

City, University of London Institutional Repository

Citation: Xu, Q., Chen, T., Hu, Y. & Gong, P. (2014). Write Pattern Format Algorithm for

Reliable NAND-Based SSDs. IEEE Transactions on Circuits and Systems II: Express Briefs,
61(7), pp. 516-520. doi: 10.1109/tcsii.2014.2327332

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/8194/

Link to published version: https://doi.org/10.1109/tcsii.2014.2327332

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Write Pattern Format Algorithm (WPFA) for
Reliable NAND-based SSDs

Quan Xu, Thomas M. Chen, Senior Member, IEEE, Yu-peng Hu, and Pu Gong

Abstract—This paper presents and evaluates a pre-coding algo-

rithm to reduce power consumption and improve data retention

in NAND-based solid-state drives (SSD). Compared to the state-

of-the-art asymmetric coding and stripe elimination algorithm

(SPEA), the proposed write pattern format algorithm (WPFA)

achieves better data retention while consuming less power. The

hardware for WPFA is simpler and requires less circuitry. The

performance of WPFA is evaluated by both computer simulations

and FPGA implementation.

Index Terms—Solid-state drive, reliability, NAND flash mem-

ory, power consumption.

I. INTRODUCTION

N

AND flash memory is the most popular storage tech-
nology for solid-state drives due to its non-volatility,

lightweight package, and low-power consumption. Basically,
each NAND flash cell consists of a floating gate transistor
whose threshold voltage can be programmed by injecting
certain amounts of charge into the floating gate [?]. For multi-
level cell (MLC) NAND flash, one memory cell generally
stores more than one bit belonging to different pages that
are sequentially programmed at different times. Considering
two-bit/cell MLC as an example, the cell threshold voltages,
denoted by Vth, are divided into four adjacent levels (L0 $
11, L1 $ 01, L2 $ 00, L3 $ 10) after the sequential
programming.

Loss or gain of charge occurring on the floating gate
over time will lead to bit flipping and consequently retention
failures. Experimental measurements have suggested that bit
flipping errors are not random but asymmetric; specifically,
only “0 ! 1” errors occur in the lower pages and “1 ! 0”
errors are dominant in the upper pages [?]. Hence, in order to
reduce the retention error rate, it is useful to distribute more
1’s to lower pages while more 0’s to upper pages, in other
words, program most of the cells to states “11” and “01” and
fewer cells to “10.

Besides retention reliability, another practical problem is
the increasing power required for scaling to larger bit-line
capacitances. In SSDs, more power is being consumed to
charge or discharge the parasitic capacitance of the bit-lines
(BLs). The average current consumed during programming is
given by

Ipre = Cbl
�V

Tpre
nbl (1)

Quan Xu, Thomas M Chen, and Pu Gong are with the School of Engineer-
ing and Mathematical Sciences, City University London, EC1V 0HB, U.K.
(e-mail: {Quan.Xu.1, Tom.Chen.1, Pu.Gong.1}@city.ac.uk)

Yu-peng Hu is with the Hu Nan University, Changsha 410082, P.R. China.
(e-mail: yphu@hnu.edu.cn)

1 0 1 0
d2n-1 d2nd2n-2d2n-3

1 1 1 0 1 0 0 0 01 0 1 0
d1 d3 d5 d7 d2n-3d2n-1 d2 d4 d6 d8 d2n-2 d2n flag

flip
Odd bits Even bits

Original
data

Column stripe pattern Column stripe pattern

n n

2k 2k-1 TH
k=1 k=1

d - d N (4)

1 11 0 1 0
d1 d3 d5 d7 d2n-3d2n-1

0 1 0 1 1 1 0
d2 d4 d6 d8 d2n-2 d2n flag

01 1 0 01 1 0
d1 d2 d3 d8d4 d5 d6 d7

Fig. 1: Example of SPEA

where nbl the number of bit-lines charged in parallel; �V is
the change of bit-line voltage applied in a program operation;
Cbl is the capacitance; and Tpre is pre-charging time [?].
If the programming data contains too many column stripe
patterns (CSPs), these bit-line capacitances will be charged
and discharged frequently during the programming, increasing
the current flow (and SSD power consumption) and possibly
leading to malfunctions [?].

