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Abstract A stochastic implementation of the Multiple Mapping Conditioning (MMC) 8

approach has been applied to a turbulent piloted jet diffusion flame (Sandia flame F) that 9

is close to extinction. Two classic mixing models (Curl’s and IEM) are introduced in the 10

MMC context to model the turbulent mixing. The suggested model involves the use of a 11

reference space (that is mapped to mixture fraction space) in order to define particle prox- 12

imity. The addition of the MMC ideas to the IEM and Curl’s models, that is suggested in 13

the current work, aspires to combine the simplicity of these two models with the enforced 14

compositional locality without violating the linearity and independence principles. The for- 15

mulation of the approach is discussed in detail and results are presented for the mixing field 16

and reactive species. The predictions are compared with joint-scalar PDF simulations using 17

the same mixing models and experimental data. Moreover, the sensitivity of the model to 18

the particle number is examined. It is shown that MMC is less sensitive to the number of 19

particles and can generally produce improved predictions of major and minor chemically 20

reacting species with a lower number of particles. 21
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1 Introduction24

An important safety issue for engineers of combustion systems is the appearance of local25

extinction and re-ignition of the flame. These phenomena can be directly linked to the levels26

of turbulence in the combustion chamber. Overall, turbulence is a physical process highly27

desirable in combustion devices since it enhances the mixing of the fuel and oxidiser and28

accelerates the combustion process. However, due to its chaotic nature, small changes can29

result in a considerable increase of its intensity. If a critical value is exceeded very small30

eddies are generated that can penetrate the reaction zone reducing the flame temperature31

and disrupting the formation of radicals. Under these conditions the chemistry deviates32

from equilibrium and regions on the stoichiometric surface begin to extinguish. This could33

lead to global flame extinction or the flame may re-ignite depending on local strain-rate34

conditions.35
Direct Numerical Simulation (DNS) would be the only numerical method capable of pro-36

viding a detailed description of extinction and re-ignition since burning and mixing occurs37

mostly at the smallest scales. However, due to the very large computing requirements Large-38

eddy (LES) and Reynolds averaged (RANS) simulations are the two alternative methods39

commonly used that involve some extra modelling. Although LES has drawn considerable40

attention of the academic community over the last decade, its application has not yet quite41

reached the industry sector. On the other hand RANS based CFD codes are still widely used42

in industries. In both, the RANS and LES contexts the instantaneous scalar dissipation –the43

term used to describe the levels of the mixing rate– is unclosed and thus the research around44

new turbulence combustion approaches that represent more accurately the mixing process45

is still very important.46
The objective of the present work is to ascertain the capability of the Multiple Map-47

ping Conditioning (MMC) approach [21] and its closures to capture local extinction and48

re-ignition in laboratory flames in the RANS context. The MMC framework combines the49

probability density function (PDF) approach [27] and the mixture fraction based methods50

[20] via the application of a generalised mapping function to a prescribed reference space.51

PDF methods have been extensively applied to the modelling of turbulent reacting flows and52

a relatively recent comprehensive review is given by Haworth [14]. Of particular relevance53

are the studies by Pope and co-workers [3, 4, 36] where sensitivities of the PDF modelling54

approach towards parameters such as the mixing model [4], the mixing time scale [4] and55

the chemical mechanism [3] were investigated. Raman and Pitsch [30] successfully adapted56

the PDF methods as sub-grid scale model for large-eddy simulations. The Sandia flame57

series with flames of moderate to significant local flame extinction (Sandia Flames E and58

F) [1, 2] served as a test bed for all these modelling validation studies, and the same flames59

are used here for the validation of the MMC models.60
With respect to the MMC modelling, stochastic and deterministic formulations exist, and61

both formulations have been explored in the past for the simple case of Sandia flame D [32,62

