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Abstract

Via partial resolution of Abelian orbifolds we present an algorithm for ex-
tracting a consistent set of gauge theory data for an arbitrary toric variety
whose singularity a D-brane probes. As illustrative examples, we tabulate the
matter content and superpotential for a D-brane living on the toric del Pezzo
surfaces as well as the zeroth Hirzebruch surface. Moreover, we discuss the
non-uniqueness of the general problem and present examples of vastly different
theories whose moduli spaces are described by the same toric data. Our meth-
ods provide new tools for calculating gauge theories which flow to the same
universality class in the IR. We shall call it “Toric Duality.”
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1 Introduction

The study of D-branes as probes of geometry and topology of space-time has by

now been of wide practice (cf. e.g. [1]). In particular, the analysis of the mod-

uli space of gauge theories, their matter content, superpotential and β-function, as

world-volume theories of D-branes sitting at geometrical singularities is still a widely

pursued topic. Since the pioneering work in [2], where the moduli and matter con-

tent of D-branes probing ALE spaces had been extensively investigated, much work

ensued. The primary focus on (Abelian) orbifold singularities of the type C2/ZZn

was quickly generalised using McKay’s Correspondence, to arbitrary (non-Abelian)

orbifold singularities C2/(Γ ⊂ SU(2)), i.e., to arbitrary ALE spaces, in [3].

Several directions followed. With the realisation [5, 6] that these singularities

provide various horizons, [2, 3] was quickly generalised to a treatment for arbitrary

finite subgroups Γ ⊂ SU(N), i.e., to generic Gorenstein singularities, by [7]. The

case of SU(3) was then promptly studied in [8, 9, 10] using this technique and a

generalised McKay-type Correspondence was proposed in [8, 11]. Meanwhile, via

T-duality transformations, certain orbifold singularities can be mapped to type II

brane-setups in the fashion of [12]. The relevant gauge theory data on the world

volume can thereby be conveniently read from configurations of NS-branes, D-brane

stacks as well as orientifold planes. For C2 orbifolds, the A and D series have been

thus treated [12, 13], whereas for C3 orbifolds, the Abelian case of ZZk ×ZZk′ has been

solved by the brane box models [14, 15]. First examples of non-Abelian C3 orbifolds

have been addressed in [16] as well as recent works in [17].

Thus rests the status of orbifold theories. What we note in particular is that once

we specify the properties of the orbifold in terms of the algebraic properties of the

finite group, the gauge theory information is easily extracted. Of course, orbifolds

are a small subclass of algebro-geometric singularities. This is where we move on to

toric varieties. Inspired by the linear σ-model approach of [18], which provides a rich

structure of the moduli space, especially in connexion with various geometrical phases

of the theory, the programme of utilising toric methods to study the behaviour of the

gauge theory on D-branes which live on and hence resolve certain singularities was

initiated in [19]. In this light, toric methods provide a powerful tool for studying the

moduli space of the gauge theory. In treating the F-flatness and D-flatness conditions

for the SUSY vacuum in conjunction, these methods show how branches of the moduli

space and hence phases of the theory may be parametrised by the algebraic equations

of the toric variety. Recent developments in “brane diamonds,” as an extension of

the brane box rules, have been providing great insight to such a wider class of toric

singularities, especially the generalised conifold, via blown-up versions of the standard
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brane setups [20]. Indeed, with toric techniques much information could be extracted

as we can actually analytically describe patches of the moduli space.

Now Abelian orbifolds have toric descriptions and the above methodolgy is thus

immediately applicable thereto. While bearing in mind that though non-Abelian

orbifolds have no toric descriptions, a single physical D-brane has been placed on

various general toric singularities. Partial resolutions of C3/(ZZ2 × ZZ2), such as the

conifold and the suspended pinched point have been investigated in [21, 22] and brane

setups giving the field theory contents are constructed by [23, 25, 24]. Groundwork

for the next family, coming from the toric orbifold C3/(ZZ3 × ZZ3), such as the del

Pezzo surfaces and the zeroth Hirzebruch, has been laid in [26]. Essentially, given the

gauge theory data on the D-brane world volume, the procedure of transforming this

information (F and D terms) into toric data which parametrises the classical moduli

space is by now well-established.

One task is therefore immediately apparent to us: how do we proceed in the re-

verse direction, i.e., when we probe a toric singularity with a D-brane, how do we know

the gauge theory on its world-volume? We recall that in the case of orbifold theo-

ries, [7] devised a general method to extract the gauge theory data (matter content,

superpotential etc.) from the geometry data (the characters of the finite group Γ),

and vice versa given the geometry, brane-setups for example, conveniently allow us to

read out the gauge theory data. The same is not true for toric singularities, and the

second half of the above bi-directional convenience, namely, a general method which

allows us to treat the inverse problem of extracting gauge theory data from toric data

is yet pending, or at least not in circulation.

The reason for this shortcoming is, as we shall see later, that the problem is highly

non-unique. It is thus the purpose of this writing to address this inverse problem:

given the geometry data in terms of a toric diagram, how does one read out (at least

one) gauge theory data in terms of the matter content and superpotential? We here

present precisely this algorithm which takes the matrices encoding the singularity

to the matrices encoding a good gauge theory of the D-brane which probes the said

singularity.

The structure of the paper is as follows. In Section 2 we review the procedure of

proceeding from the gauge theory data to the toric data, while establishing nomen-

clature. In Subsection 3.1, we demonstrate how to extract the matter content and

F-terms from the charge matrix of the toric singularity. In Subsection 3.2, we exem-

plify our algorithm with the well-known suspended pinched point before presenting

in detail in Subsection 3.3, the general algorithm of how to obtain the gauge theory

information from the toric data by the method of partial resolutions. In Subsection

3.4, we show how to integrate back to obtain the actual superpotential once the F-

3



flatness equations are extracted from the toric data. Section 4 is then devoted to

the illustration of our algorithm by tabulating the D-terms and F-terms of D-brane

world volume theory on the toric del Pezzo surfaces and Hirzebruch zero. We finally

discuss in Section 5, the non-uniqueness of the inverse problem and provide, through

the studying of two types of ambiguities, ample examples of rather different gauge

theories flowing to the same toric data. Discussions and future prospects are dealt

with in Section 6.

2 The Forward Procedure: Extracting Toric Data

From Gauge Theories

We shall here give a brief review of the procedures involved in going from gauge theory

data on the D-brane to toric data of the singularity, using primarily the notation and

concepts from [19]. In the course thereof special attention will be paid on how toric

diagrams, SUSY fields and linear σ-models weave together.

A stack of n D-brane probes on algebraic singularities gives rise to SUSY gauge

theories with product gauge groups resulting from the projection of the U(n) theory

on the original stack by the geometrical structure of the singularity. For orbifolds

Ck/Γ, we can use the structure of the finite group Γ to fabricate product U(ni) gauge

groups [2, 3, 7]. For toric singularities, since we have only (Abelian) U(1) toroidal

actions, we are so far restricted to product U(1) gauge groups2. In physical terms,

we have a single D-brane probe. Extensive work has been done in [26, 19] to see how

the geometrical structure of the variety can be thus probed and how the gauge theory

moduli may be encoded. The subclass of toric singularities, namely Abelian orbifolds,

has been investigated to great detail [2, 4, 19, 22, 26] and we shall make liberal usage

of their properties throughout.

Now let us consider the world-volume theory on the D-brane probe on a toric

singularity. Such a theory, as it is a SUSY gauge theory, is characterised by its matter

content and interactions. The former is specified by quiver diagrams which in turn

give rise to D-term equations; the latter is given by a superpotential, whose partial

derivatives with respect to the various fields are the so-called F-term equations.

F and D-flatness subsequently describe the (classical) moduli space of the theory.

The basic idea is that the D-term equations together with the FI-parametres, in

conjunction with the F-term equations, can be concatenated together into a matrix

which gives the vectors forming the dual cone of the toric variety which the D-branes

probe. We summarise the algorithm of obtaining the toric data from the gauge theory

in the following, and to illuminate our abstraction and notation we will use the simple

2 Proposals toward generalisations to D-brane stacks have been made [26].
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Figure 1: The toric diagram for the singularity C3/(ZZ2×ZZ2) and the quiver diagram
for the gauge theory living on a D-brane probing it. We have labelled the nodes of
the toric diagram by columns of Gt and those of the quiver, with the gauge groups
U(1){A,B,C,D}.

example of the Abelian orbifold C3/(ZZ2 × ZZ2) as given in Figure 1.

1. Quivers and D-Terms:

(a) The bi-fundamental matter content of the gauge theory can be conve-

niently encoded into a quiver diagram Q, which is simply the (possibly

directed) graph whose adjacency matrix aij is precisely the matrix of

the bi-fundamentals. In the case of an Abelian orbifold3 prescribed by the

group Γ, this diagram is the McKay Quiver (i.e., for the irreps Ri of Γ, aij

is such that R⊗Ri = ⊕jaijRj for some fundamental representation R). We

denote the set of nodes as Q0 := {v} and the set of the edges, Q1 := {a}.

We let the number of nodes be r; for Abelian orbifolds, r = |Γ| (and for

generic orbifolds r is the number of conjugacy classes of Γ). Also, we let

the number of edges be m; this number depends on the number of su-

persymmetries which we have. The adjacency matrix (bi-fundamentals) is

thus r×r and the gauge group is
r
∏

j=1
SU(wj). For our example of ZZ2×ZZ2,

r = 4, indexed as 4 gauge groups U(1)A × U(1)B × U(1)C × U(1)D cor-

responding to the 4 nodes, while m = 4 × 3 = 12, corresponding to the

12 arrows in Figure 1. The adjacency matrix for the quiver is

(

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

)

.

Though for such simple examples as Abelian orbifolds and conifolds, brane

3This is true for all orbifolds but of course only Abelian ones have known toric description.
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setups and [7] specify the values of wj as well as aij completely4, there is

yet no discussion in the literature of obtaining the matter content and

gauge group for generic toric varieties in a direct and systematic manner

and a partial purpose of this note is to present a solution thereof.

(b) From the r×r adjacency matrix, we construct a so-called r×m incidence

matrix d for Q; this matrix is defined as dv,a := δv,head(a) − δv,tail(a) for

v ∈ Q0 and a ∈ Q1. Because each column of d must contain a 1, a

−1 and the rest 0’s by definition, one row of d is always redundant; this

physically signifies the elimination of an overall trivial U(1) corresponding

to the COM motion of the branes. Therefore we delete a row of d to define

the matrix ∆ of dimensions (r − 1) × m; and we could always extract d

from ∆ by adding a row so as to force each column to sum to zero. This

matrix ∆ thus contains almost as much information as aij and once it is

specified, the gauge group and matter content are also, with the exception

that precise adjoints (those charged under the same gauge group factor and

hence correspond to arrows that join a node to itself) are not manifest.

