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Abstract

This thesis describes the development and application of numerical pre-
dictive procedures for flows in which turbulence-driven secondary motion
plays an important role. The focus is on fully-developed flows in closed
ducts and open channels of various cross-sectional geometries.

Two different turbulence models were evaluated: a complete Reynolds-
stress-transport model and a two-equation k-f model used in conjunction
with a nonlinear stress-strain relationship. Detailed consideration was
given to the various approximations utilized in closing the Reynolds-
stress equations, particularly to the difficult pressure-strain-correlation
term which proved crucial for the accurate prediction of the turbulence-
driven secondary motion. The thesis also considers the validity of such
models to flows influenced by the presence of a free surface.

Appropriate numerical procedures were developed to handle the variety
of geometries likely to be encountered in engineering practice. Particu -
lar attention was placed on the development of the numerical procedure
which utilizes the nonlinear k-e model in conjunction with body fitted
coordinates.

The performance of each model was assessed through detailed compar-
isons with published data from a very wide range of flows in non-circular
ducts and channels. Both models succeeded in predicting the secondary
flow and its effects on the mean-velocity field in rectangular and com -
pound ducts.

For flows in rectangular channels, the Reynolds-stress model proved ca-
pable of accurately predicting the strength and location of secondary-flow
cells and their role in displacing the position of the mean-velocity max-
imum to below the free surface. In contrast, the nonlinear model failed
to reproduce this result for reasons discussed in some detail in the thesis.
Both models predicted equally well the shear stress over wetted perime-
ter indicating that the defect of the nonlinear model encountered near
to the free surface was rather localized. The Reynolds-stress model also
proved to be particularly accurate in the prediction of flows in compound
channels. The nonlinear k-f model was found to be less accurate there
but, due to its economy and robustness, this model seems to be an accept-
able alternative to Reynolds-stress models for the practical prediction of
flows in simple and compound open channels.
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Chapter 1

INTRODUCTION

1.1 Background

Turbulence is both the most complicated and the most common kind

of fluid motion and the motivation for the understanding and practical

prediction of turbulent flows stems from their frequent occurrence in en-

gineering practice. There are instances when the effects of turbulence

are undesirable (e.g. energy dissipation in fluid-transport systems) but,

equally, there are many instances where turbulence plays a very positive

role such as in the dispersion of contaminants in the environment. In

all cases, the turbulence phenomenon is closely connected with the well-

being of the society and this justifies the theoretical and experimental

research into its nature.

One interesting turbulent phenomenon is the turbulence-driven secondary

motion observed in non-circular ducts and channels. This is usually re-

ferred to as Prandtl's second kind of secondary motion to distinguish it

from Prandtl's first kind of secondary motion which is driven by the pres-

sure gradients in the flow field. The turbulence-driven motion (which is

obviously absent from laminar flows) is only of the order of 1 - 3 % of
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x,U

the streamwise bulk velocity and arises from the anisotropy of the tur-

bulence field as will be discussed in Section 1.2. Yet, despite its modest

strength, that motion exerts a profound influence on the main flow as

was first observed by Nikuradze (1926) who identified it as the cause of

the bulging of the axial velocity contours towards the corners of a square

duct under fully-developed flow conditions. Such distortions of the mean-

velocity contours cause a reduction in the wall-shear-stress in the centre

portion of the duct with important consequences to the rates of heat or

mass transport there. A prerequisite to the prediction of turbulence-

driven secondary motion is the understanding of its origin, and this is

the subject of the next section.

1.2 The Origin of the Turbulence-Driven Secondary Motion

Prandtl (1926) attributed the origin of that motion to the turbulent fluc-

tuations along the isovels which produce the secondary flow normal to the

isovels wherever a variation in curvature occurs. This remined unverified

due to the lack of measurements for the secondary velocities at that time.

In the past thirty years several researchers have anaiysed the streamwise	 -

vorticity equation in order to examine the importance of each term in

that equation.

y.V

z

Fig. 1.1 The coordinate system for streamwise vorticity equation
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The general vorticity equation in tensor notation can be written as fol-

lows:

82Tlk

8x	 1jk_axax7 + '1ôxj8x	
(1.1)

where

qjk - ahernating third-order tensor

= fIJk(8UJ!öxI) - turbulent vorticity

Using the notation of Fig. 1.1, the streamwise vorticity equation for the

three-dimensional fully developed flow can be written in the following

form:

Al	 A3	 A4

	

____	 82	 a2-	 0c82	

5x2 + 8y2) (1.2)ox	 oy OxOy

were

= (OV/Ox - OU/Oy)

Brundrett and Baines (1964) measured all three velocity components

and all six Reynolds stresses and used their measurements to examine

the magnitude of the terms in equation (1.2). Term Al represents the

convection of streamwise vorticity by the secondary flow itself. Term A4

represents the diffusion of vorticity by molecular viscosity. Terms A2 and

A3 represent the rates of production of streamwise vorticity. They found

that the term involving the difference in normal stresses (u 2 - v2 ) is an

order of magnitude greater than the shear-stress term (tiv) and therefore

they concluded that the main contribution to the production of vorticity

is due to term A2.

Gessner and Jones (1965) used X-array hot-wire probes to measure the

terms in the momentum equation for a velocity component along a sec-

ondary flow streamline. They found that the convective and viscous

terms were approximately two orders of magnitude less than the pres-

sure and turbulence terms in the momentum equation. They also found

3



that the terms containing the normal and shear stresses were of the same

order of magnitude. The findings of Gessner and Jones contradict those

of Brundrett and Baines in so far as the former found that the strength

of the normal- and shear-stress terms appeared to be balanced.

Perkins (1970) used his data to investigate the mechanism for generating

the streamwise vorticity in developing corner flow. He arrived at sim-

ilar conclusions as Gessner and Jones (1965) suggesting that terms A2

and A3 are of equal order of magnitude, contrary to previous findings

of Brundrett and Baines. The experimental results for the shear stress

iiv of Brundrett and Baines were criticized by Perkins (1970) on the fol-

lowing ground: the turbulent stresses uv and u 2 —v2 were obtained from

4 measured r.m.s. voltages, using a rotating single-wire sensor to eight

different orientations at each point in the flow, so that an error of only

± 1 % in each r.m.s. voltage would introduce an error of ± 100 % in the

shear stress ÜV.

The experimental findings on the generation of turbulence-driven sec-

ondary motion may be used to draw a following conclusion: the terms

A2 and A3 both contribute to the production of streamwise vorticity in

three-dimensional fully-developed flows and hence both the turbulence

anisotropy together with the secondary shear-stress must be modelled

accurately in order to realistically predict the secondary flow.

1.3 Previous Predictions

1.3.1 Alebraic-Stress Models

Algebraic-stress models are based on explicit algebraic relationships for

the Reynolds stresses, obtained by simplifying the modelled transport

equations for the turbulent stresses. Launder and Ying (1973) were the

first to apply such a model for predicting the secondary flow in non-

circular ducts. They simplified the modelled transport equations for tur-

4



bulent stresses proposed by Hanjalic and Launder (1972,b), using the

assumption that the turbulence is in a state of a local equilibrium and

this allowed them to neglect the convection and the diffusion terms from

those equations. They also neglected all the secondary velocity gradients

in the expressions for the Reynolds stresses. Turbulence kinetic energy

(k) was obtained from solution of a differential transport equation while

the turbulence length scale (L) was determined using Buleev's (1963)

algebraic formula. Application of this model to the square-duct flow pro-

duced fairly good results for the main-flow isolines and secondary-flow

profiles which is surprising considering that the same model underes-

timated the turbulence anisotropy by at least one order of magnitude

(Kacker, 1973). The authors also had to reduce the value of a certain co-

efficient in the algebraic equations in orcer to avoid too large secondary

motions; their model then differed from the one originally proposed by

Hanjalic and Launder (1972,b) by a factor of 3.6.

Tatchell (1975) adopted a different approach to that of Launder and Ying

in that he calculated the dissipation of turbulence kinetic energy (e) from

its own transport equation. Gosman and Rapley (1980) applied Tatchell's

model to flows in rectangular ducts and to some non-orthogonal geome-

tries using a curvilinear mesh system. They obtained satisfactory results

for the main flow though the model's performance for the turbulence

anisotropy was not reported.

Naot and Rodi (1981,1982) were the first to apply the ASM to open-

channel flows. The expressions for the normal stresses u 2 , v2 and the

shear stress liv were similar to those proposed by Launder and Ying but

contained additional terms arising from the use of a surface-proximity

correction to the pressure strain model. Moreover, the authors used the

eddy-viscosity terms from k-c model in the expressions for the u 2 , v2 and

the shear stress liv. The primary shear stresses 11W and VW were calcu-

lated using an eddy-viscosity model in which the turbulent viscosity was

assumed to be anisotropic (i.e. different for the x- and y-directions) an

approach which, at best, can only be regarded as highly empirical.

5



Another application of the ASM is that of Nakayama et al. (1983) who

applied it to rectangular and trapezoidal ducts. They obtained satis-

factory results for the the mean-velocity field but again underestimated

the turbulence anisotropy and the secondary-shear stress by one order of

magnitude.

Demuren and Rodi (1984) argued that the underprediction of turbulence

anisotropy obtained by Launder and Ying's model is due to two reasons.

Firstly, because the model is developed from the stress-equation model of

Hanjalic and Launder (1972,b) which does not account for the influence

of the wall on the turbulence field and, secondly, because of the neglect

of all the secondary-velocity gradients from the stress expressions. De-

muren and Rodi then re-introduced the secondary-ve1ocity gradients in

their ASM model which was developed from the stress-equation model of

Launder et al. (1975) and found that the model was able to realistically

simulate many important features of the secondary flow. The strength

of the secondary motions was, however, underestimated and hence the

authors concluded:

further work is necessary in order to develop a model for simulating accurately

the secondary velocities without any tuning of constants.

Krishnappan and Lau (1986) applied the ASM to flows in open compound

channels. Their work was primarily aimed at the prediction of the bulk

quantities in those flows (e.g. the total discharge) which, on the whole,

were in good agreement with the data.

1.3.2 Reynolds-Stress-Transport Models

To our knowledge there have been only two attempts to apply the Reynolds-

stress model for predicting the secondary motion in three-dimensional

flows. Naot, Shavit and Wolfshteirt (1972) applied this model to flows in

square duct. They specified the turbulent length scale from geometric

considerations (along the lines proposed by Prandtl, 1925) and this limits

6



the applicability of their method to simple ducts. Their predictions for

the main-velocity isolines were reasonably good. The predicted turbu-

lence anisotropy was of the same order as that measured.

Reece (1977) applied the model of Launder et al. (1975) to flows in square

ducts (both developed and developing) and, also, to an open channel flow.

Demuren and Rodi (1984) claimed that Reece probably accounted for the

influence of the secondary velocity gradients by using an eddy-viscosity

expression (as Naot and Rodi 1982) built into the computer program but

this cannot be confirmed from Reece's thesis. At any rate, his predictions

of the both the velocity and the turbulence for the square-duct flow were

in good agreement with the data. This was also the case for the mean-

velocity contours for the narrow open-chtnnel flow (aspect ratio 0.6).

1.3.3 Nonlinear k-e (k-l) Model

Speziale (1987) presented a novel non-linear stress-strain relationship

which, together with the standard k- and k-i equations, proved capa -

ble of predicting the turbulence-driven secondary motion in non-circular

ducts. Younis and Abdellatif (1989) used this model to calculate flows

in rectangular ducts with various aspect ratios and they obtained fairly

good results for all measured parameters. Hur, Thangam and Speziale

(1989) calculated flow in a square duct using the nonlinear k-I model and

their predictions were in satisfactory agreement with the experimental

results.

1.4 Motivation and Objectives of the Present Work

The need for a predictive procedure for turbulent flows in ducts and

channels of non-circular cross-section arises from the frequent occurrence

7



of such flows in all branches of engineering. Examples include the air-

conditioning ducts, heat exchangers, intake ducts of jet engines, open

channels, river flood relief schemes, sewers and estuarine flows. In all

those flows the mean-flow field is significantly affected by the turbulence-

driven secondary motion.

The focus of previous research has been on the development and appli-

cation of Algebraic-Stress Models to flows in non-circular geometries. It

is now clear that such models are not entirely satisfactory, not, at any

rate, when applied in their standard forms and cannot thus be relied

upon to form the basis of a genuinely predictive procedure. Reynolds-

stress-transport model overcome many of the limitations inherent in the

algebraic approach, but those are not wefl tested for the flows of interest

here. Indeed, there are only two previous uses of such models for flows

in square duct but, as mentioned in the previous section, neither one can

be considered as a comprehensive test of the validity and limitations of

such models. One reason for the shortage of RSM applications is that

the implementation of those models in practical numerical schemes, and

the procurement of stable solutions, are not trivial tasks. The real poten-

tial of Reynolds-stress models for predicting turbulence-driven secondary

motion remains unknown. The same can be said for the non-linear stress-

strain relationship proposed by Speziale (1987): it looks promising but

its real potential is not fully determined.

The objectives of this work are as follows:

1. To conduct a critical review of the various closure approximations for

the turbulent diffusion, dissipation and pressure-strain correlation

in the Reynolds-stress model. This task is treated in Chapter 2.

2. To implement a complete Reynolds-stress-transport model and a

nonlinear k-f model of turbulence into appropriate numerical solu-

tion procedures and to adapt those to handle all the flows considered

in the present study (Fig. 1.2). This task is treated in Chapter 3.

3. To conduct a preliminary assessment of the two models for square-

duct flows in order to identify the merits and deficiencies of each

8



model and to advance alternative closure assumptions, if necessary.

This task is treated in Section 4.2 of Chapter 4.

4. To conduct a detailed models assessment against experimental data

for closed ducts and to explore the models performance for the

widest possible range of geometries giving rise to turbulence-driven

secondary motion. The results obtained for non-circular ducts are

reported in Sections 4.3 - 4.5 of Chapter 4.

5. To identify the physical processes that are dominant in the region

adjacent to the free surface and to investigate their modelling in

conjunction with the present closure assumptions. This aspect of

the work is presented in Sections 5.1 - 5.3 of Chapter 5.

6. To assess the accuracy of the models and to determine their va-

lidity and limitations for practical applications. This will be done

by comparing their results with well-documented experimental data

for various open-channel flows with particular attention to two-stage

(compound) channels. The results obtained for non-circular chan-

nels are reported in Sections 5.3 and 5.4 of Chapter 5.

Conclusions and fulfillment of the stated objectives are to be critically

reviewed in Chapter 6 where recommendations for future work will also

be made.

9



__I__

I	 Ix,U

y1,

rectangular duct-flow	 compound-symmetric duct-flow

compound-asymmetric duct-flow	 trapezoidal duct-flow

rectangular open-channel-flow	 trapezoidal open-channel-flow

compound-symmetric open-channel- 	 compound-asymmetric

flow	 open-channel-flow

compound-symmetric open-channel- 	
compound-symmetric open-channel -

flow with trapezoidal main channel 	
flow with trapezoidal main channel

and flood plain

Fig. 1.2 The flows predicted in the present work
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Chapter 2

TURBULENCE MODELLING

2.1 Introduction

Application of the principle of conservation of momentum for a contin-

uum fluid yields the Navier-Stokes equations. Those equations, together

with the equation for mass conservation (continuity), describe all practi-

cal types of fluid flow.

The continuity equation for constant-density, steady flow reads:

ax1 =0.	 (2.1)

where U represents the instantaneous velocity. Tensor notation is used

wherein repeated indices imply summation. The Navier-Stokes equa-

tions for a Newtonian fluids of viscosity t and in the absence of body

forces reads:

op	 a	
(2.2)

where and f represent the instantaneous density and pressure. The
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shear-stress tensor rj in equation (2.2) is given by:

(oTJ1	 8U•\	
(2.3)

The above equations can be applied to all flows irrespective of whether or

not turbulent. The rapid development of computers in last two decades

provided an opportunity to obtain numerical solutions to the Navier-

Stokes equations. This has lead to significant advances in the predic-

tion of laminar flows but the complicated nature of turbulence prevented

the direct solution of equation (2.2) for practically-relevant flows. The

reasons for this can be understood by taking, for example, the process

describing the dissipation of energy, which is one of the basic processes

occurring in turbulent flows. Dissipation is governed by the small-scale

motions which have a length-scale typically as small as 0.1 mm in air.

Any numerical attempt to solve such flows through direct numerical sim-

ulations would require a computational mesh of dimensions smaller than

the smallest vortices. This means that a vast number of cells would be

required, even for small flow domains. Moreover, the time dependent na-

ture of turbulence would require the solution of the unsteady forms of the

equations, through the use of a large number of time steps. The direct

numerical solution of equations (2.2) is clearly not a practical proposition.

In engineering practice, interest is confined to the averaged, rather than

the instantaneous, characteristics of turbulent flows. This enables sig-

nificant simplification of the Navier-Stokes equations through the time-

averaging of the terms in those equations.

Reynolds (1895) suggested that each instantaneous variable in the Navier-

Stokes equations may be decomposed into a mean and a fluctuating part,

thus:

U1=U1+u1,	 and

where the mean parts are obtained through statistical averaging, defined

12



aUi
pUj T:i—: = -'-'xi

Dp	 a
+(	 —ptuj) (2.6)

by:

1 jto+t -
Uj = IjflTi

Zt—oo	 t to	
U1dt

By substituting the instantaneous variables in equations (2.1) and (2.2)

with the mean and fluctuating parts and averaging with respect to time

there yields, for a constant-density steady flow, the following set of equa-

tions:

ax1
	 (2.5)

(2.4)

Reynolds was the first to give equation (2.6) in this form and so this

equation is usually called the Reynolds-Averaged Navier-Stokes Equa-

tion. The turbulent stresses UUJ are known as the Reynolds stresses.

Unfortunately, the appearance of the Reynolds stresses means that equa-

tions (2.5) and (2.6) are no longer closed: all six components of the

Reynolds-stress tensor need first to be determined. Since the turbulence

and Prandtl's second kind of secondary motion are linked, an appropriate

definition for those stresses is of essential importance for the prediction

of flows in three-dimensional fully-developed ducts and channels. The

manner of approximation of the turbulent stresses is the main subject of

this work and will be treated in the following sections.

2 The k-e Model of Turbulence

The k-€ model of turbulence is the most popular model in current compu-

tational fluid dynamic practice. Boussinesq's (1877) relationship forms

the basis of this model. By analogy with laminar flow, the turbulent

13



(2.8)

stresses are taken to be proportional to the mean rate of strain. This

defines a coefficient of proportionality, called the turbulent (or eddy) vis-

cosity i t thus:

IoU1 DUj \ 2
PUiUj/1t	 (2.7)

The isotropic part in equation (2.7) was added to ensure that u = 2k.

It must be mentioned that is not a property of the fluid but, rather,

of the flow: it must first be defined to close equation (2.7). Dimensional

analysis gives:

k2
pC-

The constant C, turns out to be the square of the structure parameter

TiV/k. The generally-accepted value for C is 0.09.