33], a flame with a relatively low degree of extinction. Variants of the original MMC for-63

mulation have been successfully applied to Sandia Flame E (and Flame F) using a hybdrid64

binomial Langevin-MMC model for the modelling of the velocity-scalar interactions [35] or65
using a sparse particle method as sub-grid model for LES of the turbulent flow and mixing66

fields [12, 13]. In this work we focus exclusively on the stochastic implementation in the67
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RANS context, we base the MMC mixing model on the IEM and Curl’s models (as opposed 68

to IEM only that was used in earlier work [33]), we expand our study to the more challenging 69

case of Sandia flame F, a flame with a relatively high Reynolds number and a considerable 70

degree of extinction and re-ignition that has never been explored in the MMC context, and 71

we assess the model dependence on the number of particles used for the stochastic solution 72

of the composition field. 73

2 Turbulence-Chemistry Interaction Model 74

2.1 The PDF approach 75

Conventional PDF methods are based on the solution of the following equation that 76

describes the evolution of the joint (one point) scalar PDF P = P(y, x, t) of a set of ns 77

scalars YI (I = 1, .., ns). 78

∂〈ρ〉PY

∂t
+ ∇(〈ρ〉uY PY ) + ∂〈ρ〉〈�|y〉PY

∂yi

+ ∂2〈ρ〉NIJ PY

∂yi∂yj

= 0, (1)

where uY is the conditional expectation of the flow velocity v (uY (y, x, t) = 〈v|Y = y〉) 79

and NIJ is the conditional scalar dissipation, NIJ = 〈D∇YI∇YJ |Y = y〉, which is by 80

definition symmetric and positive semidefinite. The term D is the diffusion coefficient DIJ 81

(which is assumed to be the same for all species in high Reynolds number flows) and �I is 82

the reaction rate. 83

The most commonly adopted approach to solving the above PDF evolution equation is 84

the Lagrangian stochastic particle method, where the evolution of an ensemble of particles 85

is used to represent the evolution of the (Eulerian) joint PDF of Eq. 1. In terms of imple- 86

mentation of the framework, a Lagrangian solver for the composition joint PDF is coupled 87

with a standard Eulerian approach [14, 24, 25]. The solution domain in physical space is 88

discretized into a number of cells for the purpose of extracting local mean quantities such as 89

velocities which are then used in the particle evolution equations. Then, moments of reac- 90

tive species, temperature and mixture fraction can be extracted by ensemble (or weighted) 91

average of the particles in the same Eulerian cell. Properties of particles drawn from the 92

same cell are considered to be local in the physical space. This approach is followed in the 93

current work as well. Equation 1 is replaced by an equivalent set of stochastic differential 94

equations of the following form 95

dx∗ = (v(x∗, t) + 1

ρ

∂

∂x
(ρ(D + Dt)))dt + √

2(D + Dt)dw∗
i , (2)

96
dY ∗

I = [�∗
I + S∗

I ]dt. (3)

The underlying idea is that the Fokker-Planck equation [11] that corresponds to the above 97

set of equations has the same moments as those given by the PDF transport Eq. 1. Here 98

and for the remainder of the paper, the superscript ’*’ is used to distinguish the values 99

linked to stochastic trajectories (stochastic particles), from deterministic quantities, Dt is 100

the turbulent diffusivity and approximated by Dt ≈ 0.09 ∗ k2/ε/σt with σt = 0.7 being the 101

turbulent Schmidt number. Equation 2 accounts for transport in physical space while Eq. 3 102

accounts for transport in the composition space. The location of the particles is indicated 103

as x∗, w∗
i is a Wiener process with zero mean and variance equal to dt and S∗ is a mixing 104

operator that simulates the rate of change of scalar dissipation and in the Lagrangian particle 105

context it represents (in a stochastically equivalent sense) the composition change of a fluid 106
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particle under the effect of molecular mixing. The v(x∗, t) term is calculated by using the107

mean Eulerian velocity field v(x, t) interpolated to the particle position x∗.108

For the modelling of S∗ certain principles should be satisfied by the mixing models such109

as boundedness of the scalars, linearity of scalar transport, independence of the evolution110

of the particle properties and most importantly localness in the physical and compositional111

spaces [27, 31]. Treating fluid as continuum, molecular diffusion is an exchange of composi-112

tion between neighboring fluid particles which are infinitesimally close in both position and113

in composition. Although localness in the physical space is easy to impose in most models114

by allowing ”mixing” among particles that belong to the same cell, localness in composition115

space is a major problem and much more difficult to impose [26]. Results [31] suggest that116

if particles mix with other particles in their immediate neighbourhood in composition space117

so that mixing across the reaction zone is avoided, the description of mixing is improved.118