For our example the 4× 12 matrix d is as follows and ∆ is the top 3 rows:

d =









XAD XBC XCB XDA XAB XBA XCD XDC XAC XBD XCA XDB

A −1 0 0 1 −1 1 0 0 −1 0 1 0
B 0 −1 1 0 1 −1 0 0 0 −1 0 1
C 0 1 −1 0 0 0 −1 1 1 0 −1 0
D 1 0 0 −1 0 0 1 −1 0 1 0 −1









(c) The moment maps, arising in the sympletic-quotient language of the toric

variety, are simply µ := d · |x(a)|2 where x(a) are the affine coordinates

of the Cr for the torus (C∗)r action. Physically, x(a) are of course the

bi-fundamentals in chiral multiplets (in our example they are Xij∈{A,B,C,D}

as labelled above) and the D-term equations for each U(1) group is [18]

Di = −e2(
∑

a

dia|x(a)|2 − ζi)

with ζi the FI-parametres. In matrix form we have ∆ · |x(a)|2 = ~ζ and see

that D-flatness gives precisely the moment map. These ζ-parametres will

encode the resolution of the toric singularity as we shall shortly see.

2. Monomials and F-Terms:

(a) From the super-potential W of the SUSY gauge theory, one can write the

F-Term equation as the system ∂
∂Xj

W = 0. The remarkable fact is that

4For arbitrary orbifolds,
∑

j

wini = |Γ| where ni are the dimensions of the irreps of Γ; for Abelian

case, ni = 1.
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we could solve the said system of equations and express the m fields Xi in

terms of r + 2 parametres vj which can be summarised by a matrix K.

Xi =
∏

j

v
Kij

j , i = 1, 2, .., m; j = 1, 2, .., r + 2 (2.1)

This matrix K of dimensions m × (r + 2) is the analogue of ∆ in the

sense that it encodes the F-terms and superpotential as ∆ encodes the

D-terms and the matter content. In the language of toric geometry K

defines a cone5 M+ : a non-negative linear combination of m vectors ~Ki

in an integral lattice ZZr+2.

For our example, the superpotential is

W = XACXCDXDA − XACXCBXBA + XCAXABXBC − XCAXADXDC

+XBDXDCXCB − XBDXDAXAB − XDBXBCXCD,

giving us 12 F-term equations and with the manifold of solutions parametris-

able by 4 + 2 new fields, whereby giving us the 12 × 6 matrix (we here

show the transpose thereof, thus the horizontal direction corresponds to

the original fields Xi and the vertical, vj):

Kt =















XAC XBD XCA XDB XAB XBA XCD XDC XAD XBC XCB XDA

v1 = XAC 1 0 0 1 1 0 0 1 0 0 0 0
v2 = XBD 0 1 1 0 −1 0 0 −1 0 0 0 0
v3 = XBA 0 0 0 0 0 1 0 1 0 1 0 1
v4 = XCD 0 0 0 0 1 0 1 0 0 −1 0 −1
v5 = XAD 0 0 −1 −1 0 0 0 0 1 1 0 0
v6 = XCB 0 0 1 1 0 0 0 0 0 0 1 1















.

For example, the third column reads XCA = v2v
−1
5 v6, i.e., XADXCA =

XBDXCB, which the the F-flatness condition ∂W
∂XDC=0

. The details of ob-

taining W and K from each other are discussed in [19, 26] and Subsection

3.4.

(b) We let T be the space of (integral) vectors dual to K, i.e., K · T ≥ 0 for

all entries; this gives an (r + 2) × c matrix for some positive integer c.

Geometrically, this is the definition of a dual cone N+ composed of vectors
~Ti such that ~K · ~T ≥ 0. The physical meaning for doing so is that K

may have negative entries which may give rise to unwanted singularities

5 We should be careful in this definition. Strictly speaking we have a lattice M = ZZr+2 with its
dual lattice N ∼= ZZr+2. Now let there be a set of ZZ+-independent vectors {~ki} ∈ M and a cone is

defined to be generated by these vectors as σ := {
∑

i ai
~ki | ai ∈ IR≥0}; Our M+ should be M ∩ σ.

In much of the literature M+ is taken to be simply M
′
+ := {

∑

i ai
~ki | ai ∈ ZZ≥0} in which case

we must make sure that any lattice point contained in M+ but not in M
′
+ must be counted as an

independent generator and be added to the set of generators {~ki}. After including all such points
we would have M

′
+ = M+. Throughout our analyses, our cone defined by K as well the dual cone

T will be constituted by such a complete set of generators.
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and hence we define a new set of c fields pi (a priori we do not know the

number c and we present the standard algorithm of finding dual cones in

the Appendix). Thus we reduce (2.1) further into

vj =
∏

α

pTjα
α (2.2)

whereby giving Xi =
∏

j v
Kij

j =
∏

α p

∑

j
KijTjα

α with
∑

j KijTjα ≥ 0. For our

ZZ2 × Z2 example, c = 9 and

Tjα =















p1 p2 p3 p4 p5 p6 p7 p8 p9

XAC 1 1 0 0 0 0 0 0 1
XBD 0 1 1 0 0 0 0 0 1
XBA 0 0 1 1 1 0 0 0 0
XCD 0 0 1 0 1 1 0 0 0
XAD 0 0 0 0 0 1 1 0 1
XCB 0 0 0 0 0 1 1 1 0















(c) These new variables pα are the matter fields in Witten’s linear σ-model.

How are these fields charged? We have written r + 2 fields vj in terms of

c fields pα, and hence need c− (r + 2) relations to reduce the independent

variables. Such a reduction can be done via the introduction of the new

gauge group U(1)c−(r+2) acting on the pi’s so as to give a new set of D-

terms. The charges of these fields can be written as Qkα. The gauge

invariance condition of vi under U(1)c−(r+2), by (2.2), demands that the

(c− r− 2)× c matrix Q is such that
∑

α TjαQkα = 0. This then defines for

us our charge matrix Q which is the cokernel of T :

TQt = (Tjα)(Qkα)t = 0, j = 1, .., r+2; α = 1, .., c; k = 1, .., (c−r−2)

For our example, the charge matrix is (9 − 4 − 2) × 9 and one choice is

Qkα =

(

0 0 0 1 −1 1 −1 0 0
0 1 0 0 0 0 1 −1 −1
1 −1 1 0 −1 0 0 0 0

)

.

(d) In the linear σ-model language, the F-terms and D-terms can be treated

in the same footing, i.e., as the D-terms (moment map) of the new fields

pα; with the crucial difference being that the former must be set exactly

to zero6 while the latter are to be resolved by arbitrary FI-parameters.

Therefore in addition to finding the charge matrix Q for the new fields

pα coming from the original F-terms as done above, we must also find

the corresponding charge matrix QD for the pi coming from the original

D-terms. We can find QD in two steps. Firstly, we know the charge

6Strictly speaking, we could have an F-term set to a non-zero constant. An example of this
situation could be when there is a term aφ + φQ̃Q in the superpotential for some chargeless field φ

and charged fields Q̃ and Q. The F-term for φ reads Q̃Q = −a and not 0. However, in our context
φ behaves like an integration constant and for our purposes, F-terms are set exactly to zero.
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matrix for Xi under U(1)r−1, which is ∆. By (2.1), we transform the

charges to that of the vj ’s, by introducing an (r − 1) × (r + 2) matrix V

so that V · Kt = ∆. To see this, let the charges of vj be Vlj then by (2.1)

we have ∆li =
∑

j
VljKij = V · Kt. A convenient V which does so for our

ZZ2×ZZ2 example is

(

1 0 −1 0 1 0
0 1 1 0 0 −1
−1 0 0 1 0 1

)

(4−1)×(4+2)

. Secondly, we use (2.2)

to transform the charges from vj ’s to our final variables pα’s, which is done

by introducing an (r+2)×c matrix Ujα so that U ·T t = Id(r+2)×(r+2). In our

example, one choice for U is Ujα =











1 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 −1 0 0
0 −1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0











(4+2)×9

.

Threfore, combining the two steps, we obtain QD = V · U and in our

example, (V · U)lα =

(

1 −1 0 −1 0 0 0 0 1
−1 1 0 1 0 0 0 −1 0
−1 0 0 0 0 1 −1 1 0

)

.

3. Thus equipped with the information from the two sides: the F-terms and

D-terms, and with the two required charge matrices Q and V · U obtained,

finally we concatenate them to give a (c − 3) × c matrix Qt. The trans-

pose of the kernel of Qt, with (possible repeated columns) gives rise to a

matrix Gt. The columns of this resulting Gt then define the vertices of the

toric diagram describing the polynomial corresponding to the singularity on

which we initially placed our D-branes. Once again for our example, Qt =










0 0 0 1 −1 1 −1 0 0 0
0 1 0 0 0 0 1 −1 −1 0
1 −1 1 0 −1 0 0 0 0 0
1 −1 0 −1 0 0 0 0 1 ζ1
−1 1 0 1 0 0 0 −1 0 ζ2
−1 0 0 0 0 1 −1 1 0 ζ3











and Gt =

(

0 1 0 0 −1 0 1 1 1
1 1 1 0 1 0 −1 0 0
1 1 1 1 1 1 1 1 1

)

.

The columns of Gt, up to repetition, are precisely marked in the toric diagram

for ZZ2 × ZZ2 in Figure 1.

Thus we have gone from the F-terms and the D-terms of the gauge theory to the

nodes of the toric diagram. In accordance with [27], Gt gives the algebraic variety

whose equation is given by the maximal ideal in the polynomial ring

C[Y Z, XY Z, Z, X−1Y Z, XY −1Z, XZ] (the exponents (i, j, k) in X iY jZk are exactly

the columns), which is uvw = s2, upon defining u = (Y Z)(XY Z)2(Z)(XZ)2; v =

(Y Z)2(Z)2(X−1Y Z)2; w = (Z)2(XY −1Z)(XZ)2 and

s = (Y Z)2(XY Z)(Z)2(X−1Y Z)(XY −1Z)(XZ)2; this is precisely C3/(ZZ2 × ZZ2). In

physical terms this equation parametrises the moduli space obtained from the F and

D flatness of the gauge theory.

We remark two issues here. In the case of there being no superpotential we could

still define K-matrix. In this case, with there being no F-terms, we simply take K

to be the identity. This gives T =Id and Q = 0. Furthermore U becomes Id and

9



V = ∆, whereby making Qt = ∆ as expected because all information should now be

contained in the D-terms. Moreover, we note that the very reason we can construct

a K-matrix is that all of the equations in the F-terms we deal with are in the form
∏

i
Xai

i =
∏

j
X

bj

j ; this holds in general if every field Xi appears twice and precisely twice

in the superpotential. More generic situations would so far transcend the limitations

of toric techniques.

