

City, University of London Institutional Repository

Citation: Lockerbie, J., Maiden, N., Engmann, J., Randall, D., Jones, S. & Bush, D. (2012).

Exploring the impact of software requirements on system-wide goals: a method using
satisfaction arguments and i* goal modelling. REQUIREMENTS ENGINEERING, 17(3), pp.
227-254. doi: 10.1007/s00766-011-0138-8

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/8004/

Link to published version: https://doi.org/10.1007/s00766-011-0138-8

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Page 1

Exploring the Impact of Software Requirements on System-

Wide Goals: a Method using Satisfaction Arguments and i*

Goal Modelling

James Lockerbie
 1

, Neil Maiden
1
, Jorgen Engmann

2
, Debbie Randall

3
, Sean Jones

 3
,

David Bush
 3

City University London
1

Centre for Human-Computer Interaction Design

London EC1V 0HB, UK

James.Lockerbie.1@city.ac.uk, +44 (0)20 7040 8326

N.A.M.Maiden@city.ac.uk

Health Protection Agency
2

Centre for Infections

61 Colindale Avenue

London, NW9 5EQ, UK

rmjdjel@ucl.ac.uk

NATS Corporate & Technical Centre
3

4000 Parkway, Whiteley

Fareham, Hants PO15 7FL, UK

Debbie.Randall@nats.co.uk, Sean.Jones@nats.co.uk, David.Bush@nats.co.uk

Abstract
This paper describes the application of requirements engineering concepts to

support the analysis of the impact of new software systems on system-wide goals.

Requirements on a new or revised software component of a socio-technical system not

only have implications on the goals of the subsystem itself, but they also impact upon

the goals of the existing integrated system. In industries such as air traffic

management and healthcare, impacts need to be identified and demonstrated in order

to assess concerns such as risk, safety, and accuracy.

A method called PiLGRIM was developed which integrates means-end

relationships within goal modelling with knowledge associated with the application

domain. The relationship between domain knowledge and requirements, as described

in a satisfaction argument, adds traceability rationale to help determine the impacts

of new requirements across a network of heterogeneous actors. We report procedures

that human analysts follow to use the concepts of satisfaction arguments in a software

tool for i* goal modelling. Results were demonstrated using models and arguments

developed in two case studies, each featuring a distinct socio-technical system – a

new controlled airspace infringement detection tool for NATS (the UK's air

navigation service provider), and a new version of the UK’s HIV/AIDS patient

reporting system. Results provided evidence towards our claims that the conceptual

integration of i* and satisfaction arguments is usable and useful to human analysts,

and that the PiLGRIM impact analysis procedures and tool support are effective and

scalable to model and analyse large and complex socio-technical systems.

Keywords
i* modelling, satisfaction argument, impact analysis, requirements process

mailto:James.Lockerbie.1@city.ac.uk
mailto:N.A.M.Maiden@city.ac.uk
mailto:rmjdjel@ucl.ac.uk
mailto:Debbie.Randall@nats.co.uk
mailto:Sean.Jones@nats.co.uk
mailto:David.Bush@nats.co.uk

Page 2

1. Introduction
The ability of analysts to analyse change requirements in socio-technical systems

has become increasingly important as projects and systems increase in size and

complexity. There is a need to be able to demonstrate the impacts of new system

requirements on existing and future system-wide goals, so that concerns such as

safety, risk and accuracy can be assessed. In order to do this, we sought to develop a

useful and usable method for analysts to follow that integrates research-based

requirements techniques successfully into established industrial requirements

processes.

Analysts are increasingly using i*, the strategic goal modelling approach [37], to

model and analyse requirements on socio-technical systems. i* has been applied

successfully to model requirements for air traffic management tools [22, 23] and

decision support aids in agriculture [31] as well as to support individuals and groups

in the work of charitable organizations [33]. Reported benefits to these projects have

included automatic requirements generation from i* models [23] and detection of

omissions from UML requirements specifications [22]. However, our experiences

with i* in these projects also revealed two important weaknesses: (i) inadequate

semantics to express the relationship between a means specification and an end goal,

and: (ii) poor integration with in-house requirements processes. In this paper we

report results from research that extended i* to overcome these two weaknesses.

The first research extension was to add concepts from rich traceability [3] and

satisfaction arguments [9] to provide additional semantics for modelling means-end

relationships. The second was to develop new manual procedures with which to

exploit i* models more effectively in requirements processes. These procedures, and

the tools developed to support analysts to follow the procedures, were designed to

explore the impact of new software requirements on system-wide goals such as safety

and accuracy. Proof of concept of both extensions was demonstrated with two

requirements project case studies.

The first study was undertaken at NATS, the UK‟s national air traffic service.

Requirements analysts used the extended version of i* to model safety-related goals

associated with a new software tool called the Controlled Airspace Infringement Tool

(CAIT). The new procedures were then applied by analysts to explore the impact of

the new tool requirements on the safety-related goals of the wider air traffic

management system. The second study was undertaken at the UK‟s Health Protection

Agency (HPA). An analyst applied the same methods used in the first study to explore

the wider impacts of implementing change request requirements on an HIV/AIDS

Patient (HAP) reporting system.

We claim five contributions for the work that we report. The first is the conceptual

integration of i* SR models and satisfaction arguments. The second is to extend

reported procedures that build on this integration to exploit i* models so that analysts

can analyse the impact of specified software systems on system-wide goals. The third

is a set of novel software features that enable analysts to extend SR models with

satisfaction arguments, and that support and exploit the new procedure. All are

demonstrated using models and requirements developed to address complex

requirements engineering problems in the areas of air traffic management and patient

surveillance. Hence, our fourth claim is that our techniques and their support software

tools scale to model large and complex socio-technical systems with i*. Finally, our

fifth claim is that our methods are useable and useful to requirements analysts.

The remainder of the paper is in 9 sections. Section 2 describes the two weaknesses

with i* uncovered in previous projects, and outlines our solutions to overcome these

Page 3

weaknesses. Section 3 presents the method, called PiLGRIM, in detail and Section 4

reports how the method was implemented in our i* modelling tool. Section 5 presents

the first case study, the airspace infringement detection problem to which NATS

applied our solutions. Section 6 presents the second case study, where an HPA analyst

used our approach to investigate the impact of requirements changes on system-wide

goals in the area of patient surveillance. Sections 7 and 8 summarize related work and

review claims made for the reported research, then Section 9 outlines potential threats

to its validity. The paper ends with our plans for future development of PiLGRIM and

the REDEPEND tool.

2. Previous Work

2.1 Using i* in Requirements Projects
i* is an approach with which to model information systems composed of

heterogeneous actors with different, often competing goals that depend on each other

to undertake their tasks and achieve these goals [37]. The strategic actor is the central

concept of i*, and is viewed as having intentional goals, beliefs, abilities and

commitments. The intentional aspects associated with any actor can be characterised

by four process elements: (i) a goal represents a condition or state of the world that

can be achieved or not, but does not describe how it can be achieved; (ii) a task

represents one particular way of attaining a goal, and can therefore be considered as a

detailed description of how to accomplish a goal; (iii) a resource can be considered as

an entity used in, or the product of, some process or a task; and (iv) a soft goal relates

to the notion of a goal that cannot be so sharply defined, such as goals that describe

properties or constraints of the system being modelled. i* is an established approach

for goal modelling, and has given rise to different versions of syntax and semantics

that support different styles and uses of i* modelling. Most versions support the

development of two types of i* model.

The first type of i* model is the Strategic Dependency (SD) model. The SD model

provides a network of dependency relationships among actors. The opportunities

available to these actors can be explored by matching the depender who is the actor

who “wants” and the dependee who has the “ability”. Since the dependee‟s abilities

can match the depender‟s wants, a high-level strategic model can be developed.

The second type of i* model is the Strategic Rationale (SR) model. The SR model

provides an intentional description of goal and task elements and the relationships

linking them. An element is included in the SR model only if it is considered

important enough to affect the achievement of some goal. The SR model includes the

SD model, and hence actors in the SR model either accomplish something by

themselves or depend on other actors. The SR model has four main types of element:

goals, tasks, resources and soft goals. These four types can be linked using the four

relationship links available within the SR modelling semantics: the dependency link,

the task decomposition link, the means-end link and its specialization, the contributes-

to soft goal link.

In our requirements projects we support i* modelling with a software tool called

REDEPEND [21], which extends Microsoft Visio with features specific to i* to

enable requirements analysts to model and analyse SD and SR models. It provides a

graphical palette from which analysts can drag-and-drop then directly manipulate i*

model elements. It also provides simple model analysis features to verify SD and SR

models that, due to their size, are difficult to verify manually. Features include

automatic checking of i* syntax, change synchronisation features between linked

Page 4

models, and check features to highlight and shade-out model elements for partitioning

and marking up models during analysis and review tasks. Indeed, both direct

manipulation and automated model verification are seen as essential for scalable i*

modelling and tool-supported analysis procedures.

In the last 6 years we have applied i* and REDEPEND to model requirements for

four major air traffic management systems, including a departure management system

for major European airports [22] and a system that supports the scheduling of UK

airspace [25]. Whilst i* provided important new capabilities in these projects that we

have reported elsewhere [23], the projects also revealed the two weaknesses that, we

argue, need to be overcome to ensure widespread industrial uptake of i*.

2.2 Encountered Weaknesses with i*
The first encountered weakness is the i* means-end link. In i* a task specifies one

way in which to achieve a desired state, and can be decomposed into sub-components

by the task decomposition link. The means-end link is used to associate tasks, and

their decompositions, with states that actors want to achieve or attain – goals and soft

goals. The means-end link can also reduce goals to sub-goals where the end is the top-

level goal. However, analysts in our previous projects, when expressing means-end

links, reasoned about much more than just the means elements and the end. They also

established a large number of assumptions that had to be true in order for the means to

be a means to the end, and refined the degree to which means attained or achieved

ends.

Whilst i* provides means-end contribution types (Some+, Some-, Help, Hurt,

Make, Break, Unknown reported in [38]), these alone are not sufficient to explore

impacts of system specifications on goal attainment. Although i* includes the concept

of a belief, a form of claim applied to means-end links to express actors‟ different

beliefs [38], the argumentation behind the association of these beliefs is unclear.

Furthermore, in our projects, each means-end link was often associated with multiple

assumptions. If all assumptions were modelled as beliefs using the i* notation, a

cloud, the resulting model would be cumbersome to develop and unclear to read.

Therefore we needed a method extension that would support previously observed

analyst practices more effectively.

The second weakness is a lack of guidance for requirements analysts on how to

embed research-based techniques such as i* in requirements processes. For example,

NATS projects have characteristics common with requirements projects in many

organisations. Analysts often write requirements on the new software system that is

the focus of the project, rather than on the wider socio-technical system that the

software is a part of. Analysts specify these requirements in text form using traditional

system shall statements. The requirements tend to be functional rather than non-

functional. And the requirements are often difficult to link using existing traceability

techniques to system-wide concerns such as safety and security. Organisations such as

NATS and the HPA cannot overturn their established requirements processes to

accommodate new i* modelling. Therefore we explored new ways of developing,

documenting and using i* models and their extensions in processes that express

software requirements in text form. We further explored this approach in our second

study, analysing how the established method of change request requirements on the

HAP system impact on actors in the wider HIV/AIDS reporting system.

2.3 First Extension: Satisfaction Arguments for i*
To address the first weakness, we sought to exploit established techniques for rich

Page 5

traceability and satisfaction arguments from reported requirements methods to extend

means-end link modelling in i*. Hammond et al. [9] explored the anatomy of a

satisfaction argument based on Jackson‟s [17] distinction between the machine and

the world. Jackson recognized the role of domain knowledge in the requirements

process, and suggested a relationship that the REVEAL requirements process labelled

a satisfaction argument to enhance the rich traceability of the process. This

relationship defines domain knowledge as properties of the world that are known or

assumed to be true, and requirements as properties of the world that are wished to be

true. This combination of domain knowledge and system knowledge (specification) is

the basis of the satisfaction argument: Using the relevant properties of the application

domain D, when combined with the specification of the machine S to be constructed,

it is possible to show that the requirements will hold [9].

