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Adaptive Resource Provisioning for Virtualized Servers Using
Kalman Filters
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Resource management of virtualized servers in data-centres has become a critical task, since it enables cost-
effective consolidation of server applications. Resource management is an important and challenging task,
especially for multi-tier applications with unpredictable time-varying workloads. Work in resource manage-
ment using control theory has shown clear benefits of dynamically adjusting resource allocations to match
fluctuating workloads. However, little work has been done towards adaptive controllers for unknown work-
load types. This work presents a new resource management scheme that incorporates the Kalman filter into
feedback controllers to dynamically allocate CPU resources to virtual machines hosting server applications.
We present a set of controllers that continuously detect and self-adapt to unforeseen workload changes.
Furthermore, our most advanced controller also self-configures itself without any a priori information and
with a small 4.8% performance penalty in the case of high intensity workload changes. In addition, our con-
trollers are enhanced to deal with multi-tier server applications: by using the pair-wise resource coupling
between tiers, they improve server response to large workload increases as compared to controllers with no
such resource-coupling mechanism. Our approaches are evaluated and their performance is illustrated on a
3-tier Rubis benchmark web-site deployed on a prototype Xen-virtualized cluster.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement techniques, Modeling
techniques.

General Terms: Management, Measurement, Performance.
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1. INTRODUCTION

Virtualization technologies, e.g., [Barham et al. 2003], have transformed the structure
of the data-centre. A physical server is transformed into one or more virtual machines
(VMs) that dynamically share the underlying hardware resources, and applications
run within these isolated environments. Each VM is subject to basic management
operations such as creation, deletion, as well as run-time resource allocation. These
features enable resource sharing in arbitrary combinations between applications and
physical servers and provide the means for efficient server consolidation. However, to
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capitalize on this technology, it is essential to adaptively provision virtualized applica-
tions with resources commensurate with their workload demands.

Existing resource provisioning approaches may be broadly categorised as either
constraint-free or constraint-based. In constraint-free provisioning, each application
can use up to the maximum physical capacity of the hosted server. Although this ap-
proach is administratively simple, it does not provide any application performance
guarantees. Under conditions of contention any of the applications could dominate re-
source use, leaving the rest starving [Padala et al. 2007].

In a constraint-based approach, each application is configured with an upper-bound
threshold to cap its maximum resource allocation. When applied in the context of vir-
tualized server applications, a challenge is how to dynamically update the upper-bound
to match the diverse and time-varying workloads [Almeida et al. 2002] with changing
resource demands. Related work in the area [Padala et al. 2007] has built non-linear
feedback controllers to continuously update the maximum CPU allocation based on
CPU utilisation measurements.

In this article we incorporate the Kalman filter technique [Kalman 1960] to track
noisy CPU utilisations into feedback controllers for multi-tier virtualized applications.
Rather than using Kalman filters to estimate the parameters of a queueing model in
a simulation environment [Zheng et al. 2005], we use the Kalman filters as linear
feedback controllers. We have chosen the Kalman filter since it is the optimal linear
filtering technique when certain conditions hold and has good performance even when
those conditions are relaxed. Using a filtering approach makes sure our controllers
operate smoothly across different workloads. We have also extended our work to use
the pair-wise resource coupling between components in multi-tier applications to ad-
just more rapidly to workload changes. Finally, and most importantly, we present a
zero-configuration mechanism to detect and adapt to workload conditions without any
advance information.

This article extends our previous work [Kalyvianaki et al. 2009; 2010] and it con-
tains:

(1) the formulation of the allocation problem as a CPU utilisation tracking one;
(2) the integration of the Kalman filter into the Kalman Basic feedback Controller

(KBC) to maintain the CPU allocation above the tracking utilisation within a cer-
tain safety margin;

(3) the modelling of the resource-coupling of multi-tier applications with the CPU co-
variance utilisation matrix that seamlessly integrates with the Kalman filtering
technique to the Process Noise Covariance Controller (PNCC);

(4) an additional adaptive mechanism to self-configure the parameters of the PNCC
controller leading to the Adaptive-PNCC controller (APNCC);

(5) a theoretical and experimental demonstration of the ability of the Kalman gain
values to tune the responsiveness of the controllers; and

(6) an extensive evaluation on a prototype virtualized cluster deploying the 3-tier Ru-
bis benchmark.

The rest of this article is organised as follows. In Section 2 we present the resource
management architecture to control the CPU allocations of a prototype virtualized
cluster. Section 3 builds upon the system identification process and derives the appli-
cation performance model. The Kalman controllers are introduced in Section 4, while
experimental results are presented in Section 5. Related work is discussed in Section 6.
Finally, Section 7 concludes the paper and discusses future work.
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Fig. 1. Resource management architecture.

2. ARCHITECTURE AND TOOLS

This section presents the resource provisioning architecture and its implementation
in the prototype virtualized cluster built for the purposes of system identification and
performance evaluation.

In this work we assume that application division to components, their placement in
VMs and the placement of VMs to physical servers is known a priori and remains static
throughout the application execution. The maximum possible entitlement of CPU re-
sources (i.e., the number of cores) to a VM is known and assigned at VM initialisation.
Our work focusses on the runtime CPU allocation of virtualized applications in server
consolidation cases. For example, our approach can be used to control the CPU allo-
cation of virtualized applications with strict quality of service guarantees. By capping
the allocation of certain VMs, the remaining, if any, physical resources can be used by
other virtualized applications with no strict guarantees such as in batch processing.

2.1. Management Architecture

The target performance goal of the management architecture is to continuously provi-
sion the virtualized application with enough CPU resources (subject to physical capac-
ity) to adequately serve its incoming requests from a variable workload. We formally
define this goal in Section 3.1.

In this section, we present the building blocks of the management architecture as
shown in Figure 1. It implements a feedback control loop where management data
flow at regular intervals between the control and the manager components through
the control input(s) and control output(s) signals.

The manager component monitors the performance of applications running in VMs
and submits performance measurements to the control component in near real-time.
The manager connects to the virtual machine monitor (VMM) that controls all VMs
running on a particular physical server. The controller block in the control compo-
nent executes the most prominent operation of the provisioning process. It implements
the control law function to match the control output with the target performance goal.
The control law relies on the application performance model to map control input(s) to
control output(s).

We derive the application model offline during the system identification process in
Section 3. The model associates resource measurements to CPU allocations and the
way they affect the application performance. Any deviation from the target perfor-
mance, called control error, is corrected by the controller. The updated CPU alloca-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2000.



0:4 Evangelia Kalyvianaki et al.

RUBIS Server System

c

c

c

MIMO
Controller

manager

manager

manager

dom0

dom0

dom0

Tomcat

JBoss

MySQL

Xen

Xen

Xen

Controller

Controller

Controller

Client
Emulator

Incoming Requests

allocations

usages

Fig. 2. Virtualized prototype and resource control system.

tions are remotely applied to the VM(s) by the control after performing any necessary
transformations, e.g., checking that the new allocation does not exceed the total phys-
ical machine capacity.

Finally, the architecture supports remote resource allocation of arbitrary combina-
tions of deployed components to physical machines. This is achieved by the clear sepa-
ration of functions between the manager and control blocks. The manager operates as a
server that monitors the usage of all VMs on the same physical machine as requested
by its client, i.e., the control block. There can be one or more control blocks that
manage the allocations of each, a subset of or all of the application components. In this
article, we present one Single-Input-Single-Output (SISO) controller implemented by
one control block per application component and two Multiple-Input-Multiple-Output
(MIMO) controllers realised by one control for all application components. Figure 1 il-
lustrates the use of the manager and control blocks in the cases of a SISO and a MIMO
controller for an application with three VMs. For the rest of this article and without
loss of generality, we assume that a VM hosts a single application component. In the
remaining, we use the terms tier, component and VM interchangeably.

2.2. Prototype Virtualized Cluster

Figure 2 shows the virtualized prototype cluster and the 3-component Rubis server
application benchmark [Amza et al. 2002] deployed on three machines. Each ma-
chine runs the Xen hypervisor [Barham et al. 2003]. Each of the three Rubis server
tiers—these are the Tomcat web server, the JBoss application server and the MySQL
database server—is deployed on a single VM running on a separate physical machine.
A fourth machine hosts the Rubis Client Emulator that generates the requests to the
server. There are three manager components and each runs within the Xen dom0 VM.
The dom0 control VM is created at boot time by the Xen hypervisor to manage VMs
and handle their resource multiplexing. We have implemented the manager and the
control blocks using the Python programming language. The manager records new
CPU usage statistics every 1 second using the xentop program provided by Xen to
account for resource utilisations of running VMs.