Schematically, our procedure presented above at length, what it means is as fol-

lows: we begin with two pieces of physical data: (1) matrix d from the quiver encoding

the gauge groups and D-terms and (2) matrix K encoding the F-term equations. From

these we extract the matrix Gt containing the toric data by the flow-chart:

Quiver → d → ∆

↓

F-Terms → K
V ·Kt=∆
→ V

↓ ↓

T = Dual(K)
U ·T t=Id
→ U → V U

↓ ↓

Q = [Ker(T )]t −→ Qt =





Q

V U



 → Gt = [Ker(Qt)]
t

3 The Inverse Procedure: Extracting Gauge The-

ory Information from Toric Data

As outlined above we see that wherever possible, the gauge theory of a D-brane probe

on certain singularities such as Abelian orbifolds, conifolds, etc., can be conveniently

encoded into the matrix Qt which essentially concatenates the information contained

in the D-terms and F-terms of the original gauge theory. The cokernel of this matrix

is then a list of vectors which prescribes the toric diagram corresponding to the

singularity. It is natural to question ourselves whether the converse could be done,

i.e., whether given an arbitrary singularity which affords a toric description, we could

obtain the gauge theory living on the D-brane which probes the said singularity. This

is the inverse problem we projected to solve in the introduction.

3.1 Quiver Diagrams and F-terms from Toric Diagrams

Our result must be two-fold: first, we must be able to extract the D-terms, or in

other words the quiver diagram which then gives the gauge group and matter content;

second, we must extract the F-terms, which we can subsequently integrate back to

give the superpotential. These two pieces of data then suffice to specify the gauge

10



theory. Essentially we wish to trace the arrows in the above flow-chart from Gt back

to ∆ and K. The general methodology seems straightforward:

1. Read the column-vectors describing the nodes of the given toric diagram, repeat

the appropriate columns to obtain Gt and then set Qt = Coker(Gt);

2. Separate the D-term (V · U) and F-term (Qt) portions from Qt;

3. From the definition of Q, we obtain7 T = ker(Q).

4. Farka’s Theorem [27] guarantees that the dual of a convex polytope remains

convex whence we could invert and have K = Dual(T t); Moreover the dual-

ity theorem gives that Dual(Dual(K)) = K, thereby facilitating the inverse

procedure.

5. Definitions U · T t = Id and V · Kt = ∆ ⇒ (V · U) · (T t · Kt) = ∆.

We see therefore that once the appropriate Qt has been found, the relations

K = Dual(T t) ∆ = (V · U) · (T t · Kt) (3.3)

retrieve our desired K and ∆. The only setback of course is that the appropriate Qt

is NOT usually found. Two ambiguities are immediately apparent to us: (A) In step

1 above, there is really no way to know a priori which of the vectors we should repeat

when writing into the Gt matrix; (B) In step 2, to separate the D-terms and the

F-terms, i.e., which rows constitute Q and which constitute V · U within Qt, seems

arbitrary. We shall in the last section discuss these ambiguities in more detail and

actually perceive it to be a matter of interest. Meanwhile, in light thereof, we must

find an alternative, to find a canonical method which avoids such ambiguities and

gives us a consistent gauge theory which has such well-behaved properties as having

only bi-fundamentals etc.; this is where we appeal to partial resolutions.

Another reason for this canonical method is compelling. The astute reader may

question as to how could we guarantee, in our mathematical excursion of performing

the inverse procedure, that the gauge theory we obtain at the end of the day is one

that still lives on the world-volume of a D-brane probe? Indeed, if we näıvely traced

back the arrows in the flow-chart, bearing in mind the said ambiguities, we have no a

fortiori guarantee that we have a brane theory at all. However, the method via partial

resolution of Abelian orbifolds (which are themselves toric) does give us assurance.

When we are careful in tuning the FI-parametres so as to stay inside cone-partitions

of the space of these parametres (and avoid flop transitions) we do still have the

7As mentioned before we must ensure that such a T be chosen with a complete set of ZZ+-
independent generators;
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resulting theory being physical [26]. Essentially this means that with prudence we

tune the FI-parametres in the allowed domains from a parent orbifold theory, thereby

giving a subsector theory which still lives on the D-brane probe and is well-behaved.

Such tuning we shall practice in the following.

The virtues of this appeal to resolutions are thus twofold: not only do we avoid

ambiguities, we are further endowed with physical theories. Let us thereby present

this canonical mathod.

3.2 A Canonical Method: Partial Resolutions of Abelian

Orbifolds

Our programme is standard [26]: theories on the Abelian orbifold singularity of the

form Ck/Γ for Γ(k, n) = ZZn×ZZn× ...ZZn (k−1 times) are well studied. The complete

information (and in particular the full Qt matrix) for Γ(k, n) is well known: k = 2 is

the elliptic model, k = 3, the Brane Box, etc. In the toric context, k = 2 has been

analysed in great detail by [2], k = 3, n = 2 in e.g. [23, 25, 24], k = 3, n = 3 in [26].

Now we know that given any toric diagram of dimension k, we can embed it into

such a Γ(k, n)-orbifold for some sufficiently large n; and we choose the smallest such

n which suffices. This embedding is always possible because the toric diagram for

the latter is the k-simplex of length n enclosing lattice points and any toric diagram,

being a collection of lattice points, can be obtained therefrom via deletions of a subset

of points. This procedure is known torically as partial resolutions of Γ(k, n). The

crux of our algorithm is that the deletions in the toric diagram corresponds to the

turning-on of the FI-parametres, and which in turn induces a method to determine a

Qt matrix for our original singularity from that of Γ(n, k).

We shall first turn to an illustrative example of the suspended pinched point

singularity (SPP) and then move on to discuss generalities. The SPP and conifold as

resolutions of Γ(3, 2) = ZZ2×ZZ2 have been extensively studied in [25]. The SPP, given

by xy = zw2, can be obtained from the Γ(3, 2) orbifold, xyz = w2, by a single IP1

blow-up. This is shown torically in Figure 2. Without further ado let us demonstrate

our procedure.

1. Embedding into ZZ2 × ZZ2: Given the toric diagram D of SPP, we recognise that

it can be embedded minimally into the diagram D′ of ZZ2×ZZ2. Now information

on D′ is readily at hand [25], as presented in the previous section. Let us re-

capitulate:

Q′
t :=













p1 p2 p3 p4 p5 p6 p7 p8 p9

0 0 0 1 −1 1 −1 0 0 0
0 1 0 0 0 0 1 −1 −1 0
1 −1 1 0 −1 0 0 0 0 0
1 −1 0 −1 0 0 0 0 1 ζ1
−1 1 0 1 0 0 0 −1 0 ζ2
−1 0 0 0 0 1 −1 1 0 ζ3













,

12
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Figure 2: The toric diagram showing the resolution of the C3/(ZZ2×ZZ2) singularity to
the suspended pinch point (SPP). The numbers i at the nodes refer to the i-th column
of the matrix Gt and physically correspond to the fields pi in the linear σ-model.

and

G′
t := coker(Q′

t) =





p1 p2 p3 p4 p5 p6 p7 p8 p9

0 1 0 0 −1 0 1 1 1
1 1 1 0 1 0 −1 0 0
1 1 1 1 1 1 1 1 1



 ,

which is drawn in Figure 1. The fact that the last row of Gt has the same

number (i.e., these three-vectors are all co-planar) ensures that D′ is Calabi-

Yau [1]. Incidentally, it would be very helpful for one to catalogue the list

of Qt matrices of Γ(3, n) for n = 2, 3... which would suffice for all local toric

singularities of Calabi-Yau threefolds.

In the above definition of Q′
t we have included an extra column (0, 0, 0, ζ1, ζ2, ζ3)

so as to specify that the first three rows of Q′
t are F-terms (and hence exactly

zero) while the last three rows are D-terms (and hence resolved by FI-parametres

ζ1,2,3). We adhere to the notation in [25] and label the columns (linear σ-model

fields) as p1...p9; this is shown in Figure 2.

2. Determining the Fields to Resolve by Tuning ζ : We note that if we turn on a

single FI-parametre we would arrive at the SPP; this is the resolution of D′

to D. The subtlety is that one may need to eliminate more than merely

the 7th column as there is more than one field attributed to each node in

the toric diagram and eliminating column 7 some other columns correspond-

ing to the adjacent nodes (namely out of 4,6,8 and 9) may also be elimi-

nated. We need a judicious choice of ζ for a consistent blowup. To do so

we must solve for fields p1,..,9 and tune the ζ-parametres such that at least

p7 acquires non-zero VEV (and whereby resolved). Recalling that the D-

term equations are actually linear equations in the modulus-squared of the

fields, we shall henceforth define xi := |pi|
2 and consider linear-systems therein.
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Therefore we perform Gaussian row-reduction on Q′ and solve all fields in

terms of x7 to give: ~x = {x1, x2, x1 + ζ2 + ζ3,
2 x1−x2+x7−ζ1+ζ2

2
, 2 x1 − x2 + ζ2 +

ζ3,
2 x1−x2+x7+ζ1+ζ2+2 ζ3

2
, x7,

x2+x7−ζ1−ζ2
2

, x2+x7+ζ1+ζ2
2

}.

The nodes far away from p7 are clearly unaffected by the resolution, thus the

fields corresponding thereto continue to have zero VEV. This means we solve the

above set of solutions ~x once again, setting x5,1,3,2 = 0, with ζ1,2,3 being the vari-

ables, giving upon back substitution, ~x = {0, 0, 0, x7−ζ1−ζ3
2

, 0, x7+ζ1+ζ3
2

, x7,
x7−ζ1+ζ3

2
,

x7+ζ1−ζ3
2

}. Now we have an arbitrary choice and we set ζ3 = 0 and x7 = ζ1 to

make p4 and p8 have zero VEV. This makes p6,7,9 our candidate for fields to be

resolved and seems perfectly reasonable observing Figure 2. The constraint on

our choice is that all solutions must be ≥ 0 (since the xi’s are VEV-squared).

3. Solving for Gt: We are now clear what the resolution requires of us: in order

to remove node p7 from D′ to give the SPP, we must also resolve 6, 7 and 9.

Therefore we immediately obtain Gt by directly removing the said columns from

G′
t:

Gt := coker(Qt) =





p1 p2 p3 p4 p5 p8

0 1 0 0 −1 1
1 1 1 0 1 0
1 1 1 1 1 1



 ,

the columns of which give the toric diagram D of the SPP, as shown in Figure 2.

4. Solving for Qt: Now we must perform linear combination on the rows of Q′
t to

obtain Qt so as to force columns 6, 7 and 9 zero. The following constraints must

be born in mind. Because Gt has 6 columns and 3 rows and is in the null space

of Qt, which itself must have 9− 3 columns (having eliminated p6,7,9), we must

have 6 − 3 = 3 rows for Qt. Also, the row containing ζ1 must be eliminated as

this is precisely our resolution chosen above (we recall that the FI-parametres

are such that ζ2,3 = 0 and are hence unresolved, while ζ1 > 0 and must be

removed from the D-terms for SPP).

