
              

City, University of London Institutional Repository

Citation: Charalambous, T., Kalyvianaki, E., Hadjicostis, C. N. & Johansson, M. (2013). 

Distributed Offline Load Balancing in MapReduce Networks. Paper presented at the 2013 
IEEE 52nd Annual Conference on Decision and Control (CDC), 10-12-2013 - 13-12-2013, 
Florence, Italy. 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/8182/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Distributed Offline Load Balancing in MapReduce Networks
Themistoklis Charalambous, Evangelia Kalyvianaki, Christoforos N. Hadjicostis and Mikael Johansson

Abstract— In this paper we address the problem of bal-
ancing the processing load of MapReduce tasks running on
heterogeneous clusters, i.e., clusters composed of nodes with
different capacities and update cycles. We present a fully
decentralized algorithm, based on ratio consensus, where each
mapper decides the amount of workload data to handle for
a single user job using only job specific local information,
i.e., information that can be collected from directly connected
neighboring mappers, regarding their current workload usage
and capacity. In contrast to other algorithms in the literature,
the proposed algorithm can be deployed in heterogeneous
clusters and can operate asynchronously in both directed and
undirected communication topologies. The performance of the
proposed algorithm is demonstrated via simulation experiments
on large-scale strongly connected topologies.

I. INTRODUCTION

Cloud computing is being rapidly adopted since it enables
quick application deployment over a potentially very large
pool of commodities with little capital investment and with
moderate operating costs. One of the fast emerging Cloud
applications is big-data computing that handles massive-
volumes of data. Modern applications in this domain employ
the MapReduce paradigm [1] to execute scalable and parallel
processing of data, leveraging on the scalable infrastructure
of Cloud data centers. For example, Google uses MapReduce
to execute popular applications such as web search indexing,
Google News and Google Maps [2]. Facebook relies on the
MapReduce paradigm to perform data warehousing opera-
tions [3].

MapReduce is designed for scalable and parallel process-
ing of large volumes of data by dividing the input data into
smaller chunks and distributing its processing into a network
of processing elements. It employs a programming model
that transforms all input data into key/value pairs for ease
of processing. Input data is processed by two successively
executed phases: the map and the reduce, also shown in
Figure 1. In the map phase, each of the input data chunks
is processed independently by a mapper to produce a new
list of key/value pairs. In the reduce phase, all pairs with
common keys generated in the map phase are merged into
a final list of key/values pairs. Scalability is achieved by
distributing the workload, first within the network of mappers

Themistoklis Charalambous and Mikael Johansson are with the School
of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm,
Sweden. E-mails: {themisc,mikaelj}@kth.se.

Evangelia Kalyvianaki is with the School of Informatics, City University
London, UK. E-mail: evangelia.kalyvianaki.1@city.ac.uk.

Christoforos N. Hadjicostis is with the Department of Electrical and
Computer Engineering at the University of Cyprus, Nicosia, Cyprus. E-
mail: chadjic@ucy.ac.cy.

DataDataData

Requests Mappers Reducers

users

Fig. 1. MapReduce model: a user request is first processed by a network
of mappers forming a digraph. The result from each mapper is then sent
to the reducers to form the final answer. The area of circles represent the
volume of data chunks assigned to mappers and reducers. Arrows among
mappers represent the exchange of coordinating information.

and then within the network of reducers; different mappers
and different reducers can be executed in parallel.

MapReduce is designed to achieve high-job completion
speedups through parallelism. However, in practice, a job
might be significantly prolonged due to imbalances in work-
load processing, especially in heterogeneous clusters of
nodes [4], [5]. Initial work on MapReduce [1] assumed
homogeneous clusters where mappers and reducers are run-
ning on nodes with equal processing capacities. In this case,
and when the input data set is divided across equally-sized
chunks, the completion time of a MapReduce job roughly
equals the sum of completion times of a typical mapper and
a typical reducer. However, in several cases, job completion
times were observed to be higher than expected because of
stragglers, i.e., a mapper (or a reducer) that takes signif-
icantly longer to complete, even in homogeneous clusters,
because of hardware or software misconfigurations [1]. With
the wide adoption of the MapReduce paradigm in large-scale
heterogeneous clusters [6], others have also observed the
existence of stragglers with dramatic effects in performance
and losses in revenue [4], [5]. Additional reasons that cause
jobs to take longer than usual include heterogeneous clusters
in the Cloud [4] and data-based imbalances in the workload



distribution and transfer of data across racks [5]. Therefore,
it is important that the workload distribution among mappers
and reducers is balanced and the transfer of data across racks
is minimized.