This approach has led to the recognition that many problems with requirements

arise as a result of problems with domain knowledge rather than problems with the

system specifications or requirements statements. Furthermore, even if domain

knowledge is accurately captured such that initial requirements hold, changes in the

domain could result in requirements not being met anymore [9]. Likewise, new

requirements may lead to the invalidation of domain assumptions.

Our use of satisfaction arguments, based on REVEAL, also draws upon Dick‟s [3]

use of traceability rationale to enhance understanding. In rich traceability a

satisfaction argument normally applies to a set of links associated with a requirement,

which translate to all means-end links associated with an end in a i* model. Such

satisfaction arguments can be applied for two purposes – sufficiency and necessity.

According to Dick [3], sufficiency explores whether the set of design artefacts are

sufficient to satisfy the customer requirement. Necessity explores whether each of the

design artefacts are necessary to satisfy the customer requirement. When applied to i*

modelling, we can interpret sufficiency as exploring whether the means and

associated domain properties are sufficient to lead to the end, and necessity as

whether each of the means and associated domain properties are necessary to lead to

the end.

2.4 Second Extension: Using i* Models to Explore How Software

Requirements Impact Important Organisational Goals
To address the second weakness, we sought to develop a new procedure that

requirements analysts could follow to use i* models in traditional requirements

processes that express software requirements in text form.

Linking i* models to text requirement specifications is not new. Indeed, in two

previous air traffic management projects we generated candidate requirement

statements from i* models using a pattern-based approach [23]. However, one

limitation was that the i* models had to be generated first. This was not possible in

many requirements processes such as those used in projects at NATS and the HPA, as

requirements on a new or revised software component of the socio-technical system

had already been expressed. As a result, there was a need for change management,

and we proposed a process of rich traceability and impact analysis to address this.

Dick [3] describes the benefits of such an approach as the increased understanding of

the relationships between design layers, and the possibility for semi-automated impact

analysis to assess the potential impact of change.

Therefore, we developed a new procedure that requirements analysts could follow

to explore the impact of documented software requirements on system-wide goals

using i* models. Our aim was for an analyst to be able to assess the impact of the new

Page 6

software system on the attainment and achievement of actor goals and soft goals that,

in our two studies, were largely concerned with safety and accuracy respectively.

Page 7

3. The PiLGRIM Method
i* modelling, satisfaction arguments, impact procedures and the REDEPEND tool

were integrated into a method called PiLGRIM (Propagating i*-Led Goal-

Requirement Impacts). The overview presented in Figure 1 shows the logical flow of

the four stages of the method. The method starts with goal modelling in stage 1. The

first and second stages take place in parallel throughout the method as analysts add

and revise satisfaction arguments within the extended SR model to provide structured

support for previously observed analyst behaviour. Once the underlying SR model is

finalised, the matrix completion and propagation stages are required to run

sequentially in order to generate a complete set of results. Each stage‟s procedure is

described in turn in the following sections.

Figure 1: An overview of the 4 stages of the PiLGRIM method

3.1 Develop i* System Goal Models
For the first stage of the PiLGRIM method we took our existing approach to i*

modelling using REDEPEND as described earlier in Section 2.1. This approach

supports version 5.0 of i* tailored to RESCUE, our requirements engineering process

[19], based on recommendations to enhance the notation and tool features from

analysts in previous projects. Whilst analysts were generally satisfied with the i*

syntax, they identified an absence of content and guidance to facilitate documentation

and human reasoning with it – hence our method extension. Styles of modelling not

supported in other i* versions includes means-end links across actor boundaries which

enable the modelling of complex trade-offs in the development of socio-technical

systems. This modelling variation is used in the integrated i*-satisfaction arguments

described next.

3.2 Integrate Satisfaction Arguments with i* Means-End Links
To extend i* semantics with satisfaction arguments we developed a conceptual

model to link concepts of i* means-end links and satisfaction arguments defined

across socio-technical system boundaries. For the PiLGRIM method we use the term

means-end link to define both a means-end link which has a goal as the end and its

specialisation, a contributes-to soft goal link which has a soft goal as the end.

3.2.1 Satisfaction Arguments for Socio-technical Systems

Satisfaction arguments distinguish between specified properties of a new system

and assumed properties of the domain. Jackson [40] originally assumed a single

system and boundary so that properties were attributed simply to the system or

domain. However socio-technical systems have multiple systems and actors whose

1. Develop i* system goal
models

2. Integrate satisfaction
arguments with i* means-

end links
3. Identify candidate

impacts of requirements
on the software system

4. Determine resulting
system-wide goal and

soft goal impacts

Continue to update
SR model
extensions Continue to revise and

evolve satisfaction

arguments

Page 8

work is redesigned, for example redesigning the work of an air traffic controller who

is using new airspace infringement software. Therefore arguments for the satisfaction

of requirements of these systems and actors need to be based on both properties

assumed about the domain and properties of other systems – i.e. whether known

properties of current systems hold and requirements on these new systems and actors

are satisfied.

As a consequence the PiLGRIM Method needs to support analysts to specify

different satisfaction arguments for different boundaries in a socio-technical system.

Analysts can specify requirements on new software system(s) and other systems and

human work to change as specified in requirements. The result is that an end-element

of one satisfaction argument can fulfil the role of a means-element in another – a goal

to be achieved by one system is assumed achieved by the other.

To enable this to happen, REDEPEND supports analysts to tag each actor in an i*

model as a new system, current actor or system required to change, or an actor outside

of the project boundaries and therefore not within the redesign scope. This enables

traceability between different system boundaries to be specified explicitly in a

satisfaction argument. A means element contributing to an end element inside the

same actor boundary is classified as a refinement, while a means contributing from

outside the boundary is classified as a specification, and is qualified with the actor

name. Figure 2 illustrates these features in a simple schema. The satisfaction

argument specified in Actor B, an existing system to change, contains one refinement

means, a specification means from the new system, Actor A, and a specification

means from Actor C which is outside of the redesign scope of the project.

Figure 2: An example showing how the PiLGRIM method uses actor types and

refinement and specification means in satisfaction arguments

3.2.2 Model Concepts

The PiLGRIM method is underpinned with a simple meta-model, depicted in

Figure 3, that combines i* and satisfaction argument concepts. An actor seeks to

achieve or attain an end-element, which in i* can be a soft goal or a goal. An actor

also has the means to achieve or attain the end-element. In i* a means can be a goal, a

task, a resource or a soft goal (the latter 2 only being valid for a soft goal end). The

actor seeks to attain a goal (a means to attain something else) and undertake a task (so

i* specification
means [Actor A]

i* refinement
means

i* end element

i* specification
means [Actor C]

Actor C

Current system
No change Within project scope

Outside project scope

Actor B

Current system to
change

Satisfaction
argument

Actor A
New system

Page 9

that a goal might be attained). With soft goal contributes-to links, the achievement of

one soft goal can contribute positively or negatively to achieving the other soft goal.

The means-element and end-element are related using the i* means-end relationship.

Where the end element is a soft goal, the relationship is attributed with values that

specify the modality and type of contribution (Some+, Some-, Help, Hurt, Make,

Break, Unknown) reported in [38] and supported in the RESCUE version of i*. This is

depicted on the right-hand side of Figure 3.

Figure 3: Conceptual model that relates concepts from i* and satisfaction

arguments

Each satisfaction argument is developed for one and only one end-element of a

means-end link. The argument is constructed using one or more properties of the

domain, one or more means-elements linked to the end-element, and one attribute that

explains the argument [9]. This is depicted on the left-hand side of Figure 3. Analysts

then apply the principles of sufficiency and necessity from rich traceability in order to

determine whether the means and associated properties are sufficient to lead to the

end, and whether each of the means and associated properties are necessary to lead to

the end. This helps to produce a complete argument, ensuring that the end goal is met

whilst also protecting against over-engineering the solution [3].

For example, in VANTAGE, an earlier air traffic management project [29], we

produced an i* SR model showing how enhanced airport operations could minimise

the environmental impact of a regional airport. The model included a means-end link

that showed that successful completion of the dispatch co-ordinator task maintain

paper stats sheet contributed positively to the dispatch office achieving the soft goal

all flight/aircraft info accessed easily. The stats sheet fulfilled an important role in the

functioning of the dispatch office, as it contained information such as passenger

figures and estimated aircraft arrival times. However, this representation in i* alone

did not contain enough information to justify the means being a means to the end, i.e.

it was not possible to determine sufficiency and necessity without richer traceability

of the relationship.

Figure 4 shows the means-end link and a simplified version of its accompanying

satisfaction argument. The end-element is the soft goal all flight/aircraft info accessed

easily and the means-element is maintain paper stats sheet, modelled as a task as it

represents one particular way of attaining the soft goal (the other considered

alternative being an electronic VANTAGE version). Three properties of the domain

that must be true for the means to contribute to the end are: the paper stats sheet is the

i* end element

0..*

0..*

< is a means to

i* means element

actor

< seeks

goal soft goal

goal resource task

domain property

> is argued with

0..*

1..*

satisfaction
argument

1 0..*

0..*

1..*

> is argument for

> is argued with

seeks >

Soft goal

0..*

0..*

1

1

Page 10

single common repository of all information related to the aircraft/flight, dispatch

office workers only seek info from the paper stats sheet, and all staff follow

established dispatch office work practices. The explanation part forms the argument

by linking the domain properties and means-element to the end-element.

Satisfaction argument

End-element: All flight/aircraft info accessed easily
Means-element: Maintain paper stats sheet
Domain properties:

 The paper stats sheet is the single common repository
of all information related to the aircraft/flight

 Dispatch office workers only seek info from the paper
stats sheet

 All staff follow established dispatch office work
practices

Explanation:
The paper stats sheet is used to record data from a
variety of sources, including telexes and airport
management systems. It is, in essence, a one-stop shop
for all aircraft/flight information required by the dispatch
office

Figure 4: An example of a simplified satisfaction argument taken from the

VANTAGE socio-technical system model

This satisfaction argument is, we conjecture, more complete than the original i*

means-end link. It has the potential to support more naturalistic analyst reasoning

observed in previous requirements projects using i*. Next, we report the new

procedure that uses i* models extended with such arguments to explore the impact of

software requirements on system-wide goals.

3.3 Identify Candidate Impacts of Requirements on the Software

System
The third stage of the PiLGRIM method uses the enhanced i* SR models as

reference models from which to guide analysts to infer candidate impacts on the

socio-technical system from functional requirements on the new, or updated, software

system. The procedure maps functional rather than non-functional requirements, not

only due to their predominance in software requirements, but also because they

represent features that we aim to explore the impact of. Analysts are guided to cross-

check each non-functional requirement with the soft goals in the SR model to ensure

consistency and completeness for assessing the impacted goals and soft goals.

To identify the impacts, analysts map functional requirements to SR model tasks

and resources using a matrix, as requirements and functional i* elements need not

follow a one-to-one relationship. An example is depicted in Figure 5. Adding a simple

+ or – value to a cell indicates how the requirement, if satisfied, will impact on the

task or resource. The tasks and resources are indicated to be either compliant (+) or

non-compliant (–) with the functional requirements specification of the introduced, or

Page 11

updated, software system.

To develop the matrix the requirements analysts were asked to consider each

requirement in turn using the following method guidance:

1. Compliant task: If the requirement in the system specification, when satisfied by

the new system, will enable the actor to complete the task successfully, compared

with undertaking the task in the AS-IS system, then link the requirement to the task

with a compliant (+) value.