We systematically proceed. Let there be variables {ai=1,..,6} so that y :=
∑

i airowi(Q
′
t) is a row of Qt. Then (a) the 6th, 7th and 9th columns of y

must be set to 0 and moreover (b) with these columns removed y must be in

the nullspace spanned by the rows of Gt. We note of course that since Q′
t was

in the nullspace of G′
t initially, that the operation of row-combinations is closed

within a nullspace, and that the columns to be set to 0 in Q′
t to give Qt are

precisely those removed in G′
t to give Gt, condition (a) automatically implies

(b). This condition (a) translates to the equations {a1 +a6 = 0,−a1 +a2−a6 =

0,−a2 +a4 = 0} which afford the solution a1 = −a6; a2 = a4 = 0. The fact that

a4 = 0 is comforting, because it eliminates the row containing ζ1. We choose

a1 = 1. Furthermore we must keep row 5 as ζ2 is yet unresolved (thereby setting

14



a5 = 1). This already gives two of the 3 anticipated rows of Qt: row5 and row1

- row6. The remaining row must corresponds to an F-term since we have ex-

hausted the D-terms, this we choose to be the only remaining variable: a3 = 1.

Consequently, we arrive at the matrix

Qt =





p1 p2 p3 p4 p5 p8

1 −1 1 0 −1 0 0
−1 1 0 1 0 −1 ζ2
−1 0 0 −1 1 1 ζ3



 .

5. Obtaining K and ∆ Matrices: The hard work is now done. We now recognise

from Qt that Q = (1,−1, 1, 0,−1, 0), giving

Tjα := ker(Q) =







0 0 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 0
−1 0 1 0 0 0
1 1 0 0 0 0





 ; Kt := Dual(T t) =







1 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 1





 .

Subsequently we obtain T t · Kt =







0 0 0 0 1 1

0 0 0 1 0 1

0 0 1 1 0 0

0 1 0 0 0 0

0 0 1 0 1 0

1 0 0 0 0 0





 , which we do observe indeed

to have every entry positive semi-definite. Furthermore we recognise from Qt

that V · U = ( −1 1 0 1 0 −1

−1 0 0 −1 1 1 ) , whence we obtain at last, using (3.3),

∆ =
(

−1 1 0 1 −1 0
1 −1 1 0 0 −1

)

⇒ d =





X1 X2 X3 X4 X5 X6

U(1)A −1 1 0 1 −1 0
U(1)B 1 −1 1 0 0 −1
U(1)C 0 0 −1 −1 1 1



 ,

giving us the quiver diagram (included in Figure 3 for reference), matter content

and gauge group of a D-brane probe on SPP in agreement with [25]. We shall

show in the ensuing sections that the superpotential we extract has similar

accordance.

3.3 The General Algorithm for the Inverse Problem

Having indulged ourselves in this illustrative example of the SPP, we proceed to

outline the general methodology of obtaining the gauge theory data from the toric

diagram.

1. Embedding into Ck/(ZZn)k−1: We are given a toric diagram D describing an

algebraic variety of complex dimension k (usually we are concerned with local

Calabi-Yau singularities of k = 2, 3 so that branes living thereon give N = 2, 1

gauge theories). We immediately observe that D could always be embedded

into D′, the toric diagram of the orbifold Ck/(ZZn)
k−1 for some sufficiently large

integer n. The matrices Q′
t and G′

t for D′ are standard. Moreover we know that

the matrix Gt for our original variety D must be a submatrix of G′
t. Equipped

with Q′
t and G′

t our task is to obtain Qt; and as an additional check we could

verify that Qt is indeed in the nullspace of Gt.
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Figure 3: The quiver diagram showing the matter content of a D-brane probing the
SPP singularity. We have not marked in the chargeless field φ (what in a non-Abelian
theory would become an adjoint) because thus far the toric techniques do not yet know
how to handle such adjoints.

2. Determining the Fields to Resolve by Tuning ζ : Q′
t is a k × a matrix8 (because

D′ and D are dimension k) for some a; G′
t, being its nullspace, is thus (a−k)×a.

D is a partial resolution of D′. In the SPP example above, we performed a single

resolution by turning on one FI-parametre, generically however, we could turn

on as many ζ ’s as the embedding permits. Therefore we let Gt be (a−k)×(a−b)

for some b which depends on the number of resolutions. Subsequently the Qt

we need is (k − b) × (a − b).

Now b is determined directly by examining D′ and D; it is precisely the number

of fields p associated to those nodes in D′ we wish to eliminate to arrive at D.

Exactly which b columns are to be eliminated is determined thus: we perform

Gaussian row-reduction on Q′
t so as to solve the k linear-equations in a variables

xi := |pi|
2, with F-terms set to 0 and D-terms to FI-parametres. The a variables

are then expressed in terms of the ζi’s and the set B of xi’s corresponding to

the nodes which we definitely know will disappear as we resolve D′ → D. The

subtlety is that in eliminating B, some other fields may also acquire non zero

VEV and be eliminated; mathematically this means that Order(B) < b.

Now we make a judicious choice of which fields will remain and set them to

zero and impose this further on the solution xi=1,..,a = xi(ζj; B) from above

until Order(B) = b, i.e., until we have found all the fields we need to eliminate.

We know this occurs and that our choice was correct when all xi ≥ 0 with

those equaling 0 corresponding to fields we do not wish to eliminate as can be

observed from the toric diagram. If not, we modify our initial choice and repeat

until satisfaction. This procedure then determines the b columns which we wish

8We henceforth understand that there is an extra column of zeroes and ζ’s.

16



to eliminate from Q′
t.

3. Solving for Gt and Qt: Knowing the fields to eliminate, we must thus perform

linear combinations on the k rows of Q′
t to obtain the k−b rows of Qt based upon

the two constraints that (1) the b columns must be all reduced to zero (and thus

the nodes can be removed) and that (2) the k−b rows (with b columns removed)

are in the nullspace of Gt. As mentioned in our SPP example, condition (1)

guarantees (2) automatically.

In other words, we need to solve for k variables {xi=1,..,k} such that

k
∑

i=1

xi (Q′
t)ij = 0 for j = p1, p2, ...pb ∈ B. (3.4)

Moreover, we immediately obtain Gt by eliminating the b columns from G′
t.

Indeed, as discussed earlier, (3.4) implies that
k
∑

i=1

∑

j 6=p1...b

xi (Q′
t)ij (Gt)mj = 0 for

m = 1, ..., a− k and hence guarantees that the Qt we obtain is in the nullspace

of Gt.

We could phrase equation (3.4) for xi in matrix notation and directly evaluate

Qt = NullSpace(W )t · Q̃′
t (3.5)

where Q̃′
t is Q′

t with the appropriate columns (p1...b) removed and W is the

matrix constructed from the deleted columns.

4. Obtaining the K Matrix (F-term): Having obtained the (k− b)× (a− b) matrix

Qt for the original variety D, we proceed with ease. Reading from the extraneous

column of FI-parametres, we recognise matrices Q (corresponding to the rows

that have zero in the extraneous column) and V · U (corresponding to those

with combinations of the unresolved ζ ’s in the last column). We let V · U be

c × (a − b) whereby making Q of dimension (k − b − c) × (a − b). The number

c is easily read from the embedding of D into D′ as the number of unresolved

FI-parametres.

From Q, we compute the kernel T , a matrix of dimensions (a − b) − (k − b −

c) × (a − b) = (a − k + c) × (a − b) as well as the matrix Kt of dimensions

(a − k + c) × d describing the dual cone to that spanned by the columns of T .

The integer d is uniquely determined from the dimensions of T in accordance

with the algorithm of finding dual cones presented in the Appendix. From these

two matrices we compute T t · Kt, of dimension (a − b) × d.

5. Obtaining the ∆ Matrix (D-term): Finally, we use (3.3) to compute (V · U) ·

(T t · Kt), arriving at our desired matrix ∆ of dimensions c × d, the incidence
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matrix of our quiver diagram. The number of gauge groups we have is therefore

c + 1 and the number of bi-fundamentals, d.

Of course one may dispute that finding the kernel T of Q is highly non-unique

as any basis change in the null-space would give an equally valid T . This is

indeed so. However we note that it is really the combination T t · Kt that we

need. This is a dot-product in disguise, and by the very definition of the dual

cone, this combination remains invariant under basis changes. Therefore this

step of obtaining the quiver ∆ from the charge matrix Qt is a unique procedure.

3.4 Obtaining the Superpotential

Having noticed that the matter content can be conveniently obtained, we proceed to

address the interactions, i.e., the F-terms, which require a little more care. The matrix

K which our algorithm extracts encodes the F-term equations and must at least be

such that they could be integrated back to a single function: the superpotential.

Reading the possible F-flatness equations from K is ipso facto straight-forward.

The subtlety exists in how to find the right candidate among many different linear

relations. As mentioned earlier, K has dimensions m× (r− 2) with m corresponding

to the fields that will finally manifest in the superpotential, r−2, the fields that solve

them according to (2.1) and (2.2); of course, m ≥ r − 2. Therefore we have r − 2

vectors in ZZm, giving generically m − r + 2 linear relations among them. Say we

have row1 + row3 − row7 = 0, then we simply write down X1X3 = X7 as one of the

candidate F-terms. In general, a relation
∑

i
aiKij = 0 with ai ∈ ZZ implies an F-term

∏

i
Xai

i = 1 in accordance with (2.1). Of course, to find all the linear relations, we

simply find the ZZ-nullspace of Kt of dimension m − r + 2.

Here a great ambiguity exists, as in our previous calculations of nullspaces: any

linear combinations therewithin may suffice to give a new relation as a candidate F-

term9. Thus educated guesses are called for in order to find the set of linear relations

which may be most conveniently integrated back into the superpotential. Ideally, we

wish this back-integration procedure to involve no extraneous fields (i.e., integration

constants10) other than the m fields which appear in the K-matrix. Indeed, as we

shall see, this wish may not always be granted and sometimes we must include new

fields. In this case, the whole moduli space of the gauge theory will be larger than

the one encoded by our toric data and the new fields parametrise new branches of

9Indeed each linear relation gives a possible candidate and we seek the correct ones. For the
sake of clarity we shall call candidates “relations” and reserve the term “F-term” for a successful
candidate.

10By constants we really mean functions since we are dealing with systems of partial differential
equations.
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the moduli in the theory.

Let us return to the SPP example to enlighten ourselves before generalising. We

recall from subsection 3.2, that K =











X1 X2 X3 X4 X5 X6

v1 1 0 0 0 0 0
v2 0 0 1 0 1 0
v3 0 1 0 0 0 0
v4 0 0 1 1 0 0
v5 0 0 0 1 0 1











from which we

can read out only one relation X3X6 − X4X5 = 0 using the rule described in the

paragraph above. Of course there can be only one relation because the nullspace of

Kt is of dimension 6 − 5 = 1.

