

City, University of London Institutional Repository

Citation: Kalyvianaki, E., Charalambous, T. & Hand, S. (2010). Resource Provisioning for

Multi-Tier Virtualized Server Applications. Computer Measurement Group (CMG) Journal,
126(Spring), pp. 6-17.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/8185/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

RESOURCE PROVISIONING FOR MULTI-TIER

VIRTUALIZED SERVER APPLICATIONS
Evangelia Kalyvianaki

Computer Laboratory
University of Cambridge, UK

ek264@cl.cam.ac.uk

Themistoklis Charalambous

Engineering Department
University of Cambridge, UK

tc257@eng.cam.ac.uk

Steven Hand

Computer Laboratory
University of Cambridge, UK

smh22@cl.cam.ac.uk

Virtualizing the x86-based data center creates a dynamic environment for server
application deployment and resource sharing. Resource management in this environment
is challenging as applications are under fluctuating workloads causing diverse resource
demands across their tiers. Resource allocation adaptation is essential for high
performance machine utilization. This paper presents feedback controllers that dynamically
adjust the CPU allocations of multi-tier applications in order to adapt to workload changes
by considering the resource coupling between utilizations of application components. Our
experimental evaluation on a virtualized 3-tier Rubis server application shows that our
techniques work effectively.

1. INTRODUCTION

Recent advances in virtualizing commodity hardware
(e.g. [VMware], [BDF

+
03]) are causing a dramatic

change in the resource management of data centers.
Traditionally x86-based data centers provide a pool of
server machines for sharing among applications.
Machines are dedicated to applications in ways to
cope even with their most demanding workloads,
however rare these may be. Although this scheme
provides performance isolation, it has led to over-
provisioning of server resources and consequent
increased power, cooling and management costs.

Virtualizing the data center enables resource sharing
in arbitrary combinations between applications and
physical servers. A physical machine is transformed
into one or more virtual ones, called Virtual Machines
(VMs), each one capable of hosting a different
application, and all sharing the physical resources. In
addition, VMs can take advantage of dynamic resource
allocation. Virtualization is now regarded as a key
technology, supplanting frameworks developed in the
past to enable resource sharing within the context of
traditional operating systems (e.g. [US04], [ADZ00]).
This is due to the following reasons: virtualization (a)
handles resource multiplexing transparently to the
applications, (b) provides almost native performance to
applications running on VMs, (c) ensures performance
isolation since each VM is configured to guaranteed
resources, and (d) is widely applicable, as VMs host
heterogeneous operating systems.

Management tools that adapt the resource shares of
virtualized applications according to their demands are
integral to capitalize on this technology and create a
truly agile environment for resource sharing. On one
hand server applications need to be provisioned
adequately to meet their changing resource demands
caused by workload fluctuations [AJ00]. If applications
are under-provisioned, they fail to comply with their
performance goals. On the other hand, on-demand
provisioning enables unused resources to be allocated
for other applications to use. Server consolidation
increases machine utilization, decreases the number
of required machines and therefore decreases costs
for power and cooling.

Recently control theory has been used to perform
dynamic allocation of CPU resources in virtualized
data centers (e.g. [PSZ

+
07], [WLZ

+
07]). CPU is an

important resource for data centers; under-utilization
has consequences such as an unnecessary increase
in power consumption. It is thus important to efficiently
use CPU resources. By using feedback control,
controllers can be developed which adjust allocations
as workload changes occur, without using extensive a
priori knowledge of the workload patterns or the
applications' internal structure. Much emphasis has
been given so far to address the control of resource
allocations for single-tier server applications. This
paper focuses on controlling the allocations of multi-
tier applications.

Modern server applications are typically based on the
multi-tier paradigm. Each tier (or component) usually
runs on its own server, executing some of the
application's operations. All components are
connected as required to serve incoming requests. In
multi-component systems, each tier uses a different
amount of resources to process incoming requests,
and there is a correlation between the utilization of the
various tiers. Server applications are usually modeled
with queues in tandem. If any of the tiers is
inadequately provisioned, the overall server
performance is affected. In fact, when workload
fluctuations happen in resource provisioned server
components, the saturation point can be moved from
one component to another, causing prolonged poor
performance [ZCS05].

This paper addresses CPU resource provisioning for
virtualized multi-tier applications. Initially, it presents a
Single-Input Single-Output Usage-Based (SISO-UB)
feedback controller that adapts the CPU allocations of
virtualized server components while adjusting to
varying resource demands due to workload changes.
Building on the SISO controller, we also present a
Multi-Input Multi-Output Usage-Based (MIMO-UB)
feedback controller that collectively allocates CPU
resources to all components by considering the
resource coupling among the tiers. Our technique is
tested against a 3-tier server benchmark application
deployed on Xen-virtualized [BDF

+
03] machines.

Results show that the MIMO-based provisioning
enables the application to react faster to workload
changes, and improves performance when compared
to the SISO-based approach.

