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Abstract. We provide a systematic derivation of the scaling behaviour of various quantities and,
in particular, establish the scale invariance of the ionization probability. We discuss the gauge
invariance of the scaling properties and the manner in which they can be exploited as a consistency
check in explicit analytical expressions, in perturbation theory, in the Kramers–Henneberger and
Floquet approximations, in upper and lower bound estimates and fully numerical solutions of the
time dependent Schrödinger equation. The scaling invariance leads to a differential equation which
has to be satisfied by the ionization probability and which yields an alternative criterion for the
existence of atomic bound state stabilization.

1. Introduction

Up to now it is still not possible to carry out computations of ionization probabilities or
ionization rates in the high intensity regime in a totally satisfactory manner. In particular,
analytical results are extremely rare. Especially concerning the issue of so-called atomic
stabilization [1], numerous computations may be found in the literature which are contradictory
in many cases. Only for the relatively simple problem of the one-dimensional delta-potential
are there various recent computations which do [2, 3] or do not [4] support the existence of
stabilization. Roughly speaking, stabilization is the effect that the ionization probability (or
ionization rate to some authors) as a function of the laser field intensity is decreasing or constant
in some areas. For further references and a more detailed terminology, that is a distinction into
transient, adiabatic, interference or resonance stabilization, see for instance [5].

It would be highly desirable to settle the controversial issue and pinpoint possible mistakes,
erroneous physical or mathematical assumptions made in the course of the computations. The
main intention of this paper is to contribute to this debate and provide additional alternative
consistency criteria. For this purpose we analyse the scaling behaviour of several quantities
involved in the calculations which address the above-mentioned problem. This constitutes
an adaptation of an idea which has been proved to be extremely powerful in the context of
quantum field theory, for instance in the form of the renormalization group flow (see almost
any book on quantum field theory). In the context of atomic physics, scaling laws have been
considered before [6] in a ‘semiempirical’ fashion, as the authors themselves refer to their
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own analysis. In order to overcome the slightly ad hoc way of arguing we provide in this
note a systematic derivation of various scaling laws, which are compatible with the ones
proposed in [6]. In particular, we establish the scale invariance property of the ionization
probability. As a consequence one may exploit these symmetry properties and check various
analytical as well as numerical expressions for the ionization probability for consistency. In
addition, when considering the ionization probability as a function of various parameters the
scale invariance property allows us to trade one particular variable for others. This allows
us to interpret and rigorously explain various types of behaviour which occurred before for
more specific situations in the literature. For instance, for the hydrogen atom it was found
in [7] that for increasing principal quantum number the ionization probability decreased and
in [8] the opposite behaviour was observed. Whereas the authors of [7] and [8] give intuitive
explanations of these behaviours, we demonstrate rigorously that they are a consequence of
the scaling behaviour of the ionization probability. Our analysis culminates in the formulation
of a simple alternative criterion for the existence of stabilization.

The paper is organized as follows. In section 2 we derive systematically the scaling
properties of various quantities and establish in particular the invariance of the ionization
probability under scaling. We show that this property is preserved under gauge invariance.
Furthermore, the scale invariance can be exploited as a consistency check in various
computations. We exhibit this for explicit analytical expressions, for perturbative calculations,
for approximate evaluations in the form of Kramers–Henneberger and Floquet states and for
upper and lower bound estimates. We demonstrate how the scaling properties can be exploited
to trade some variables for others and use this feature to explain several types of physical
behaviour. As a consequence of our analysis in section 2, we provide in section 3 a differential
equation which has to be satisfied by the ionization probability and an alternative criterion for
the existence of stabilization. We state our conclusions in section 4.