Different approaches exist to mitigate the effects of strag-
glers at run-time after the detection of a delayed mapper
or reducer task. The most common approach replicates the
execution of data processed by stragglers using back-up [1]
and speculative execution [4] to re-process the data chunks
assigned to stragglers. Ananthanarayanan et al. [5] present an
alternative system that combines specialized solutions based
on root-cause analysis of outliers, network-aware placements,
and duplication. Ahmad et al. [6] take on-line decisions to
balance the communication of the mapping phase based on
cluster measurements. Others employ centralized solutions to
map tasks or data to nodes prior to application execution. For
example, Alma et al. [7] build a job scheduler that assigns
MapReduce tasks to nodes in order to meet pre-defined
job completion deadlines. Similarly, Xie et al. [8] partition
data to nodes for balanced load processing in heterogeneous
clusters.

In this paper we present a distributed algorithm to address
the problem of balancing the data workload assigned to
mappers in massively large-scale clusters that consist of
several tens of thousands of nodes [9]. Our goal is to address
the load-balancing problem in heterogeneous networks of
clusters before a job commences to process data. In this way,
we avoid the increased network communication overhead
resulting from balancing the load at run-time, as measured
by [6], and allow for advanced data transfers to nodes prior
to execution. Our algorithm works in the following way.
When a new MapReduce job arrives, the mappers com-
mence to exchange coordinating information locally (with
neighboring mappers with which they have a communication
link established) about their total job workload demand and
capacity, as shown in Figure 1. More specifically, a ratio
consensus algorithm is deployed which enables (synchronous
and asynchronous) asymptotic convergence to proportional
balance among mappers of the data to be processed, in a
completely distributed fashion. With proportional balancing,
each mapper is assigned workload proportional to its re-
source availability (which in general could be time-varying).
In this way, we expect all mappers to finish processing simul-
taneously with minor variations, thus preventing increased
processing time due to imbalances.

The proposed distributed algorithm has the following
advantages over other suggested methods (e.g., Gonzalez-
Ruiz et al. [10]):
(i) The assumption that cluster nodes need to be homoge-
neous and have the same resource capacity is lifted. We allow
for heterogeneous nodes and the load is distributed according
to the nodes’ capacities (in terms of CPU, memory, disk
space, etc.). Also, a network topology might be weighted due
to different bandwidth capabilities or time-varying delays.
(ii) The link-level delay in the exchange of loads between
nodes needs neither to be negligible nor synchronous. Our
algorithm is shown to exhibit asymptotic converge, even in

the presence of delays, provided that the delays are bounded.
(iii) The assumption that the network is undirected is lifted
and we consider directed graphs (digraphs). In practical
scenarios, the network topology might become loosely di-
rected because of delays, packet losses and asymmetric links.
In addition, the directed graph structure reduces overhead
communication (e.g., there is no need for acknowledgements)
and can admit faster convergence.
(iv) The distributed consensus algorithm itself constitutes
a novel distributed solution to the problem of workload
balancing in heterogeneous large-scale MapReduce clusters.

We perform simulations over small- and large-scale
strongly connected topologies of mappers. Results show that,
unlike other algorithms, our algorithm converges asymptot-
ically to proportional balancing in both synchronous and
asynchronous settings.

The remainder of this paper is organized as follows. In
Section II we provide necessary notation and background
on graph properties. Section III presents the model adopted,
along with theoretical results that support the use of the sug-
gested algorithm. In Section IV we formalize the distributed
algorithm for the load balancing problem in heterogeneous
MapReduce networks. Section V presents preliminary results
with numerical examples from simulations. Finally, Sec-
tion VI presents concluding remarks and future directions.

II. NOTATION

The sets of real, integer and natural numbers are denoted
by R, Z and N, respectively; their positive orthant is denoted
by the subscript + (e.g., R+). Vectors are denoted by small
letters whereas matrices are denoted by capital letters. AT

denotes the transpose of matrix A. By 1 we denote the
all-ones vector and by I we denote the identity matrix
(of appropriate dimensions). A matrix whose elements are
nonnegative, called nonnegative matrix, is denoted by A ≥ 0
and a matrix whose elements are positive, called positive
matrix, is denoted by A > 0.

