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Virtualizing the x86-based data center creates a dynamic environment for server 
application deployment and resource sharing. Resource management in this environment 
is challenging as applications are under fluctuating workloads causing diverse resource 
demands across their tiers. Resource allocation adaptation is essential for high 
performance machine utilization. This paper presents feedback controllers that dynamically 
adjust the CPU allocations of multi-tier applications in order to adapt to workload changes 
by considering the resource coupling between utilizations of application components. Our 
experimental evaluation on a virtualized 3-tier Rubis server application shows that our 
techniques work effectively.  

 

  

1. INTRODUCTION 

Recent advances in virtualizing commodity hardware 
(e.g. [VMware], [BDF

+
03]) are causing a dramatic 

change in the resource management of data centers. 
Traditionally x86-based data centers provide a pool of 
server machines for sharing among applications. 
Machines are dedicated to applications in ways to 
cope even with their most demanding workloads, 
however rare these may be. Although this scheme 
provides performance isolation, it has led to over-
provisioning of server resources and consequent 
increased power, cooling and management costs.  

Virtualizing the data center enables resource sharing 
in arbitrary combinations between applications and 
physical servers. A physical machine is transformed 
into one or more virtual ones, called Virtual Machines 
(VMs), each one capable of hosting a different 
application, and all sharing the physical resources. In 
addition, VMs can take advantage of dynamic resource 
allocation. Virtualization is now regarded as a key 
technology, supplanting frameworks developed in the 
past to enable resource sharing within the context of 
traditional operating systems (e.g. [US04], [ADZ00]). 
This is due to the following reasons: virtualization (a) 
handles resource multiplexing transparently to the 
applications, (b) provides almost native performance to 
applications running on VMs, (c) ensures performance 
isolation since each VM is configured to guaranteed 
resources, and (d) is widely applicable, as VMs host 
heterogeneous operating systems.  

Management tools that adapt the resource shares of 
virtualized applications according to their demands are 
integral to capitalize on this technology and create a 
truly agile environment for resource sharing. On one 
hand server applications need to be provisioned 
adequately to meet their changing resource demands 
caused by workload fluctuations [AJ00]. If applications 
are under-provisioned, they fail to comply with their 
performance goals. On the other hand, on-demand 
provisioning enables unused resources to be allocated 
for other applications to use. Server consolidation 
increases machine utilization, decreases the number 
of required machines and therefore decreases costs 
for power and cooling.   

Recently control theory has been used to perform 
dynamic allocation of CPU resources in virtualized 
data centers (e.g. [PSZ

+
07], [WLZ

+
07]). CPU is an 

important resource for data centers; under-utilization 
has consequences such as an unnecessary increase 
in power consumption. It is thus important to efficiently 
use CPU resources. By using feedback control, 
controllers can be developed which adjust allocations 
as workload changes occur, without using extensive a 
priori knowledge of the workload patterns or the 
applications' internal structure. Much emphasis has 
been given so far to address the control of resource 
allocations for single-tier server applications. This 
paper focuses on controlling the allocations of multi-
tier applications. 



Modern server applications are typically based on the 
multi-tier paradigm. Each tier (or component) usually 
runs on its own server, executing some of the 
application's operations. All components are 
connected as required to serve incoming requests. In 
multi-component systems, each tier uses a different 
amount of resources to process incoming requests, 
and there is a correlation between the utilization of the 
various tiers. Server applications are usually modeled 
with queues in tandem. If any of the tiers is 
inadequately provisioned, the overall server 
performance is affected. In fact, when workload 
fluctuations happen in resource provisioned server 
components, the saturation point can be moved from 
one component to another, causing prolonged poor 
performance [ZCS05].  

This paper addresses CPU resource provisioning for 
virtualized multi-tier applications. Initially, it presents a 
Single-Input Single-Output Usage-Based (SISO-UB) 
feedback controller that adapts the CPU allocations of 
virtualized server components while adjusting to 
varying resource demands due to workload changes. 
Building on the SISO controller, we also present a 
Multi-Input Multi-Output Usage-Based (MIMO-UB) 
feedback controller that collectively allocates CPU 
resources to all components by considering the 
resource coupling among the tiers. Our technique is 
tested against a 3-tier server benchmark application 
deployed on Xen-virtualized [BDF

+
03] machines. 

Results show that the MIMO-based provisioning 
enables the application to react faster to workload 
changes, and improves performance when compared 
to the SISO-based approach.  