The rest of this paper is organized as follows. Section
2 presents the prototype virtualized cluster used for the
evaluation. Section 3 discusses the system
identification process that leads to the SISO (Section
4) and MIMO controllers (Section 5). The experimental
evaluation is presented in Section 6. Section 7 refers
to related work, and Section 8 concludes.

2. PROTOTYPE VIRTUALIZED CLUSTER

Figure 1 illustrates the prototype virtualized cluster
used to evaluate our controllers. The cluster, which
consists of three machines running Xen 3.0.2, hosts
the Rubis server application [ACC

+
02]. Rubis is a

prototype auction web server which models eBay.com.
In this paper we use a 3-tier version of Rubis. Each
one of the three server components – Tomcat web
server, JBoss application server, and MySQL DB
server – is deployed on a separate VM running on a
separate physical machine. A fourth machine hosts the
Rubis Client Emulator used to generate requests to the
server. The Client Emulator also records the response
times of requests and is used to evaluate the

performance of our controllers. All machines are
connected via a Gigabit Ethernet network.

Figure 1. Virtualized prototype and control system overview.

Solid lines between the controller modules and the Rubis
Server System depict the three SISO-UB controller systems.
The MIMO-UB controller is shown by the dashed rectangle.
Dom0 is the Xen control VM which is used, among other things,
to control the user generated VMs.

The controllers presented in this paper determine CPU
allocations for VMs. Periodically, the manager module
submits the mean CPU usage for the VM under control
over the last interval to the controller module(s). The
controller(s) computes the allocations for the next
interval and enforces them for the specified VM by
using the CPU scheduler interface exported by Xen.
Our prototype uses the simple EDF (SEDF) scheduler
configured with the “capped” (non-work conserving)
option so that no VM can use any more CPU time that
it has been allocated. The controller module(s) runs on
the same machine as the Client Emulator.

The current prototype controls CPU allocations per
VM. To ensure that the server's performance depends
solely on the controller(s) CPU allocations, certain
actions are taken. All machines have two CPUs, and
each one of the two VMs per physical machine is
pinned on a separate CPU. This simple setup enables
us to study the impact of the controller(s) allocations
on the server performance without any implications
due to scheduling artifacts among running VMs
sharing the same CPU. In future work we hope to
demonstrate that our system performs well even when
many VMs share a single CPU. Finally, for all the
experiments each VM is allocated memory as required
when first created and this allocation is kept constant
throughout. The network bandwidth is also measured
and is never a bottleneck to the application.

3. SYSTEM IDENTIFICATION

The goals of the current control system are twofold: (a)
maintain the application performance at a certain QoS
level in the presence of workload changes; and (b)
provide the application with enough resources to attain

the first goal without over-provisioning. In this way, the
virtualized application is properly provisioned to cope
with workload fluctuations while there are free
resources for other applications to run.

To build our system we start by measuring the
application performance when deployed on the current
prototype and define its target QoS level in Section
3.1. To achieve the second goal, we build controller(s)
that adjust the components’ allocations while
maintaining the application QoS target. Section 3.2
presents the model of the system based on which the
two controllers are built (Sections 4 and 5).

There are two workload parameters that affect the
server's performance, namely the workload type mix
and the number of clients simultaneously issuing
requests to the server (hereafter referred to as number
of clients). Both parameters affect the CPU utilization
of individual components and, consequently, the
overall performance of Rubis. The following analysis
studies the performance under a changing number of
clients but using only a single workload type mix
(namely the browsing mix with read-only requests
[ACC

+
02]). A similar analysis can be done for different

workload mixes.

3.1 QoS Target

We first measure the performance level that the server
achieves when all CPU resources are allocated to it.
Ideally, the application should maintain this QoS level
even when it is provisioned by the controller(s). The
controller(s) should act transparently to the application,
and its actions should not disturb the performance of
the application.

To this end, the application performance is measured
when each component is allocated 100% of the CPU
capacity and the number of clients varies. Figure 2
shows the mean client response time (hereafter
denoted as mRT) and Figure 3 illustrates the
corresponding throughput when the number of clients
increases from 100 to 1400 in steps of 100. Each
measurement is derived from an experiment where the
clients issue requests to the server for 200 seconds (s)
in total.

As the number of clients increases, the mRT initially
stays well below 1s and the throughput increases
linearly with the number of clients. However, when the
number of clients increases above 1200 the mRT
grows above 1s, while the throughput remains
constant. It seems clear that the server saturates at
around 1200 clients. If more clients issue requests, the
mRT increases as requests are delayed in the server
queue and the throughput stabilizes despite the
increasing number of clients.

Figure 2. Mean Request-Response Times; values are plotted
with 95% confidence intervals (CIs).

Figure 3. Aggregate Throughput.

Figure 4. CPU utilizations per component. Mean utilizations

are shown with error bars of one standard deviation.