Let the exchange of information between nodes (where
mappers are located) be modeled by a weighted directed
graph G(V, E , P ) of order n (n ≥ 2), where V =
{v1, v2, . . . , vn} is the set of nodes, E ⊆ V ×V is the set of
edges, and P = [pji] ∈ Rn×n+ is a weighted n× n adjacency
matrix where pji are nonnegative elements. A directed edge
from node vi to node vj is denoted by εji = (vj , vi) ∈ E ,
which represents a directed information exchange link from
node vi to node vj , i.e., it denotes that node vj can receive
information from node vi. A directed edge εji ∈ E if and
only if pji > 0. The graph is undirected if and only if εji ∈ E
implies εij ∈ E .

All nodes that can transmit information to node vj directly
are said to be in-neighbors of node vj and belong to the set
N−j = {vi ∈ V : εji ∈ E}. The cardinality of N−j , is called
the in-degree of vj and it is denoted by D−j = |N−j |. The
nodes that receive information from node vj are called out-
neighbors of node vj and belong to the set N+

j = {vl ∈ V :

εlj ∈ E}. The cardinality of N+
j , is called the out-degree

of vj and it is denoted by D+
j = |N+

j |. A directed graph



is called strongly connected if there exist paths from each
vertex in the graph to every other vertex. This means paths
in each direction: a path from vi to vj and vice versa, for
all vi, vj ∈ V .

III. MODEL AND APPLICATION OF THEORETICAL
RESULTS

In this section, we establish some basic notions that
are needed for the development of our algorithm. In the
MapReduce paradigm, where mappers (nodes) can exchange
information via interconnection links (edges), the exchange
of information between mappers can be captured by a
digraph (directed graph) G = (V, E).

Each node vj (mapper) updates and sends its information
regarding its current load and capacity to its out-neighbors
(and also receives similar information from its in-neighbors)
at discrete times t0, t1, t2, . . .. We index nodes’ information
states and any other information at time tk by k. We use
xj [k] ∈ R to denote the information state (or estimate)
of node vj at time tk. When there exist no delays in the
communication links, each node updates its information state
xj [k] by combining the available information received by
its neighbors xi[k] (vi ∈ N−j ) using a weighted linear
combination. More specifically, the positive weights pji[k]
capture the weight of the information inflow from agent vi
to agent vj at time k (note that unspecified weights in P
correspond to pairs of nodes (vj , vi) that are not connected
and are set (without loss of generality) to zero, i.e. pji[k] = 0,
∀εji /∈ E). In this work, we assume that each node vj can
choose its self-weight and the weights on its out-going links
εlj , vl ∈ N+

j , only. In its general form, each node updates
its information state according to the following relation:

xj [k + 1] = pjj [k]xj [k] +
∑

vi∈N−
j

pji[k]xi[k] , k ≥ 0 , (1)

where xj [0] ∈ R is the initial state of node vj . If we let
x[k] = (x1[k] x2[k] . . . xn[k])T and P [k] = [pji[k]] ∈
Rn×n+ , then (1) can be written in matrix form as

x[k + 1] = P [k]x[k], (2)

where x[0] = (x1[0] x2[0] . . . xn[0])T ≡ x0. In this work,
we consider a static network (as it is usually the case for
distributed resources in applications such as the Cloud) and
hence the graph remains invariant. In this case, the weights
can be chosen to be constant for all times k (i.e., pji[k] =
pji ∀k), and equation (2) can be expressed as x[k + 1] =
Px[k].

We will be interested in having the nodes reach asymptotic
average consensus, i.e., be able to calculate (for large k) the
average of their initial values. In other words, we would like

lim
k→∞

xj [k] =

∑n
`=1 x`[0]

n
,∀vj ∈ V . (3)

Ratio consensus. In [11], an algorithm is suggested that
solves the average consensus problem in a directed graph
in which each node vj distributively sets the weights on its

self-link and outgoing-links to be plj = 1
1+D+

j

, ∀(vl, vj) ∈ E ,
so that the resulting weight matrix P is column stochastic,
but not necessarily row stochastic. Average consensus is
reached by using this weight matrix to run two iterations
with appropriately chosen initial conditions. The algorithm
is stated below for the specific choice of weights mentioned
above (which assumes that each node knows its out-degree).
Note, however, that the algorithm also works for any set
of weights that adhere to the graph structure and form a
primitive column stochastic weight matrix.