The rest of this paper is organized as follows. Section 
2 presents the prototype virtualized cluster used for the 
evaluation. Section 3 discusses the system 
identification process that leads to the SISO (Section 
4) and MIMO controllers (Section 5). The experimental 
evaluation is presented in Section 6. Section 7 refers 
to related work, and Section 8 concludes. 

2. PROTOTYPE VIRTUALIZED CLUSTER 

Figure 1 illustrates the prototype virtualized cluster 
used to evaluate our controllers. The cluster, which 
consists of three machines running Xen 3.0.2, hosts 
the Rubis server application [ACC

+
02]. Rubis is a 

prototype auction web server which models eBay.com. 
In this paper we use a 3-tier version of Rubis. Each 
one of the three server components – Tomcat web 
server, JBoss application server, and MySQL DB 
server – is deployed on a separate VM running on a 
separate physical machine. A fourth machine hosts the 
Rubis Client Emulator used to generate requests to the 
server. The Client Emulator also records the response 
times of requests and is used to evaluate the 

performance of our controllers. All machines are 
connected via a Gigabit Ethernet network.  

 

Figure 1. Virtualized prototype and control system overview. 

Solid lines between the controller modules and the Rubis 
Server System depict the three SISO-UB controller systems. 
The MIMO-UB controller is shown by the dashed rectangle. 
Dom0 is the Xen control VM which is used, among other things, 
to control the user generated VMs. 

The controllers presented in this paper determine CPU 
allocations for VMs.  Periodically, the manager module 
submits the mean CPU usage for the VM under control 
over the last interval to the controller module(s). The 
controller(s) computes the allocations for the next 
interval and enforces them for the specified VM by 
using the CPU scheduler interface exported by Xen.  
Our prototype uses the simple EDF (SEDF) scheduler 
configured with the “capped” (non-work conserving) 
option so that no VM can use any more CPU time that 
it has been allocated. The controller module(s) runs on 
the same machine as the Client Emulator. 

The current prototype controls CPU allocations per 
VM. To ensure that the server's performance depends 
solely on the controller(s) CPU allocations, certain 
actions are taken. All machines have two CPUs, and 
each one of the two VMs per physical machine is 
pinned on a separate CPU. This simple setup enables 
us to study the impact of the controller(s) allocations 
on the server performance without any implications 
due to scheduling artifacts among running VMs 
sharing the same CPU. In future work we hope to 
demonstrate that our system performs well even when 
many VMs share a single CPU.  Finally, for all the 
experiments each VM is allocated memory as required 
when first created and this allocation is kept constant 
throughout. The network bandwidth is also measured 
and is never a bottleneck to the application. 

3. SYSTEM IDENTIFICATION 

The goals of the current control system are twofold: (a) 
maintain the application performance at a certain QoS 
level in the presence of workload changes; and (b) 
provide the application with enough resources to attain 



the first goal without over-provisioning. In this way, the 
virtualized application is properly provisioned to cope 
with workload fluctuations while there are free 
resources for other applications to run.  

To build our system we start by measuring the 
application performance when deployed on the current 
prototype and define its target QoS level in Section 
3.1. To achieve the second goal, we build controller(s) 
that adjust the components’ allocations while 
maintaining the application QoS target. Section 3.2 
presents the model of the system based on which the 
two controllers are built (Sections 4 and 5).  

There are two workload parameters that affect the 
server's performance, namely the workload type mix 
and the number of clients simultaneously issuing 
requests to the server (hereafter referred to as number 
of clients). Both parameters affect the CPU utilization 
of individual components and, consequently, the 
overall performance of Rubis. The following analysis 
studies the performance under a changing number of 
clients but using only a single workload type mix 
(namely the browsing mix with read-only requests 
[ACC

+
02]). A similar analysis can be done for different 

workload mixes.  

3.1 QoS Target 

We first measure the performance level that the server 
achieves when all CPU resources are allocated to it. 
Ideally, the application should maintain this QoS level 
even when it is provisioned by the controller(s). The 
controller(s) should act transparently to the application, 
and its actions should not disturb the performance of 
the application.  

To this end, the application performance is measured 
when each component is allocated 100% of the CPU 
capacity and the number of clients varies. Figure 2 
shows the mean client response time (hereafter 
denoted as mRT) and Figure 3 illustrates the 
corresponding throughput when the number of clients 
increases from 100 to 1400 in steps of 100. Each 
measurement is derived from an experiment where the 
clients issue requests to the server for 200 seconds (s) 
in total.  