The individual components’ CPU utilizations are also
measured and shown in Figure 4. Each component
uses more CPU resources as more clients issue
requests to the server. When the number of client
exceeds 1200 the Tomcat component reaches almost
100% of its allocation and it cannot serve more clients.
It becomes the bottleneck component and as a result
the mRT increases above 1 second while the
throughput remains constant.

The QoS performance level can therefore be
summarized as: The Rubis benchmark serves up to

1200 clients with a performance of mRT 1s. This
denotes the level of performance the server is
expected to achieve, even when the controller
dynamically allocates CPU resources to the
components. We also refer to this QoS value as the
reference value.

Throughout the above analysis, the mean statistic is
used to summarize the response time and CPU
utilization distributions. Analysis showed, that in both
cases, the mean is enough to capture the dynamics of
the systems without loss of generality. In the case of
response time, similar qualitative conclusions were
made when the median of each response distribution
was used. Additionally, the CPU utilizations were
shown to be normally distributed, and therefore either
the mean or the median can be used. For the rest of
this paper the mean is used as the centrality index.

3.2 Controller Design

The controller is the most prominent part of the control
system. It adjusts the allocations of all components as
workload changes occur in order to maintain the
reference QoS performance level. In this paper, we
build feedback controller(s) that periodically change
the component allocations based on observations of
the running application. If a deviation from the QoS
performance goal occurs (control error), then the
controller adjusts the allocations accordingly. Building
such a controller requires the system model which
describes the relationship between the control input
signals (the parameters that the controller adjusts) to
the control outputs (the parameters that are related to
the application’s performance). This section identifies
the control input/output signals and builds the system
model.

Control Signals

The selection and the number of the control
input(s)/output(s) signals depend on the task
appointed to the controller. Here, the controller
dynamically allocates CPU resources for server
components. Therefore, the control input(s) are the
parameters that change the CPU allocation of the
components. This is achieved by using the interface
exported by the SEDF CPU scheduler which allows us
to assign a percentage of the machine's CPU capacity
to a running VM. Since there are three Rubis
components, we need three control inputs. The control
output(s) are related to the application's performance;
candidate metrics include the mRT and the throughput.
Another candidate metric is the components' CPU
utilization. The CPU utilization indirectly relates to the
server's performance; if a server is CPU saturated it is
very likely that its performance is degraded. In

addition, the problem addressed here is a CPU
allocation one, and intuitively the utilization provides a
very good indication of the allocation itself. For each
combination of control input/output signals, we aim to
discover a meaningful relationship (if there is one)
between them with respect to the reference input. If
necessary, a transformation of the output signal or the
reference input is also possible. Each output signal is
now examined.

The first candidate output signal is the mRT. The mRT
directly relates to the application’s performance and
compares to the reference value. However, in order to
use the mRT, there must exist an expressive enough
model between it and the components' allocations;
changing the allocations should affect the mRT in a
meaningful way. To find this relationship we need to
change the component allocations and observe the
mRT. In fact, rather than changing the allocation, we
observe changes in utilization, since an indication of
the allocation needed by each component is its own
usage. As shown in Figure 2 and in Figure 4 the mRT
remains almost the same as the number of clients
increases, giving no clear indication of how the
allocation should be changed if the mRT changes. In
addition, measuring the mRT at the server level adds
overhead to the control process; for example, a proxy
would be required to monitor all requests and keep
statistics about them. Therefore, the mRT is not a
good control output signal.

The second candidate output is the throughput. As the
throughput increases the component usage increases
too, indicating a quite potentially useful relationship
between the two for control purposes. However, the
throughput is not properly related to the reference

value. A server performance with mRT 1s is
achieved with various number of clients and, thus,
different throughput values actually give no indication
of the actual usage (see Figure 3). An alternative
approach would be to change the reference value to
be the throughput. However, referencing according to
throughput does not provide us with a good indication
of the performance. For example, if the reference
throughput is set to 100 – which is achieved with at
least 600 clients – and the number of clients increases
beyond 600, the controller would not change the
allocation, as the goal would have been reached.
Finally, measuring the throughput at the server level
introduces additional overhead, as in the case of the
mRT and it is therefore not suitable to use as a control
output.

The third control output candidate signal is the
components' usage. As previously mentioned, the
components' usage is an indication of the final
allocation needed by each component. The usage

observed over one period of time can be used as a
reference for the allocation for the next one. The usage
is easily measured at the server side, it does not
require any domain knowledge for the application
itself, and it has negligible cost over the control
process. In order for the controller to maintain the
performance at the reference value, the allocations
should follow the components’ utilizations.

System Model

The controller aims to allocate the CPU resources of
each component based on the control error between
the measurements of the CPU utilizations and the
mRT reference signal. However, since the two metrics
that account for the error are different, a transformation
is required. The following experiments aim to find the
relationship between the allocation and the usage
signals, so that the mRT stays below its target value of
1s.

