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A Distributed Consensus Algorithm for Decision
Making in Service-Oriented Internet of Things

Shancang Li, George Oikonomou, Theo Tryfonas, Thomas M. Chen, and Li Da Xu

Abstract—In a service-oriented Internet of things (IoT) deploy-
ment, it is difficult to make consensus decisions for services at
different IoT edge nodes where available information might be
insufficient or overloaded. Existing statistical methods attempt to
resolve the inconsistency, which requires adequate information to
make decisions. Distributed consensus decision making (CDM)
methods can provide an efficient and reliable means of synthesizing
information by using a wider range of information than existing
statistical methods. In this paper, we first discuss service composi-
tion for the IoT by minimizing the multi-parameter dependent
matching value. Subsequently, a cluster-based distributed algo-
rithm is proposed, whereby consensuses are first calculated locally
and subsequently combined in an iterative fashion to reach global
consensus. The distributed consensus method improves the robust-
ness and trustiness of the decision process.

Index Terms—Distributed consensus algorithms, Internet of
things (IoT), networks.

I. INTRODUCTION

T HE INTERNET OF THINGS (IoT) has attracted much
research attention from the academia and industry and is

believed to enable the Internet to reach out into the physical
world of Internet-connected devices [1], [2]. The IoT, as an
emerging concept alongside this weave of technological
advancements, refers to the connection of various physical
objects in real life throughwireless tags and sensors over network
protocols similar to those used in the Internet [3]. Thus, smart
objects can become part of the existing Internet. Built on the IoT,
the physical world will become an intelligent world with smart
physical objects tagged wirelessly and many fiction stories and
scenarios become true [4], [5]. The recent development of
Google Glass and Apple’s iWatch rightly catch on this new
technology trend. In the future internet concept, the existing
Internet will become the backbone networkwheremajor data and
information will be transferred and most objects in real life will
be linked together pervasively [5].

Extended from the IoT, the concepts of smart home, smart
community, smart city [5], and even the smart planet promoted
by IBM suddenly become foreseeable in the near future [6]. The
advances inwireless networks and data processing, such as cloud
computing, wireless sensor networks, and wireless communica-
tions significantly enhance the traditional Internet into an intel-
ligent IoT, capable of interconnecting diverse “things” into the
physical world [7], [8]. In reality, the inexpensive intelligent
sensor networks, radio-frequency identification (RFID) tags, and
wireless devices are widely used to gather or collect data, making
it possible to exchange and process information among objects
[9]–[11]. This further leads to changes in the operations of many
existing business information systems, such as enterprise sys-
tems and decision support systems [6]. In the foreseeable future,
business processes and business model will also be changed and
adapt to the IoT paradigm accordingly [3], [12], [13].

In the past few years, the IoT has attracted a lot of research
attention and has achieved significant growth [13]–[15]. One
concern lies in the communication and interaction process
among different devices. The architecture of the IoT conceptu-
ally consists of three layers: sensing layer where many wireless
sensors are located, network layer where data collected from
sensors are transmitted, communicated, and processed, and
application layer where various applications including business
applications and enterprise systems access the functions and
information provided by wireless sensors [9]. Different wireless
devices may use different protocols with different object identi-
fication, information representation, and data transmission for-
mats, raising the issue of processing information from multiple
heterogenous resources.

To tackle this issue, researchers have proposed service-
oriented architectures (SOAs), built on top of the network layer
so that data and information processing can be easily managed
through different service components [7]–[9], [15], [17], [18]. In
the SOA of the IoT, the interaction with and operations of
different wireless devices are classified into different service
components and the application layer software can access
resources exposed by devices as services. These services are
defined and classified based on real-world services, directly
derived by physical world resources. Services are capable of
sensing, processing and operating device entities by providing
interaction interfaces or by generating events. The service-
oriented IoT can thus control, manage, and interact with the
real world by means of “services,” which enable bi-directional
user-to-object information exchange and interaction [3], [16].