Lemma 1: [11] Consider a strongly connected graph
G(V, E). Let yj [k] and zj [k] (for all vj ∈ V and k =
0, 1, 2, . . .) be the result of the iterations

yj [k + 1] = pjjyj [k] +
∑

vi∈N−
j

pjiyi[k] , (4a)

zj [k + 1] = pjjzj [k] +
∑

vi∈N−
j

pjizi[k] , (4b)

where plj = 1
1+D+

j

for vl ∈ N+
j (zeros otherwise), and the

initial conditions are y[0] = (y0(1) y0(2) . . . y0(|V|))T ≡
y0 and z[0] = 1. Then, the solution to the average consensus
problem can be asymptotically obtained as

lim
k→∞

µj [k] =

∑
v`∈V y0(`)

|V|
, ∀vj ∈ V ,

where µj [k] = yj [k]/zj [k] .
Robustified ratio consensus. An adaptation of the above
approach to a protocol where each node updates its infor-
mation state xj [k + 1] by combining the available (possibly
delayed) information received by its neighbors xi[s] (s ∈
Z, s ≤ k, vi ∈ N−j ) using constant positive weights pji was
developed in [12]. Integer τji[k] ≥ 0 is used to represent the
delay of a message sent from node vi to node vj at time
instant k. We require that 0 ≤ τji[k] ≤ τ̄ji ≤ τ̄ for all
k ≥ 0 for some finite τ̄ = max{τ̄ji}, τ̄ ∈ Z+. We make
the reasonable assumption that τjj [k] = 0, ∀vj ∈ V , at all
time instances k (i.e., the own value of a node is always
available without delay). Each node updates its information
state according to the following relation:

xj [k + 1] = pjjxj [k] +
∑

vi∈N−
j

τ̄∑
r=0

pjixi[k − r]Ik−r,ji[r],

(5)

for k ≥ 0, where xj [0] ∈ R is the initial state of node vj ; pji
∀εji ∈ E form P = [pji] that adheres to the graph structure,
and is primitive column stochastic; and

Ik,ji(τ) =

{
1, if τji[k] = τ ,
0, otherwise.

(6)

In the absence of delay, we have τji[k] = 0 and one
should point out that the update relation (5) reduces to (1)
with constant weights. Equation (5) is just a mathematical
way of saying that each node vj considers at time k all the
packets it receives at time k. These packets were obviously



sent at earlier time steps (i.e., k, k− 1, k− 2, . . . , 0) and the
assumption of bounded delay means that we only need to
consider in the inner summation k, k − 1, k − 2, . . . , k − τ̄ ;
thus, we make the following assumptions:
(A1) The graph is strongly connected, and the (nonnegative)

weights pji are nonzero (strictly positive) for j = i and
(vj , vi) ∈ E , and satisfy

∑n
l=1 plj = 1 (so that they

form a column primitive stochastic matrix P ).
(A2) There exists a finite τ̄ that uniformly bounds the delay

terms; i.e. τji[k] ≤ τ̄ <∞ for all links (vj , vi) ∈ E at
time instant k. In addition, τjj [k] = 0 for all vj ∈ V
and all k.

Lemma 2: [12, Lemma 2] Consider a strongly connected
digraph G(V, E). Let yj [k] and zj [k] (for all vj ∈ V and
k = 0, 1, 2, . . .) be the result of the iterations

yj [k + 1] = pjjyj [k] +
∑

vi∈N−
j

τ̄∑
r=0

yji[k − r]Ik−r,ji[r] ,

zj [k + 1] = pjjzj [k] +
∑

vi∈N−
j

τ̄∑
r=0

zji[k − r]Ik−r,ji[r] ,

under Assumptions (A1) and (A2). The initial conditions are
y[0] = (y0(1) y0(2) . . . y0(|V|))T ≡ y0 and z[0] = 1,
and Ik,ji is an indicator function that captures the bounded
delay τji[k] on link (vj , vi) at iteration k (as defined in (6),
τji[k] ≤ τ̄ ). Then, the solution to the average consensus
problem can be asymptotically obtained as

lim
k→∞

µj [k] =

∑
v`∈V y0(`)

|V|
, ∀vj ∈ V ,

where µj [k] = yj [k]/zj [k].
At this stage, this is the only reported distributed coordi-

nation algorithm that is able to reach average consensus in
directed graphs with asynchronous operation of the nodes.
These properties make the robustified ratio consensus suit-
able for the application we discuss in the sequel.

