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Exploring Curved Schematization
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ABSTRACT

Hand-drawn schematized maps traditionally make extensive use
of curves. Nevertheless, there are few automated approaches for
curved schematization, most previous work focusses on straight
lines. We present a new algorithm for the area-preserving curved
schematization of geographic outlines. Our algorithm converts a
simple polygon into a schematic crossing-free representation using
circular arcs. We use two basic operations to iteratively replace
consecutive arcs until the desired complexity is reached. Our re-
sults are not restricted to arcs ending at input vertices. The method
can be steered towards different degrees of “curviness”: we can
encourage or discourage the use of arcs with a large central angle
via a single parameter. Our method creates visually pleasing results
even for very low output complexities. We conducted an online user
study investigating the effectiveness of the curved schematizations
compared to straight-line schematizations of equivalent complexity.
While the visual complexity of the curved shapes was judged higher
than those using straight lines, users generally preferred curved
schematizations. We observed that curves significantly improved
the ability of users to match schematized shapes of moderate com-
plexity to their unschematized equivalents.

Index Terms: H.4 [Information Systems Applications]: Geo-
graphic Information Systems; 1.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

1 INTRODUCTION

Maps are one of the most efficient ways to communicate location-
based information. They help people to make decisions in naviga-
tion, spatial planning, or risk and disaster management. Maps also
communicate geopolitical information, they give a spatial dimen-
sion to rhetoric arguments, and generally aid the process of public
opinion and consensus building. Effective maps immediately con-
vey their message and hence are as simple as possible. Schematiza-
tion creates a simplified and compact representation of the original
data and reduces the visual complexity of maps. Linear features,
such as roads and rivers, and the boundaries of regions are often
drawn using only a few straight line segments in few different di-
rections, or they are approximated by a few simple curves. Schema-
tization attempts to direct the user’s attention away from the exact
shapes of geographic entities, focussing the attention on the relation
between those entities instead. Alternatively, its purpose can also
be to produce a striking and memorable design for maximum im-
pact. Furthermore, schematized maps are often used as base maps
of thematic maps, to avoid the “illusion of accuracy” created by
fully featured topographic base maps [14, 17].

Schematization can be considered as a specific form of carto-
graphic simplification. However, simplification generally aims to
maintain high geographic accuracy, whereas schematization prior-
itizes the simplicity of a map. To create schematized maps geo-
graphic outlines are typically captured by a set of simple mathe-
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matical shapes. Hand-drawn schematized maps traditionally make
extensive use of curves. Curves can capture more complex shapes
enabling them to represent information on a more abstract level.
Curves also make it easier to interpret maps (see [23] for a recent
study). Despite the conceptual advantages of curves, automated
schematization has mostly focussed on straight lines.

Contributions. We present a quadratic-time algorithm for schema-
tization with circular arcs. Our algorithm allows new vertices to be
introduced and as such is a non-vertex-restricted method (see Sec-
tion 2). Furthermore, it preserves the exact size of each region of the
input and maintains topology. We iteratively replace consecutive
arcs until the desired complexity is reached. This replacement is
based on two operations. The first is vertex-restricted and replaces
two consecutive arcs by a single arc connecting the endpoints. The
second operation is non-vertex-restricted and replaces three con-
secutive arcs by two consecutive arcs. This operation may place the
vertex joining the two new arcs at a new location. Our algorithm
can select operations according to different schemes. We use this
to obtain results of varying degree of “curviness”—preferring arcs
with a large or small central angle. Our method creates visually
pleasing results even for very low output complexities and com-
bines well with different rendering styles. Lastly, our algorithm can
also deal with subdivisions (e.g. multiple countries).

We conducted a user study investigating the effectiveness of
curved schematizations compared to straight-line schematizations
of equivalent complexity. While the visual complexity of the curved
shapes was judged higher than those using straight lines, users gen-
erally preferred curved schematizations. Curves also significantly
improved the ability of users to match schematized shapes of mod-
erate complexity to their unschematized equivalents.

Organization. We first review related work and then introduce
some necessary terminology in Section 2. In Section 3 we describe
our algorithm, showcase results, and discuss various extensions.
We discuss the user study in Section 4 and close in Section 5 with
a discussion of our work.