The prototype cluster is deployed on typical x86 server machines used for commer-
cial applications. All machines are identical, with two AMD Opteron Processors run-
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ning at 2.4GHz, 4GB of main memory, 70GB of SCSI disk space and a NetXtreme Gi-
gabit Ethernet Card. All machines are connected over a Gigabit Ethernet network. Fi-
nally, all VMs run the commercial SUSE Linux Enterprise Server (SLES) 10, popular
for server application deployment, with Linux-xen 2.6.16 and Xen 3.0.2. Xen is config-
ured to use the Simple Earliest Deadline First (SEDF) CPU scheduler. The hardware
and software setup of the server machines makes the cluster a realistic small-scale
implementation of a virtualized data-centre.

In order to ensure that the application performance depends solely on the con-
troller(s) allocations, we take the following actions. First, all machines have two CPUs
and each one of the two VMs per physical machine is pinned on a separate CPU. This
setup enables us to study the impact of the controller(s) on server performance with-
out worrying about scheduling artifacts among VMs sharing the same CPU. Second, we
configure the SEDF scheduler to operate on the non-work-conserving mode, where the
maximum CPU a VM can use is capped by its allocation regardless of any free avail-
able resources by the machine. Finally, for all the experiments each VM is allocated
memory as required when first created and this allocation is kept constant throughout.
The network bandwidth is also measured and never becomes a bottleneck.

2.3. Rubis Benchmark

The Rice University Bidding System (Rubis) [Amza et al. 2002] is a prototype auc-
tion web site server application that follows the eBay.com model. Rubis was originally
designed for testing web sites [Amza et al. 2002; Cecchet et al. 2002; Cecchet et al.
2003] and it has since been used for fault detection [Chen et al. 2004] and VM resource
provisioning [Padala et al. 2007]. Rubis implements the basic operations of an auction
site, i.e., selling, browsing and bidding. A Rubis client can perform 27 different types
of requests including: browsing items from a category or a region; bidding on an item;
and buying and selling an item. The Rubis Client Emulator provides two workload
mixes: (a) the browsing mix with read-only requests and (b) the bidding mix with 15%
read-write requests. For the rest of the article we use the browsing mix, unless stated
otherwise, since initial evaluation showed similar performance from the two mixes.

Finally, we have modified the Rubis Emulator to record the response time of each
request, i.e., the time duration between the initiation of a request at the Emulator and
the time the request response returns to the Emulator.

3. SYSTEM IDENTIFICATION

When dealing with multi-component applications with unknown workloads, it is diffi-
cult to know a priori their precise performance model. To this end, during the system
identification process, we employ a black-box approach to system modelling where we
subject the application to variable workloads and measure its performance to model
single-component applications in Section 3.2 and multi-component coupling in Sec-
tion 3.3. First, we start by deriving the target performance goal in Section 3.1.

3.1. Target Performance Goal

We define the target performance goal with respect to the number of clients the Rubis
application can sustain effectively as measured by their request response times. We
study the performance with respect to a varying number of clients issuing requests
and we report results of the browsing workload type mix. Preliminary results on the
bid mix showed similar performance characteristics.

First, we measure the application performance when each component is allocated
100% of the CPU capacity and the number of clients varies from 100 to 1,400 for
200s in total each time. Figure 3(a) shows the mean client response time (mRT) and
Figure 3(b) illustrates the corresponding throughput (throughput). As the number of
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Fig. 3. System identification results. Error bars in Figure 3(a) correspond to a 95% confidence interval (CI)
around the mean and in Figure 3(c) they show ± one standard deviation (σ) around the mean.
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Fig. 4. Data sets statistics. For each of the 14 data sets from Figure 3 we show the first Q1 and third
quartiles Q3 (box) and the median (line within each box). In each boxplot, whiskers (single lines above
and below each box) are extended to 1.5 the Inter Quartile Range (IQR) above the Q3 and below the Q1.
The dashed blue line indicates the mean in each data set. Crosses show outliers. The JBoss and MySQL
utilisations (not shown) are (or are very close to being) normally distributed since these components do not
saturate.

clients increases up to 1,200, the mRT stays well below 1s and the throughput increases
linearly with the number of clients. When the number of clients rises beyond 1,200 the
mRT grows beyond 1 second, while the throughput remains constant. As expected, the
figures show that there is a point of saturation below which the server operates effec-
tively and above which its performance is unpredictable. Here, the server saturates at
around 1,200 clients.

The CPU utilisations across tiers are shown in Figure 3(c). Each component uses
more CPU resources as more clients issue requests. When the number of clients ex-
ceeds 1,200 the Tomcat VM reaches almost 100% of its allocation and it cannot serve
more clients. It becomes the bottleneck component and as a result the mRT increases
above 1s.

Therefore, the target performance goal for the current cluster is: The Rubis applica-
tion can serve up to 1,200 clients with a performance of mRT ≤ 1s. Note that this denotes
the level of performance the server is expected to achieve, even when our controllers
dynamically allocate CPU resources.
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In the above analysis, we use the mean statistic to summarise the response time
and CPU utilisation distributions. Figures 4(a) and 4(b) present a summary of the
main statistics of the data sets distributions as explained in the caption. The mRT for
each data set is also shown by the dashed line across boxplots. We observe that the
median statistic also captures a similar behaviour: The Rubis application can serve
up to 1,300 clients with a performance of median response time < 0.5s. Without loss of
generality, for the rest of this article we use the mean as the centrality index.

3.2. CPU Resource Provisioning Model

The application performance model provides the relationship between the resource
measurement(s) in the control output(s) and the CPU allocation to match the target
goal. In this section we identify the metric that best captures this relationship.

In Figure 3 we observe that the CPU utilisation provides a very good indication of
the allocation itself and it also relates to server performance; if a server is CPU satu-
rated, it is very likely that its performance is degraded. A component utilisation indi-
cates its required allocation and to maintain the reference performance, the controller
should follow components utilisations. A change in the usage observed over one period
of time can be used to set the allocation for the next one. There are several advantages
for using the utilisation as the control output: (a) it is easily measured at the server
side with a negligible overhead and (b) it is widely applicable across applications.

A simple way to model the above observation is to always assign the allocations to
the latest measured mean utilisation. However, the mean statistic does not capture the
utilisation variability, which further affects server performance. To capture such impli-
cations we perform the following experiments. For a stable workload, i.e., 800 clients
of the browsing mix, the allocation of only one component at-a-time is the sum of two
quantities: a) the component mean utilisation as it was measured offline for the par-
ticular workload; and b) an extra allocation which is gradually increased from 0 up
to 40 in steps of 5. The allocation for the other two components is set to 100% of their
CPU capacity.

Figures 5(a) and 5(b) illustrate the mRT and the throughput respectively when the
Tomcat component is subject to varying allocation. As the extra allocation increases,
the mRT decreases and the throughput increases. Both the mRT and throughput sta-
bilise when the extra allocation is 15. Increasing the allocation beyond this value does
not improve the performance significantly. Similar experiments are performed for the
JBoss and MySQL components in Figures 5(c), 5(d), 5(e) and 5(f) and in both cases the
performance stabilises when the extra allocation reaches 10. Note that the current
experiments provide only an approximation of the extra allocation values.

Results indicate that to maintain the target performance the allocation can be as-
signed to the mean utilisation augmented by an additional extra value to capture its
variability. Therefore, for a single-tier application, the relationship between the CPU
utilisation u and the allocation a can be modelled as:

a = r × u, (1)

where r ≥ 1 shows the extra allocation.1

Others have also identified such a relationship, e.g., a common practice in data-
centres is to maintain a headroom of CPU resources above the utilisation to allow
applications to cope with workload fluctuations. In [Padala et al. 2007] a 2-tier virtu-

1Note that the target server performance can be achieved for various r values below a certain threshold.
To estimate the minimum such value we would require extensive offline analysis that would be tailored for
a specific application. The scope of the current work is to derive a general application-independent model
based on generic application characteristics.
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(b) throughput, Tomcat allocations
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(c) mRT, JBoss allocations
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(d) throughput, JBoss allocations
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(e) mRT, MySQL allocations

0 5 10 15 20 25 30 35 40
0

20

40 

60 

80 

100

120

140

160

180

extra allocation

T
hr

ou
gh

pu
t r

eq
ue

st
s/

se
c

(f) throughput, MySQL allocations

Fig. 5. CPU resource variability. Error bars in the mRT figures show a 95% CI around the mean.

alized Rubis server achieves good performance as long as long as the allocation is at
least equal to a utilisation proportion set well above to 1.

We differ from these works in the following ways: (a) we provide a generic approach
to modeling the CPU utilisation changes of server applications using random walks
(cf. Section 4.1); (b) we integrate the Kalman filtering technique with the performance
model; and (c), we incorporate the resource coupling of multi-tier applications within
our feedback controllers.

3.3. Inter-Component Resource Coupling

There is a resource coupling between the components of multi-tier applications,
e.g., [Zhang et al. 2007]. If a component does not have enough resources to process
incoming requests, it becomes a bottleneck component and the rest of the components
cannot process additional requests.