IV. WORKLOAD BALANCING IN A HETEROGENEOUS
MAPREDUCE NETWORK

In this section, we apply the robustified ratio consensus
described previously for balancing the workload in massively
large-scale (and possibly asynchronous) MapReduce clusters.
The suggested algorithm can be applied during either the
map or the reduce phase. For simplicity, the current discus-
sion describes only the load distribution on the network of
mappers.

Consider a new MapReduce job d that needs to process a
set of input data. The total demand of resources required by
d in the map phase is given by ρd. We assume that ρd can
be approximately estimated via offline application profiling,
e.g., using historical data over similar jobs executed in the
same network [7]. We target the problem of dividing the
set of input data into variable-sized chunks and assign each
chunk with a mapper process so that all mappers commence
and complete processing synchronously with small differ-
ences. In this way, we address the problem of stragglers

due to data processing load imbalances in heterogeneous net-
works. To this end, we exploit each mapper (node) according
to its capacity, in order to finish its allocated workload at
approximately the same time as the other mappers (we say
approximately because in this work we treat load as a real
number, essentially ignoring any quantization constraints).

We assume that the input data set is stored on a global
file system accessible by all mappers, e.g., GFS [13] or
HDFS [14], and suppose that each mapper runs on a separate
node. A node can be either a physical or a virtual machine
(VM). Let πmax

j , ∀j ∈ {1, 2, . . . , n}, n = |V|, be the
maximum processing capacity that node vj can provide
towards the map phase. For a single resource type, e.g., CPU
resource, πmaxj corresponds to the maximum available CPU
capacity of the node. In the case of a physical machine,
the maximum available CPU capacity corresponds to the
total capacity of the machine’s CPU, if no other job is
being processed at the time. In the case of a VM, πmaxj

equals to the portion of the machine’s CPU that this VM
is capped to use; we assume that the virtualization layer
enforces strict performance isolation among co-located VMs.
We also assume that the node measures πmaxj using offline
analysis, e.g., [7], based on its current utilization. Also,
a network topology might be weighted due to different
bandwidth utilizations and delays because of traffic from
other jobs in the data center. As a result, some node-to-node
paths may be in reality very slow during the execution of
information exchange (due to large delays), for example [15],
thus making the connection topology a directed graph.

The distributed algorithm converges to a balanced load
distribution through information exchange between nodes.
At time tk of information exchange between nodes, we
use πj [k] ∈ R to denote the amount of resources that
node vj intends to contribute towards the map phase and
let πmax

j ∀j ∈ {1, 2, . . . , n}, be the capacity mapper vj
can provide. As soon as consensus is reached, say after m
steps, node vj chooses its state πj [m], 0 ≤ πj [m] ≤ πmax

j ,
based on the available local information at vj , such that the
total resource demanded ρd is equal to the total amount of
resources offered by the nodes, provided the total capacity
of resources available is greater than the demanded one, i.e.,

ρd =
∑
v`∈V

π`[m], (7a)

such that
0 ≤ πj [m] ≤ πmax

j , ∀vj ∈ V, (7b)

0 ≤ ρd ≤
∑
v`∈V

πmax
` , χmax. (7c)

It is noted in [11] that a simple, feasible solution π† to
the problem is given by

π†j =
ρd
χmax

πmax
j , ∀vj ∈ V , (8)

which is always less than the capacity πmax
j of CPU resource

at vj . However, for each node vj to be assigned π†j , knowl-
edge of χmax and ρd are required at each node vj ; these
values have to be computed in a distributed fashion.