Related work. Simplification of shapes has received significant
attention (e.g. [2, 19, 28]). In contrast to simplification, schemati-
zation is less focussed on geographic accuracy and more on visual
presentation. Network schematization (e.g. metro maps) has been
studied extensively (e.g. [8, 15, 18]). These algorithms are often not
concerned with maintaining shape and most deal with straight-line
representations only. An exception is the method of Fink ez al. [8],
a force-directed method for drawing networks with Bézier curves.
There are fewer methods for shape schematization. Buchin et
al. [3] and Cicerone and Cermignani [5] describe algorithms for
schematization where every line must adhere to one of a given
set of orientations. Reimer and Meulemans [21] conjecture that
parallelism drives straight-line schematization. Automated curved
schematization has only recently emerged as a research topic.
Van Goethem et al. [10] describe a framework for topologically
safe curved schematization. This framework yields only vertex-
restricted methods and is quite slow: O(n? - k) for a desired com-
plexity of k. Topology is preserved via a Voronoi diagram which
may cause problems for very intricate shapes. Mi et al. [16] de-
scribe an algorithm for curved abstraction. They detect basic parts
and rebuild a shape up to a given detail using these parts. Their al-
gorithm, however, does not consider topology. Whereas most auto-



mated schematization methods deal exclusively with straight lines,
the use of curves is almost a given in manual cartography. Exam-
ples include chorematic diagrams [20] and transit maps [22].

Smooth circular arcs have been used to represent inherently
smooth polygons [12]. It is unclear whether such solutions are use-
ful for schematization: in this context it is generally not desirable to
assume that the original shape is relatively smooth. A non-smooth
approach is given by Drysdale ez al. [6]. This method imposes re-
strictions on “gates” which hinder a high complexity reduction. In
the field of graph drawing, the use of curves has also received sig-
nificant attention, e.g. [7, 9]. However, these papers typically do not
preserve any measure of shape. Kdmper et al. [13] present a method
for distorting a schematization into a circular-arc cartogram, but
recognizability is not a primary concern; aesthetics and legibility
remain untested. For computer-aided design, Burchard ez al. [25]
discuss fitting a curve given aesthetic requirements.

A wealth of research exists on perception, rendering, and their
combination. For example, Bar and Neta [1] argue that curved ob-
jects are preferred by observers since sharp bends are identified with
threat. This supports the need for curved schematizations, though
some sharp bends may be necessary. Vessel and Rubin [27] investi-
gate the objectiveness of taste. They conclude that for natural, real-
world images, people typically agree on aesthetics; however, on
abstract images, individual taste plays a large role. While schema-
tizations are typically rather abstract depictions, they stem from a
reality and should up to some degree also correspond to this real-
ity. Hence, we think that there is some consensus possible on what
qualifies as a good schematization. Vande Moere et al. [26] evaluate
the effect of visual style in the context of information visualization.

2 PRELIMINARIES

Algorithmic properties. Simplification and schematization al-
gorithms can be classified as vertex-restricted or non-vertex-
restricted. For the former, each output vertex must also be an input
vertex. For the latter, output vertices may be placed freely. Our
algorithm is a non-vertex-restricted method.

A result is topologically correct if it has no intersections and
each region maintains the same adjacencies. This property is crucial
to shape schematization: incorrect topology greatly interferes with
legibility and recognizability of a map.

When schematizing shapes we often prefer not to greatly dis-
tort their sizes. Relative sizes, and in some cases absolute sizes,
may influence the information portrayed in a map. We enforce area
preservation as a strict way of maintaining relative sizes: each re-
gion in the input has the exact same area in the output. A result is
area equivalent to the input; the algorithm is area preserving.

Circular arcs. A (circular) arc is a connected part of a circle. An
arc is given by its center c, startpoint s and endpoint e, and its orien-
tation (clockwise or counterclockwise). The central angle o is the
angle from segment cs to ce, either the clockwise or counterclock-
wise angle depending on the orientation. The circular segment is
the region enclosed by the arc and line segment se.

Signed area. We use signed area to reason about area preservation.
Assume we are given an open curve C, starting at « and ending at v;
in addition, assume there is a curve C’ from v to u such that the con-
catenation of C and C’, as well as the concatenation of line segment
uv and C’ are non-selfintersecting counterclockwise closed curves.
Let A(C) and A(uv) respectively denote the area enclosed by these
closed curves. The signed area of C is then A(C) — A(uv), that is,
it is the area it adds compared to its straight-line replacement. Note
that any valid C’ results in the same signed area.

For a circular arc, the signed area is simply the size of its circular
segment, computed as % -r?- (o —sinat) for radius r and central
angle o. The signed area is positive for counterclockwise arcs and
negative for clockwise arcs. Two points and a signed area uniquely
determine a circular arc (Property 1).

Property 1. Given two points u and v and a (bounded) value A,
there is a unique arc from u to v with signed area A.

For a sequence of (at most 3) arcs, we sum the signed area of
each arc and the signed area of the polyline formed by the vertices
of the arcs. To this end, consider a polyline P = (uy,...,u;) with
k < 4. As k <4, there must exist a valid curve C' to define the
signed area. It is computed as %(uk X Uy +Zf;11 u; X uj1) where x
denotes the 2-dimensional cross product.