This is further illustrated by the following experiment. The CPU allocation of one of
the three components is varied from 10 to 100 in increments of 10 while the number
of clients is kept constant at 800, and each of the other two components is allocated
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Fig. 6. Inter-component resource coupling. Error bars show a 95% CI around the mean usage.

100% of its CPU capacity. First, the allocation of the Tomcat component is varied. As
shown in Figure 6(a) its usage follows the allocation until the allocation exceeds the re-
quired one for the current workload. The usage for the other two components increases
slowly, despite their having the necessary resources to serve 800 clients. In this case
the bottleneck component is Tomcat, and since it does not have adequate resources
to cope with the current workload, the other components usages are affected as well.
Similar behaviour is observed when either the JBoss or the MySQL components are
the bottlenecks, as shown in Figures 6(b) and 6(c).

Overall, in the case of a bottleneck, an increase of its allocation eventually leads to
the increase in the CPU usage of the other components, suggesting that their alloca-
tions should be increased as well. A controller that takes into account the CPU usage
of all the components and assigns the CPU allocation to each of them will clearly do
better than one that does not.

4. KALMAN CONTROLLERS

This section presents three novel controllers based on the Kalman filtering technique
to encapsulate the observation from the system identification analysis that VM allo-
cations should follow the CPU utilisations of virtualized applications. The controllers
include: (a) the KBC controller (Section 4.1) that adjusts the CPU allocations of indi-
vidual tiers; (b) the PNCC controller (Section 4.2) that expands the KBC design to use
the resource coupling of multi-tier applications; and (c), the APNCC controller (Sec-
tion 4.3) that further extends the PNCC design to estimate online the parameters of
the performance model. Table I summarises the notation we use for the controllers.

4.1. Kalman Basic Controller

The SISO Kalman Basic Controller (KBC) uses the Kalman filter to track the utili-
sation and update the allocation accordingly. Since first presented by R.E. Kalman in
his seminal 1960’s paper [Kalman 1960], the Kalman filter has been used in a large
number of areas including autonomous or assisted navigation, interactive computer
graphics and motion prediction. It is a data filtering method that estimates the state
of a linear stochastic system in a recursive manner based on noisy measurements. The
Kalman filter is optimal in the sum squared error sense under the assumptions that
the system is described by a linear model, and the process and measurement noise are
white and Gaussian. It is also computationally attractive, due to its recursive compu-
tation, since the production of the next estimate only requires the updated measure-
ments and the previous predictions; for a more comprehensive analysis of the Kalman
filter refer to for example [Simon 2006; Maybeck 1979; Welch and Bishop 1995].

The key contribution of the KBC controller is the integration of a very powerful filter-
ing technique into a linear feedback allocation controller. Rather than using Kalman
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Table I. Kalman controllers notation.

symbol description

SISO controller
n number of application components
i component index
ak, ai CPU allocation at interval k, CPU allocation of component i
uk, ui measured CPU usage at interval k, measured CPU usage of component i
tk process noise of real utilisation v at interval k
zk process noise of allocation a at interval k
wk measurement noise at interval k
c fraction of the utilisation that accounts for the final allocation
Q process noise variance
S measurement noise variance
K∞ steady-state Kalman gain
Kk Kalman gain at interval k
ãk a priori allocation estimation at interval k
âk a posteriori allocation estimation at interval k

P̃k a priori estimation error variance at interval k

P̂k a posteriori estimation error variance at interval k
MIMO controller

ak allocation for all components at interval k, ak ∈ R
n×1

uk measured utilisation for all components at interval k, uk ∈ R
n×1

ãk a priori allocation estimations for all components at interval k, ãk ∈ R
n×1

âk a posteriori allocation estimations for all components at interval k, ãk ∈ R
n×1

Wk process noise for all components at interval k, Wk ∈ R
n×1

Vk measurement noise for all components at interval k, Vk ∈ R
n×1

C array with the c values for all components along its diagonal, C ∈ R
n×n

Q process noise covariance matrix, Q ∈ R
n×n

S measurement noise covariance matrix, S ∈ R
n×n

Kk Kalman gains for all components, K ∈ R
n×n

Qk process noise covariance matrix at interval k, Qk ∈ R
n×n

Rk measurement noise covariance matrix at interval k, R ∈ R
n×n

filters to estimate the parameters of a performance model [Zheng et al. 2005], here,
Kalman filters are used both as a tracking method and to build a feedback controller.
The Kalman filter is particularly attractive since it is the optimal linear filtering tech-
nique when certain conditions hold, has good performance even when the conditions
are relaxed and uses the dynamics of the tracking signal to better track the signal
itself. The later is particularly beneficial for the noisy CPU utilisation signals.

All metrics presented for the KBC controller are scalar and refer to a single compo-
nent. We model the time-varying CPU usage as a one-dimensional random walk. The
system is thus governed by the following linear stochastic difference equation:

vk+1 = vk + tk, (2)

where vk is the percentage of the total CPU capacity of a physical machine actually
used by a component and the independent random variable tk represents the process
noise and is assumed to be normally distributed.

Intuitively, in a server system the CPU usage in interval vk+1 will generally depend
on the usage of the previous interval vk as modified by changes, tk, caused by request
processing, e.g., processes being added to or leaving the system, additional computa-
tion by existing clients, lack of computation due to I/O waiting and so on. Knowing the
process noise and the usage over the previous interval, one can predict the usage for
the next interval.

To achieve reference performance the KBC controller uses the performance model
from Eq. (1). To this end, the allocation should be maintained at a certain level 1

c of the
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usage, where c ≤ 1 is customised for each server application or VM. 2 The allocation
signal is described by:

ak+1 = ak + zk, (3)

and the utilisation measurement uk relates to the allocation ak, as:

uk = cak + wk. (4)

The independent random variables zk and wk represent the process and measurement
noise respectively and are assumed to be normally distributed:

p(z) ∼ N(0, Q),

p(w) ∼ N(0, S).

Both the measurement and process noise variances, i.e., S and Q respectively, might
change with each time step or measurement. However, for the rest of this section they
are assumed to be stationary during the filter operation. Later, another approach,
which considers non-stationary noise, is presented. Given that the equations (3) and
(4) describe the system dynamics, the required allocation for the next interval is a
direct application of Kalman filter theory and is presented below.

We denote ãk to be the a priori estimation of the CPU allocation, i.e., the predicted
estimation of the allocation for the interval k based on previous measurements. We
denote âk to be the a posteriori estimation of the CPU allocation, that is the corrected
estimation of the allocation based on measurements. Similarly, the a priori estima-

tion error variance is P̃k and the a posteriori estimation is P̂k. The predicted a priori
allocation for the next interval k + 1 is given by:

ãk+1 = âk, (5)

where the corrected a posteriori estimation over the previous interval is:

âk = ãk +Kk(uk − cãk). (6)

At the beginning of the (k + 1)th interval the controller applies the a priori ãk+1 allo-
cation. If the ãk+1 estimation exceeds the available physical resources, the controller
allocates the maximum available. In the region where the allocation is saturated, the
Kalman filter is basically inactive. Thus, the filter is active only in the underloaded
situation where the dynamics of the system are linear. The correction Kalman gain
between the actual and the predicted measurements is:

Kk = cP̃k(c
2P̃k + S)−1. (7)

The Kalman gain Kk stabilises after several iterations. The a posteriori and a priori
estimations of the error variance are respectively:

P̂k = (1− cKk)P̃k, (8)

P̃k+1 = P̂k +Q. (9)

Steady-State Kalman Gain. The Kalman gain is important when computing the allo-
cation ãk+1 for the next interval. It is a function of Q and S, which describe the dynam-
ics of the system. In general, Kk monotonically increases with Q and decreases with
S. We first explain this correlation intuitively. Consider a system with large process
noise Q. Its states experience large variation and this is shown by the measurements

2Note that c = 1

r
, where the extra allocation r was used to model the relationship between the CPU

utilisation and allocation in Eq. (1).
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as well. The filter should then increase its confidence in the new error, rather than
the current prediction, to keep up with the highly variable measurements. Therefore,
the Kalman gain is relatively large. On the other hand, when the measurement noise
variation S increases, the new measurements are biased by the included measurement
error. The filter should then decrease its confidence in the new error as indicated by
the smaller values of the Kalman gain.

In fact, the Kalman gain depends on the ratio S
Q as shown below. According to [Simon

2006, section 5.4.2] the steady-state Kalman gain, K∞, is given by:

K∞ =
P−

k HT
k

HkP
−

k HT
k + Sk

, (10)

where P−

k is the steady-state covariance and for a scalar, time-invariant Kalman filter
is given by:

lim
k→∞

Pk =
τ1
2H2

, (11)

where τ1 is:

τ1 =
√
H2Q+ S(F + 1)2

√
H2Q+ S(F − 1)2, (12)

and H represents the transition between the states and the measurements; F repre-
sents the transition between states in the absence of noise.