2. Non-compliant task: If the requirement in the system specification, when satisfied

by the new system, will detract from the actor‟s ability to complete the task

successfully, compared with undertaking the task in the AS-IS system, then link

the requirement to the task with a non-compliant (–) value.

3. Compliant resource: If the requirement in the system specification, when satisfied

by the new system, will enable the actor to obtain the resource successfully,

compared with obtaining the resource in the AS-IS system, then link the

requirement to the resource with a compliant (+) value.

4. Non-compliant resource: If the requirement in the system specification, when

satisfied by the new system, will detract from the actor‟s ability to obtain the

resource successfully, compared with obtaining the resource in the AS-IS system,

then link the requirement to the resource with a non-compliant (–) value.

Figure 5 presents a continuation of our example from the VANTAGE project. It

shows that the requirement the VANTAGE system shall manage the daily mayfly stats

sheet would, if satisfied, be compliant with the successful completion of the airport

management task optimise operational efficiency. In contrast, the same requirement

would, if satisfied, have been non-compliant with the successful completion of the

current dispatch co-ordinator task maintain paper stats sheet.

Functional requirement Airport Management:
Optimise operational

efficiency [Task]

Dispatch Co-ordinator:
Maintain paper stats

sheet [Task]

The VANTAGE system shall
manage the daily mayfly stats
sheet

+ –

Figure 5: Part of a functional requirement – SR model matrix for the

VANTAGE system

Analysts complete the matrix manually. We explored techniques to automate at

least part of the procedure, for example mapping terms in each functional requirement

to terms describing each task and resource. However the terseness of the i* model

element expressions and lack of context to determine word senses rendered such

automation unreliable.

Matrix completion uses simple patterns. The first 2 patterns relate to requirements

that do not map to SR model tasks and resources:

1. Unnecessary requirements: requirements that do not impact any tasks or resources

in the model can indicate unnecessary requirements. Therefore analysts will need

to determine whether these requirements should be removed from the specification.

2. Missing tasks and resources: requirements that do not impact any tasks or

resources in the model, but are deemed necessary by analysts e.g. because they

Page 12

impact goals, can indicate missing tasks and resources. Therefore analysts will

need to revise the SR model in line with the specification.

The final 3 patterns then enable the analysts to detect potentially non-compliant

tasks and resources. A non-compliant element is any soft goal, goal, task or resource

that, given the current software requirements, has the potential not to be achieved,

attained, completed or made available:

3. Requirements omission: a task or resource that is not impacted by any

requirement can indicate missing requirements. Therefore analysts will need to

determine the degree and nature of the impact of each non-compliant task and

resource arising from requirements omission on system-wide goals and soft goals;

4. Requirements detraction: satisfying requirements can have unforeseen

consequences that can make tasks and resources non-compliant. Again, analysts

will need to determine the degree and nature of the impact of each non-compliant

task and resource on system-wide goals and soft goals;

5. Weak requirements compliance: there are insufficient requirements to

complete tasks or make resources available in all situations, thus making the tasks

and resources potentially non-compliant.

3.4 Determine the Resulting System-Wide Goal and Soft Goal

Impacts
The final stage of the PiLGRIM method builds on the integrated i*-satisfaction

arguments and impacted tasks and resources to explore the attainment of goals and

achievement of soft goals in the SR model.

When the matrix is complete analysts use the final procedure to determine if the

impact of non-compliant tasks and resources causes goals and soft goals to become

non-compliant. Whilst it is also possible to demonstrate compliance through the SR

model, the method prioritises propagating non-compliance in order to make the most

effective use of time and resources e.g. domain experts.

The procedure applies 6 propagation heuristics to all 4 types of i* model links

reported in section 2. At the start of the procedure each non-compliant task and

resource in the matrix is a non-compliant element:

For each non-compliant element:

For each model element linked to the non-compliant element:

IF at least 1 propagation heuristic applies to model element

THEN add model element to set{non-compliant elements}

ELSE consider next model element

The 6 propagation heuristics use i* semantics to determine whether each linked model

element can become non-compliant. The first 2 heuristics, concerning propagation

across dependency relationships and task decompositions, are deterministic and non-

compliance can be computed automatically using tool support:

1. IF model element = depender element in dependency relationship

AND is non-compliant

THEN add dependee element to set{non-compliant elements}

2. IF model element = decomposition of a task

AND is non-compliant

THEN add task element to set{non-compliant elements}

For propagation across means-end and contributes-to links, non-compliance is not

Page 13

computationally deterministic. An end element with one or more non-compliant

means is automatically identified as having the potential to become non-compliant.

Deciding if the contributed-to element becomes non-compliant is where the

satisfaction arguments come in through the application of the next 4 heuristics. The

introduction of the software system as specified by the requirements might change

domain properties that, if no longer true, invalidate the argumentation and make goal

or soft goal non-compliant:

3. IF model element = end-element of means-end link

AND at least 1 domain property in argument for means-end =

invalid

THEN add end-element of means-end link to set{non-compliant

elements}

4. IF model element = end-element of contributes-to soft goal link

AND at least 1 domain property in argument for contributes-to

soft goal = invalid

THEN add end-element of contributes-to soft goal link to

set{non-compliant elements}

If analysts cannot rewrite the argument so that the goal is attained or soft goal is

achieved, then the goal or soft goal is non-compliant. On the other hand the

introduction of the software system that meets the specified requirements might not

change domain properties but it might have specifications that invalidate the argument

and make the goal or soft goal non-compliant:

5. IF model element = end-element of means-end link

AND argument for means-end = invalid

THEN add end-element of means-end link to set{non-compliant

elements}

6. IF model element = end-element of contributes-to soft goal link

AND argument for contributes-to soft goal = invalid

THEN add end-element of contributes-to soft goal link to

set{non-compliant elements}

Again if the analysts cannot rewrite the argument so that the goal is attained or soft

goal achieved, then the goal or soft goal is non-compliant.

Returning to our earlier example, we took the non-compliant dispatch co-ordinator

task maintain paper stats sheet and explored whether its associated soft goals in the

VANTAGE i* SR model were also non-compliant. Application of the heuristics

revealed that dispatch office soft goals related to the affordances of the paper version

of the stats sheet were potential non-compliant elements after the introduction of the

new computerised VANTAGE system. We then used the propagation heuristics to

determine whether these soft goals were now indeed non-compliant. Figure 6

demonstrates the process undertaken by a human analyst with automated support from

the REDEPEND software tool for one of these soft goals – all flight/aircraft info

accessed easily. Analysts needed to consider whether the domain assumptions would

still hold true following the introduction of the new VANTAGE system. As the figure

shows, the final assessment determined that all three domain properties were in fact

invalidated by the new specification, and therefore the soft goal was deemed to be

non-compliant.

Page 14

Figure 6: An example application of the propagations heuristics to the maintain

paper stats sheet task from the VANTAGE system model

Page 15

4. Supporting i* Models, Satisfaction Arguments and Impact

Analysis with a Tool
We implemented a new version of REDEPEND to support requirements analysts to

specify satisfaction arguments for i* means-end links and analyse the impact of

software requirements on system-wide goals and soft goals using the procedure. The

tool provides automatic model analysis functions to help the analyst undertake human

reasoning.

4.1 Specifying Satisfaction Arguments

To generate a new satisfaction argument an analyst selects a goal or soft goal in the

i* SR diagram. REDEPEND automatically generates a new satisfaction argument

sheet for the selected goal or soft goal using elements and links in the model. Figure 7

shows the REDEPEND representation of the satisfaction argument for the soft goal

all flight/aircraft info accessed easily presented earlier in Figure 4. As can be seen,

the selected goal or soft goal is the default end-element, and each element that is a

means to the goal or soft goal is a means-element. Means-elements are documented

using 2 tabs. The internal tab displays refinement means-elements from within the

same actor boundary as the end-element, and the external tab displays specification

means-elements from other actors.

Figure 7: One satisfaction argument showing the maintain paper stats sheet

specification taken from the VANTAGE model, specified in REDEPEND

The analyst can change the link types directly in the form. Because REDEPEND

generates each satisfaction argument automatically from the SR model, such changes

made by the analyst to the satisfaction argument sheet and model are propagated

automatically to both, thus keeping the model and its arguments consistent.

The analyst manually completes each satisfaction argument using the domain

properties section at the bottom of Figure 7. Domain properties are stored in a

database of all domain properties associated with one SR model to ensure effective

reuse of properties that, we believe, can improve the specification of satisfaction

Page 16

arguments. For each domain property in an argument, the analyst selects an existing

property from the database or adds a new one to it. Figure 8 shows the management of

the VANTAGE domain properties in REDEPEND – the list includes domain

properties DP10, DP11 and DP12 featured in the example above. Finally, the

satisfaction argument sheet can be exported to Microsoft Word to provide a more

widely used documentation format for sharing within the project.

Figure 8: Domain property management in REDEPEND for all of the

satisfaction arguments contained in the VANTAGE system model

4.2 Completing the Functional Requirement-SR Model Matrix

An analyst completes the functional requirement-SR matrix using a spreadsheet

embedded in REDEPEND. Part of the matrix developed for VANTAGE is shown in

Figure 9. An analyst copies functional requirements into the left column, then

REDEPEND automatically generates the other columns with tasks and resources from

the actors in the SR model. The analyst then completes the matrix by inserting “+” or

“–” values to indicate compliance or non-compliance between the functional elements

and the requirements. To aid this task REDEPEND supports 2-way navigation

between elements in the SR model and the matrix. If an analyst selects a matrix

column, then REDEPEND will highlight the corresponding element in the SR

diagram. Likewise if an analyst selects an element in the SR model the matrix will

reposition to the corresponding column. Figure 9 demonstrates how an analyst can

toggle quickly between a selected matrix row and the corresponding SR model

element (maintain paper stats sheet task) on the diagram. We consider such model

navigation is essential to support the analysis of large systems, such as those reported

in our case studies, and to improve the usability of our method.

Page 17

Figure 9: An example of mapping VANTAGE software requirements from the

matrix to i* model elements using REDEPEND

4.3 Supporting Impact Analysis

REDEPEND also has new features to support SR model walkthroughs for

determining propagation impacts on goals and soft goals. The analyst can select a

requirement in the matrix and run an automatic procedure to tag the impacts on

affected tasks and resources in the SR model. Impacts are depicted on a model as a

compliant “+” or non-compliant “–”, whilst non-impacted elements are greyed out.

Having selected an element with a detraction, REDEPEND can then be used

automatically to detect and tag other elements that are potentially non-compliant by

using propagation heuristics to follow the i* links upwards, as reported in Section 3.4.

Propagation impacts across task decomposition and dependency links are

automatically determined in REDEPEND with non-compliant elements tagged with

an “X”, but propagation across means-end links are tagged as undecided “?” as these

need analyst input.

Figure 10 shows the results of one walkthrough using the maintain paper stats

sheet task. This task was detracted by the requirement the VANTAGE system shall

maintain the daily mayfly stats sheet. The first level of propagation only included

means-end links, therefore all propagated elements were tagged as undecided. Analyst

judgment was then needed to decide whether the elements were non-compliant based

upon domain properties and explanations using the satisfaction argument sheets. In

this example, the all flight/aircraft info accessed easily soft goal was tagged non-

compliant in light of the associated satisfaction argument, i.e. given the introduction

of the VANTAGE system, the paper stats sheet may no longer be the single repository

of all information related to the aircraft/flight; dispatch office workers may seek

aircraft/flight info from sources other than the paper stats sheet; and established

dispatch office working practices related to the upkeep of the stats sheet may no

longer be suitable.

Page 18

Figure 10: An example of exploring propagation impacts from a non-compliant

task in the VANTAGE model using REDEPEND

4.4 Evaluation of the Method and Tool

Having developed the PiLGRIM method and implemented a new version of

REDEPEND to support it, we sought to evaluate both. To do this we adopted a case

study approach to explore the five claims summarized in Section 1.1. The claims were

evaluated through two case studies, one in the area of air traffic management and the

other in patient surveillance. Table 1 reports the claims and evidence we sought to

collect to evaluate each of the claims.