To this end, we vary the allocation of each component
successively as the number of clients remains
constant (800 in this case) and we observe the
application’s performance. The initial allocation for
each component equals the mean usage in the case of
800 clients as measured offline. We then increase the
allocation (hereafter denoted as extra allocation) by a
number ranging from 0 up to 40 in steps of 5. The
allocation for the other two components is set to 100%
of their CPU capacity. The mRT and the throughput in
the case of the varying allocation for the JBoss
component are shown in Figure 5 and Figure 6
accordingly. As the extra allocation increases the mRT
decreases and the throughput increases. Both the
mRT and throughput stabilize when the extra
allocation is above 10. Increasing the allocation above
this value does not improve the performance
significantly. Similar experiments were performed for
the other two components and results showed that the
extra allocation beyond which the application
performance stabilizes is 15 for the Tomcat component
10 for MySQL1.

Therefore, in order to maintain the reference QoS
value, we need to keep the allocation a certain amount

above the utilization. We define a component's i CPU

allocation
ia to be the percentage of the total CPU

capacity of a physical machine allocated to a running
VM; a component's measured CPU usage or utilization

iu to be the percentage of the total CPU capacity

actually used by that component. If
ir denotes the

1 Note that these experiments provide the minimum values for the

extra allocations. A more extensive analysis is required (e.g.
varying number of clients, changing workload mixes, combinations
of components and varying allocations) for a more accurate
estimation of the extra allocations.

extra allocation for component i that is required to

maintain the target QoS performance level then, the
relationship between the allocation and the mean
utilization is given by:

iii rua . (1)

Figure 5. mRT as the extra allocation increases.

Figure 6. Throughput as the extra allocation increases.

Maintaining the allocation above the utilization is a
common practice and has been observed elsewhere.
In data centers there is usually some amount of
headroom of CPU resources to enable the application
to cope with workload fluctuations and variable
utilizations. In [PSZ

+
07] an adaptive integral feedback

controller regulates the CPU utilization of virtualized
server applications at 80% of the allocation.

The next two sections describe two controllers based
on the system model derived above. Section 4
presents one controller per component and Section 5
describes one controller for all components which
considers their resource coupling.

4. SISO USAGE-BASED CONTROLLER

The SISO Usage-Based controller (SISO-UB)
allocates CPU resources for each component

separately. The SISO-UB control law for component i

is given by:

i

k

i

k

i
k

i eupa 1 , (2)

and its control error is calculated by:

)(i

k

i

k

ii

k uare , (3)

where k points to the time interval;
ip indicates the

proportion of the usage that the allocation is assigned

to (and must be 1); and is a tunable parameter

that indicates the proportion of the final error that is
applied towards the final allocation. The controller is
globally stable when:

1 (4)

(Due to space limitations this proof is not given here.)

The purpose of the SISO-UB controller is to maintain
the difference between the allocation and the
utilization (control error) at the reference extra
allocation. The controller always allocates more
resources than the CPU usage since the absolute
error is used. If the difference between the allocation

and the usage at time k equals the reference value,

the control error becomes zero. To always allocate

more CPU than the usage,
ip is introduced. In this

way, the assigned allocation for each component
ia will always be larger than or equal to

i

k

iup

providing at least some minimum resources. The

reference value
ir here serves as a second

parameter, which ensures that the CPU allocation for
small CPU usage possesses a specific absolute
margin, which would not be the case if only the factor

i

k

iup is used. In general, the
ir values can be

assigned in many different ways, in order to be higher
for noisy workloads and lower for more predictable
workloads. The next section describes the MIMO-UB
controller where the errors from all components are
considered in the final allocations.

5. MIMO-UB CONTROLLER

This section presents the Multi-Input Multi-Output
(MIMO) Usage-Based (MIMO-UB) controller for all the
components. This controller is based on the SISO-UB
controller but additionally uses the CPU resource
coupling between the components to collectively
allocate resources for all of them.

5.1 Motivation

Each tier uses different amount of resources to
process incoming requests since they perform different
sets of operations on them. With Rubis, for example,
Tomcat consumes the most CPU while JBoss
consumes the least (Figure 4). When dynamically
allocating resources, the controller should take into
account each component's distinct demands. In
addition, in multi-tier systems the resource usages of
the different components are closely related. This
makes intuitive sense since the workload on each
component is affected by the workload on the rest. If
one of the components does not have enough
resources to process all incoming requests (bottleneck
component), then the rest of the components cannot
process the requests of more clients.

This behavior is further demonstrated by the following
experiment in which we vary the allocation of only one
of the components. The CPU allocation of the Tomcat
component is varied from 10 to 100 in steps of 10, the
number of clients is kept constant at 800, and each of
the other two components are allocated 100% CPU.
As shown in Figure 7, Tomcat’s usage follows the
allocation until the allocation exceeds that required for
the current workload. The usage of the other two
components increases slowly, despite being allocated
with the necessary resources to serve 800 clients. In
this case the bottleneck component is Tomcat and,
since it does not have adequate resources to cope
with the current workload, the other components'
usages are affected as well. We have observed similar
behavior when either the JBoss or the MySQL
components are subject to varying allocation.