On the contrary ”artificial” extinction can be predicted for turbulent non-premixed flames119

at infinite Damköler number if the principle of localness in composition space is violated.120

An additional difficulty is that in reality localness in the physical space and localness in the121

composition space in particle methods are two principles that interlink. In a recent study by122

[19] it is demonstrated that closeness in physical space can be related –in addition to local-123

ness in composition space– to the number of particles used in the calculations and of course124

to the resolution limitations originating from the resolution of the underlying Eulerian flow125

fields.126

Different models have been suggested in the literature for S∗. Simple models that are127

easy to implement, such as the interaction by exchange with the mean (IEM) [10] and the128

various Curl’s models [9, 16] do not ensure localness in the composition space. A more129

recent model, the Euclidean minimum spanning tree (EMST) [31] enforces locality but130

implementation is rather complicated, and it violates the linearity and independence princi-131

ples. A promising new model the shadow-position mixing model (SPMM), was introduced132

in 2013 in [29] however up to date its applicability has only been demonstrated for the ide-133

alised case of a reactive scalar mixing layer. The addition of the MMC ideas to the IEM and134

Curl’s model that is suggested in the current work and described in detail in the next sec-135

tion, aspires to combine the simplicity of these two models with the enforced compositional136

locality without violating the linearity and independence principles.137

2.2 The MMC concept138

MMC, by the use of a reference space, addresses some of the problems described in the139

previous section associated with the modelling of the mixing term. The basic idea of the140

mapping closure concept [5, 28] is to employ turbulent fluctuations and small-scale mixing141

in a mathematical reference space, ξ , with a known (or prescribed) PDF to model the mixing142

in the physical composition space with unknown PDF. A deterministic implementation of143

the method leads to closure of the conditional scalar dissipation [7, 17]. In the present144

paper, we focus on a stochastic implementation. If the reference space is chosen properly it145

can be used to enforce localness in composition space [21, 34]. The idea is to track particle146

position in the reference space and then allow mixing only among particles that are close to147

each other in ξ -space. Theoretically, events close in physical space should also be close in148

composition space, ensuring the localness of the MMC model.149

The suggested approach can considered to be an extension to the work of Wandel et150

al. [34] and has already been applied for the case of Sandia flame D using IEM as the only151

underlying mixing model [33]. It is a probabilistic MMC formulation with a single reference152

variable that is used to enforce localness in mixture fraction space and whose evolution153
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is described by a Markov process. MMC allows the choice of any number of reference 154

variables, yet for flames with low levels of local extinction, localness in mixture fraction 155

space is known to be sufficient to indicate localness in the multidimensional composition 156

space. In a broader sense the shadow position model of [29] can be seen as a variation 157

of the MMC concept where instead of enforcing locality through mixture fraction space, 158

mixing is modeled as a relaxation of the composition to its mean conditional on the shadow 159

position. In the present work we test if the enforced locality imposed by MMC can capture 160

the behaviour of flames close to blow off. 161

We introduce a stochastic reference variable, ξ∗, which is governed by the following set 162

of sdes 163

dx∗ = U(ξ∗)dt, (4) 164
dξ∗ = Aodt + bodw∗ (5)

and for which we assume that the distribution is known. 165

The Fokker-Planck equation representing the above sde can be written as 166

∂Pξ

∂t
+ ∇UPξ + ∂AoPξ

∂ξ
− ∂2BoPξ

∂ξ2
= 0, (6)

where 2Bo = (bo)2. Considering an arbitrary function of ξ∗, f (ξ∗) = f ∗ a corresponding 167

sde for this new random variable can be generated using an Ito transformation: 168

df (ξ∗) = Ãdt + b̃dw∗, (7)

with 169

Ã = ∂f (ξ)

∂t
+ U∇f (ξ) +

(

Ao ∂f (ξ)

∂ξ
+ Bo ∂2f (ξ)