Table 1: The five claims for the tool and procedures, and the evidence we sought

to collect to evaluate these through the two case studies

Claims for the tool and procedures Evidence to collect

1 The effective conceptual integration
of i* SR models and satisfaction
arguments

Analysts use domain knowledge effectively to
construct the i* models;
The inclusion of relevant domain knowledge in the
specification of each new system

2 A requirements analyst can use the
procedure with which to analyse the
impacts of software system
requirements on system-wide goals
effectively

A requirements analyst is able detect valid impacts
on goals and soft goals from requirements
statements

3 A requirements analyst can use the
software tool support with which to
exploit the new procedure effectively

The level of coherent tool support for the
procedures;
The volume, frequency and severity of usability
problems experienced by requirements analysts
when using REDEPEND

4 A requirements analyst can use the
procedures and tool to model large
socio-technical systems with i*
effectively

The models and specifications of complex and
large socio-technical systems produced by the
analysts using PiLGRIM and REDEPEND

5 A requirements analyst finds the
PiLGRIM method is useful and
usable

The volume, frequency and severity of usability
problems experienced by analysts when using
PiLGRIM in the REDEPEND tool;
The claimed benefits of PiLGRIM and REDEPEND
against the effort required to use the procedures

Page 19

and tool made by requirements analysts

Of particular interest to us were the fourth and fifth claims that the PiLGRIM

method scales to large and complex socio-technical systems and is usable by

requirements analysts. Proving that the PiLGRIM method scales and is usable would

enable us to follow the next stage of our research – to investigate if our method

provides wider benefits to an organisation.

Our first case study in air traffic management sought to provide a proof of concept

of the PiLGRIM method, with our second case study in patient surveillance taking

this work forward with evaluation of a set of preliminary results. We report these

studies in the following two sections.

Page 20

5. Case Study One: NATS

For our first case study, proof of concept of the process and tool extension was

investigated using an airspace infringement detection solution. The study took place at

NATS, the UK‟s national air traffic service, and applied our tool-based extension to

existing NATS requirements processes to support safety-related requirements analysis

and specification (reported in an earlier form in [24]). Safety-related requirements

processes were extended with i* modelling supported with satisfaction arguments,

embedded in an extended version of REDEPEND.

5.1 The Domain

The United Kingdom airspace is broadly divided into two types; controlled and un-

controlled. Aircrew must obtain air traffic control clearance prior to entering

controlled airspace. However, pilots are not always aware where they are, and at the

time of the study the number of reports of aircraft entering controlled airspace without

clearance was increasing.

Infringements of controlled airspace by unknown aircraft presented a significant

risk to NATS. The safety need was to detect and bring to the controllers‟ attention

infringements by unknown aircraft into controlled airspace. The system in place at the

time relied on controllers noticing unknown aircraft entering controlled airspace when

monitoring the radar display. For aircraft that transponded a Secondary Surveillance

Radar (SSR) code, the Short Term Conflict Alert (STCA) system provided an alert

about potential loss of separation (the safe distance between two aircraft operating in

the same area) to the controller. However, because of the setting of the STCA

parameters, separation may have already been lost and the airborne Traffic Alert and

Collision Avoidance System (TCAS) may have already prompted the pilot to respond.

The Controlled Airspace Infringement Tool (CAIT) was to be a new safety net tool

to provide controllers with more timely warnings of controlled airspace infringements

by aircraft. The intention was that CAIT would provide a solution to the safety need

by improving the situational awareness for controllers, thus providing more time to

plan actions to avoid a potential loss of separation and minimize the effects of the

infringement.

5.2 The i* models

For the first stage of the PiLGRIM method the authors worked with NATS domain

experts to produce i* models of the airspace infringement detection solution. One SD

model and one SR model of key actors, goals, soft goals, tasks and resources were

produced using the extended versions of i* and REDEPEND. The i* models were

developed and validated in 6 half-day meetings over a 4-month period. During each

meeting one analyst facilitated the development and/or validation of parts of the

models, whilst a second edited the models directly using REDEPEND. Development

of these models was supplemented by a one-day observation of work at the London

Terminal Control Centre. The SR model reflected the scale of the airspace

infringement problem with 25 actors represented, 15 of which were expanded to

include the actors‟ internal process elements. The components of the SR model are

represented numerically in the Table 2. As one of the largest i* models the authors

have developed, its size means we cannot provide a single readable version of the

model in this paper (a readable version is available at [28]), so the next paragraph

highlights important elements of the SR model shown in Figure 11.

Page 21

Table 2: Numerical summary of components in the CAIT i* SR model

SR actors 25 Of which Expanded actors 15

SR model
elements

197 Of which Tasks 77

 Goals 22

 Soft goals 37

 Resources 61

SR model
links

299 Of which Dependencies 59

 Contributes-to soft goal 48

 Means-end 73

 Task decomposition 119

The actor representing the new CAIT software system, a small safety net tool on

which requirements were specified in text form, is shown (A) in the model in Figure

11. CAIT is a relatively small part of infringement detection and has dependencies

with other actors in the NATS integrated air traffic control system. Actors include

aircraft (H) that transmit Secondary Surveillance Radar (SSR) data, ground-based

surveillance systems (D) that send data about aircraft positions and code, the RDP (B)

that computes the accurate locations of aircraft from the data, and the Short-Term

Conflict Alert (STCA) software system. The Controller Working Position (CWP) actor

(C), which displays information to civil air traffic control officers (ATCOs), depends

on the CAIT software system for the resource CAIT alerts. The actor with the largest

number of model elements, in the centre of the diagram (E), was developed to

describe the tasks, resources, goals and soft goals of civil ATCOs using expert input

during the meetings and models of cognitive controller behaviour [14]. The right-hand

side of the model depicts pilots of both controlled (F) and uncontrolled (G) aircraft

depending on the civil ATCO and each other to avoid collisions.

Figure 11: i* SR model of the CAIT system, developed using REDEPEND

A

B

C

D

E

G

F

H

Page 22

5.3 The Satisfaction Arguments

Having signed off the SR model as complete, the NATS analysts followed the

second stage of the PiLGRIM method to develop integrated i*-satisfaction arguments.

The analysts elaborated 8 selected soft goal end-elements and their associated means-

end links from the model based on their domain expertise. The authors generated the

automatic elements of the satisfaction arguments using REDEPEND as described in

Section 4.1. Basic training and instruction was then provided to the experts to

manually complete the satisfaction arguments with domain properties. Each resulting

argument contained, on average, 2 refinement means, 1 specification means and 3

domain properties. The database associated with the SR model contained a total of 22

domain properties, with no reuse of CAIT domain properties during the development

of the satisfaction arguments. The lack of reuse was most likely due to the low

number of satisfaction arguments developed during the NATS study – only eight due

the limited availability of domain experts.

Figure 12 shows one of the selected means-end links and its associated satisfaction

argument. In this instance the end-element represented current human work required

to change due to requirements on CAIT, and the means-element represented a current

system also required to change due to requirements on the introduced system. The

double-headed arrow specified a MAKE contributes-to soft goal link – the

contribution of the completed CWP display picture task was positive and sufficient to

satisfice the civil ATCO soft goal be aware of alerts. The argument was important for

the introduction of CAIT even though CAIT did not form any element of the

satisfaction argument. The domain properties the ATCO is monitoring the air picture

and alerts are only communicated through the air picture rely on specifications and

work practices beyond the scope of the CAIT specification, and are therefore

assumptions rather than goals that CAIT would be specified to achieve.

Satisfaction argument

Actor: Civil ATCO
End-element [type]: Be aware of alerts [Soft goal]
Specification means-element [type] [actor] [link]: Display picture [Task] [CWP] [Make]
Domain properties:

 The ATCO is monitoring the air picture

 Alerts are only communicated through the air picture
Explanation: The alert is reported with the air picture that is displayed with the CWP, to
provide a single information source. It is the only source of alert information for the civil
ATCO.

Figure 12: An example of a means-end link and its associated satisfaction

argument taken from the CAIT system model

5.4 Developing the Requirements-i* Model Element Matrix

The analysts were given a specification document complete with 31 requirements

on the CAIT software that we inserted into the left-hand column of the matrix to begin

the third stage of our method. The top row of the matrix was automatically populated

in REDEPEND with 77 tasks and 61 resources from the SR model. The 31

Page 23

requirements were developed independently by a CAIT software team, and were not

accessed during the i* modelling to reduce the possibility of bias in assessing

requirement impacts.

Two NATS requirements analysts applied the PiLGRIM method as described in

Section 3.3, mapping the requirements to the tasks and resources using

compliant/non-compliant values. Figure 13 reports the compliant and non-compliant

values for two of the requirements. The requirement CAIT alerts shall be logged

automatically by the system will, if satisfied, be compliant with the successful

completion of the task record alerts, but will be non-compliant with the availability of

the civil ATCO resource long-term memory of infringements – as ATCOs would no

longer be involved in the conscious process of filing manual infringement reports. The

requirement it shall be possible to set active regions for the CAS infringement alerts

will, if satisfied, be compliant with the successful completion of the engineering task

set active regions for CAIT.

Functional requirement CAIT:
Record

alerts [T]

Civil ATCO:
L-T Memory of

infringements [R]

Engineering:
Set active regions

for CAIT [T]

CAIT alerts shall be logged
automatically by the system

+ –

It shall be possible to set active
regions for the CAS infringement
alerts

 +

Figure 13: A part of a functional requirement – SR model matrix for the CAIT

system. NB: requirements are not original CAIT requirements for confidentiality

reasons

Alas, due to finite resources and time the NATS case study ended before the matrix

was completed, therefore the analysts were unable to follow the fourth stage of the

PiLGRIM method to determine the impact of non-compliant tasks and resources on

the goals and soft goals in the model. Although the final stage of our method was not

attempted by the analysts in this case study, we were able to use the data from the first

three stages for assessing claims 1, 3 and 4.

5.5 Other Observations

The NATS analysts were uncertain how to deal with means-end links contributing

negatively to soft goals, as the PiLGRIM method and its rationale did not describe

what to do. As a result, the analysts recorded the assumptions behind the negative

contributions captured in the air traffic domain as a separate exercise. This led the

analysts to consider assumptions concerned with the impact of new operational

procedures, and effectiveness versus efficiency – assumptions of significance for the

introduction of the new software system.

Whilst no major usability problems with REDEPEND were reported during the i*

modelling, an issue arose concerning the large tool-based requirements matrix and the

ease of completion. The NATS analysts felt it would be useful to have a built-in tool

feature to print out the SR diagram and corresponding sections of the requirements

matrix, to enable them to generate by hand a first-cut matrix prior to entering data into

the tool. We addressed this issue and the effort involved in completing a REDEPEND

requirements matrix later on for the second case study in Section 6.4.

Page 24

5.6 Conclusions

Despite the large scale of the infringement detection problem the NATS team used

PiLGRIM and REDEPEND to develop i* models and satisfaction arguments

successfully. The arguments described domain properties missing from the original

SR model but deemed important by NATS analysts. However the impact analysis was

not completed due to time constraints, with implications for evaluating claims 2 and 5.

Table 4 provides a summary of the evidence collected from this case study to evaluate

the remaining three claims. Results provided some empirical evidence for our

conceptual integration of i* modelling and satisfaction arguments, the usability of our

tool, and the scalability of PiLGRIM.