Figure 7. Mean CPU utilizations per component as the Tomcat
allocation varies; error bars show one standard deviation.

Overall, in the case of a bottleneck component, an
increase in its allocation eventually leads to the
increase of the CPU usage of the other components,
suggesting that their allocations should be increased
as well. The next section presents a controller that

explicitly takes into account the coupling of CPU usage
between all components.

5.2 Controller Design

The MIMO-UB controller uses the CPU usage coupling
among components to assign new allocations for all of
them. Building on the SISO-UB controller, the MIMO-
UB control law is given by:

kkk LMePua 1 , (5)

and its control error is calculated by:

)(kkk uare . (6)

If c denotes the number of application components,

then:
1c

k Ra ,
1c

k Ru ,
1cx

k Rr , and
1cx

k Re

are the allocation, utilization, reference extra, and error
vectors respectively and each row corresponds to a

component;
ccRP is a diagonal matrix with the

minimum proportion of the utilization considered for

each component along its diagonal;
ccRL is a

diagonal matrix with the tunable parameter that
accounts for the error for each component along its

diagonal; and
ccRM is a square matrix with the

resource coupling relationships between pairs of
components along its elements. If the utilization
relationship between pairs of components is linear,

then M is:

1

1

1

1

11

11 2









cc

ccc

cc

M ,

where i (i {1,2,…,c}) are the coefficients of the

linear utilization relationships between components.
The MIMO-UB in the case of a 3-tier application is
stable when:

3/1 (7)

(Due to space limitations, this proof is not given here.)

To better explain the MIMO-UB controller and the way

M is used consider the example of the three Rubis
components. First, the relationships between the
different components usages is extracted. Data is
collected offline (10 sets of CPU usages for all three
components in the range of [100, 1200] clients) and
then processed with the aid of the MATLAB Curve
Fitting Toolbox. The CPU usage for all components

(denoted by
1u ,

2u , and
3u) are found to be linearly

related:

1

2

1

1 uu , (8)

2

3

2

2 uu , (9)

3

1

3

3 uu , (10)

where i and i (i {1,2,3}) are the coefficients found

within 95% of CIs over the collected data and are used

to build M .

The MIMO-UB controller differs from the SISO-UB
controllers in how it accounts for the control error.
When the MIMO-UB controller calculates the final
allocation for each component, the control errors from
all components are considered. For example, in the
Rubis application when calculating the Tomcat
(component 1) allocation the control error is given by:

321211 eee . This is the sum of all components'

errors mapped to the utilization of the Tomcat
component. Therefore, any new allocation considers a
percentage of the sum of all components' errors. In
this way, even if the Tomcat component had a very
small error, but another component a large one, the
Tomcat’s allocation would be adjusted accordingly. In
contrast, the Tomcat SISO-UB controller only
considers its own error. By taking into account all
components’ errors the MIMO-UB controller aims to
react more quickly to workload changes.

In this case, the array M is built based on the linear
relationship among the components’ utilizations.
However, this relationship might not be appropriate for
all applications. Furthermore the offline computation of
its elements might not be desirable when deploying a
new application or when the application exhibits
frequent changes in workloads. To address these
issues, an alternative way is to compute and update

M online. In this way, the coupling between the
utilizations can be approximated by piecewise linear
relationships and therefore we can retain the current

form of M . Re-calculating M periodically allows us
to store only small amount of data while also capturing
varying workload conditions.

6. RESULTS

This section presents an experimental evaluation of
the controllers, and their effects on the server’s
performance in the presence of workload fluctuations.
We start by examining the SISO-UB controller, then
consider the MIMO-UB, and finally perform a
comparison study between the two.

6.1 SISO-UB

For the SISO-UB study we perform the following
experiment: 300 clients issue requests to the server
for 60 intervals in total. At the 30

th
 interval another 300

are added for the next 20 intervals, doubling the
server’s workload. At the 40

th
 interval the number of

clients drops back to the initial 300. Each interval lasts
for 5s, which enables the controller to react quickly to
workload changes. The parameters for this experiment

are: .3.0,30,25.1 iii rp

The SISO-UB allocations for the Tomcat, JBoss, and
MySQL components are shown in Figure 8, Figure 9,
and Figure 10 respectively. Each controller adjusts its
allocations to follow both notable changes in the
number of clients (20

th
 and 40

th
 intervals) as well as

smaller variations throughout the experiment. By
adjusting the allocations the controllers free resources
whenever possible for other applications to use.

The resulting Rubis application performance is shown
in Figure 11, which illustrates the mRT, and Figure 12,
which shows the throughout. Overall the mRT stays
close to its reference target. However, there are some
spikes that happen when the utilization of one or more
of the components approaches very close to its
allocation. In these cases the throughput drops.