Existing research on service-oriented IoT have endeavored to
contribute either from the architecture deploying perspective or
the service classification, interaction, and discovery perspective.
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For example, Organero et al. [18] proposed a service-oriented
platform for a personalized e-learning environment involving
web 2.0-related service at an open and personal framework,
while Vinoski [9] introduced several architectures of middle
level in an IoT context, including a data collection model, a data
mapping model, and a service encapsulation model. Liu et al.
[7] investigated IoT-based mobile service deployments in sup-
port of the pervasive computing paradigm. Guinard et al. [17]
proposed a service-oriented platform for IoT, in which a large
number of service operations are involved, such as service
discovery, query, classification, provision, and so on. The related
services in the IoT can be combined into a complicate service,
where a service can be operated as a modular, adaptive middle-
ware component. Butt et al. have proposed a service discovery
architecture for the IoT and its accompanying RESTful protocol.
Their work targets severely constrained IoT deployments in
terms of device processing power and network bandwidth
[28], [29].

Further to the service platform, the architecture model for
a service-oriented IoT is investigated in [17], where the author
proposed a modeling method for collaborative virtual objects
architecture via a generic way of interaction between services.
However, little work has been done on the distributed consensus
decision making (CDM) for services over IoT, which is of high
importance in a context of resource-constrainedwireless devices.
Because the processing power and storage capacity of wireless
devices in IoT is rather restricted, there is a high demanding for
the discovery and coordination of services to efficiently process
data and information over the IoT.

Therefore, there exist several challenges in current service-
oriented IoT [3], [16], [17].

1) The IoT should be able to provide users with services for
sensing information of interest, which might involve some
operations of interconnected IoT edge devices. This im-
poses a challenge on efficient data propagation and reliable
operation.

2) The IoT should be able to provide distributedCDMprocess
for service detection, classification, composition, and
data processing in a timely fashion.

3) Services should be able to cooperatively work to complete
complicated tasks.

Information consensus between services should guarantee that
each service share information over the IoT that is critical to the
coordination task.

This paper aims at solving these challenges by proposing a
distributed consensus algorithm for decision making of services
at edge nodes in the service-oriented IoT. Specifically, the main
contributions are summarized as follows.

1) A service provision framework is proposed, where the
representation, discovery, detection, and composition of
services are investigated and respective schemes are
proposed.

2) A CDM method for service composition is proposed and
can effectively select suitable services according to appli-
cation layer requirements.

3) A distributed consensus algorithm is proposed which can
provide robust decision results when multiple services are
required to reach a global consensus.

The remainder of this paper is organized as follows. Section II
addresses the architecture of the service-oriented IoT. Section III
discusses the distribution of services in the service-oriented IoT.
Section IV provides a decision support process which can
automatically detect, discover, and classify IoT services. Sec-
tion V proposes a distributed CDM method, while Section VI
verifies the feasibility and effectiveness of proposed mechan-
isms. Section VII concludes the paper.

II. SYSTEM ARCHITECTURE OF SERVICE-ORIENTED IOT

This section aims at developing an effective architecture
for service operations in the IoT, by extending pre-existing
architectures and taking into consideration the unique charac-
teristics of service-oriented approaches. The knowledge about
services should be well represented and should be able to easily
support discovery, detection, classification, composition, and
testing of services. The IoT can be envisioned as a network of
networks, in which smart “things” are connected to the Internet
via heterogenous access networks and technologies (such as
sensor networks, mobile networks, RFID, etc.) to provide
services and applications. In Fig. 1, a three-layer architecture
of the IoT is summarized [1]–[6], [9], [11], [12], which contains
three basic layers: 1) the application layer; 2) the network layer;
and 3) the sensing layer. The application layer provides the
functionalities that are built on top of an implementation of the
IoT [2]–[4], [9], [11], [12], [14]. The application layer is
connected with a business process modeling component for
IoT-aware business processes which can be executed in the
execution components. The network layer contains three basic
components [5]–[7], [9]: 1) service entity arrangements; 2) vir-
tual entity (VE) and information; and 3) resources module. The
arrangement and access of IoT services to external entities and
services is organized by the service entity arrangements com-
ponent. The VE component contains functionality to associate
VEs to relevant services as well as a means to search for such
services. The resources module provides the functionalities
required by services for processing information and for notify-
ing application software and services about events related to
resources and corresponding virtual entities. The sensing layer
involves the sensing devices [5]–[9], such as RFID tags, smart
sensors, etc., which can record, monitor, collect, and process
observations and measurements. The network layer is able to
access the sensing layer with device-level application program-
ming interfaces (APIs), which provide the information ex-
change between the application and the real world.