∂ξ2

)

(8)

and 170

b̃ = bo ∂f (ξ)

∂ξ
(9)

The Fokker Planck equation representing the above sde is given by 171

∂Pf

∂t
+ ∇UPf + ∂ÃPf

∂f
− ∂2B̃Pf

∂f 2
= 0. (10)

The advantage of the “mapping ” is that by assuming a shape for Pξ we can define Ao and 172

bo from Eq. 6. We can then define the unknown drift and diffusion coefficients for the new 173

stochastic process f (ξ∗) and consequently the evolution of its PDF. It should be noted that 174

the equivalent PDF describes the one-point one-time cell distribution. A two-point strategy 175

has been suggested based on mapping functions that incorporate two-points statistics [15] 176

however it has not been attempted here. 177

Following the probabilistic approach and adding to the equations for a standard PDF 178

approach, Eqs. 2 and 3, the two new MMC equations, Eqs. 5 and 7, that embody the mapping 179

closure concept, the general probabilistic approach gives 180

dx∗ = U(ξ∗)dt, (11)
181

dξ∗ = Aodt + bodw∗, (12) 182
dY (ξ∗) = Ãdt + b̃dw∗, (13) 183

dY ∗ = [�∗
I + S∗

I ]dt. (14)

It should be noticed that Eq. 13 is not solved since it is in reality equivalent to Eq. 12. 184

This mathematical equivalence is the key that explaines the concept that an appropriate 185

choice of the reference space will also guarantee localness in composition space. To keep 186
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the computational cost low, the reference variables generate the fluctuations of a selected187

number of species only (the so called “major species”) and the fluctuations of the remaining188

species (the so called “minor species”) are linked to the fluctuations of major species similar189

to the conditional moment closure methodology [21]. Thus, it is only necessary to establish190

mapping relations as Eq. 13 for the major species and this is here mixture fraction, Z. For191

each major species that has a corresponding reference variable, the MMC transport equation192

becomes a PDF transport equation [21], [18]. Thus, Ao, Bo and U(ξ∗) must be chosen so193

that Ã and B̃ describe a diffusion process for mixture fraction. If we assume a Gaussian194

distribution for the reference variable and equate Eqs. 10 to 1 for mixture fraction we can195

obtain the unknown coefficient Ao and bo from196

U = U(ξ ; x, t) = U(0) + U(1)ξ, (15)
197

Ao = −∂Bo

∂ξ
+ Boξ + 1

〈ρ〉∇〈ρ〉U(1) + 2

Pξ

∂BoPξ

∂ξ
, (16)

198
U(0) = 〈v〉, (17)

199
U(1)〈ξZ〉 = 〈v′

Z
′ 〉. (18)

The turbulent flux can be modelled by a standard gradient approximation, 〈v′
Z

′ 〉 =200

−Dt∇ < Z > and 〈ξZ〉 results directly from the solution of Z(ξ) (c.f Fig. 1). The term201

Bo is modelled independently of ξ , Bo = Bo(x, t)), and is related to the scalar dissipation202

〈NZ〉 through203

Bo

〈(
∂Z

∂ξ

)2
〉

= 〈NZ〉. (19)

It is apparent from Eq. 19 that closure of the MMC model requires knowledge of the204

unconditional scalar dissipation of Z, but it does not explicitly include the more difficult205

to model conditional scalar dissipation. The dissipation 〈NZ〉 can be modelled adopting206

Corrsin’s suggestion [8] that the decay rate of a passive scalar variance is assumed to be207

proportional to the decay rate of the turbulent kinetic energy i.e.208

〈NZ〉 = 0.5
〈Z′2〉
τD

, (20)

where τD is proportional to the flow turbulent time scale τ = k/ε with a proportionality209

constant commonly assumed to be CD = 1/Cφ = 0.5.210

It should be noted that three different definitions of fluctuations exist in MMC: the211

unconditional fluctuations or major fluctuations Y ′
I = YI − 〈YI 〉, the minor fluctuations212