As the number of clients increases, the mRT initially 
stays well below 1s and the throughput increases 
linearly with the number of clients. However, when the 
number of clients increases above 1200 the mRT 
grows above 1s, while the throughput remains 
constant. It seems clear that the server saturates at 
around 1200 clients. If more clients issue requests, the 
mRT increases as requests are delayed in the server 
queue and the throughput stabilizes despite the 
increasing number of clients.   

 

 

Figure 2.  Mean Request-Response Times; values are plotted 
with 95% confidence intervals (CIs). 

 

Figure 3. Aggregate Throughput. 

 

Figure 4. CPU utilizations per component. Mean utilizations 

are shown with error bars of one standard deviation. 

The individual components’ CPU utilizations are also 
measured and shown in Figure 4. Each component 
uses more CPU resources as more clients issue 
requests to the server. When the number of client 
exceeds 1200 the Tomcat component reaches almost 
100% of its allocation and it cannot serve more clients. 
It becomes the bottleneck component and as a result 
the mRT increases above 1 second while the 
throughput remains constant. 



The QoS performance level can therefore be 
summarized as: The Rubis benchmark serves up to 

1200 clients with a performance of mRT  1s. This 
denotes the level of performance the server is 
expected to achieve, even when the controller 
dynamically allocates CPU resources to the 
components. We also refer to this QoS value as the 
reference value. 

Throughout the above analysis, the mean statistic is 
used to summarize the response time and CPU 
utilization distributions. Analysis showed, that in both 
cases, the mean is enough to capture the dynamics of 
the systems without loss of generality. In the case of 
response time, similar qualitative conclusions were 
made when the median of each response distribution 
was used. Additionally, the CPU utilizations were 
shown to be normally distributed, and therefore either 
the mean or the median can be used. For the rest of 
this paper the mean is used as the centrality index. 

3.2 Controller Design 

The controller is the most prominent part of the control 
system. It adjusts the allocations of all components as 
workload changes occur in order to maintain the 
reference QoS performance level. In this paper, we 
build feedback controller(s) that periodically change 
the component allocations based on observations of 
the running application. If a deviation from the QoS 
performance goal occurs (control error), then the 
controller adjusts the allocations accordingly. Building 
such a controller requires the system model which 
describes the relationship between the control input 
signals (the parameters that the controller adjusts) to 
the control outputs (the parameters that are related to 
the application’s performance). This section identifies 
the control input/output signals and builds the system 
model. 

Control Signals 

The selection and the number of the control 
input(s)/output(s) signals depend on the task 
appointed to the controller. Here, the controller 
dynamically allocates CPU resources for server 
components. Therefore, the control input(s) are the 
parameters that change the CPU allocation of the 
components. This is achieved by using the interface 
exported by the SEDF CPU scheduler which allows us 
to assign a percentage of the machine's CPU capacity 
to a running VM. Since there are three Rubis 
components, we need three control inputs. The control 
output(s) are related to the application's performance; 
candidate metrics include the mRT and the throughput. 
Another candidate metric is the components' CPU 
utilization. The CPU utilization indirectly relates to the 
server's performance; if a server is CPU saturated it is 
very likely that its performance is degraded. In 

addition, the problem addressed here is a CPU 
allocation one, and intuitively the utilization provides a 
very good indication of the allocation itself. For each 
combination of control input/output signals, we aim to 
discover a meaningful relationship (if there is one) 
between them with respect to the reference input. If 
necessary, a transformation of the output signal or the 
reference input is also possible. Each output signal is 
now examined. 

The first candidate output signal is the mRT.  The mRT 
directly relates to the application’s performance and 
compares to the reference value. However, in order to 
use the mRT, there must exist an expressive enough 
model between it and the components' allocations; 
changing the allocations should affect the mRT in a 
meaningful way. To find this relationship we need to 
change the component allocations and observe the 
mRT. In fact, rather than changing the allocation, we 
observe changes in utilization, since an indication of 
the allocation needed by each component is its own 
usage. As shown in Figure 2 and in Figure 4 the mRT 
remains almost the same as the number of clients 
increases, giving no clear indication of how the 
allocation should be changed if the mRT changes. In 
addition, measuring the mRT at the server level adds 
overhead to the control process; for example, a proxy 
would be required to monitor all requests and keep 
statistics about them. Therefore, the mRT is not a 
good control output signal. 