2. Scaling behaviour of ionization probabilities

We consider an atom with potential V (�x) in the presence of a sufficiently intense laser field,
such that it may be described in the non-relativistic regime by the time-dependent Schrödinger
equation in the dipole approximation

i�
∂ψ(�x, t)

∂t
=

(
− �

2

2me

� + V (�x) + e�x · �E(t)
)
ψ(�x, t) = H(�x, t)ψ(�x, t). (1)

We further take the pulse to be of the general form
�E(t) = �E0f (t) (2)

where f (t) is a function whose integral over t is assumed to be well behaved, with f (t) = 0
unless 0 � t � τ . This means τ is the pulse duration, f (t) the pulse shape function and E0

the amplitude of the pulse, which we take to be positive without loss of generality.
Denoting byλ > 0 the dilatation factor and by η the scaling dimension of the eigenfunction

ϕ(�x) := ψ(�x, t = 0) of the Hamiltonian H(�x, t = 0), we consider the following scale
transformations†:

�x → �x ′ = λ�x and ϕ(�x)→ ϕ′(�x ′) = λ−ηϕ(�x). (3)

Making the physical assumption that the Hilbert space norm remains invariant, i.e. ‖ϕ(�x)‖ =
‖ϕ′(�x ′)‖, we deduce immediately that the scaling dimension has to be η = d/2, with d being

† More formally we could also carry out all our computations by using unitary dilatation operatorsU(λ), such that the
transformation of the eigenfunction is described by U(λ)ϕ(�x) = ληϕ′(λ�x) and operators O acting on ϕ(�x) transform
as U(λ)OU(λ)−1 = O′.
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the dimension of the space. Introducing now the scaling of the dimensional parameters �,me

and e as

�→ �
′ = λη��, me → m′e = ληmeme and e→ e′ = ληee (4)

we can scale the whole problem to atomic units, i.e. � = e = me, for instance by the choice
λ = �, η� = −1, ηe = − log

�
(e) and ηme

= − log
�
(me). Staying for the time being in these

units the scaling behaviour (3) may be realized by scaling the coupling constant. Considering
for instance the wavefunction ϕ(x) = √α exp(−α|x|) of the only bound state when the
potential in (1) is taken to be the one-dimensional delta-potential V (x) = αδ(x), equation (3)
imposes that the coupling constant has to scale as α → α′ = λ−1α. Choosing instead
the Coulomb potential in the form V (�x) = α/r requires the same scaling behaviour of the
coupling constant for (3) to be valid. This is exhibited directly by the explicit expressions of the
corresponding wavefunctions ϕnlm(�x) ∼ α3/2(αr)l exp(−αr/n)L2l+1

n+l (2αr/n) (see e.g. [9]).
From a physical point of view it is natural to require further, that the scaling behaviour of

the wavefunction is the same for all times

ψ(�x, t)→ ψ ′(�x ′, t ′) = U ′(t ′, 0)ϕ′(�x ′) = λ−d/2ψ(�x, t) = λ−d/2U(t, 0)ϕ(�x). (5)

Consequently this means that the time evolution operator should be an invariant quantity under
these transformations

U(t1, t0) = T
(

e−i/�
∫ t1
t0
H(�x,s) ds

)
→ U ′(t ′1, t

′
0) = T

(
e
−i/�

∫ λ2 t1
λ2 t0

H ′(�x,s) ds
)
= U(t1, t0). (6)

Here T denotes the time ordering. Equation (6) then suggests that the scaling of the time has
to be compensated by the scaling of the Hamiltonian and Planck’s constant in order to achieve
invariance. Therefore, scaling the time as

t → t ′ = ληt t, (7)

with ηt being unknown for the moment, equation (6) only holds if the Stark Hamiltonian of
equation (1) scales as

H(�x, t)→ H ′(�x ′, t ′) = ληHH(�x, t) with ηH = η� − ηt . (8)

The properties (7) and (8) could also be obtained by demanding the invariance of the
Schrödinger equation (1). The overall scaling behaviour of H(�x, t) is governed by the scaling
of the Laplacian, the electron mass and Planck’s constant, such that we obtain the further
constraint

ηH = 2η� − ηme
− 2. (9)

As a consequence we can read off the scaling properties of the potential as

V (�x)→ V ′(�x ′) = ληH V (�x). (10)