Y ′′
I = YI −〈YI |ξ 〉 and the fluctuations around a quantity, conditionally averaged on mixture213

fraction itself, Y ′′′
I = YI − 〈YI |Z〉. The diffusion coefficient Bo controls the major fluc-214

tuations while the mixing operator S∗
I controls the minor fluctuations. In the current work215

two different models have been implemented which are essentially modified versions of the216

well known IEM and Curl’s model.217

When using the modified IEM model (MMC-IEM) the particles are mixed with their218

means conditioned on a certain value in the reference space 〈YI |ξ 〉219

S∗
I = 1

2

YI (ξ
∗) − Y

∗p
I

τmin

. (21)

For the modified version of the Curl’s model (MMC-Curl’s) at each time step all particles220

that belong to the same Eulerian cell are formed into pairs and mix with their mean. The221

selection of every particle pair is not random as in commonly used Curl’s models but it is222
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according to the distance of the particles in the reference space. For the present work, only 223

particles that belong to the same ξ -bin are allowed to mix following 224

S∗
I = 1

2

0.5(Y
∗p
I + Y

∗q
I ) − Y

∗p
I

τmin

, (22)

with < S∗|ξ∗, x∗ >= 0 [21]. The simplicity of both models is attractive for implementa- 225

tion, but the estimation of the “minor dissipation time”, τmin, is rather problematic since 226

minor fluctuations exist only in the context of MMC. Wandel and Klimenko [34] used DNS 227

of homogeneous turbulence to obtain a time scale ratio between the minor and major dissi- 228

pation time of τmin/τD = 1/8. However, Vogiatzaki et al. [33] could not corroborate these 229

findings for laboratory jet diffusion flames. Mixing time scales smaller than τD were found 230

to suppress most minor fluctuations and lead to a significant underprediction of the condi- 231

tionally averaged variances. For Sandia Flame D, best results were obtained with τmin = τD , 232

and this value is adopted here. 233

3 Computational Methods 234

The test case (Sandia flame F) [1] consists of a methane/air fuel mixture that issues from a 235

central d= 7.2mm internal diameter nozzle surrounded by a coaxial pilot flame with an outer 236

diameter of 18.2mm. The fuel is 25 % CH4 and 75 % air by volume with a stoichiometric 237

mixture fraction of Zst = 0.351. The jet Reynolds number is 44,800, the pilot inlet velocity 238

is 22.8m/s and the velocity of the co-flowing air is 0.9m/s. 239

The PDF approach is used in order to model the turbulence-chemistry interaction. The 240

composition PDFs are calculated by Monte Carlo methods, while a finite-volume method 241

was applied to solve for the mean velocity, dissipation, and mean pressure fields. The Eule- 242

rian flow field equations are solved using an in-house RANS code (BOFFIN). Turbulence 243

is modelled by a standard k-ε model [23]. A cylindrical domain extends 0.65m in down- 244

stream direction and 0.15m in radial direction and is discretised by 200 axial and 100 radial 245

finite volume cells. An augmented reduced mechanism (ARM2) derived from the full GRI 246

3.0 mechanism using quasi-steady assumptions for some minor species is incorporated to 247

describe the chemical reactions [6]. Cao and Pope [3] demonstrated that ARM2 is capa- 248

ble of predicting the correct extinction levels for all Sandia Flames D-F but for flame F, 249

results may be sensitive towards small changes in the boundary conditions or modelling 250

parameters. For the composition field calculations, three different particle densities have 251

been used in order to asses the sensitivity of the models on particle number. The differ- 252

ent test cases are listed in Table 1. The evolution of the particle properties is modelled 253

by Eqs. 11 to 14. We emphasise that every particle carries information on its (stochas- 254

tic) velocity, species concentration, temperature and reference space ξ , obtained from 255

Eq. 12. 256

Note that the reference space is Gaussian and unbounded, but the deterministic drift 257

term counteracts the random diffusion term and keeps particles close to the mean. Then 258

Table 1 Overview of the test
cases with corresponding number
of particles

Test case Number of Particles Particles per cell

1 400.000 20

2 1.000.000 50

3 2.000.000 100
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depending on their ξ value the particles within each cell are ordered in the reference sample259

space that extends from -4 to 4, divided into 16 ξ -bins. In each ξ -bin, 〈YI |ξ 〉 is defined by an260

ordinary averaging process. For empty ξ -bins, values are obtained from linear interpolation.261