The second candidate output is the throughput. As the 
throughput increases the component usage increases 
too, indicating a quite potentially useful relationship 
between the two for control purposes. However, the 
throughput is not properly related to the reference 

value. A server performance with mRT  1s is 
achieved with various number of clients and, thus, 
different throughput values actually give no indication 
of the actual usage (see Figure 3). An alternative 
approach would be to change the reference value to 
be the throughput. However, referencing according to 
throughput does not provide us with a good indication 
of the performance. For example, if the reference 
throughput is set to 100 – which is achieved with at 
least 600 clients – and the number of clients increases 
beyond 600, the controller would not change the 
allocation, as the goal would have been reached. 
Finally, measuring the throughput at the server level 
introduces additional overhead, as in the case of the 
mRT and it is therefore not suitable to use as a control 
output. 

The third control output candidate signal is the 
components' usage. As previously mentioned, the 
components' usage is an indication of the final 
allocation needed by each component. The usage 



observed over one period of time can be used as a 
reference for the allocation for the next one. The usage 
is easily measured at the server side, it does not 
require any domain knowledge for the application 
itself, and it has negligible cost over the control 
process. In order for the controller to maintain the 
performance at the reference value, the allocations 
should follow the components’ utilizations.  

System Model 

The controller aims to allocate the CPU resources of 
each component based on the control error between 
the measurements of the CPU utilizations and the 
mRT reference signal. However, since the two metrics 
that account for the error are different, a transformation 
is required. The following experiments aim to find the 
relationship between the allocation and the usage 
signals, so that the mRT stays below its target value of 
1s. 

To this end, we vary the allocation of each component 
successively as the number of clients remains 
constant (800 in this case) and we observe the 
application’s performance. The initial allocation for 
each component equals the mean usage in the case of 
800 clients as measured offline. We then increase the 
allocation (hereafter denoted as extra allocation) by a 
number ranging from 0 up to 40 in steps of 5. The 
allocation for the other two components is set to 100% 
of their CPU capacity. The mRT and the throughput in 
the case of the varying allocation for the JBoss 
component are shown in Figure 5 and Figure 6 
accordingly. As the extra allocation increases the mRT 
decreases and the throughput increases. Both the 
mRT and throughput stabilize when the extra 
allocation is above 10. Increasing the allocation above 
this value does not improve the performance 
significantly. Similar experiments were performed for 
the other two components and results showed that the 
extra allocation beyond which the application 
performance stabilizes is 15 for the Tomcat component 
10 for MySQL1.  

Therefore, in order to maintain the reference QoS 
value, we need to keep the allocation a certain amount 

above the utilization. We define a component's i  CPU 

allocation 
ia  to be the percentage of the total CPU 

capacity of a physical machine allocated to a running 
VM; a component's measured CPU usage or utilization 

iu  to be the percentage of the total CPU capacity 

actually used by that component. If 
ir  denotes the 

                                                                 
1 Note that these experiments provide the minimum values for the 

extra allocations. A more extensive analysis is required (e.g. 
varying number of clients, changing workload mixes, combinations 
of components and varying allocations) for a more accurate 
estimation of the extra allocations. 

extra allocation for component i  that is required to 

maintain the target QoS performance level then, the 
relationship between the allocation and the mean 
utilization is given by: 

iii rua . (1) 

 

 

Figure 5. mRT as the extra allocation increases.  

 

Figure 6. Throughput as the extra allocation increases. 

 

Maintaining the allocation above the utilization is a 
common practice and has been observed elsewhere. 
In data centers there is usually some amount of 
headroom of CPU resources to enable the application 
to cope with workload fluctuations and variable 
utilizations. In [PSZ

+
07] an adaptive integral feedback 

controller regulates the CPU utilization of virtualized 
server applications at 80% of the allocation.   

The next two sections describe two controllers based 
on the system model derived above. Section 4 
presents one controller per component and Section  5 
describes one controller for all components which 
considers their resource coupling.   

 

4. SISO USAGE-BASED CONTROLLER 

The SISO Usage-Based controller (SISO-UB) 
allocates CPU resources for each component 



separately. The SISO-UB control law for component i  

is given by: 

i

k

i

k

i
k

i eupa 1 , (2) 

and its control error is calculated by: 

)( i

k

i

k

ii

k uare , (3) 

where k  points to the time interval;
ip  indicates the 

proportion of the usage that the allocation is assigned 

to (and must be  1); and  is a tunable parameter 

that indicates the proportion of the final error that is 
applied towards the final allocation. The controller is 
globally stable when: 

1 (4) 

(Due to space limitations this proof is not given here.) 