Each node vj updates its demanded amount πj [k] by
combining it with the available (possibly delayed) demanded



amount of its neighbors (πi[s] s ∈ Z, s ≤ k, vi ∈ N−j ),
according to the following relation:

πj [k + 1] =
1

1 +D+
j

πj [k]+

∑
vi∈N−

j

τ̄∑
r=0

1

1 +D+
i

πi[k − r]Ik−r,ji[r], (9)

for k ≥ 0, where πj [0] ∈ R is the initial state of node vj .
If we run the two iterations, as in Lemma 2 (with yj [0] =

πj [0] and yj [0] = pimax
j ), we have

lim
k→∞

µj [k] =

∑
v`∈V π`[0]∑

v`∈V π
max
` [0]

=
ρd
χmax

, ∀vj ∈ V.

As a result, node vj can obtain the amount of its load as

lim
k→∞

µj [k]πmax
j =

ρd
χmax

πmax
j . (10)

The workload offered is found in a distributed fashion and
it is equal to the feasible solution noted in (8).

V. NUMERICAL EXAMPLES

In this section, we demonstrate the properties and per-
formance of our algorithm through simulations for various
network types. Comparisons with other approaches are also
provided.

First, we consider a small directed network consisting of
six mappers (see Figure 2) in order to illustrate how the
algorithm operates. Each node vj chooses its self-weight and

v1

v2

v3

v4 v5

v6

1/4 1/4

1/2 1/2

1/3

1/2

1/4

1/2 1/4
1/4

1/4

1/4

1/4
1/2

1/2

1/3 1/3

Fig. 2. A directed network consisting of six nodes.

the weights on its outgoing links to be (1+D+
j )−1 (such that

the sum of all weights assigned by each node vj to its out-
going links is equal to 1). In this example, the demanded
workload amount injected into the network of mappers is
given by π[0] = (15 0 0 0 0 0)T , i.e., all the workload
is passed to the network through one of the mappers (this
could be the case in reality). The capacity of the mappers in
this network is given by πmax[0] = (3 3 3 3 4 4)T , where
π[0], πmax[0] ∈ Rn+. We induce asymmetric time-varying

delays1 into the communication between the mappers, with
maximum delay τ̄ = 5 (in the simulations, a link is delayed
with a probability 0.5, and the magnitude of the delay is an
integer chosen with equal probability from {1, 2, 3, 4, 5}.

When each node updates its information state yj [k] using
equation (4a), the information state for the whole network is
given by y[k + 1] = Py[k], where

P =


1/4 1/2 0 0 1/2 0
1/4 1/2 1/4 0 0 0
1/4 0 1/4 0 0 0
1/4 0 1/4 1/2 0 1/3
0 0 0 0 1/2 1/3
0 0 1/4 1/2 0 1/3

 .

When delays are present the two iterations proceed accord-
ing to equation (9), and the network of resources reaches
consensus ρd/χmax = 15/20; this is illustrated in Figure
3. The amount of workload for the MapReduce job offered

0 10 20 30 40 50
0

5

10

15
Ratio at each node vs Number of iterations

Number of iterations

R
at

io
 a

t e
ac

h 
no

de

Fig. 3. The ratio at each node converges to ρd/χmax = 15/20.

in the network by each node is proportional to its resource
capacities. In this case, we have resources with two different
capacities: four of them have capacity equal to 3, and two of
them have capacity equal to 4. Since the ratio ρd/χ

max =
0.75, then two of the values converge to 9/4 and three of
them to 3, as shown in Figure 4. This is achieved by having

0 10 20 30 40 50
0

5

10

15
Workload at each node vs Number of iterations

Number of iterations

W
or
kl
oa
d 

at
 e

ac
h 

no
de

Fig. 4. The amount of workload offered in the network by each node
according to (10) in the presence of asymmetric time-varying delays.

the capacity values as the initial conditions for the second
iteration, instead of having all ones. Note that delays affect

1By asymmetric time-varying delays we mean that at each of the outgoing
links of node vj and each time instant the delay can be different.



the convergence rate; in general, the larger the delays, the
lower the convergence rate of the algorithm.

Remark 1: Note that the superiority of the robustified
ratio consensus [12], proposed for this application, over other
approaches in the literature (e.g., [16]) is justified in directed
networks and in asynchronous operation. In these cases, no
comparisons are possible since existing algorithms cannot be
used.