Currently, there is a lack of standards for the architecture
and information exchange over the IoT [2]–[4]. The application
layer focuses on the application-level services by integrating
IoT techniques with industrial expertise to achieve a wide range
of services or applications; the network layer is based on the
heterogenous networks of IoT and communication techniques,
such as sensor networks, mobile networks, and the Internet. The
sensing layer involves the data acquisition and object identifi-
cation, etc., which consists of a number of IoT edge nodes
including RFID devices, intelligent sensors, wireless sensors,
and other objects. Information exchange happens between
these three layers to complete information perception, data
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acquisition, data processing, service performance, and the
control of edge nodes. The information exchange includes the
data exchange “vertically,” among the three layers, as well as
horizontally between the IoT and cyber-physical systems.
Researchers are still working toward optimal solutions to
reduce the data communication overhead in both aforemen-
tioned planes.

The IoT has a service-oriented and context-aware architecture
and is a mandatory subset of future Internet; every virtual and
physical object can communicate with every other object pro-
viding their services seamlessly. The millions of devices in the
IoT need to interoperate. Exposing each component’s function-
alities as a standard service can significantly increase the effi-
ciency of both network and device. In order to well organize the
services provided by smart objects, each service should be able to
find a virtual respective element in the IoT.

III. SERVICE DISTRIBUTION IN THE SERVICE-ORIENTED IOT

Services in a service-oriented IoT can be created and deployed
according to the following steps [18]: 1) developing service
composition platforms; 2) abstracting device functionalities and

communication capabilities; and 3) provision of a common set of
services. In these phases, a services identify management process
might be involved for context management and object classifi-
cation, with which a mirror can be built in the service-oriented
IoT for each object.

A service is a collection of data and associated behaviors to
accomplish a particular function or feature of a device or portions
of a device. As mentioned in [13], a service may reference other
primary or secondary services and/or a set of characteristics that
make up the service. IoT services can be categorized into two
types: primary and secondary. The former denotes services that
expose the primary functionalities at an IoT edge node, which
can be seen as the basic component of a service and can be
invoked by another service. A secondary service can enhance a
primary or other secondary services by providing auxiliary
functionality. A service may consist of one or more character-
istics, such as service data structure, permissions, descriptors,
and other attributes. In the IoT, a characteristic consists of the
following segments [13]:

1) characteristic declaration, which describes the properties
of the characteristic value (read, write, indicate, etc.), its
handle and type [universally unique identifier (UUID)];

Fig. 1. Basic architecture of IoT.
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2) characteristic value, which contains the value of a
characteristic;

3) characteristic descriptor, which provides additional
information about the characteristic.

Data are encapsulated in “Services” and exposed as “Char-
acteristics.” Table I shows an example of a glucose level
monitoring service. The service is assigned a UUID, such as
0x54656d70657261747572652053656e736f72 and the
0x2800 is the handle of the UUID, the value of the attribute
at handle “39” is 0xFFE0, which is used for a glucose profile. The
service includes all subsequent attributes up until right before the
next service in the table.

When a device joins the IoT, it advertises its capability by
broadcasting service advertisements with information about ser-
vices it can provide. Upon receiving the message, other devices
already present in the deployment can get these services registered
as IoT services by exchanging service information [14]. In doing
so, a hierarchical overlay can be obtained with periodic service
advertisementmessages. Due to the dynamic nature of the IoT, the
structure of the hierarchy can change frequently.

IV. SERVICE DISCOVERY AND CLASSIFICATION

A. Service Discovery

In service-oriented IoT, many of the services profiles are
designed using a traditional client/server (C/S) approach. In this
context, “Server” nodes have data to make available to other
nodes. A “Client” node may be a device that needs information
from a server. In traditional C/S architecture, a client initiates
communication with a server by performing the following steps:
at first, a client has to locate an appropriate server device, in the
IoT this is done using the inquiry process. Then, the client sends
out messages looking for nearby nodes. Server nodes which are
listening for thesemessages respond to the client. This allows the
client(s) to create a list of candidate servers.

B. Services Classification

The classification for a priori analysis is necessary in the
service-oriented IoT.Assume is afinite set of two states
of IoT nodes. The state of nodes includes classes or categories of
objects.

Services classification in the IoT includes expedient objects,
intelligent objects with more computing power, e.g., active tags,
sensors; nonexpedient object, objects with limited computing
power, e.g., passive tags. Other possible parameters for object
classification include size,mobility, power, physical/logic object,
etc.

