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Non-Hermitian systems from complex root spaces

Non-Hermitian multi-particle systems from complex

root spaces

Andreas Fring and Monique Smith
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Northampton Square, London EC1V 0HB, UK

E-mail: a.fring@city.ac.uk , abbc991@city.ac.uk

Abstract: We provide a general construction procedure for antilinearly invariant com-

plex root spaces. The proposed method is generic and may be applied to any Weyl group

allowing to take any element of the group as a starting point for the construction. Worked

out examples for several specific Weyl groups are presented, focusing especially on those

cases for which no solutions were found previously. When applied in the defining relations

of models based on root systems this usually leads to non-Hermitian models, which are

nonetheless physically viable in a self-consistent sense as they are antilinearly invariant by

construction. We discuss new types of Calogero models based on these complex roots. In

addition we propose an alternative construction leading to q-deformed roots. We employ

the latter type of roots to formulate a new version of affine Toda field theories based on

non-simply laced roots systems. These models exhibit on the classical level a strong-weak

duality in the coupling constant equivalent to a Lie algebraic duality, which is known for

the quantum version of the undeformed case.

1. Introduction

More than fifty years ago Wigner [1] observed that operators left invariant under antilinear

involutory transformations have real eigenvalues when in addition their eigenfunctions also

possess this symmetry. Based on this fact one can regard such type of operators as being

related to physical observables in classical, quantum mechanical and even quantum field

theories. More recently [2, 3] this feature was exploited by taking PT -symmetry, that is a

simultaneous parity transformation P and time reversal T , as a concrete realisation of this

antilinear involutory map. Especially when the operator is a quantum mechanical single

particle Hamiltonian the symmetry is easily identified and many new physically meaningful

and self-consistent models have been constructed. Also properties of older models could

be explained more rigorously by exploiting it. In contrast, for multi-particle systems or

field theories the deformations and the corresponding symmetries are less obvious and
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Non-Hermitian systems from complex root spaces

may involve complicated transformations in the configuration space. Often the symmetry

becomes only apparent after a suitable change of variables or even a full separation of

variables has been carried out [4, 5]. Many interesting and even integrable multiparticle

systems such as Calogero-Moser-Sutherland models [6] and also field theories such as Toda

field theories [7, 8] are formulated generically in terms of root systems associated to Weyl

or Coxeter groups. The dynamical variables or fields are in the dual space with respect

to some standard inner product. Since these root spaces are naturally equipped with

various symmetries due to the fact that by construction they are left invariant under the

action of the entire Weyl group, it is by far easier and systematic to identify the antilinear

symmetries in the root spaces rather than in the configuration space. Once identified they

can be transformed to the latter.

This general idea was recently explored in [5, 9, 10], were some antilinear symmetric

deformations were identified for several Weyl groups and the consequences were studied for

some applications to modified Calogero models. It was shown that under the assumptions

made in these papers the deformations with the desired properties did not exist for certain

Weyl groups. One of the purposes of this manuscript is to fill this gap and provide solutions

for the missing cases together with an explanation of why they do not exist based on the

previous constructions.

The main steps of the construction proposed here is to select any element ω̂ ∈ W
of order two of the Weyl group, i.e. ω̂ is an involution ω̂2 = I. This element is then

identified as the analogue of the parity operator P. Subsequently ω̂, together with the

root space it acts on, is deformed in an antilinear fashion. This means the root spaces

have to be complex. One may also start from several elements and consequently construct

deformations invariant under the same amount of different antilinear symmetries. Imposing

further constraints on the number of the symmetries and the nature of the deformation,

such as demanding it to be an isometry and possessing certain limiting behaviour, allows to

determine it. Requiring maximal symmetry in all simple Weyl reflections is only possible for

groups of rank 2. The explicit solutions for this scenario can be found for A2, G2 in [5] and

B2 in [11]. In [9] two possibilities have been investigated, to have a symmetry with respect

to two P-operators identified as two factors of the Coxeter element and one symmetry being

the longest element of the Weyl group. For the specific example of the E8-Weyl group the

option of two symmetries giving rise to modified Coxeter transformations of order less than

the standard Coxeter number was explored in [10]. It is mainly the latter construction

which we generalise here, although the proposed procedure is completely generic.

We shall also propose a construction of complex root spaces based on q-deformations,

which arose in the context of the study of the renormalisation of affine Toda field theories

based on non-simply laced algebras [12, 13].

Clearly when applying these complex roots to define multi-particle systems of Calogero

or Toda type models will be non-Hermitian. However, due to the build in antilinear

symmetric invariance, the models are strong potential candidates for physically meaningful

models.

Our manuscript is organised as follows: In section 2 we lay out the procedure of how

to construct complex root spaces equipped with the desired property to be antilinearly
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invariant. We exemplify this procedure in section 3 for spaces which possess two antilinear

symmetries which are subfactors of the factors of the factorised Coxeter element. We

provide solutions for several Weyl groups for which hitherto no solutions were found and

for which it was even shown that solutions based on other assumptions do not exist. In

section 4 we explore the possibility to take these two symmetries to be entirely arbitrary.

In section 5 we reverse the construction and start with given deformations based on simple

rotations in the configuration space and compute some of the corresponding root spaces.

An alternative deformation method leading to q-deformed roots with no obvious antilinear

symmetry is proposed in section 6. In section 7 and 8 we apply our constructions to propose

new types of Calogero-Sutherland-Moser models and Toda field theories, respectively. We

investigate some of the features of these new models. Our conclusions and an outlook to

future investigations are presented in section 9.

2. Construction of antilinearly invariant complex rootspaces

We explain here the framework for a construction of complex extended antilinearly invariant

root systems which we denote by ∆̃(ε). We present a generalisation of a method introduced

and employed in [9, 10] with focus on obtaining solutions for cases which could not be found

previously. The procedure consists of constructing two maps, which may be obtained in

any order. In one step we extend the representation space ∆ of the standard roots α from

R
n to R

n ⊕ iRn. This means we are seeking a map

δ : ∆ → ∆̃(ε), α 7→ α̃ = θεα, (2.1)

where α = {α1, . . . , αℓ}, ∆ ⊂ R
n, ∆̃(ε) ⊂ R

n ⊕ iRn and n is greater or equal to the rank

ℓ of the Weyl group W. The complex deformation matrix θε introduced in (2.1) depends

on the deformation parameter ε in such a way that limε→0 θε = I. The deformation

is constructed to facilitate the root space ∆̃ with the crucial property for our purposes,

namely to guarantee that it is left invariant under an antilinear involutory map

̟ : ∆̃(ε) → ∆̃(ε), α̃ 7→ ωα̃. (2.2)

This means the map in (2.2) satisfies ̟ : α̃ = µ1α1+µ2α2 7→ µ∗
1ωα1+µ∗

2ωα2 for µ1, µ2 ∈ C

and ̟ ◦̟ = I.

We assume next that ω decomposes into an element of the Weyl group ω̂ ∈ W with

ω̂2 = I and a complex conjugation τ , ω = τ ω̂ = ω̂τ . The presence of τ ensures the

antilinearity of ̟. In some concrete applications it is understood that the maps ω̂ and

τ correspond to analogues of the parity P and time reversal operator T , respectively.

Candidates for ω̂ previously explored are simple Weyl reflections σi [5], the two factors σ±

of the Coxeter element [9], the longest element w0 of the Weyl group [9] and some more

general elements in W for the example of E8 [10]. It is the latter construction which we

focus on here and extend in a more general and systematic way.

Concretely we assume here that we have at least two different involutions ̟ of the

type (2.2) at our disposal, say ̟i with i = 1, 2, . . . With our application in mind, namely to

– 3 –
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construct physically viable self-consistent non-Hermitian multi-particle systems, one such

map would in principle be sufficient. However, the presence of two maps leads immediately

to some extremely useful constraints. We take the associated rules of correspondence to

be of the form

ωi := θεω̂iθ
−1
ε = τ ω̂i, for i = 1, . . . , κ ≥ 2. (2.3)

Then by

ωiωj = τ ω̂iτ ω̂j = τ2ω̂iω̂j = ω̂iω̂j = θεω̂iω̂jθ
−1
ε , (2.4)

it follows directly that the composition of any two of these elements of the Weyl group

Ωij := ω̂iω̂j commutes with the deformation matrix θε

[Ωij, θε] = 0. (2.5)

Note that in general Ωij 6= Ωji. Examples previously considered [9] were for instance

ω̂1 = σ− and ω̂2 = σ+, such that Ω12 = σ. Since by construction Ωij ∈ W we can expand

θε in all elements ω̌i ∈ W which commute with Ωij, i.e. [Ωij, ω̌i] = 0,

θε =
∑

k

rk(ε)ω̌k for rk(ε) ∈ C, (2.6)

and subsequently determine the coefficient functions rk(ε) from additional constraints. One

further natural constraint is to demand that θε is an isometry for the inner products on

∆̃(ε), i.e.

αi · αj = α̃i · α̃j , (2.7)

which means

θ∗ε = θ−1
ε and det θε = ±1. (2.8)

In summary, the task is to pick κ elements of the Weyl group ω̂i, expand the the deformation

matrix θε in terms of the elements commuting with the products of these elements and

finally determined the coefficient functions rk(ε) in these expansions for from the constraints

θ∗εω̂i = ω̂iθε, [ω̂iω̂j, θε] = 0, θ∗ε = θ−1
ε , det θε = ±1 and lim

ε→0
θε = I, (2.9)

or possibly in reverse, that is for given θε to identify meaningful involutions ω̂i. It turn out

that these constraints are quite restrictive and often allow to determine θε with only very

few free parameters left. In some situations it might not be desirable to preserve the inner

products (2.7) after the deformation, in which case one may give up (2.8).