Next we must calculate the charge under the gauge groups which this term carries.

We must ensure that the superpotential, being a term in a Lagrangian, be a gauge in-

variant, i.e., carries no overall charge under ∆. From d =





X1 X2 X3 X4 X5 X6

U(1)A −1 1 0 1 −1 0
U(1)B 1 −1 1 0 0 −1
U(1)C 0 0 −1 −1 1 1





we find the charge of X3X6 to be (qA, qB, qC) = (0 + 0, 1 + (−1), (−1) + 1) = (0, 0, 0);

of course by our very construction, X4X5 has the same charge. Now we have two

choices: (a) to try to write the superpotential using only the six fields; or (b) to

include some new field φ which also has charge (0, 0, 0). For (a) we can try the ansatz

W = X1X2(X3X6 − X4X5) which does give our F-term upon partial derivative with

respect to X1 or X2. However, we would also have a new F-term X1X2X3 = 0 by
∂

∂X6
, which is inconsistent with our K since columns 1, 2 and 3 certainly do not add

to 0.

This leaves us with option (b), i.e., W = φ(X3X6 −X4X5) say. In this case, when

φ = 0 we not only obtain our F-term, we need not even correct the matter content ∆.

This branch of the moduli space is that of our original theory. However, when φ 6= 0,

we must have X3 = X4 = X5 = X6 = 0. Now the D-terms read |X1|2−|X2|2 = −ζ1 =

ζ2, so the moduli space is: {φ ∈ C, X1 ∈ C} such that ζ1 + ζ2 = 0 for otherwise there

would be no moduli at all. We see that we obtain another branch of moduli space. As

remarked before, this is a general phenomenon when we include new fields: the whole

moduli space will be larger than the one encoded by the toric data. As a check, we

see that our example is exactly that given in [25], after the identification with their

notation, Y12 → X6, X24 → X3, Z23 → X1, Z32 → X2, Y34 → X4, X13 → X5, Z41 → φ

and (X1X2 − φ) → φ. We note that if we were studying a non-Abelian extension to

the toric theory, as by brane setups (e.g. [25]) or by stacks of probes (in progress

from [26]), the chargeless field φ would manifest as an adjoint field thereby modifying

our quiver diagram. Of course since the study of toric methods in physics is so far

restricted to product U(1) gauge groups, such complexities do not arise. To avoid

confusion we shall henceforth mark only the bi-fundamentals in our quiver diagrams

but will write the chargeless fields explicit in the superpotential.

Our agreement with the results of [25] is very reassuring. It gives an excellent
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example demonstrating that our canonical resolution technique and the inverse algo-

rithm do indeed, in response to what was posited earlier, give a theory living on a

D-brane probing the SPP (T-dual to the setup in [25]). However, there is a subtle

point we would like to mention. There exists an ambiguity in writing the superpoten-

tial when the chargeless field φ is involved. Our algorithm gives W = φ(X3X6−X4X6)

while [25] gives W = (X1X2 − φ)(X3X6 − X4X6). Even though they have identical

moduli, it is the latter which is used for the brane setup. Indeed, the toric methods

by definition (in defining ∆ from aij) do not handle chargeless fields and hence we

have ambiguities. Fortunately our later examples will not involve such fields.

The above example of the SPP was a näıve one as we need only to accommodate a

single F-term. We move on to a more complicated example. Suppose we are now given

d =





X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

A −1 0 0 −1 0 0 0 1 0 1

B 1 −1 0 0 0 −1 0 0 1 0

C 0 0 1 0 1 0 1 −1 −1 −1

D 0 1 −1 1 −1 1 −1 0 0 0



 and K =









X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0 1 0 0 0 1 0 0 0

0 1 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 0

0 0 1 0 1 0 1 0 0 0

0 0 0 0 0 1 1 0 0 1









.

We shall see in the next section, that these arise for the del Pezzo 1 surface. Now the

nullspace of K has dimension 10−6 = 4, we could obtain a host of relations from vari-

ous linear combinations in this space. One relation is obvious: X2X7−X3X6 = 0. The

charge it carries is (qA, qB, qC , qD) = (0+0,−1+0, 0+1, 1+(−1)) = (0,−1, 1, 0) which

cancels that of X9. Hence X9(X2X7−X3X6) could be a term in W . Now ∂
∂X2

thereof

gives X7X9 and from K we see that X7X9 − X1X5X10 = 0, therefore, −X1X2X5X10

could be another term in W . We repeat this procedure, generating new terms as we

proceed and introducing new fields where necessary. We are fortunate that in this case

we can actually reproduce all F-terms without recourse to artificial insertions of new

fields: W = X2X7X9 −X3X6X9 −X4X8X7 −X1X2X5X10 + X3X4X10 + X1X5X6X8.

Enlightened by these examples, let us return to some remarks upon generalities.

Making all the exponents of the fields positive, the F-terms can then be written as

∏

i

Xai
i =

∏

j

X
bj

j , (3.6)

with ai, bj ∈ ZZ+. Indeed if we were to have another field Xk such that k 6∈ {i}, {j}

then the term Xk

(

∏

i
Xai

i −
∏

j
X

bj

j

)

, on the condition that Xk appears only this once,

must be an additive term in the superpotential W . This is because the F-flatness

condition ∂W
∂Xk

= 0 implies (3.6) immediately. Of course judicious observations are

called for to (A) find appropriate relations (3.6) and (B) find Xk among our m fields.

Indeed (B) may not even be possible and new fields may be forced to be introduced,

whereby making the moduli space of the gauge theory larger than that encodable by

the toric data.

In addition, we must ensure that each term in W be chargeless under the product
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gauge groups. What this means for us is that for each of the terms Xk

(

∏

i
Xai

i −
∏

j
X

bj

j

)

we must have Charges(Xk) +
∑

i
aiCharges(Xi) = 0 for s = 1, .., r indexing through

our r gauge group factors (we note that by our very construction, for each gauge

group, the charges for
∏

i
Xai

i and for
∏

j
X

bj

j are equal). If Xk in fact cannot be found

among our m fields, it must be introduced as a new field φ with appropriate charge.

Therefore with each such relation (3.6) read from K, we iteratively perform this said

procedure, checking ∆sk+
∑

i
ai∆si = 0 at each step, until a satisfactory superpotential

is reached. The right choices throughout demands constant vigilance and astuteness.

4 An Illustrative Example: the Toric del Pezzo

Surfaces

As the C3/(ZZ2 ×ZZ2) resolutions were studied in great detail in [25], we shall use the

data from [26] to demonstrate the algorithm of finding the gauge theory from toric

diagrams extensively presented in the previous section.

The toric diagram of the dual cone of the (parent) quotient singularity C3/(ZZ3 ×

ZZ3) as well as those of its resolution to the three toric del Pezzo surface are presented

in Figure 4.

del Pezzo 1: Let us commence our analysis with the first toric del Pezzo surface11.

From its toric diagram, we see that the minimal ZZn × ZZn toric diagram into which

it embeds is n = 3. As a reference, the toric diagram for C3/(ZZ3 × ZZ3) is given in

Figure 4 and the quiver diagram, given later in the convenient brane-box form, in

Figure 5. Luckily, the matrices Q′
t and G′

t for this Abelian quotient is given in [26].

11Now some may identify the toric diagram of del Pezzo 1 as given by nodes (using the no-
tation in Figure 4) (1,−1, 1), (2,−1, 0), (−1, 1, 1), (0, 0, 1) and (−1, 0, 2) instead of the one we
have chosen in the convention of [26], with nodes (0,−1, 2), (0, 0, 1), (−1, 1, 1), (1, 0, 0) and
(0, 1, 0). But of course these two Gt matrices describe the same algebraic variety. The for-
mer corresponds to Spec

(

C[XY −1Z, X2Y −1, X−1Y Z, Z, X−1Z2]
)

while the latter corresponds

to Spec
(

C[Y −1Z2, Z, X−1Y Z, X, Y ]
)

. The observation that (X2Y −1) = (X)(X−1Y Z)−1(Z),
(XY −1Z) = (X)(Y )−1(Z) and (X−1Z2) = (Y −1Z2)(Y )(X−1) for the generators of the polyno-
mial ring gives the equivalence. In other words, there is an SL(5, ZZ) transformation between the 5
nodes of the two toric diagrams.
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Adding the extra column of FI-parametres we present these matrices below12:

G′

t
=

(

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24

0 0 0 1 0 0 0 −1 −1 −1 −1 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 −1 −1 0 0 1 0 −1 0 0 −1 0 0 −1 0 0 0 −1 0 0 −1 0

1 1 1 1 2 1 1 1 2 3 2 1 2 1 1 1 1 1 1 2 1 1 1 1

· · · · · ·

· · · · · ·

p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p41 p42

0 −1 −1 −1 −1 0 0 0 0 0 0 2 1 0 0 0 1 1

0 0 1 1 2 0 0 0 0 0 0 −1 0 1 1 1 0 0

1 2 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0

)

12In [26], a canonical ordering was used; for our purposes we need not belabour this point and use
their Q′

total as Q′
t. This is perfectly legitimate as long as we label the columns carefully, which we

have done.
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and

Q′

t
=





















































































p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24

1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ1
0 1 −1 −1 2 −1 0 1 0 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 ζ2
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ3
1 −2 1 0 −2 2 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ4
−1 1 −1 1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ5
0 0 0 1 −2 1 0 −1 0 1 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 ζ6
0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ7
0 1 −1 0 2 −1 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 ζ8

· · · · · ·

· · · · · ·

p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p41 p42

−1 0 0 0 0 0 0 0 0 1 −1 0 0 0 1 −1 −1 1 0

−1 0 0 0 0 0 0 0 1 0 −1 0 0 0 1 −1 −1 1 0

−1 0 0 0 0 0 0 −1 2 0 −1 0 0 0 2 −2 −2 2 0

−1 0 0 0 0 0 0 −1 1 1 −1 0 0 0 2 −1 −2 1 0

−2 0 0 0 0 0 0 −1 2 1 −2 0 0 0 3 −2 −2 2 0

−2 0 0 0 0 0 0 0 2 0 −1 0 0 0 1 −1 −1 1 0

−2 0 0 0 0 0 0 0 1 1 −1 0 0 0 1 −1 −1 1 0

−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 1 0

−1 0 0 0 0 0 0 0 0 1 −1 0 0 0 1 −1 0 1 0

−1 0 0 0 0 0 0 −1 1 0 −1 0 0 0 2 −1 −1 2 0

−1 0 0 0 0 0 0 −1 2 −1 0 0 0 0 1 −1 −1 2 0

0 0 0 0 0 0 0 −1 1 0 0 0 0 0 1 −1 −1 1 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 −1 1 0

1 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 1 1 −1 0

1 0 0 0 0 0 0 0 −1 −1 1 0 0 0 −1 2 0 −1 0

1 0 0 0 0 0 0 −1 0 −1 1 0 0 0 −1 1 0 0 0

1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 1 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0 0 1 −1 0 0 0 1 −1 0 0 0