Table 4: Three of our claims and a summary of the evidence we collected to

evaluate these through our first case study

Claim Evidence

1 The effective conceptual integration
of i* SR models and satisfaction
arguments

 The NATS analysts were successful in developing
and reasoning satisfaction arguments for i*
means-end links;

 Domain properties that were not explicitly
represented in the i* semantics were added.
NATS analysts considered these domain
properties important to the model’s completeness
for the specification of the CAIT system

3 A requirements analyst can use the
software tool support with which to
exploit the new procedure effectively

 REDEPEND supported a consistent application of
the first 3 stages of the PiLGRIM method
successfully. The final stage of the method was
not evaluated in this study;

 No usability problems were reported during the i*
modelling, but the analysts recommended
improvements to the usability of the requirements
matrix

4 A requirements analyst can use the
procedures and tool to model large
socio-technical systems with i*
effectively

 The NATS project team were able to develop
large i* models of the CAIT system successfully
using REDEPEND

So, having demonstrated the first 3 stages of our method and explored the potential of

determining goal and soft goal impacts, we decided to undertake a second case study

to obtain a more complete set of research results for our approach, and in particular

undertake impact analyses.

Page 25

6. Case Study Two: Health Protection Agency
We used our second case study to investigate the impact of requirements changes

on system-wide goals using i* models and satisfaction arguments. The study took

place at the Health Protection Agency (HPA) in the UK, where our approach was

applied to analyse the impact of change request requirements raised for the HIV/AIDS

Patients monitoring system (HAP). The same REDEPEND tool and procedures from

the NATS case study were applied. The analysis in this case study was undertaken by

an employee of the HPA who is also an author of this paper (full details of the study

are available in [5]).

6.1 The Domain

The HAP system monitors the impact of HIV on public health in the UK by

running a system originally designed in September 1982 following early reported

cases of HIV infection [4]. This system has evolved and improved over the years, and

now is widely regarded as one of the most comprehensive Public Health Surveillance

(PHS) systems in the world, covering key features recommended by the Guidelines

Working Group [6]. Evolution of HAP has been informed by feedback from HAP

users, technological advances, updates in public health legislation and evolution of the

HIV epidemic. Updates to the system are managed through change requests raised by

users and implemented by the Centre for Infections Software Development Unit

(SDU).

HAPv3, the latest version of HAP, was commissioned and built in 2003 to combine

the functionalities of several peripheral applications previously developed to meet

evolving requirements of HAPv2. These peripheral applications resulted in

duplication of requirements (and therefore functionality), confusion amongst users

(for example due to the number of different screens for the same process), as well as

increasing the chances of conflicting requirements between applications.

In 2008, as with previous versions, HAPv3 was once again perceived to be

complicated by the development of further peripheral applications. Although the

change request procedure had been effective in solving individual problems, there was

no method in place to monitor the impact of each change on the wider system goals.

Lack of this middle ground resulted in users having difficulties explaining their

underlying needs, and engineers having difficulty describing the impact of technical

solutions. Hence we applied PiLGRIM to the problem, undertaking requirements

change analysis on important goals and soft goals.

6.2 The i* Models

Modelling for the first stage of our method was performed by one analyst with

specialist knowledge of HAP using information obtained from departmental

documentation and five years experience with the system. One SD model and one SR

model were developed using REDEPEND version 5, the same modelling tool used

during the NATS project. As with the previous project, the HAP requirements were

developed independently and were not used as inputs into the i* models. The models

were discussed through a series of meetings with HAP users to confirm the context of

dependencies being modelled, and with the analysts who worked with NATS to

validate the use of i* syntax. The process took approximately 3 person days to

complete. The SR model described 12 actors, 5 of which were expanded to include

102 internal process elements and 130 links, as detailed in Table 5. The next

paragraph highlights elements of the model shown in Figure 14.

Page 26

Table 5: Numerical summary of components in the HAP i* SR model

SR actors 12 Of which Expanded actors 5

SR model
elements

102 Of which Tasks 55

 Goals 18

 Soft goals 19

 Resources 10

SR model
links

130 Of which Dependencies 19

 Contributes-to soft goal 32

 Means-end 18

 Task decomposition 61

The actor representing the HAP software system, on which change request

requirements were specified in text form, is shown (A) in the model in Figure 14. The

software application is at the core of all UK HIV/AIDS patients monitoring and

reporting, and validates links between databases and stores information on new HIV

diagnosis records. It undertakes tasks such as merge linked records and validate data

to achieve soft goals such as patient record completeness maximised. HAP depends

on resources produced by other actors and managed by the information officer (B), for

example death reports from the ONS. Inputters (C) enter paper records into databases,

and depend on HAP to display input errors and display notifications with similar

patient IDs. Scientists (D) perform epidemiological analysis and interpret data to keep

the public informed and up-to-date, and research nurses (E) meet with patients and

clinicians to identify and classify probable infection routes and other patient

information that is unclear on the reported form.

Scientist

Exposure

codes

accurate

Perform

Specialist

review of forms

Perform

specialist review

of deaths

Cause of death

category

accurate

Trends in

HIV spread

identified

Analysis

dataset

accurate

Public

informed

Analyse

data

Inform

public
Data outputs

accurate

Perform

specialist

reviews

Publish

reports
Update

website

Research

Nurse

FUP

forms

FUP data

obtained from

clinician

FUP Data

obtained from

patient interview

FUP data

resolved

Update

 FUP (paper)

record

Update FUP

patient

record

Update FUP

HAP (electronic)

record

FUP data

accurate

FUP data

obtained

quickly

FUP list

Identify

clinician

details

All notification

reports

complete

Identify

FUP forms

HAP

Derived fields

accurate

Update input

errors

All data

validated

Link notifications

from same

patient

Link

notifications

with exact PID

Notifications with

similar PID

displayed

Patient

record

complete

Identify

typos

Identify

discrepancies

between1
st
 and

2
nd

 entry

Identify

duplicate

notifications

Merge linked

records

Merge

screen

displayed

All relevant

report types

generated

Validate

data

Check data

consistency

Identify

invalid

ages

Check for

missing

data

Record to be

updated

displayed

Link Death

reports to

patient records

Patient

confidentiality

preserved

Exclude deaths in

those under 15 or

over 60

Death data

representative of

HIV population

ONS FUP

letters

printed

New patients

identified

Link notifications

with similar PID

Generate

derived fields

Generate

Soundex

codes

Identify

incomplete

death reports

Display

input errors

Produce

extract table Import

notifications

identify

import

fields

Generate

list for FUP

Inputter

Complete

data entry

Do second

round data

entry

Data entered

accurately

All

mandatory

data entered

Correct

input errors

Match

notifications

with similar PID

Create new

patient

records

Pre-checked

forms

Match first and

second entered

data

Check

calculated

fields

Merge

fields

Duplicates

identified

Do first round

data entry

Link reports

from existing

patients
Patient data

maximised

Update

AKA field

Pre-check

forms

Flag

incomplete

forms for FUP

Stamp forms

with unique

ID

Information

Officer

Data received

accurate
All missing

identifiers

obtained

Death

reports

Identify HIV

related

deaths

Import ONS

data to HAP

Identification of

new diagnosis

maximised

All HIV related

deaths

identified

Assign Cause

of Death

category

Check

cause of

death

Data

received

promptly

Patient

information

accurate

Patient

exposures

coded accurately

Link

external

data

Scottish

data

CD4

data

Treatment

data

Child

data

Incidence

data

Ensure ONS

data is complete

Patient linking

maximised

Match

patient data

Check for

form

completeness

HIV dataset

complete

HIV

notifications

+

+

,,,
,,,

,,,
,,,

,,,,,,,,,,,,

,,,
,,,

,,,
,,,

+
,,,

,,,
,,,

,,,

,,,
,,,

,,,
,,,

,,,,,
,,,,,

,,

ONS

,,,,,,,,,,,,

+

+

+

Reporter

,,,,,,,,,,,,

-

,,,
,,,

,,,
,,,

+

+

+

+

+

+

+

+

+

Incidence

,,,,,,,,,,,,

ICH

,,,,,,,,,,,,

SOPHID

,,,,,,,,,,,,

CD4

,,,,,,,,,,,,

SCIEH

,,,,,,,,,,,,

,,,,,,,,,,,,

+

+

+

+

+

,,,,,,,,,,,,

,,,
,,,

,,,
,,,

+

+

+

,,,,,,,,,,,,

,,,,,,,,,,,,

+

,,,,,,,,,,,,

+ ++-

+

Figure 14: i* SR model of the HAP system, developed using REDEPEND

6.3 The Satisfaction Arguments

The HAP analyst specified satisfaction arguments for soft goals and goals in line

with stage two of the PiLGRIM method. He also extended the method to apply

satisfaction arguments to tasks and resources. However, the intention of PiLGRIM

A
B

C

E
D

Page 27

was to assess the impacts on end goals by using the means specifications and

associated domain properties as part of the complete end argument. So, for example,

the satisfaction argument for the means task identify HIV related deaths should have

been allocated to its end goal all HIV related deaths identified. Therefore, we include

these results only as evidence of the analyst‟s ability to develop and reason

satisfaction arguments for elements and associations in the i* model.

Unlike in the NATS study, domain property specification was performed using the

REDEPEND tool throughout the modelling and during impact analysis of change

requests. In total, 22 satisfaction arguments were developed for the SR model – 13 for

soft goals, 3 for goals, 5 for tasks and 1 for a resource. In contrast to the CAIT

satisfaction arguments domain properties were reused. Of the 40 unique domain

properties specified 15 were reused, leading to a total of 60 uses (1 domain property

was used four times, 3 used three times and 11 used twice). The HPA analyst reported

reuse of domain properties in REDEPEND to be both useful and straightforward.

Table 6 summarises the make-up of the 22 satisfaction arguments.

Table 6: Cumulative total and average number of refinements, specifications and

domain properties in the 22 HAP satisfaction arguments

Domain property specification was incremental, with 27 specified during the

production of the SR model and another 13 added during the matrix completion and

impact analysis. The analyst reported that applying the final two stages of the

PiLGRIM method revealed additional domain properties that were overlooked during

the initial modelling phase.

An example satisfaction argument developed for the information officer soft goal

patient information accurate is shown in Figure 15. The end-element and refinement

means-element represented goals related to current human work, where the

achievement of the information officer goal all HIV related deaths identified

contributed positively to the patient information accurate soft goal. The specification

means-element represented a goal, all data validated, that was impacted on by change

request requirements on the HAP system. The argument stated that validating records

and checking for completeness enhanced information accuracy, given that certain

domain properties held true, e.g. patients give accurate information to clinicians, an

assumption as a database redesign would not able to achieve this as a goal.

Satisfaction argument

Actor: Information Officer
End-element [type]: Patient information accurate [Soft goal]
Refinement means-element [type] [link]: All HIV related deaths identified [Goal] [Some+]

 Refinements Specifications Domain properties

Total 34 10 60

Average (mean) 2 0 3

Page 28

Specification means-element [type] [actor] [link]: All data validated [Goal] [HAP] [Some+]
Domain properties:

 Patient data reported from reporters are accurate

 Patients give accurate information, such as dates of birth, to clinicians

 The same Soundex code algorithm is used to Soundex surnames between different
reporting sites to ensure that they generate the same codes for identical patients which can
then be linked

 Information present in the death record can be used to validate record

Explanation:
Patient records are collected from different data sources (laboratory records, clinical records
and death reports), which are linked for individual patients to provide a complete patient
record and to validate record elements. Each record needs to be checked for accuracy at
different stages and processed in the same way to enhance the ability to link between
datasets and improve information accuracy.

Figure 15: An example satisfaction argument taken from the HAP system model

6.4 Developing the Requirements Matrix

During the third stage of the PiLGRIM method the HPA analyst took 29

requirements and the current set of unimplemented change requests raised by HAP

users, and inserted them into the requirements matrix for impact analysis. The top row

of the matrix was automatically populated in REDEPEND with the 55 tasks and 10

resources from the SR model. The analyst then added compliant and non-compliant

values in the matrix for each change request requirement, as described in Section 3.3.