There are two reasons why the SISO-UB controller’s
allocations cause the application to deviate from its
reference value. Firstly, this is a reactive system,
which reacts to a workload change only after it is
detected. If during an interval the utilization increases
up to its allocation, then the controller reacts to it only
in the next interval. However, the performance of the
application for that interval drops. Secondly, this is a
multi-tier application and the saturation point can be
moved from one component to the next until all
components are properly provisioned. The MIMO-UB
controller evaluated in the next section is designed to
explicitly consider this behavior.

6.2 MIMO-UB

Figure 13, Figure 14, and Figure 15 illustrate the
MIMO-UB controller allocations for the Tomcat, JBoss,
and MySQL components respectively. Again, the
allocations adapt to the diverse and changing
utilizations. Figure 16 illustrates the mRT and Figure
17 shows the corresponding throughput for the
duration of the experiment. The mRT is maintained at
its reference value for the majority of the experiment
with fewer and shorter spikes above 1s when
compared to the SISO-UB mRT (Figure 11).

Figure 8. SISO-UB Tomcat allocations and utilizations.

Figure 9. SISO-UB JBoss allocations and utilizations.

Figure 10. SISO-UB MySQL allocations and utilizations.

Figure 11. SISO-UB requests mRT.

Figure 12. SISO-UB requests throughput.

Figure 13. MIMO-UB Tomcat allocations and utilizations.

Figure 14. MIMO-UB JBoss allocations and utilizations.

Figure 15. MIMO-UB MySQL allocations and utilizations.

Figure 16. MIMO-UB requests mRT.

Figure 17. MIMO-UB requests throughput.

Figure 18. CDF plot for the SISO-UB individual requests RT
(regular line) and the MIMO-UB requests RT (solid line).

Similarly, the throughput remains stable with some
drops. To better compare the two controllers, Figure
18 shows the Cumulative Distribution Function (CDF)
for all request-response times (RTs) during the
experiments. In the case of the MIMO-UB controller
more than 90% of the requests have a RT below 1s.
However, in the case of the SISO-UB controller fewer
than 90% of the requests achieve this.

The improved performance of the MIMO-UB controller
is due to the higher allocations for given utilizations
when compared to those coming from the SISO-UB
controllers. This is because this controller considers
the sum of all components’ errors. Although the SISO-
UB controllers could perform as well as the MIMO-UB
if they are configured to provide higher allocations (e.g.

by increasing
ip), the MIMO-UB allocates more

resources as indicated only by the control errors. The
next section formally compares the two controllers.

6.3 Comparison

This section compares the performance of the SISO-
UB and the MIMO-UB controllers and focuses on the
ability of the MIMO-UB mechanism to adapt to large
workload changes.

When the two controllers are configured with same
parameter values, the MIMO-UB controller
outperforms the SISO-UBs because it allocates more
resources to components and considers the aggregate
error from all components; this was shown in Section
6.2 and Section 6.3. This section compares the two
controllers against large workload increases when they
are both configured to make similar allocations under
stable workloads.

The comparison is performed in two steps. Firstly, the

values of that make the two controllers allocate

similar additional resources under a stable number of
clients are identified. Secondly, using these values the
controllers are compared when a large workload
increase occurs. This is simulated by an experiment
where 200 clients issue requests for 40 intervals. At
the 25

th
 interval, another 600 clients are added for the

next 15 intervals.

metric
abbreviation

metric description

CR number of completed requests

NR percentage of completed

requests with RT 1s.

additional the sum of the differences of
CPU resources between the
allocations and the utilizations.

Table 1. Description of the performance metrics used for the
comparison between the SISO-UB and the MIMO-UB.

For the first step, the additional allocations for each

controller and for different values are measured

using experiments with stable 600 clients for 60
intervals repeated 10-20 times. The range of values
comes in the case of the SISO-UB controllers from
Equation (4) and in the case of the MIMO-UB from
Equation (7). Pair-wise comparisons of the additional

allocations between the two controllers for different
values are performed and two combinations of
parameters that give almost identical additional

allocations are identified: (SISO-UB 45.0 and

MIMO-UB 12.0) and (SISO-UB 75.0 and

MIMO-UB 2.0).

For each of the two combinations of parameters the
controllers are now compared when a large workload
increase occurs. The metrics used for the comparison
are defined in Table 1 above, and the results are
shown in Table 2 and Table 3 below.

intervals additional CR NR

1-29 -0.2% 0.4% 1.2%

30-40 6.2% 2.8% 2.6%

Table 2. SISO-UB 45.0 and MIMO-UB 12.0 .

intervals additional CR NR

1-29 -0.6% -0.67% 0.7%

30-40 5.1% 1.6% 3.2%

Table 3. SISO-UB 75.0 and MIMO-UB 2.0 .

Each of these tables compares the controllers across
two regions of intervals. The first region (intervals 1-
29) involves the period before the workload increase
and is used to confirm that the two controllers allocate
a similar amount of additional resource. The second
region (intervals 30-40) is the time during the workload
increase. Percentages in each case show the
difference between the controllers in the metric of
interest. A positive number indicates that the metric in
the MIMO-UB case is larger than in the SISO-UB. All
results are within a 95% CI after a t-test is applied.