It is important to emphasize that the calculations with 20 particles/cell take 5 hours on262

a single core machine. The computational cost is tripled when the number of particles is263

increased to 100 particles per cell. Previous Lagrangian PDF approaches in the RANS con-264

text use a wide range of particle numbers (from 100 particles/cell [36] to 800 particles/cell265

[24]). Although the absolute computational time depends on the specific characteristic of266

the codes used in these calculations, it is obvious that a significant increase of the num-267

ber of particles will significantly increase the computational cost. This increase can be very268

important for the calculation of a realistic industrial geometry with a considerably bigger269

grid. Thus, a very desirable characteristic of any new mixing model is to perform well with a270

relatively low number of particles per cells. This motivated the three numerical experiments271

with different numbers of particles272

4 Results and Discussion273

Figure 1 is a graphic representation of the MMC concept at x/d =15 at three radial locations274

of the flame under consideration: on the rich side (r/d = 0.1 ), in the shear layer (r/d =1)275

and on the lean side (r/d = 2). As mentioned above every particle carries a set of values that276

represent its (stochastic) velocity, species concentration, temperature and ξ . This creates a277

correlation between temperature, (or any reactive species), mixture fraction and reference278

T

r/d=0.1 r/d=1 r/d=2

T

Z

0    0.2   0.4    0.6   0.8   1 0    0.2   0.4    0.6   0.8   1 0.2         0.4      0.6        0.8    

-4     -2        0        2        4  

-4     -2        0        2        4  -4     -2        0        2        4  

-4       -2       0        2        4  -3     -2   -1      0     1     2     3        

-3     -2   -1      0     1     2      3        

1

0.8

0.6

0.4

0.2
0

2500

2000

1500

  1000

  500

2500

2000

1500

  1000

  5000

Fig. 1 MMC mapping concept: first row – temperature versus reference space at three radial locations;
second row – computed mapping function; third row – temperature versus mixture fraction for the MMC-IEM
mixing model
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space which is demonstrated in the top two rows of the figure. Closeness of the particles 279

in the reference space controls closeness of the particles in the mixture fraction fraction 280

space and consequently in the temperature (or composition) space as can be seen in the 281

figures in the bottom row. This correlation exists only because the evolution of the reference 282

space, Eq. 12, is not independent of the evolution of the species, Eq. 13. Consequently, 283

mixing particles that are close in reference space is equivalent to mixing particles close in 284

composition space. It is important to stress that if the particle’s value of the reference space 285

was held constant throughout the calculations, the reference variable and mixture fraction 286

would decorrelate with time (or distance from the jet exit) and the method would collapse 287

to a conventional PDF approach. The decorrelation would be equivalent to horizontal lines 288

of the averaged mixture fraction, 〈Z | ξ 〉, in the middle row of Fig. 1. 289

In Fig. 2 the radial profiles of the mean and root mean square (rms) of the mapping func- 290

tion (mixture fraction) are presented for all four mixing models, IEM, MMC-IEM, Curl’s 291

and MMC-Curl’s. It is apparent that the mixing field is quite insensitive to the choice of the 292

mixing model. The simulations presented in this figure are performed with 20 particles/cell, 293

the quality of predictions for test cases 1 to 3 (see Table 1) is comparable for all models and 294

none of them shows a significant dependence on the particle number. As it has been shown 295

in previous studies [4, 36] the predictions for the mixture fraction depend mostly on the 296

choice of the mixing time scale that for the current work is the same for all four models. 297