−1 0 0 0 0 0 0 0 1 0 −1 0 0 0 1 0 −1 0 0

−1 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 −1 0 0 −1 0 0 0 1 −1 0 1 0

0 0 1 0 0 0 0 −1 1 −1 0 0 0 0 0 −1 0 1 0

0 0 0 1 0 0 0 0 −1 1 −1 0 0 0 0 −1 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 1 0 0

0 0 0 0 0 1 0 −1 0 1 −1 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 1 −1 1 0 −1 0 0 0 1 −1 −1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ8





















































































According to our algorithm, we must perform Gaussian row-reduction on Q′
t to

solve for 42 variables xi. When this is done we find that we can in fact express all

variables in terms of 3 xi’s together with the 8 FI-parametres ζi. We choose these

three xi’s to be x10,29,36 corresponding to the 3 outer vertices which we know must be
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8

37

13

7, 14, 17

del Pezzo 0

6, 7, 12, 14, 15, 18, 30

5 9

84

37 38

del Pezzo 3

Resolving

5, 20, 9, 11, 26, 4, 16, 23
27, 28, 41, 42, 39, 40
1, 2, 3, 6, 12, 15, 18, 19
21, 22, 24, 25, 30, 31, 33, 34, 35

10, 36, 29, 38, 32 Resolving
10, 13, 20, 11, 26, 16, 23
27, 28, 36, 41, 42, 39, 40, 29
1, 2, 3, 17, 19, 21, 22, 24, 25
31, 32, 33, 34, 35

10

5, 13, 20

4, 16, 23

9, 11, 26

8, 27, 28

30, 31, 32, 33, 34, 35

17, 18, 19, 21, 22, 24, 25

1, 2, 3, 6, 7, 12, 14, 15

29

37, 41, 42 38, 39, 40

36

Z3 3Z  x

10, 36, 29
5, 20, 9, 11, 26, 4, 16, 23
27, 28, 41, 42, 39, 40
1, 2, 3, 6, 12, 15, 18, 19
21, 22, 24, 25, 30, 31, 33, 34, 35

Resolving

8

37 38

13

7, 14, 17, 32

del Pezzo 1

7, 12, 14, 15, 18, 21

4

9

8

36 37

del Pezzo 2

10, 5, 13, 20, 11, 26
16, 23, 27, 28, 41, 42 
38, 39, 40, 29, 1, 2, 3
6, 12, 17, 19, 22, 24, 25
20, 31, 32, 33, 34, 35

Resolving

9

84

37

7, 12, 14, 15, 18

Hirzebruch 0

Resolving

16, 23, 27, 28, 41, 42 
38, 39, 40, 29, 1, 2, 3
6, 12, 17, 19, 22, 24, 25
20, 31, 32, 33, 34, 35

10, 5, 13, 20, 21, 11, 26

, 36

(1, 0, 0) (0, 1, 0)

(-1, 2, 0)

(-1, 0, 2)

(-1, 1, 1)(0, 0, 1)

(-1, -1, 3)

(0, -1, 2)

(1, -1, 1)

(2, -1, 0)

Figure 4: The resolution of the Gorenstein singularity C3/(ZZ3 × ZZ3) to the three
toric del Pezzo surfaces as well as the zeroth Hirzebruch surface. We have labelled
explicitly which columns (linear σ-model fields) are to be associated to each node in
the toric diagrams and especially which columns are to be eliminated (fields acquiring
non-zero VEV) in the various resolutions. Also, we have labelled the nodes of the
parent toric diagram with the coordinates as given in the matrix Gt for C3/(ZZ3×ZZ3).

24



resolved in going from C3/(ZZ3 × ZZ3) to del Pezzo 1.

Next we select the fields which must be kept and set them to zero in order to

determine the range for ζi. Bearing in mind the toric diagrams from Figure 4, these

fields we judiciously select to be: p13,8,37,38. Setting x13,8,37,38 = 0 gives us the solution

{ζ6 = 0; x29 = ζ7 = ζ3 = ζ1 − ζ5; x10 = ζ4 + ζ5 + ζ3; x36 = ζ7 − ζ8}, which upon

back-substitution to the solutions xi we obtained from Q′
t, gives zero for x13,8,37,38

(which we have chosen by construction) as well as x7,14,17,32; for all others we obtain

positive values. This means precisely that all the other fields are to be eliminated

and these 8 columns { 13, 8, 37, 38, 7,14,17,32 } are to be kept while the remaining

42-8=34 are to be eliminated from Q′
t upon row-reduction to give Qt. In other words,

we have found our set B to be {1,2,3,4,5,6,9,10,11,12,15,16,18,19,20,21,22,23,24,25,

26,27,28,29,30,31,33,34,35,36,39,40,41,42} and thus according to (3.5) we immediately

obtain

Qt =











p7 p8 p13 p14 p17 p32 p37 p38

1 0 0 0 0 −1 0 0 ζ2 + ζ8
0 0 0 0 −1 1 0 0 ζ6
−1 0 0 1 0 0 0 0 ζ1 + ζ3 + ζ5
0 0 1 −1 0 −1 0 1 0
−1 1 1 −1 −1 0 1 0 0











.

We note of course that 5 out of the 8 FI-parametres have been eliminated automati-

cally; this is to be expected since in resolving C3/(ZZ3×ZZ3) to del Pezzo 1, we remove

precisely 5 nodes. Obtaining the D-terms and F-terms is now straight-forward. Using

(3.3) and re-inserting the last row we obtain the D-term equations (incidence matrix)

to be

d =







X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

−1 0 0 −1 0 0 0 1 0 1
1 −1 0 0 0 −1 0 0 1 0
0 0 1 0 1 0 1 −1 −1 −1
0 1 −1 1 −1 1 −1 0 0 0







From this matrix we immediately observe that there are 4 gauge groups, i.e., U(1)4

with 10 matter fields Xi which we have labelled in the matrix above. In an equivalent

notation we rewrite d as the adjacency matrix of the quiver diagram (see Figure 5)

for the gauge theory:

aij =





0 0 2 0
1 0 1 0
0 0 0 3
1 2 0 0



 .

The K-matrix we obtain to be:

Kt =













X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0 1 0 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 1 0 0 1













which indicates that the original 10 fields Xi can be expressed in terms of 6. This was

actually addressed in the previous section and we rewrite that pleasant superpotential
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here:

W = X2X7X9 − X3X6X9 − X4X8X7 − X1X2X5X10 + X3X4X10 + X1X5X6X8.

del Pezzo 2: Having obtained the gauge theory for del Pezzo 1, we now repeat

the above analysis for del Pezzo 2. Now we have the FI-parametres restricted as

{p36 = ζ2 = 0; ζ3 = ζ4; x29 = ζ4 + ζ6; x10 = ζ1 + ζ4}, making the set to be eliminated

as B = { 1, 2, 3, 5, 6, 10, 11, 13, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 38, 39, 40, 41, 42 }. Whence, we obtain

Qt =





















p4 p7 p8 p9 p12 p14 p15 p18 p21 p36 p37

0 1 0 0 0 0 0 0 −1 0 0 ζ4 + ζ6 + ζ8
1 −1 1 0 0 −1 0 0 0 0 0 ζ7
0 −1 0 0 0 1 0 0 0 0 0 ζ1 + ζ3 + ζ5
−1 1 −1 0 0 1 −1 0 1 0 0 ζ2
0 −1 0 1 0 0 −1 0 0 0 1 0
0 −1 1 1 0 −1 0 0 −1 1 0 0
−1 1 −1 0 0 1 −1 1 0 0 0 0
−1 1 −1 0 1 0 0 0 0 0 0 0





















,

and observe that 4 D-terms have been resolved, as 4 nodes have been eliminated from

C3/(ZZ3 × ZZ3). From this we easily extract (see Figure 5)

d =











X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

−1 0 0 −1 0 −1 0 1 0 0 0 1 1
0 0 −1 0 −1 1 0 0 0 1 0 0 0
0 0 1 0 1 0 1 −1 −1 0 1 −1 −1
1 −1 0 0 0 0 0 0 1 −1 0 0 0
0 1 0 1 0 0 −1 0 0 0 −1 0 0











;

moreover, we integrate the F-term matrices

Kt =

















X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

0 1 1 0 0 0 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0 1 1 0
1 0 0 1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 1

















to obtain the superpotential

W = X2X9X11 − X9X3X10 − X4X8X11 − X1X2X7X13 + X13X3X6

−X5X12X6 + X1X5X8X10 + X4X7X12.

del Pezzo 3: Finally, we shall proceed to treat del Pezzo 3. Here we have the range

of the FI-parametres to be {ζ1 = ζ6 = ζ6 = 0; x29 = ζ3 = −ζ5; x10 = ζ4; ζ2 = x36; ζ8 =

−ζ2 − ζ10}, which gives the set B as {1, 2, 3, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42}, and thus according to (3.5)

we immediately obtain

Qt =



























p4 p5 p6 p7 p8 p9 p12 p14 p15 p18 p30 p37 p38

0 0 0 1 0 0 0 0 0 0 −1 0 0 ζ2 + ζ4 + ζ8
1 0 0 −1 1 0 0 −1 0 0 0 0 0 ζ7
−1 0 0 1 −1 0 0 1 −1 0 1 0 0 ζ6
0 0 −1 0 0 0 0 1 0 0 0 0 0 ζ3 + ζ5
0 0 1 −1 0 0 0 0 0 0 0 0 0 ζ1
0 1 −1 0 0 0 0 0 0 0 −1 0 1 0
−1 1 −1 0 0 0 0 1 −1 0 0 1 0 0
−1 0 0 1 −1 0 0 1 −1 1 0 0 0 0
−1 0 0 1 −1 0 1 0 0 0 0 0 0 0
1 −1 1 −1 0 1 0 −1 0 0 0 0 0 0


























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We note indeed that 3 out of the 8 FI-parametres have been automatically resolved,

as we have removed 3 nodes from the toric diagram for C3/(ZZ3 × ZZ3). The matter

content (see Figure 5) is encoded in

d =













X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

−1 0 0 0 1 0 0 1 −1 0 0 1 −1 0
0 0 −1 1 0 −1 0 0 0 0 0 0 1 0
1 −1 0 −1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 −1 0 −1 1 0 0 0
0 0 0 0 −1 1 1 0 0 1 0 −1 0 −1
0 1 0 0 0 0 −1 0 1 0 −1 0 0 0













,

and from the F-terms

Kt =





















X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

1 0 0 0 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 0 1 1
0 1 0 1 0 0 0 0 1 0 0 0 1 0
0 1 1 0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 1 0 1 0 0 0 0





















we integrate to obtain the superpotential

W = X3X8X13 − X8X9X11 − X5X6X13 − X1X3X4X10X12

+X7X9X12 + X1X2X5X10X11 + X4X6X14 − X2X7X14.