With our applications to physical models of Calogero or Toda type in mind, we may

then easily construct a dual map δ⋆ for δ

δ⋆ : R
n → ∆̃⋆(ε) = R

n ⊕ iRn, x 7→ x̃ = θ⋆εx, (2.10)

i.e. this map acts on the coordinate space with x = {x1, . . . , xn} or possibly fields. Given

θε we construct θ⋆ε by solving the ℓ equations

(α̃i · x) = ((θεα)i · x) = (αi · θ⋆εx) = (αi · x̃), for i = 1, . . . , ℓ, (2.11)

– 4 –
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involving the standard inner product. This means (θ⋆ε)
−1αi = (θεα)i. Note that in general

θ⋆ε 6= θ∗ε. Naturally we can also identify an antilinear involutory map

̟⋆ : ∆̃⋆(ε) → ∆̃⋆(ε), x̃ 7→ ω⋆x̃. (2.12)

corresponding to ̟ but acting in the dual space. Concretely we solve for this the κ × ℓ

relations

(ωiα̃)j · x = αj · ω⋆
i x̃, for i = 1, . . . κ; j = 1, . . . , ℓ, (2.13)

for ω⋆
i with given ωi.

3. Deformation matrices from factorised modified Coxeter elements

As explained in the previous section, in principle the involution ω̂i could be any element in

the Weyl group. We will now present a construction based on the selection of two specific,

albeit still fairly generic, elements ω̂1 = σ̃− and ω̂2 = σ̃+ defined as

σ̃± :=
∏

i∈Ṽ±

σi. (3.1)

The σi in (3.1) are simple Weyl reflections, acting as

σi(x) := x− 2
x · αi

α2
i

αi, with 1 ≤ i ≤ ℓ ≡ rankW. (3.2)

The sets V± are defined via the bi-colouration of the Dynkin diagram as explained in [9]

and references therein. The difference towards the treatment in [9] is that the products in

(3.1) do not have to extend over all possible elements in V±, such that Ṽ± ⊆ V±. Denoting

by σ± the factors of σ̃ when h̃ = h we may therefore express the reduced elements as

σ̃± := σ±
∏

j∈V̆±
σi for some values j, which follows by recalling [σi, σj] = 0 for i, j ∈ V+

or i, j ∈ V− and σ2
i = 1. Thus V̆± is the complement of Ṽ± in V±, that is V± = V̆± ∪ Ṽ±.

This ensures that we have maintained the crucial involutory property σ̃2
± = 1.

This means the element Ωij in (2.5) can be viewed as a modified Coxeter element

σ̃ := σ̃−σ̃+ with property

σ̃h̃ = I, with h̃ ≤ h. (3.3)

Therefore σ̃ equals a Coxeter element σ when the order h̃ becomes the Coxeter number h.

The reduced root space ∆̃ is then constructed by acting with σ̃ on representatives

γ̃i = ciα̃i of a particular orbit Ω̃i containing now h̃ instead of h roots

Ω̃i :=
{

γi, σ̃γi, σ̃
2γi, . . . , σ̃

h̃−1γi

}

. (3.4)

The corresponding entire root space containing ℓ× h̃ roots is the union of all orbits

∆̃ =

ℓ
⋃

i=1

Ω̃i. (3.5)

– 5 –



Non-Hermitian systems from complex root spaces

In analogy to the deformations defined in [9] we construct therefore the map ̟ as

σ̃ε
± := θεσ̃±θ

−1
ε = σ̃±τ (3.6)

where we assumed an additional property with θε being the deformation matrix as intro-

duced in (2.1). Defining the deformed reduced Coxeter element as σ̃ε := σ̃ε
−σ̃

ε
+ we use a

similar line of reasoning as in the deduction of (2.5) to show that [σ̃, θε] = 0. Therefore we

make the following Ansatz for the deformation matrix

θε =
h̃−1
∑

k=0

µk(ε)σ̃
k, with lim

ε→0
µk(ε) =

{

1 k = 0

0 k 6= 0
, µk(ε) ∈ C. (3.7)

The assumption for the coefficients µk(ε) ensures the appropriate limit limε→0 θε = I.

Equation (3.6) yields the constraint θ∗εσ̃± = σ̃±θε, from which we deduce with (3.7)

θε =



















r0(ε)I+ i
(h̃−1)/2
∑

k=1

rk(ε)(σ̃
k − σ̃−k) for h̃ odd,

r0(ε)I+ rh̃/2(ε)σ̃
h̃/2 + i

h̃/2−1
∑

k=1

rk(ε)(σ̃
k − σ̃−k) for h̃ even,

(3.8)

where µ0(ε) =: r0(ε) ∈ R, µh̃/2(ε) =: rh̃/2(ε) ∈ R when h̃ is even. In addition we defined

µk(ε) = irk(ε). Demanding next that θε is an isometry, we invoke the constraint det θε = 1.

By means of the eigenvalue equations for σ̃

σ̃ṽn = e2πis̃n/h̃ṽn with n = 1, . . . ℓ, (3.9)

we define a set of “modified exponents” s̃ = {s̃1, . . . , s̃ℓ}. Unlike as for the standard case,

the eigenvalues may be degenerate in the modified scenario. In general, they take on the

values

s̃ =
{

1λ1 , 2λ2 , . . . , (h̃ − 1)λh̃−1 , h̃λh̃

}

with

h̃
∑

k=1

λk = ℓ, (3.10)

with λi indicating the degeneracy of certain eigenvalues in (3.9). Due to the degeneracy

there could be several solutions to (3.9) with different elements σ̃(i) for i = 1, . . . m forming

a similarity class

Σs̃ =
{

σ̃(1)σ̃(2), . . . , σ̃(m)
}

. (3.11)

As in [9] we demand the preservation of the inner product between the original and de-

formed roots, which implies that det θε = 1 and θ∗ε = θ−1
ε . Diagonalising (3.8) the constraint

det θε = 1 simply becomes

1 =
ℓ
∏

n=1

[

r0(ε)− 2
(h̃−1)/2
∑

k=1

rk(ε) sin
(

2πk
h̃
s̃n

)

]

for h̃ odd,

1 =
ℓ
∏

n=1

[

r0(ε) + (−1)s̃nrh̃/2(ε)− 2
h̃/2−1
∑

k=1

rk(ε) sin
(

2πk
h̃
s̃n

)

]

for h̃ even.

(3.12)
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Solving these constraints for θε allows us to construct the simple roots α̃i and therefore

the entire deformed reduced root space ∆̃(ε). Note that for simplicity we use the same

notation for the unformed and deformed root space, distinguishing the latter always by the

explicit mentioning of the deformation parameter ε. Hence we have

Ω̃ε
i = θεΩ̃i, (3.13)

and therefore

∆̃(ε) =
ℓ
⋃

i=1

Ω̃ε
i = θε∆̃. (3.14)

This construction guarantees that the σ̃ε
± are indeed representations of the map ̟ in (2.2).

Evidently it leaves the root space invariant

σ̃ε
± : ∆̃(ε) → θεσ̃±θ

−1
ε ∆̃(ε) = θεσ̃±∆̃ = θε∆̃ = ∆̃(ε). (3.15)

For the latter property to hold we may also exclude some of the orbits Ω̃ε
i in the union

⋃ℓ
i=1, whenever they are mapped into themselves σ̃ε

± : Ω̃ε
i → Ω̃ε

i .

3.1 Antilinearly deformed Aℓ root systems

When engaging into a case-by-case description in [9], we characterized different solutions

group by group. Here we will take equation (3.12) as more fundamental and classify the

solutions according to different values of the modified Coxeter number. In this manner

different types of solutions to (3.12) are then characterized by different sets of modified

exponents (3.10). This means we need to verify subsequently whether a corresponding σ̃

really exists.

For definiteness we fix our conventions and associate the colour values ci = 1 or ci = −1

when i is even or odd, respectively, to the vertices of the Dynkin diagram. We find various

similarity classes Σs̃ characterized by different sets of modified exponents s̃.

3.1.1 The class with modified exponents {1, 2, 3, 4ℓ−3} and h̃=4

We find that the simplest similarity class Σ for which x4 = 1 when x ∈ Σ is

Σ{1,2,3,4ℓ−3} =
{

σ̃(1), . . . , σ̃(ℓ−2)
}

, (3.16)

where the elements of that class are defined as

σ̃(i) := (σi+1σiσi+2)
ci for i = 1, . . . , ℓ− 2. (3.17)

It is clear that each element σ̃(i) in (3.17) has order 4, since it is formed from three

consecutive elements on the Dynkin diagram and thus being isomorphic to the Coxeter

element of A3 when acting on the three corresponding roots.

Furthermore, by definition all elements of Σ have to be related by a similarity trans-

formation. Indeed we find: Two consecutive elements in Σ{1,2,3,4ℓ−3} are related as

κiσ̃
(i) = σ̃(i+1)

κi with κi := σiσi+1σi+2σi+3σi+1. (3.18)

– 7 –
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Therefore all elements in Σ can be related to each other by an adjoint action simply by

successive applications of (3.18).