Figures 3, 4, 5 and 6 show the scatter plots of temperature at different axial locations 298

for three different particle loadings. Figure 7 shows the experimental results and serves 299

as comparison. These figures allow a qualitative assessment, and MMC (both with IEM 300

and Curl’s), yields a somewhat more realistic scatter in temperature with fewer realizations 301

above equilibrium conditions than the classic models. The MMC-IEM model is not capa- 302

ble of fully capturing the extent of extinguished flame elements as seen in the experiments, 303

but it needs to be emphasized here that MMC-IEM provides qualitatively reasonable pre- 304

dictions even with a very small number of particles. These results should be compared with 305
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Fig. 2 Radial profiles of mean (left) and rms (right) of mixture fraction Z at different axial locations
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Fig. 3 MMC-IEM: scatter plots of temperature at different axial locations and for different particle number
densities

conventional IEM simulations (see Fig. 4). The IEM mixing model creates two very dis-306

tinct branches, one burning and one non-burning, that are not present in Fig. 7 and yield an307

unphysical bias towards certain realizations in composition space. Note that the computa-308

tion of the mean value in the cell, used for the mixing model, is based on the instantaneous309

cell population and it slightly varies with the iteration and is thus dependent on the number310
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Fig. 4 IEM: Scatter plots of temperature at different axial locations and for different particle number
densities
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Fig. 5 MMC-Curl’s: Scatter plots of temperature at different axial locations and for different particle number
densities

of the particles in the cell. The dependence of the IEM model on particle number would 311

vanish if averages over many iteration would be used instead. 312

The MMC-Curl’s model appears to provide the best qualitative agreement with the exper- 313

imental data especially further downstream. The conventional Curl’s model also predicts 314

the extinction satisfactorily, but some spurious behaviour can be observed especially on the 315

lean side when only few particles are used. The reader should note that we have used the 316
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Fig. 6 Curl’s: Scatter plots of temperature at different axial locations and for different particle number
densities



AUTHOR'S PROOF JrnlID 10494 ArtID 9626 Proof#1 - 19/06/2015

UNCORRECTED
PROOF

Flow Turbulence Combust

 500

 1000

 1500

 2000

 2500

 0  0.2  0.4  0.6  0.8  1

T

Z

x/d = 7.5

Exp

 500

 1000

 1500

 2000

 2500

 0  0.2  0.4  0.6  0.8  1

T

Z

x/d = 15

Exp

Fig. 7 Experiment: Scatter plots of temperature at different axial locations

simple Curl’s model in its original form and not its modified version. No additional control317

of the mixing process to limit unphysical super-equilibrium values has been attempted.318

A better insight is provided by Figs. 8 and 9. Here, the radial profiles of the conditional319

temperature and its conditional rms at different axial locations are presented and the MMC-320

IEM and IEM models can be compared. It can be clearly seen that IEM shows a strong321

dependence on the particle number while MMC-IEM is much less sensitive to particle den-322

sity and only 20 particles per cell yield an independence of the solution from the particle323

density while IEM requires around 100 particles/cell to approximate the same results. The324

conditional rms are considerably under-predicted for the MMC-IEM and the IEM model325

appears to be somewhat better. However these predictions should be always viewed in con-326

junction with Figs. 3 and 4. The high rms values result from unphysical mixing of particles327

that create two distinct burning modes rather than a uniform scattering as the one seen in328

the experiments (see Fig. 7).329

These trends are similar but much less pronounced for MMC-Curl’s and Curl’s model330

(not shown here). MMC-Curl’s and Curl’s yield conditional temperatures closer to the331

experimental values at both axial locations, and the classic Curl’s mixing model is only332
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Fig. 8 Radial profiles of conditional temperature and rms at different axial locations with MMC-IEM
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Fig. 9 Radial profiles of conditional temperature and rms at different axial locations with IEM

slightly more sensitive to the particle number density than MMC-Curl’s. The better agree- 333

ment with experimental data can be attributed to the fact that pair-wise models are known to 334

model mixing more realistically than mean based models. It is emphasized again, that for all 335

test cases the same mixing constant has been used, and no efforts have been made to control 336

mixing through the mixing time scale as is a common practice. This does not necessarily 337

imply that all the models have the best performance with the same constant. Adjustments 338

of the mixing constant Cφ could have led to more realistic degrees of extinction and can 339

have effects on the stability of the numerical solution but may deteriorate the mixing field 340

predictions [4] and would not aid the analysis of the differences between MMC-enhanced 341

mixing models and the particle number dependence. 342

The predictions of the radial profiles of temperature (not shown here) are generally less 343

sensitive to the number of particles for all models and the same holds for species such as 344