The kinetic energy of turbulence (k) and the dissipation rate of turbulent

kinetic energy (€) are determined by solving transport equations of the

form:

convection	 diffusion
-'	 source

a (
	

a
pU	 =	 + S	 (2.9)

where can stand for k or f, F is the turbulent exchange (diffusivity)

coefficient and S. is the source term for the scalar quantity , thus:

s4

k p(Pk– E)

p(ClPk–C2 E)

Table 2.1 Determination of terms for k and e transport equations.
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aul
= liiu] -;-- (2.10)

The values for empirical constants a, o-, C 1 and C 2 are given in Table

2.2. The production of turbulent kinetic energy is formulated as:

Although widely used, two-equation models of turbulence, such as the k-€,

do not satisfactorily predict many kinds of turbulent flows. By assum-

ing Boussinesq's concept of linear stress-strain relationship, all transport

effects on the turbulent stresses are neglected and this introduces unac-

ceptable errors in flows where history effects are important such as in

a wall jet where the turbulent viscosity concept would wrongly result

in the coincidence of the points of zero shear stress and zero strain rate.

Another severe defect of k-f model appears when the model is used to pre-

dict fully-developed flows in three-dimensional non-circular ducts where

it erroneously predicts isotropy of the normal stresses (u 2 = v2 = 2/3 k).

The shear stress liv is also erroneously predicted as zero. Consequently,

the terms A2 and A3 in streamwise-vorticity equation (1.2) vanish and

hence the model is not able to produce any turbulence-driven secondary

motion. The prediction of turbulence-driven secondary motion using the

k-e model is therefore only possible after suitable replacement of equation

(2.7), as will be discussed below.

2.2.1 The Nonlinear Stress-strain Relationship

Rivlin (1957) suggested an analogy between the turbulent Newtonian

fluid and the laminar flow of non-Newtonian fluid. He developed a re-

lationship which expressed the stress components as polynomials in the

gradients of velocity, acceleration etc. The idea of visco elastic behaviour

of turbulence was further developed by Lumley (1970) who indicated that

turbulence undergoing homogeneous deformation behaves like a classical

nonlinear non-Newtonian medium. But it was not until recently that

15



Speziale (1987) embodied such ideas into a practical relationship between

the turbulent stresses and mean rate of strain which is potentially suited
to flows in non-circular ducts.

In order to develop the nonlinear stress-strain relationship, Speziale re-
stricted development to the next higher level of approximation to the lin-

ear form (equation 2.7). He assumed the functional form for the Reynolds
stresses which was developed to the final shape by applying several con-
straints such as general coordinate and dimensional invariance, realiz-
ability and material frame-indifference in the limit of two-dimensional
turbulence. The final nonlinear stress-strain relationship takes the form:

-

0	 10
+ CE L1 (- D11111 Sj) (2.11)

where

L1=4pCi

CD, CE - empirical constants (Table 2.2)

The main rate of strain tensor can be expressed as:

ii:;=:. (+)
	

(2.12)

while the Oldroyd derivative of the main rate of strain tensor takes form:

	

ii—	 U	 Y	 2 1

	

1J —	 + In	 IflJ	 mlc3x	 ôx	 ôx

The nonlinear stress-strain relationship (2.11), together with the defini-
tion of ,ut and transport equations for k and €, identical to those of the
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standard k-€ model form the nonlinear k-f model which is denoted here-

after as NKE. The empirical constants are given in the table below:

11 c	 u, C 1 C 2 CD CE

0.09 1.0 1.22 1.44 1.92 1.68 1.68]

Table 2.2 The constants for the nonlinear k-€ model

To see the implications of the nonlinear terms on the turbulence anisotropy,

the full explicit relations for three-dimensional, fully-developed, flows are

presented below:

au
- p

+ L1CD {4()2 + ()2 +	 +Ox	 Ox	 Oy Ox
4	 ()2	 + ( dW ) ( OU OV
3[ Ox	 2 Ox

L'CE{2(	
2	 2 OUc3V	 02U	 02U

-	 -) +(-) -(-------)+TJ------V00

- 2{( OU )2( OV )2 1(( 8W 2 0"v 2 OU OV
L	 ox	 Oy	

+ H 2)] }2.14

av
-

dy
+ L1OD {4( )2 + ()2 + (

	
+

	

ay	 9y -
4 [ OU + ( Y) 2 + ((OW)2 + ()2 + (

	
+ OV)2)] }

3Ox	 Oy	 2Lá	 dy	 Oy Ox

- LlCE{(Y)2+2()2(0U8'	 a2v	 o2v
Ox	 ôy	 -	 + OxOy - V

2 [ OU 2 + ( OV )2 1 (()2 + ()2 + (OU + 01T)2)] }(2.15)- 3OX	 2Ox	 ay	 Ox

17



—p

+

—puw =

+

—pvw =

+

w2= —pk

L1 CD f(dW\2 + (DW\2
U8x'	 kay'

4 SU	 Dy 1(5W	 aw	 su av
3 Sx	 Dy	 2 Dx	 "Dy	 ' Dy Dx

fsw 2 aw2
L 1 0Ec(---) +(------)iDx	 Dy
2 8U 2 Dy 2 1(8W 2 SW 2 DU DY2

	

(—) + (—) +	 (---) + (--) + (— +	 (2.16)

The expressions for shear stresses are:

/ou av-ptiV =

+ L1CD (DWDw LiCE f3(DU(5v
4	 Dx Dy)	 2	 "Dxi Dx
Duov DUDU DV8V

+

	

8 /DU Dv\	 S I Dli DV
- U—t—+--)+v—(--+---

Dx\Dy Oxj	 Dy\Dy Dx
(2.17)

ow
ILt

L1 CD I OW DU OW DU OW SY
t2--- + (---)(—) + (--)(-)

LiCE I DU Sw	 SU OW DV OW
2	

+ 2(—)(---) + (--)(--)

a /Ow\	 8 (Ow
U-;--- H1 +V	 (-DX\OXJ	 Dy\Dx

(2.18)

OW

L1CD I OW OV OW DU OW OV
4 t2(_)(_) + (---)(—) + (--)(—)

LiCE I OV OW	 DV OW OW DU
2	

+ 2(—)(---) +

D (Ow\	 D /Dw
U— I—) +V— I -Ox\Dy)	 DyDy

(2.19)
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In the above equations, the first lines correspond to Boussinesq's rela-

tionship while the rest is a consequence of the nonlinear part of equation

(2.11). New terms appear, they contain quadratic mean-velocity gradi-

ents and remain finite even for fully-developed conditions. Accordingly,

the model produces different levels of the normal stresses at every point

in the flow field which is the necessary mechanism for generating the

turbulence-driven secondary motion. Furthermore, the presence of sec-

ondary motion gradients in the main-shear-stress expressions (tiWandVW)

ensures the feedback influence of the secondary motion on the main flow.

Relations (2.14)—(2.19) and those which arise from the algebraic-stress

model are arguably quite similar: both mde1s provide explicit functions

for the Reynolds stresses but the similarities end there. By simplifying

the modelled equations for tfTiJ, different stress expressions may be ob-

tained depending on the choice of closure assumptions used, on whether

production is assumed equal to dissipation and, also, on whether wall-

reflection terms are included. The nonlinear model is simply a consti-

tutive relationship which is one order higher then Boussinesq's. Unlike

ASM, it is always coordinate invariant.

2.3 The Reynolds-Stress-Transport Model

Many of the defects associated with the Boussinesq's relationship can be

eliminated altogether by determining the Reynolds stresses from their

own transport equations. To derive the Reynolds-stress equations, the

Navier-Stokes equations for the instantaneous i and j components are

multiplied with u j and u1 respectively and then summed and time-averaged.

The resulting differential transport equations for the Reynolds-stress ten-

sor, for stationary constant-density flow in the absence of body forces,
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(uu Uk)

(2.20)

are given as:

ôuu	 ___ÔU• ___DU	 p' I ôu1 ôu\	 5
Uk	 = -

dXk	 dXk	 dXk	 p \SXJ 5XJ SXk

1 / 5 - a __'\	 / 52u •	 S2u- -	 + P'UJ) + U1 ax + uj 54

The first term in equation (2.20) represents convection of the turbulent

stresses by the mean velocity. The second term represents production due

to interaction between the turbulent motion and the mean rates of strain.

The third term is called the pressure-strain correlation term. This term

tends to equalize the normal stresses by re-distributing the turbulence

kinetic energy amongst the three fluctuating components. The fourth

term contains triple-velocity correlations: it represents the transport of

the UU5 in the xk direction by the velocity fluctuations. The fluctuat-

ing pressure-velocity correlations also represent a transport term, due to

pressure fluctuations. The last term involves mutual interaction between

the molecular viscosity and turbulent velocity fluctuations and is usually

decomposed into two parts:

( 52	 S2uj\	 S	 ____	 rau1 3u\

\ 5x	 OXk J	 DXk ( SXk - 
2v	 (2.21)zi(uj, 2 +uJ, 2	 =	 ii

The first part represents the molecular transport of the turbulent stresses.

The second term is always negative and represents the dissipation of tur-

bulent energy by viscous action.

Equation (2.20) can now be re-written as:

convection	 production

____	 aUj	 ou1
Uk	 = - (uuk------ + UjUk--)

SXk	 dXk	 OXk

diffusion

a____________ 1	 - _____
-	 [uiu.juk + ( i jk + l"1i8jc)	 DXk

rau a
- 2ii

\Sxk SXk
dissipation

' (a	 a1j
+	 I+

•p \dX	 dx

redistribution

(2.22)
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Unfortunately, having obtained the Reynolds-stress equations, the deter-

mination of turbulent stresses UiiJ is far from complete. It is obvious from

equation (2.22) that only the convection, production and viscous-diffusion

terms can be treated in exact form. The task now is to approximate the

terms representing diffusion, dissipation and redistribution as functions

of known or knowable quantities such as the mean velocity (U 1 ), turbu-

lent stresses (iijiij) and the dissipation of turbulent kinetic energy (i).

This is the subject of the following sections.

2.3.1 Diffusion

The diffusion term in equation (2.22) is comprised of three different parts:

diffusion due to viscous effects, diffusion caused by velocity fluctuations

and, finally, by pressure fluctuations. The viscous term is usually ne-

glected for high Reynolds-number flows away from walls but, since the

numerical incorporation of this term in a computer code is straightfor-

ward, it has been retained in the present study.

The term which represents diffusion by pressure fluctuations is difficult

to model because the pressure fluctuations cannot be measured directly.

Hanjalic and Launder (1972,a) obtained an estimate of the magnitude of

this term by measuring all the remaining terms in the equation for the

turbulence kinetic energy in an asymmetric plane channel flow. Pressure

diffusion was then taken as the out-of-balance term which showed it to be

much smaller than all the others. Those workers expressed some caution

about drawing general conclusions from that simple experiment but the

result is nevertheless quite useful. Some other measurements for various

flows (Lawn (1971) for pipe-flow and Irwin (1973) for plane-wall jet) also

confirmed that the pressure diffusion term is small and can be neglected,

which is what will be done in the present work.

Daly and Harlow (1970) proposed modelling the triple-velocity correla-
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tions in the manner suggested by gradient-transport hypothesis, thus:

_____	 k ____ Ouu
-UIUjUk = Cs - UkU1	 (2.23)

where C5 is an empirical constant.

Hanjalic and Launder (1972,b) derived a transport equation for the triple-

velo city correlations and then simplified it by neglecting convective trans-

port and by applying numerous approximations. The outcome was an

algebraic expression of the form:

_____	 k I ___ ôuJ uk	Oukul	 ôu1uj'\
-uluJuk = C5 - I u1 u	 + uui	 + UkU 1 	 (2.24)

Oxl	 Oxi	 Ox1 I

The last term in (2.24) represents the model proposed by Daly and Har-

low. Unlike Daly and Harlow's model, equation (2.24) satisfies the con-

dition of rotational symmetry (i.e. the same result would be obtained ir-

respective of the rotation of coordinate system). In order to compare the

performance of these two proposals several researchers (see Launder et

al. (1975) , Samaraweera (1978) and Gibson and Younis (1982)) applied

them to various flows and found that the Daly and Harlow model pro-

duced better overall results. Consequently, the Daly and Harlow model

for triple-velocity correlations is adopted in the present study.

2.3.2 Dissipation

Dissipation of turbulent kinetic energy occurs in the smallest vortices

which, when the local turbulent Reynolds number is high, are assumed
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to be isotropic. Rotta (1951) proposed modelling the dissipation term in

equation (2.22) as follows:

2v 
ôu ôuj	 2

c5XkÔX =
	 ( 2.25)

where

fi fori=j
sij =

( 0 for i5ij

As for the k-€ model, the dissipation is obtained from its own transport

equation. The transport equation for c, when used in conjunction with

the Reynolds-stress model, is of the samegeneraI form as equation (2.9)

except for the diffusion part which is taken, following Hanjalic and Laun-

der (1972,b), as:

a fk ___ 8€"
diffusion(€) C,	 I - ukul	 (2.26)

aXk \ E	 ox1)

2.3.3 Redistribution

The redistributive nature of the pressure-strain term can be seen from

consideration of the turbulent-kinetic-energy equation which is obtained

from equation (2.22) by contraction of the indices and by summation.

The absence of the pressure-strain term from that equation means that

this term has no influence on the total energy balance: its role is simply

to re-distribute the total energy among the various components. With

this in mind, it seems that the redistribution term is very influential in

determining the turbulence anisotropy and hence the success of a partic-

ular Reynolds-stress model in predicting the turbulence-driven secondary

motion will depend on the correct modelling of this term.
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A Poisson equation for fluctuating pressure can be obtained by taking
the divergence of the equation for fluctuating motion which, after multi-
plication with (Du1 /ax+au/Dx), averaging and integration yields (Chou,
1945):

ij ,1

'	 +	
1	 (ô2uiu' (ôu + au

a) - 4i- iv axiax111 ) \. 3x	 ô

+ 2 (aUi' (Duiii' (:'- + äuj	dV(x')
\	 a	 ox1)	 r

jj ,2

+ :;: IA' [ia
	 (5u +
	

- i (
	

+	 ()]dA'(2.27)

iw

All primed terms in (2.27) denote position x' which is removed from the
position x by distance r. dV(x') is a volume element, dA' is a surface

element and 9/Dn' denotes the normal derivative of the surface.

This term can now be expressed as a sum of three terms ,i, 	 and
is a consequence of interactions among different fluctuating

velocity components.	 represents interaction between the mean rates
of strain and fluctuating velocities. The surface integral, denoted as

is important only in regions adjacent to a wall. The modelling of these
three terms is presented in the following sections.

2.3.3.1 A Model for

The	 term is the only part of pressure-strain correlation which re-
mains in anisotropic homogeneous turbulence with zero mean strain.
Turbulence will evolve into an isotropic state under these conditions
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and hence this term is usually called the return-to-isotropy term. Rotta

(1951) proposed	 to be linear function of the anisotropy tensor aij, as

follows:

-C1 e a j = -ci.	 - 26..)	 (2.28)

Many researchers tried to formulate nonlinear expression for 	 either

as nonlinear combination of	 (Lumley and Khajeh Nouri,1974) or to

introduce nonlinearity through the definition of variable coefficient C1

(Lumley and Newman,1977).

Hanjalic (1984) argued that although the nonlinear nature of redistribu-

tion was not in doubt, the use of nonlinear expressions had not shown

any particular improvement as was shown by Vasic (1982) for some flows

where	 is dominant. For this reason, and because of the considerable

complexity of nonlinear models for ,, expression (2.28) is adopted in

the present study. The value for the empirical constant C 1 depends on

the overall model and so its value is presented in Section 2.4.

2.3.3.2 A Model for ij,2

The second term in the pressure-strain correlation contains the rate of

mean-flow deformation as well as the components of the fluctuating ve-

locities. By assuming that mean flow is homogeneous in the vicinity of

observed point, Rotta (1951) proposed the following approximation for

ij,2

oU1	 liiiij,2	
; (a

j + a)	 (2.29)
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where the fourth-order tensor reads:

	

nil -	 1 j D2uu dV(x')

	

ai -	 27r JV ariDrj	r (2.30)

where rj and rj are the Cartesian components of r.

The integration in equation (2.30) seems to be the logical way to obtain
the values for a but in situation of inhomogeneous turbulence the tur-

bulent correlation uu is unknown. For that reason Hanjalic (1970) and
Hanjalic and Launder (1972,b) proposed modelling of aj as a nonlinear
combination of second-order tensors. By abandoning the nonlinear terms
from that equation, Launder, Reece and Rodi (1975) proposed the form
which satisfies the symmetry constraints (a' 1 = a = ar), as follows:

aj	 a u 1u Sjj + 9 (ujuJ 6iiji + UmUj Sji + UmU1 Sij + Ui iii 8rnj)

+ C2 fliU SmI + [i 8 i 8ij + "i ( 8mi 8ij + 6inj hi)] k	 (2.31)

Using the kinematic constraint of continuity all ui = 0 as well as expression
= 2u1 u all coefficients (a, /9, i and ii ) in equation (2.31) can be

expressed as function of C2:

- 10+4C2	2+3Ca—	 /	 11

4+50C2 1116+20C2 }
11=—	 55

(2.32)

Thus only determination of one empirical constant is needed for closing
equation (2.31). On combining (2.31), (2.32) and (2.29) term 4'ij,2 takes
the form:

C2 + 8	 2	 30C2 - 2 (U
4 ij,2 = -	 (P - Slj Pk) - ________ k

	 +

- 8C2
— 2 (D - 6 Pk)
	

(2.33)
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where

aUj	 aU
Pu = - ( Ujuk---- + UjUk-)

ôUk____ôUk
Du3= _(uiuka +uuk—)

and k denotes production of turbulent kinetic energy.

Launder, Reece and Rodi (1975) recognized the dominant role of the first

term in equation (2.33) and therefore proposed a simplified version thus:

ij,2 = - C2 (P 1 - 5uj Pk)	 (2.34)

where the value of empirical constant C 2 when used in simplified approx-

imation (2.34) is clearly different from the value used in the complete

expression (2.33). The values for those constants together with all others

needed for the Reynolds-stress model are presented in Section 2.4.

Launder, Reece and Rodi applied the complete and the simplified version

of 4ij,2 to two-dimensional inhomogeneous shear flows including the jet,

the wake, the mixing layer and plane channel flow. They obtained bet-

ter overall agreement using the complete version (2.33). The simplified

version (2.34) was generally of similar accuracy as (2.33) for free flows

but slightly worse for wall flows. This was attributed by the authors to

defects in the near-wall corrections rather than in model (2.34).

The complete model for ij,2 was further tested for turbulent shear flows

with extra rates of strain by Irwin and Smith (1975) for curved flows

and by Launder and Morse (1977) for swirling jets. The model produced

good agreement with experimental results for the first group of flows

while agreement for the second group was not at all satisfactory. Younis

(1984) suggested that the cause for such maiprediction of the free swirling

jet flows must be attributed to the value of constant C2 in the model for
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ij ,2•

In all flows mentioned above, the anisotropy of the normal stresses is not

as important as the shear stresses, and hence it is not possible to arrive

at an early conclusion regarding the suitability of either model for the

prediction of turbulence-driven secondary motion.

Reece (1977) did obtain apparently good results for a square duct using

the complete model (2.33) but his predictions cannot be used as a basis

for eliminating the simple version (2.34) from further consideration. In

fact, the choice between the two models for ij,2 will be shown to be of

crucial importance for predicting the turbulence-driven secondary motion

as will be discussed in Section 2.4.

2.3.3.3 A Model for

The wall influences the turbulence in its vicinity by modifying the pres-

sure field in such way as to impede the transfer of energy from the stream-

wise direction to that normal to it. Thus the normal stress component

in the direction perpendicular to the wall is damped while, by continu-

ity, the other two stress components are enhanced. Clearly, then, rigid

boundaries are very influential in determining the turbulence anisotropy

and their effects must be correctly approximated.