The purpose of the SISO-UB controller is to maintain 
the difference between the allocation and the 
utilization (control error) at the reference extra 
allocation. The controller always allocates more 
resources than the CPU usage since the absolute 
error is used. If the difference between the allocation 

and the usage at time k  equals the reference value, 

the control error becomes zero. To always allocate 

more CPU than the usage,
ip is  introduced. In this 

way, the assigned allocation for each component 
ia will always be larger than or equal to 

i

k

iup
 

providing at least some minimum resources. The 

reference value 
ir  here serves as a second 

parameter, which ensures that the CPU allocation for 
small CPU usage possesses a specific absolute 
margin, which would not be the case if only the factor 

i

k

iup  is used. In general, the 
ir  values can be 

assigned in many different ways, in order to be higher 
for noisy workloads and lower for more predictable 
workloads.  The next section describes the MIMO-UB 
controller where the errors from all components are 
considered in the final allocations. 

5. MIMO-UB CONTROLLER 

This section presents the Multi-Input Multi-Output 
(MIMO) Usage-Based (MIMO-UB) controller for all the 
components. This controller is based on the SISO-UB 
controller but additionally uses the CPU resource 
coupling between the components to collectively 
allocate resources for all of them.  

 

5.1 Motivation  

Each tier uses different amount of resources to 
process incoming requests since they perform different 
sets of operations on them. With Rubis, for example, 
Tomcat consumes the most CPU while JBoss 
consumes the least (Figure 4). When dynamically 
allocating resources, the controller should take into 
account each component's distinct demands. In 
addition, in multi-tier systems the resource usages of 
the different components are closely related. This 
makes intuitive sense since the workload on each 
component is affected by the workload on the rest. If 
one of the components does not have enough 
resources to process all incoming requests (bottleneck 
component), then the rest of the components cannot 
process the requests of more clients. 

This behavior is further demonstrated by the following 
experiment in which we vary the allocation of only one 
of the components. The CPU allocation of the Tomcat 
component is varied from 10 to 100 in steps of 10, the 
number of clients is kept constant at 800, and each of 
the other two components are allocated 100% CPU. 
As shown in Figure 7, Tomcat’s usage follows the 
allocation until the allocation exceeds that required for 
the current workload. The usage of the other two 
components increases slowly, despite being allocated 
with the necessary resources to serve 800 clients. In 
this case the bottleneck component is Tomcat and, 
since it does not have adequate resources to cope 
with the current workload, the other components' 
usages are affected as well. We have observed similar 
behavior when either the JBoss or the MySQL 
components are subject to varying allocation.   

 

Figure 7. Mean CPU utilizations per component as the Tomcat 
allocation varies; error bars show one standard deviation. 

Overall, in the case of a bottleneck component, an 
increase in its allocation eventually leads to the 
increase of the CPU usage of the other components, 
suggesting that their allocations should be increased 
as well. The next section presents a controller that 



explicitly takes into account the coupling of CPU usage 
between all components. 

5.2 Controller Design 

The MIMO-UB controller uses the CPU usage coupling 
among components to assign new allocations for all of 
them. Building on the SISO-UB controller, the MIMO-
UB control law is given by: 

kkk LMePua 1 , (5) 

and its control error is calculated by: 

)( kkk uare . (6) 

If c  denotes the number of application components, 

then: 
1c

k Ra , 
1c

k Ru , 
1cx

k Rr , and 
1cx

k Re  

are the allocation, utilization, reference extra, and error 
vectors respectively and each row corresponds to a 

component; 
ccRP  is a diagonal matrix with the 

minimum proportion of the utilization considered for 

each component along its diagonal; 
ccRL  is a 

diagonal matrix with the tunable parameter that 
accounts for the error for each component along its 

diagonal; and 
ccRM is a square matrix with the 

resource coupling relationships between pairs of 
components along its elements. If the utilization 
relationship between pairs of components is linear, 

then M  is: 

1

1

1

1

11

11 2









cc

ccc

cc

M , 

where i  (i {1,2,…,c})  are the coefficients of the 

linear utilization relationships between components. 
The MIMO-UB in the case of a 3-tier application is 
stable when: 

3/1  (7) 

 

(Due to space limitations, this proof is not given here.) 

To better explain the MIMO-UB controller and the way 

M  is used consider the example of the three Rubis 
components. First, the relationships between the 
different components usages is extracted. Data is 
collected offline (10 sets of CPU usages for all three 
components in the range of [100, 1200] clients) and 
then processed with the aid of the MATLAB Curve 
Fitting Toolbox. The CPU usage for all components 

(denoted by 
1u , 

2u , and 
3u ) are found to be linearly 

related: 

1

2

1

1 uu , (8) 

2

3

2

2 uu , (9) 

3

1

3

3 uu , (10) 

where i  and i  (i {1,2,3}) are the coefficients found 

within 95% of CIs over the collected data and are used 

to build M . 