Proof: Let us now prove the relation (3.18). The starting point is the identity

σi−1σiσi+1σi = σi+1σi−1σiσi+1, (3.19)

which follows by applying the left and right hand side to some arbitrary x using the

definition of the simple Weyl reflection (3.2) consecutively. Normalising the length of the

roots to be 2, we find in both cases

x− [(x · αi−1) + (x · αi) + (x · αi+1)]αi−1 − [(x · αi) + (x · αi+1)] (αi + αi+1). (3.20)

Multiplying (3.19) from the left by
∏i−2

k=1 σk and
∏ℓ

k=i+2 σk from the right and noting that

for Aℓ we have [σi, σj] = 0 for |i− j| ≥ 2, it follows

σ̂σi = σi+1σ̂, with σ̂ :=

ℓ
∏

k=1

σk. (3.21)

The element σ̂ is the standard Coxeter element. Multiplying next the identity (3.18) from

the left by
∏i−1

k=1 σk and σi+1
∏ℓ

k=i+4 σk from the right and recalling that σ2
i = 1 yields

σ̂ (σiσi+2σi+1)
ci = (σi+1σi+3σi+2)

ci σ̂. (3.22)

This relation is now easily established by commuting all three simple Weyl reflections

through the Coxeter element using the identity (3.21), which in turn also proves (3.18). �

Some special elements in Σ are related by the adjoint action of the Coxeter element σ.

We find: The first and the last element in Σ{1,2,3,4ℓ−3} are related as

σ̃(ℓ−2)σ
h−cℓ

2 = σ
h−cℓ

2 σ̃(1), (3.23)

Proof: We prove (3.23) by using the more elementary relations

σℓ+1−iσ
h
2
+

ci+cicℓ
4 = σ

h
2
+

ci+cicℓ
4 σi. (3.24)

For even h we compute by a successive use of (3.24)

σ̃(ℓ−2)σ
h
2 = σℓ−2σℓσℓ−1σ

h
2 = σℓ−2σℓσ

h
2 σ2 = σℓ−2σ

h
2 σ1σ2 = σ

h
2 σ3σ1σ2 = σ

h
2 σ̃(1). (3.25)

Similarly we compute for odd h

σ̃(ℓ−2)σ
h−1

2 = σℓ−1σℓ−2σℓσ
h−1

2 = σℓ−1σℓ−2σ
h−1

2 σ1 = σℓ−1σ
h−1

2 σ3σ1 (3.26)

= σℓ−1σ
h+1

2 σ−1σ3σ1 = σ
h+1

2 σ2σ
−1σ3σ1 = σ

h−1

2 σ−σ+σ2σ+σ−σ3σ1

= σ
h−1

2 σ3σ1σ2 = σ
h−1

2 σ̃(1).

Thus we have established that the first element σ̃(1) in the similarity class Σ is related via

the similarity transformation (3.23) to the last element σ̃(ℓ−2) in this class. In comparison

to one rank less the last element is the only additional one. For the other elements we can

use the same argumentation but employing the Coxeter element for one rank less. �
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(σ̃(1))j\αi α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1) −1,2 1,2,3 −2,3 2, 3, 4 5 6 7 8

σ̃(1)σ̃(1) −3 −2 −1 1, 2, 3, 4 5 6 7 8

σ̃(1)σ̃(1)σ̃(1) 2,3 −1,2,3 1,2 3, 4 5 6 7 8

Table 1: The reduced A8-root space ∆̃ generated from the orbits of σ̃(1).

Expl.: A8 We illustrate now the working of these formulae for a concrete example. We

consider A8 and generate the entire root space ∆̃ as described in (3.13) from σ̃(1). The

results are depicted in table 1.

For convenience we used the following conventions: For any non-simple root β =
∑

i µiαi we present only the non-vanishing coefficients µi in the table with the overall sign

written in front, e.g. α1 + α2 + α3 is represented as 1, 2, 3 and −α1 − α2 as − 1, 2. We

indicate the A3 substructure in bold. Further examples for root spaces obtained from

different elements in Σ{1,2,3,4ℓ−3} are presented in appendix A.

Crucial to our construction is the invariance under the action of σ̃
(1)
± . Acting on the

roots as depicted in table 1 with σ̃
(1)
± we recover all the elements in table 1, albeit in a

permuted way as indicated in table 2.

σ̃
(1)
− (∆̃) −1 1, 2, 3 −3 3, 4 5 6 7 8

−2, 3 2 −1, 2 1, 2, 3, 4 5 6 7 8

3 −1, 2, 3 −1 2, 3, 4 5 6 7 8

1, 2 −2 2, 3 4 5 6 7 8

σ̃
(1)
+ (∆̃) 1, 2 −2 2, 3 4 5 6 7 8

−1 1, 2, 3 −3 3, 4 5 6 7 8

−2, 3 2 −1, 2 1, 2, 3, 4 5 6 7 8

3 −1, 2, 3 1 3, 4 5 6 7 8

Table 2: The invariance of the A8-root space ∆̃ generated from σ̃(1) under the action of σ̃
(1)
± .

3.1.2 The class with modified exponents
{

1, 22, 3, 4ℓ−3
}

and h̃=4

Other classes become considerably more complicated. We present here only some examples

to indicate this. For instance in the class

Σ{1,22,3,4ℓ−4} =
{

σ̃(1,1,1), σ̃(1,1,2), . . . , σ̃(2,1,ℓ−4)
}

, (3.27)

we have to label the elements by three indices

σ̃(1,i,j) := σiσi+2σi+3+jσi+1 and σ̃(2,i,j) := σiσi+1+jσi+3+jσi+j+2 (3.28)

with i = 1, . . . , ℓ − j − 3 and j = 1, . . . , ℓ − 4. It is easy to convince oneself that these

elements have order 4. In both types of labeling we have three consecutive elements and
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one additional factor which commutes with all the other elements, that is σi+3+j in σ̃(1,i,j)

and σi in σ̃(2,i,j), respectively. Thus by the same argument as in the previous class and the

fact that σ2
i = 1 it follows that the order of all elements in (3.28) is 4.

Arguing along similar lines as for the class presented in the previous subsection, we can

also show that all elements in Σ{1,22,3,4ℓ−4} are indeed related by a similarity transformation.

We will not present this proof here.

3.1.3 The similarity class structure with h̃=4

It is clear that for higher ranks more and more possible sets of exponents characterising

different classes may exist. Here we only indicate in table 3 the general structure but do

not report a detailed construction of the elements of these classes and their interrelations

as the argumentation goes along the same lines as in the two previous subsections. By

inspection of the table we notice the onset of two new classes when we increase the rank

by two, that is the number of classes increases by 2 for ℓ = 2n+ 5 for n = 1, 2, . . . We also

observe that the number of classes for ℓ = 2n+ 1 and ℓ = 2n+ 2 is the same.

ℓ

3 {1, 2, 3}
4 {1, 2, 3, 4}
5 {1, 2, 3, 42} {1, 22, 3, 4}
6 {1, 2, 3, 43} {1, 22, 3, 42}
7 {1, 2, 3, 44} {1, 22, 3, 43} {1, 23, 3, 42} {12, 22, 32, 4}
8 {1, 2, 3, 45} {1, 22, 3, 44} {1, 23, 3, 43} {12, 22, 32, 42}
9 {1, 2, 3, 46} {1, 22, 3, 45} {1, 23, 3, 44} {12, 22, 32, 43} {12, 23, 32, 42} {1, 24, 3, 43}
10 {1, 2, 3, 47} {1, 22, 3, 46} {1, 23, 3, 45} {12, 22, 32, 44} {12, 23, 32, 43} {1, 24, 3, 44}
...

...
...

...
...

... . . .

ℓ {1, 2, 3, 4ℓ−3} {1, 22, 3, 4ℓ−4} {1, 23, 3, 4ℓ−5} {12, 22, 32, 4ℓ−6} {12, 23, 32, 4ℓ−7} . . .

Table 3: Similarity classes in Aℓ with h̃ = 4.

In addition we note that the number of factors in the elements of a similarity class

increases by one in the table in each column from the left to the right, starting with three

factors on the very left.

3.1.4 The class with modified exponents
{

1, 2, . . . , 4n− 1, 4nℓ−4n+1
}

and h̃=4n

Let us now generalize the previous considerations towards classes with larger amounts of

eigenvalues, such that they are related to modified Coxeter numbers of higher powers. The

class (3.16) acquires the more general form

Σ{1,2,...,4n−1,4nℓ−4n+1} =
{

σ̃(n,1), . . . , σ̃(n,ℓ+2−4n)
}

, (3.29)

when x4n = 1 for x ∈ Σ. In this case the elements of the class

σ̃(n,i) :=

[(

n
∏

k=2

σi−1+4(k−1)σi+1+4(k−1)

)

σi+1

(

n
∏

k=1

σi+4(k−1)σi+2+4(k−1)

)]ci

, (3.30)
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are characterised by two indices, n distinguishing the particular type of class and i =

1, . . . , ℓ+ 2− 4n labeling the individual elements in that class. The case n = 1 reduces to

our previous simpler example with σ̃(n,i) = σ̃(i) as defined in (3.17). Evidently the element

σ̃(n,i) contains the 4n − 1 consecutive factors σi to σi+4n−3 separated into odd and even

indices. This means each element can be viewed as a Coxeter element for the A4n−1-Weyl

group and therefore the order of σ̃(n,i) is h̃ = 4n.

In this case we will also establish that all elements in Σ are indeed related by a similarity

transformation. Two consecutive elements in this class are related as

κ
(n)
i σ̃(n,i) = σ̃(n,i+1)

κ
(n)
i with κ

(n)
i :=

4n
∏

k=1

σi+k−1

2n−1
∏

k=1

σi+2k−1, (3.31)

which in turn implies that all elements in Σ are related by a similarity transformation. The

proof for this identity goes along the same line as the one for the particular case n = 1 of

the identity (3.18).