Launder et a!. (1975) suggested that the wall affects both the mean-strain

and the turbulent part of the pressure-strain correlation. Accordingly,

they proposed a near-wall correction of the form:

2	 ÔU
ii,w	 (uui- 6k) + ..—!(b' + b 1J )] f	 (2.35)

ôXm	 \X2)

where function f () depends on the turbulent length scale (1) and on
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the normal distance from the wall (x2). The mean-strain part of equa-
tion (2.35) needs further approximation. The fourth-order tensor bj' 1 has
similar characteristics as the corresponding tensor aj' in equation (2.29)

and thus can be decomposed in the same way, only with different value
of the constants. In order to reduce the number of unknown constants in

that equation, Launder et a!. (1975) applied the constraint of continuity

which reflects the redistributive nature of 'jj, term. Thus they deter-

mined a wall correction to the mean-strain term which when applied to

equation (2.35) yields:

j,w = [c'1 (uiij - 8 k) + C (P - D 1 )] f	 (2.36)
\ X2)

where P1j and D1 are determined n the same way as for equation (2.33).

Younis (1982) applied this model to a number of boundary-layer flows
and found the model expressed by (2.36) to be very sensitive to the wall
boundary conditions imposed on the Upij and equations. He attributed
such behaviour to the serious inconsistencies in the model formulation as
discovered by Gessner and Epich (1981).

The idea of a separate wall correction for both parts of pressure-strain
correlation (jj,j and jj,2) was adopted by others as well. Shir (1973)

proposed a correction for the 	 term as follows:

e __	 3	 3C'1 (ukum nknzn Sij - uku1 Ilkflj - uku nkn ) f (-__ (2.37)
n1r)

where

r - the position vector,
n - the unit vector normal to the surface
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Gibson and Launder (1978), following Shir, proposed the following addi-

tion

ij,2	 C	 nknI11 Sij -	 ki,2 nknj -	 kj,2 flkfli) f (_L"\ (2.38)
'\nIrI)

Combination of equations (2.37) and (2.38) provides a complete near-wall

correction to the pressure-strain correlation (2.27):

ij,w =	 j,1 +	 jj	 (2.39)

This model was successfully applied in various calculations (Gibson and

Launder (1978), Gibson et al. (1981) and Younis (1982)) and is therefore

adopted in the present study. The values for the empirical constants C

and C are given in Section 2.4.

So far, the definition of '	 has not been considered but it is obvious

that this function controls the influence of the wall, as discussed below.

2.3.4 Wall-Damping Function

The main role of the function f in expressions (2.37) and (2.38) is to

decrease the wall influence on the pressure-strain correlation with in-

creasing the distance from it. It is therefore logical to assume that the

wall function f is inversely proportional to the distance from the nearest

wall. Launder et a!. (1975) assumed a linear function (e.g. f = Ly/y).

Gibson and Rodi (1989) found that a more rapid variation for the f pro-

duced better results for various boundary layer flows and therefore it was

adopted for their channel flow calculations. The linear and nonlinear def-

initions of f represent different physical behaviour in the sense that the

linear approach extends the wall influence deeper inside the flow while
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a quadratic approach, for example, would confine the wall effects more

closely to the wall. In the present work, a quadratic definition of the

wall-damping function was found to be the more appropriate one (Sec-

tion 4.2.1).

The presence of two walls in three-dimensional duct flows further com-

plicates the determination of f. Here, we assume that the bottom wall

damps only the vertical fluctuations and the side wall damps only the

horizontal fluctuations. The following separate wall functions are pro-

posed:

L2	 L2
= <xX2	 f	

<yy2	
(2.40)

where L and L represent corresponding turbulent length scales.

In order to account for the interaction of several surfaces, Naot and Rodi's

(1981) proposal for the definition of the average distance from the wall

is adopted

1	 2 p21rd
<y>2jo ---

	 (2.41)

The solution of integral (2.41) for a single flat plate of finite length 1 (Fig.

2.1) is

1 F	 l—x
[arctan	 ____ 1

	 1 1

( y )	 Y) 1_x+ y	 X

+ arctan I - I + y	 1 - x + +	
(2.42)

An analogous solution for 1 can be obtained.<x>2
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(2.43)

c/4
IC

(2.44)

T

Fig. 2.1 Nomenclature for calculation of average wall distance

The turbulent length scale is usually accepted to be proportional to

while the dimensionless coefficient of proportionality is taken as

where tc is the von Karman constant.

A three-dimensional square-duct flow can be imagined as two separate

two-dimensional boundary layers interacting in the corner. Bearing in

mind that the constant C in two-dimensional boundary layer represents

a structural parameter of the turbulence, for three-dimensional flows the

following forms of the function L are proposed:

L = :i!: 
II3hf2	 !!i	 (2.45)

IC	 c

L	
1 vw 3/2 k312-	

kwall	
(2.46)

32



2.3.5 Free-Surface-Damping Function

The measurements in an open channel flow by Komori et a!. (1982)

showed that the vertical turbulent fluctuations are damped in the vicin-

ity of the free surface and the turbulence anisotropy is therefore increased

there. Thus, the free-surface exerts a similar influence as that observed

in the near-wall region which suggests that similar treatments may be

appropriate. A damping function is therefore introduced, following Naot

and Rodi (1982), thus:

12
L	 I

ff=	 1	 I	 (2.47)I<_>_ h / 2 +CfLI
	L yf	 J

where

Cf - an empirical constant.

The turbulent length scale for the free-surface-damping function is de-

termined as:

L=	 (2.48)

It can be seen from equation (2.47) that without C f L term, the formu-

lation of ff is the same as for the wall. However, Naot and Rodi argued

that length scale of turbulence has a finite value at the surface and there-

fore the actual distance from the surface was replaced by the distance

from a point above the surface. Thus, equation (2.47) at the surface

becomes 1/C. The empirical constant C1 was adjusted with the aid of

experimental results for developed open-channel flow to the value of 0.16.
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2.4 The Reynolds-Stress-Model Development

From reviewing various theoretical and calculated results, appropriate

models were adopted for the processes of diffusion (equation 2.23), dis-

sipation (equation 2.25) and pressure-strain redistribution (return-to-

isotropy term: equation 2.28) in the Reynolds-stress equations. This

work was started using the simplified ij,2 model (equation 2.34) in con-

junction with Shir's (1973) and Gibson and Launder's (1978) proposals

for term (equations 2.37, 2.38 and 2.39). The linear form of the

wall-damping function was assumed. This model combination (denoted

as the RSMO) has produced very good results for a wide range of com-

plex flows (see Younis (1982) ; Gibson, Jones and Younis (1981) ; Kebede,

Launder and Younis (1985) ; Launder, Tselepidakis and Younis (1987)

etc.). The constants appearing in the RSMO are assigned the following

values recommended by the originators:

Constant C 1 C2 C C	 C	 C, C(1 C2
RSMO	 1.8 0.6 0.5 0.3 0.22 0.18 1.45 1.90

Table 2.3 Model constants for RSMO

Unfortunately, it soon became clear that this model was not produc-

ing secondary motion of sufficient strength and hence the distortion to

the mean-velocity field was less than expected. This behaviour in three-

dimensional fully-developed duct flows can be related to a known defect in

this model which is apparent even in simple free shear flows, namely that

the simplified model for ij,2, when used in conjunction with Daly and

Harlow's proposal for the diffusion term, produces equal normal stresses

in the plane normal to the main flow direction. This defect did not

matter too much in the simpler applications mentioned above because

turbulence anisotropy was not as important as the level of shear stress.
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The difference between u2 and v2 in the RSMO, when applied to the

flows in non-circular ducts, is entirely due to 1j,w and can therefore be

increased by prescribing a more rapid decay of the wall function there.

It was indeed found that the model's behaviour was improved by the

quadratic definition of that function. However, this was still resulting

in mild mean-velocity distortions and this suggested that different model

combinations were needed to ensure a greater turbulence anisotropy. The

most logical step to follow then was to abandon the simplified ij,2 model

in favour of the complete one of Launder, Reece and Rodi (equation 2.33).

However, the model of Launder, Reece and Rodi (equation 2.36) was

known to be fundamentally defective and was therefore replaced with the

wall-reflections models of Shir and Gibson and Launder, presented earlier

in this chapter. This model combination will be referred to from now on

as RSM.

The new combination of 'ij,2 and requires re-optimization of model

constants in order to obtain approximately correct levels of relative tur-

bulent stresses in the vicinity of the wall. This is usually done by simpli-

fying equation (2.22) and by assuming that turbulence near a wall is in

local equilibrium (i.e. production of turbulent kinetic energy, Pk, equals

its dissipation rate, ). The transport terms in equation (2.22) can then

be neglected and algebraic expressions for the stress levels are obtained

as:

-	 &• + Pu + ij,2 -	 + ij,w	
(2.49)Ii

Substitution of P1, ij2 and 4uj into equation (2.49) and setting the

wall function f to unity produces the following equations (the streamwise

direction is taken as xi and X2 is normal to the horizontal plane surface):

=	 Cçv2 2C
k	 3	

33C1 +---+--(a-2y)
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= + 2_30C2 _ 2	 2C
(-2a + 4y)k	 3	 33C1	 C1 k

u	 2 —1O+18C2 Cçv2 2C
I = 3+	 33C1

7u 1 u2 \ 2	 1	 fy	 y2	 u2'	 3C	 /av2
k ) = C1+3C	 + C 1 +3Cç kk)

where

- C2 +8	 _30C2-2	 _8C2-2a—	 /J	 55	 ')(

The values of model constants for the RSM, as proposed in Younis (1982),

are given in table 2.4.

Constant C1 C2 C C	 C	 C	 C1 C(2

RSM	 1.5 0.4 0.5 0.1 0.22 0.18 1.45 1.90

Table 2.4 Model constants for RSM

With those constants, the following stress levels are obtained:

Quantity u/k u/k u/k u1u2/k

RSM	 1.03 0.25 0.72 - 0.234

Data1	1.10 0.25 0.65 - 0.26

Table 2.5 Relative stress levels for the near-wall turbulence

consensus of near-wall turbulence data given in Gibson and Launder (1978)
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2.5 Closure to Chapter 2

Two turbulence models chosen for the present applications were pre-

sented in this chapter: the complete Reynolds-stress model and the non-

linear variant of k- € model of turbulence. The formulation of the stan-

dard k-f model and its inability to produce turbulence-driven secondary

motion was discussed in Section 2.2. The benefits of using a nonlinear

stress-strain relationship were given in Subsection 2.2.1. Various approx-

imations to the unknown terms in the Reynolds-stress transport equation

were considered in Section 2.3. The final version of the Reynolds-stress

model used in this work was presented in Section 2.4.

In the next chapter, the numerical procedure employed for the solution

of the mean-flow and turbulence-model equations will be presented.

37



Chapter 3

SOLUTION PROCEDURE

3.1 Introduction

The numerical treatment of the averaged momentum equations is closely

linked with the physical nature of the flow under consideration, particu-

larly whether or not such flow contains a recirculating zone. If one does

not occur, the flow depends only on upstream conditions and is called

parabolic. The numerical solution of those flows does not require an itera-

tive procedure in the main-flow direction. In contrast, if reverse flow does

occur in the main-flow direction, the flow is influenced by downstream

conditions and is regarded as elliptic requiring an iterative solution pro-

cedure. Often a flow is encountered which exhibits both parabolic and el-

liptic characteristics as, for example, in the case of the three-dimensional

flow in non-circular ducts. There, the flow is parabolic in the main direc-

tion but elliptical in the cross-stream plains. The implications of this on

the choice of the present solution strategy will be discussed in Section 3.4.

The main idea behind the numerical solution of the governing partial

differential equations (2.5) and (2.6) is the transformation of those equa-

tions into a set of linear algebraic equations which can then be solved.

The method of transforming the partial differential equations into alge-

braic equations is called the discretization procedure. One such method

38



cell node

contro
scalar

;rol volume for U

is the control-volume procedure which involves dividing the calculation

domain into a number of control volumes and then integrating the partial

differential equations over them to obtain a set of algebraic equations. A

grid has first to be constructed, as will be discussed below.

3.2 Grid Arrangements

A finite volume grid consists of a number of control volumes which cover

the calculation domain. In the present study, all grid nodes are placed at

the centres of the control volumes where the scalar variables are stored.

The storage of the velocity components U and V in the center of the

control volume, together with the usage of linear interpolation, leads

to the well-known checkerboard oscillations in the flow field (Patankar,

1980). One way to avoid this behaviour is to shift the position of velocity

components to the cell faces, as will be shown in the following section.

3.2.1 The Staggered Grid Arrangement

The appearance of oscillations in the computed velocity and pressure field

was the main reason for adopting the staggered grid arrangement (Fig.

3.1). rnntrnl vMime for V

Fig. 3.1 The staggered grid arrangement
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Location in	 Variable

Fig. 3.1	 NKE	 RSM

U	 U,nw

I	 V	 V,vw

o	 W,p,k,€ W,p,E,u2,v2,w2
*	 -	 liv

Table 3.1 The variable locations using staggered grid arrangement

The staggered grid arrangement brings some further advantages. Calcu-

lation of cell continuity balance is simplified because the velocities are

placed in the positions where fluxes enter the control volume. Also,

the momentum equations are strongly coupled with the Reynolds-stress

equations and hence locating all the stresses in the centres of the control

volumes can cause numerical instabilities. Difficulties associated with

interpolation of the shear stresses to the cell faces can be overcome by

using the staggered approach for those stresses as well. The locations of

all variables using the staggered grid arrangement are shown in Table 3.1.

The staggered grid arrangement is very convenient for the calculation of

the fluid flows in three-dimensional ducts, and especially when orthogonal

grids are used. In the present work, therefore, all orthogonal geometries

are calculated using the staggered grid approach. When non-orthogonal

geometries are considered, the staggered grid arrangement is not the most

suitable one and an alternative approach is used, as will be discussed in

the following section.

3.2.2 The Co-located Grid Arrangement

This grid arrangement (Fig. 3.2) has been preferred by many researchers

(Rhie and Chow (1983), Peric (1985), Demirdzic and Peric (1990) etc.)

as a more convenient approach when considering non-orthogonal flow
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geometries.

Fig. 3.2 The co-located grid arrangement

The advantages of co-located grid over staggered one were pointed out

by Peric (1985) and by Peric et a!. (1988) and can be summarized as

follows:

• using co-located grid arrangement all variables share the same con-

trol volume and therefore there is only need for one set of control

volumes,

• the convection contribution to the coefficients in the discretized

equations is the same for all variables,

• co-located grid approach enables using the Cartesian velocity com-

ponents, even for the non-orthogonal geometries, which results in

simpler equations than when the grid-oriented velocity components

are employed.

In the present study, the co-located grid arrangement was adopted in

conjunction with the nonlinear k-f model for the prediction of flows in

non-orthogonal ducts and channels.

3.3 Discretization Procedure

Discretization of the governing differential equations can be done by in-

tegration of the partial differential equations over each control volume
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assuming profiles of the variation between the grid nodes. The tech-

nique is well-established for orthogonal grids (Patankar, 1980) and so

only its essentials will be presented here. The discretization procedure

for the non-orthogonal grids is a more difficult task but that has already

been resolved by Peric (1985).

The basic ideas behind control-volume approach are the same for orthog-

onal and non-orthogonal geometries and will be explained with reference

to the scalar equation (2.9) using the orthogonal control volume (Fig.

3.3). The presentation is divided into two parts. The first is concerned

with the basic features of the discretization procedure that are common

for orthogonal and non-orthogonal grids. The second part presents the

discretization for non-orthogonal grids with special emphasis on the dis-

cretization of the nonlinear stress-strain relationship.

3.3.1 Control-Volume Approach

The scalar equation (2.9) represents a typical prototype for the governing

equations encountered in computational fluid dynamics and will therefore

be used to explain the basis of the control-volume approach.

y

IIx

Fig. 3.3 Scalar control volume
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convection of

qeAe = UeAe	 -

diffusion of 4

r.,e 
()e 

Ae (3.4)

It must be noted here that in three-dimensional flows in non-circular

ducts, fully-developed conditions imply no change in the main-flow direc-

tion, which means that only a two-dimensional method is required. Thus,

the discretization is explained using the two-dimensional cell shown in

Fig. 3.3. For convenience, the governing equation (2.9) can be re-written

as follows:

total traiisport q

_(	
)=s
	

(3.1)

Equation (3.1) is integrated over each control volume. In the integration,

the volume integral of the transport terms is replaced by corresponding

surface integrals using Gauss's theorem:

J
i dVJ fedA_J fwdA+f f11 dA_J f5 dA	 (3.2)

V (9Xj	 Ae	 Aw	 A11	 As

where fe is component of fj normal to the east cell face and Ae is the area

of that cell face.

Using equation (3.2) for the orthogonal cell shown in Fig. 3.3, equation

(3.1) after integration can be written as:

qeAe —qwAw+qnAii— qsAs = S LV
	

(3.3)

where
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represents the total transport on the east cell face. Similar expressions

can be obtained for the remaining cell faces.

Convection term

In order to define the convection term, the mass flux pUeAe (E Fe) and

value of e at the east cell face are to be determined. In the case of

staggered grid arrangement the calculation of mass flux is straightfor-

ward because Ue exactly coincides with value of U velocity there while

when co-located grid arrangement is considered the special interpolation

technique need to be employed to obtain velocity value at the cell face

(Subsection 3.4.1.2). The value of e in convection term is directly re-

lated to the choice of differencing scheme.

Diffusion term

The gradient of ' need to be determined on the east cell face in order to

calculate the diffusion flux in expression (3.4). For that purpose linear

distribution of 1 is assumed thus:

De

(E_P)	 r,eAe
F,e (--- I Ae = r.,e	

(8)	 Ae	 (E - P)	 (3.5)
\dXJ	 e	 e	 (8X)e

Differencing scheme

The closeness of the power-law scheme to the exact exponential scheme

was suggested by Patankar (1980) and therefore that scheme is employed

in the present study. Thus, all quantities which multiply the E are

grouped in the following algebraic coefficient:

aE = De max	 1 De ) ] + max (0, —Fe)

An identical procedure is applied for the discretization of the convection
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and diffusion terms on the remaining cell faces.

Source term

It is usual to split the source term into two parts as follows:

S	 V =	 + Sp'p	 (3.6)

where the Sp is added to the coefficient ap. This improves the stability of

the iterative solution procedure, by enhancing diagonal dominance (only

if Sp <0).

The final form of discretized eauations

After combining all discretized terms, equation (3.3) can be re-arranged

for point P (centre of the control volume) thus:

app =	 a11	 + S	 (3.7)
iib

where

ap = a, - Sp
iib

and a11b - denotes the coefficient which multiplies the values of at the

neighbouring nodes (E,W,N,S).