The analyst identified a total of 100 compliant values and 9 non-compliant values (see

Table 7), demonstrating that most change requests had positive impacts on the HAP

system. Each change request impacted directly on average on three tasks and/or

resources in the SR model. Four requirements did not impact on any tasks or

resources.

The analyst needed 2-5 minutes per impact assignment to a task or resource. Due to

its scale, it took close to one person day to complete the matrix, in spite of the

analyst‟s experience with the system and knowledge of the i* models. Although no

general usability problems with REDEPEND were reported, the analyst experienced

that changing the model and/or requirements displaced previously entered compliance

values in the matrix. As such this limitation added to the effort required for matrix

completion.

Table 7: Summary of compliant/non-compliant values in the HAP requirements

matrix

Task/resource impacts

 Total number of compliant values 100

 Total number of non-compliant values 9

 Median number of task/resource impacts per
 requirement [interquartile range]

3 [4]

6.5 Determining Goal and Soft Goal Impacts

Once the matrix was completed, the analyst used REDEPEND to perform the goal

and soft goal impact analysis as described in Section 3.4. The analyst also ran

propagations on compliant elements to identify and verify the resultant compliant

goals and soft goals. This complete analysis generated the 225 compliant and 29 non-

compliant values reported in Table 8. Again analysis was not quick because the 29

Page 29

non-compliant goals and soft goals required human analysis of satisfaction arguments

taking on average 10 minutes per argument. In total one person day was used to

complete the goal and soft goal impact analysis.

Table 8: Summary of impacts on goals/soft goals in the HAP model. NB: these

are cumulative totals from the propagations applied for each of the 29 HAP

requirements

Goal/soft goal impacts

 Cumulative total of goal/soft goal compliant values 225

 Cumulative total of goal/soft goal non-compliant values 29

 Median number of goal/soft goal impacts per
 requirement [interquartile range]

6 [11]

The propagation analysis focused on four requirements, listed in Table 9, that were

non-compliant with tasks and resources in the matrix and therefore needed analyst

input. The table shows the number of compliant and non-compliant tasks/resources,

the number of compliant and non-compliant goals/ soft goals, and a description of the

potential impact obtained from applying the methods.

Table 9: Selected results from the impact analysis of change request

requirements on HAP

Requirement Task and
resource

compliance

Goal and soft
goal

compliance

Description/implication of impacts

RE007 - Information
officer shall be able to
modify exposure codes

4 Compliant
1 Non-compliant

14 Compliant
4 Non-compliant

Has positive impact on Tasks of Information
officer, Inputter, and Scientist IF modified codes
are consistent. If not, this would lead to negative
impact on these actor tasks. Maybe scientist
who has specialist knowledge should do this.
This ambiguity could be solved with a better
formulated requirement such as “exposure
codes shall be representative of all HIV
transmission routes”

RE014 - HAP shall pass
incomplete information
from patients with only a
lab report to the FUP
database two months
after lab report date

0 Compliant
6 Non-compliant

0 Compliant
6 Non-compliant

This negatively impacts the ability to identify
FUP forms (cannot confirm FUP status until
after 2 months have passed). This negative
impact propagates across dependant goals and
soft goals. Struggled a bit with assignment of
detraction value maybe because requirement is
non functional. It could be seen to enhance
FUP process by alleviating the need to perform
FUP on records that may be completed within
two months.

RE016 - HAP shall be
able to accept a large
number of records

2 Compliant
1 Non-compliant

15 Compliant
19 Non-compliant

Small field sizes made data input difficult, so
satisfying this requirement will enhance data
input, but many records make it difficult for HAP
to check for missing data. This shows how SR
model can bring perspective to the new
requirement in relation to other system tasks
and goals (enhancing some, but detracting
others)

RE029 - HAP shall be
able to create death
reports from multiple
sources

3 Compliant
1 Non-compliant

3 Compliant
0 Non-compliant

Enhances ability to identify HIV related deaths,
but it would be hard to check the actual cause of
death if reports are in different formats

For requirement RE029 - HAP shall be able to create death reports from multiple

sources, the analyst identified 1 non-compliant task, as shown in Figure 16 (the check

Page 30

cause of death task in Stages 1 and 2). The analyst then ran the goal impact

propagation which in turn led to 1 more non-compliant task, 1 undecided goal and 2

undecided soft goals, as shown in Figure 16 (stage 3). The impacts propagated across

the means-end links were automatically tagged as undecided “?” as per the method.

Therefore, the analyst assessed the satisfaction arguments associated with these

undecided end-elements and rewrote them to achieve compliance, hence the zero

value for goal/soft goal non-compliance in Table 9.

Figure 16: An example of determining goal and soft goal impacts for HAP,

showing the requirements matrix and automatic propagation in REDEPEND

The application of the propagation heuristics did not invalidate the domain

properties for most satisfaction arguments. One possible explanation for this was that

the authors of the change requests had respected assumptions about the well-

established HAP domain. Where potentially non-compliant goals and soft goals were

identified through heuristics 5 and 6, it was possible to make them compliant by

adding new domain assumptions to the arguments.

6.6 Unsupported Activities

The analyst also identified two activities that were not supported by the PiLGRIM

method. The first was that the analyst was not able to handle mutually-dependent

change request requirements as the method addresses requirements individually. For

example, the change request requirement to notify a nurse of a deleted record has no

impact unless the requirement to delete the record is also considered, i.e. the

1

2

3

Page 31

notification simply would not be triggered without the dependent requirement also

being implemented. This raised a future need for PiLGRIM to support the analysis of

more than one requirement at a time.

The second was that the analyst was uncertain how to handle requirements that

would alleviate the need for tasks or resources in the SR model. For example, the

requirement that the notification for follow-up (FUP) would only be sent for new

patients if the record was incomplete alleviates the need to do FUP on all new

notifications. As such, this means that nurses would not need to do data follow up on

new records per se, just records that were incomplete. Again, the analyst found matrix

completion in such a case to be difficult.

6.7 Conclusions

The HPA analyst was able to develop one SD model, one SR model and

satisfaction arguments linked to means-end links in the SR model using the extended

versions of i* and REDEPEND. He was able to discover domain properties in the

satisfaction arguments incrementally during modelling and analysis tasks, which led

to domain properties more relevant to goals and soft goals. Unlike in the first case

study, the analyst also mapped 29 change request requirements to i* model tasks and

resources, then undertook impact analyses to show that 23 impacted positively on

HAP system goals, 3 impacted negatively on these goals, and 3 revealed redundant

tasks and resources. As a consequence these latter 6 requirements were reviewed and

changed prior to their implementation.

Table 10 provides a summary of the evidence collected to evaluate the five research

claims. We believe that results provided some empirical evidence for our conceptual

integration of i* modelling and satisfaction arguments, the usability of REDEPEND,

and the scalability of the PiLGRIM method, and ultimately the usefulness of the

PiLGRIM method. One caveat is related to analyst experience. A less familiar and/or

experienced analyst might have taken more time to complete the requirements matrix.

Table 10: Four of our claims and a summary of the evidence we collected to

evaluate these through our second case study

Claim Evidence

1 The effective conceptual integration of i*
SR models and satisfaction arguments

 The HPA analyst was successful in
developing and reasoning important
satisfaction arguments;

 Domain properties that were not
explicitly represented in the i* semantics
were added during and after
development of the SR model. The HPA
analyst considered these domain
properties important to the model’s
completeness for the specification of the
HAP system

2 A requirements analyst can use the
procedure with which to analyse the
impacts of software system requirements
on system-wide goals effectively

 The HPA analyst was able to detect
positive and negative impacts on
requirements on system-wide goals and
soft goals;

 However analysts encountered
difficulties when assessing impacts of
requirements that were mutually-
dependent and led to redundancies in
the i* SR model

Page 32

3 A requirements analyst can use the
software tool support with which to exploit
the new procedure effectively

 REDEPEND supported a consistent
application of all 4 stages of the
PiLGRIM method successfully;

 No usability problems were reported
during the i* modelling, but the analyst
recommended improvements to the
usability of the requirements matrix

4 A requirements analyst can use the
procedures and tool to model large socio-
technical systems with i* effectively

 The HPA analyst was able to develop
large i* models of the HAP system
successfully using REDEPEND

5 A requirements analyst finds the
PiLGRIM method is useful and usable

 The HPA analyst was able to show the
impacts of all the change request
requirements on the HAP system-wide
goals;

 The effort involved was approximately 5
person days. It was too early to assess
the wider benefits to the organisation

Page 33

7. Related Work
The PiLGRIM method represents a pragmatic integration of existing requirements

concepts and techniques, with two sources of ideas being of particular influence in the

development of the method – satisfaction arguments, e.g. [9], and qualitative goal

analysis procedures such as [27]. Our motivation for PiLGRIM was to develop a

useful and useable tool-supported method that would successfully engage analysts

with these concepts and techniques. Therefore, in this section, we will look at related

work in the context of this aim.

7.1 Satisfaction Arguments in Requirements Methods

The original conception of a satisfaction argument from Jackson [17, 40] has

already been incorporated into requirements methods such as problem frames [e.g.,

18, 7, 8], rich traceability [e.g., 3, 9] and KAOS [34, 35]. We look at each area in turn.

Jackson‟s problem frames approach [18] focuses on the software (machine) and the

application domain, and includes a problem context that represents the machine to be

built, the various problem domains in the application domain, and the interfaces

between them. A problem diagram, which uses the problem context, introduces the

requirements to bring about certain effects in the problem domains. However, this

approach to modelling a single system (machine) does not translate well to socio-

technical systems that have multiple systems and actors. The approach also includes

concepts for describing recognisable classes of problems. Similar to a design pattern,

these classes are abstractions of repeating problems. Again, these do not transfer and

scale well to a complex socio-technical system due to their simplicity.

Haley et al [7] use satisfaction arguments to show that a future realised system can

satisfy its security requirements. Their approach is based on problem analysis and

uses an approximation of Jackson‟s problem frames diagrams to discover security

requirements. Their approximation does not attempt to identify a particular problem

class, but enters phenomena and requirements into a system problem diagram that

expresses the interaction of domains from a security perspective. This approach does

not attempt to analyse the wider development problem and phenomena across a wide

range of domains. Formal arguments, based on claims about domain properties, are

coupled with informal arguments that justify the claims [7]. The arguments are

captured in a text form as this is the most expressive and natural way of representing

them. However, Haley et al [8] report that the text representation of an argument can

become difficult when the argument is complex. For example, project members in

their case study were more comfortable using a less expressive graphical form of the

informal arguments. Therefore, tool support for translating between textual and

graphical forms of the arguments would have been helpful. We sought to take these

concerns of complexity management and visualisation into account for the PiLGRIM

method.

In [3], Dick uses a simple textual representation of a satisfaction relationship for a

customer requirement linked to artefacts and associated rationale. He recommends

„appropriate‟ tool-based support to construct a tree of related artefacts, and a

configuration management tool to define changes through the design layers.

REVEAL, described in section 2.3, supports different representations of satisfaction

arguments for simple use in requirements projects. For example, Mavin [26]

demonstrates a straightforward tabular structure to link specifications and domain

properties to satisfaction argument text when applied to requirements on rail rolling

stock. Also, Hammond et al [9] present a graphical representation of rich traceability

Page 34

with similarities to the AND/OR graphs used in the KAOS method. Their approach

has a more informal representation than KAOS and also shows an explicit

justification of how and why a statement is achieved. However, despite this similarity,

REVEAL still lacks the use of explicit goal modelling techniques.

KAOS [2] is a well-established goal-based requirements engineering approach that

has been applied in multiple industrial projects over a period of nearly twenty years

[35]. van Lamsweerde states in [35] that an important, often neglected part of a

requirement engineer‟s role is to specify satisfaction arguments. As mentioned earlier,

KAOS uses AND/OR goal refinement graphs to represent such rich traceability. The

refinement is elaborated with domain properties in order to determine whether its sub-

goals are sufficient to establish satisfaction of the parent goal [20]. However,

AND/OR trees expressing hierarchy do not always accurately reflect the complex

nature of contributions between goals, especially when considering heterogeneous

actors in socio-technical systems.