Several approaches have been proposed to address the
problems of data retention and power [? ? ? ? ?]. Among
these, asymmetric coding and the stripe pattern elimination
algorithm (SPEA) proposed by Tanakamaru et al. [?] have
been shown to perform well by processing data patterns. In the
first step, asymmetric coding calculates the number of 1’s in
the input data which is then used to determine whether the bits
within the unit are flipped or not. As a result, the distribution of
1’s becomes asymmetric, and the number of cells at high Vth

decreases. Secondly, SPEA calculates the difference between
the numbers of 1’s in even and odd columns of the original
data. If the difference is higher than a threshold value, bits
will be rearranged to eliminate the CSPs, which relieves the
power problem.

Even though asymmetric coding and SPEA improve SSD
performance considerably, their implementation is fairly com-
plex especially when the code length of SPEA increases.
Meanwhile, additional CSPs are introduced during the SPEA
processing which could cause power problems as well. Con-
sider the example shown in Fig. 1 where the threshold value,
denoted as NTH , is set to 4, and SPEA is applied since the
calculated difference is higher than NTH . After rearranging,
long CSPs can be observed in both even and odd bits of the
modified data. In this paper, our goal is an efficient solution

Author accepted version

2

0 0 1 0
Do not flip Half flip

0 1 1

1st

stage

2nd

stage

NAND cell area overhead

Data unit 1

Flage.g. data unit length: 4

0 1 0 1 0 1 1 1
Half flip

All flip Do not flip Do not flip
0 0 1 0 1 1 1 1 1 1 0 1

1 1 0 1 1 1 1 1 1 1 0 1
Data unit 2 Data unit 3

Fig. 2: Proposed WPFA

to the problems above with low complexity implementation.
We first present a write pattern format algorithm (WPFA)
that carries out asymmetric processing and stripe elimination
simultaneously, which allows data patterns to be modified
only once before being fed to an error correction coding
(ECC) module. Here it should be noted that the advantages
of the solution comes at the cost of a small loss of perfor-
mance compared to asymmetric coding. WPFA will achieve
an improvement over the original SPEA approach by avoiding
the extra CSPs introduced in SPEA and reducing power
consumption. The hardware circuitry for WPFA is shown to
use fewer gates and registers, and improve system complexity
and latency. Simulation and implementation results show a
considerable reduction of both NAND cell overhead and
FPGA resource utilization. The trade-offs between complexity
and performance are analyzed quantitatively.

II. WRITE PATTERN FORMAT ALGORITHM

Fig. 2 illustrates an example of the proposed WPFA with
lower page input data. The presented solution has two primary
stages. The first stage modifies the program data to eliminate
the column stripe patterns; the secon stage increases the
number of 1’s. Note that the length of data processing unit
has been restricted to 2n with n = 2, 3, 4, 5, . . . (although
n = 2 is not practical). Initially, all bits of the data unit are
added together and the result is stored in an n-bit sum register.
For example, in Fig. 2, the length of data unit is 4 bits and the
width of the sum register is 2 bits. The flag in the figure is the
most significant bit (MSB) of the sum register which indicates
whether the majority of bits in the data unit are 0 or 1. WPFA
eliminates CSPs in the following way. If the flag equals 0, the
data unit is passed unmodified to the next processing stage,
such as “data unit 1” in Fig. 2. If the flag equals 1, a column
stripe sequence is added to the input data, and the modulo-2
result is taken as “first stage data”, in other words, half of
the input data will be flipped. In the example shown in Fig.
2, both “data unit 2” and “data unit 3” are half-flipped. As a
result of the first stage, a column stripe pattern (data unit 2)
has been eliminated.