The discretized equation (3.7) is written for each control volume within

the flow domain to form a set of linearized algebraic equations which can

then be solved using one of several standard techniques.
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shown in Fi

x2

yl

3.3.2 Treatment of Non-Orthogonal Geometries

Calculations of the flows in ducts with arbitrarily shaped cross sections

were performed with a method based on that of Peric (1985). The method

solves the governing differential equations for a general coordinate system

using Cartesian velocity components. The method was extended here to

handle the nonlinear k-f model for ducts and channels with arbitrary

shaped cross sections using non-orthogonal meshes represented by cell

Fig. 3.4 Two-dimensional non-orthogonal control volume

Fig. 3.4 shows arbitrary control volume presented inrespect to the gen-

era! (y',y2) as well as the Cartesian (x',x2) coordinate system. The

general (non-orthogonal) coordinate system coincides with lines which

connect neighbouring grid nodes. Accordingly, all variations are related

to the general coordinate system and hence the governing differential

equations need to be presented for that system. The compact form of

the continuity and momentum equations (equations 2.5 and 2.6) for the

non-orthogonal coordinate system can be written as follows (Dernirdzic,

1982 and Peric, 1985):

3(pUm13)=O	 (3.8)
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-j [(pUuj - T111 + pumuj) /3] = _.	 P8nl2 13J	 (3.9)
J ôyi "

where

J - the Jacobian of coordinate transformation x x1(yJ),

(3 - the coordinate transformation factor,

The same form of the nonlinear stress-strain relationship, given by equa-

tion (2.11), can be used for the definition of the Reynolds stresses Ujiü

in equation (3.9). The mean rate of strain and the Oldroyd derivative

in expression (2.11) need to be transformed into the general coordinate

system, resulting for stationary flow in:

i. (auj	

\ i

	

/9j +r/3i) j	
(3.10)

(3.11)

Implementation of the nonlinear stress-strain relationship is not partic-

ularly difficult, and follows closely the lines adopted in the orthogonal

case. The gradients presented in respect to the Cartesian and the gen-

eral coordinate systems are related thus:

aUi_ 1 aU1 Ii	 312
öxJ ôy13	 (.

In two-dimensional case the Jacobian takes form:

ôx' ox2 Ox1 Ox2
J=—;1	(3.13)
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while the corresponding /3J coefficients can be written as

Q1_ UX
-

ox
1

i_ Ox'
2 -

2_ Ox'
/2 -

(:3.14)

Discretization of the nonlinear part of the stress-strain relationship is

straightforward in that every Cartesian velocity gradient in the expanded

expressions for individual Reynolds stresses (equations 2.14-2.19) is con-

verted into its non-orthogonal counterpart using equation (3.12). For

example, the W-velocity gradient in the x'( x) direction on the east cell

face reads:

(ow'\ - 1 (ow 31 ow

)e	 '')e

Using equations (3.14), the previous expression becomes:

1 (ow Ox 2 ow 0x2'\

Ox )e Je Oy' 0y2 0y2 Oy')

(3.15)

(3.16)

With the notation of Fig. 3.4, all gradients needed in expression (3.16)

can be obtained from the simple geometrical manipulations as reads:

(ow" - WE - Wp	 (aw\ - w,ie - Wse
r) e - y - y	 - Ye - Ye

- 4— X	 (Ox'\ = x ie -
- y - yp	 Yne - Yse

7 Ox2 - 4 - 4	 "Ox2 - X e - xe
')e y—y	 )eyeye

On combining above listed expressions with equations (3.13) and (3.16),
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the final discretized form can be written as follows:

/	 (WE - Wp)(X e - X e) - (Wne - Wse)(4 x)

= (4 _4)(X e_ X2 ' - (Xje_xe)(Xx)sei

By repeating this procedure for all gradients in equations (2.14) - (2.19),

the discretized form for all Reynolds stresses can be obtained on the

desired cell faces to be then used to obtain integrated Reynolds-stress

gradients over each control volume.

The convection, diffusion and pressure term are also discretized with

respect to the general coordinate system. Details of the discretization

of remaining terms may be found in Peric (1985) and are therefore not

repeated here.

3.4 Calculation of Pressure Field

3.4.1 Cross-Stream Pressure Field

The idea of pressure calculation is to find the pressure field which yields

velocities that satisfy the continuity equation. There are many iterative

procedures which can serve this purpose and the most popular one is

presented in the following section.

3.4.1.1 The SIMPLE Algorithm

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) al-

gorithm, proposed by Patankar and Spalding (1972), is adopted for the

calculation of cross-stream pressure field. In order to explain this method,

the discretized form of the U-momentum equation is used, which for the
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staggered grid arrangement (Fig. 3.1) reads:

aeUe	 aflbUb + s i; + Ae (pp - PE)	 (3.17)
nb

where the pressure part is separated from the mean source S resulting

in s;.

The starting point in this algorithm is a guessed pressure field (p*). When

this field is employed for the calculation of pressure gradient in the U-

momentum equation it results in the following algebraic equation:

aeU =	 aIlbUb + S + Ae ( p - p)	 (3.18)
nb

The guessed pressure field is usually incorrect and when used in the mo-

mentum equations results in a velocity field (U* and V*) which generally

does not satisfy the continuity equation. Thus,the guessed pressure field

need to be corrected using the relation:

p = p + p'
	

(3.19)

where p' denotes pressure correction.

The velocity field is corrected in a similar manner:

U=U*+U,

V =V +V'
(3.20)

The task now is to determine the pressure and velocity corrections. The

velocity-correction equation is obtained by subtracting equation (3.18)
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from (3.17), resulting in:

aeU =	 a11bUb + Ae (p'p - p )	 (3.21)
ub

If the first term on the right hand side of equation (3.21) is neglected,

the velocity correction reads:

U	 de (p'p - p'E)	 (3.22)

where de =

The continuity equation is used to formulate the pressure-correction

equation so that corrected velocities satisfy the continuity condition. The

continuity equation, when integrated oveEscalar control volume, is writ-

ten as:

(pU)e Ae - (pU) A + (pV) A - (pV) A = 0 	 (3.23)

If the velocities are now substituted using expressions (3.20) and (3.22),

the following discretized equation for p' is obtained:

app'p	 anbp + S	 (3.24)
nb

where

S = (pU* )w A - (pU*)e Ae + (pV*) s A (pV*)i A.

All equations presented hitherto form the basis needed for obtaining the

velocity components and pressure field through SIMPLE algorithm.
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3.4.1.2 Cell-Face Velocity Interpolation for Co-located Grids

In order to overcome the oscillatory pressure field which may arise from

the SIMPLE algorithm for co-located grid, Rhie and Chow (1983) pro-

posed a special interpolation practice for the cell-face velocities. This will

be explained on the U-velocity component using notation shown in Fig.

3.5.

Fig. 3.5 The co-located U-velocity cell

The values of Up and UE velocities are extracted from their discretized

equations as follows:

Up =
	

a11bUb +	 (pe - Pw) A]	 (3.25)

UE 
=	

abUb +	 (Pee - Pe) A] E

	
(3.26)

The value of the cell-face velocity Ue is now obtained from the Up and UE

using linear interpolation for all terms on the right hand side of equations
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(3.25) and (3.26), except for the pressure differences. This results in:

________	 illUe = [ ailbulibi +	
- { j (PE -	 ) Ae	 (3.27)

ap	 Je LapJe	 ap e

where overbars denotes linear interpolation between P and E grid nodes.

The strong coupling between velocity and pressure is clearly seen from

equation (3.27) where the cell velocity becomes function only of pressure

values from the neighbouring nodes.

3.4.2 Streamwise-Pressure Gradient

The assumption that the flow is elliptic in the cross section and parabolic

in the main-flow direction implies a decoupling of cross- and streamwise-

pressure gradients. This simplifies the calculation of the latter which is

assumed to be uniform over a cross section. The streamwise-pressure

gradient for duct flows is calculated so as to satisfy the integral mass-

conservation. In open channels, the flow is driven by the channel-bed

slope and the integral mass flow is an outcome of the calculations. Con-

sequently, different algorithms are required depending on whether ducts

or channels are considered.

3.4.2.1 Duct-Flow Algorithm

The procedure of Patankar and Spalding (1972) is adopted for the cal-

culation of the streamwise-pressure gradient. The starting point is an

estimate of (ôP7az) which is denoted as (ap/az)*. The next step is to use
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this estimate to calculate the velocity field W* which, when integrated

over cross section, will not produce the correct mass-flow rate (iii). Thus,

the initial pressure gradient and resulting velocity field are corrected us-

ing the following equations:

(\ (\* 
f&Il1) =	 +	 ( 3.28)

W=W*+dW /), (3.29)

where dw = ( iXIy'\
ap )•

To determine the pressure-gradient correction, the following relationship

is used:

lop"	 _pW*xy

= > p d'xy	
(3.30)

The iterative procedure is repeated until the mass error becomes negli-

gible resulting in a constant streamwise-pressure gradient.

3.4.2.2 Channel-Flow Algorithm

In open channels, the main flow is driven by the channel-bed slope and

hence the pressure gradient in the streamwise momentum equation be-

comes:

p g sinO
	

(3.31)

where

g - the earth acceleration

0 - a slope of the channel bed
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In contrast to duct flows, where the pressure gradient is forced to sat-

isfy the imposed flow rate, in open channels the mass flow rate will be

determined according to the imposed bed slope. In order to introduce

term p g sin 0 into the streamwise-momentum equation, two alternative

procedures are used in place of the Patankar and Spalding algorithm.

Approach a

The driving force and the retarding shear force become equal when a

three-dimensional parabolic flow reaches fully-developed conditions. This

can be expressed through the following equation:

-	 Area = / TWI dP	 (3.32)

where

Area - area of the cross section

P - wetted perimeter

Tw - the wall-shear-stress

In this approach, all features of duct algorithm are maintained and only

the pressure correction is replaced by:

/a\'	 /	 51110__ j 	 dP\
= (\pg	 Area )	

( 3.33)

When convergence is achieved, the following condition is satisfied:

p g sin 0 Area J 1 7w1 dP	 (3.34)

It is clear from equations (3.32) and (3.34) that by the end of the itera-

tive procedure the streamwise-pressure gradient becomes equal to pg sin 9.
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Approach b

The second approach involves the introduction of term p g sinO in the

streamwise momentum equation without any corrections during the so-

lution procedure.

The two approaches, when applied to the a simple rectangular channel,

produced identical results but with different time requirements to achieve

converged solutions. The first approach produced somewhat faster con-

vergence for simpler geometries, but, for more complicated geometries

(compound channels), produced numerical instabilities. Approach b was

therefore preferred.

In the present study, the duct algorithm is replaced with the algorithm

for the channel flow only when the mass flow in the open channel is re-

quired as an output information and when a reliable value of channel bed

slope is provided.

3.5 Boundary Conditions

In the present study, boundary conditions need to be specified at three

types of boundaries: the wall, the symmetry plane and the free surface.

3.5.1 Wall-Boundary Conditions

All velocities on the solid boundaries are set to zero. Very close to the

wall, viscous effects prevail and hence high Reynolds-number-turbulence

models cannot be used there without a special adaptations. In order to

avoid the problems associated with this, the near-wall region is usually

bridged using the wall-function approach of Launder and Spalding (1974).
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The grid node closest to the wall is placed in the zone where the velocity

is assumed to follow the logarithmic distribution:

W 1 (EWyW\
-	 in (	 I	 (3.35)

V	
/

where

W- - shear velocity in streamwise direction

E - logarithmic law constant

Yw - distance between wall and nearest grid node in the flow

IC - von Karman constant

The wall-shear-stress r is expressed in the following form:

i-w = — pW
	

(3. :36)

An iterative procedure was used to calculate the shear velocity W T , as

follows

W ,c
Wr,new =

	

	 ( 3.37)(E W,o1d YwIn(\	
LI	

)

W, is then used to calculate r, using expression (3.36).

When using a co-located grid, the wall-shear-stress was calculated using

alternative expression:

pC/4k'I2Wic

Tw 

= - in I E W Yw)	
(3.38)

LI

The local-equilibrium assumption dictates the wall-boundary conditions

for k and e. The turbulent kinetic energy in the near-wall region is

prescribed as:

___ - ITwI
k - 1/2 -	 1/2	 (3.39)

C	 pC

The boundary condition for the dissipation rate of turbulent kinetic en-

ergy is also chosen to obey local-equilibrium assumption, resulting in the
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relation:

c/4 k3/2	
(3.40)

F Yw

When the €-transport equation is solved in conjunction with the Reynolds-

stress model the value of e near to the wall is specified to be:

=
	 (3.41)

The wall boundary conditions for all the turbulent stresses in the Reynolds-

stress model is obtained by setting the normal gradients to zero.

3.5.2 Symmetry-Plane and Free-Surface Boundary Conditions

Zero-gradient boundary conditions are adopted at the symmetry plane

for all variables except for the shear stresses. The main shear stress 11W

is set to be zero for the vertical symmetry plane while for the horizontal

one the zero gradient is applied. Similarly, the VW is set to be zero at the

horizontal-symmetry plane while for the side one the zero-gradient treat-

ment is used. The shear stress liv is set to be zero at all symmetry planes.

The free surface is treated as a symmetry plane for all the variables ex-

cept for the dissipation of turbulent kinetic energy. Naot and Rodi (1982)

suggested that the presence of the free surface reduces the length scale

of turbulence resulting in an increased level of dissipation (f). Following

Hossain and Rodi (1980), they proposed the dissipation rate at the free

surface to be prescribed as:

C3 "4 	 /

ff= 

L 4/2 (_+_
'C	 \yI	

y* (3.42)

where average distance from the nearest wall (y*) was added to ensure

smooth transition between the wall- and surface-boundary conditions.
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3/2
= 2.439 ----

yf
(3.44)

The value for y' was adjusted using some experimental results to the 7 %

of the channel depth (y' = O.07H).

A similar expression for E at the free surface was proposed by Krishnap-

pan and Lau (1986) as follows:

	

Cf	 3/2
Ef =

	

FC'_i	 Yf

where

Cf 0.164 - an empirical constant

(3.43)

y - distance between the free surface and the nearest internal

grid node.

Summation of all constants in equation (3.43) yields:

Both proposals result in a parabolic distribution of the eddy-viscosity in

open channels, as observed by Ueda et a!. (1977).

To understand the basis of the proposed f-boundary conditions, the E-

transport equation is simplified by neglecting convection and diffusion in

the x-direction (consistent with a fully-developed flow in a broad open

channel), to obtain:

a (töE\

---) 

+ p (C1Pk - C 2 f) =0 (3.45)

If € is assumed to approach the free surface as E = a/y2 , where a stands

for a proportionality coefficient, the first term in equation (3.45) becomes:

a (ta€_ 2C,k2	
(3.46)
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Now equation (3.45) can be re-written in a simple algebraic form:

2	 ClPk -	 = 0	 (3.47)
-	 k	 o- y2

The production of turbulent kinetic energy (Pk) vanishes at the free sur-

face thus the second term in equation (3.47) can be dropped resulting in

the following value of € at the free surface:

/2C,, \\ 1/2 k
312	 k312

if = = 0.277	 (3.48)
Cc2)	 yf

It is clear from equation (3.48) that dissipation has again turned out to

be a function of k3/2 and a relevant distance as in expressions (3.42) and

(3.43). However, the magnitude of constants multiplying k3/2 /yf is quite

different by factor of 9.

Proposal (3.42) is used here in conjunction with the free-surface damp-

ing function (equation 2.47) in all the reported Reynolds-stress model

calculations. Krishnappan and Lau's proposal (3.43) is used as boundary

condition for e equation when calculations are carried out using the non-

linear k-i model.

3.5.3 Roughness

It is often the case that the flood plains are rough due to vegetation and

this has to be accounted for in the model. The velocity distribution in

the regions adjacent to the rough walls is no longer best described with

the usual log-law. Knight and Hamed (1984,b) conducted a systematic

experimental investigation of the influence of rough flood plains on the

flow structure including the velocity distribution near rough walls. They

presented the velocity distribution near the rough walls as follows:
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ivelocity profile

tan/3 < tana

/

x	 <()Unearlog.-law

side wall

_	 - h
- 6.06 log10	

)	
(3.49)

where

W - depth-averaged mean velocity

H - main channel depth

h - height of flood plains above main channel bed

x - roughness parameter

In order to compare present predictions with the data of Knight and

Hamed, the standard log-law expression for the smooth walls (3.35) is

replaced on the rough flood plains by eqiation (3.49).

3.6 Treatment of the Velocity Gradients near the Wall

The successful implementation of the present turbulence models depends

on the accurate calculation of the velocity gradients particularly in the re-

gions adjacent to the solid boundaries where those gradients are greatest.

Fig. 3.6 shows the consequences of alternative methods for calculating

the gradient of streamwise velocity, W.

4,

Fig. 3.6 The velocity profile near the side wall
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(3W	 WA
ox )iinear -

(3.52)

When calculated through log-law the velocity gradient in the A grid node

takes form:

/ DW\	 WT

)1og_1aw 
= IC

(3.50)

If we replace	 using log-law expression (3.35) equation (3.50) becomes:

k Dx Log_iaw -

WA
x ln(Ex+)

(3.51)

The linear approach yields:

If the nearest grid node is placed out of the laminar sublayer (x ^ 11.63)

the In(Ex) is always greater than unity implying that mean-velocity gra-

dient calculated using the log-law approach is always smaller than its

linear counterpart. This is the approach finally adopted here; it is con-

sistent with the use of the log-law in defining the boundary conditions as

outlined in the previous sections.

3.7 Computational Aspects

3.7.1 Initial Field

The mean-velocity field is assumed to be uniform throughout the cross

section and prescribed at a value appropriate to the reported Reynolds

number. The secondary-velocity components are initially prescribed as

U = V 0.01 Wbulk. The normal stresses are set to the U 2 = V2 = w2 =

0.01 WU1k. The turbulent viscosity is usually taken to be fz t = 10 and

as such is used to deduce the c initial field through the eddy-viscosity

relation. All shear stresses are initialized to zero.
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3.7.2 Fully-Developed Conditions

The present study is only concerned with fully-developed flows, a condi-

tion usually achieved by marching in physical space until the flow param-

eters cease to change. Here, fully-developed conditions were assumed in

advance and hence all gradients representing change in the streamwise-

flow direction were dropped from the governing equations. This made

possible the replacement of space-marching with advancement in itera-

tion space.

3.7.3 Solution Sequence

Starting from prescribed initial fields, the U- and V-momentum equations

are first solved followed by the pressure correction equation which is then

used to correct the velocity and pressure field. The streamwise velocity

is then obtained, and then corrected to satisfy overall continuity. The

next steps depend on the choice of turbulence model. In the case of

the k-e model, transport equations for those variables are solved and

obtained results then used to calculate the turbulent viscosity. When the

Reynolds-stress model is employed, the €-equation is solved together with

equations for the six Reynolds stresses. The above sequence is repeated

until a converged solution is attained.

3.7.4 Convergence Criteria

An iterative solution procedure will have converged when the values of

the dependent variables do not change with further iterations. This is

best checked by calculating the absolute sum of the residuals of each

equation solved. The residual of an equation is essentially the difference

between the left and right sides of that equation. The residuals are often

normalized by an appropriate flux and monitored within the iterative
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cycle. Convergence is attained when the normalized residuals fall below

io.

Moreover, equation (3.32), which requires equality between the driving

force and the retarding shear force, must also be satisfied when a con-

verged solution is attained.

3.7.5 Grid Independence Tests

Table 3.2 below illustrates the type of grid-independence tests performed

in the present study (NKE results).

Grid size per	 CPU time Number of Relative drop of shear

quarter of domain (in minutes) iterations stress at centre line [%]

12 x 12	 2.1	 220	 6.38

22 x 22	 34.	 950	 7.96

32 x 32	 157.5	 2000	 7.90

Table 3.2 The computational details for the square-duct flow

The wall-shear-stress distribution for the runs presented in the above

table is given in the following figure.