In the case of a KBC controller H = c and F = 1 and by using Equations (12), (11)
and (10), the steady-state Kalman gain for the KBC controller is:

K∞ =
c+

√
c2 + 4 S

Q

c2 + c
√

c2 + 4 S
Q + 2 S

Q

. (13)

Therefore, the Kalman gain values depend on the ratio S
Q . By tuning the values of Q

and S the filter can be more or less reactive to workload changes. We will demonstrate
this behaviour in the experimental evaluation.

KBC Controller Stability.

PROPOSITION 4.1. The KBC controller is stable when 0 < K < 2

c .

PROOF. The KBC control law is:

ak+1 = ak +Kk(uk − cak). (14)

The Z-transform of the allocation signal is:

zA(z)− za(0) = A(z) +KU(z)− cKA(z) ⇔ (15)

(z − 1 + cK)A(z) = KU(z) + za(0). (16)

The transfer function is thus given by:

T (z) =
A(z)

U(z)
=

K

z − 1 + cK
, (17)

where the denominator is the characteristic function. The pole of the characteristic
equation is given by:

z − 1 + cK = 0 ⇔ z = 1− cK (18)
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and for stability it suffices for the pole to be within the unit circle, i.e.,

|z| < 1 ⇔ |1− cK| < 1 ⇔ 0 < K <
2

c
. (19)

Inequality (19) is valid for all gain values, i.e., from (19) and (13) we have that:

c+
√
c2 + 4 S

Q

c2 + c
√

c2 + 4 S
Q + 2 S

Q

<
2

c
⇔

c+

√
c2 + 4

S

Q
< 2c+ 2

√
c2 + 4

S

Q
+

4 S
Q

c
⇔

0 <

√
c2 + 4

S

Q
+ c+

4 S
Q

c
,

which is always valid. Therefore, the KBC controller is stable for all values of the
Kalman gain given by (13).

Modelling Variances. To obtain a good estimation of the variance Q, since it is con-
sidered to be proportional to the usage, it is enough to estimate the usage variance and
then evaluate it via the following formula (var denotes variance):

var(a) ≃ var(
u

c
) =

1

c2
var(u). (20)

The usage process noise corresponds to the evolution of the usage signal in successive
time intervals. Estimating its variance is difficult, since the usage signal itself is an
unknown signal and does not correspond to any physical process well described by a
mathematical law. We estimate the usage variance from measurements of the CPU
utilisation. In the KBC controller case we compute the process variance Q offline.

Finally, the measurement noise variance S corresponds to the confidence that the
measured value is very close to the real one. As before, it is difficult to compute the ex-
act amount of CPU usage. However, given the existence of relatively accurate measure-
ment tools, a small value (S = 1.0 is used for this article) acts as a good approximation
of possible measurement errors.

4.2. Process Noise Covariance Controller

This section presents the MIMO Process Noise Covariance Controller (PNCC), which
extends the KBC controller to consider the resource coupling between components
in multi-tier applications. In this case, the allocation for each component is adjusted
based on the errors of the current component in addition to the errors caused by the
other components, through the covariance process noise. If n is the number of appli-
cation components, then the PNCC Kalman filter equations for stationary process and
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measurement noise take the form:

ak+1 = ak +Wk, (21)

uk = Cak +Vk, (22)

âk = ãk +Kk(uk −Cãk), (23)

Kk = CP̃k(CP̃kC
T + S)−1, (24)

P̂k = (I−CKk)P̃k, (25)

ãk+1 = âk, (26)

P̃k+1 = P̂k +Q, (27)

where ak ∈ R
n×1 and uk ∈ R

n×1 are the allocation and usage vectors respectively
and each row corresponds to a component; Wk ∈ R

n×1 is the process noise matrix;
Vk ∈ R

n×1 is the measurement noise matrix; C ∈ R
n×n is a diagonal matrix with

the target value c for each component along the diagonal; P̃k ∈ R
n×n and P̂k ∈ R

n×n

are the a priori and a posteriori error covariance matrices; Kk ∈ R
n×n is the Kalman

gain matrix and S ∈ R
n×n; ãk ∈ R

n×1 and âk ∈ R
n×1 are the a priori and a posteriori

allocation vectors respectively and each row corresponds to a component and Q,S ∈
R

n×n are the measurement and process noise matrices respectively. For matrices Q
and S, the diagonal elements correspond to the process and measurement noise for
each component. The non-diagonal elements of the matrix Q correspond to the process
noise covariance between different components. Similarly, the non-diagonal elements
of the Kk matrix correspond to the gain between different components. For a 3-tier
application, for example, the a posteriori âk(1) estimation of the allocation of the first
component at interval k is the result of the a priori estimation ãk(1) of the allocation
plus the corrections from all components, given by:

âk(1) = ãk(1) +Kk(1, 1)(uk(1)−C(1, 1)ãk(1))

+Kk(1, 2)(uk(2)−C(2, 2)ãk(2))

+Kk(1, 3)(uk(3)−C(3, 3)ãk(3)).

The covariances between variables show how much each variable is changing if the
other one is changing as well. In this case, the covariances indicate the coupling of the
utilisation changes between components.

PNCC Stability. For ensuring the stability of the PNCC we use the following theorem.

THEOREM 4.2 ([COSTA AND ASTOLFI 2008, THEOREM 2]). Let the following lin-
ear time-invariant system:

xk+1 = Axk +Bwk,

yk = Cxk +Dvk,
(28)

where x ∈ R
n×1 is the state, y ∈ R

r×1 is the observed variable, w ∈ R
p×1 and v ∈ R

q×1

form stationary zero-mean independent white noise processes satisfying E
{
wkw

T
k

}
= I

and E
{
vkv

T
k

}
= I, and the independent random variable x0 is such that E {x0} = x̄0

and E
{
x0x

T
0

}
= Ψ. The Kalman filter corresponding to (28) is stable if, and only if, the

following conditions hold:
(H1) (A,C) is detectable.
(H2) Unreachable modes of (A,E) do not lie in the unit circle (E is the available data
regarding B).
(H3) (A,E) is semi-stabilisable or Σ > 0 (Σ is the available data regarding Ψ).
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These necessary and sufficient conditions for stability of the Kalman filter concern
even cases in which the covariance error is bounded. Regarding (H1), we can easily
show that since A = I and C is a diagonal matrix with entries smaller than 1, our
system, which represents a random walk, is observable, and as a result detectable.
Regarding (H2), E is such that EET = Q and (I,Q1/2) is controllable and as a result
unreachable modes of (I,Q1/2) do not lie in the unit circle. Finally, regarding (H3), we
choose P0 = S and hence, Σ > 0.

Modelling Covariances. Similarly to the computation of the allocation variances,
the covariances between the component allocations are computed offline based on the
usage covariances. If ui and uj are the measured usages between components i and j,
then the covariance between their allocations ai and aj is computed as (cov denotes the
covariance):

cov(ai, aj) ≃ cov(
ui

c
,
uj

c
) =

1

c2
cov(ui, uj). (29)

4.3. Adaptive Process Noise Covariance Controller

So far only stationary process and measurement noises have been considered. We now
extend the PNCC controller to adapt to varying operating conditions by considering
non-stationary noise. We present the Adaptive Process Noise Covariance Controller
(APNCC) that has the same formulae as the PNCC controller, but instead of the sta-
tionary Q, the dynamic Qk is now used. In this case, Qk is updated every several
intervals with the latest computations of variances and covariances from CPU utilisa-
tion measurements. For simplicity, the measurement noise variance is considered to
always be stationary, i.e., Sk = S. In the same way, we can extend the KBC controller
to the Adaptive Kalman Basic Controller (AKBC) to adapt to varying workloads by
dynamically updating Qk every few intervals.

5. EXPERIMENTAL EVALUATION

This section evaluates the performance of each Kalman-based controller separately
and also compares the SISO against the MIMO controllers. Finally, it evaluates
the adaptive APNCC against the offline approach used by the PNCC. The detailed
roadmap of this section is shown in Table II. We start by discussing the types of exper-
iments and evaluation metrics used.

5.1. Preliminaries

Experiments Description. We use three types of experiments, summarised in Ta-
ble III. An Stable(t1, t2, t3) experiment evaluates the basic functions of a con-
troller to adjust its allocations to follow the utilisations while it maintains the target
performance, i.e., mRT ≤ 1s under workload changes. We use different graphs to il-
lustrate the results. We show the average component CPU utilisation and allocation
for each Rubis tier for each controller interval, which is indicated as sample point in
the graphs. Additional graphs illustrate the performance of Rubis for each interval,
i.e, (a) the mRT measured in seconds, (b) the throughput measured in requests/second
and (c) the cumulative distribution function (CDF) of response times for the duration
of the experiment. Recall that the mRT data are not used to control the allocations,
rather, are captured to provide a graphical representation of server performance. Also,
the Kalman gains for the controllers may be depicted. A Varying(n,d) experiment ex-
plores the implications from different configuration values on controller performance.
Finally, a Spike experiment is used to compare the SISO against the MIMO controllers.
These experiments are designed to stress the server under sudden and large workload
increases and evaluate the potential of the MIMO controllers to react faster due to the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2000.