To demonstrate the impossibility of extra CSPs, consider
two specific data patterns: all-zeros and all-ones as shown in

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

MSB 0 MSB 0

2-bit sum register 0 0
MSB

e.g. data unit length: 4

Do not flip

Fig. 3: Analysis of two specific data patterns

Fig. 3. Only these two types of patterns are possible to cause
extra CSPs if half-flipping operations are performed. Half-
flipping will not be performed for these two types of input
since the flag will be 0 in both cases (in the case of the all-
ones data pattern, the MSB of the sum register will be 0 due
to overflow). Without half flipping, these two types of input
will not create extra CSPs.

Concerning data retention, the worst case occurs if all of
the memory cells are programmed to the highest Vth level. To
avoid that, randomized interleaving may be used, in which the
probability of “10” and “00” is about 25% of the total data
on the condition that the output data is completely random.
In WPFA, retention reliability has been further improved by
increasing “1”- and “0”-data of lower and upper pages, respec-
tively. At the second stage, the flag (MSB of the sum register)
continues to be used for determining whether the “first stage
data” is flipped or not. If the flag equals 0, indicating that the
majority in the input data pattern are zeros, all bits of the “first
stage data” are flipped, such as the example of “data unit 1” in
Fig. 2. On the other hand, if the flag equals 1, the “first stage
data” will not be modified, as shown in the examples of “data
unit 2” and “data unit 3”. Consequently, the number of 1’s
in lower pages data increases. This part of WPFA is similar
to asymmetric coding; however, in the corresponding circuit,
as discussed in Section IV, the comparator and multiplexer
have been replaced with only XOR gates, thus resulting in
simpler circuitry. At the end of the algorithm, “second stage
data” together with flag bits are used to form the output. For
the data patterns processing of upper pages, the idea is the
same except the goal is to decrease the number of 1’s.

III. PERFORMANCE EVALUATION

This section presents simulation results of WPFA for com-
parison with randomized interleaving and Tanakamaru’s asym-
metric and SPEA approaches. In these simulations, the data
unit length of WPFA is set to be the same as asymmetric
coding for fair comparisons.

A. Maximum Length of Column Stripe Patterns
A figure of merit for energy savings is taken to be the

maximum length of column stripe patterns after processing.
Let M and N denote the code lengths of WPFA and SPEA,
respectively. According to Fig. 2, the maximum length of CSPs
for the proposed WPFA is M � 1, whereas that of SPEA

3

is N/2 � NTH (based on Fig. 1). Since N >> M [?],
the maximum length of CSPs has been substantially reduced
which suggests the memory system is better protected from
potential damage by current spikes.

B. Average Program Current
Apart from the maximum length of stripe patterns, the aver-

age program current is another performance metric for energy
saving. The bit-line capacitance of a NAND flash memory is
composed of the inter bit-line capacitance Cbl�bl and other
capacitances Cothers [?]. In case that the program data of
the memory cell connected to the nth bit-line BLn is 1, BLn

will be pre-charged to Vcc, and therefore the program data
of memory cells connected to BLn�1 and BLn+1 determine
whether the inter bit-line capacitance is charged or not. If both
adjacent bit-lines, BLn�1 and BLn+1 are pre-charged to Vcc,
BLn will only charge Cothers because the effect of Cbl�bl will
have been eliminated. If both adjacent bit-lines are not pre-
charged, BLn will charge Cothers and two Cbl�bl because
BLn�1 and BLn+1 are biased to Vss (column stripe pattern).
In the last possible case, one of the adjacent bit-lines is pre-
charged to Vcc, in which case BLn charges Cothers and one
Cbl�bl.

Considering these three cases and assuming that charging
the bit-lines is the dominant component of the program
current, we can then calculate the average current per page-
programming according to Eq. (1). To this end, we built a
simulator based on 2 bits/cell MLC having the page length
of 8 KB and 256 pages per block. The simulator uses the
physical parameters of NAND flash memory presented by
Fukuda et al. [?] where Cbl�bl and Cothers occupy 78%
and 22% of the total bit-line capacitance, respectively. We
assume 1 µs charging time and consider three memory systems
with random data input. SPEA and asymmetric coding are
employed in the first system while WPFA is employed in the
second one. The third system is used as a reference since it
does not use power saving scheme and employs asymmetric
coding only.