[	 GRID 12*12
----- GRID 22 *22

----------GRID 32*32
0	 DATA

0.2	 0.4	 0.6	 0.8	 1.0
x's

Fig. 3.7 Wall-shear-stress distribution for various grid sizes

1.2

1.0

0.8

0.8

0.4

0.2
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It is clear from Fig. 3.7 and Table 3.2 that the solution obtained with 22 x

22 grid size produces a close agreement with results obtained with 32 x 32

grid size. Since the calculation using finer grid requires significantly more

computational time, it is fully justified to accept the solution obtained

with 22 x 22 grid size as a practical solution to the governing equations.

3.8 Closure to Chapter 3

In this chapter, the methods for the numerical solution of the govern-

ing equations presented in Chapter 2 were discussed. Alternative grid

arrangements were considered in Section3.2. Extension of the control-

volume approach to the non-orthogonal geometries was presented in Sec-

tion 3.3. The SIMPLE method was presented in Section 3.4 which also ex-

plained the calculation of the streamwise pressure gradient. The bound-

ary conditions were introduced in Sections 3.5 and 3.6 and a summary of

various computational aspects was included in Section 3.7.

The application of the solution method to duct flows is presented in the

next chapter.
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Chapter 4

PREDICTION OF FLOWS IN CLOSED DUCTS

4.1 Introduction

The flows considered in this chapter can generally be classified as part of

a wider range of flows which are characterized by the presence of one or

more sharp corners. The behaviour of such flows is determined by the

precise geometric details. Thus, for example, the flow may be included

within the corner, as would occur inside a duct or a channel, or in the

junction of an aircraft wing and its body or it may be external to it as,

for example, in a compound channel.

The study of the three-dimensional turbulent corner flows is motivated

by the frequent occurrence of such flows both in nature and in engineer-

ing practice. In nature, those flows are observed in ice-covered rivers and

natural streams. In engineering practice, they occur in air-conditioning

ducts, in heat exchangers and in the intake ducts of jet engines. Their

behaviour is strongly influenced by the region of low wall-shear-stress

that exists near the internal corner. This is known to affect the rates of

heat transfer to, or from, the wall creating, for example, undesirable 'hot

spots'. Low shear stress also has consequences on the rate of sediment

transport and, in supersonic flow, on the formation of complex shock-
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wave patterns.

From a numerical modelling point of view, the most significant aspect

of turbulent corner flows is the presence of Prandtl's second-kind of sec-

ondary motion. The origin of that motion has already been discussed in

Chapter 1 and need not be repeated here. Suffice it to say that all cur-

rent closure models found in practical engineering calculation method fail

to predict the occurrence, and hence the consequences, of that motion.

The purpose of this chapter is to present a detailed assessment of the

performance of the present two turbulence models : the non-linear k-f

model and the complete Reynolds-stress-transport model. Three typical

geometrical situations were chosen for models assessment: rectangular,

compound and trapezoidal ducts (see Fig 4.1). Those comprise all dif-

ferent types of corners (i.e. internal and external) and are all well docu-

mented by experiments.

The remainder of this chapter is in five sections. In Section 4.2, a pre-

liminary assessment of the two models is presented. The final results for

square, compound and trapezoidal ducts are presented in Sections 4.3 -

4.5, respectively. Conclusions to this chapter are presented in Section

4.6.

4.2 Preliminary Models Assessment

4.2.1 Comparison Between RSM and RSMO

Two variants of the Reynolds-stress-transport model were presented in

Chapter 2: the RSM and the RSMO. These differ in the precise way in

which the 'rapid' part of the pressure-strain correlation has been mod-

elled. The RSM is given by equation (2.33) while the RSMO, the simpli-

fled version, is given by equation (2.34). The purpose of this section is

to present the results of each and thus to demonstrate the necessity for
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the model development discussed in Chapter 2.

Assessment of the two models was carried out by applying them to the

flow in a square duct (AR - 1) with Re = 2.15 x i05 where the effects of

the turbulence-driven motion were expected to be at their greatest.

The Reynolds-stress model, denoted in the present study as the RSMO,

was first to be applied to the flow in a square duct. The distortions of

the mean-velocity field, shown in Fig. 4.2 a), are a very weak and the

bed-shear-stress (Fig. 4.2 b) incorrectly shows the maximum at the cen-

tre line of the duct. This behaviour indicates that the RSMO produces

a weak turbulence anisotropy and consequently a weak secondary flow

which is not able to distort a mean-velociy field. The anisotropy in the

RSMO arises only from the 'ij,w and can be enhanced by a more rapid

decay of the wall-damping function (e.g. f = L/x2 ). This is clearly

seen in Fig. 4.3, where this approach results in a stronger bulging along

the corner bisector. Still, this approach results in a mild contour distor-

tions aIont.raII bisectors. Further anisotropy can be introduced through
he

adoption of full definition of jj (equation 2.33) instead of simplified one

(equation 2.34). This results in a further bulging of the mean-velocity

contours along corner- and wall-bisectors as shown in Fig. 4.4 a). This

model, denoted as the RSM (initial), differs from the RSMO (quadratic

f) only inway in which the ij,2 has been modelled. Unfortunately, the

RSM (initial) leads to unexpected discontinuity of the wall-shear-stress

near to the corner (Fig. 4.4 b). This can be improved by re-definition

of the wall-damping function, using equations (2.41),(2.45) and (2.46)

in combination with equation (2.40). This in conjunction with an ap-

propriate boundary condition for the €-equation (equation 3.41) leads to

improved model-behaviour in the corner region, as shown in Fig. 4.4

b). An example of the wall-damping function is shown in Fig. 4.5. The

Reynolds-stress model, finally adopted, is denoted as the RSM.

Contours of the streamwise velocity (normalized by their maximum value)

as predicted with the RSM and the RSMO are compared in Fig. 4.6 a).

The differences are quite significant as can be seen, for example, from the
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95% contour where the RSMO result appears to be largely unaffected by

the secondary motion in contrast to the RSM result which correctly re-

produces the expected bulging towards the corners. The difference in the

mean-velocity field has as a direct consequence a quite different profile of

the bed-shear-stress (Fig. 4.6 b). Since the bulging of the mean-velocity

contours in non-circular fully-developed duct is entirely attributed to the

influence of the secondary motion it is reasonable to expect significant

differences in the secondary-velocity field produced by these two models.

To demonstrate those differences, profiles of the U-velocity are compared

in Fig. 4.7. Generally, the RSM has produced a stronger secondary mo-

tion. A maximum peak in the U-velocity profile obtained by RSM gets

closer to the wall with decreasing of x/W indicating the strongest mo-

tion along the corner bisector. Furthermore, RSM profiles near wall are

significantly stronger comparing with results obtained by RSMO. It is

interesting to note that the U-velocity obtained by RSMO is significant

only near the walls but is negligible in the rest of domain and is therefore

incapable of influencing the streamwise velocity there.

Turbulence quantities appear in the U-equation through its diffusion

terms and attention is now focused on one of those terms: that involving

the normal-stress component u 2 . Contours of this component, averaged

by W_2 are presented for both models in Fig. 4.8. The difference be-

tween the two models is rather significant and in accordance with different

secondary- and mean-velocity fields observed in previous figures. The u2

contours obtained by RSM are more distorted along corner and side-wall

bisector compared with results obtained by RSMO. In order to clarify

direct influence of different normal-stress fields the gradient of u2 at the

position of x/B = 0.77 is shown in Fig. 4.9. The gradient is normalized

by W 2 /B. The stress gradient obtained by RSM is stronger in a large

portion of the duct implying a larger source inside momentum equation

which consequently results in stronger secondary motion there.

The results presented in this section confirm that RSMO produces a very

weak secondary motion compared to RSM; the latter is therefore recom-
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mended for further development and testing.

4.2.2 Nonlinear k-f Model Simplification

Inspection of the nonlinear expressions given in equations (2.14) - (2.19)

reveals the presence of secondary partial gradients of different veloc-

ity components. Consequently when these stresses are incorporated in

the momentum equation they give rise to triple velocity gradients which

can be sourcesof serious numerical instabilities particularly near the wall

where the velocity gradients are the greatest. Therefore, there is benefit

to be gained in determining the true significance of those terms. This was

done by applying the nonlinear k-f model with and without the secondary

gradients for the square-duct flow with Re = 1. x i0 5 . A calculation do-

main was covered by the same 32 x 32 numerical mesh and for both test

cases identical under-relaxation was employed (0.5 for velocities and pres-

sure and 0.6 for k and f). The results are summarized in the table below.

Secondary —ôp/ôz W inax Wmjn Tw,max Tw,on symmetry plaue

	gradients [N/rn3] [m/s] [mIs] [N/rn2]	 [N/rn2]

with	 88.4	 1.19	 0.399 - 2.377	 - 2.214

without	 88.5	 1.19 0.401 - 2.377	 - 2.218

Table 4.1 Nonlinear k-f results with and without secondary gradients

From Table 4.1 it is clear that both treatments yield effectively the same

result although, when the secondary gradients are retained, convergence

of the equations can only be achieved with twice as many iterations as

would be required without those terms. For this reason it was decided

that the secondary gradients would be dropped from equations (2.14) -

(2.19) for all further applications of the nonlinear k-f model.
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4.3 Rectangular Ducts

4.3.1 Scivare-Duct Prediction

The flow in square non-circular ducts is characterized bfsecondary mo-

tion that is symmetric about the wall and corner bisectors. The predicted

secondary-velocity vectors (presented here for a quarter of a square duct),

are compared in Fig. 4.10, with the measurements of Brundrett and

Baines (1964) for Re = 8.3x104 . It is obvious that the strongest secondary

motion occurs along the walls, bringing s1os moving fluid from there into

the centre of the duct. The returning flow transfers high momentum fluid

towards the corners. An idea of how well the present models predict the

strength of the secondary-flow streamlines can be gained from Fig. 4.11

which compares the present models with the measurements of Gessner

and Jones (1965) for square duct with Re 1.5 x i05 . The predictions are

in close agreement with measurements for the two external levels. The

external RSM contour is mildly extended to the corner in comparison

with the contour obtained by NKE and this implies that the influence of

the secondary motions obtained by RSM extends deeper into the corner

region. None of the models captured the small streamline ( x 10' = 12)
in the middle of the vortex.

Fig. 4.12 compares the predicted mean-velocity contours (averaged by

Wiiiax) with the data of Brundrett and Baines (1964). The extent of

mean-velocity bulging toward the corner depends on the strength of the

secondary-velocity vectors alonorner bisector. Fig. 4.12 indicates that

distortion of profiles obtained by RSM is closer to the measured be-

haviour than distortion obtained by NKE, especially for the two profiles

closest to the wall. Overall, the degree of bulging obtained by NKE

slightly underestimates both experimental results and RSM predictions.

Further comparisons were made using the data of Launder and Ying
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(1972) for Re = 2.15 >' i0 5 . Predicted and measured profiles of

ondary velocity (normalized by average shear velocity Wi) are shown in

Fig. 4.13 for three x/B locations. Also included in that figure are the

RSM results of Reece (1977) and algebraic-stress-model (ASM) results of

Launder and Ying (1973). Comparisons at first two locations (x/B0.2

and 0.5) indicate a close agreement between our predictions and Reece's

results while his prediction produced stronger secondary flow in the mid -

dle portion of the duct at location x/B=0.8. The ASM predictions show

the position of maximum velocity to be shifted towards the middle section

of the duct. It is interesting to note that the present predictions using

the RSM and the NKE are very close for all three profiles and, bearing

in mind that the relatively small secondary velocities are very difficult to

measure accurately, their agreement with data can be regarded as satis-

factory.

Predicted and measured mean-velocity profiles along wall and corner bi-

sector of the square duct are displayed in Fig. 4.14. The data are again

those of Brundrett and Baines. Along the wall bisector the agreement

between both predictions and experimental results is very good. The

same is also true for the corner bisector although NKE profile is slightly

underestimated in the near-wall region comparing with the experiment

and the RSM results.

The experimental study of Brundrett and Baines (1964) was primarily

conducted to determine the magnitude of the terms in the streamwise-

vorticity equation. Various turbulence parameters wee reported (e.g.

the normal stress difference(u 2 - v2 ) and the secondary-velocity shear

stress liv) and those are compared with the present models results in

Figs. 4.15 and 4.17 respectively. The measured contours of normal-

stress anisotropy, shown in Fig. 4.15, represent approximately straight

lines in large part of domain which tend to become normal to the sym-

metry plane indicating the constant energy level in that region. Such

trend is simulated by both models but especially by RSM. The NKE

also shows a good agreement with experiment, particularly in the region

closer to the corner bisector. In order to additionally test the models'
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ability to predict normal-stress anisotropy, attention is focused on the

normal-stress difference along wall bisector (Fig. 4.16). The spread of

data shown there was taken from Perkins (1970) for the square duct flow

with Re = 1.5 x io. Both models appear to produce return to isotropic

turbulence with approach to the symmetry plane while some differences

between them can be noticed in the near-wall region. In general, the

normal-stress anisotropy produced by both models can be regarded as

satisfactory especially bearing in mind that the same contours obtained

by ASM underestimated experimental results by an order of magnitude

(see Nakayama et al. 1983). The shear-stress distributions are presented

in Fig. 4.17. The experimental results show an interesting pattern of

elliptically enclosed contours along the corner bisector. A similar be-

haviour is also evident from the predictioiis though it appears that the

NKE-model results show increasing levels of shear stress in the near-

corner region contrary to the data and the RSM results.

The present predictions of turbulent-kinetic-energy field are compared

with measurements of Brundrett and Baines in Fig. 4.18. The predicted

and measured results are similar although predicted levels are found to

be lower than those of experiment. Further predictions of the turbulent

kinetic energy were obtained for the flow conditions of Gessner and Po

(1976) who measured the profiles of this quantity in a square duct with

Re = 1.5 x The predicted and measured profiles (normalized by Wi2)

are presented in Fig. 4.19. Again both models are in close agreement

with each other and, to a lesser extent, with the experimental values

which they appear to underestimate in the near-wall region.

The final comparisons presented here relate to the shear-stress corn-

ponent vW which is responsible for diffusing the W-velocity in the y-

direction. Gessner and Po (1976) measured VW profiles and their results

together with present predictions are shown in Fig. 4.20. At the location

of x/B = 0.25 both models closely follow the data while for the x/B ^ 0.5

some discrepancies occur in the near wall region.
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4.3.2 Production of Vortici

Present predictions of the turbulence anisotropy and the secondary-shear-

stress for the flow in the square duct of Brundrett and Baines (1964) are

used here to calculate terms A2 and A3 which comprise the production

of the streamwise vorticity (P).

A2	 A3
-

___	 92	 2
P 1z =	()_(Oxöy	 -	

)uv

The contours of those terms averaged by W2/B2 are shown in Fig. 4.21.

The term A2 is greater than the term A3 by an order of magnitude only

in a narrow region very close to the corner. In the rest of domain both

terms are of a similar magnitude and it is therefore apparent that both

terms contribute to the vorticity production. This result confirms the

experimental considerations about the origin of the secondary motion,

presented in Section 1.2.

4.3.3 Effects of Aspect Ratio

The aim of this section is to investigate the influence of the duct aspect-

ratio on the flow structure. The experiment of Hoagland 1 (1960) is

considered with AR = 3 and Re = 6. x io. The predicted and measured

secondary-velocity streamlines are plotted in Fig. 4.22 where it can be

seen that the secondary-flow structure is significantly altered compared to

that in square duct especially in the appearance of a large vortex. Some

1 Preseiit data concerning Hoagland's experiment was taken from Brundrett and
Baiiies (1964)
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similarities between square and rectangular sections have been maui-

tamed iii the sense that both domains are again covered by two vortices

which are of opposite sign whose zone of influence lies approximately

along the corner bisector. This is also apparent in the measurements.

The overall agreement between predictions and measurement is satisfac-

tory.

Fig. 4.23 shows the data and the predicted contours of mean velocity

as compared with the ASM results of Nakayama and Chow (1983). The

mean-velocity contours are normalized byWiiiax The data are those of

Leutheusser (1963) for Re = 5.6 x iO4 and AR 3 . All contours shown

in Fig. 4.23 show the strongest distortion in the region near to the cor-

ner along its bisector though they appear tooverestimate the measured

contours there particularly for the levels of 0.9 and 0.95.

The predicted and measured anisotropy are compared in Fig. 4.24. The

data are from Hoagland (1960): the aspect ratio is as before but with

Re = 2. x iO4 . As for square ducts, the sign of contours changes as

the corner bisector is reached. This confirms a strong division of the

secondary flow indicated by the positions of secondary-velocity vortices

shown in Fig. 4.22. Agreement between contours obtained by RSM and

experimental results is acceptable while the NKE results are accompanied

by rather unexpected zero (i.e. isotropic) contour along the horizontal

wall bisector though this does not seem to have serious impact on the

secondary-flow structure obtained by NKE.

An important consequence of the distortion to the mean-velocity field

under influence of secondary motion is the modification to the wall-shear-

stress distribution. Detailed measurements of this parameter have been

reported by Knight and Patel (1985,a) for eight different aspect ratios

and those are used to assess the present models. The comparisons are

presented in Fig. 4.25 where it can be seen that the shear-stress maximum

does not occur in the centre-plane of the duct (as it would do in strictly

two-dimensional flows) but is shifted towards the corner. Thus a region

of stress deficit is created in the central portion of duct which is seen to
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move towards the duct's corner as the aspect ratio of the duct increases.

The NKE model results seems to be more sensitive to the influence of

the secondary motion leading to deeper stress deficits. In contrast, the

RSM profiles are less sensitive although exhibiting mild discontinuities

in the corner regions for two small aspect ratios.

4.4 Compound Ducts

4.4.1 Symmetric Ducts

In contrast to the situation for rectangular ducts, far fewer measurements

of flows in compound ducts have been reported in the literature. The

most complete sets available are those of Knight and Lai (1985,a) and

(1985,b) and those will be used here for models validation.

The predicted secondary-velocity vectors for various values of h* are pre-

sented in Fig. 4.26. It is immediately clear that the external corner ap-

pears to generate additional secondary motion which exceeds in strength

that produced in other parts of the duct. For the flow situation with

h* 0.516 the main-duct area is almost entirely dominated by the strong

secondary motion originating from the external corner. Some of that mo-

tion spills over the flood plains. By decreasing of h* the intensity of the

secondary motion steadily decays at the main flow-flood plain interface

such that, for the lowest value of h*, the flow in the main duct becomes

very similar to that observed in an isolated rectangular duct. The sec-

ondary motion is still present near to the external corner but its influence

is confined to a narrow neighbouring region.

The positions of the secondary-flow cells may be clearly seen from Fig.

4.27. The streamlines are closest around the external corners indicating

the strongest velocity gradients there. It can be seen that for h* = 0.516

two dominant vortices, one from the main part of the duct and one from
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the flood plain come together along the external-corner bisector. The

influence of the flood-plain vortices extends almost to the very end of

the flood plain. The mutual interaction between these two vortices is

strongest for h*	 0.516 while it decays with decreasing 	 h*. In such

manner the main-duct vortex for 	 h* = 0.221 is almost unaffected by

the flood-plain vortex.

The data and the present RSM predictions of the mean-velocity contours

for all four values of h* are presented in Fig. 4.28. The mean velocity

is normalized by bulk velocity (Wb). The consequence of the strong sec-

ondary motion near to the external corner can be clearly seen from this

figure where the contours bulge outwards. The distortion to the veloc-

ity contours is so strong that for higherlh* it leads to the creation of a

local maximum of mean velocity in the flood plain area. The reduction

in the distortion of the mean velocity with decreasing h* is in accordance

with the secondary-velocity behaviour observed in Fig. 4.26. Clearly, the

RSM reproduces mean-velocity contours which agree closely with mea-

surements as can be seen for duct with h* = 0.516. The agreement for

the remaining values of h* is generally satisfactory. The NKE results are

presented in Fig. 4.29. The bulging here is somewhat weaker than with

the RSM but nevertheless agreement between data and predictions can

be regarded as satisfactory.