0:16 Evangelia Kalyvianaki et al.

Table II. Roadmap of the experimental evaluation section.

Section Description

5.1 Experiments description, evaluation metrics, parameters setting.

5.2
KBC performance for stationary and varying workloads, KBC re-
sponsiveness with Kalman gain values, SASO properties.

5.3 PNCC performance for varying workloads, SASO properties.

5.4 KBC and PNCC comparison during workload changes.

5.5 APNCC performance across number of clients and workloads.

5.6 PNCC and APNCC comparison during workload changes.

5.7 AKBC comparison with a state-of-the-art feedback controller

Table III. Summary of the performance evaluation experiments.

Symbol Description

Stable(t1, t2, t3)
Varying number of clients:
300 clients issue requests for t3 intervals in total. At the t1th

interval, another 300 clients are added until the t2th interval.

Varying(n,d)
Stationary workload:
n number of clients issue requests for d intervals in total.

Spike
Large workload change in the number of clients:
200 clients issue requests for 60 intervals in total. At the 30th

interval, another 600 are added for the next 30 intervals.

incorporation of resource coupling. In this case, controllers performance is evaluated
only for the duration of the workload change until the system is stabilised to a fixed
number of clients.
Evaluation Metrics. We evaluate the controllers using five different performance
metrics shown in Table IV. All metrics are calculated over a duration of several inter-
vals and given in the text when used. The CR and NR metrics capture overall perfor-
mance and server performance improves when the values of either the CR or the NR
metric increase. The RMS metric provides a detailed evaluation of request response
times. Note that our approach does not predict response times for individual requests
and hence, a small negligible error will always be present between the predicted and
the measured response times values. For example, the mRT for 600 clients is 0.282s
(Figure 3(a)) and the RMS during a Varying(600,20) experiment is measured and is
2.1703. The smaller the RMS values the closer the response times are to the mRT. To-
gether the three metrics CR, NR and RMS provide enough information to evaluate and
compare the controllers.

The additional allocation metric evaluates the controllers’ resource allocations. If
similar performance, as measured with the CR, NR and RMS metrics is achieved for
different values of additional allocation, then the smallest values are preferred. In
this way, more resources are available for other applications to run.

The COV metric measures the variability of the allocation and the utilisation sig-
nals. Different degrees of allocation variability might be appropriate depending on the
applications sharing a virtualized cluster. For example, consider a server application
colocated with a batch-processing workload, e.g, MapReduce [Dean and Ghemawat
2004], which does not have any real-time performance guarantees. The performance of
the batch-processing workload is not higly affected by small fluctuations in its share of
allocated CPU resources coming from noisy CPU allocations to the server application.
At the same time, a server application might be very sensitive even to transient satu-
rations which can cause unpredictably high response times. Depending on the types of
virtualized applications, different allocation variability might be desired.
Parameter Configuration. The controller interval is important since it controls the
frequency of the new allocations and the time period over which the usage is averaged
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Table IV. Performance evaluation metrics.

Symbol Description

CR number of completed requests.
NR percentage of completed requests with response time ≤ 1s.

RMS root mean squared (RMS) error of request response times

RMS =

√√√√ 1

N

∑

i=1

N(
l(i)− l̂(i)

l̂(i)
)2,

where N is the number of requests; l(i) is the measured and

l̂(i) is the predicted response time for the ith request. The pre-
dicted response time for every request is the mRT for a certain
number of clients calculated during the system identification
process. We use the data from Figure 3(a).

additional allocation
sum of the differences of CPU resources between the alloca-
tions and the utilisations of a component.

COV coefficient of variation (COV),

COV =
s

x̄
,

where s is the sample standard deviation and x̄ is the sample
mean of a statistic.

Table V. Offline measured utilisation variances, Q0 and covariances, Q0.

Component Usage Variance

Tomcat 28.44
JBoss 4.75

MySQL 47.43

Component pair Usages covariance

(Tomcat, JBoss) 2.36
(Tomcat, MySQL) 5.06
(JBoss, MySQL) 1.80

and used by the controllers to make new allocations. With a small interval a controller
reacts fast to workload changes but is prone to transient workload fluctuations. A bet-
ter approximation is achieved with a larger interval, as the number of sample values
increases, but, controller responses can be slower. Depending on the workload charac-
teristics, the interval can be set to smaller values for frequently changing workloads
and larger ones for more stable workloads. We examined intervals of 5s and 10s. Aver-
age utilisations over both durations were close to the mean utilisation over long runs,
e.g., 100s, and hence, both intervals are suitable to summarise usages. To achieve faster
responses to workload changes, hereafter, we use intervals of 5s.

The parameter c, which controls the extra allocation, is set to 60%. Although 60%
might seem low and might “waste” resources, this value enables the evaluation of the
controllers with few implications from transient component saturation.

The KBC and the PNCC controllers use offline computed process variances and co-
variances, which are essential to the computation of the Kalman gains. Their values
are computed based on Equations (20) and (29) using utilisation measurements from a
Varying(600,40) experiment repeated ten times for statistically confident results and
where each component is allocated 100% of its CPU. The left hand-side table of Table V
shows the utilisation variances of the three components, referred to as Q0. The right
hand-side table of Table V depicts the utilisation covariances between components.
The covariance matrix with the offline computed variances and covariances is referred
to as Q0.

Finally, the measurement noise variance is set to a small value, i.e., S = 1.0, given
the existence of relatively accurate VM CPU measurement tools. This value acts as a
plausible approximation of possible measurement errors.
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(a) Tomcat CPU resources
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(b) JBoss CPU resources
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(c) MySQL CPU resources
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Fig. 7. KBC performance for stationary workload and Q0 values.

5.2. KBC

This section evaluates the KBC controller against stationary and varying workloads.
It also explores the effects of the Kalman gain on the responsiveness of the controller
to workload changes and its allocation variability.
Stationary Workload. Figure 7 illustrates a Varying(600,40) experiment for a sta-
tionary workload. The CPU allocations correctly track the utilisations for each com-
ponent and server performance is mostly sustained below its target value. The mRT
spikes are caused when a component is very close to saturation as each KBC controller
corrects its allocation to match even the most subtle utilisation changes.
Kalman Gain. In Figure 7, the allocations correctly “follow” the usage. However it
might be more useful for a controller to adjust the underlying trends of the CPU signal
while not being strongly affected by its variance. In the Kalman filter, this is achieved
by tuning Q and S which describe the dynamics of the system and affect the gain
K (Section 4.1). In general, K monotonically increases with Q and decreases with
S. When Q is large, the system experiences large variations and so the filter uses a
higher K to correct its predictions according to the highly variable measurements. On
the other hand, an increased S indicates measurement errors and so the filter with a
lower gain K becomes more conservative in updating its state according to the new
measurements.

To study the effects of the relative values of the Q and S on the controller perfor-
mance, we perform a Varying(600,40) experiment where we divide Q by 400 while
keeping S the same. Results are shown in Figure 8. The allocations are smoother than
the utilisations for all three components and also smoother than shown previously in
Figure 7. In the latter case, the values of the Kalman gains (Figure 8(f)) are smaller
than previously (Figure 7(f)) and therefore the filter has more confidence in the pre-
dicted values than in the measured ones. The server performance is again maintained
below its target performance, although with fewer mRT spikes than before.
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(a) Tomcat CPU resources
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(b) JBoss CPU resources
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(c) MySQL CPU resources
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Fig. 8. KBC performance for stationary workload and Q0/400 values.

Table VI. KBC performance for stationary workload and dif-
ferent x values.

x values CR NR RMS additional

1 82840 0.9164 2.3433 10145
4 82949 0.9304 2.0628 10477
8 82940 0.9324 1.8298 10350
10 83512 0.9365 1.7725 10374
40 83554 0.9350 1.8826 10530
80 83700 0.9429 1.5800 10530
100 83564 0.9425 1.7291 10587
400 83860 0.9462 1.5017 10972
800 83639 0.9470 1.3871 11091
1000 83962 0.9504 1.4417 11085

To systematically evaluate the effects of the Kalman gain, we divide the
Q0 variances by different values of the damping factor x drawn from Y =
{1, 4, 8, 10, 40, 80, 100, 400, 800, 1000}. The Y set covers a wide range of values and for
each x value we perform a Varying(600,200) experiment. Results are shown in Fig-
ure 9 and Table VI.