Applications of decision theory on object classification can
yield a novel solution. It works under uncertainty which is best
suited for an IoT context with two scenarios in which object will
communicate when the probabilities of expedient and nonexpe-
dient objects are known or completely unknown.

The uniqueness of this solution is an application of Bayesian
decision theory (BDT) with optimization on binding a posterior
value for the expedient object and thus making the selection
procedure proficient.

C. IoT Service Aggregation

When a service is well classified, it can be properly integrated
into the IoT. This process needs an agreement among involved
nodes, which can be perceived as a distributed consensus
problem. For one node, the discovered service can be com-
bined with existing service(s) to form a complex service
according to the following conditions:

The first condition ensures that the output of service can be
consumed by . The second condition states that the output of
can be completely accepted by . Actually, when the discovered
service is available for multiple IoT edge nodes, then a distrib-
uted CDM process is needed to get it efficiently combined into
the service-oriented IoT. In this paper, we define a normalized
matching value to evaluate the matching of the new
coming with the existing services based on
multi-attributes

in which the function is used to evaluate the
similarity of services and in terms of critical parameters such
as position, QoS requirements, availability, robustness, etc.

V. DISTRIBUTED CDM OF SERVICES

In an IoT context, it is important to get an agreement when an
event can be accessed by multiple IoT edge nodes, which is
known as CDM [18]. In CDM, the input and ideas of all IoT end
nodes are gathered and synthesized to arrive at a final decision
acceptable by all. Bymeans of consensus, a better solution can be
achieved and the trustiness between nodes can be promoted.
Normally, two kinds of consensus situations are involved in the
service-oriented IoT [19].

1) Data consensus, whereby multiple services must reach
consensus when referring to the same piece of data. For
example, when temperature at a specific location can be
provided by multiple IoT edge nodes, then a data consen-
sus will increase confidence on the measurement result.

2) Service consensus, which helps the IoT to build composi-
tion services with multiple services provided by different
IoT edge nodes.

For the former, a number of distributed consensus algorithms
have been developed. The latter can be implemented based on
distributed consensus service composition.

A. Consensus Problem in the IoT

In practice, global consensus might be needed to facilitate
knowledge sharing or service integration [19]. In this section, we
will propose a distributed consensus method to enable each IoT

TABLE I
CHARACTERISTIC OF A SERVICE
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edge node to develop a local consensus when needed. The IoT
network can be partitioned into multiple clusters and a local
consensus can be achieved within each cluster, and can then be
used to make consensus decision in knowledge sharing and
integration of functional capabilities.

In forming a local consensus, an assumption made here is that
the services being merged are in similar domains where a
quantitative criterion can be used to evaluate the composition’s
feasibility. A new service can become part of a service poolwhen
a consensus or agreement can be achieved for all involved IoT
edge nodes. The proposed matching value-based method allows
one to find the possibility that the services can be composed by
existing IoT services [20], [21]. Therefore, matching values at
nodes are gathered and synthesized to reach a final decision
acceptable by all. Through consensus-based decision making,
services in IoT are not only working to achieve better solutions,
but also to promote trust [22], [23].

1) Consensus Updates: An IoT network can be well modeled
by a graph . Let represent the state value (used
to evaluate the matching value for new incoming services) at
node at time , which can be intuitively understood as the
estimate of the consensus value of . At each node , let

denote the initial measured value at , which can be further
updated through iterative exchanges between neighbor nodes
and the consensus or averaging can be achieved at all the
nodes

N

in which N denotes the neighbor list of and denotes the
step size in each iteration. The convergence properties of (4)
are largely determined by the Laplacian matrix , thus

in which is the degree at node . Let an vector
denote the states vector of all nodes at time , then (4) can be
formatted as

It can be rewritten as

in which . For a graph , its Laplician matrix
with eigenvalues and is always because
every Laplacian matrix has an eigenvector .