Results show that during the first 29 intervals the
controllers have very similar performances (first row in
both tables). Their additional metrics are very close
and so is their performance, shown by CR and NR.
However, during the intervals of the workload change
(second row in both tables) the MIMO-UB controller
allocates more resources despite being configured to
make similar allocations to the SISO-UB. The
increased allocations cause the MIMO-UB controller to
have better performance as shown by the increased
number of completed requests (CR) and the proportion

of requests with mRT 1s (NR).

The MIMO-UB controller is able to react faster to
workload increases by allocating more resources than
the SISO-UB controllers because it accounts for all
components' errors according to their resource
coupling model. In this case, the error from any
component is translated to an error for any other
component. In this way, the MIMO-UB adjusts the
allocations so that all components are settled down to
the workload change as soon as possible.

7. RELATED WORK

7.1 Control in Resource Provisioning.

Control theory has been used to design controllers for
allocating CPU resources in virtualized server
applications.

Wang et al. [WZS05] present a nonlinear gain-adaptive
integral controller that regulates the relative utilization
at a target value for single resource containers. The
same controller in combination with other controllers
has been studied in virtualized environments in order
to: (a) allocate the CPU resources for co-located multi-
tier applications [PSZ

+
07] (b) maintain the server

response time within user-specified limits [ZWS06];
and (c) regulate the response time to a reference value
with the aid of a performance model based on
transaction mixes to better estimate the utilization
across tiers [WLZ

+
07].

Liu et al. [LZP
+
07] present an optimal controller that

computes the resource allocations for multi-tier co-
located virtualized applications, providing QoS
response time differentiation in overload.

The MIMO-UB controller presented in this paper
collectively allocates resources to multi-tier virtualized
applications based on the relationship between the
utilization of the various components.

In [KCH09], the integration of the Kalman filtering
technique into feedback controllers is presented. The
authors present two categories of controllers: SISO
controllers to allocate resources for individual tiers and
a MIMO controller for all the application component.
The Kalman-based SISO controllers offer tuning
capabilities that make the allocations less variable than
the utilizations. The Kalman-based MIMO controllers
are built to capture the resource coupling based on the
utilization variances.

In addition to the feedback control approach, predictive
control has also been applied to dynamic resource
provisioning. Xu et al. [XZSW06] present a predictive
controller that regulates the relative utilization of a
single-tier virtualized server based on three time-series
prediction algorithms. Results show that once the
predictive model is properly trained either via on-line or
off-line analysis, the predictive controllers adapted
faster to repeated CPU usage trends. However, the
predictive controllers performed poorly against newly
seen behavior. Our controllers consider only the recent
utilization history of the previous interval, and so are
less fragile in the face of large workload changes.

7.2 Machine Learning Modeling

Machine learning approaches to performance
modeling in virtualized environments have also been
developed.

Xu et al. [XZF
+
07] present a two-layer resource

management system that aims to minimize the
resources consumed for single-tier applications to
meet their SLAs, while maximizing the profit of a utility
function over the “revenue” from shared resources.
They use fuzzy modeling to learn the relationship,
modeled as a group of states, between the workload
and the required resource levels to meet SLAs.

Tesauro et al. [TJDB06] apply Reinforcement Learning
to data center server allocation. The authors employ a
two-layer resource management. For each application
at the first layer an application manager provides a
utility curve of its expected value based on the number
of allocated servers. At the second layer, a resource
arbiter decides how to allocate servers among all
applications so as to maximize some global utility
function.

7.3 Queuing Modeling Techniques

Finally, queuing models have also been used to model
the performance of server applications.

Urgaonkar et al. [UC05] use a queuing model to
predict the resources of application tiers. Based on this

model, they redistribute the workload to application
servers in a shared infrastructure.

Bennani et al. [BM05] study the applicability of
analytical models for resource provisioning on
virtualized environments through simulation.

Zhang et al. [ZCS07] model multi-tier server
applications. Their model predicts performance metrics
for diverse transaction-based mixes, using pre-
computed CPU demands per transaction type from
aggregate measurements over all requests on a given
hardware.

This paper employs a black-box approach to modeling
the resource coupling between components.

8. CONCLUSIONS

This paper has presented two feedback controllers
which dynamically adjust the CPU allocations of
virtualized multi-tier applications. The SISO-UB
controller allocates resources to individual application
components. The purpose of the controller is to
maintain the allocations of the next interval above the
measured utilizations over the previous interval.

The MIMO-UB controller is inspired by the SISO-UB,
but, crucially, allocates CPU resources to all
components collectively based on their estimated
resource coupling. Results showed that both
controllers adapt to workload fluctuations. However,
the MIMO-UB controller offers better server
performance than the SISO-UB because it considers
the control errors from all components.

Using the feedback controller, the allocations are
provisioned on demand and therefore, there are free
resources for other applications to run. In this way,
high resource utilization per physical machine can be
achieved.