3.1.5 The class with modified exponents
{

1, 22, . . . , 4n − 1, 4nℓ−4n
}

and h̃=4n

For higher order the similarity class (3.27) generalises to

Σ{1,22,...,4n−1,4nℓ−4n+1} =
{

σ̃(1,1,1,1), σ̃(1,2,1,1), . . .
}

, (3.32)

where we label its elements

σ̃(1,n,i,j) : =

n
∏

k=1

σi+4(k−1)σi+2+4(k−1)σi+j+(h̃−1)σi+1

n
∏

k=2

σi−1+4(k−1)σi+1+4(k−1), (3.33)

σ̃(2,n,i,j) : = σi+j+2

n
∏

k=1

σi+j+4(k−1)σi+j+2+4(k−1)σi

n
∏

k=2

σi+j+1+4(k−1)σi+j+3+4(k−1),(3.34)

now by four indices with j = 1, · · · , ℓ − 4n and i = 1, · · · , ℓ − j − (4n − 1). We recover

the case discussed in the previous section for n = 1. Using similar arguments as before

we can show that all elements in this class have order h̃=4n. For instance for the element

σi+j+(h̃−1) in (3.33) the subscript obeys i + j + (h̃ − 1) > i + h̃, which means that the

element may be commuted to the left. Taking then the h̃-th power of the entire expression

we find

[

(σi+j+(h̃−1))
h̃
[

(

n
∏

k=1

σi+4(k−1)σi+2+4(k−1)

)

σi+1

(

n
∏

k=2

σi−1+4(k−1)σi+1+4(k−1)

)

]h̃
]

. (3.35)

Since h̃ is even we have (σi+j+(h̃−1))
h̃ = 1 and since the expression in the bracket is a

reduced Coxeter element for Ah̃=4n the expression in (3.35) equals 1, thus establishing the

order of σ̃(1,n,i,j) to be h̃ = 4n . Similar arguments can be used for σ̃(2,n,i,j) to prove that

this element has the same order.
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3.1.6 Antilinearly invariant complex root spaces

Based on the various classes constructed in the previous sections we may now compute the

deformation matrix with the help of the Ansatz (3.8) subject to the mentioned constraints.

In [9] we found some relatively simple solutions for h = 4n. We present now similar

solutions for h̃ = 4n. Taking in (3.12) all but three coefficients to be zero

ri(ε) = 0 for i 6= 0, n, 2n, (3.36)

the equation reduces with the help of (3.10) to

1 = (r0 + r2n)
2
∑n

k=1
λ2k
[

(r0 − r2n)
2 − 4r2n

]

∑n
k=1

λ2k−1
. (3.37)

As can be seen directly, this equation is solved by

r2n = 1− r0 and rn =
√

r0(r0 − 1) =: ϑ. (3.38)

Thus the corresponding deformation matrix resulting from (3.8) reads

θε = r0(ε)I+ [1− r0(ε)] σ̃
2n + iϑ(σ̃n − σ̃−n). (3.39)

All what is left now is to establish whether the set of modified exponents in (3.10) really

exists for some concrete elements of σ̃ ∈ W of order h̃ = 4n and possibley to specify the

function r0(ε).

It is useful to consider a concrete example. For instance, the deformed roots resulting

from σ̃(3) of the class Σ{1,2,3,4ℓ−3} for A8 according to (3.39) are

α̃1 = α1, α̃7 = α7, α̃8 = α8,

α̃2 = α2 + (1− r0)α3 + (1− r0 + iϑ)α4 + (1− r0)α5,

α̃3 = (r0 − iϑ)α3 − 2iϑα4 + (r0 − iϑ− 1)α5,

α̃4 = 2iϑα3 + (2r0 + 2iϑ − 1)α4 + 2iϑα5,

α̃5 = (r0 − iϑ− 1)α3 − 2iϑα4 + (r0 − iϑ)α5,

α̃6 = (1− r0)α3 + (1− r0 + iϑ)α4 + (1− r0)α5 + α6.

(3.40)

The θε resulting from different elements in the same class have a similar form with the

A3-substructure displaced similarly as for the undeformed roots. We do not report these

solutions here. Unlike as in (3.40) all eight roots are deformed when constructing θε for

instance from σ̃(2,1) as specified in (3.30)

θε =





























r0 0 iϑ 2iϑ iϑ 0 r0 − 1 0

0 r0 − iϑ −2iϑ −2iϑ −2iϑ r0 − iϑ− 1 0 0

iϑ 2iϑ r0 + 2iϑ 2iϑ r0 + 2iϑ − 1 2iϑ iϑ 0

−2iϑ −2iϑ −2iϑ 2r0 − 2iϑ − 1 −2iϑ −2iϑ −2iϑ 0

iϑ 2iϑ r0 + 2iϑ − 1 2iϑ r0 + 2iϑ 2iϑ iϑ 0

0 r0 − iϑ− 1 −2iϑ −2iϑ −2iϑ r0 − iϑ 0 0

r0 − 1 0 iϑ 2iϑ iϑ 0 r0 0

1− r0 1− r0 1− r0 1− r0 − iϑ 1− r0 1− r0 1− r0 1





























.

(3.41)
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The dual map δ⋆ is obtained by solving (2.11) for the dual deformation matrix θ⋆ε with the

explicit form for θε. Taking the latter to be given by (3.41) we compute for the standard

(ℓ+1)-dimensional representation of Aℓ (αi)j = δij−δ(i+1)j , i = 1, 2, . . . , ℓ, j = 1, 2, . . . , ℓ+1

θ⋆ε =

































r0 0 0 iϑ −iϑ 0 0 1− r0 0

0 r0 −iϑ 0 0 iϑ 1− r0 0 0

0 iϑ r0 0 0 1− r0 −iϑ 0 0

−iϑ 0 0 r0 1− r0 0 0 iϑ 0

iϑ 0 0 1− r0 r0 0 0 −iϑ 0

0 −iϑ 1− r0 0 0 r0 iϑ 0 0

0 1− r0 iϑ 0 0 −iϑ r0 0 0

1− r0 0 0 −iϑ iϑ 0 0 r0 0

0 0 0 0 0 0 0 0 1

































. (3.42)

By construction the corresponding dual root space ∆̃⋆(ε) is invariant under the action

of some antilinear maps ̟⋆, obtained by solving (2.13). For antilinear symmetry ω1 =

τσ2σ4σ6 we compute the dual antilinear transformation to

ω⋆
1 = τ

































ν2 0 0 −2iϑν 2iϑν 0 0 µ 0

0 −2iϑν ν2 0 0 µ 2iϑν 0 0

0 ν2 2iϑν 0 0 −2iϑν µ 0 0

−2iϑν 0 0 µ ν2 0 0 2iϑν 0

2iϑν 0 0 ν2 µ 0 0 −2iϑν 0

0 µ −2iϑν 0 0 2iϑν ν2 0 0

0 2iϑν µ 0 0 ν2 −2iϑν 0 0

µ 0 0 2iϑν −2iϑν 0 0 ν2 0

0 0 0 0 0 0 0 0 1

































, (3.43)

where we abbreviated ν := 2r0−1 and µ := 4(r0−r20). Then the action on the deformed

and original variables amounts with (3.43) simply to

ω⋆
1 : ∆̃

∗(ε) → ∆̃∗(ε), x̃1 7→ x̃1, x̃2 ↔ x̃3, x̃4 ↔ x̃5, , x̃6 ↔ x̃7, x̃8 7→ x̃8, x̃9 7→ x̃9, (3.44)

x1 7→ x1, x2 ↔ x3, x4 ↔ x5, , x6 ↔ x7, x8 7→ x8, x9 7→ x9, i 7→ −i.

A similar computation leads to the dual antilinear symmetry corresponding for ω2 =

τσ1σ3σ5σ7.

Obviously these solutions only capture part of all possibilities as we may of course also

consider the cases h̃ = 4n and since (3.39) is a restriction of the most general Ansatz (3.7).

Some solutions filling these gaps were presented in [9]. Having been fairly detailed for the

Aℓ-Weyl group, we will only indicate some selected examples for reference for the other

cases.

3.2 Antilinearly deformed Bℓ root systems

The simplest class for h̃ = 4 contains only one element comprised of two Weyl reflections

Σ{1,3,4ℓ−2} = {σ̃ = σℓ−1σℓ} . (3.45)
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The next class with h̃ = 4 contains 2ℓ− 6 elements

Σ{1,2,3,4ℓ−3} =
{

σ̃(1,1), . . . , σ̃(1,ℓ−3), σ̃(2,1), . . . , σ̃(2,ℓ−3)
}

, (3.46)

build from a composition of three Weyl reflections

σ̃(1,i) := σiσi+2σi+1 and σ̃(2,i) := σℓσℓ−i−2σℓ−1 for i = 1, · · · , ℓ− 3. (3.47)

In table 4 we indicate the different types of classes with increasing rank ℓ. We note that

whenever the rank increases by one, a new type of class emerges with one additional Weyl

reflection in the element σ̃.