3 SCHEMATIZATION ALGORITHM

We give an algorithm that schematizes a simple polygon using cir-
cular arcs. The algorithm maintains a closed curve S = {(ay, ..., ap)
consisting of circular arcs a;. The complexity of S is its number of
arcs |S| = n. Every consecutive pair of arcs, say a;—1 and g;, meet
at a vertex v;. We consider an arc a; to be oriented from v; to v;; 1.
We treat the sequence circularly, e.g. a,+1 = a; and v, 1] = vy.
Line segments are considered to be arcs with an infinite radius. The
input—a simple polygon—is therefore also a closed curve.

Our algorithm first generates a schematization by greatly reduc-
ing the input complexity and using arcs for its representation. For
this process, we design two operations that decrease the complex-
ity of a shape (Section 3.1). An operation replaces a sequence of
the arcs by a shorter sequence. As such, it can make only local
modifications. By iteratively applying these operations we obtain
a schematization (Section 3.2). In Section 3.3 we discuss some re-
sults obtained with our algorithm. We describe two optional post-
processing steps in Section 3.4.

3.1 Area-preserving operations

Here we describe the operations that are used by our algorithm.
Each operation is executed on a low number of consecutive arcs.
An operation does not modify the shape other than giving a replace-
ment for the arcs it operates on. In particular, the vertices at which
the sequence starts and ends must remain in their original position.

We wish to ensure that the area encompassed by curve S remains
the same. To this end, we enforce that a single operation is area pre-
serving: the signed area of a replaced arc sequence must be equal
to the signed area of the replacement. By extension, this means that
any sequence of operations preserves the area as well.

The operations change the curvature of arcs, which is a desir-
able property. Particularly, it implies that they can be used to turn
straight-line shapes into curved shapes. No preprocessing is re-
quired to ensure that non-degenerate arcs emerge.

Vertex-restricted. The vertex-restricted operation replaces two
consecutive arcs by a single arc. By measuring the signed area
of this sequence, we obtain a desired signed area for the result (see
Fig. 1). This uniquely determines the replacement arc (Property 1).

Figure 1: The vertex-restricted operation replaces two arcs by their
unique area-equivalent arc.

Non-vertex-restricted. The non-vertex-restricted operation takes
as input three consecutive arcs, say a;_1, a;, and a;;. It replaces
these by two arcs a’ and a” such that @’ starts at v;_; and a” ends
atv;. . Arcs d’ and @” meet at a (possibly new) vertex v'. We have
three degrees of freedom when inserting the new arcs. The position
of v can be chosen freely (2 degrees) and we can assign a signed
area to the first arc. As the entire operation must preserve area, this
directly implies a signed area for the second arc. Ideally, we would
find the “best” replacement for the three arcs. However, this seems



Figure 2: (a-b) Symmetric difference A, and A, of the area-equivalent
arc replacing a;—; and a;, and a; and a;, respectively. (c) Point p is

located at fraction ﬁ along the perimeter of a;.

infeasible and we instead apply the following heuristic. We define
a line L through the center of g; and a point p on a;. (If a; is a line
segment, L is the perpendicular at p.). Vertex V' is placed on L.

To define L, we describe how to obtain point p. We would like
the point to be closer to a; if a;—; and a; are alike. Similarly, it
should be closer to a;_ if a; and a; are alike. To this end, we use
the symmetric difference that measures similarity between shapes
as the total area that is covered by one but not both of the shapes.
We measure the symmetric difference A; caused by replacing a;_;
and a; by their (uniquely defined) area-equivalent arc. Similarly,
we obtain the symmetric difference A, caused by replacing a; and
aj+1 by their area-equivalent arc. We now use for p the point that
is a fraction of ﬁ along the perimeter of a; as measured from v;
(see Fig. 2). In particular, if A; is zero, then p is vy 1; if A; is zero,
then p is v;. If both A| and A, are zero, we use a fraction of %

Point p also defines the signed area of ¢’ and a” (see Fig. 3).
The signed area for @’ is the signed area between v;_| and v/ caused
by a;_1, a; up to point p, and the segment from p to V. Similarly,
the signed area for arc a” is defined by segment pv/, a; from p, and
a;, 1. This uniquely defines a solution for any point v/ (Property 1).

Figure 3: Solution V' lies on line L through p Signed area for d is
given in gray. Non-optimal solution is used for illustration.