B. Local Distributed Consensus Algorithm

An IoT can be easily grouped into multiple clusters by
well-known clustering algorithms, such asLEACH (low-energy
adaptive clustering hierarchy), FCM (fuzzy C-Means),

location-basedclustering, HSA (harmony search algorithm)
[22]–[25], etc. With these algorithms, a deployment can be
broken down into clusters according to application require-
ments such as energy consumption, information types, location,
QoSattributes, etc. In each cluster, a node is selected as cluster
head (CH) and is able to exchange information with other CHs.
Assume a deployment of clusters , then
each cluster consists nodes. For a cluster , the
consensus problem can be formulated as

At each CH, the iterative averaging problem can be concur-
rently solved and for each cluster a local consensus oragree-
ment can be achieved

here we have

in which denotes the vector with all coefficients one. Accord-
ing to [15], the convergence rate can be measured by

and the associated convergence time is

Then, the problem can be solved as concurrent
subproblems

VI. GLOBAL DISTRIBUTED CONSENSUS ALGORITHM

Similarly, a global consensus can be obtained

in which . Equation (13) can
be solved by

The convergence time of the whole problem can be
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A. Global Distributed CDM

Provided that is available at all CHs, the CHs can have
the following hypothesis testing:

in which denotes the judgement vector at nodes and
denotes decision parameters (e.g., distances ). According to our
previously published work in [15], for given , using the
likelihood ratio with a decision threshold , we can have the
following decision rule, which is called the likelihood ratio test:

>

<

where is the likelihood function under and is defined in
our previous work [16].

Let and be the local decision at the th
CHs at time , respectively. Then, we have

VII. SIMULATION

In order to evaluate the proposed distributed consensus algo-
rithm,we simulated an IoT networkwith 100 nodes deployed in a

area. For simplicity, the network is clustered into nine
using a distance-based static clustering scheme. Each cluster
selects one node as local fusion center [LFC, it is also named
cluster head (CH)] which can communicate with its neighbors
within the cluster. At time instant , the nodes within a cluster
distributively calculate the local consensus andmeasurements on
each node are updated accordingly. By doing this, each LFC
keeps record of the local consensus calculated within its cluster.
Similarly, LFCs exchange local consensuses and form a global
consensus, with which a global decision can be made. Fig. 2
illustrates a connected graph which denotes a cluster, in which

the LFC is labeled. Each cluster contains nine nodes, these nodes
cover a grid area of approximately ( ) and distributively
detect chemical and biological (CB) emissions. There are nine
clusters able to cover the entire ( ) area. Each cluster
executes the distributed consensus algorithm to iteratively cal-
culate its local consensus value. The normalized mean squared
error (NMSE) can be used as a performance measure [19]

E

E

Fig. 3 shows the NMSEs at nine LFCs when service matching
values are to be estimated using the above iterative distributed
algorithm in each cluster. It is noted that the distributed consen-
sus converged very fast. LFC-8 achieved the highest conver-
gence speed by reaching a local consensus value (1.15) within
11 s. All other LFCs converged to a local consensus value within
17 s. The nine LFCs are able to freely communicate and can form

Fig. 3. NMSE of local consensus results.

Fig. 2. Randomly built connected cluster.

Fig. 4. NMSE of global consensus results.

1466 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 2, MAY 2014



 

a connected sub-network, meanwhile each LFC holds a local
consensus calculated within its own cluster. Iteratively, a global
consensus can be reached from the nine LFCs. Fig. 4 shows the
NMSE of global consensus result, which converges to a global
consensus value (6.02) within 20 s. In Fig. 5, we display the
results of the evaluation of the proposed algorithm’s computa-
tional cost. Results show a stable global consensus is reached
within 18 iterations, which is reasonable for a network of this
size.

VIII. CONCLUSION

IoT has attracted much research attention in recent years
[30]–[35]. The advances in wireless sensor networks, cloud
computing, and other technologies help move the traditional
Internet to an intelligent IoT [36], [37]. This trend will lead to
further changes in existing systems such as enterprise systems
[38]–[40], decision support systems [43]–[47], as well as
business processes in general [47]–[49]. In this paper, we have
presented a distributed CDM method for service detection,
classification, composition, and data processing for the IoT.
Our proposed algorithm aims to improve the trustiness and
efficiency of distributed average CDM. We first propose a
three-layer service provisioning framework for service-oriented
IoT deployments, which is able to represent, discover, detect,
and compose services at edge nodes. The proposed CDM
method for service composition enables services to make
decisions based on application layer requirements. Subse-
quently, a distributed consensus algorithm is proposed to
provide robust decision results when multiple services are
involved to reach a global consensus. Simulation results show
the proposed method’s effectiveness and performance. As part
of our future research, we aim to develop more comprehensive
services covering all phases of the service lifecycle. The
objective is to provide the service-oriented IoT with interactive
and collaborativemethods for the realization ofmore intelligent
and ubiquitous information exchange and resource allocation
in dynamic environments.
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