What does this behaviour imply for some concrete potentials? Having scaled everything
to atomic units, relation (9) suggests that ηH = −2. Considering for this situation the
one-dimensional delta-potential and the Coulomb potential in the forms specified above,
equation (10) imposes that the coupling constant has to scale as α → α′ = λ−1α in both
cases. This behaviour of the coupling constant is in agreement with our earlier observations
for the corresponding wavefunctions. We also observe immediately that the behaviour (10)
may be realized for the general class of Kato small potentials. We recall that, if for each constant
β with 0 < β < 1 there exists a constant γ such that ‖Vψ‖ � β‖−�ψ‖+γ ‖ψ‖ holds for all
ψ in the domain D(−�/2), the potential V is called Kato small. We see immediately that the
scaling of the first term is entirely governed by the Laplacian such that β → β ′ = β is scale
invariant and that γ has to scale as γ → γ ′ = λ−2γ due to the scale invariance of the norm.
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It is intriguing to note that there exists an interesting class of potentials which scale alone
via their dependence on �r and which do not contain any energy scale α at all, as for instance
V (�x) = 1/r2 or the two-dimensional delta potential.

In [6] the interesting proposal was made to exploit the scaling behaviour in order to use
known properties of the hydrogen atom to understand the behaviour of positronium (charged
helium or other atoms). For this purpose the Schrödinger equation describing positronium (or
charged atoms), i.e. (1), for the potential VP0(�x) = −Ze2/r and the mass me replaced by the
reduced massµ, is scaled to the one which describes hydrogen. Translating the quantities of [6]
into our conventions, this transformation is realized by λ = (µ/me)Z, ηt = logλ(Z

2µ/me),
ηµ = logλ(me/µ), ηZ = − logλ Z and η� = ηe = 0. These quantities are consistent with
the additional constraint ηH = 2η� − ηme

− 2, which results for the potential VHe(�x) from the
scaling arguments. We would like to point out that this is only one of many possible choices. It
might be more convenient to use for instance λ = Z, ηt = 2, ηµ = η� = ηZ +1 = logZ(me/µ)

and ηe = 0 instead.
We will now consider the constraint resulting from equation (8) on the scaling behaviour

of the pulse. We have
�E(t)→ �E′(t ′) = ληE �E(t) with ηE = ηH − ηe − 1. (11)

This equation is not quite as restrictive as for the potential, since in the latter case we could
determine the behaviour of the coupling, whereas now a certain ambiguity remains in the sense
that we can only deduce
�E0 → �E ′0 = ληE0 �E0, f (t)→ f ′(t ′) = ληf f (t), with ηE0 + ηf = ηE. (12)

Thus, under the assumptions we have made, it is not possible to disentangle the contribution
coming from the scaling of the amplitude or the pulse shape function. However, there might
be pulse shape functions for which hf has to be 0, since no suitable parameter is available in
its explicit form to achieve the scaling.

Finally, we come to the scaling behaviour of the ionization probability. Denoting by P the
orthogonal projection inL2(R3) onto the subspace spanned by the bound states ofH(�x, t = 0),
the ionization probability turns out to be a scale invariant quantity

P(ϕ) = ‖(1− P)U(τ, 0)ϕ‖2 → P ′(ϕ′) = P(ϕ). (13)

This follows by means of (3), (6) and by noting that the projection operator has to be a scale
invariant quantity, i.e. P → P ′ = P . From a physical point of view this is clear unless
we were able to scale bound states into the continuum, which is impossible, since negative
energies will remain always negative even after being scaled. Mathematically this means we
have to demand that P ′ and P are related to each other by a unitary transformation.

We recapitulate that our sole assumptions in this derivation were to demand the invariance
of the Hilbert space norm, i.e. ‖ϕ(�x)‖ = ‖ϕ′(�x ′)‖, and that the scaling of the wavefunction is
preserved for all times.

We shall now utilize this symmetry property in various approaches, which can be carried
out either numerically or analytically. At this point we scale everything to atomic units which
we will use from now onwards.