Note that we have a quintic term in W ; this is an interesting interaction indeed.

del Pezzo 0: Before proceeding further, let us attempt one more example, viz., the

degenerate case of the del Pezzo 0 as shown in Figure 4. This time we note that the

ranges for the FI-parametres are {ζ5 = −x29 + ζ6−A; ζ6 = x29 −B; x29 = B +C; ζ8 =

−x36 + B; x36 = B + C + D; x10 = A + E} for some positive A, B, C, D and E, that

B = { 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42 } and whence the charge matrix is

Qt =





p7 p8 p13 p14 p17 p37

1 0 0 0 −1 0 ζ2 + ζ6 + ζ8
−1 0 0 1 0 0 ζ1 + ζ3 + ζ5
−1 1 1 −1 −1 1 0



 .

We extract the matter content (see Figure 5) as d =





X1 X2 X3 X4 X5 X6 X7 X8 X9

−1 0 −1 0 −1 0 1 1 1
0 1 0 1 0 1 −1 −1 −1
1 −1 1 −1 1 −1 0 0 0



 ,

and the F-terms as Kt =











X1 X2 X3 X4 X5 X6 X7 X8 X9

1 1 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0
0 0 1 1 0 0 0 1 0
0 0 0 0 1 1 0 0 1











, and from the latter

we integrate to obtain the superpotential

W = X1X4X9 − X4X5X7 − X2X3X9 − X1X6X8 + X2X5X8 + X3X6X7.

Of course we immediately recognise the matter content (which gives a triangular

quiver which we shall summarise below in Figure 5) as well as the superpotential
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from equations (4.7-4.14) of [19]; it is simply the theory on the Abelian orbifold

C3/ZZ3 with action (α ∈ ZZ3) : (z1, z2, z3) → (e
2πi
3 z1, e

2πi
3 z2, e

2πi
3 z3). Is our del Pezzo 0

then C3/ZZ3? We could easily check from the Gt matrix (which we recall is obtained

from G′
t of C3/(ZZ3 × ZZ3) by eliminating the columns corresponding to the set B):

Gt =

(

0 −1 0 0 0 1
0 1 −1 0 0 0
1 1 2 1 1 0

)

.

These columns (up to repeat) correspond to monomials Z, X−1Y Z, Y −1Z2, X in the

polynomial ring C[X, Y, Z]. Therefore we need to find the spectrum (set of max-

imal ideals) of the ring C[Z, X−1Y Z, Y −1Z2, X], which is given by the minimal

polynomial relation: (X−1Y Z) · (Y −1Z2) · X = (Z)3. This means, upon defining

p = X−1Y Z; q = Y −1Z2; r = X and s = Z, our del Pezzo 0 is described by pqr = s3

as an algebraic variety in C4(p, q, r, s), which is precisely C3/ZZ3. Therefore we have

actually come through a full circle in resolving C3/(ZZ3 × ZZ3) to C3/ZZ3 and the va-

lidity of our algorithm survives this consistency check beautifully. Moreover, since

we know that our gauge theory is exactly the one which lives on a D-brane probe

on C3/ZZ3, this gives a good check for physicality: that our careful tuning of FI-

parametres via canonical partial resolutions does give a physical D-brane theory at

the end. We tabulate the matter content aij and the superpotential W for the del

Pezzo surfaces below, and the quiver diagrams, in Figure 5.

del Pezzo 1 del Pezzo 2 del Pezzo 3

Matter aij =





0 0 2 0
1 0 1 0
0 0 0 3
1 2 0 0











0 1 0 1 1
0 0 2 0 0
3 0 0 1 0
0 1 0 0 1
0 0 2 0 0

















0 0 1 1 0 1
0 0 0 1 1 0
0 1 0 0 0 1
1 0 0 0 1 0
2 0 1 0 0 0
0 0 0 1 1 0











Superpotential W =
X2X7X9 − X3X6X9

−X4X8X7 − X1X2X5X10

+X3X4X10 + X1X5X6X8

X2X9X11 − X9X3X10

−X4X8X11 − X1X2X7X13

+X13X3X6 − X5X12X6

+X1X5X8X10 + X4X7X12

X3X8X13 − X8X9X11

−X5X6X13 − X1X3X4X10X12

+X7X9X12 + X1X2X5X10X11

+X4X6X14 − X2X7X14

del Pezzo 0 ∼= C3/ZZ3 Hirzebruch 0 ∼= IP1 × IP1 := F0 = E1

Matter aij

(

0 3 0
0 0 3
3 0 0

)





0 2 0 2
0 0 2 0
4 0 0 0
0 0 2 0





Superpotential W
X1X4X9 − X4X5X7

−X2X3X9 − X1X6X8

+X2X5X8 + X3X6X7

X1X8X10 − X3X7X10

−X2X8X9 − X1X6X12

+X3X6X11 + X4X7X9

+X2X5X12 − X4X5X11

Upon comparing Figure 4 and Figure 5, we notice that as we go from del Pezzo 0 to

3, the number of points in the toric diagram increases from 4 to 7, and the number of

gauge groups (nodes in the quiver) increases from 3 to 6. This is consistent with the

observation for N = 1 theories that the number of gauge groups equals the number

of perimetre points (e.g., for del Pezzo 1, the four nodes 13, 8, 37 and 38) in the toric

diagram. Moreover, as discussed in [28], the rank of the global symmetry group (Ei
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Figure 5: The quiver diagrams for the matter content of the brane world-volume
gauge theory on the 4 toric del Pezzo singularities as well as the zeroth Hirzebruch
surface. We have specifically labelled the U(1) gauge groups (A, B, ..) and the bi-
fundamentals (1, 2, ..) in accordance with our conventions in presenting the various
matrices Qt, ∆ and K. As a reference we have also included the quiver for the parent
ZZ3 × ZZ3 theory.
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for del Pezzo i) which must exist for these theories equals the number of perimetre

point minus 3; it would be an intereting check indeed to see how such a symmetry

manifests itself in the quivers and superpotentials.

Hirzebruch 0: Let us indulge ourselves with one more example, namely the 0th

Hirzebruch surface, or simply IP1 × IP1 := F0 := E1. The toric diagram is drawn in

Figure 4. Now the FI-parametres are {ζ4 = −x29−x36−ζ5−ζ8−A; ζ5 = −A−B; ζ7 =

x10 + x29 + x36 + ζ8 − C; ζ8 = −x10 − x29 − x36 + D; D = A + B; C = A + B; A =

x10 − E; x10 = E + F ; x29 = B + G} for positive A, B, C, D, E, F and G. Moreover,

B = { 1, 2, 3, 5, 6, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 38, 39, 40, 41, 42 }. We note that this can be obtained directly by

partial resolution of fields 21 and 36 from del Pezzo 2 as is consistent with Figure 4.

Therefrom we obtain the charge matrix

Qt =













p4 p7 p8 p9 p12 p14 p15 p18 p37

−1 2 −1 0 0 1 −1 0 0 ζ2 + ζ4 + ζ6 + ζ8
1 −1 1 0 0 −1 0 0 0 ζ7
0 −1 0 0 0 1 0 0 0 ζ1 + ζ3 + ζ5
0 −1 0 1 0 0 −1 0 1 0
−1 1 −1 0 0 1 −1 1 0 0
−1 1 −1 0 1 0 0 0 0 0













,

from which we have the matter content d =







X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

−1 0 −1 0 −1 0 1 1 −1 0 1 1
0 −1 0 −1 1 0 0 0 1 0 0 0
0 1 0 1 0 1 −1 −1 0 1 −1 −1
1 0 1 0 0 −1 0 0 0 −1 0 0







the quiver for which is presented in Figure 5. The F-terms are

Kt =













X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

1 1 0 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0













,

from which we obtain

W = X1X8X10−X3X7X10−X2X8X9−X1X6X12+X3X6X11+X4X7X9+X2X5X12−X4X5X11,

a perfectly acceptable superpotential with only cubic interactions. We include these

results with our table above.

5 Uniqueness?

In our foregoing discussion we have constructed in detail an algorithm which calculates

the matter content encoded by ∆ and superpotential encoded in K, given the toric

diagram of the singularity which the D-branes probe. As abovementioned, though this

algorithm gives one solution for the quiver and the K-matrix once the matrix Qt is

determined, the general inverse process of going from toric data to gauge theory data,
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is highly non-unique and a classification of all possible theories having the same toric

description would be interesting13. Indeed, by the very structure of our algorithm, in

immediately appealing to the partial resolution of gauge theories on ZZn×ZZn orbifolds

which are well-studied, we have granted ourselves enough extraneous information to

determine a unique Qt and hence the ability to proceed with ease (this was the very

reason for our devising the algorithm).

However, generically we do not have any such luxury. At the end of subsection

3.1, we have already mentioned two types of ambiguities in the inverse problem. Let

us refresh our minds. They were (A) the F-D ambiguity which is the inability to

decide, simply by observing the toric diagram, which rows of the charge matrix Qt

are D-terms and which are F-terms and (B) the repetition ambiguity which is

the inability to decide which columns of Gt to repeat once having read the vectors

from the toric diagram. Other ambiguities exist, such as in each time when we

compute nullspaces, but we shall here discuss to how ambiguities (A) and (B) manifest

themselves and provide examples of vastly different gauge theories having the same

toric description. There is another point which we wish to emphasise: as mentioned

at the end of subsection 3.1, the resolution method guarantees, upon careful tuning

of the FI-parametres, that the resulting gauge theory does originate from the world-

volume of a D-brane probe. Now of course, by taking liberties with experimentation

of these ambiguities we are no longer protected by physicality and in general the

theories no longer live on the D-brane. It would be a truly interesting exercise to

check which of these different theories do.

F-D Ambiguity: First, we demonstrate type (A) by returning to our old friend the

SPP whose charge matrix we had earlier presented. Now we write the same matrix

without specifying the FI-parametres:

Qt =

(

1 −1 1 0 −1 0
−1 1 0 1 0 −1
−1 0 0 −1 1 1

)

We could apply the last steps of our algorithm to this matrix as follows.

(a) If we treat the first row as Q (the F-terms) and the second and third as V · U

(the D-terms) we obtain the gauge theory as discussed in subsection 3.3 and in

[25].

(b) If we treat the second row as Q and first with the third as V · U , we obtain

d =

(

−1 0 1 −1 1 0
1 0 0 1 −2 −1
0 0 −1 0 1 1

)

which is an exotic theory indeed with a field (p5)

charged under three gauge groups.

Let us digress a moment to address the stringency of the requirements upon

13We thank R. Plesser for pointing this issue out to us.
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matter contents. By the very nature of finite group representations, any orb-

ifold theory must give rise to only adjoints and bi-fundamentals because its

matter content is encodable by an adjacency matrix due to tensors of repre-

sentations of finite groups. The corresponding incidence matrix d, has (a) only

0 and ±1 entries specifying the particular bi-fundamentals and (b) has each

column containing precisely one 1, one −1 and with the remaining entries 0.