Another well-established goal-based approach is i*, our method of choice, as

introduced earlier in section 2.1. i* is a more lightweight method than KAOS and

contains a vivid visual representation of actor boundaries. Establishing boundaries of

socio-technical systems and placing goals into an organisational context is a key

requirements task. A major strength of i* is its ability to represent a clear overview of

these important concepts. Also, goal expression is helped in i* through the modelling

of process elements, such as the ATCO task model developed in our first case study.

7.2 Qualitative Goal Analysis

The PiLGRIM impact analysis procedure shares some characteristics with the NFR

Framework [27]. As stated in [27], quantitatively measuring a new or incomplete

software system is an even more difficult task than that of measuring the final

product. The aim is to rationalise the development process and justify design

decisions early on in the project. This also applies to the PiLGRIM method, as the soft

goals expressed at the early development stage are, by definition, not measurable.

There is also a similarity with the NFR labelling procedure, which determines the

status of a goal using four main labels: satisificed (the software is expected to satisfy

the goal within acceptable limits), denied (unsatisficeable or “unsolvable” in problem

solving terminology), conflicting (both deniable and satisficeable) and undetermined

if neither. These labels are similar to compliance and non-compliance used in the

PiLGRIM method. However, NFR labelling is a more simplistic approach where

subjective judgments are made to determine the impact of a design decisions on the

status of a goals. PiLGRIM uses satisfaction arguments, rather than judgement alone,

to determine whether actual software requirements are compliant with the socio-

technical system goals.

Horkoff et al‟s i* evaluation procedure reported in [10] builds upon the original

NFR Framework, described above, and shares further characteristics with the

PiLGRIM method. Their qualitative reasoning approach applies propagation rules to

i* models to apply an extended set of NFR labels to represent the level of evidence

towards the qualitative satisfaction and denial of model elements. Both the evaluation

procedures use i* semantics to propagate values of elements through an i* model.

However, our use of integrated i*-satisfaction arguments is, we believe, novel.

Horkoff‟s procedure uses human judgment based on unspecified contextual

knowledge to determine propagations. In contrast our impact analysis procedure uses

satisfaction arguments to provide a scaffold with which to document contextual

knowledge and guide human reasoning about it. Moreover satisfaction arguments can

Page 35

increase the completeness of i* models with more problem domain knowledge

without overloading the i* notation, which was a cited reason not to formalise

documentation of contextual knowledge in the i* evaluation procedure [10].

7.3 Tool Support for the i* Framework

A number of i* tools have been developed, most of which are and listed and

described in [15], for example the Organization Modelling Environment (OME) java

application developed at the University of Toronto [30]. The OME tool provided the

first modelling environment for the i* framework, and included a graphical interface

for developing models, usability features such as the facility to expand the SD model

to show the internal elements of the SR model, and computer-aided analysis support

[30]. However, the tool has not been shown to support large-scale i* diagramming

effectively, with the largest reported model containing approximately 100 elements

[16]. In light of the limitations of the OME tool, REDEPEND was developed to

support scalable i* modelling and tool-supported analysis procedures as presented and

demonstrated in this paper. For example, the scale of i* modelling undertaken by the

NATS analysts is reflected in Table 2, and the successful application of our

procedures was demonstrated by the results of the HPA case study.

Subsequent i* tool development of interest includes the Open-source Goal and

Agent-Oriented Model Drawing and Analysis Tool (OpenOME), an Eclipse-based

open source evolution of the OME tool [13]. In particular, the tool has been specified

to support Horkoff et al‟s i* evaluation procedure [10] described above. The

propagation procedures have been evaluated in a series of user studies reported in [11,

12], covering the propagations of qualitative labels and visualizations to improve

usability. Other related OpenOME developments include the Open Requirements

Engineering tool, which integrates Jackson‟s problem frames [18] with the i*

framework by hyper-linking model elements to arguments [39]. Whilst both of these

recent OpenOME developments have similarities with our PiLGRIM approach, it

remains that no tool apart from REDEPEND supports both propagation of change

requirements and satisfaction arguments. We claim novelty for our tool-supported

approach through this integration and its evaluation in two industrial case studies.

7.4 Extensiveness of the PiLGRIM Method

Finally, it is worth considering how general our approach is and whether our i*-

based extension could be applied to other goal modelling frameworks. We will use

KAOS as an example, as it includes the main concepts modelled in the PiLGRIM

method and there are obvious comparisons to be drawn.

KAOS uses four main models – the goal, responsibility, operation and object

models. The method begins with identifying goals which are decomposed into

subgoals modelled as directed graphs, which means a given goal can appear in more

than one higher-level goal decomposition [32]. This notion would fit with PiLGRIM

in that goals, especially non-functional goals, do not necessarily appear once in a

simple goal-tree structure. However, we have found in our reported case studies that

hierarchy does not always accurately reflect the complex nature of contributions

between such qualitative goals. KAOS also includes non-functional goal

decompositions that describe positive and negative contributions. These

decompositions can be compared to the means-end link in i* and PiLGRIM method

extension. Similar to PiLGRIM, each goal can be refined with domain properties that

are relevant to the application domain and used to prove the completeness of the

refinement. KAOS includes an additional notation for expectations, for example

behaviour expected of human actors, which we document under domain assumptions

Page 36

for simplicity. KAOS goal refinement also includes requirements which are defined as

goals that have been allocated under the responsibility of an actor. The associated

actors are connected to the requirements and feature in their own responsibility model

[32]. For PiLGRIM, the existing requirements specification, or set of change

requirements, could be directly specified as requirements in KAOS.

The second KAOS model contains each actor‟s responsibility diagram that

represents all of the requirements and expectations that they are responsible for [32].

This model has similarities with the actor boundary in i*, but does not contain goals,

tasks and resources. Instead KAOS uses two further models to represent objects and

operations. The object model is compliant with UML class diagrams and includes

entities, similar to i* resources, which represent independent passive objects [32].

Similar to the task structures created in i*, KAOS includes an operation model which

describes all the behaviours that agents need to fulfil their requirements. Operations

are applied to objects defined in the object model which can be created, changed or

activated by other operations. In KAOS requirements can be operationalized by

objects and operations [32]. For PiLGRIM, detailed analysis of agent behaviours is

not required for the satisfaction arguments and propagation procedure, therefore

reflecting operations in a task model is sufficient. It is possible, however, that further

analysis beyond the method could benefit from the KAOS approach.

In conclusion, KAOS includes all of the necessary concepts and constructs, and

more, to incorporate the PiLGRIM method but the main difference with i* is the

graphical representation. PiLGRIM requires just one SR model unlike KAOS which is

likely to require a few models to represent all the concerns. We believe that the clear

representation of actor boundaries containing all of the constructs and associations in

i* provides analysts with a more usable viewpoint from which to apply the PiLGRIM

method. KAOS which includes additional, and useful, concepts such as events and

obstacles lends itself better to automated reasoning. This is not the intention of the

PiLGRIM method. Additional concepts, details and more complex visualizations

present a trade off with usability when considering the time and effort required by

analysts to learn and understand the method.

8. Research Contributions Revisited
We revisited the five claims for research contributions made in Section 4.4 to

determine which were supported by the combined evidence obtained from both case

studies. Results are summarized in Table 11 and provide evidence to support three

claims fully and two partially. No claims were rejected. Each claim is discussed

briefly in turn.

Table 11. Summaries of reported evidence to accept fully and partially the 5

claims made for the PiLGRIM method

Claims for the tool and
procedures

Supported Reported Evidence

1 The effective conceptual
integration of i* SR models and
satisfaction arguments

Yes Analysts in both case studies used domain
knowledge effectively to construct the i*
models;
Domain knowledge was included
effectively in the specifications of the new
systems in both case studies

Page 37

2 A requirements analyst can use
the procedure with which to
analyse the impacts of software
system requirements on system-
wide goals effectively

Partially The analyst in the HAP case study was
able to detect positive and negative
impacts of requirements on system-wide
goals and soft goals;
However resources were not available to
complete the procedure in the NATS case
study

3 A requirements analyst can use
the software tool support with
which to exploit the new
procedure effectively

Yes REDEPEND supported the application of
at least 3 of the 4 stages of the PiLGRIM
method successfully in both case studies;
No usability problems were reported
during the i* modelling in both case studies

4 A requirements analyst can use
the procedures and tool to model
large socio-technical systems with
i* effectively

Yes The analysts in both case studies were
able to develop large i* models
successfully using REDEPEND

5 A requirements analyst finds the
PiLGRIM method is useful and
usable

Partially The HPA analyst was able to show the
impacts of all the change request
requirements on the HAP system-wide
goals;
However the NATS analysts were unable
to complete the impact analyses due to
lack of resources

We argue that the PiLGRIM method delivered effective conceptual integration of

i* and satisfaction arguments (Claim-1). Analysts in both case studies were able to

integrate domain knowledge into i* models and requirements specification using the

conceptual model reported in Figure 3. Results did not provide any rationale for

changing the conceptual model. Therefore we argue that we resolved the first i*

weakness reported in section 2.2, to support and capture reasoning about i* means-

end links.

The PiLGRIM method also provided an effective procedure with which to analyze

the impacts of 29 change request requirements on goals and soft goals in the second

case study (Claim-2). However, the resources needed to undertake this analysis, and

the failure to complete in the first, raises issues about the procedure‟s cost-

effectiveness.

The PiLGRIM method provided effective software tool support with which to

exploit the new procedure (Claim-3). Analysts in both case studies were able to

implement the first three stages successfully, and the HAPS analyst had sufficient

resources to undertake the fourth stage. Therefore we argue that we resolved the

second i* weakness reported in section 2.2, to embed the use of i* in existing

requirements practices in NATS and the HPA. No major usability problems were

reported in both case studies. One possible explanation is that REDEPEND is built on

the well-established Microsoft Visio application familiar to the analysts involved.

Indeed the minimum levels of analyst training needed to use REDEPEND indicated a

usable and effective toolkit.

The PiLGRIM method also provided the procedures and tool scale to model large

socio-technical systems with i* (Claim-4). The CAIT SR model contains just under

500 elements and links – the largest i* model developed by us so far – and the HAP

model contained over 200 elements and links. The upfront effort needed to generate

large i* models suggests that such models have a future role as reference models to be

reused in multiple projects to analyse the impact of software requirements.

Finally the PiLGRIM method was useful to and usable by requirements analysts

Page 38

(Claim-5). Analysis of the HAP change requests revealed 6 out of the 29 should be

reconsidered before implementation to avoid possible errors or inefficiencies in the

system. These errors or inefficiencies had not been detected using other analysis

techniques in the HPA. One downside was the analysis expertise and effort needed – 5

person days to model a system analyse the impact of just 29 change request

requirements. A more thorough cost benefit analysis is needed to support the claim

fully.

9. Threats to Validity
Results were derived from data captured during two projects in industrial settings.

Although this contributed to the external validity of the results and conclusions drawn

from them, it also posed threats. This short section reports different conclusion,

internal, external and construct validity threats [36] to the claims made from the two

case studies:

Conclusion Validity

Threats to conclusion validity were concerned with issues that affected the ability to

draw correct conclusions about the relations between the treatment and outcome. One

threat is that our conclusions are drawn from just two case studies. The claims are

therefore preliminary and should be interpreted carefully according to external

validity threats reported below.

External Validity

The threats to the external validity were conditions that limited our ability to

generalize the results from the two case studies more widely. Both case studies were

similar – complex socio-technical systems with critical goals/soft goals and working

practices that had evolved over time. Therefore our results have greater relevance for

the effectiveness of PiLGRIM and REDEPEND in domains with similar

characteristics and the budgets needed to support modeling and impact analyses,

rather than for smaller systems and/or projects using more agile methods.