ℓ

3 {1, 3, 4}
4 {1, 3, 42} {1, 2, 3, 4}
5 {1, 3, 43} {1, 2, 3, 42} {1, 22, 3, 4}
6 {1, 3, 44} {1, 2, 3, 43} {1, 22, 3, 42} {12, 2, 32, 4}
7 {1, 3, 45} {1, 2, 3, 44} {1, 22, 3, 43} {12, 2, 32, 42} {1, 23, 3, 42}
8 {1, 3, 46} {1, 2, 3, 45} {1, 22, 3, 44} {12, 2, 32, 43} {1, 23, 3, 43} {12, 22, 32, 42}
9 {1, 3, 47} {1, 2, 3, 46} {1, 22, 3, 45} {12, 2, 32, 44} {1, 23, 3, 44} {12, 22, 32, 43}
10 {1, 3, 48} {1, 2, 3, 47} {1, 22, 3, 46} {12, 2, 32, 45} {1, 23, 3, 45} {12, 22, 32, 44}
...

...
...

...
...

...
... . . .

ℓ {1, 3, 4ℓ−2} {1, 2, 3, 4ℓ−3} {1, 22, 3, 4ℓ−4} {12, 2, 32, 4ℓ−5} {1, 23, 3, 4ℓ−5} {1, 24, 3, 4ℓ−6} . . .

Table 4: Similarity classes in Bℓ with h̃ = 4.

We also report explicitly one deformation matrix resulting from these classes for an

example for which no solution exists with the assumptions made in [9]. Using for B5 the

same general Ansatz as for the Aℓ-case in (3.39), we obtain for the antilinearly deformed

symmetry of σ̃(1,1) the solution

θε =















r0 − iϑ −2iϑ r0 − iϑ− 1 0 0

2iϑ 2r0 + 2iϑ − 1 2iϑ 0 0

r0 − iϑ− 1 −2iϑ r0 − iϑ 0 0

1− r0 1− r0 + iϑ 1− r0 1 0

0 0 0 0 1















. (3.48)

We compute the dual map δ⋆ by solving (2.11) for the dual deformation matrix θ⋆ε with

the explicit form for θε as in (3.48). For the standard root representation of the Bℓ-roots

(αi)j = δij − δ(i+1)j , (αℓ)j = δℓj, i = 1, 2, . . . , ℓ− 1, j = 1, 2, . . . , ℓ we obtain

θ⋆ε =















r0 −iϑ iϑ 1− r0 0

iϑ r0 1− r0 −iϑ 0

−iϑ 1− r0 r0 iϑ 0

1− r0 iϑ −iϑ r0 0

0 0 0 0 1















. (3.49)
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By construction the corresponding root space ∆̃⋆(ε) is invariant under the action of some

antilinear maps ̟⋆, obtained by solving (2.13). For ω1 = τσ1σ3 we compute the dual

antilinear transformation to

ω⋆
1 = τ















−2iϑ(2r0 − 1) (1− 2r0)
2 −4(r0 − 1)r0 2iϑ(2r0 − 1) 0

(1− 2r0)
2 2iϑ(2r0 − 1) −2iϑ(2r0 − 1) −4(r0 − 1)r0 0

−4(r0 − 1)r0 −2iϑ(2r0 − 1) 2iϑ(2r0 − 1) (1− 2r0)
2 0

2iϑ(2r0 − 1) −4(r0 − 1)r0 (1− 2r0)
2 −2iϑ(2r0 − 1) 0

0 0 0 0 1















. (3.50)

The action on the variables amounts with (3.50) simply to

ω⋆
1 : ∆̃

∗(ε) → ∆̃∗(ε), x̃1 ↔ x̃2, x̃3 ↔ x̃4, x̃5 7→ x̃5, (3.51)

x1 ↔ x2, x3 ↔ x4, x5 7→ x5, i 7→ −i. (3.52)

A similar computation leads to the dual antilinear symmetry corresponding to ω2 = τσ2.

3.3 Antilinearly deformed Cℓ root systems

A simple class for h̃ = 4 with only one element σ̃ = σ1σ3σ2 is the case Σ{1,2,3,4ℓ−3}. We

present the deformation matrix for the C4-case resulting from this element

θε =











r0 − iϑ −2iϑ r0 − iϑ− 1 0

2iϑ 2r0 + 2iϑ − 1 2iϑ 0

r0 − iϑ− 1 −2iϑ r0 − iϑ 0

2 (1− r0) 2 (1− r0) + 2iϑ 2 (1− r0) 1











. (3.53)

Note that the classes for Cℓ are the same as those for Bℓ, albeit the deformation matrices

are different due to the difference of the Weyl reflections.

3.4 Antilinearly deformed Dℓ root systems

In this case a simple class for h̃ = 4 contains ℓ− 1 elements

Σ{1,3,4ℓ−3} =
{

σ̃(1), σ̃(2), . . . , σ̃(ℓ=2), σ̃(ℓ)
}

. (3.54)

with

σ̃(i) = σiσi+2σi+1 and σ̃(ℓ) = σℓ−3σℓσℓ−2 for i = 1, · · · , ℓ− 2. (3.55)

As an example for a deformation matrix for D4 we present the one resulting from σ̃(1) =

σ1σ3σ2

θε =











r0 − iϑ −2iϑ r0 − iϑ− 1 0

2iϑ 2r0 + 2iϑ − 1 2iϑ 0

r0 − iϑ − 1 −2iϑ r0 − iϑ 0

1− r0 − iϑ 2− 2r0 1− r0 − iϑ 1











. (3.56)
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3.5 Antilinearly deformed E6+n root systems

We may treat the exceptional algebras together using for the labeling the E8-convention

in [10] and removing vertices from the long end Dynkin diagram to obtain the E7 and

E6-cases. A simple class for h̃ = 4 contains n+ 5 elements

Σ{1,2,3,43} =
{

σ1σ3σ4, σ1σ5σ4, σ
(2), σ(3) . . . , σ(n+4)

}

, (3.57)

with σ(i) = σiσi+2σi+1 for i = 2, .., n + 4. The deformation matrix for σ(2) = σ3σ2σ4 is

computed to

θε =

























1 1− r0 −r0 − iϑ+ 1 1− r0 0 0 · · ·
0 r0 + iϑ 2iϑ r0 + iϑ− 1 0 0 · · ·
0 −2iϑ 2r0 − 2iϑ − 1 −2iϑ 0 0 · · ·
0 r0 + iϑ− 1 2iϑ r0 + iϑ 0 0 · · ·
0 1− r0 −r0 − iϑ+ 1 1− r0 1 0 · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 0 0 1

























. (3.58)

A further class is Σ{1,22,3,42+n} with elements σ̃ = σ1σ4σ2σ5, . . .

3.6 Antilinearly deformed F4 root systems

The simplest class for h̃ = 4 contains only one element

Σ{1,3,42} = {σ3σ2} . (3.59)

The deformation matrix is computed to

θε =











1 2 (1− r0) 2 (1− r0)− 2iϑ 0

0 2r0 + 2iϑ − 1 4iϑ 0

0 −2iϑ 2r0 − 2iϑ − 1 0

0 1− r0 + iϑ 2 (1− r0) 1











. (3.60)

4. Deformation matrices from two arbitrary elements in W

The procedure outlined in section 2 is entirely generic and may of course also be carried

out by starting from any arbitrary elements in W different from σ+ and σ−. Due to

the random choice we allow for the symmetries we have to consider now concrete cases.

It is instructive to discuss some examples for which no nontrivial solutions were found

previously.

Let us therefore consider B3. As an abstract Coxeter group B3 is fully characterized

by three involutory generators σ2
1 = σ2

2 = σ2
3 = I together with the three relations σ1σ3 =

σ3σ1, σ1σ2σ1 = σ2σ1σ2 and σ2σ3σ2σ3 = σ3σ2σ3σ2. Choosing now in (2.3) the involutions

different from the previous section as ω̂1 = σ1 and ω̂2 = σ1σ3 yields Ω12 = σ3. Thus we

have taken ω̂1 and ω̂2 both to be factors in σ−. According to (2.6) we have to identify next
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all elements in B3 commuting with σ3. Using the three relations and the three generators

we find {I, σ1, σ3, σ1σ3, σ1σ2σ3σ2} leading to the Ansatz

θε = r0(ε)I+r1(ε)σ1 + r2(ε)σ3 + r3(ε)σ1σ3 + r4(ε)σ1σ2σ3σ2. (4.1)

which solves all the constraints (2.9) when

r0 =
√

1− r24 − r2, r1 = −r3 = 1 + r2 −
r4

2
− 1

2

√

1− r24, lim
ε→0

r4 = 0, r4 ∈ iR. (4.2)

Upon substitution into the Ansatz (4.1) the deformation matrix takes on the form

θε =







√

1− r24 + r4 2r4 2r4
−r4

√

1− r24 − r4
√

1− r24 − r4 − 1

0 0 1






. (4.3)

Thus we have only one free function left. The same Ansatz (4.1) can be used for the choice

ω̂1 = σ2 and ω̂2 = σ2σ3, but in that case we are led to the trivial solution θε = I.

With the help of (4.3) we may now also find the dual map δ⋆ by solving (2.11) for the

dual deformation matrix θ⋆ε. For the standard root representation of B3 we obtain

θ⋆ε =







√

1− r24 −r4 0

r4
√

1− r24 0

0 0 1






. (4.4)

The corresponding root space ∆̃⋆(ε) is then by construction invariant under the action of

some antilinear maps ̟⋆, obtained by solving (2.13). For ω1 = τσ1 and ω2 = τσ1σ3 we

compute

ω⋆
1 : ∆̃∗(ε) → ∆̃∗(ε), x̃1 ↔ x̃2, x̃3 7→ x̃3 ≡ x1 ↔ x2, x3 7→ x3, i 7→ −i, (4.5)

ω⋆
2 : ∆̃∗(ε) → ∆̃∗(ε), x̃1 ↔ x̃2, x̃3 7→ −x̃3 ≡ x1 ↔ x2, x3 7→ −x3, i 7→ −i. (4.6)

Taking r4 = ±i sinh ε we notice that θ⋆ε becomes a rotation about the complex angle ±iε

for the variables x1 and x2 accompanied by a reflection in x3 for the latter case.