The predicted and measured bed-shear-stress profiles ,non-dimensionalized

by mean-shear-stress (f), are plotted in Fig. 4.30. The shear stress on the

flood plain for the h* = 0.516 shows mild depression around the x/B = 0.4

which is slightly better captured by NKE. Both models produce a small

drop of shear stress on the flood plain just before the junction with the

main duct. The perturbations of the shear-stress distributions on the

flood plain are generally very weak and almost disappear for the smallest

value of If. The shear-stress behaviour in the main duct also varies with

decreasing of h*. For	 h* = 0.516, the shear-stress maximum occurs

at the centre line of the duct while for h* = 0.221, where the effects

of the bulging on the main duct-flood plain interface are weakened, the

maximum appears to be shifted from the centre line towards the corners.
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This is clearly predicted by NKE but not with RSM.

A summary of the predicted and measured average shear-stress values

for the geometries considered is provided in Table 4.2.

______	 [N/m2]	 _____

Re x iO4 h* B/b DATA NKE I Er. % RSM Er. %

	

8.13	 0.516 4.1 0.2388 0.2411 +0.96 0.2214 -7.3

	

6.82	 0.404 4.0 0.3211 0.3031 -5.6 0.3023 -5.8

	

5.60	 0.310 4.0 0.3569 0.3367 -5.6 0.3302 -7.5

	

4.27	 0.221 4.0 0.3293 0.2966 -9.9 0.2919 -11.3

Table 4.2. Average-shear-stress in compound ducts.

Data of Knight and Lai (1985,b)

The 'relative errors' between data and predictions vary with h*: for the

NKE it ranges from 0.96% for h* 0.516 to the -9.9% for h* 0.221

while, for the RSM, it varies from -7.3% for h* = 0.516 to -11.3% for

= 0.221.

4.4.2 Asymmetric Ducts

Asymmetric-compound ducts possess all the features of compound ducts

mentioned above , only now those are no longer simplified by the presence

of a plane of symmetry. Here, the ratio B/b, of the total duct width to

that of the main-channel is different between the left and the right banks.

The effects of asymmetry are strongest when one part of the duct is rect-

angular ((B/b) 1 = 1) while the other is compound ((B/b)r > 1). In this sec-

tion, the focus is on the data of Knight and Lai (1985,a) for the following

parameters: Re = 8.23 x iO4, (B/b) 1 = 1, (B/b)r = 4.92 and h* = 0.514.
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The secondary-velocity vectors obtained with the RSM and the NKE are

plotted in Fig. 4.31. Here, as for the symmetric ducts, the strongest

secondary motion again appears in the vicinity of the external corners.

This motion interacts with secondary motion originating from the main

duct but the flow in the flood plain far from the external corner resem-

bles that in a rectangular duct. The impact of the large vortex, which

appears in the main duct adjacent to the flood plain, on the rest of the

flow domain can be clearly seen from Fig. 4.32. This vortex dominates

a large part of the main duct and by its influence suppresses the two re-

maining vortices. The situation in the flood plain is very similar to that

observed in symmetric ducts implying that the effects of asymmetry are

primarily confined to the flow in the main duct. The secondary velocity

streamlines produced by both mode1sare very similar.

The mean-velocity contours presented in Fig. 4.33 again show the ap-

pearance of a local maximum at the flood plain. The strongest bulging

occurs near to the external corner and, since this is absent from the left

side of duct, the flow inside main duct becomes asymmetric. The asym-

metry effects are clearly well predicted by both models. Since, the flow

in an asymmetric-compound duct comprises all secondary effects, men-

tioned so far, it would be interesting to consider the mean-flow contours

in the absence of the secondary flow. Thus, the mean-velocity contours

obtained with a linear k-f model are also presented in Fig. 4.33. It is

apparent that all distortions to the velocity contours, shown for various

geometries hitherto, are completely absent.

The modified mean-velocity field in the main duct results in mild bed-

shear-stress asymmetry as can be seen from Fig. 4.34. There, the dis-

tribution obtained with the RSM slightly underestimates experiments

and NKE predictions. The measured bed-shear-stress distribution in the

flood plain shows typical wavy behaviour which is satisfactorily repro-

duced by both models. In the case of absent secondary flow, the shear-

stress profiles are undisturbed and differ from the data and the present

predictions. The discrepancy is particularly apparent near the corner

regions.
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4.5 Trapezoidal Ducts

To our knowledge, only two experimental investigations of the fully-

developed flows in trapezoidal ducts have been reported. The first was

by Rodet 2 (1960) who measured the distribution of the mean veloc-

ity and the turbulent stresses inside relatively narrow trapezoidal duct

(AR = 0.82) having the bottom and top angles of 105° and 75° respec-

tively. The second was for a trapezoidal duct with larger aspect ratio

(AR = 3.5) measured by Prinos et al. (1988). The side walls in this

case were slightly more inclined, resu1ting in the corner angles of 116°

and 64°. Unfortunately, in none of the above were measurements for the

secondary velocities presented.

The predictions reported here were obtained using the NKE model in

conjunction with body-fitted coordinates. The computational grid for

the Rodet's geometry can be seen in Fig. 4.35 a). The secondary-velocity

vectors are presented in Fig. 4.35 b) for Re = 2.4 x The velocity

vectors are again directed towards the corners (along their bisectors) and

thereafter along the side walls to the central portion of the duct. Note

that here, due to the duct asymmetry, the secondary vectors are weaker

along the top and bottom walls compared with the motion along the side

walls. The present secondary velocity behaviour can be clearly seen from

the secondary-velocity streamlines plotted in Fig. 4.35 c): the flow do-

main is dominated by four vortices in the middle interacting with two

pairs of smaller ones along the bottom and top walls.

Fig. 4.36 a) compares the predicted and measured mean-velocity contours

for Rodet's trapezoidal duct. The top corner appears to have a stronger

impact upon mean-velocity bulging compared to the bottom one. A mild

distortion of the profiles near to the side walls appears exactly at the

2 Iii the present study results of Rodet's experiment are taken from Brundrett and
Baiiies (1964)
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position where the two middle vortices meet each other. The predicted

and measured contours show the same behaviour although the extent

of the bulging appears to be slightly underpredicted. The turbulence

anisotropy is presented in Fig. 4.36 b). The predicted zero contour (cor-

responding to isotropic turbulence) in the lower part of the duct extends

to the symmetry plane in the same manner observed in rectangular ducts

(Fig. 4.24). The agreement between measured and predicted results is

generally satisfactory.

Fig. 4.37 shows the predicted secondary motion for the flow of Prinos

et al. (1988) for which Reynolds number (based on maximum velocity)

was Re = 2.25 x i05 . It can be seen from Fig. 4.37 b) that the strongest

motions appear next to the inclined surface, reducing in strength with

approach to the duct's center. The secondary motion adjacent to the

bottom corner is no longer directed along corner bisector.

The predicted and measured mean-velocity contours (averaged by Wma)

are presented in Fig. 4.38 a). The measurements show a significant level

of distortion near to the duct symmetry plane. Since the mean-velocity

behaviour is strongly linked to the strength of the secondary motion it is

likely that those distortions are caused by strong secondary motion along

the symmetry plane from the upper part of the duct. The predicted

secondary-velocity vectors do not show such behaviour and it is unfor-

tunate that Prinos et a!. (1988) did not measure the secondary-velocity

field as this would have explained the cause of the severe mean-velocity

distortion. The predictions show the strongest distortion in the corner

regions while the contours approaching the middle portion of the duct

are almost unaffected. Such behaviour is consistent with mean-velocity

contours presented in Fig. 4.23.

The contours of the turbulent kinetic energy (k/W) plotted in Fig.

4.38 b) confirm that the distortions caused by secondary motion are even

more severe for the turbulent quantities. Thus the predicted and mea-

sured contours of k indicate a very strong bulging towards the corners.

However, the significant mean-velocity distortion in the centre of the duct
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suggested by the data does not seem to be accompanied with distortion

of the contours of the turbulent kinetic energy at the same place. The

predicted and measured main-shear-stress (Vw) contours normalized by

are shown in Fig. 4.38 c). The shape of contours is similar al-

though the positions of predicted contours are displaced compared to the

experiment.

The predicted and measured wall-shear-stress distributions (rw/) are

presented in Fig. 4.39. The differences here are closely related to the dif-

ferences observed in the predicted and measured contours of mean veloc-

ity. The predicted shear-stress profiles on the top and bottom walls show

mild depression approximately half way between the symmetry plane and

the side wall. The measured shear strss is quite uniform on the bottom

wall while on the top a slight depression appears near the duct's symme-

try plane. The predicted shear stress on the side wall shows significant

drop with approach to the top of the duct.

4.6 Closure to Chapter 4

Published data for flows in closed ducts of various cross shapes were used

to assess the performance of the nonlinear k-f model and the Reynolds-

stress model in predicting of turbulence-driven secondary motion and its

consequences on the overall flow structure. Two different models for the

difficult pressure-strain term were evaluated. The advantages of the com-

plete ij,2 formulation against the simple one were presented in Section

4.2. It was also shown that neglect of the secondary gradients from the

nonlinear stress-strain expressions had no influence on the final results.

The predictions for rectangular ducts obtained with both models were

discussed in Section 4.3. Generally, both models were shown to be able

to accurately predict most features of the turbulence-driven secondary

motion. In many cases the results of the two models were very similar
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but there were some differences too. Thus the distortion of mean-velocity

contours was better captured by Reynolds-stress model but that was un-

derestimated by nonlinear k-€ model. On the other hand, the influence

of the secondary motion on the wall-shear-stress distribution was better

followed by nonlinear model particularly so in the corner regions where

the Reynolds-stress model showed mild discontinuity there for the two

smallest aspect ratios.

The present models also proved adequate for flows in compound ducts as

was presented in Section 4.4. Generally, the two models were found to be

equally suited to the prediction of secondary-motion effects in compound

ducts which include the bulging at the main flow-flood plane interface

and the local velocity maximum in theflood plane. Although the nonlin-

ear k-f model results were generally satisfactory it is worth noting that

some flow characteristics were better reproduced by the Reynolds-stress

model, especially concerning the shape of the mean-velocity contours.

Because the two models gave very similar results, it was decided to apply

only the nonlinear k-€ model to flows in trapezoidal ducts. The predicted

results are shown in Section 4.5. It was found that the biggest influence of

the changed geometry was on the shape of secondary vortices which then

modified the mean-velocity field. The agreement between experiments

and predictions was better for the smaller-aspect-ratio duct.
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Data of Knight and Lai (1985,a) and (1985,b).
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DATA	 NKE

Fig. 4.29 Mean - velocity contours W/Wb x 102.

Data of Knight and Lai (1985,a) and (1985,b).
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Fig. 4.30 Bed - shear - stress in compound ducts.

Data of Knight and Lai (1985,a) and (1985,b).

106





DATA

r k-f model
ei- O secondary flow)

RSM

NKE
0

Fig. 4.33 Mean - velocity contours W/Wb X 102.

Data of Knight and Lai (1985, a).
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a) Computational grid 34 x 42

b) Secondary-velocity vectors

c) Secondary-velocity streamlines

Fig. 4.35 Secondary-motion results obtained by NKE model.
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DATA NICE

a) Mean-velocity contours W/Wnax

NKE DATA

b) Normal-stress anisotropy
WT

Fig. 4.36 Trapezoidal-duct results.

Data of Rodet (1960).
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a) Computational grid 61 x 40

b) Secondary-velocity vectors

c) Secondary-velocity streamlines

Fig. 4.37 Secondary-motion results obtained by NKE model.
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Fig. 4.38 Comparison between prediction and experiment for

trapezoidal duct with increased aspect ratio.

Data of Prinos et a!. (1988)
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Fig. 4.39 Wall - shear - stress in trapezoidal duct.

Data of Prinos et al. (1988).
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Chapter 5

PREDICTION OF FLOWS IN OPEN

CHANNELS

5.1 Introduction

The focus of this chapter is on turbulent flows in open channels of var-

ious cross-sections. The effects of a free surface on the structure of the

turbulence in its vicinity have been studied experimentally by many re-

searchers. Briefly, Ueda et al. (1977) and Komori et al. (1982) found that

the turbulent fluctuations normal to the free surface are damped and, by

virtue of continuity, those fluctuations parallel to it are enhanced. Celik

and Rodi (1984) drew analogy between free-surface flows and those ad-

jacent to a moving wall (i.e. where the wall-shear-stress is zero). There,

the vertical fluctuations will also be damped and, furthermore, as sug-

gested by the experiments of Thomas and Hancock (1977), the turbulence

length scale decreases towards the moving wall. The conclusion drawn

was that the dissipation of the turbulent kinetic energy increases next to

the free surface and this in turn leads to a reduction in eddy-viscosity

there and hence the well-known parabolic eddy-viscosity distribution in

fully-developed open-channel flows (see Fig. 5.2).
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The need for a predictive procedure for turbulent flows in open channels

of non-circular cross-section arises from the frequent occurrence of such

flows in hydraulic engineering practice. Examples include open channels,

river flood relief schemes, sewers and estuarine flows. In all these flows,

the mean-flow structure is significantly affected by the turbulence-driven

secondary motion and this in turn alters the overall conveyance of the

river system and results in changed wall-shear-stress distribution with

implications to the processes of side-bank erosion and bedload sediment

transport.

Prediction of open-channel flows are obtained here using the same tur-

bulence models as for flows in closed ducts. The free-surface effects are

simulated through specifying the boundary condition for e and, in the

case of RSM, by modifying the pressure-strain correlation model through

an additional free-surface-damping function (Section 5.2). The ability of

the models to predict the secondary-motion effects in open channels is as-

sessed through detailed comparisons with the best available experimental

data. Both simple and compound channels are considered (see Fig. 5.1).

Flows in rectangular channels have been calculated using both models

and the results are presented in Sections 5.3.1 and 5.3.2. Side-wall in-

clination further modifies the flow structure, the degree of modification

being a strong function of the wall inclination angle (On) : the present

results for those trapezoidal channels are presented in Section 5.3.3. A

compound cross-section, consisting of a deep main channel and shallow

flood plains, is an important feature of many rivers and the present re-

sults, for both symmetric and asymmetric geometries, may be found in

Sections 5.4.1 and 5.4.2. Finally, flows in real compound channels are

often affected by inclination of the side walls or by roughness of the flood

plains due to vegetation and the influences of those on the total flow

structure are presented in Sections 5.4.3 and 5.4.4.
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5.2 Free-Surface Modellin

5.2.1 The Nonlinear k-€ Model

The main task here is to ensure a damping of the vertical fluctuations

near to the free surface. This is expected to lead to enhanced turbulence

anisotropy there resulting in a such secondary motion which can create an

appearance of mean-velocity maximum to below the free surface. Turbu-

lent stresses in this model are proportional to the eddy-viscosity and thus,

if a parabolic distribution of the eddy-viscosity is achieved the damping of

vertical fluctuations would be a natural consequence. A parabolic eddy-

viscosity distribution can be attained by way of prescribing the f-value at

the free surface using either of two proposed models (equations 3.42 and

3.43). The eddy-viscosity distributions for open channel with AR=2.O1

and Re = 7.31 x are presented in Fig. 5.3 a) (eddy-viscosity is de-

fined using equation 2.8). The eddy-viscosity profiles show a decay as

they approach the free surface. This behaviour is completely different

.frrn bt of the case without prescribing a value of c at the free surface

(symmetry plane). The mean-velocity contours are shown in Fig. 5.3

b). Both proposals show a velocity maximum at the top of flow domain.

An explanation for such behaviour will be presented in Section 5.3.1. At

this stage it can be concluded that although there is no strong reason to

prefer one f-boundary condition against the other, the equation (3.43)

ensures a slightly stronger contour-distortions adjacent to the free sur-

face (see level 0.95) and therefore is recommended to be further tested

in conjunction with the nonlinear k-e model.

5.2.2 The Reynolds-Stress Model

Here, the damping of the vertical fluctuations near to the free surface
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can be achieved by way of supplementing the model with the additional

damping function (equation 2.47) to the redistributive term. Unfortu-

nately, this approach by itself leads to unexpectedly increased level of

eddy-viscosity adjacent to the free surface, as can be seen in Fig. 5.4 a)

(this is the same test case as in previous section). This defect can be

resolved by applying one of two proposed f-boundary condi-

tions. Both proposals when applied in conjunction with the free-surface-

damping function ensure a steady decay of the eddy-viscosity near to

the free surface (eddy-viscosity is again defined using equation 2.8; the

k needed in that expression was calculated as half of the summation

of the normal stresses). The mean-velocity contours obtained with the

Reynolds-stress model are presented in Fig. 5.4 b). The approach which

excludes i-boundary condition at the fiee surface, not only to result in

unrealistic eddy-viscosity than, also leads to a contour discontinuities

there. When the f-boundary condition (equation 3.43) is added to the

free-surface modelling it leads to appearance of two velocity maximums:

one below and one at the free surface. The local maximum at the top dis-

appears when the equation (3.42) is used instead of equation (3.43). An

explanation for mentioned behaviours can be found in the profiles of the

free-surface-damping function, shown in Fig. 5.4 c). It is clear that when

equation (3.43) is used the damping function is completely suppressed ad-

jacent to the free surface which results in an unrealistic local-maximum

there. Above mentioned discussion can be summarized as follows: In or-

der to ensure expected behaviour of the eddy-viscosity as it approaches

the free surface it is necessary to accompany the free-surface-damping

function (2.47) with adequate f-boundary condition. The f-boundary

condition (equation 3.43) leads to an unrealistic velocity maximum at

the free surface and it is therefore necessary to replace it with equation

(3.42).
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5.3 Simple Channels

5.3.1 Rectangular Channels

The behaviour of flows in rectangular-open channels was investigated by

Tominaga et al. (1989) using hot-wire anemometry. Detailed measure-

ments of many important quantities were obtained including the sec-

ondary velocities, the mean-velocity field, the turbulence anisotropy and

wall-shear-stress distribution. Their data are used here for model valida-

tion.

To understand the influence of the free surface it is worth comparing the

secondary-flow structure in closed ducts and open channels. Note that if

the top symmetry plane for the bottom-left quarter of the square duct

(AR=1) is replaced by a free surface, the result would be a channel flow

with AR=2. Consider first the channel flow conditions of Tominaga et

a!. (1989): AR=2.01, Re = 7.31 x (slope not given). The calculated

and measured secondary-velocity vectors and streamlines are compared

in Fig. 5.5. It is immediately clear that the secondary flow is now com-

pletely altered under the influence of the free surface relative to that

observed in square duct (Figs. 4.10 and 4.11). The secondary velocity

along the corner bisector is significantly reduced and is now confined to

a narrow region close to the internal corner. Also, the secondary motion

along bed does not reach the middle of the channel while the flow along

the side walls reaches the top of the domain. The strongest motion now

occurs parallel to the free surface and next to it. This is obtained by both

the experiments and the present predictions. The effect of such strong

secondary flow is to transport slow-moving fluid from the wall region into

the central portion of the channel. The secondary-velocity field is clearly

seen from the plot of the flow streamlines presented in the same figure.