2.1. Gauge invariance

First, we would like to establish that these scaling properties hold in every gauge, as one
naturally expects. We recall that different gauges are related by a time-dependent unitary
operator Ag2←g1(t). For instance the wavefunction in gauge g1 and gauge g2 are related as
)g2(�x, t) = Ag2←g1(t))g1(�x, t). The velocity gauge is obtained from the length gauge by

Av←l(t) = ei�b(t)·�x → A′v←l(t
′) = Av←l(t) (14)
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the velocity gauge from the Kramers–Henneberger gauge by

Av←KH (t) = e−ia(t)ei�c(t)· �p → A′v←KH (t
′) = Av←KH (t) (15)

and the length gauge from the Kramers–Henneberger gauge by

Al←KH (t) = e−ia(t)e−i�b(t)·�xei�c(t)· �p → A′l←KH (t
′) = Al←KH (t). (16)

The defining relations for the classical momentum transfer �b(t), the classical displacement
�c(t) and the classical energy transfer �a(t) then yield

�b(t) = �E0b0(t) =
∫ t

0
ds �E(s)→ �b′(t ′) =

∫ tλ2

0
ds λ−3 �E(sλ−2) = λ−1�b(t) (17)

�c(t) = �E0c0(t) =
∫ t

0
ds �b(s)→ �c′(t ′) =

∫ tλ2

0
ds λ−1�b(sλ−2) = λ�c(t) (18)

�a(t) = �E0a0(t) = 1
2

∫ t

0
ds b2(s)→ �a′(t ′) =

∫ tλ2

0
ds λ−2b2(sλ−2) = �a(t). (19)

These quantities scale in the expected manner, that is �b(t) scales as a momentum, �c(t) as the
space and �a(t) remains invariant. Taking these properties into account, we observe easily that
the operator Ag2←g1(t) is an invariant quantity under scaling

Ag2←g1(t)→ A′g2←g1
(t) = Ag2←g1(t) (20)

for all cases of g1 and g2 mentioned. Hence the scaling behaviour is preserved in all gauges.
It is interesting to note that one may reverse the logic here and deduce from a broken scale
invariance onto a broken gauge invariance. However, in general, gauge invariance is not broken
in such a crude manner, e.g. in [10, equation (22)] the gauge invariance is broken in a scale
invariant fashion.

2.2. Symmetry properties for analytical expressions of P
Keeping the pulse shape function invariant under the scaling transformations we now
incorporate the explicit functional dependence into the ionization probability. The fundamental
parameters are the field amplitude, the pulse length and the coupling constant. The previous
observations then suggest that

P(E0, τ, α) = P(E′0, τ ′, α′). (21)

Assuming from now on that the coupling constant scales as for the one-dimensional delta and
the Coulomb potential, the meaning of equation (21) is that the ionization probability remains
invariant under the transformations

E0 → E′0 = λ−3E0, τ → τ ′ = λ2τ, α→ α′ = λ−1α. (22)

We can exploit the symmetry property (21) most easily when we have an explicit analytical
expression for P(ϕ) at hand. Considering for example the δ-potential and taking the pulse to
be the δ-kick, i.e. E(t) = E0δ(t), b(t) = E00+, c(t) = 0, the ionization probability of the
bound state was computed to be [11]

P(ϕ) = 1− 4

π2

∣∣∣∣
∫ ∞
−∞

dp
exp(−iτα2 p2

2 )

(1 + (p + b(τ)/α)2)(1 + p2)

∣∣∣∣
2

. (23)

Obviously the rhs of (23) passes the test and remains invariant under the scale transformation
in the form of (17) and (22).
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2.3. Perturbation theory

Usually one is not in the fortunate situation to have explicit expressions for the ionization
probability available as in the previous subsection. However, the symmetry property may also
be utilized when computing P(ϕ) approximately either in a numerical or analytical fashion.
We recall that the essential ingredient of perturbation theory is to expand the time evolution
operator as a series in E0 or α for small or large field intensities, respectively. We can formally
write

U(t1, t0) =
∞∑
n=0

U(n|t1, t0). (24)

Since U(t1, t0) is a scale invariant quantity, the invariance property (6) must hold order by
order, that is for 0 � n �∞ we have