5. Deformation matrices from rotations in the dual space

So far we have started with given antilinear involution ̟i and constructed the deformation

map δ by solving the constraints (2.9) for a given Weyl group, i.e. given some ωi we

determined the deformation matrix θε. Subsequently we constructed the corresponding

maps δ⋆ and ̟⋆acting in the dual spaces. We may also try to reverse the procedure and

start with the dual space with given maps δ⋆ and ̟⋆ and determine the maps ̟i and δ

thereafter. In view of the last section it is natural to assume the θ⋆ε to be an element of

the special orthogonal group. We define therefore the (2n+ 1)× (2n + 1)-matrix

θ⋆ε =

















R

R 0

R

0
. . .

1

















with R =

(

cosh ε i sinh ε

−i sinh ε cosh ε

)

, (5.1)
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and construct the deformation matrix θε by solving (2.11). We note that this constraint

might not admit any solutions for certain Weyl groups. In fact for the standard repre-

sentation for Aℓ it is easy to verify that indeed there exists no solution. However, for the

special orthogonal Weyl groups Bℓ ≡ SO(2ℓ + 1) and Dℓ ≡ SO(2ℓ) one can solve (2.11).

Since previously we did not find solutions for odd ranks in the B-series in [9] based on the

assumptions made in there, we present here some solutions for B2n+1. Solving (2.13) for

θε using the standard representation for the Bℓ-roots we compute the deformed roots to

α̃2j−1 = cosh εα2j−1 + i sinh ε



α2j−1 + 2

ℓ
∑

k=2j

αk



 for j = 1, . . . , n, (5.2)

α̃2j = cosh εα2j − i sinh ε





2j+2
∑

k=2j

αk + 2
ℓ
∑

k=2j+3

2αk



 for j = 1, . . . , n− 1, (5.3)

α̃ℓ−1 = cosh ε(αℓ−1 + αℓ)− αℓ − i sinh ε (αℓ−2 + αℓ−1 + αℓ) , (5.4)

α̃ℓ = αℓ. (5.5)

By construction we have satisfied the last three constraints in (2.9). Furthermore, we find

that θ∗εσ− = σ−θε but θ∗εσ+ 6= σ+θε with σ− =
∏n+1

k=1 σ2k−1 and σ+ =
∏n

k=1 σ2k. Thus in

this case τσ+ does not constitute an antilinear symmetry which implies that [σ, θε] 6= 0.

This is the reason why this solution has escaped the previous analysis. However, besides

under the action of ω− := τσ− = σε
− the root space ∆̃(ε) is left invariant under various

other antilinear maps which consist of subfactors of σ−. For B3 we observed this in section

4 with σ− = σ1σ3 and σ3 being the additional symmetry. A generalization to B2n is

straightforward simply by starting in (5.1) with an (2n) × (2n)-matrix of the form (5.1)

without the entry 1.

Similarly as for B2n+1 we may also solve (2.11) for the D2n Weyl group for which

we demonstrated in [9] that no solution to the constraining equations (2.9) based on the

Ansatz (3.8) could exist, that is for given invariance σε
− and σε

+ . Starting with θ⋆ε in the

form (5.1) we construct the deformed roots with standard representation for the Dℓ-roots

(αi)j = δij − δ(i+1)j , (αℓ)j = δj(ℓ−1) + δjℓ, i = 1, 2, . . . , ℓ− 1, j = 1, 2, . . . , ℓ as

α̃ℓ−(2j+1) = cosh εαℓ−(2j+1) + i sinh ε





ℓ
∑

k=ℓ−(2j+1)

αk +

ℓ−2
∑

ℓ−2j

αk



 , (5.6)

α̃ℓ−(2j+2) = cosh εαℓ−(2j+2) − i sinh ε





ℓ
∑

k=ℓ−2j−3

αk +

ℓ−2
∑

ℓ−2j

αk



 , (5.7)

α̃ℓ−2 = cosh εαℓ−2 − i sinh ε(αℓ−3 + αℓ−2 + αℓ), (5.8)

α̃ℓ−1 = cosh εαℓ−1 + i sinh εαℓ, (5.9)

α̃ℓ = cosh εαℓ − i sinh εαℓ−1. (5.10)

Similarly as for the B2n+1 case we find that θ∗εσ− = σ−θ whereas θ∗εσ+ 6= σ+θ with

σ− =
∏n

k=1 σ2k−1 and σ+ =
∏n−2

k=1 σ2k. Again it is easy enough to generalize this to the

the D2n+1 case.
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For the standard (n+ 1)-dimensional representation of Aℓ a rotation on a subspace of

∆̃∗(ε) for the first two coordinates and its conjugate momenta was suggested in [14, 15].

In that case, and for its generalisation (5.1), the corresponding deformation ∆̃(ε) can not

be constructed since (2.11) admits no solution.

6. The construction of q-deformed roots

Mainly motivated by an applications to affine Toda field theories in mind we provide in

this section a construction for q-deformed roots, meaning that we are seeking a map

δq : ∆ ⊂ R
n → ∆q ⊂ R

n[q], α 7→ αq = Θqα, (6.1)

with R
n[q] denoting a polynomial ring in q ∈ C. In this case the complex deformation ma-

trix Θq depends on the deformation q in such a way that limq→1Θq = I. Our construction

is centered around a q-deformation of the Coxeter element in the factorised form already

used in this manuscript σ := σ−σ+ as introduced in [12, 13]

σq := σ
q
− τ q σ

q
+ τ q . (6.2)

The deformations of the Coxeter factors σ± are defined as

σ
q
± :=

∏

i∈V±

σ
q
i , (6.3)

where the product is taken over q-deformed Weyl reflections, whose action on simple roots

αi ∈ ∆ is given as

σ
q
i (αj) := αj − (2δij − [Iji]q)αi . (6.4)

We employed here one of the standard definition for a q-deformed integer1

[n]q :=
qn − q−n

q − q−1
. (6.5)

A further deformation in q results from the map τ q also employed in (6.2)

τ q(αi) := qtiαi . (6.6)

The integers ti are the symmetrizers of the incidence matrix I, i.e. Iijtj = Ijiti. From these

definitions it is evident the q-deformed Coxeter element is only different from the ordinary

one when the associated Weyl group is related to non-simply laced algebras.

Since σq is defined by its action on the simple roots α it is natural to seek an operator

Oq acting on elements αq ∈ ∆q with the appropriate limit limq→1Oq = σ. Recalling that

the order of σ is the Coxeter number h, i.e. σh = 1, whereas the order of σq is deformed

σh
q = q2H , it is obvious that the relation can not be a simple similarity transformation. Here

H is the ℓ-th Coxeter number of the dual algebra, see e.g. [16] for more details. Therefore

we make the Ansatz

σqα = q2H/hΘ−1
q σΘq α = q2H/hΘ−1

q σ αq. (6.7)

1We will frequently use the identities [1]q = 1, [2]q = q + q
−1 and [3]q = 1 + q

2 + q
−2.
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and readily identify the operator Oq = q2H/hΘ−1
q σ. The relation (6.7) serves as the defining

relation for the q-deformed simple roots αq = Θq α.

In analogy to the undeformed situation we introduce a q-deformed simple root dressed

by a colour value as a separate quantity
(

γq
)

i
:= ci (αq)i. This serves as a representant to

introduce the q-deformed Coxeter orbits

(Ωq)i :=
{

(

γq
)

i
, σ
(

γq
)

i
, . . . , σh−1

(

γq
)

i

}

. (6.8)

The entire q-deformed root system ∆q is then spanned by the union of all ℓ q-deformed

Coxeter orbits

∆q :=
ℓ
⋃

i=1

(Ωq)i . (6.9)

At this stage it is not obvious under which type of symmetry ∆q is left invariant.

6.1 The q-deformed root space for
(

C
(1)
2 ,D

(2)
3

)

Let is now illustrate the working of the above formulae with a simple explicit example.

The incidence matrix for C2 is in this case defined as I12 = 1, I21 = 2, such that the

symmetrizers are t1 = 1 and t2 = 2. The Coxeter numbers are h = 4 and H = 6. Therefore

we obtain

σ
q
− =

(

−1 0

[2]q 1

)

, σ
q
+ =

(

1 1

0 −1

)

, τ q =

(

q 1

0 q2

)

, σq = q2

(

−1 −q

[2]q 1

)

. (6.10)

Solving equation (6.7) then yields the deformed roots

(αq)1 = r1α1 +
q

1 + q
(r1 − r2)α2, (6.11)

(αq)2 =
r2 + (r2 − 2r1)q

2

q + q2
α1 + r2α2, (6.12)

where r1, r2 depend on q with the limiting behaviour limq→1 r1 = 1 and limq→1 r2 = 1.