9. REFERENCES

[ACC
+
02] C. Amza, A. Chandra, A. Cox, S. Elnikety, R.

Gil, K. Rajamani, W. Zwaenepoel, E. Cecchet, and J.
Marguerite. “Specification and Implementation of
Dynamic Web Site Benchmarks”. In Proceedings of
the 5

th
 Annual IEEE International Workshop on

Workload Characterization (WWC-5), pages 3-13,
2002.

 [ADZ00] M. Aron, P. Druschel. and W. Zwaenepoel.
“Cluster Reserves: a Mechanism for Resource
Management in Cluster-Based Network Servers”. In
ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS),
pages 90-101, 2000.

[AJ00] M. Arlitt and T. Jin. “A Workload
Characterization Study of the 1998 World Cup Web
Site”. IEEE Network, 14(3):30-37, May/June 2000.

[BDF
+
03] P. Barham, B. Dragovic, K. Freiser, S.

Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield. “Xen and the Art of Virtualization”. In
Proceedings of the 19

th
 ACM Symposium on Operating

Systems Principles (SOSP), pages 164-177, 2003.

[BM05] M. Bennani and Daniel Menasce. “Resource
Allocation for Autonomic Data Centers using Analytical
Perfomance Models”, In Proceedings of the 2

nd
 IEEE

International Conference on Autonomic Computing
(ICAC), pages 229-240, 2005.

 [KCH09] E. Kalyvianaki, T. Charalambous, and S.
Hand. “Self-Adaptive and Self-Configured CPU
Resource Provisioning for Virtualized Servers Using
Kalman Filters”, In Proceedings of the 6th International
Conference on Autonomic Computing and
Communications (ICAC), 2009.

 [LZP
+
07] X. Liu, X. Zhu, P.Padala, Z. Wang, and S.

Singhal. “Optimal Multivariate Control for Differentiated
Services on a Shared Hosting Platform”. In
Proceedings of the 46

th
 IEEE Conference on Decision

and Control, pages 3792-3799, 2007.

 [PSZ
+
07] P. Padala, K. Shin, X. Zhu, M. Uysal, Z.

Wang, S. Singhal, A. Merchant, and K. Salem.
“Adaptive Control of Virtualized Resources in Utility
Computing Environments”. In Proceedings of the
European Conference on Computer Systems
(EuroSys), pages 289-302, 2007.

[TJDB06] G. Tesauro, N. K. Jong, R. Das, and M. N.
Bennani. “A Hybrid Reinforcement Learning Approach
to Autonomic Resource Allocation”, In Proceedings of
the IEEE International Conference on Autonomic
Computing (ICAC), pages 65-73, 2006.

 [US04] B. Urgaonkar and P. Shenoy. “Sharc:
Managing CPU and Network Bandwidth in Shared
Clusters”. IEEE Transactions on Parallel and
Distributed Systems,15(1):2-17, 2004.

 [UC05] B. Urgaonkar and A. Chandra. “Dynamic
Provisioning of Multi-Tier Internet Applications”. In
Proceedings of the 2

nd
 International Conference on

Autonomic Computing (ICAC), pages 217-228, 2005.

[VMware] VMware, Inc., http://www.vmware.com/,
website as of April 2009.

[WLZ
+
07] Z. Wang, X. Liu, A. Zhang, C. Stewart, X.

Zhu, T. Kelly, and S. Singhal. “AutoParam: Automated
Control of Application-Level Performance in Virtualized
Server Environments”. In Proceedings of the 2

nd
 IEEE

International Workshop on Feedback Control
Implementation in Computing Systems and Networks
(FeBid), 2007.

 [WZS05] Z. Wang, X. Zhu, and S. Singhal. “Utilization
and SLO-Based Control for Dynamic Sizing of
Resource Partitions”, In Proceedings of the 16

th

IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM),
pages 133-144, October, 2005.

[XZF
+
07] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and

M. Yousif. “On the Use of Fuzzy Modeling in
Virtualized Data Center Management”, In Proceedings
of the 4

th
 International Conference on Autonomic

Computing (ICAC), 2007.

[XZSW06] W. Xu, X. Zhu, S. Singhal, and Z. Wang.
“Predictive Control for Dynamic Resource Allocation in
Enterprise Data Centers”. In Proceedings of the 10

th

IEEE/IFIP Network Operations and Management
Symposium (NOMS), pages 115-126, 2006.

[ZCS07] Q. Zhang, L. Cherkasova, and E. Smirni. “A
Regression-Based Analytic Model for Dynamic
Resource Provisioning of Multi-Tier Applications”. In
Proceedings of the 4

th
 International Conference on

Autonomic Computing (ICAC), 2007.

[ZWS06] X. Zhu, Z. Wang, and S. Singhal. “Utility-
Driven Workload Management using Nested Control
Design”. In Proceedings of the American Control
Conference, 2006.

http://www.vmware.com/