U(n|t1, t0)→ U ′(n|t ′1, t ′0) = U(n|t1, t0). (25)

Considering now for instance the high-intensity regime and performing the Gordon–Volkov
perturbation theory (e.g. [12, 13]), the first terms in (24) read

U(0|t1, t0) = exp(i(t1 − t0)�/2) = exp(i(t1 − t0)λ
2λ−2�/2) = U ′(0|t ′1, t ′0) (26)

U(1|t1, t0) = i
∫ t1

t0

ds U(0|t1, s)V U(0|s, t0) = U ′(1|t ′1, t ′0). (27)

Whilst it was fairly obvious that the general expressions (26) and (27) remain invariant under
scaling, this consistency check might be less trivial when carried out after the expressions have
been evaluated explicitly either numerically or analytically.

2.4. Expansions in terms of Kramers–Henneberger states or Floquet states

The essence of the Kramers–Henneberger approximation (e.g. [14]) is to exploit the fact that
when the gauge transformation (16) is carried out on the Stark Hamiltonian, the term involving
the laser pulse disappears and instead the potential is shifted by the total classical displacement,
i.e.V (�x)→ V (�x−�c(t)). Having chosen the pulse in such a way that �c(t) is a periodic function
in time, one can expand the shifted potential in a Fourier series

V (�x − �c(t)) =
∞∑

n=−∞
Vneinωt . (28)

In the Kramers–Henneberger approximation one assumes now that the zero mode is dominant
such that the remaining terms may be treated as perturbations. From the scaling behaviour of
the lhs of (28) we deduce immediately that the frequency has to scale inverse to the time, i.e.
ω→ ω′ = λ−2ω, and that each mode in the series scales in the same way as the potential, i.e.

Vn→ V ′n = λ−2Vn. (29)

As an example let us consider the expansion for a square-well potential of depth αV0 and of
width d subjected to a pulse of linearly polarized monochromatic light. The modes are of the
general form (first reference in [14])

Vn = |αV0|g[(d/2− x)ω2/E0], (30)

where the explicit formula of the function g is given in term of Chebyshev polynomials which,
however, is not important for our purpose. We only need to know that it scales by means of
its argument alone. Since the argument is scale invariant, with the help of (10) for ηH = 2 in
atomic units we observe that (29) holds for each coefficient in (30).
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The analysis of the scaling behaviour of the Floquet expansion is very similar. Instead of
exploiting the periodicity of the potential one makes additional use of the periodicity of the
field and expands ψ(�x, t) =∑∞

n=−∞ ψn(�x)einωt . It is then obvious by the same reasoning as
before that the scaling of the individual modes has to be the same as for the field itself, i.e.
ψn(�x)→ ψ ′n(�x ′) = λ−d/2ψn(�x).

2.5. Upper and lower bounds

In [12, 13, 15, 16] analytical expressions for upper and lower bounds, Pu(ϕ) and Pl(ϕ),
respectively, were derived and analysed. Depending on the particular parameters these
expressions put more or less severe constraints on the actual value of P(ϕ), in the sense
that Pl(ϕ) � P(ϕ) � Pu(ϕ). Since P(ϕ) is a scale invariant quantity, also the bounds have to
respect this symmetry. Otherwise they could be scaled to any desired value. We present just
one example for one particular upper bound (the arguments carry through equally for lower
bounds) to convince ourselves that this is indeed the case. For instance under the condition
b(τ)2/2 > −E ≡ binding energy of ϕ, the following upper bound was derived in [12]:

Pu(ϕ) =
{ ∫ τ

0
‖(V (�x − c(t)ez)− V (�x))ϕ‖ dt + |c(τ )| ‖pzϕ‖ +

2|b(τ)|‖pzϕ‖
2E + b(τ)2

}2

. (31)

It is easy to see term by term that the rhs of (31) scales invariantly. In [15] we have already
exploited this property. In fact, we found that the bound (31) is only considerably below 1
for very small values of the pulse length τ . Since the binding energy has to scale in the same
manner as the Hamiltonian H(�x, t = 0), that is E → E′ = λ−2E, we could also, due to the
scale invariance property, enlarge the pulse durations by considering higher Rydberg states. In
this way we could study pulses which are physically more conceivable, at the cost of having
to deal with higher principal quantum numbers.