The average page-programming current is calculated when
16 blocks data are written to the memory systems. The reduced
program current over the reference system as the bit-line
capacitance increases is shown in Fig. 4. In this experiment,
the data unit length is set to 8 and NTH of SPEA is set to 6.
It has been observed that in terms of energy consumption,
the system employed with WPFA outperforms the system
employed with SPEA whose codeword is larger than 257 bits.
Since the large codeword is generally used in SPEA to reduce
flag overhead, WPFA will typically be advantageous.

C. Proportion of the Highest Vth State
To theoretically analyze the proportion of NAND cells on

the highest Vth state, it is necessary to derive the amount of
1’s in lower pages (or 0’s in upper pages) of programming
data, which is calculated in the following way.

All possible input patterns are divided into two groups: A
and B, by the MSB of the sum register, as shown in Fig. 5.
For group A with MSB=0, the second stage of the algorithm

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Bit−line capacitance (pF)

R
e
d

u
ce

d
 p

ro
g
ra

m
 c

u
rr

e
n
t
(m

A
)

WPFA 8 (proposed)

SPEA 129

SPEA 257

SPEA 513

SPEA 1025

SPEA 2049

Fig. 4: Reduced program current over the system without
power saving scheme

User data length: 2N bits

k: Number of

1 s

Number of
patterns

Number of 1 s

after precoding
Flag

0

1

N-1

N

N+1

2N-1

2N

0

2N
C

1

2N
C

N-1

2N
C

N+1

2N
C

N

2N
C

2N

2N
C

2N-1

2N
C

0

0

0

1

1

1

0

2N-0

2N-1

2N-(N-1)

2N-2N

Group
A:

All flip

Group
B:

Half
flip

Fig. 5: Data patterns before and after WPFA processing

is performed and the number of 1’s (with flag bits) is given
by

NA
1 =

N�1X

k=0

Ck
2N (2N � k) (2)

where Ck
n is the binomial coefficient Ck

n = n!
k!(n�k)! . For group

B with MSB=1, the first stage of the algorithm is performed
and only half of the bits are flipped. It is not possible to exactly
determine the number of 1’s for each individual data pattern,
which is the reason it is not shown in Fig. 5. Nonetheless,
the total number of 1’s after processing can still be calculated
taking advantage of symmetry. If we think of the number of
1’s related to flags, the total number of 1’s in group B after
WPFA processing is expressed as

NB
1 =

2N�1X

k=N

Ck
2N (2N)� 1

2

2N�1X

k=N

Ck
2N (k) +

2N�1X

k=N

Ck
2N (3)

Since the total number of data patterns is 22N ⇥ (2N +1), the
probability of 1’s (P1) is calculated by dividing the number

4

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

23 24 25 26 27 28 29

Data unit length

P
ro

b
a
b
ili

ty
 o

f
1
s

Asymmetric coding

WPFA (simulated)

WPFA (theoretical)

Fig. 6: Simulation results of probabilities of “1”s in Tanaka-
maru’s and the proposed schemes

of 1’s in all data patterns with flag bits by 22N ⇥ (2N + 1),
which is

P1 =
NA

1 + NB
1

22N ⇥ (2N + 1)

=

2N�1P
k=N

Ck
2N (N + 1) +

N�1P
k=0

Ck
2N (2N � k)

22N ⇥ (2N + 1)

(4)

Note that for the flag bits, we could choose either 1 or 0 for
the specific group; however, setting the flag bits of group B
to be 1 can increase the probability of 1’s of the output bit
stream, and the condition is adverse for the upper pages.