7. Non-Hermitian Calogero models

We can now formulate and investigate models on these complex root spaces. Thus we may

consider new types of non-Hermitian generalisations of Calogero models

H0,ε,q(p, x) =
p2

2
+

ω2

4

∑

α

(α · x)2 +
∑

α

gα

(α · x)2 , αi ∈ ∆, ∆̃(ε),∆q, (7.1)

or the analogues of Calogero-Moser-Sutherland models when replacing the rational poten-

tial by a trigonometric or elliptic one. The model Hε for the rational potential has been

investigated previously [4, 5, 9, 10] and was found to have remarkable properties when

compared with the standard undeformed models H0. As a result of the deformation into

the complex domain the singularities in the potential are regularized. Therefore the mod-

els no longer have to be defined in separate disjointed regimes and continued by phase
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factors corresponding to some selected statistics. As was shown in [9], in the Hε-models

the anyonic phase factors are automatically present and the models can be defined on the

entire domain of the configuration space. As a consequence the energy spectra of these

models will also be different. Various ground state wavefunctions and those corresponding

to exited states were computed in [9] and [5], respectively.

Since the Hamiltonians Hε,q are not Hermitian the canonical variables p and x are

non-observable in the standard Hilbert space. However, it is by now well understood how

to reconcile this by constructing a well defined metric operator ρ [17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27]. One seeks a linear, invertible, Hermitian and positive operator acting

in the Hilbert space, such that Hε,q becomes a self-adjoint operator with regard to this

metric such that p and x become observable in this space. For this purpose one constructs

a so-called Dyson map η, which maps the non-Hermitian Hamiltonian H adjointly to a

Hermitian Hamiltonian h

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†ρ = ρH with ρ = η†η. (7.2)

Depending on the assumptions made on the metric such type of Hamiltonians are referred

to with different terminology. When no assumption is made on the positivity of the ρ

in (7.2), the relation on the right hand side constitutes the pseudo-Hermiticity condition,

see e.g. [28, 29, 30], whenever the operator ρ is linear, invertible and Hermitian. In case

the operator ρ is positive but not invertible this condition is usually referred to as quasi-

Hermiticity [31, 32]. Different terminology is used at times with a less clear meaning.

In general we can not map the Hamiltonians Hε,q to some Hermitian counterparts in

a very obvious way, but in some case we can provide the explicit transformation η. We

recall that the rotations in (5.1) on two variables can be realised by means of the angular

momentum operators Lij = xipj − xjpi

(

z̃i

z̃j

)

= Rij

(

zi

zj

)

= ηij

(

zi

zj

)

η−1
ij , for z ∈ {x, p}, ηij = eε(xipj−xjpi). (7.3)

Noting furthermore that

H0(p̃, x̃) = Hε(p, x), (7.4)

we can find many explicit transformations of the type (7.2), which map these Hamiltonians

to some isospectral Hermitian counterpart

H0(p, x) = ηHε(p, x)η
−1. (7.5)

For instance for the Bℓ-models based on the deformations (5.1) the Dyson map is simply

η = η−1
12 η

−1
34 η

−1
56 . . . η−1

(ℓ−2)(ℓ−1). (7.6)

In other cases based on special orthogonal groups the rotations involved might not com-

mute. For instance, for the B5-model based on the deformation (3.49) with r0 = cosh2 ε

we find that

x̃ = θ⋆εx = R−1
24 R13R34R

−1
12 x = ηxη−1, with η = η−1

24 η13η34η
−1
12 . (7.7)
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When the deformation in the configuration space is not based on rotations such that inner

products are not preserved it remains a challenge to find the corresponding Dyson maps and

isospectral Hermitian couterparts. We also leave the investigation for the Hq(p, x)-models

for further investigations.

8. Non-Hermitian affine Toda theories

One of the main obstacles to overcome when passing from a classical description of a

field theory to a full-fledged quantum field theory is renormalisation. In 1+1 space-time

dimensions many miracles occur which allow to express a number of physical quantities

in an exact, that is non-perturbative, manner. In particular it is possible to formulate

classical Lagrangians which are in some sense exact from the quantum field theory point

of view. The classical affine Toda field theory is a prototype for this kind of behaviour

and has the remarkable property that its the classical mass ratios remain preserved in the

quantum field theory after renormalisation, whenever the associated Lie algebra is simply

laced [33, 34, 35, 36, 37, 38, 39, 40]. This property ceases to be valid when the algebra

becomes non-simply laced [41, 42, 43, 44, 45, 46, 12, 13], in which case one has to consider a

dual pair of affine Lie algebras [16] and the quantum mass ratios interpolate via an effective

coupling constant between the values obtained from these two algebras. In the strong and

weak limit of the coupling constant either of these two cases is obtained.

One may now pose the question whether it is also possible to formulate some nat-

urally modified Lagrangians for non-simply laced algebras which already capture some

exact features from the quantum level, such as preserving the classical mass ratios when

renormalised. In addition we may study models in which the roots are elements of the

antilinearly invariant space. In terms of simple roots we consider now the three different

versions of affine Toda field theories defined by the Lagrangians

L0,ε,q :=
1

2

ℓ
∑

i=1

∂µφi∂
µφi −

m2

β2

ℓ
∑

i=0

nie
βαi·φ, αi ∈ ∆, ∆̃(ε),∆q. (8.1)

The Lagrangian L0 corresponds to the standard version whereas Lε,q are newly proposed

models. The ℓ components of φ are real scalar fields, m an overall mass scale and the β is

the coupling constant. The α’s are simple roots with α0 being the negative of the longest

root, whose expansion in terms of simple roots in the relevant spaces α0 = −∑ℓ
i=1 niαi is

the defining relation for the integers ni, often referred to as Kac labels. The L0 theories are

known to fall roughly into two different classes characterised by β taken to be either real or

or purely complex in which case the Yang-Baxter equation obeyed by the scattering matrix

is either trivial or non-trivial, respectively. When β ∈ iR the theory is in general non-

Hermitian, except for the A2-case corresponding to the sine-Gordon model, but the classical

mass spectra were still found to be real and stable with respect to small perturbations [47].

Here we conjecture that the Lε,q-models are also meaningful.
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The classical mass matrix for the scalar fields is simply given by the quadratic term in

the fields of the Lagrangian and is easily extracted from the formulation (8.1)

M2
ij = m2

ℓ
∑

a=0

naα
i
aα

j
a , αi ∈ ∆, ∆̃(ε),∆q. (8.2)

The mathematical fact that the overall length of the roots is a matter of convention is

reflected in the physical property that the overall mass scale is not fixed. This is captured

in the constant m.

8.1 The mass spectrum of
(

C
(1)
2 ,D

(2)
3

)

-Lq

Taking the two q-deformed simple roots to be of the form (6.11), (6.12), noting that the

Kac labels for C2 are n1 = 2, n2 = 1 and using the non-standard representation for the

undeformed C2-roots α1 = {0, 1}, α2 = {1,−1} we compute the mass matrix in (8.2). The

virtue of this basis is that in the limit q → 1 the mass matrix is diagonal. For q 6= 1

the direct evaluation leads to a nondiagonal matrix. However, imposing the additional

constraint

r2 = r1q
3q2 − 5q + 2 + (q + 1)

√

(16− 7q)q − 8

2 (2q3 − q2 + q − 1)
, (8.3)

eliminates the off-diagonal elements. We obtain

M2
11 = r21q

3 2q
3 + 8q2 − 7q +

(

1− 2q2
)
√

16q − 7q2 − 8

(1− 2q3 + q2 − q)2
, (8.4)

M2
22 = r21q

11q5 − 18q4 + 19q3 − 10q2 + q +
(

q4 + 2q3 − 3q2 + 2q − 1
)
√

16q − 7q2 − 8

(2q3 − q2 + q − 1)2
,

with m1 = M11, m2 = M22 being the classical masses of the two scalar fields. As can be

found in the above mentioned literature, the quantum mass ratios of the L0-theory are

given by
m1

m2
=

sin
[

1
24(6−B)π

]

cos
(

Bπ
12

) , with B =
2Hβ2

Hβ2 + 4πℓh
, (8.5)

where B ∈ [0, 2] denotes the effective coupling constant. From (8.4), (8.5) and (8.5) we

can therefore fix the deformation parameter such that the quantum mass ratios of L0

correspond to the classical mass ratios of Lq. We find

q =
1

1 +
√

3
(

cos Bπ
24 + sin Bπ

24

)

+ 2 sin Bπ
12 − 3

, (8.6)

= 1− 1

2

√

7π

6

√
B +

7πB

24
− 193π3/2B3/2

192
√
42

+
95π2B2

1152
+O

(

B5/2
)

. (8.7)

Notice that deformation parameter q(B) is a decreasing real valued function of B taking

values between 1 and ≈ 0.435936. Consequently the coefficients in (6.11), (6.12) in front

of the simple roots acquire complex when the effective coupling constant varies between 0

and 2.

The classical mass spectrum of Lq equals the quantum mass spectrum of L0.
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9. Conclusions

We have provided two alternative general methods of construction for complex root sys-

tems. The first is based on using some selected elements of the Weyl group as analogues of

the parity transformation, which are then extended such that the entire root space remains

invariant under at least one antilinear symmetry. We have provided explicit solutions of

different types for a large number of specific Weyl groups. Since the suggested method is

very generic, i.e. allowing to start from any element in the Weyl group, it is useful to se-

lect a further principle providing some guidance. Starting from the factors of the Coxeter

element serves for that purpose, but we have also seen that this is often too restrictive

and for certain algebras it could be shown that no solutions exist in such a setting. How-

ever, we demonstrated that this can be overcome when starting from reduced versions of

these factor. The drawback is then that this gives rise to a large number of possibilities.

Nonetheless, as we demonstrated many of them lie in the same similarity class, which

provides a certain ordering principle. When giving up even this guiding principle one can

still find interesting solutions. The construction becomes even less restrictive if we also

give up the demand of preserving the inner products. We have paid particular attention

to the construction of the deformed variables in the dual space together with the corre-

sponding antilinear symmetries. The second type of construction is based on deformations

of the standard Coxeter element. The complex roots resulting from this procedure are not

naturally invariant under an obvious symmetry.