The MIMO-UB controller differs from the SISO-UB 
controllers in how it accounts for the control error. 
When the MIMO-UB controller calculates the final 
allocation for each component, the control errors from 
all components are considered. For example, in the 
Rubis application when calculating the Tomcat 
(component 1) allocation the control error is given by: 

321211 eee . This is the sum of all components' 

errors mapped to the utilization of the Tomcat 
component. Therefore, any new allocation considers a 
percentage of the sum of all components' errors. In 
this way, even if the Tomcat component had a very 
small error, but another component a large one, the 
Tomcat’s allocation would be adjusted accordingly. In 
contrast, the Tomcat SISO-UB controller only 
considers its own error. By taking into account all 
components’ errors the MIMO-UB controller aims to 
react more quickly to workload changes.   

In this case, the array M  is built based on the linear 
relationship among the components’ utilizations. 
However, this relationship might not be appropriate for 
all applications. Furthermore the offline computation of 
its elements might not be desirable when deploying a 
new application or when the application exhibits 
frequent changes in workloads. To address these 
issues, an alternative way is to compute and update 

M  online. In this way, the coupling between the 
utilizations can be approximated by piecewise linear 
relationships and therefore we can retain the current 

form of M . Re-calculating M  periodically allows us 
to store only small amount of data while also capturing 
varying workload conditions.   

6. RESULTS 

This section presents an experimental evaluation of 
the controllers, and their effects on the server’s 
performance in the presence of workload fluctuations. 
We start by examining the SISO-UB controller, then 
consider the MIMO-UB, and finally perform a 
comparison study between the two.   

 



6.1 SISO-UB 

For the SISO-UB study we perform the following 
experiment:  300 clients issue requests to the server 
for 60 intervals in total. At the 30

th
 interval another 300 

are added for the next 20 intervals, doubling the 
server’s workload. At the 40

th
 interval the number of 

clients drops back to the initial 300. Each interval lasts 
for 5s, which enables the controller to react quickly to 
workload changes. The parameters for this experiment 

are: .3.0,30,25.1 iii rp  

The SISO-UB allocations for the Tomcat, JBoss, and 
MySQL components are shown in Figure 8, Figure 9, 
and Figure 10 respectively. Each controller adjusts its 
allocations to follow both notable changes in the 
number of clients (20

th
 and 40

th
 intervals) as well as 

smaller variations throughout the experiment. By 
adjusting the allocations the controllers free resources 
whenever possible for other applications to use.  

The resulting Rubis application performance is shown 
in Figure 11, which illustrates the mRT, and Figure 12, 
which shows the throughout. Overall the mRT stays 
close to its reference target. However, there are some 
spikes that happen when the utilization of one or more 
of the components approaches very close to its 
allocation. In these cases the throughput drops.   

There are two reasons why the SISO-UB controller’s 
allocations cause the application to deviate from its 
reference value. Firstly, this is a reactive system, 
which reacts to a workload change only after it is 
detected. If during an interval the utilization increases 
up to its allocation, then the controller reacts to it only 
in the next interval. However, the performance of the 
application for that interval drops. Secondly, this is a 
multi-tier application and the saturation point can be 
moved from one component to the next until all 
components are properly provisioned. The MIMO-UB 
controller evaluated in the next section is designed to 
explicitly consider this behavior.  

6.2 MIMO-UB 

Figure 13, Figure 14, and Figure 15 illustrate the 
MIMO-UB controller allocations for the Tomcat, JBoss, 
and MySQL components respectively. Again, the 
allocations adapt to the diverse and changing 
utilizations.  Figure 16 illustrates the mRT and Figure 
17 shows the corresponding throughput for the 
duration of the experiment. The mRT is maintained at 
its reference value for the majority of the experiment 
with fewer and shorter spikes above 1s when 
compared to the SISO-UB mRT (Figure 11).  

 

Figure 8. SISO-UB Tomcat allocations and utilizations. 

 

Figure 9. SISO-UB JBoss allocations and utilizations. 

 

Figure 10. SISO-UB MySQL allocations and utilizations. 

 

Figure 11. SISO-UB requests mRT. 

 

Figure 12. SISO-UB requests throughput. 



 

Figure 13. MIMO-UB Tomcat allocations and utilizations. 

 

Figure 14. MIMO-UB JBoss allocations and utilizations. 

 

Figure 15. MIMO-UB MySQL allocations and utilizations. 

 

Figure 16. MIMO-UB requests mRT. 

 

Figure 17. MIMO-UB requests throughput. 