First, we discuss the effects of the Kalman gain on the allocation variability using
Figure 9. As the damping factor x increases, Q decreases and the Kalman gain for each
component drops (Figure 9(a)), indicating that the predicted value of the allocation be-
comes more important than the new measurement. This further affects the variability
of the allocation signal. As Q decreases the allocation COV decreases too, while the
utilisation COV remains almost the same for all three components; the allocations are
smoother due to the small Kalman gains. In the case of MySQL, the COV increases
for the last two x values. This is because there is a small utilisation fluctuation that
changes the mean utilisation depicted in the allocation as well.

Second, we examine server performance using Table VI that shows the CR, NR and
RMS metrics for the duration of the experiment. As x increases the performance of
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Fig. 9. KBC performance for stationary workload and different x values.

the server improves: it serves more clients (increasing CR), the percentage of requests
with response times ≤ 1s increases too (increasing NR) and all requests are closer
to the mRT (decreasing RMS). However, note that server performance improves with
increasing x because the workload is stable with few negligible transient fluctuations,
which do not affect the controllers. As the allocations are slower to act to resource
changes, this might cause slower reactions to workload changes. This is also shown by
the increasing additional resources allocated to components. This issue is considered
next.
Workload Changes. Figures 10 and 11 illustrate the KBC allocations and server
performance during two Stable(20,40,60) experiments. The controllers on the left are
configured with Q0 values and the right hand-side ones are set with Q0/400 values. In
both cases, the controllers track the usage fluctuations and the allocations are adjusted
accordingly (Figure 10). However, it is apparent that the allocations of the right-hand
figures are slower to follow the resource changes. This is due to their smaller gains
(Figures 11(d) and 11(c)) that makes the controllers have more confidence in their
predicted values than in the new measurements.

We now evaluate the effects of the Kalman gains under workload increases. We per-
form Spike experiments repeated 20 to 40 times for each x ∈ X = {8, 10, 40, 80, 100, 400}
and results are shown in Figure 12. Note that X is a subset of the initial set Y of damp-
ing factors. Additional experiments, not presented here, showed that results with val-
ues x ∈ {1, 4, 800, 1000} do not significantly contribute to the evaluation. Results show
that as Q decreases, when the x damping factor increases, both CR (Figure 12(a)) and
NR (Figure 12(b)) decrease too. When Q decreases, the Kalman gains decrease too
and the KBC controllers become less confident in their predictions than the measured
values and hence they are slower to adapt to the increasing resource demands, also
shown by the decreasing additional resources in Figure 12(d). For the same reasons,
the RMS (Figure 12(c)), increases while Q decreases.
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Fig. 10. KBC allocations for variable workload and Q0 and Q0/400 values.

SASO Properties. We examine three of the SASO properties: i.e, settling times, max-
imum overshoot and zero steady-state error for the KBC controllers. The analysis
uses Figures 13(a) and 13(b), which are produced using the data from Figures 10(a)
and 10(b), to illustrate allocations based on two Kalman gains which cause diverse
controller behaviour. Each figure shows the measured allocation (line labelled “alloca-
tion”) and a hypothetical allocation as calculated from the utilisation signal divided
by the c parameter (line labelled “utilisation/c”). The latter corresponds to the steady-
state output of the controller according to the reference input. In this case, there is
a reference output and every KBC controller should converge to it because they are
integral controllers and have zero steady-state error.

The settling times depend on the values of the Kalman gains. In Figure 13(a), where
the Kalman gain is relatively large, the “allocation” signal is identical to the signal
that corresponds to the steady-state values, therefore, the controller converges in just
one interval. In Figure 13(a), where the Kalman gain is smaller, the controller takes
a few intervals to converge to values very close to the steady-state, despite the noisy
utilisations. Additionally, the KBC controllers do not overshoot. In both cases they
approach the steady-state without exceeding its value, e.g., intervals 20− 40.
Summary. To summarise, evaluation showed that the KBC controllers achieve their
goals so that the allocations follow the utilisations and server performance remains
close to its target value during both stationary and variable workload conditions. De-
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Fig. 11. KBC server performance for variable workload and Q0 and Q0/400 values.
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Fig. 12. KBC performance for workload increases and different x,Q values.

pending on the Kalman gain values, the controllers achieve different variability in the
allocation and subsequently exhibit different server performance.
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Fig. 13. Settling times and overshoot for KBC controllers.
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(b) JBoss CPU resources
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(c) MySQL CPU resources
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Fig. 14. PNCC performance for variable workload and Q0/400 values.
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Fig. 15. Settling times and overshoot for the PNCC controller.

5.3. PNCC

The PNCC controller merges the KBC controllers into one MIMO design to incorporate
the resource correlation of the components. To evaluate its performance we perform an
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Fig. 16. KBC and PNCC comparison for Spike experiments and different x. Percentages represent the
absolute metric difference of the PNCC controller over the KBC with a 90% CI after a T-test is performed.
We report a 0% difference when after applying the T-test over the data sets for the two controllers, the
corresponding means show no difference at the 90% CI.

Stable(20,40,60) experiment with workload fluctuations. Results in Figure 14 show
that the PNCC allocations adapt to the utilisation fluctuations (Figures 14(a), 14(b)
and 14(c)). Also, the performance of the server performance is very close to the target
value since the mRT (Figure 14(d)) stays below 1s for most of the experiment duration.

Properties. We now examine the PNCC SASO properties using Figure 15 where we
use the data from Figure 14(a). We apply the same methodology as in the KBC case
using a hypothetical allocation line. The PNCC allocations should converge to the hy-
pothetical line because the PNCC is an integral controller and has zero steady-state
error. Figure 15 shows that it has short settling times despite being configured for
smooth allocations, i.e., Qo/400 as it approaches to steady-state values in just the first
few intervals, i.e., 15. Finally, the PNCC does not overshoot as its allocations do not
exceed the steady-state values, e.g., intervals 20− 40.

5.4. KBC and PNCC Comparison

This section compares the KBC and the PNCC controllers against sudden workload
increases to stress controllers allocations.

Figure 16 shows the performance differences between the two controllers for differ-
ent Spike experiments and damping factor x ∈ X values. The PNCC controller has
equal or better performance over the KBC controllers when looking at all three met-
rics combined for each x value. As the x values increase both controllers are slower
to adjust their allocations. However, the performance improvement from the PNCC is
increased as the x values increase. In these cases, where the small Kalman gains make
the allocations slow to react to workload changes, the improvement of the PNCC over
the KBC is more apparent. The PNCC is able to react faster to workload changes than
the KBC controllers because it incorporates a combined error from all components.
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Fig. 17. APNCC performance for varying clients, two workload mixes and Q/40 values.

5.5. APNCC

The APNCC controller estimates online the covariance matrix Q from utilisation mea-
surements and updates its values every few intervals to capture the workload dynam-
ics as they happen.

We evaluate the APNCC with varying clients coming from either the browsing (BR)
or the bidding (BD) mix, as shown in Figure 17(a). The covariance matrix Q is updated
using a sliding window mechanism, which calculates the gains every controller inter-
val from measurements over the last ten intervals with a slide of one interval, and the
controller always uses Q/40 values. Results are shown in Figure 17. The controller ad-
justs the allocations to track the utilisations of unknown and diverse workloads for the
duration of the experiment and the performance of the server is very close to its target
value. There are a few prolonged spikes when the workload increases, but 89.58% of
the requests have response times ≤ 1s (Figure 17(e)). Finally, the throughput changes
according to the number of clients with some fluctuations (Figure 17(f)).

Figure 18 illustrates the Kalman gain values as computed throughout the exper-
iment and adapted to different utilisation fluctuations. The adaptation mechanism
captures the workload changes and the controller parameters are updated accordingly,
e.g., the Tomcat gain increases around the interval 60 when the workload changes.
While it is difficult for the offline parameter estimation to capture all the dynamics
of the system, the APNCC controller follows all utilisation changes without a priori
knowledge of the workload mixes or the number of clients.

5.6. PNCC and APNCC Comparison

To better evaluate the adaptive APNCC controller this section compares this controller
against the PNCC using both Stable and Spike experiments.

First, for each x ∈ X and for each controller, we perform an Stable(40,80,120) ex-
periment repeated five times. The covariance matrix Q is estimated every 10 intervals
from the utilisation measurements. Results are shown in Figure 19. According to all
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Fig. 18. APNCC gains for varying clients, two workload mixes and Q/40 values.

three metrics calculated for the duration of the experiment the two controllers per-
form comparably. The APNCC controller performs equally well to the PNCC while it
eliminates the need for any offline computations.

Second, we compare the two controllers using Spike experiments to simulate a large
workload increase. Q is updated using a sliding window of ten intervals and one in-
terval slide. For every value x ∈ X each experiment is performed 20 times. Results in
Figure 20 show that the APNCC controller performs almost as well as the PNCC.