For the deformations related to the special orthogonal groups we identified in some

cases the corresponding rotations in the dual space. We also reversed the construction

in some examples and identified the corresponding deformed roots when starting from

certain rotations. It would be interesting to have a precise one-to-one relation between the

deformed roots and deformed variables. We leave this as an open challenge.

Both constructions may be employed in the context of multi-particle systems. Here we

indicated that all non-Hermitian Calogero-Moser-Sutherland models of the type Hε(p, x)

based on Bℓ and Dℓ Weyl groups may be mapped onto a Hermitian model via similarity

transformations involving various combinations of the angular momentum operators. For

the models based on other Weyl groups we expect this transformation to exist, but leave

the explicit construction for future investigations. Further interesting open questions for

future investigations are to find the explicit solutions including their modified spectra and

to settle the questions of whether the deformed models are still integrable.

The second type of construction was employed explicitly to define a new type of non-

Hermitian affine Toda theory. These models were found to have the interesting property

that their classical mass ratios are identical in all orders of the coupling constant to the

quantized and renomalised version of their undeformed couterparts. We leave the interest-

ing problem of investigating more examples for different types of algebras for the future.

Acknowledgments: MS is supported by EPSRC.
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A. Appendix

In this appendix we provide more examples of reduced root spaces generated from different

types of classes. We exhibit also the action of σ̃± on the simple roots from which one can

easily infer the invariance of the entire root space. We use the same conventions as for the

tables 2 and 3.

A.1 A8-Root spaces based on the class Σ{1,2,3,4,ℓ−3} and their invariance

σ̃(i) α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1) −1,2 1,2,3 −2,3 2, 3, 4 5 6 7 8

σ̃(1)2 −3 −2 −1 1, 2, 3, 4 5 6 7 8

σ̃(1)3 2,3 −1,2,3 1,2 3, 4 5 6 7 8

σ̃
(1)
− −1 1, 2, 3 −3 3, 4 5 6 7 8

σ̃
(1)
+ 1, 2 −2 2, 3 4 5 6 7 8

σ̃(2) 1, 2 3,4 −2,3,4 2,3 4, 5 6 7 8

σ̃(2)2 1, 2, 3, 4 −4 −3 −2 5 6 7 8

σ̃(2)3 1, 2, 3 −,2,3 2,3,4 −,3,4 3, 4, 5 6 7 8

σ̃
(2)
− 1 2, 3 −3 3, 4 5 6 7 8

σ̃
(2)
+ 1, 2 −2 2, 3, 4 −4 4, 5 6 7 8

σ̃(3) 1 2, 3, 4 −3,4 3,4,5 −4,5 4, 5, 6 7 8

σ̃(3)2 1 2, 3, 4, 5 −5 −4 −3 3, 4, 5, 6 7 8

σ̃(3)3 1 2, 3 4,5 −3,4,5 3,4 5, 6 7 8

σ̃
(3)
− 1 2, 3 −3 3, 4, 5 −5 5, 6 7 8

σ̃
(3)
+ 1 2 3, 4 −4 4, 5 6 7 8

σ̃(4) 1 2 3, 4 5,6 −4,5,6 4,5 6, 7 8

σ̃(4)2 1 2 3, 4, 5, 6 −6 −5 −4 4, 5, 6, 7 8

σ̃(4)3 1 2 3, 4, 5 −4,5 4,5,6 −5,6 5, 6, 7 8

σ̃
(4)
− 1 2 3 4, 5 −5 5, 6 7 8

σ̃
(4)
+ 1 2 3, 4 −4 4, 5, 6 −6 6, 7 8

σ̃(5) 1 2 3 4, 5, 6 −5,6 5,6,7 −6,7 6, 7, 8

σ̃(5)2 1 2 3 4, 5, 6, 7 −7 −6 −5 5, 6, 7, 8

σ̃(5)3 1 2 3 4, 5 6,7 −5,6,7 5,6 7, 8

σ̃
(5)
− 1 2 3 4, 5 −5 5, 6, 7 −7 7, 8

σ̃
(5)
+ 1 2 3 4 5, 6 −6 6, 7 8

σ̃(6) 1 2 3 4 5, 6 7,8 −6,7,8 6,7

σ̃(6)2 1 2 3 4 5, 6, 7, 8 −8 −7 −6

σ̃(6)3 1 2 3 4 5, 6, 7 −6,7 6,7,8 −7,8

σ̃
(6)
− 1 2 3 4 5 6, 7 −7 7, 8

σ̃
(6)
+ 1 2 3 4 5, 6 −6 6, 7, 8 −8
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A.2 A8-Root spaces based on the class Σ{1,22,3,4,ℓ−4} and their invariance

σ̃(i,j) α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1,1) −1,2 1,2,3 −2,3 2, 3, 4, 5 −5 5, 6 7 8

σ̃(1,1)2 −3 −2 −1 1, 2, 3, 4 5 6 7 8

σ̃(1,1)3 2,3 −1,2,3 1,2 3, 4, 5 −5 5, 6 7 8

σ̃
(1,1)
− −1 1, 2, 3 −3 3, 4, 5 −5 5, 6 7 8

σ̃
(1,1)
+ 1, 2 −2 2, 3 4 5 6 7 8

σ̃(2,1) 1, 2 3,4 −2,3,4 2,3 4, 5, 6 −6 6, 7 8

σ̃(2,1)2 1, 2, 3, 4 −4 −3 −2 2, 3, 4, 5 6 7 8

σ̃(2,1)3 1, 2, 3 −2,3 2,3,4 −3,4 3, 4, 5, 6 −6 6, 7 8

σ̃
(2,1)
− 1 2, 3 −3 3, 4 5 6 7 8

σ̃
(2,1)
+ 1, 2 −2 2, 3, 4 −4 4, 5, 6 −6 6, 7 8

σ̃(3,1) 1 2, 3, 4 −3,4 3,4,5 −4,5 4, 5, 6, 7 −7 7, 8

σ̃(3,1)2 1 2, 3, 4, 5 −5 −4 −3 3, 4, 5, 6 7 8

σ̃(3,1)3 1 2, 3 4,5 −3,4,5 3,4 5, 6, 7 −7 7, 8

σ̃
(3,1)
− 1 2, 3 −3 3, 4, 5 −5 5, 6, 7 −7 7, 8

σ̃
(3,1)
+ 1 2 3, 4 −4 4, 5 6 7 8

σ̃(4,1) 1 2 3, 4 5,6 −4,5,6 4,5 6, 7, 8 −8

σ̃(4,1)2 1 2 3, 4, 5, 6 −6 −5 −4 4, 5, 6, 7 8

σ̃(4,1)3 1 2 3, 4, 5 −4,5 4,5,6 −5,6 5, 6, 7, 8 −8

σ̃
(4,1)
− 1 2 3 4, 5 −5 5, 6 7 8

σ̃
(4,1)
+ 1 2 3, 4 −4 4, 5, 6 −6 6, 7, 8 −8

A.3 A8-Root spaces based on the class Σ{1,22,3,4,ℓ−4} and their invariance

σ̃(i,j) α1 α2 α3 α4 α5 α6 α7 α8

σ̃(1,2) −1 1, 2, 3, 4 −3,4 3,4,5 −4,5 4, 5, 6 7 8

σ̃(1,2)2 1 2, 3, 4, 5 −5 −4 −3 3, 4, 5, 6 7 8

σ̃(1,2)3 −1 1, 2, 3 4,5 −3,4,5 3,4 5, 6 7 8

σ̃
(1,2)
− −1 1, 2, 3 −3 3, 4, 5 −5 5, 6 7 8

σ̃
(1,2)
+ 1 2 3, 4 −4 4, 5 6 7 8

σ̃(2,2) 1, 2 −2 2, 3, 4 5,6 −4,5,6 4,5 6, 7 8

σ̃(2,2)2 1 2 3, 4, 5, 6 −6 −5 −4 4, 5, 6, 7 8

σ̃(2,2)3 1, 2 −2 2, 3, 4, 5 −4,5 4,5,6 −5,6 5, 6, 7 8

σ̃
(2,2)
− 1 2 3 4, 5 −5 5, 6 7 8

σ̃
(2,2)
+ 1, 2 −2 2, 3, 4 −4 4, 5, 6 −6 6, 7 8
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σ̃(3,2) 1 2, 3 −3 3, 4, 5, 6 −5,6 5,6,7 −6,7 6, 7, 8

σ̃(3,2)2 1 2 3 4, 5, 6, 7 −7 −6 −5 5, 6, 7, 8

σ̃(3,2)3 1 2, 3 −3 3, 4, 5 6,7 −5,6,7 5,6 7, 8

σ̃
(3,2)
− 1 2, 3 −3 3, 4, 5 −5 5, 6, 7 −7 7, 8

σ̃
(3,2)
+ 1 2 3 4 5, 6 −6 6, 7 8

σ̃(4,2) 1 2 3, 4 −4 4, 5, 6 7,8 −6,7,8 6,7

σ̃(4,2)2 1 2 3 4 5, 6, 7, 8 −8 −7 −6

σ̃(4,2)3 1 2 3, 4 −4 4, 5, 6, 7 −6,7 6,7,8 −7,8

σ̃
(4,2)
− 1 2 3 4 5 6, 7 −7 7, 8

σ̃
(4,2)
+ 1 2 3, 4 −4 4, 5, 6 −6 6, 7, 8 −8
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