 

Figure 18. CDF plot for the SISO-UB individual requests RT 
(regular line) and the MIMO-UB requests RT (solid line). 

Similarly, the throughput remains stable with some 
drops. To better compare the two controllers, Figure 
18 shows the Cumulative Distribution Function (CDF) 
for all request-response times (RTs) during the 
experiments. In the case of the MIMO-UB controller 
more than 90% of the requests have a RT below 1s. 
However, in the case of the SISO-UB controller fewer 
than 90% of the requests achieve this.  

The improved performance of the MIMO-UB controller 
is due to the higher allocations for given utilizations 
when compared to those coming from the SISO-UB 
controllers.  This is because this controller considers 
the sum of all components’ errors. Although the SISO-
UB controllers could perform as well as the MIMO-UB 
if they are configured to provide higher allocations (e.g. 

by increasing
ip ), the MIMO-UB allocates more 

resources as indicated only by the control errors. The 
next section formally compares the two controllers. 

6.3 Comparison 

This section compares the performance of the SISO-
UB and the MIMO-UB controllers and focuses on the 
ability of the MIMO-UB mechanism to adapt to large 
workload changes.  

When the two controllers are configured with same 
parameter values, the MIMO-UB controller 
outperforms the SISO-UBs because it allocates more 
resources to components and considers the aggregate 
error from all components; this was shown in Section 
6.2 and Section 6.3. This section compares the two 
controllers against large workload increases when they 
are both configured to make similar allocations under 
stable workloads.  

The comparison is performed in two steps. Firstly, the 

values of  that make the two controllers allocate 



similar additional resources under a stable number of 
clients are identified. Secondly, using these values the 
controllers are compared when a large workload 
increase occurs. This is simulated by an experiment 
where 200 clients issue requests for 40 intervals.  At 
the 25

th
 interval, another 600 clients are added for the 

next 15 intervals.  

metric 
abbreviation 

metric description 

CR number of completed requests 

NR percentage of completed 

requests with RT 1s. 

additional the sum of the differences of 
CPU resources between the 
allocations and the utilizations. 

Table 1. Description of the performance metrics used for the 
comparison between the SISO-UB and the MIMO-UB. 

For the first step, the additional allocations for each 

controller and for different  values are measured 

using experiments with stable 600 clients for 60 
intervals repeated 10-20 times. The range of values 
comes in the case of the SISO-UB controllers from 
Equation (4) and in the case of the MIMO-UB from 
Equation (7). Pair-wise comparisons of the additional 

allocations between the two controllers for different  
values are performed and two combinations of 
parameters that give almost identical additional 

allocations are identified: (SISO-UB 45.0  and 

MIMO-UB 12.0 ) and (SISO-UB 75.0  and 

MIMO-UB 2.0 ). 

For each of the two combinations of parameters the 
controllers are now compared when a large workload 
increase occurs. The metrics used for the comparison 
are defined in Table 1 above, and the results are 
shown in Table 2 and Table 3 below. 

intervals additional CR NR 

1-29 -0.2% 0.4% 1.2% 

30-40 6.2% 2.8% 2.6% 

Table 2. SISO-UB 45.0  and MIMO-UB 12.0 . 

intervals additional CR NR 

1-29 -0.6% -0.67% 0.7% 

30-40 5.1% 1.6% 3.2% 

Table 3. SISO-UB 75.0  and MIMO-UB 2.0 . 

Each of these tables compares the controllers across 
two regions of intervals. The first region (intervals 1-
29) involves the period before the workload increase 
and is used to confirm that the two controllers allocate 
a similar amount of additional resource. The second 
region (intervals 30-40) is the time during the workload 
increase. Percentages in each case show the 
difference between the controllers in the metric of 
interest. A positive number indicates that the metric in 
the MIMO-UB case is larger than in the SISO-UB. All 
results are within a 95% CI after a t-test is applied. 

Results show that during the first 29 intervals the 
controllers have very similar performances (first row in 
both tables). Their additional metrics are very close 
and so is their performance, shown by CR and NR. 
However, during the intervals of the workload change 
(second row in both tables) the MIMO-UB controller 
allocates more resources despite being configured to 
make similar allocations to the SISO-UB. The 
increased allocations cause the MIMO-UB controller to 
have better performance as shown by the increased 
number of completed requests (CR) and the proportion 

of requests with mRT  1s  (NR).  

The MIMO-UB controller is able to react faster to 
workload increases by allocating more resources than 
the SISO-UB controllers because it accounts for all 
components' errors according to their resource 
coupling model. In this case, the error from any 
component is translated to an error for any other 
component. In this way, the MIMO-UB adjusts the 
allocations so that all components are settled down to 
the workload change as soon as possible. 