However more exotic matter contents could arise from more generic toric singu-

larities, such as fields charged under 3 or more gauge group factors; these would

then have d matrices with conditions (a) and (b) relaxed14. Such exotic quivers

(if we could even call them quivers still) would give interesting enrichment to

those well-classified families as discussed in [29].

Moreover we must check the anomaly cancellation conditions. These could be

rather involved; even though for U(1) theories they are a little simpler, we still

need to check trace anomalies and cubic anomalies. In a trace-anomaly-free

theory, for each node in the quiver, the number of incoming arrows must equal

the number of outgoing (this is true for a U(1) theory which is what toric va-

rieties provide; for a discussion on this see e.g. [8]). In matrix language this

means that each row of d must sum to 0.

Now for a theory with only bi-fundamental matter with ±1 charges, since

(±1)3 = ±1, the cubic is equal to the trace anamaly; therefore for these theo-

ries we need only check the above row-condition for d. For more exotic matter

content, which we shall meet later, we do need to perform an independent cubic-

anomaly check.

Now for the above d, the second row does not sum to zero and whence we

do unfortunately have a problematic anomalous theory. Let us push on to see

whether we have better luck in the following.

(c) Treating row 3 as the F-terms and the other two as the D-terms gives

d =

(

0 −1 1 −1 1 0
0 1 0 1 −2 −1
0 0 −1 0 1 1

)

which has the same anomaly problem as the one

above.

(d) Now let rows 1 and 2 as the F-terms and the 3rd, as the D-terms, we obtain

d =

(

X1 X2 X3 X4 X5

0 1 1 −1 −1
0 −1 −1 1 1

)

, which is a perfectly reasonable matter content. Inte-

grating K =





1 0 1 0 0
0 1 0 1 0
1 0 0 1 0
0 0 1 0 1



 gives the superpotential W = φ(X1X2X5 −X3X4)

for some field φ of charge (0, 0) (which could be an adjoint for example; note

14Note that we still require that each column sums to 0 so as to be able to factor out an overall
U(1).
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Figure 6: The vastly different matter contents of theories (a) and (d), both anomaly
free and flow to the toric diagram of the suspended pinched point in the IR.

however that we can not use X1 even though it has charge (0, 0) for otherwise

the F-terms would be altered). This theory is perfectly legitimate. We com-

pare the quiver diagrams of theories (a) (which we recall from Figure 3) and

this present example in Figure 6. As a check, let us define the gauge invariant

quantities: a = X2X4, b = X2X5, c = X3X4, d = X3X5 and e = X1. Then we

have the algebraic relations ad = bc and eb = c, from which we immediately

obtain ad = eb2, precisely the equation for the SPP.

(e) As a permutation on the above, treating rows 1 and 3 as the F-terms gives a

theory equivalent thereto.

(f) Furthermore, we could let rows 2 and 3 be Q giving us d =
(

0 1 −1 −1 −1
0 −1 1 1 1

)

,

but this again gives an anomalous matter content.

(g) Finally, though we cannot treat all rows as F-terms, we can however treat

all of them as D-terms in which Qt is simply ∆ as remarked at the end of

Section 2 before the flow chart. In this case we have the matter content

d =





1 −1 1 0 −1 0
−1 1 0 1 0 −1
−1 0 0 −1 1 1
1 0 −1 0 0 0



 which clearly is both trace-anomaly free (each

row adds to zero) and cubic-anomaly-free (the cube-sum of the each row is also

zero). The superpotential, by our very choice, is of course zero. Thus we have a

perfectly legitimate theory without superpotential but with an exotic field (the

first column) charged under 4 gauge groups.

We see therefore, from our list of examples above, that for the simple case of the

SPP we have 3 rather different theories (a,d,g) with contrasting matter content and

superpotential which share the same toric description.
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Repetition Ambiguity: As a further illustration, let us give one example of type

(B) ambiguity. First let us eliminate all repetitive columns from the Gt of SPP, giving

us:

Gt =

(

1 0 0 −1 1
1 1 0 1 0
1 1 1 1 1

)

,

which is perfectly allowed and consistent with Figure 2. Of course many more pos-

sibilities for repeats are allowed and we could redo the following analyses for each of

them. As the nullspace of our present choice of Gt, we find Qt, and we choose, in

light of the foregoing discussion, the first row to represent the D-term:

Qt =
(

−1 1 −1 0 1 ζ
1 −2 0 1 0 0

)

.

Thus equipped, we immediately retrieve, using our algorithm,

d =

(

X1 X2 X3 X4 X5

1 −1 1 −1 0
−1 1 −1 1 0

)

Kt =





1 0 0 0 0
0 0 2 0 1
0 1 0 0 0
0 0 1 1 1



 T =





0 0 0 0 1
−1 0 0 1 0
0 0 1 0 0
2 1 0 0 0



 .

We see that d passes our anomaly test, with the same bi-fundamental matter content

as theory (d). The superpotential can be read easily from K (since there is only

one relation) as W = φ(X2
5 − X3X4). As a check, let us define the gauge invariant

quantities: a = X1X2, b = X1X4, c = X3X2, d = X3X4 and e = X5. These

have among themselves the algebraic relations ad = bc and e2 = d, from which we

immediately obtain bc = ae2, the equation for the SPP. Hence we have yet another

interesting anomaly free theory, which together with our theories (a), (d) and (g)

above, shares the toric description of the SPP.

Finally, let us indulge in one more demonstration. Now let us treat both rows of

our Qt as D-terms, whereby giving a theory with no superpotential and the exotic

matter content d =

(

−1 1 −1 0 1
1 −2 0 1 0
0 1 1 −1 −1

)

with a field (column 2) charged under 3

gauge groups. Indeed though the rows sum to 0 and trace-anomaly is avoided, the

cube-sum of the second row gives 13 + 13 + (−2)3 = −6 and we do have a cubic

anomaly.

In summary, we have an interesting phenomenon indeed! Taking so immediate an

advantage of the ambiguities in the above has already produced quite a few examples

of vastly different gauge theories flowing in the IR to the same universality class by

having their moduli spaces identical. The vigilant reader may raise two issues. First,

as mentioned earlier, one may take the pains to check whether these theories do indeed

live on a D-brane. Necessary conditions such as that the theories may be obtained

from an N = 4 theory must be satisfied. Second, the matching of moduli spaces may

not seem so strong since they are on a classical level. However, since we are dealing

with product U(1) gauge groups (which is what toric geometry is capable to dealing
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with so far), the classical moduli receive no quantum corrections15. Therefore the

matching of the moduli for these various theories do persist to the quantum regime,

which hints at some kind of “duality” in the field theory. We shall call such a duality

toric duality. It would be interesting to investigate how, with non-Abelian versions

of the theory (either by brane setups or stacks of D-brane probes), this toric duality

may be extended.

6 Conclusions and Prospects

The study of resolution of toric singularities by D-branes is by now standard. In the

concatenation of the F-terms and D-terms from the world volume gauge theory of a

single D-brane at the singularity, the moduli space could be captured by the algebraic

data of the toric variety. However, unlike the orbifold theories, the inverse problem

where specifying the structure of the singularity specifies the physical theory has not

yet been addressed in detail.

We recognise that in contrast with D-brane probing orbifolds, where knowing the

group structure and its space-time action uniquely dictates the matter content and

superpotential, such flexibility is not shared by generic toric varieties due to the highly

non-unique nature of the inverse problem. It has been the purpose and main content

of the current writing to device an algorithm which constructs the matter content

(the incidence matrix d) and the interaction (the F-term matrix K) of a well-behaved

gauge theory given the toric diagram D of the singularity at hand.

By embedding D into the Abelian orbifold Ck/(ZZn)k−1 and performing the stan-

dard partial resolution techniques, we have investigated how the induced action upon

the charge matrices corresponding to the toric data of the latter gives us a convenient

charge matrix for D and have constructed a programmatic methodology to extract

the matter content and superpotential of one D-brane world volume gauge theory

probing D. The theory we construct, having its origin from an orbifold, is nicely

behaved in that it is anomaly free, with bi-fundamentals only and well-defined super-

potentials. As illustrations we have tabulated the results for all the toric del Pezzo

surfaces and the zeroth Hirzebruch surface.

Directions of further work are immediately clear to us. From the patterns emerging

from del Pezzo surfaces 0 to 3, we could speculate the physics of higher (non-toric)

del Pezzo cases. For example, we expect del Pezzo n to have n + 3 gauge groups.

Moreover, we could attempt to fathom how our resolution techniques translate as

Higgsing in brane setups, perhaps with recourse to diamonds, and realise the various

theories on toric varieties as brane configurations.

15We thank K. Intriligator for pointing this out.
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Indeed, as mentioned, the inverse problem is highly non-unique; we could presum-

ably attempt to classify all the different theories sharing the same toric singularity

as their moduli space. In light of this, we have addressed two types of ambiguity:

that in having multiple fields assigned to the same node in the toric diagram and

that of distinguishing the F-terms and D-terms in the charge matrix. In particular

we have turned this ambiguity to a matter of interest and have shown, using our

algorithm, how vastly different theories, some with quite exotic matter content, may

have the same toric description. This commonality would correspond to a duality

wherein different gauge theories flow to the same universality class in the IR. We call

this phenomenon toric duality. It would be interesting indeed how this duality may

manifest itself as motions of branes in the corresponding setups. Without further ado

however, let us pause here awhile and leave such investigations to forthcoming work.

Appendix: Finding the Dual Cone

Let us be given a convex polytope C, with the edges specifying the faces of which

given by the matrix M whose columns are the vectors corresponding to these edges.

Our task is to find the dual cone C̃ of C, or more precisely the matrix N such that

N t · M ≥ 0 for all entries.

There is a standard algorithm, given in [27]. Let M be n × p, i.e., there are p n-

dimensional vectors spanning C. We note of course that p ≥ n for convexity. Out

of the p vectors, we choose n − 1. This gives us an n × (n − 1) matrix of co-rank 1,

whence we can extract a 1-dimensional null-space (as indeed the initial p vectors are

all linearly independent) described by a single vector u.

Next we check the dot product of u with the remaining p− (n − 1) vectors. If all

the dot products are positive we keep u, and if all are negative, we keep −u, otherwise

we discard it.

We then select another n− 1 vectors and repeat the above until all combinations

are exhausted. The set of vectors we have kept, u’s or −u’s then form the columns

of N and span the dual cone C̃.

We note that this is a very computationally intensive algorithm, the number of

steps of which depends on





p

n − 1



 which grows exponentially.

A subtle point to remark. In light of what we discussed in a footnote in the paper

on the difference between M+ = M ∩ σ and M′
+, here we have computed the dual

of σ. We must ensure that ZZ+-independent lattice points inside the cones be not

missed.
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