In computer simulations, we measured the probability of 1’s
of lower pages data for both asymmetric and WPFA encoder,
as illustrated in Fig. 6. When the length of input data is large
enough, the simulated probability of 1’s for WPFA is fairly
close to its theoretical counterpart. Performance loss has been
observed in the proposed design comparing to asymmetric
coding because of the half-flip operations. At the unit length
of 24, this loss is about 5% in the target of 1’s probability.
However, the performance gap between these two schemes
gets smaller when the data unit length increases. In the design
of SSD systems, if we set the data unit length to be 24,
the WPFA will modify the data programmed to NAND so
that at least 55% of the lower and upper pages are 1’s and
0’s, respectively. As a result, the highest Vth state, “10”
occupies 20% of the total data, which has been reduced by
20% compared to randomized interleaving.

D. Overhead of NAND Cell Area

Due to the fact that extra flag bits have to be used for
SPEA while the proposed scheme shares only one flag bit for
both realizations, Tanakamaru’s design consumes more NAND
cell area. Fig. 7 depicts the reduced overhead of the system
employed with WPFA compared to three systems employed

0

5

10

15

20

25

30

35

40

45

50

23 24 25 26 27 28 29

Data unit length (bits)

R
e
d

u
ce

d
 o

ve
rh

e
a
d
 o

f
ce

ll
a
re

a
 (

%
)

SPEA 513

SPEA 1025

SPEA 1537

SPEA 2049

Fig. 7: The reduced NAND cell area overhead to Tanakamaru’s
design

WPFA
Encoder

ECC
Encoder

MLC NAND
Flash Memory

Array

ECC
Decoder

WPFA
Decoder

(FPGA) (FPGA)

Fig. 8: Framework of coding mechanism in SSDs

with same asymmetric coding and different length of SPEA
codeword. It is seen that the reduced overhead increases with
data unit length and Tanakamaru’s design consumes even more
cell area when the codeword of SPEA gets shorter. For 256-bit
data unit and 1025-bit SPEA codeword, the extra cell area of
Tanakamaru’s design has been reduced as much as 20%.

IV. HARDWARE DESIGN AND IMPLEMENTATION
COMPLEXITY

In this section, we consider the logic circuits for the
proposed algorithm and propose several ways to reduce the
hardware complexity. Generally, WPFA will be implemented
together with the ECC module as part of the flash controller in
FPGA. The overall framework of FPGA-based flash controller
is shown in Fig. 8. Fig. 9 illustrates the circuit structure
for the WPFA of 16-bit data unit. Before write patterns
processing, the parallel 16-bit data and upper/lower-page select
signal (U/L) are generated from information bit stream by
the serial/parallel converter. The number of 1’s in the data
unit is then calculated with 16-bit adder circuit and the MSB
of the 4-bit sum register is used as the judge signal for the
subsequent computations. In the proposed circuit, comparators
and multiplexers have been replaced with simple XOR gates
to perform bit-flipping operations. The flag bit is created
through a series of logic operations over MSB and U/L. For
Tanakamaru’s design, upper page and lower page asymmetric
encoders are implemented with a separate circuit unit. These
two encoders for WPFA are integrated in a single circuit
which saves FPGA resources. Note that the U/L signal will

5

d0 d1

d0 d1 d14

data input

modified data of input data

MSB

d14 d15

d16d15

4bit
adder

U/L

U/L = 1 lower page data

U/L = 0 upper page data

Fig. 9: Circuit schematic of the joint lower/upper pages coding

TABLE I: Comparisons of FPGA Resource Utilization

Encoding Units ALUTs Registers Packed ALMs

Asymmetric (len = 16) 81 34 43
SPEA (len = 129, NTH = 6) 357 150 183
SPEA (len = 257,NTH = 6) 717 281 364
SPEA (len = 513, NTH = 6) 1432 540 727
SPEA (len = 1025, NTH = 6) 2828 1055 1433
WPFA (len = 16) 38 17 19