7. RELATED WORK 

7.1 Control in Resource Provisioning. 

Control theory has been used to design controllers for 
allocating CPU resources in virtualized server 
applications.  

Wang et al. [WZS05] present a nonlinear gain-adaptive 
integral controller that regulates the relative utilization 
at a target value for single resource containers.  The 
same controller in combination with other controllers 
has been studied in virtualized environments in order 
to: (a) allocate the CPU resources for co-located multi-
tier applications [PSZ

+
07] (b) maintain the server 

response time within user-specified limits [ZWS06]; 
and (c) regulate the response time to a reference value 
with the aid of a performance model based on 
transaction mixes to better estimate the utilization 
across tiers [WLZ

+
07]. 

Liu et al. [LZP
+
07] present an optimal controller that 

computes the resource allocations for multi-tier co-
located virtualized applications, providing QoS 
response time differentiation in overload. 



The MIMO-UB controller presented in this paper 
collectively allocates resources to multi-tier virtualized 
applications based on the relationship between the 
utilization of the various components. 

In [KCH09], the integration of the Kalman filtering 
technique into feedback controllers is presented. The 
authors present two categories of controllers: SISO 
controllers to allocate resources for individual tiers and 
a MIMO controller for all the application component. 
The Kalman-based SISO controllers offer tuning 
capabilities that make the allocations less variable than 
the utilizations. The Kalman-based MIMO controllers 
are built to capture the resource coupling based on the 
utilization variances. 

In addition to the feedback control approach, predictive 
control has also been applied to dynamic resource 
provisioning. Xu et al. [XZSW06] present a predictive 
controller that regulates the relative utilization of a 
single-tier virtualized server based on three time-series 
prediction algorithms. Results show that once the 
predictive model is properly trained either via on-line or 
off-line analysis, the predictive controllers adapted 
faster to repeated CPU usage trends. However, the 
predictive controllers performed poorly against newly 
seen behavior. Our controllers consider only the recent 
utilization history of the previous interval, and so are 
less fragile in the face of large workload changes.  

7.2 Machine Learning Modeling 

Machine learning approaches to performance 
modeling in virtualized environments have also been 
developed.  

Xu et al. [XZF
+
07] present a two-layer resource 

management system that aims to minimize the 
resources consumed for single-tier applications to 
meet their SLAs, while maximizing the profit of a utility 
function over the “revenue” from shared resources. 
They use fuzzy modeling to learn the relationship, 
modeled as a group of states, between the workload 
and the required resource levels to meet SLAs.  

Tesauro et al. [TJDB06] apply Reinforcement Learning 
to data center server allocation. The authors employ a 
two-layer resource management. For each application 
at the first layer an application manager provides a 
utility curve of its expected value based on the number 
of allocated servers. At the second layer, a resource 
arbiter decides how to allocate servers among all 
applications so as to maximize some global utility 
function.  

7.3 Queuing Modeling Techniques  

Finally, queuing models have also been used to model 
the performance of server applications.  

Urgaonkar et al.  [UC05] use a queuing model to 
predict the resources of application tiers. Based on this 

model, they redistribute the workload to application 
servers in a shared infrastructure.   

Bennani et al. [BM05] study the applicability of 
analytical models for resource provisioning on 
virtualized environments through simulation. 

Zhang et al. [ZCS07] model multi-tier server 
applications. Their model predicts performance metrics 
for diverse transaction-based mixes, using pre-
computed CPU demands per transaction type from 
aggregate measurements over all requests on a given 
hardware.  

This paper employs a black-box approach to modeling 
the resource coupling between components. 

8. CONCLUSIONS 

This paper has presented two feedback controllers 
which dynamically adjust the CPU allocations of 
virtualized multi-tier applications. The SISO-UB 
controller allocates resources to individual application 
components. The purpose of the controller is to 
maintain the allocations of the next interval above the 
measured utilizations over the previous interval.  

The MIMO-UB controller is inspired by the SISO-UB, 
but, crucially, allocates CPU resources to all 
components collectively based on their estimated 
resource coupling. Results showed that both 
controllers adapt to workload fluctuations. However, 
the MIMO-UB controller offers better server 
performance than the SISO-UB because it considers 
the control errors from all components.  

Using the feedback controller, the allocations are 
provisioned on demand and therefore, there are free 
resources for other applications to run. In this way, 
high resource utilization per physical machine can be 
achieved.   
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