Two vortices are present, as in the duct flow, but those are no longer

symmetric about the corner bisector. The predicted streamlines show

one dominant vortex below the free surface and a second, significantly
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smaller one, adjacent to the bed in near-corner region. The experiments

also show this although there the free-surface vortex is not the dominant

one.

The consequence on mean-velocity field can be seen from the mean-

velocity contours(W/Wm), presented in Fig. 5.6. The slow momentum

fluid, brought by the secondary motion from the wall region, significantly

distorts the mean-velocity field adjacent to the free surface leading to a

shift in the position of maximum velocity to below the free surface. This

phenomenon is also apparent from the RSM predictions and the exper-

iments although the precise details are somewhat different. The NKE

agrees with the measurements for contours up to 0.95 but the maximum

mean velocity remains at the free surface which is in sharp contrast with

the RSM predictions which correctly show the displaced maximum. It is

worth noting here that the two models agree fairly closely in the details

of the contours near the bottom corner.

Since the depression of the mean-velocity maximum below the free sur-

face arises from the turbulence anisotropy, it is interesting to examine

the models results for this parameter. The predicted and measured

anisotropy field, averaged by are compared in Fig. 5.7. Apart

from slight overestimation of the anisotropy contours near the free sur-

face, the RSM results agree fairly well with measurements particularly

for the position of the 'isotropic-turbulence' contour. The NKE produces

less anisotropy adjacent to the free surface especially near the centre line

where extensive regions of isotropic turbulencerebeing predicted.

To gain better understanding of this behaviour, the normal-stress pro-

files along the channel centre line are plotted in Fig. 5.8 a). So far, we

have already emphasized that the free surface is expected to damp only

vertical fluctuations. This requirement seems to be achieved by both

models, as can be seen from v 2 profiles shown in Fig. 5.8 a). In the

same time, the horizontal fluctuations, as normal stress u 2 , should not

be damped by the free surface. This requirement is qualitatively differ-

ently described by two adopted models. From the y/H < 0.7 both models
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follow the same trend but beyond that point the discrepancies start to

emerge. The NKE profile is again damped while the u 2 profile obtained

by RSM is even slightly enhanced in the free-surface region.

The malprediction of u 2 by the NKE is due to eddy-viscosity stress-strain

relationship (equation 2.11) which connects the stresses and the strains

via eddy-viscosity. The eddy-viscosity profiles for this flow are shown in

Fig. 5.9. Both models have reproduced well-known parabolic distribu-

tion. The eddy-viscosity tends to become zero at the free surface and

therefore all quantities proportional to it will assume zero or near-zero

value there. In such manner, the proportionality of the Reynolds stresses

to the eddy-viscosity (which multiplies the linear part of equation (2.11)

directly and nonlinear part through L1) will result in negligible contri-

bution of non-isotropic part in equation (2.11) in the free-surface re-

gion. Thus, not only vertical b0t also horizontal fluctuations are damped

there. Contrary to that, the turbulent stresses in the case of the RSM

are obtained by solving their own transport equations and hence they are

not directly correlated to the eddy-viscosity. In such manner they can

assume.desired level of turbulence anisotropy near to the free surface.

Fig. 5.8 b) shows the vertical distribution of the main-shear stresses at

x/B	 0.5 (this position was chosen because 11W is zero at the centre

line). Again, both models produce very similar profiles of vW but the

real differences appear in 11W which is predicted by the RSM to be finite

at the free surface but is obtained by the NKE as zero there.

5.3.2 Effects of Aspect Ratio

The next test case considered is for a larger aspect-ratio (AR=3.94) chan-

nel. The measurements are again Tominaga et al.'s (1989) and correspond

to the Re 5.07 x iO4 and channel slope (SL) of 0.138 x i0. The calcu-

lated and measured secondary velocities are compared in Fig. 5.10. The
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increased aspect ratio modifies the secondary-velocity field resulting in

the appearance of a third vortex near to the centre line. The secondary

flow, predicted by the RSM, is very weak in the central portion of the

channel and therefore the third vortex does not appear there. From the

other side, the centre line vortex can be clearly seen from the results ob-

tained by NKE and its acting is so strong that unable secondary motion

coming along the free surface to reach the central portion of the channel.

The bottom corner vortex, predicted by both models, remains essentially

unchanged from before.

Fig. 5.11 shows the calculated and measured mean-velocity contours,

normalized by The main differences between the RSM and NKE

results occur in the central portion of he channel, which is where the

greatest differences in secondary velocities were observed. For RSM, the

severest distortion to the contours occur near to the free surface but

this is insufficient to displace the position of velocity maximum. For the

NKE, the velocity maximum is shifted to either side of the centre plane,

to a position which coincides with the point where two the vortices meet

at the free surface. Furthermore, the strong secondary velocities along

the centre line distort the main-flow contours there. Contrary to the

predictions, where both models obtain the velocity maximum to occur at

the top of domain, the data show that the velocity maximum lies below

free surface which suggests that the secondary flow is even stronger than

produced with either model.

The largest aspect-ratio channel of Tominaga et a!. is considered next.

AR is 8.0 and the following flow conditions apply: Re = 6.37 x iO 4 and

SL = 0.937 x i0. The predicted and measured secondary-velocity vec-

tors and streamlines are presented in Fig. 5.12. The predictions show

significantly weaker velocity vectors in the middle of the channel com-

pared to the side walls and the corners. Here, both the predictions and

measurements indicate that the strong secondary motion from the side

walls along the free surface does not reach the middle of the channel due,

in part, to the weak reverse flow from the centre line.
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The mean-velocity contours presented in Fig. 5.13 indicate a very sim-

ilar mean-velocity field produced by two models. In general, agreement

between predictions and measurements seems to worsen with increasing

aspect ratio and the advantages of the RSM over the NKE, obvious for

narrow channels, disappears with higher aspect ratios.

The predicted and measured distribution of bed-shear-stress for rectan-

gular channels are compared in Fig. 5.14 for various aspect ratios. For

the smallest aspect ratio, a local minimum is observed at x/B 0.5.

A region of 'stress deficit' is thus created, analogues to that found in

duct flows, and this moves steadily towards the corner with increasing

aspect ratio. For the channel with AR=3.94, the local minimum occurs

at x/B 0.3, while for AR=8.0 the depression is very weak and oc-

curs around x/B = 0.15. The NKE also produces two narrow regions of

bed-shear-stress deficit for the aspect ratios of 3.94 and 8. Those are

attributed to the vortex near the centre line, (predicted by this model

for AR=3.94 ; Fig. 5.10), which distorts the mean velocity there (Fig.

5.11) and this in turn leads to the drop in bed-shear-stress. Similarly, for

the highest aspect ratio, the NKE produces a strong vortex at x/B 0.5

which modifies the bed-shear-stress at that position. Apart from those

two narrow regions, the NKE predictions are in better overall agreement

with the data. It is also worth noting that, although the NKE and the

RSM produced significantly different mean-velocity profiles for AR=2.01,

the bed-shear-stress was closely predicted by both models which suggests

that the departure of the NKE at the centre line near to the free surface is

rather localized without serious consequences for the rest of flow domain.

The side-wall shear stresses for the same flows are presented in Fig. 5.15.

Measurements were only available for AR=3.94. The agreement between

the data and present predictions is quite satisfactory and it is interesting

to note that the wall-shear-stress is largely independent of the aspect

ratio resulting in almost identical profiles for all three test cases.

Knight et al. (1984,a) reported on the bulk quantities in open-rectangular

channels and those are used next to determine the influence of aspect
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ratio on the flow structure in open channels. The bed slope was kept

constant at SL = 9.66 x iO which allows for a convenient way to present

the changes in mean-bulk parameters (channel discharge, bed and wall

average-shear-stress etc.) with increasing aspect ratio. The data and the

present predictions for the bulk quantities are presented in Fig. 5.16. The

NKE and RSM predictions for discharge are, when plotted, too close to

be distinguishable. The agreement with experiment is better for smaller

aspect ratios. For AR> 3 the predictions slightly overestimate the mea-

sured values which is in accordance with the observed deterioration of

agreement between measured and predicted mean-velocity contours for

high aspect ratios. The predicted average wall-shear-stresses, on the

other hand, agree well with the measured values. The same is true for

the average bed-shear-stress except for AR = 6 where predictions over-

estimate the measured value.

In conclusion, the inability of the NKE to produce depression of mean

velocity maximum to below the free surface in narrow channels does not

seem to have a serious impact on the prediction of other important pa-

rameters. Both models have produced similar shear-stress distributions

along the wetted perimeter and very close values for the bulk quantities.

Moreover, for higher aspect ratios, both models have produced a very

similar mean-velocity fields. It follows that the influence of side-wall in-

clination on the flow in open channels can be calculated using the NKE

model in conjunction with body-fitted coordinates, as will be shown next.

5.3.3 Effects of Side-Wall Inclination

The flows in open-trapezoidal channels were experimentally investigated

by Tominaga et al. (1989). The experiments were conducted for side-wall

inclinations (On) of 600, 44° and 32°.

The predicted and measured secondary-velocity vectors and streamlines,
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for all three side-wall inclinations, are plotted in Fig. 5.17. For the case

of 9 = 60°, the flow conditions were: AR = 2.9, Re = 6.48 x iO4 and

SL = 0.389 x i0. Both experiment and predictions show three domi-

nant vortices though with different centres. The predictions show strong

secondary motion along the corner bisector which is only vaguely appar-

ent in the experiments. Note that here the secondary velocities at the

centre line are directed towards the free surface, a behaviour apparent in

both predictions and measurements.

For the two test cases with 44° and 32°, the aspect ratios were 3.25 and

3.86 and the Reynolds numbers were Re = 8.76 x iO 4 and Re = 5.34 x iO4,

respectively. The bed slope was 0.594 x i0. With decrease of wall in-

clination (On), the middle vortex decays and disappears for O = 32° while

the bottom vortex becomes increasingly dominant. The corner vortex

is unaffected by the side-wall inclination. The flow in the middle of the

channel is influenced by secondary flow from the bed rather than from

the side walls, as was the case in simple channels.

The mean-velocity contours are presented in Fig. 5.18. The shift in

the position of velocity maximum is consequence of the strong secondary

motion adjacent to the centre line already discussed. The secondary ve-

locities distort the mean-velocity contours all along the centre line and

finally result in the displaced velocity maximum. The predicted and

measured positions of velocity maximum are quite close except for the

channel with O = 60°. The bulging towards the bottom corner evident

from the measurements is also captured in the predictions. The mild

bulging adjacent to the side wall is a consequence of the secondary flow

from the side wall. With decreasing wall inclination (0), the extent of

bulging is reduced and finally disappears for O = 32°. This is not easy

to see from the measured contours since those show some scatter next to

the side wall.

Distributions of side-wall shear stress for the trapezoidal channels are

shown in Fig. 5.19 a) as a function of wall inclination. As before, the

wall-shear-stress shows a local minimum or depression at a location corre-

125



sponding with that of maximum mean-velocity distortion (see Fig. 5.18).

This deficit is most pronounced for O = 60°, and virtually non-existent

for O = 32°. The shear-stress drop near to the free surface is apparent

for all three cases. The agreement between the NKE predictions and the

data is generally quite satisfactory.

The predicted and measured shear stresses on the channel bed are shown

in Fig. 5.19 b). The experiments show a steady drop near the channel's

centre line and this becomes more severe with decreasing O. The predic-

tions underestimate the measurements near the centre line for 0c = 60°

and near the bed-wall junction for O = 32° but apart from that the

agreement is quite reasonable.

5.4 Compound Channels

5.4.1 Symmetric Channels

Tominaga et al. (1988,a) and (1988,b) reported detailed measurements

of flows in symmetric-compound channels including secondary-velocity

vectors, mean-velocity contours and boundary shear stress. They also

measured some turbulence quantities such as the main-shear stresses 11W

and VW. Two of their data sets were selected for model validation; those

are summarized in Table 5.1.

symmetric channel h* B/b AR	 Re

experiment 1	 0.5 2.07 3.89 5.44 x iO4

experiment 2	 0.243 2.07 5.9 3.43 x iO4

Table 5.1 Flow conditions for symmetric-compound channels

Further details are given in Tominaga et al. (1988,a) though, unfortu-

nately, not the bed slope.
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The predicted and measured secondary-velocity vectors for h* = 0.5 are

compared in Fig. 5.20. As was the case for compound ducts (Fig. 4.26),

the strongest secondary flow occurs near the external corners but here

the presence of the free surface further complicates the flow. Thus, the

secondary flow generated by the external corner is enhanced near the

free surface such that its influence now extends to the centre line of the

channel. The flow in the flood plain is also quite different from the flow

in closed compound ducts. Here, the flow from the main channel-flood

plain junction forms a vortex adjacent to the corner in addition to the

two found in the far corners. For the shallow flood plain (h* = 0.243),

the secondary flow (Fig. 5.21) is especially strong around the external

corner and adjacent to the free surface as can be seen from both data and

predictions. Compared to the previouscase, the secondary flow in the

main channel is now less affected by the flow from the external corner.

Fig. 5.22 compares the patterns of secondary-flow streamlines obtained

with the NKE and the RSM for the two values of h*. Some differences are

apparent mainly in the size of the vortex on the main-channel bed where

the vortex predicted by the RSM is smaller. Contrary to the uniform

flow observed in ducts, the split in the flood-plain secondary flow can

be seen from the formation of two separate large vortices in that region

(h* = 0.5). In contrast, the vortices for h* = 0.243 are very similar to

those observed in closed ducts (Fig. 4.27 ; h* = 0.221).

Fig. 5.23 compares the measured mean-velocity contours with the RSM

predictions. The external corner and the free surface play an important

role in the distortion of the mean-velocity field. The bulging of mean-

velocity contours near the external corner is due to the strong secondary

motion in that region: it is a strong function of the depth ratio as it

disappears for h* = 0.243. The secondary motion also causes a shift in

the location of velocity maximum to below the free surface in exactly

the same way as already seen in simple channels. In very shallow flood

plains, (e.g. for h* = 0.243), the contours of main velocity are uneventful

near the external corner. The details of the distorted contours, and the

position of velocity maximum, are very well predicted by RSM.
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The mean-velocity contours obtained by NKE for the same test cases are

presented in Fig. 5.24. The results for h* = 0.5 agree quite well with the

data although the positions of some contours are slightly displaced. For

the lower h* value, the agreement is generally satisfactory, particularly

away from the free surface. Also, the velocity maximum is predicted to

occur at the free surface.

The turbulence field in compound channels was documented by Tominaga

et a!. (1988,a) by way of contours of main-turbulence shear stresses. The

contours of Reynolds stress -uw normalized by W11 2 are presented in Fig.

5.25. The data show the largest value of -UW to occur adjacent to the

external corner within the main channel and this is reproduced by both

models. A zone of negative shear stres divides two regions of positive

shear stress within the main channel and flood plain and the size and po-

sition of this region are well predicted by both models. It is interesting

to note that this negative stress region does not appear for h* = 0.243 as

can be seen from Fig. 5.26.

The predicted and measured contours of -VW are shown in Fig. 5.27. The

region of negative shear stress is again attached to the external corner

extending into the main flow. The measurements show that the region of

negative shear stress is localized by the corner while the RSM shows it

to be much more extensive even reaching the free surface. For the NKE,

this region appears to be split into two: a small one very close to the

corner and a second one attached to the free surface. Both models and

the data also suggest the existence of a second region of negative stress in

the left top corner of the flow domain. The shear stress (-vw) contours

for the smaller h* can be seen in Fig. 5.28. Again, the RSM predictions

for the negative shear-stress region agree very closely with the data and

the same is true, to a lesser extent, for the NKE.

The predicted and measured shear stress around wetted perimeter are

presented in Fig. 5.29 for h* = 0.5. The shear stresses on the flood-

plain wall are very well predicted. The shear-stress distribution on the

flood-plain bed is characterized by a mild depression around x/B i 0.25
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which is captured by both models. The shear stress on the main-channel

bed is similar to that observed in simple-rectangular channels (Fig. 5.14

B/H = 2.01) while the profile on the main-channel wall seems to be

quite unaffected by the secondary motion. The reduction in h* leads to

quite different wall-shear-stress distribution, as can be seen from Fig.

5.30. The differences are apparent from the wall-shear-stress partition

between the flood plains and main channel and from the profile shapes.

The difference in magnitude of wall-shear-stress in flood plain and main

channel can be seen from Fig. 5.30 for h* = 0.243. In the channel with

h* = 0.5, the stress levels on all four sides which comprise the compound

section were nearly equal. Here, the lower shear-stress profiles on the

flood plains, for h* 0.243, indicates the presence of the low-momentum

fluid in that region.

The data of Knight and Demetriou (1983) are used next to assess the

performance of the present models for the flow's bulk quantities. Mea-

surements of channel discharge and of boundary shear-force distribution

were presented for various h*s and B/bs. The slope was 9.66 x i0 and

the height of the flood plain was fixed as 76 mm in order to give b/h=1

for all tests. The predicted and measured discharge and its partition be-

tween main channel and flood plain are shown in Fig. 5.31 for various h*s

and B/bs. Both models accurately predict the total discharge as well as

the partitioning between main channel and flood plains. The percentage

of total shear force in each section of compound channels with B/b = 2

and 3 are presented in Figs. 5.32 and 5.33, respectively. For B/b=2, a

large part of the total shear force occurs in the main channel and agree-

ment between predictions and data is quite reasonable. The predictions

slightly underestimate the shear force on the flood plain bed for B/b = 3

and especially for the smallest value of h*. The loss of shear force there is

compensated for by overestimating the shear force on the main-channel

bed and wall. Both models predict the shear-force distribution fairly

well, with the RSM slightly better overall.
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5.4.2 Asymmetric Channels

Data for the mean and turbulent parameters in asymmetric-compound

channels have been reported by Tominaga and Nezu (1991). Two differ-

ent geometries were adopted for models comparison: main-channel depth

(H 80mm) was kept constant while the rest of the flow conditions are

given in Table 5.2.

asymmetric channel h* (B/b) i (B/b)r AR	 Re
experiment 1	 0.5	 1.0	 3.0	 5.0 5.45 x i0

experiment 2	 0.25	 1.0	 3.0	 5.0 4.56 x iO4

Table 5.2 Flow conditions for asymmetric-compound channels

The channel slope was not quoted in the original study.

The predicted and measured secondary-velocity vectors for the asymmet-

ric channel with h* = 0.5 are presented in Fig. 5.34. The experiments

show strong secondary motion adjacent to the external corner and near

to the free surface. Positive and negative velocities at the free surface

appear to meet at a point in the main channel which is away from its

center-line and closer to the flood plain. The position of this point is pre-

dicted almost exactly by RSM while the NKE obtains this point closer

to the channel's axis. For the shallow flood plain, shown in Fig. 5.35, the

asymmetry is now significantly less than before. The measurements do

not show any secondary velocities in the flood plain presumably due to

limitations in the experimental method used.

Fig. 5.36 compares the calculated and measured mean-velocity contours

for the asymmetric channel with h* = 0.5. The asymmetry already noted

in the secondary flow behaviour results in asymmetric distortion of mean-

velocity contours within the main channel. This is closely reproduced by

RSM and to a lesser extent by NKE. This flow geometry comprises all
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secondary-flow effects discussed so far in this study. Briefly, a velocity

bulging is observed towards the left and right bottom corners, veloc-

ity maximum below the free surface, flow asymmetry within the main

channel, strong velocity bulging outwards from the external corner and

finally the appearance of local velocity maximum within flood plains. All

these effects are closely predicted by RSM as can be seen from Fig. 5.36.