be correspondingly produced when the flash controller fetches
data from the memory array. Hence, in the decoding side,
the decoder circuit is easy to implement by performing XOR
operations over the input data, the flags and the U/L signal.
Due to the fully combinational circuits, the latency, circuit
area, and logic resources related to WPFA are small. To
quantitatively depict the complexity of each computation unit,
we used Verilog to model the proposed circuits. The encoding
units were synthesized with Synplify Pro and Altera EP2S180
FPGA according to area optimization. The adaptive look-up
tables (ALUTs) and logic registers utilized for each encoding
unit are listed in Table I. Results for Tanakamaru’s design
are included for comparison. In this experiment, the same
serial/parallel conversion circuits were assumed for either
design thus we only need to compare the complexity of the
computation units. As seen, WPFA requires much less logic
resources than that of asymmetric coding and SPEA, especially
when the code length of SPEA increases. Even compared to
the design employed with asymmetric coding only, WPFA still
shows lower complexity. The estimated adaptive logic modules
(ALMs) used for WPFA encoder is about 8% of the ALMs
consumed by Tanakamaru’s design for code length of 129 and
NTH of 6 for SPEA. The resource utilization of Tanakamaru’s
design should be double if considering both lower and upper
pages whereas that of the proposed design stays the same.

V. CONCLUSIONS

In this paper, we present a write pattern formatting algo-
rithm of low complexity to improve the data retention relia-
bility and power consumption of NAND flash based SSDs. The
proposed algorithm improves on the existing SPEA approach
to completely eliminate column stripe patterns. Furthermore,
simulation results show that the overhead for the proposed
algorithm is about 80% compared to SPEA using the same
parameters. Finally, hardware synthesized results over Altera
EP2S180 demonstrate that the implementation complexity of
the proposed scheme is much less than that of asymmetric
coding and SPEA.

REFERENCES

[1] G. Dong, S. Li, and T. Zhang, “Using Data Postcompensa-
tion and Predistortion to Tolerate Cell-to-Cell Interference
in MLC nand Flash Memory,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 57, no. 10, pp. 2718–2728, Oct 2010.

[2] S. Tanakamaru, C. Hung, A. Esumi, M. Ito, K. Li, and
K. Takeuchi, “95%-lower-BER 43%-lower-power Intelli-
gent Solid-State Drive (SSD) with Asymmetric Coding
and Stripe Pattern Elimination Algorithm,” in IEEE Int.
Solid-State Circuits Conf. (ISSCC), Feb 2011, pp. 204–
206.

[3] R. Micheloni, L. Crippa, and A. Marelli, “Inside NAND
Flash Memories,” Springer Press, Aug 2010.

[4] S. Tanakamaru, C. Hung, and K. Takeuchi, “Highly Reli-
able and Low Power SSD Using Asymmetric Coding and
Stripe Bitline-Pattern Elimination Programming,” IEEE J.
Solid-State Circuits, vol. 47, no. 1, pp. 85–96, Jan 2012.

[5] Y.-P. Hu, N. Xiao, and X.-F. Liu, “An elastic error correc-
tion code technique for NAND flash-based consumer elec-
tronic devices,” IEEE Trans. Consum. Electron., vol. 59,
no. 1, pp. 1–8, Feb 2013.

[6] K. Takeuchi, “Novel Co-Design of NAND Flash Memory
and NAND Flash Controller Circuits for Sub-30 nm Low-
Power High-Speed Solid-State Drives (SSD),” IEEE J.
Solid-State Circuits, vol. 44, no. 4, pp. 1227–1234, 2009.

[7] K.-D. Suh, B.-H. Suh, and Y.-H. Lim, “A 3.3 V 32 Mb
NAND Flash Memory with Incremental Step Pulse Pro-
gramming Scheme,” IEEE J. Solid-State Circuits, vol. 30,
no. 11, pp. 1149–1156, Nov 1995.

[8] K. Fukuda, Y. Watanabe, E. Makino, K. Kawakami,
J. Sato, T. Takagiwa, N. Kanagawa, H. Shiga, N. Tokiwa,
and Y. Shindo, “A 151-mm2 64-Gb 2 Bit/Cell NAND
Flash Memory in 24-nm CMOS Technology,” IEEE J.
Solid-State Circuits, vol. 47, no. 1, pp. 75–84, 2012.