2.6. Trading some variables for others

Of course the principle mentioned at the end of section 2.5 is very general and we may always
trade some variables for others, simply by bringing the relevant λs in (22) to the other side of
the equation. For instance from P(λ3E0, τ, α) = P(E0, λ

2τ, λ−1α)it follows that instead of
varying the field amplitude and keeping τ and α fixed, we could equivalently keep E0 fixed
and vary simultaneously τ and α in the described fashion. As a consequence we can give some
alternative physical interpretation to the extreme intensity limit considered in [11, 16]:

lim
E0→∞

P(ϕ) = lim
τ→∞
α→0

P(ϕ). (32)

This means that switching off the potential and exposing the atom to an infinitely long pulse,
with some finite field amplitude, is equivalent to keeping the pulse length and the coupling
constant finite and taking the field amplitude to infinity.

We can also use the scale invariance property to give a simple explanation to a behaviour,
which at first sight appears somewhat puzzling. In [7, 11] it was observed that the ionization
probability is sometimes a decreasing and sometimes an increasing function of the coupling
constant when the other parameters are kept fixed (see figure 1).

Important for the explanation of this feature is that in the former case b(τ) = 0, c(τ ) �= 0
and in the latter b(τ) �= 0, c(τ ) = 0. Assuming now that the dependence of the ionization
probability on the field amplitude enters only through the quantities b(τ) and c(τ ) and in
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Figure 1. (a) The ionization probability as a function of the field amplitudeE0 for a δ-potential atom
subjected to a δ-kick pulse (23) for τ = 0.001 and various coupling constants. (b) The ionization
probability to zeroth-order Gordon–Volkov perturbation theory as a function of the field amplitude
E0 for a δ-potential atom subjected to a double δ-kick pulse of the formE(t) = E0(δ(t)−2δ(t−τ))
for τ = 1.1 and various coupling constants. Notice that for this pulse the conditions b(τ) = 0 and
c(τ ) �= 0 hold. For a detailed derivation see [11].

addition that the dependence on the pulse length is very weak in comparison with that on
b(τ), c(τ ) and α, according to the scale invariance property we can write

P(b(τ ), c(τ ), α) ≈ P(λ−1b(τ), λc(τ ), λ−1α). (33)

Thus, in the case the functional dependence on c(τ ) is much weaker than that on b(τ), we
have to increase the coupling constant when the total classical momentum transfer is increased
in order to keep the ionization probability fixed. Noting that E ∼ α−2, this is expected from
the classical point of view, since to free a more deeply bound state with the same probability
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requires a larger momentum transfer. In the reversed case, in which the functional dependence
on c(τ ) is much stronger than that on b(τ) we have to decrease the coupling constant when
the total classical displacement is increased in order to keep the ionization probability at the
same value. Also this behaviour is expected from a classical point of view, since when a less
deeply bound state is freed with the same probability, it will be further displaced.

The behaviour in figure 1 is therefore explained by relation (33). Note that in figure 1(b)
the value of P(E0 = 0), which of course has to be zero, is a measure for the poor quality of the
zeroth-order Gordon–Volkov perturbation theory, at least in this low intensity regime. Finally
it is worth noting that the crossover which takes place for the curves of α = 1.5 and α = 2
indicates that in fact (33) is not exact and the pulse length has to be scaled also. It is not an
indication that the higher-order terms need to be taken into account, since, as we discussed in
section 2.3, scale invariance holds order by order in perturbation theory.