CH4. It can be noticed that for all the test cases the temperature predictions are satisfying 345

and a small improvement is noticed with the addition of MMC for radial positions r/d > 346

1.5 (towards the lean side of the flame). On the other hand the prediction of species such 347

as CO or H2O that are more sensitive to small changes of temperature is more challenging 348

and more dependent on the quality of the mixing model. Figures 10 and 11 show the radial 349

profiles of CO at different axial locations. MMC shows less sensitivity to the particle num- 350

ber when compared to IEM and less noise than Curl’s, which indicates increased numerical 351

stability that was reported to be an issue in earlier PDF calculations when using IEM and 352

Curl’s mixing models [4, 36]. MMC-Curl’s with 100 particles/cell gives the overall best 353

agreement. 354

IEM and MMC-IEM have opposite tendency when the particle number is increased at 355

x/d=15; the more particles are used in IEM, the higher the temperature, re-igniting the flame. 356

This is consistent with the scatter plot in Fig. 4 where the lower branch disappears as the 357

number of particles increases. MMC-IEM have a much more uniform behaviour, with min- 358

imum difference in temperature predictions with particle refinement. Doubling the number 359

of particles barely decreases the peak temperature by 50 K. The particle dependence of IEM 360
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Fig. 10 Radial profiles of CO at different axial locations with MMC-IEM (left) IEM(right)

is amplified, when we look at CO predictions (see Fig. 10) at x/d=15. At the same position361

the MMC-IEM shows no particle number dependency, although it under-predicts extinction362

as observed in Fig. 8.363

When the Curl’s mixing sub-model is used, both MMC-Curl’s and Curl’s exhibit large364

particle dependency in and around the zone with significant extinction (see Fig. 11). This365

suggests that when extinction occurs, large numbers of particles per cell are indeed needed.366

However, away from it, fewer particles per cell are needed in the MMC context as the367

extra dependence on the reference space improves the mixing description. Probably more368

than one reference space is needed when severe extinction occurs, a modification suggested369

in previous studies as well [7, 22]. In the case of Curl’s, large fluctuations are observed370

even with 100 particles per cell, while MMC produces smoother statistics. This can be371

easily understood by the nature of the corresponding SDE’s of the MMC and PDF methods,372

Eqs. 13 and 2, respectively. The diffusion coefficient of MMC equations can be zero locally,373

unlike the PDF equations, and therefore statistical noise can be globally reduced.374

An additional observation is that MMC shows better behaviour along the centreline and375

this is probably due to a better numerical treatment of the conditional velocity close to the376

centreline. It is not in the scope of this paper to explore the modelling of the conditional377
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Fig. 11 Radial profiles of CO at different axial locations with MMC-Curl’s (left) Curl’s (right)

velocity, however, it can be briefly noticed from Eq. 15 and 18 that the fluctuating part of 378

the velocity becomes zero when the gradients of mixture fraction are zero allowing particles 379

to follow the mean flow field trajectories. 380

5 Conclusion 381

In this paper we suggest a numerical framework for modelling the mixing term of the joint- 382

scalar PDF. Two models are tested for the prediction of the degree of extinction of a piloted 383

non-premixed turbulent methane flame close to blow off. The behaviour of two new mixing 384

models has been assessed in the MMC context and compared to common mixing models 385

in the literature. The models suggested in this work are extensions of two classic mixing 386

models (Curl’s and IEM) and aspire to overcome the deficiencies of the classical models 387

modelling of flames close to extinction. The results indicate that by introducing to the Curl’s 388

and IEM model indirect localness in the mixture fraction space through the use of the ref- 389

erence space, the predictions’ sensitivity to the number of particles is reduced. This trend 390

is more pronounced for the MMC-IEM variation of the model. For all test cases no efforts 391

have been made to control mixing through the mixing time scale as is a common practice 392
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and the same constant was used. Although it is well known that adjustments of the mixing393

constant Cφ could have led to more realistic degrees of extinction this would diminish the394

assessment of the predictive capabilities of the MMC-enhanced mixing models in terms of395

particle number dependence.396
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