In the following example, we consider a set of 500
mappers each with initial workload πj [0] = 3. However, half
of them have capacity πmax

j = 3 and the other half πmax
i =

5, i 6= j. By ratio consensus, according to equation (9),
with no delays, the network of resources reach consensus
ρd/χ

max = 0.75. As a result, half of the values converge to
9/4 and the other half to 15/4, as shown in Figure 5.

0 5 10 15 20
1.5

2

2.5

3

3.5

4

4.5
Workload at each node vs Number of iterations

Number of iterations

W
or
kl
oa
d 

at
 e

ac
h 

no
de

Fig. 5. The amount of workload offered in the network by each node
according to (10) for a set of 500 mappers, with no delays.

It is important to note that the time required to converge
to the proportional workload would not differ much (or at
all) for more mappers in the network, since the information
and adaptation is made locally. Traditional schedulers in
Hadoop [17]—the popular MapReduce implementation—
implement incremental assignments of fixed-size chunks to
mappers, i.e., every time a mapper has finished processing a
chunk, it notifies the scheduler and receives the next chunk.
This scheme requires direct communication of hundreds of
thousands of mappers directly with the scheduler multiple
times, leading to increased numbers of messages exchanged.
Our approach, requiring only local information sharing,
shows fast convergence to the aggregate workload that each
mapper eventually processes.

VI. CONCLUSIONS

Motivated by real-world conditions of node heterogeneity
and existence of delays, we proposed a distributed algorithm
for workload distribution in MapReduce networks of clusters.
Our suggested algorithm allows mappers on heterogeneous
nodes to operate asynchronously and converge asymptot-
ically to proportional workload balancing between them,
with limited local information exchanges. The algorithm
was shown to converge to the exact proportional workload

in directed networks in the presence of delays, something
that cannot be achieved by classical consensus algorithms.
The properties and performance of the suggested algorithm
were illustrated for small and large-scale strongly connected
topologies of mappers. The algorithm was compared with
alternative algorithms for workload balancing.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” in Proceedings of the 6th Symposium on Operating
Systems Design & Implementation (OSDI). ACM, 2004, pp. 137–150.

[2] “SIGMETRICS tutorial: MapReduce The Programming Model and
Practice,” online, 2009, http://research.google.com/archive/papers/
mapreduce-sigmetrics09-tutorial.pdf.

[3] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R. Murthy, and H. Liu, “Data warehousing and analytics infrastructure
at Facebook,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, 2010, pp. 1013–1020.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2008, pp. 29–42.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in MapReduce clusters
using Mantri,” in Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (OSDI), 2010, pp. 1–
16.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Tarazu: optimizing MapReduce on heterogeneous clusters,” in Pro-
ceedings of 17th Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2012, pp. 61–74.

[7] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: automatic
resource inference and allocation for MapReduce environments,” in
Proceedings of the 8th ACM International Conference on Autonomic
Computing (ICAC), 2011, pp. 235–244.

[8] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares,
and X. Qin, “Improving MapReduce performance through data place-
ment in heterogeneous Hadoop clusters,” in IEEE International Sym-
posium on Parallel & Distributed Processing, Workshops and PhD
Forum (IPDPSW), 2010, pp. 1–9.

[9] E. Kotsovinos, “Virtualization: blessing or curse?” Queue, vol. 8, pp.
40–46, 2010.

[10] A. Gonzalez-Ruiz and Y. Mostofi, “Distributed load balancing over
directed network topologies,” in Proceedings of the American Control
Conference (ACC), 2009, pp. 1814–1820.

[11] A. D. Domı́nguez-Garcı́a and C. N. Hadjicostis, “Coordination and
control of distributed energy resources for provision of ancillary
services,” in First IEEE International Conference on Smart Grid
Communications, 2010, pp. 537–542.

[12] C. N. Hadjicostis and T. Charalambous, “Asynchronous coordination
of distributed energy resources for the provisioning of ancillary
services,” in Proceedings of the 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), September 2011,
pp. 1500–1507.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), 2003, pp. 29–43.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–10, 2010.

[15] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th Annual
Conference on Internet Measurement (IMC), 2010, pp. 267–280.

[16] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with
time-varying metropolis weights,” in Proceedings of the International
Conference on Information Processing in Sensor Networks (IPSN),
2005, pp. 63–70.

[17] (2012) Hadoop. [Online]. Available: http://apache.hadoop.org


