

effect, the information from probabilistic analysis could be used for emergency action planning 

as information can be provided for a number of days that it will take for dam to reach what is 

agreed to be failure state. Obtained reliability indices have associated probability of failure as in 

Eqn. (7) and thus would inform us on the risk level associated with individual limit states, Eqn. 

(11). 

 

5.5 Sensitivity factors  

From the completed analyses, if we consider precipitation scenario C, the variables which have 

the greatest impact on the limit state’s reliability are associated with the fill’s soil properties, 

namely, cohesion, internal friction and the unit weights of the soil. In general this information 

about sensitivity factors can be used to identify variables, which should be investigated further to 

update the probabilistic model reducing the uncertainty and, consequently increase the reliability 

as shown by Preziosi & Micic (2011). The sensitivity factor for rainfall intensity will be variable 

to a high level between different limit states, e.g. slope stability, overtopping or runoff. 
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6 IMPLEMENTATION OF RESULTS WITH FLOOD AND WATER MANAGEMENT 

ACT 2010 

The results obtained from the hybrid probabilistic slope stability model can be used as means of 

determining whether the considered embankment dam should be categorised as either ‘High’ or 

‘Low’ risk under the new Act. This could be achieved by looking at the impact dam failure 

would have on the loss of life downstream of the embankment. As a result, low risk reservoirs 

would be subject to less stringent regulations, compared to those deemed high risk. In reality if a 

dam such as the one modelled here is classified as low risk and there is prolonged rainfall, such 

as those associated with climate projections, the risk classification would need to change as 

significant damage could threaten the area downstream of the embankment, due to complete 

slope failure. Yet, for a short rainfall with high rainfall intensity, overtopping or runoff would 

occur and could lead to flooding downstream, as the embankment fill cannot absorb the excess 

rainfall. Thus such alternative limit states would become a base for risk classification as they 

have associated probability of occurrence, Eqn. (11). 

 

It is right that the Flood and Water Management Act 2010 is considering risk as a relevant 

measure. However, current classifications are not sufficiently detailed as specific dams will have 

fairly constant consequences, but failure events are not associated with equal probability of 

occurrence. Therefore, it is important to carry out relevant probabilistic analyses to establish true 

levels of risk according to the new regulation. 
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7 SUMMARY OF FINDINGS 

This paper has considered the issues that arise due to the implementation of the Flood and Water 

Management Act 2010 and the latest climate projections in the form of UKCP09 in respect to a 

generic small earthfill embankment. As the effect of the new probabilistic precipitation models 

have been identified, comprehensive modelling for the water infiltration through the 

embankment and a hybrid probabilistic analysis for selected failure modes have been set out. In 

addition to precipitation scenarios defined in UKCP09, past records of extreme rainfall were also 

considered in order to develop future extreme event scenarios. 

 Probabilistic analyses presented for upstream and downstream slope stability provide useful 

information about the behaviour of slopes in the presence of site specific uncertain factors 

and different precipitation scenarios.  

 Notional reliability indices for the sample dam and selected precipitation scenarios were 

shown to provide a quantitative measure of the likelihood of slope failure and can provide 

improved risk estimates for the dam.  

 By applying the UKCP09 climate projections, it is now possible to investigate the 

quantitative effect of alternative future precipitation scenarios for selected time horizons and, 

in particular, associated risk. This information can be used for emergency planning and 

selection of remedial actions. 

 The probabilistic approach should be extended to other limit states which could have a 

significant effect on the embankment dam so that the uncertainty is quantified in a consistent 

manner. Associated risks should be used for infrastructure management rather then current 

relatively simple measure. 
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 Probabilistic analysis provides useful quantitative measures of effectiveness of any remedial 

measures through updating of probabilistic modelling for relevant variables. 

 Application of the probabilistic methodology enables better evaluation of the risk due to the 

dam’s current status and any future conditions. In that respect, it is recommended that risk 

qualification within the regulatory documentation should be reviewed. 

 It would be of benefit if this hybrid probabilistic approach is applied to the network level, i.e. 

for assessment of all dams, in which case the application of the probabilistic approach would 

need to be strictly defined in the regulatory documentation. 

 

The work presented here is the first attempt to incorporate future climate projections into 

standard engineering analysis. Further development with respect to the probabilistic approach is 

required to establish the modelling for alternative limit states, correlation between limit states 

and inclusion of site specific information. A more comprehensive soil mechanics model could be 

developed if it becomes feasible to obtain relevant experimental data to establish probabilistic 

models for mechanical properties at variable saturation levels. With intense advances in sensing 

technology experimental data is increasingly improving so much that improved probabilistic 

modelling can be envisaged. In addition, this hybrid probabilistic methodology can be expanded 

to consider alternative dam profiles, embankment fills and varying rainfall rates. Thus, enabling 

a more detailed evaluation of the level of risk due to the current status of the dam and any future 

conditions at the dam site.  
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