To shed light in the way the APNCC online mechanism works Figure 21 depicts the
APNCC Kalman gain values in the case of two different x values. Both figures also
show the offline computed gains of the PNCC controller for the Tomcat component
only (dashed line)3. Initially, the APNCC gain values are assigned to the offline com-
puted ones and after the first ten intervals they are adapted for every interval. The
figures clearly show that the absolute gain values are affected by the damping factor
x. For example, for small x values the gains (Figure 21(a)) are larger than for large x
values (Figure 21(b)). However, their behaviour with respect to detecting the workload
increase is similar and explained below.

Initially, the APNCC gain values decrease from the offline ones computed for 600
clients to reflect the current 200 clients. When the workload increase at the 30th in-
terval, the adaptation mechanism detects the utilisation change and all gain values
are adapted from there on. The absolute gain values increase beyond the values of the
offline computed values as the clients have now increased to 800.

The PNCC controller in the Spike experiments performs slightly better than the
APNCC when comparing same x values (Figure 20). This is because when the workload
change happens, the PNCC offline computed gain values are larger than the online
APNCC estimated ones. This causes the PNCC to operate with a larger gain than the
APNCC when the workload increases, at the 30th interval. In this case, the PNCC
controller reacts faster to the workload change for the next few intervals. However,
although the APNCC gain is small when the workload increase starts, the controller
detects the change and adapts its gain according to the new utilisations. At the end,
its performance is only slightly worse than the PNCC.

The above situation is one where the offline estimated gain values over-estimate
the real values as being captured by the online mechanism. For example, consider the
opposite case where the offline gain values are smaller than the online ones before the
workload increase occurs. This occurs when the APNCC is configured for x = 8 and
the PNCC for x = 400 (APNCC gains are shown in Figure 21(a) and the Tomcat PNCC
gain is shown in Figure 21(b) with the dashed line). In this case the APNCC performs

3Similar observations hold for the other two components.
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Fig. 19. PNCC and APNCC comparison for Stable(40,80,120) experiments. Percentages in each case show
the metric difference of the APNCC controller over the PNCC with a 95% CI after a T-test is applied. A
negative sign in the percentage indicates that the metric in the APNCC case has a lower value than in the
case of the PNCC.

better than the PNCC as illustrated in Figure 20 (APNCC performance for x = 8 and
PNCC for x = 400).

The APNCC does not need any special mechanism to detect or predict a large work-
load increase. This controller, which treats all workload changes the same, automati-
cally adapts its gain to values that depict the importance or not of the workload change.
Finally, when tuning the APNCC controller, the x damping factor values do not seem to
be that important when it comes to workload increases. One can essentially choose any
x value and the controller would still adjust its gain to capture a substantial workload
increase.

5.7. AKBC Comparison with a State-of-the-Art Feedback Controller

This section compares the AKBC controller against an existing approach that also
propose control theory to dynamically adjust the CPU allocation of virtualized appli-
cations. In particular, we compare against the single component utilisation nonlinear
controller from [Padala et al. 2007].
CPU Demand Simulator. For the comparison we use a purpose-built simulator to
vary the CPU utilisation of a single virtualized appplication component and observe
the CPU allocation enforced by a controller. The simulator enables us to experiment
with different distributions of the CPU utilisation signal—in the Rubis prototype de-
ployment we observed that the CPU utilisation signal follows only a normal distri-
bution as shown in Section 3.1. In particular, we allow the CPU utilisation to follow
either a normal or a uniform distribution.

Furthermore, we vary the CPU utilisation to follow a saw-tooth pattern where we
change the utilisation rapidly from large to small values in short intervals. In particu-
lar, every 20 intervals the CPU utilisation doubles from 30% to 60% and then gradually
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Fig. 20. PNCC and APNCC comparison for Spike experiments. Percentages in each case show the absolute
metric difference of the APNCC controller over the PNCC with a 95% CI after a T-test is applied.
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(b) Kalman gains, x=400

Fig. 21. APNCC and PNCC Kalman gains for x = 8 and x = 400.

drops to 30% in the next 10 intervals. The simulator enables us to produce a demand-
ing workload with different utilisation distributions.

The simulator models requests response times as it was captured in Section 3. In
our model response times depend on the relative CPU utilisation of the allocation.
In particular we set three regions of operation: a) when the CPU utilisation is below
70% the mRT stays well below 1s; b) when the CPU utilisation is above 70% and below
80% the mRT increases but still remains below the 1s threshold; and finally c) when
the utilisation is above 80% the mRT grows well above the 1s threshold and increases
linearly to the demand.

Throughout the comparison, the AKBC controller parameters are set to S = 1.0 and
Q0 = 209. The initial variance Q0 is measured offline when all resources are allocated
to the virtualized single-tier application. Also, the reference c value is set to 60% as
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Table VII. KBC comparison against existing feedback controllers, CPU utilisation variance
normally distributed.

AKBC [Padala et al. 2007]
damping factor mRT additional COV λ mRT additional COV

1 0.45 2143 25 0.99 0.69 3391 789
4 0.46 2212 45 0.9 0.62 3362 668
8 0.44 2285 48 0.7 0.53 3309 466
10 0.41 2348 48 0.5 0.43 3271 309
40 0.16 3194 57 0.3 0.40 3290 178
80 0.08 3780 35 0.1 0.30 3465 41
100 0.07 3948 27 0.01 0.11 4584 7

Table VIII. KBC comparison against existing feedback controllers, CPU utilisation variance
uniformly distributed.

AKBC [Padala et al. 2007]
damping factor mRT additional COV λ mRT additional COV

1 0.47 2060 12 0.99 0.36 2593 346
4 0.46 2202 46 0.9 0.34 2593 346
8 0.44 2286 51 0.7 0.32 2567 274
10 0.41 2353 52 0.5 0.27 2574 215
40 0.16 3202 60 0.3 0.27 2638 147
80 0.08 3786 36 0.1 0.24 2891 38
100 0.07 3953 28 0.01 0.06 4257 11

in the evaluation of the prototype Rubis deployment. The AKBC controller updates its
Kalman gain online from CPU utilisation measurements using a sliding window of 10
intervals with a slide of a single interval. All simulations run for 100 intervals in total
and different executions showed similar results. Similar to the prototype evaluation we
use the additional and COV metrics to compare the CPU allocation of the different
approaches. In addition, we report the mRT for the duration of the simulation.
Simulation Results. In their work [Padala et al. 2007] introduce an adaptive inte-
gral nonlinear utilisation controller to assign the CPU allocation of virtualised appli-
cations based on a reference CPU utilisation. The controller uses a self-tuning gain
that depends on the resource utilisation of the previous interval and the reference
CPU utilisation. The gain also has a tunable parameter λ to adjust its aggressiveness.
The authors prove that their controller is stable when λ < 1

c , where c is the reference
relative CPU utilisation and is defined as in our work. We compare against the AKBC
controller since [Padala et al. 2007] do not consider the resource coupling among com-
ponents in multi-tier applications.

Table VII shows the comparison results between the AKBC and the [Padala et al.
2007] controller when the CPU utilisation noise variance is subject to a normal dis-
tribution and for different Kalman gain and λ values. We vary the tunable parameter
λ in the region [0.99 1

c , . . . , 0.01
1

c ] for a stable controller. Results show that although
both controllers are set to keep the utilisation at 60%, the AKBC controller on average
maintains a lower mRT with less additional resources and a much lower allocation COV.

Depending on the parameter values for each controller, we observe different perfor-
mance. In the AKBC controller, the higher the damping factor the smaller the gain is
and the controller is less aggressive with smoother and higher allocations and so better
mRT. We observed that for high values of the damping factor (≥ 100) there is a negligi-
ble improvement in the mRT and so we report results only up to x = 80. In the [Padala
et al. 2007] case, a lower λ significantly reduces the aggressiveness of the controller to
react to CPU utilisation changes and so additional resources increase. However, the
AKBC self-adaptive controller is able to maintain a good performance of low mRT and
additional resources and smooth allocation across the damping factor values.
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Table VIII shows the comparison results when the process noise is uniformly dis-
tributed. Note that the Kalman filter is not optimal in this case. We note that
the [Padala et al. 2007] controller on average achieves a lower mRT at the expense of a
much higher additional allocation and a very noisy CPU allocation as shown by the
high COV values. In this case, the performance of the self-adaptive AKBC controller
perfoms very well with lower additional allocations and COV values. This is achieved
even though the utilisation variance is uniform and the Kalman filter is not optimal.
Overall, the AKBC controller achieves a stable performance despite the distribution
of the utilisation variance and the configuration of its parameters. Although both con-
trollers are self-adaptive, the linear AKBC is more robust to its parameters values and
the distribution utilisation variances.