3. Existence criteria for stabilization

As a consequence of (21) it is elementary to derive a differential equation which has to be
satisfied by the ionization probability

λ
dP
dλ
= 2τ

∂P
∂τ
− α

∂P
∂α
− 3E0

∂P
∂E0

+ λ
∂P
∂λ

. (34)

As an example one may easily convince oneself that (23) indeed satisfies (34). It is quite
conceivable that a more detailed analysis of this differential equation may prove to be as
powerful as similar differential equations which occur in the context of quantum field theory as
a consequence of the scaling behaviour, e.g. [17]. Supplementing (34) with further information
could provide an alternative way to compute ionization probabilities. In such an approach one
could obtain P simply as a solution of the differential equation rather than by trying to compute
expressions such as (13).

One way to speak of stabilization is when the ionization probability as a function of the
field amplitude satisfies

∂P
∂E0

� 0 (35)

for E0 ∈ [0,∞) on a finite interval. Noting now that the transformation of the length scale is a
symmetry for the ionization probability, i.e. relation (13), we have ∂P/∂λ = dP/dλ = 0.
Then, according to the differential equation (34), the criterion (35) for the existence of
stabilization may be written alternatively as

2τ
∂P
∂τ

� α
∂P
∂α

. (36)

Once again it will be instructive to verify this statement for an explicit example. We believe
that hitherto no analytical expression for the ionization probability is known which obeys the
strict inequality in (35). However, it was shown [11, 16] that in the extreme intensity limit
E0 → ∞ the equal sign holds. In particular when b(τ) = c(τ ) = 0 one obtains non-trivial
expressions, i.e. P �= 1, in this case. Taking for instance the potential to be the δ-potential in
three dimensions, the ionization probability of the only bound state was computed to [16]

P(ϕ) = 1− 1

π

∣∣∣∣U
(

3

2
,

1

2
; iτα2

2

)∣∣∣∣
2

, (37)

withU being the confluent hypergeometric function. Obviously (37) satisfies the criterion (36)
for the equal sign.
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It is interesting to note that for potentials which do not possess an energy scale, like the ones
mentioned after (10), relation (36) reduces to ∂P/∂τ � 0 for τ ∈ [0,∞) on a finite interval.
This means that, for increasing pulse length, the ionization probability should decrease, which
is as counterintuitive as the statement (35).

4. Conclusions

We have shown that transforming the length scale corresponds to a symmetry in the ionization
probability P(ϕ). We demonstrated that this symmetry property may be used as a consistency
check in various approximation methods in numerical or analytical form. One should also
note that every numerical code which fully solves the Schrödinger equation can be tested
for consistency by appropriately scaling all variables. Moreover, one can employ the scale
invariance to avoid certain problems which sometimes plague numerical calculations, as for
instance the occurrence of very small numbers near machine precision or of very large numbers.
By re-scaling all parameters one might be able to avoid such difficulties and still describe exactly
the same physical situation.

We have further shown, in section 2.6, that the increase or decrease of the ionization
probability with the atomic binding energy, observed for instance in [7, 8, 11] for pulses of
non-vanishing and vanishing momentum transfer b(τ), respectively, may be confirmed by
means of scaling arguments.

We would like to stress that none of the above considerations is restricted to a particular
intensity regime of the pulse in comparison with the potential and they hold for low as well as
ultra high intensities, although the latter regime is of course currently of more interest. They
may of course be carried out also for other quantities of interest such as ionization rates I,
harmonic spectra, etc. It immediately follows, for instance, that the ionization rate has to scale
inverse to the time, i.e. I → I =λ−ηtI. For instance, Fermi’s golden rule scales in this way.

As an outlook one should keep in mind that, as in numerous other situations, the physics
becomes more interesting when the symmetry is broken. For instance, for the two-dimensional
delta potential we noted already that there is a priori no energy scale available. However,
these potentials suffer from ultraviolet divergences at the origin which have to be renormalized.
Through this procedure one then introduces an additional scale, which is a situation reminiscent
of relativistic quantum field theory. Another interesting situation arises when we have more
than one intrinsical physical scale in our system. In many situations one scale is dominating
the other and the problem is reducible to one with only one parameter. However, there
might intriguing situations in which the scales combine in an arbitrary complicated manner,
for instance, as in a statistical physics problem where we have a microscopic length scale
which specifies the typical distance between fluctuating magnetic degrees of freedom and the
correlation length.
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