Internal Validity

Threats to the internal validity were influences that could have affected independent

variables related to causality. The authors of PiLGRIM and REDEPEND played an

active role in modeling in the first case study and trained analysts in both. Inevitably

their participation and the desire of the businesses to make both projects successful

had some influence over variables such as the size and sign-off of i* models and

number of impacts detected. That said, the scale and nature of both domains meant

that their involvement had to be limited, and most analysis work with PiLGRIM had

to be undertaken by the NATS and HPA analysts – the reported results were delivered

and validated by these analysts.

Construct Validity

Construct validity concerned generalizing the results from the case studies to the

concept or theory behind the study, namely the conceptual model in Figure 3. Results

provide concrete evidence supporting the conceptual integration of i* means-end links

and satisfaction arguments in Figure 3 and the procedures and tool features built on

top of this integration. This paper does not make wider claims about the integration of

goal-based techniques and satisfaction arguments.

Clearly further development of PiLGRIM and REDEPEND and evaluation of their

use in more requirements projects is needed to provide the evidence with which to

Page 39

support or reject the claims reported in this paper. To make effective use of data that

is collected an evaluation framework is needed to structure evaluation activities and

relate data to claims.

10. Future Development of PiLGRIM and REDEPEND
Results reported in this paper can be used to make changes to PiLGRIM and

REDEPEND. One is to support the concurrent development of i* SR models and

satisfaction arguments more effectively, similar to use of argumentation tools such as

[1]. The low number of satisfaction arguments developed during the NATS case study

provides evidence that the effort to produce them needs to be reduced. Another is to

improve the usability of the requirements matrix in REDEPEND as both studies

indicated that the effort needed to complete the matrix inhibited use. Specific features

will enable analysts to:

 Refresh the matrix without losing already specified compliance values;

 Print the SR diagram overlaid with corresponding sections of the matrix;

 Reduce the effort needed to complete impact analyses within task and resource

hierarchies based on automatic impact propagation to parent tasks;

 Analyse the impact of mutually-dependent requirements collectively.

We will improve the representation of satisfaction arguments in REDEPEND. In

the current version, domain properties are associated with one end-element

(requirement) and not the specific specification or refinement to which they relate. As

such traceability is implicit, a physical method for such tracing within REDEPEND

would improve usability and analyst understanding. This improved traceability will

also enable us to extend the method to handle negative contribution links from

specific means elements.

Another area we will improve is the support provided to the requirements analyst

during the propagation procedure. For example, by following the existing propagation

heuristics a goal or soft goal can be determined as non-compliant due to one of three

factors – non-compliant means elements, an invalid argument and invalid domain

properties. However, these are independent factors that should all be considered by

the requirements analyst. Through tool support we will enable the analyst to record

the reason(s) for non-compliance rather than just stating generic non-compliance.

Also, where a domain property is determined invalid in one satisfaction argument, we

will enable the requirements analyst to identify other satisfaction arguments

containing this property which also may also lead to non-compliance. Both of these

measures would improve the analyst‟s ability to undertake the propagation effectively.

Having improved the robustness of REDEPEND we will then apply it to model and

analyse other socio-technical systems. Evidence from our two case studies suggested

that the PiLGRIM method scales and is usable, therefore our final research direction

is to investigate if our method provides wider benefits to an organisation. We look

forward to reporting this research in the future.

Acknowledgements
The research reported in the first case study of this paper was supported by NATS, the

UK‟s national air traffic service. The second case study was supported by the Health

Protection Agency Centre for Infections.

Page 40

References

1. Conklin J (2005) Dialogue mapping: building shared understanding of wicked

problems. John Wiley & Sons

2. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements

acquisition. Science of Computer Programming, Vol. 20, pp 3–50

3. Dick J (2005) Design traceability. In: IEEE Software 22(6), IEEE Computer

Society, pp14–16

4. du Bois RM, Branthwaite MA, Mikhail JR, Batten JC (1981) Primary

pneumocystis carinii and cytomegalovirus infection. Lancet. 1981 Dec

12;2(8259):1339. PMID: 6118728 [PubMed - indexed for MEDLINE]

5. Engmann J (2009) Evaluating the impact of evolving requirements on wider

system goals: using i* methodology integrated with satisfaction arguments to

evaluate the impact of changing requirements in HIV/AIDS monitoring systems in

the UK. MSc Dissertation, School of Informatics, City University, January 2009

6. Guidelines Working Group (2001) Updated guidelines for evaluating public health

surveillance systems. MMWR 50(RR13);1–35. Available at:

http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5013a1.htm [Accessed March 7,

2008]

7. Haley CB, Moffett JD, Laney R, Nuseibeh B (2005) Arguing security: validating

security requirements using structured argumentation. In: Proceedings of the Third

Symposium on Requirements Engineering for Information Security (SREIS'05)

held in conjunction with the 13th International Requirements Engineering

Conference, IEEE Computer Science Press

8. Haley CB, Laney R, Moffett JD, Nuseibeh B (2008) Security requirements

engineering: a framework for representation and analysis. IEEE Transactions on

Software Engineering 34(1), pp 133–153

9. Hammond J, Rawlings R, Hall A (2001) Will it work? In: Proceedings of the 5th

IEEE International Symposium on Requirements Engineering, IEEE Computer

Society, pp 102–109

10. Horkoff J, Yu E, Lui L (2006) Analyzing trust in technology strategies. In:

Proceedings of International Conference on Privacy, Security and Trust (PST

2006), pp 21–32

11. Horkoff J, Yu E (2010) Interactive Goal Model Analysis Applied - Systematic

Procedures versus Ad hoc Analysis, The Practice of Enterprise Modeling, 3rd IFIP

WG8.1 (PoEM10), pp 130–144

12. Horkoff J, Yu E (2010) Visualizations to support interactive goal model

analysis, Requirements Engineering Visualization REV 2010 Fifth International

Workshop on, IEEE, pp 1–10

13. Horkoff J, Yu Y, Yu E (2011) OpenOME: An Open-source Goal and Agent-

Oriented Model Drawing and Analysis Tool. In: CEUR Proceedings of the 5th

International i* Workshop (iStar 2011), pp 154–156

14. Isaac AR, Doorn R (2006) Integrated cognitive analysis networks (ICAN): a tool

to support cognitive task and error risk analyses in air traffic management.

Unpublished document, NATS

Page 41

15. i* wiki, „Available i* Tools‟, http://istar.rwth-aachen.de/tiki-

index.php?page=i%2A+Tools&structure=i%2A+Wiki+Home, (last accessed on

12th October 2011)

16. i* wiki, „Comparing the i* Tools‟http://istar.rwth-aachen.de/tiki-

index.php?page=Comparing+the+i%2A+Tools, (last accessed on 12th October

2011)

17. Jackson M (1995) Software requirements and specifications. Addison-Wesley.

18. Jackson M (2001) Problem frames. Addison-Wesley.

19. Jones SV, Maiden NAM (2005) RESCUE: an integrated method for specifying

requirements for complex socio-technical systems. In: Mate JL, Silva A (eds.):

Requirements Engineering for Socio-Technical Systems, Ideas Group (2005)

pp245–265

20. Letier E, van Lamsweerde A (2004) Reasoning about partial goal satisfaction for

requirements and design engineering. ACM SIGSOFT Software Eng. Notes,

29(6), pp53–62

21. Lockerbie J, Maiden NAM (2006) Extending i* modeling into requirements

processes. In: Proceedings of 14th IEEE International Conference on

Requirements Engineering, IEEE Computer Science Press, pp361–362

22. Maiden NAM, Jones SV, Manning S, Greenwood J, Renou L (2004) Model-

driven requirements engineering: synchronising models in an air traffic

management case study. In: Proceedings of CAiSE‟2004. LNCS, vol 3084, pp

368–383. Springer, Berlin

23. Maiden NAM, Manning S, Jones S, Greenwood J (2005) Generating requirements

from systems models using patterns: a case study. Requirements Engineering

Journal 10(4), pp276–288

24. Maiden NAM, Lockerbie J, Randall D, Jones S, Bush D (2007) Using satisfaction

arguments to enhance i* modelling of an air traffic management system. In:

Proceedings of 15th IEEE International Requirements Engineering Conference

(RE‟07), pp.49–52. IEEE Press, New York

25. Maiden NAM, Jones S, Ncube C, Lockerbie J (2011) Using i* in requirements

projects: some experiences and lessons. In: Social modeling for requirements

engineering, ed Giorgini, Maiden, Mylopoulos, Yu. MIT Press

26. Mavin (2004) Scenarios in rail rolling stock with REVEAL. In: Scenarios, Stories,

Use Cases: Through the Systems Development Life-Cycle, ed Alexander, Maiden.

John Wiley & Sons

27. Mylopoulos J, Chung L, Nixon B (1992) Representing and using non-functional

requirements: a process-oriented approach. IEEE Transactions on Software

Engineering 18(6), pp 483–497

28. NATS case study SR Model, available at:

http://hcid.soi.city.ac.uk/research/NATS_RESCUE_SR_Model.pdf, (last accessed

on 13th October 2011)

Page 42

29. Ncube C, Lockerbie J, Maiden NAM (2007) Automatically generating

requirements from i* models: experiences with a complex airport operations

system. In: Proceedings of 13th International Working Conference, REFSQ‟2007,

Trondheim Norway, LNCS 4542, pp33–47. Springer-Verlag

30. Organization Modelling Environment, http://www.cs.toronto.edu/km/ome/, (last

accessed on 12th October 2011)

31. Perini A, Susi A (2011) Understanding the requirements of a decision support

system for agriculture. An agent-oriented approach. In: Social modeling for

requirements engineering, ed Giorgini, Maiden, Mylopoulos, Yu. MIT Press

32. Respect-IT (2007) A KAOS Tutorial, available at

http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

33. Sutcliffe AG (2011) Analysing the effectiveness of socio-technical systems with

i* in Requirements Projects: some experiences and lessons. In: Social modeling

for requirements engineering, ed Giorgini, Maiden, Mylopoulos, Yu. MIT Press

34. van Lamsweerde A (2000) Requirements engineering in the year 00: a research

perspective. In: Proceedings of ICSE'2000: 22nd International Conference on

Software Engineering, Invited Keynote Paper, pp5–19. ACM Press

35. van Lamsweerde A (2007) Engineering requirements for system reliability and

security. In: Software System Reliability and Security, Broy M, Grunbauer J,

Hoare CAR (eds.), NATO Security through Science Series - D: Information and

Communication Security, Vol. 9. IOS Press, pp196–238.

36. Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslen A (2000)

Experimentation in Software Engineering: An Introduction. Kluwer Academic

Publishers, Boston/Dordrecht/London.

37. Yu E, Mylopoulos JM (1994) Understanding “why” in software process

modelling, analysis and design. In: Proceedings, 16th International Conference on

Software Engineering, IEEE Computer Society Press, pp159–168

38. Yu E, Liu L, Li Y (2001) Modelling strategic actor relationships to support

intellectual property management, 20th International Conference on Conceptual

Modeling (ER-2001), Yokohama, Japan, November 27-30, 2001, LNCS 2224,

pp164–178. Spring Verlag

39. Yu Y, Tun TT, Tedeschi A, Nunes Leal Franqueira V, Nuseibeh B. (2011)

OpenArgue: Supporting Argumentation to Evolve Secure Software Systems. In:

19th IEEE International Requirements Engineering Conference, RE 2011, Trento,

Italy, pp. 351-352. IEEE Computer Society

40. Zave P, Jackson M (1997) Four dark corners of requirements engineering. In:

ACM Transactions on Software Engineering and Methodology 6(1), pp1–30