6. RELATED WORK

This section discusses related approaches for dynamic CPU resource allocation for
single- and multi-tier virtualized applications. Our discussion is focussed on meth-
ods that use feedback control, profiling and predictive control. We then review related
work on filters developed for early, non-virtualized shared clusters. We finish by briefly
discussing the most relevant related work from the areas of machine learning and
queueing theory, and present approaches to capture virtualization-induced resource
overheads.
Feedback Control. Early work in the area [Wang et al. 2005; Zhu et al. 2006] present
feedback controllers to allocate CPU resources for the HP-UX PRM resource contain-
ers. These works propose: (a) a proportional-integral controller that regulates the in-
verse mRT based on its linear relationship to the CPU allocation identified by system
analysis; (b) a non-linear controller that regulates the relative utilisation; and (c) com-
binations of the above. Compared to these methods, which rely on application-specific
models obtained via system identification, our Kalman-based controllers are linear
and are based on a simple yet widely applicable model of the CPU utilisations.

With the virtualization of the data-centre, there has been a resurgence in control-
based techniques for resource allocation. Padala et al. [2007] present a 2-layered con-
troller to regulate the relative utilisation of two instances of 2-tier virtualized Rubis
servers colocated on two physical servers. The authors use the first layer controller
from [Wang et al. 2005] to regulate the relative utilisation for each tier and a second
layer controller to further adjust the allocations using a performance differentiation
metric in cases of CPU contention.

Wang et al. [2007] present a 3-layer nested control design to control the CPU of a
3-tier Rubis application. The two inner loops are similar to [Zhu et al. 2006]. The outer
loop provides a better approximation of the corresponding utilisation per tier in respect
to the reference mRT as computed by a transaction mix performance model. Our MIMO
Kalman controllers track the utilisation using a simple CPU resource coupling per-
formance model updated online rather than relying on application-specific transaction
mixes.

Liu et al. [2007] address the problem of resource sharing in cases of contention in
shared virtualized clusters. Their controller allocates CPU resources based on a qual-
ity of service response time ratio that exists in the overload region. Our MIMO Kalman
controllers use the online resource coupling model of the easily derived metric of CPU
utilisation. Padala et al. [2009] use a second-order ARMA model to online capture the
relationship between multiple resource utilisations and application performance met-
rics. Experimental evaluation on two workload types show that their model captures
this relationship with high accuracy. The authors use this model to build resource al-
location controllers based on past allocations and performance values. Our controllers
emphasise the CPU utilisation tracking approach and apply a widely-used general
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model between application performance and allocation, which we validate experimen-
tally.

Kalyvianaki et al. [2010] present a MIMO controller to control the CPU allocations
of multi-tier web server applications that relies on a predefined linear-only resource
coupling model, built a priori from offline measurements.
Profiling. Gong et al. [2010] propose a combined approach that uses either a state-
or a signature-based pattern predictor for resource allocation using previous utilisa-
tion measurements. The Kalman-based controllers rely on a few recent resource mea-
surements to predict unseen workload patterns and are also optimised for multi-tier
applications.

Nguyen et al. [2013] propose a wavelet-based approach for online demand predic-
tion for resource utilisations. The advantage of this approach is the decomposition of
the original signal into multiple detailed signals that capture different patterns and
finally are synthesised to an approximation signal for predictions. The Kalman-based
approach is also able to filter out temporarily variations and track the main fluctua-
tions of the observed signal. To make predictions the Kalman controllers simply re-
quire the previous measurement when compared to wavelet trasforms which analyse
a longer history of past measurements. Nguyen et al. [2013] also propose an online
adaptive model that learns the performance violations as a function of the relative re-
source utilisation. However, this approach requires a long history of 10 to 20 minutes
to generate a new model.

Shen et al. [2011] focus on methods for fast corrections against under-provisioning
errors. They present an approach which combines online adaptive padding based on
burst detection with additional allocation corrections using feedback from SLO viola-
tions and relative utilisation. Our online Kalman gain adaptation captures the large
utilisation variance occuring during workload bursts and thus enables the controllers
to allocate resources commensurate to utilisation. Charalambous and Kalyvianaki
[2010] propose the use of the min-max H∞ filters to minimise the maximum error
during under-provisioning. Their simulation-based evaluation uses a theoretical func-
tion to account for the request response degradation in saturation and shows improved
performance over the Kalman filters. Our controllers can work in conjuction with the
H∞ filters to improve the performance during periods of saturation.
Predictive Control. Xu et al. [2006] present a predictive controller that regulates the
relative utilisation of a single-tier virtualized server based on three time-series predic-
tion algorithms, namely the AR auto-regressive model, the ANOVA decomposition and
the MP multi-pulse model. Results show that the predictive controllers outperform
the relative-utilisation feedback controller of [Wang et al. 2005] when the utilisation
exhibits regular patterns. However, unseen utilisation patterns cause the predictive
controller to fail to provide adequate resources for the server application. The Kalman
filter is a very powerful method that predicts future demands based on past measure-
ments and directly relates measurements to system states.
Filtering Methods. Simple time-series analysis techniques have also been used to
predict future resource demands in modern virtualized shared clusters. A first order
AR predictor is used by the Sandpiper system to estimate future resource demands in
virtualized servers [Wood et al. 2007].

Before virtualization became widely adopted, several systems were developed to
manage resource multiplexing in shared clusters. We briefly discuss the approaches
to CPU resource allocation related to filters. In Sharc [Urgaonkar and Shenoy 2004],
an exponentially-weighted moving average (EWMA) filter is used to estimate future
CPU and network bandwidth resources based on past observations. The filter uses
statically assigned parameters and can operate in a range of modes from being ag-
gressively adaptive to changes of the observed signal (agile filter), or to being smooth
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on transient fluctuations (stable filter). However, this filter works only in one mode
at-a-time and therefore it is not adaptive to different operating conditions.

To address the above limitations, Chase et al. [2001] use a flop-flip filter based on
similar filters from [Kim and Noble 2001]. The flop-flip filter uses the moving average
of the estimations over a 30s window and, if that estimation fails outside one standard
deviation, it switches to the new moving average. The authors use this filter to smooth
particularly bursty signals. The Kalman controllers adapt dynamically to operating
conditions without using predefined values. Thus, they are easier to deploy and require
minimal configuration.

Urgaonkar et al. [2002] use a profiling phase during which the application is run
under realistic workloads to derive its resource utilisation distribution. The authors
also propose online updating of the resource distributions periodically. Our adaptive
controller does not use offline measurements and instead operates solely on short-term
observations to make predictions of the workload utilisations.
Machine Learning. There exist machine learning approaches to performance mod-
elling in virtualized environments. Xu et al. [2007] use fuzzy modeling to minimise
resource consumption for single-tier applications while meeting SLAs and maximising
a utility function modelled as profit over the shared resource revenue. Tesauro et al.
[2007] apply reinforcement learning to data-centre server allocation. The authors em-
ploy a 2-layer resource management scheme. For each application at the first layer, an
application manager provides a utility curve of its expected value based on the num-
ber of allocated servers. At the second layer, a resource arbiter decides how to allocate
servers among all applications so as to maximise a global utility function. Kundu et al.
[2012] apply different models across the input parameter space using neural networks
and support vector machines.
Queueing Models. Another approach to performance modelling of virtualized appli-
cations involves the adoption of queueing models. Urgaonkar et al. [2008] combine
proactive and reactive mechanisms to decide when to allocate resources and then use a
queueing model to determine the resource demands of multi-tier applications. Menasce
and Bennani [2006] study in a simulation environment a dynamic provisioning ap-
proach that combines a controller to allocate resources with analytical models of the
CPU resources assigned to workloads with different priorities. Jung et al. [2008] use
a hybrid approach with queueing models and optimization techniques for component
placement in consolidated virtualized applications.
Virtualization-induced Resource Overheads. There are several previous work
that measures the performance overheads experienced by applications running on a
virtualized environment [Cherkasova and Gardner 2005; Menon et al. 2005]. In the
same scope, Wood et al. [2008] devise a modelling approach to capture the performance
implications when migrating an application from a non-virtualized environment to a
virtualized one.

7. CONCLUSIONS AND FUTURE WORK

High consolidation in virtualized clusters requires adaptive resource management of
server applications. Control theory has been used to adjust the CPU allocations based
on observations of past utilisation. This article has described how to transform the
CPU allocation problem into a tracking one and how to incorporate the Kalman filter
into feedback controllers for dynamically allocating the CPU resources of multi-tier
virtualized servers. Our main experimental evaluation findings showed that: (a) fil-
tering the utilisation signal enables us to follow the workload changes without being
strongly affected by transient fluctuations and (b) our adaptive controller can effec-
tively configure its parameters online using past utilisation observations to self-adapt
to workload conditions without requiring online analysis.
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In future work we plan to evaluate our controllers against complex consolidation sce-
narios in modern multi-core systems with the latest resource schedulers and capture
VM interference with our system model. In addition, our goal is to extend our work to
address the allocation problem of additional resources such as memory and network
bandwidth. We plan to test our system model against other types of resources and
workloads. Finally, a very challenging problem is to dynamically find the best value
of the c parameter accross applications and their components. As part of our current
on-going work, we are looking into optimisation techniques to minimise the required
additional headroom allocation and integrate this approach with the current Kalman
controllers.
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