The NKE results show most of these effects (except velocity maximum

below the free surface) but it is apparent that all contour distortions

are now significantly weaker compared with the data and the RSM. The

mean-velocity field in asymmetric-compound channel with h* = 0.25 is

presented in Fig. 5.37. The flow asymmetry within the main channel is

very mildly indicated by data and RSM while in the case of the NKE it

completely disappears.

Tominaga and Nezu (1991) also presented detailed turbulence measure-

ments but only for h* = 05. The predicted and measured turbulence

anisotropy are displayed in Fig. 5.38. The greatest anisotropy in the

main channel appears at the top and bottom with the lowest values oc-

curring at the half-height location. Also, negative contours appear near

the external corner. Apart from mild contour displacement, the RSM

results agree fairly well with measurements. The greatest differences

between the NKE results and the data appear in the region near the

free surface where the experiments show an increase in anisotropy as the

free surface is approached while the NKE results show almost complete

isotropy.

Fig. 5.39 shows the main-shear stress (-uw) contours averaged by W2.

The two models yield essentially the same profiles throughout most of the

flow domain except that the NKE seems to produce lower shear stress

near the free surface. Apart from this, the agreement between predic-

tions and experiment within the flow domain is quite reasonable. Since

the damping of second main-shear stress by the free surface can be fairly

well predicted by both models, the predictions of the (-vw), shown in

Fig. 5.40, are also fairly close.
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An insight into the energy distribution in compound-channel flows can

be gained from the turbulence-energy contours shown in Fig. 5.41. The

experiments show bulging of the contours away from the external corner

and, also, towards the internal corner. They also show the appearance of

local energy maximum below the free surface. Apart from certain differ-

ences between predictions and data in the contour levels, the agreement

for the near-corner regions is fairly good though neither model produces

the energy depression below the free surface.

The bed-shear-stress distributions for the main channel and the flood

plain, normalized by the average shear stress (f), are plotted in Fig. 5.42.

The asymmetry of the mean-velocity field within the main part of channel

with h* = 0.5 has a direct influence upon Ihe bed-shear-stress distribution:

the maximum wall-shear-stress within the main channel appears to be

shifted from the centre line to the position of x/(bi -I- br) 0.6. This is

obtained by both predictions and by experiment although the predictions

overestimate the measurements along large part of channel bed especially

for h* = 0.25.

5.4.3 Effects of Roughness

Knight and Hamed (1984,b) investigated the effects of roughness in com-

pound channels. The bed slope was constant at 9.66 x iO* Also,

b = h = 76mm. Roughness of the flood plains was characterized by

the parameter (x) appearing in equation (3.49). This parameter is a

function of strip-roughness height (kr) and longitudinal spacing between

roughness elements (A). Knight and Hamed presented the values of for

various range of A/kr. The case with maximum flood-plain roughness was

adopted for the present comparisons where A/kr = 10 and, according to

Knight and Hamed (1984,b), x is 3.4924.

The predicted and measured mean-velocity distributions in compound
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channel with h* 0.505 and B/b = 4.013 are presented in Fig. 5.43.

The experiments show the appearance of local velocity maximum below

the free surface but this is not reproduced by present predictions. The

mean-velocity bulging next to the external corner is towards the centre

line of the channel as can be seen from both predictions and measure-

ments. Both models also show local-velocity maximum in the lower part

of the main channel. Unlike the results for smooth walls (Figs. 5.23

and 5.24), both models here show almost identical behaviour indicating

the prevalence of the influences due to flood-plains roughness over those

associated with the free surface. For this reason the performance of the

NKE near the free surface has little impact on the velocity field elsewhere.

Since the mean-velocity contours in Fig. 5.43 are averaged with the bulk

velocity (Wb), the contour W/Wb = 1.0 represents the line which divides

the slow and fast moving flows within the compound channel. Clearly,

the fast moving flow occurs within the main channel while the slow mov-

ing fluid is contained within the flood plains. This is also clear from Fig.

5.44 which shows the variation of depth-mean velocity (w), normalized

with mean-bulk velocity (Wb). Clearly, the flood plain roughness has a

significant impact upon the discharge redistribution between main chan-

nel and flood plain and this is well predicted by both models as can be

seen from Fig. 5.44. Attention is turned next to consideration of the to-

tal discharge where the present predictions are compared with the data

of Knight and Hamed (1984,b) for the same geometry but with varying
h* . The results are displayed in Fig. 5.45 where it can be seen that both

models accurately predict this quantity for a wide range of depth ratios.

5.4.4 Effects of Wall Inclination

It is often the case that the walls of open-compound channels are inclined

and hence the need to assess the models performance for such cases. The

RSM model is used here in conjunction with a stepwise approximation
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of the inclined walls (see Fig. 5.46 a, for an example of such grid) while

the nonlinear k-f model is used in conjunction with body-fitted grids, as

shown in Fig. 5.46 b).

The computational grids presented in Fig. 5.46 are for the geometries of

Tominaga et a!. (1988,b). Here again the slope is unknown and the ex-

perimental conditions, using notation of Fig. 5.1 d), can be summarized

as follows: h* = 0.5, AR = 4.0, B/b = 4.08, O 45° and O = 90°. The pre-

dicted and measured secondary velocity vectors are shown in Fig. 5.47

which shows that a strong up-flow from the external corner is a charac-

teristic of most compound-channel flows. Unlike compound-rectangular

channels, here a strong down-flow is observed along the inclined wall but

this is missed by both models. The RS1Vf produces a strong vortex within

the flood plain, adjacent to the external corner, while the rest of the flow

there is typical of rectangular channels. The NKE, in contrast, produces

two vortices with no sign of recirculation near the bed corner.

Fig. 5.48 shows the mean-velocity contours averaged by W11 for the

same flow. The contours adjacent to the external corner are similar to

those observed for rectangular channels (see Fig. 5.23) though with less

distortion. The measurements show some scatter (see contour 0.975) but

it is clear that the RSM results are fairly close. In contrast, the NKE

results show a weak corner bulging and no contours distortion adjacent

to the free surface.

The flow structure inside compound channels, with both side-walls in-

clined, was experimentally investigated by Yuen (1989) and Yuen and

Knight (1990) for various flow geometries and bed channel slopes. The

main features of the tests were as follows: b = h = 0.075 m, B/b 3.0,

and O = = 45°. Three geometries were chosen, with h* values of 0.5,

0.45 and 0.35 and the bed slopes 2.295 x i0, 2.36 x i0 and 2.45 x i0

respectively.

The predicted secondary velocities are presented in Fig. 5.49. For

h* = 0.5, the results of the two models are mostly similar but with some
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differences within the flood plain. There, the RSM suggests that the flow

is apparently divided between contra-rotating vortices while the NKE ob-

tains one dominant vortex. Furthermore, the models react differently to

changes in h*: the RSM produces almost identical secondary flow re-

gardless of h* while the NKE obtains profiles that are quite sensitive

to changes in h*. The differences in the two models are quite apparent

from contours of secondary-flow streamlines, presented in Fig. 5.50. The

RSM results clearly indicate the existence of three vortices which do not

change in the shape and position with decreasing h*. The NKE responds

to the decrease of h* in quite a different manner which is related to the

main-channel vortex attached to the inclined wall. For h* = 0.5 this vor-

tex clearly dominates the large part of main channel while the existence

of the bed vortex near to the centre lin can only be presumed. Only a

small decrease in h* leads to a reduction of the influence of the vortex

near to the inclined main-channel wall while the second main-channel

vortex clearly appears at the channel bed. Finally, for the h = 0.35 the

main vortex, which dominates for two highest value of h*, completely

disappears.

The measured mean-velocity contours, together with the RSM predic-

tions, are shown in Fig. 5.51. The predicted mean-velocity distortions

are related to the secondary-velocity field, presented in Fig. 5.49. The

contour distortions in the flood plain near to the free surface are caused

by secondary motion which acts along the free surface. The main-channel

vortex causes the bulging near the external corner and in the free-surface

region. Although the positions of some isolines are displaced, the RSM

shows the same behaviour as the experiments. The mean-velocity con-

tours obtained by NKE are shown in Fig. 5.52. The bulging near the

external corner is very mild and is absent for the channel with h* = 0.35.

The mean-velocity contours are almost unaffected in the vicinity of the

free surface.

Table 5.3 gives the total discharge in trapezoidal-compound channels as

obtained by the two models.
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_____ Q [l/s] ____ ____

h* SLOPE DATA NKE Er. % RSM Er. %

0.5 0.002295 54.80 57.08 +4.16 53.65 —2.09

0.45 0.002360 44.60 47.15 +5.71 43.91 —1.54

0.35 0.002450 31.65 33.11 +4.61 31.26 —1.23

Table 5.3 Discharge in compound-trapezoidal channel.

Data of Yuen (1989).

5.5 Closure to Chapter 5

The Reynolds-stress and the nonlinear k-f models of turbulence were used

for the prediction of flows in open channels, both simple and compound.

Their performance in those flows were assessed through comparisons with

the best available data. The test cases selected for models assessment

cover a wide range of flow conditions typical of those encountered in en-

gineering practice.

The results for relatively narrow channels demonstrate that the Reynolds-

stress model correctly accounts for the free-surface effects which include

the displacement of the position of maximum velocity to below the free

surface. Although the nonlinear k-f model reproduces the mean-velocity

distribution fairly well in a large part of flow domain, this model fails to

predict the occurrence of velocity maximum below the free surface. This

was attributed to the use of algebraic stress-strain relationship which

gave rise to turbulence isotropy near the free surface. Nevertheless, the

differences between the two models near the free surface were seen to

have little influence on the bed- and side-wall shear stresses. For the

higher aspect-ratio cases, the two models gave qualitatively and quanti-

tatively quite similar results and this argues in favour of the use of the

nonlinear k-f model for practical-engineering calculations. This is further

confirmed from the results for trapezoidal channels where the agreement
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between predictions and data was quite satisfactory.

The results obtained with the Reynolds-stress model for flows in open-

compound channels are the best available. The closure adopted here

has succeeded in reproducing the most important features of those flows

which include the various types of mean-velocity distortions within the

flow domain and the shear-stress perturbations over wetted perimeter.

The differences between the Reynolds-stress and nonlinear k-E models

seem to be less for compound channels. Thus the nonlinear k-f model has

produced satisfactory results for many flows especially so concerning the

wall-shear-stress distribution. The similarities between the two models

are particularly obvious for the compound-channel flows with roughen

flood plains.
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a) Stepwise approximation of inclined wall. Grid 58 x 36.

b) Non-orthogonal grid 44 x 32.

Fig. 5.46 Computational grids for compound channel

with trapezoidal main channel.
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Chapter 6

CLOSURE

The present study was motivated by the need for a predictive procedure

for a three-dimensional fluid flows in which turbulence-driven secondary

motion plays an important role. Two very different closure methods

were proposed: a complete Reynolds-stress model (Section 2.3) and a

k-f model (Section 2.2) used in conjunction with the nonlinear stress-

strain relationship (Section 2.2.1). The extent to which the objectives

of this study have or have not been fulfilled is discussed in Section 6.1.

Suggestions for future work are proposed in Section 6.2.

6.1 Fulfillment of Objectives

The first objective was to formulate a second-order closure method from

existing proposals for closing the Reynolds-stress equations. In Sec-

tion 2.3 proposals for modelling the turbulent diffusion, dissipation and

pressure-strain correlation were presented and assessed on the basis of

their past performance in simple shear flows. This resulted in the

Reynolds-stress model (denoted as the RSMO) which was the first to
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be tested in the present study.

The development of the numerical procedure for solving the momen-

tum and the turbulence-model equations was the second objective of the

present study. The main points concerning this objective are as follows:

The algorithm of Patankar and Spalding (1972) was used for the cal-

culation of the streamwise-pressure gradient. In order to calculate

open-channel flows, two relatively straightforward approaches were

proposed and tested (Section 3.4.2.2).

• The pressure field in the cross-section was calculated using the well-

known SIMPLE algorithm.

• In order to ensure the correct behaviour of both models adjacent

to the solid boundaries, the velocity gradients were calculated using

log-law expressions (Section 3.6).

The wall-boundary condition for the dissipation of the turbulent

kinetic energy was dictated by the local-equilibrium assumption.

Equation (3.40) was used in conjunction with the nonlinear model

while it was found that equation (3.41) was more appropriate when

the f-equation was being solved in conjunction with the Reynolds-

stress model.

• Since the present study was only concerned with fully-developed

flows, the terms representing changes in streamwise-flow direction

were dropped from the beginning and thus the usual practice of

forward marching in physical space was replaced by advance through

the iteration space.

• A numerical procedure was also adapted for solving the governing

equations on body-fitted coordinates. This was done in conjunc-

tion with the nonlinear k-f model. This was considered to be the

optimum approach for predicting flows in arbitrary domains.

The third objective was to conduct a preliminary models assessment

through their application to flow in a square duct. The most important
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findings are summarized as follows:

• It was found that the RSMO produced very weak secondary motion

which in a turn led to negligible influence on the mean-velocity field

and hence a very weak mean-velocity distortions.

• It was found that the mean-velocity distortions are slightly bet-

ter captured with this model when more rapid decay of the wall-

damping function (quadratic) was applied. Since the turbulence

anisotropy in this model arises only from ij,w, this mechanism was

examined in some details in order to improve the model's perfor-

mance.

• The outcome of this examination showed that the simple form of

(equation 2.34) was not suited for the present applications and has to

be replaced by the more complicated model given by (equation 2.33).

The combination of this model with that for 	 (equation 2.39)

has not been previously tested for the flow situations considered in

the present work. This model required re-optimization of the model

constants to satisfy some well-known experimental measurements

for near-wall turbulence in local equilibrium.

• Unfortunately, this model produced an unexpected wall-shear-stress

discontinuity in the corner region. Attention was then turned to the

question of how to improve the model's behaviour near the wall. The

distance from the wall, which appears within the wall-damping func-

tions (equation 2.40), was calculated using expression (2.41) while

the turbulent length scales were calculated using some novel defini-

tions (equations 2.45 and 2.46). It was found that this re-definition

of the wall-damping function led to improved model behaviour in

the corner region. This Reynolds-stress model version was denoted

as RSM.

• The nonlinear k-f model was applied in the same form as was orig-

inally proposed by Speziale (1987) except for the omission of the

second-order gradients which were found not to influence the per-

formance of this model.
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The fourth objective of the present study was to verify the predictive

procedures by detailed comparisons with the data from three-dimensional

flows in non-circular ducts. The predictions of the flows in closed ducts

were conducted for a wide range of geometries, namely for rectangular,

compound and trapezoidal ducts. The most significant findings regarding

the models performance can be summarized as follows:

• The present closure models proved capable of reproducing the cor-

rect turbulence field. In particular, the turbulence anisotropy was

well predicted.

• The closure models correctly reproduced the secondary-velocity field

with oniy marginal differences between the two models.

• Both of the present models were capable of capturing the mean-

velocity distortions caused by secondary motion. Both models pro-

duced satisfactory distortion of the mean-velocity contours with the

Reynolds-stress results appearing to be in a better agreement with

experiment (especially for the flow along the corner bisector for

the square duct and adjacent to the external corners of compound

ducts).

• The present models also proved to be adequate for the accurate pre-

diction of the wall-shear-stress distribution in closed ducts. It was

shown that the present treatment of the near-wall region enabled

both models to produce wall-shear-stress distributions which were

in good agreement with experiment.

• Despite some differences between the two models when applied to

rectangular and compound ducts it can be concluded that both are

very suited for the prediction of turbulence-driven secondary mo-

tion. The nonlinear model was then extended to the non-orthogonal

geometries and the results obtained for trapezoidal ducts showed

that this model is to be recommended for the prediction of three-

dimensional flows in ducts of arbitrary cross-section.

The fifth objective was to identify the physical processes that are domi-

nant in the region adjacent to the free surface, and their implications to
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turbulence modelling there. The main points concerning this objective

are as follows:

• Previous experimental research (Section 5.1) revealed that the free

surface influences the turbulence field in two ways:

1. The free surface damps the fluctuations in the vertical direction.

2. The dissipation of turbulent kinetic energy increases next to the

free surface which in a turn leads to the experimentally observed

parabolic eddy-viscosity distribution in the open channels.

• In order to predict the effects of the free surface, the Reynolds-stress

model was modified there by way of an additional damping function

applied to the redistributive term (Section 2.3.5).

. The free surface was treated as a symmetry plane for all variables

except for a dissipation of turbulent kinetic energy which was pre-

scribed there (Section 3.5.2).

The sixth objective was to assess the validity of the present models for

the prediction of the various open-channel flows. The most important

findings to emerge were as follows:

• The prediction of the flow in rectangular channel with AR = 2.01

demonstrated the capability of the Reynolds-stress model to pro-

duce the secondary-velocity field which results in the displacement

of the mean-velocity maximum to below the free surface. Although

the nonlinear k-e model predicts satisfactory mean-velocity distor-

tions in large part of flow domain, this model does not produce the

above mentioned displacement mainly because it does not predict

the correct level of turbulence anisotropy there. This is due to the

use of an algebraic relation to connect the stresses and the strains

via a turbulent viscosity. Thus, contrary to expectations and, also,

to the Reynolds stress predictions, the nonlinear model damps both

the vertical as well as the horizontal fluctuations adjacent to the free

surface.

• The differences between the two models predictions of the mean-

velocity field narrowed for the rectangular channels with higher

aspect-ratios.
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• Regardless of channel aspect-ratio, both models predicted very simi-

lar wall-shear-stress distributions. This indicates that the nonlinear

model can predict quite accurately the wall-shear-stress in open-

channel flows. This was also confirmed through the prediction of

the flows in trapezoidal channels where the nonlinear model pro-

duced very satisfactory agreement with measurements.

• The second-order closure correctly described the secondary-velocity

flow and the turbulence field inside practically important compound-

channel geometries. Consequently, the influence of the turbulence-

driven secondary motion upon the mean-velocity field and the wall-

shear-stresses were accurately reproduced. The nonlinear model

generally predicted a weaker secondary-motion effects even though

many important characteristics of compound-channel flows were sat-

isfactory described. It was particularly so for the predictions of the

wall-shear-stress and bulk-flow parameters.

• The mean-velocity field for compound channels with rough flood

plains was almost identically predicted by both models.

• It can be finally concluded that Reynolds-stress model appears to be

very suitable for the prediction of three-dimensional fully-developed

flows in open channels of various shapes. Although the nonlinear

model is obviously less accurate for the prediction of the open chan-

nel flows this model seems to be an acceptable approximation to the

Reynolds-stress model for prediction of many important parameters

in open-channel flows.

.2 Recommendations for Future Work

The present study has shown that a Reynolds-stress transport model of

turbulence can accurately predict three-dimensional free-surface flows,

albeit in simplified geometries. There is, however, a need for a numerical
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procedure for general free-surface flows in complex geometries utilizing

both the Reynolds stress model and body-fitted coordinates. The ob-

vious application of such a method will be to flows in meandering and

skewed two-stage channels. These flows are very common in practice

and their accurate prediction will contribute to their safe and economic

design. Another aspect which requires attention is the mathematical

modelling of suspended sediment taking into account the effects of the

turbulence- driven secondary motions on the transport of suspended mat-

ter. The boundary conditions for such simulations, essentially the rate of

bed-load transport, can be deduced from the predictions for bed shear-

stress arising from the present calculations. The complete process of

momentum-sediment transport is, of course, a coupled one but this can

be handled quite conveniently with a pro cedure like the one developed

in the course of this work.
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