For v/, we use the point on L that minimizes the symmetric dif-
ference for the resulting arcs. To this end, we assume that the sym-
metric difference is unimodal on L (i.e. it has a unique minimum)
and perform a golden search—a “binary search” for unimodal func-
tions. However, this solution may contain intersections (i.e. it is not
planar). We reject a non-planar solution if both v;,_; and v;;, on
the same side of L: it is unclear how to obtain a planar solution.
However, if v;_ and v;;, are on opposite sides of solution line L,
we can always move towards a planar solution.

Lemma 1. Assume v,y and vy, lie on different sides of line L.
Then there exists a planar solution with V' on L.

Proof. As the problem is invariant under rotation and translation,
we assume that both v;_; and v;;, lie on the x-axis (have y-
coordinate zero), and we assume that v;_1 is left of v; 5. Since v;_|
and v; 5 lie on different sides, solution line L cannot be horizontal.

Moving point v/ downward along line L causes the signed area of
both arcs to decrease. Symmetrically, moving v/ upward causes an

Figure 4: A planar solution exists if v;_; and v;;, lie on different sides
of L. Arcs ¢’ and a” are a straight line at /; and I, respectively.

increase in signed area. Hence, in particular, there is a unique point
[1 on L where the first arc has signed area zero (and thus is a straight
line). Analogously, there is a unique point /; on L where the second
arc has signed area zero. A solution higher than /; on L causes a
positive signed area for the first arc (and thus a counterclockwise
arc), any solution below causes a negative signed area (and thus
a clockwise arc). Without loss of generality, we assume that /; is
higher than /. We consider two cases based on /; and /.

Assume that [; and [, lie on different sides of the x-axis
(Fig. 4 (left)). Consider the solution with v/ on the x-axis. As [;
lies above v/, the first arc is clockwise for this solution; similarly,
the second arc is counterclockwise. Thus, they lie in the different
half-planes of the x-axis and this solution cannot intersect itself.

For the second case, we assume that /; and I, lie on the same
side of the x-axis (see Fig. 4 (right)). Without loss of generality, we
assume that they lie above. Consider the solution at /. Here the
second arc is a straight line and the first arc is a clockwise arc. As
I, lies above the x-axis, the first and the second arc lie in different
half-planes defined by line v;_/; and cannot intersect. O

As proven, we can determine one or more positions on L that give
planar solutions. If solution V' is not planar, we select the position
s on line L with minimum distance |sv/|. We assume that there are
at most two intervals on L which contain planar solutions. If s is in
an interval adjacent to the optimal solution v/, we use binary search
to obtain the planar solution with the least symmetric difference in
the interval [/, s]. If this is not the case, we apply a binary search
to obtain a better planar solution. However, this solution is not
guaranteed to be the optimal planar solution in this interval. In our
experiments, this occurred only in rather contrived cases.

Fig. 5 illustrates the benefit of a non-vertex-restricted move: the
middle and right result are generated respectively without and with
the non-vertex-restricted operation.

Figure 5: A non-vertex-restricted solution (right) may more accurately
reflect shape compared to vertex-restricted solutions (middle).

3.2 lterative schematization

Here we describe an algorithm to perform the operations of the pre-
vious section to reduce the complexity of a shape.

Initialization. The algorithm initializes by computing the result for
each possible operation. That is, for all pairs of neighboring arcs
we compute the result of the vertex-restricted operation; for each
sequence of three arcs we compute the result of the non-vertex-
restricted operation. For each operation we compute the region of
symmetric difference with the original arcs and store it with the re-
sult. To prevent topologically unsafe operations we count the num-
ber of arcs that overlap this region. This number is called the block-
ing number. An operation maintains planarity of the shape if its
blocking number is zero. We call such an operation admissible.



Algorithm 1 Schematize(S,k)
Require: S is a simple polygon
Ensure: S has at most k arcs or S admits no operation

1: Initialize operations and their blocking numbers
2: while |S| > k and S admits an operation do

3:  Find best admissible operation o

Discard operations involving any arcs part of o
Decrease blocking numbers of other operations
Execute operation o

Increase blocking number of other operations
Create operations involving newly created arcs

A

Iteration. Each operation is scored based on the symmetric dif-
ference between the resulting arcs and the section of the original
shape that it represents. Hence, we maintain for each arc in the
current shape, the part in the original it represents. Initially, each
line segment represents itself. When performing a vertex-restricted
move, the new arc represents the union of the parts represented by
the replaced arcs. When performing a non-vertex-restricted move,
each new arc represents a fraction of the union of the parts that
the old arcs represented. This fraction is based on the perimeter
length of the new arcs. This does not necessarily give some optimal
matching of arcs to the original shape.

The algorithm iteratively selects the admissible operation o with
the lowest score. Before the operation is executed, other operations
must be updated. If an operation involves an arc that is also in-
volved in o, it is discarded. Otherwise, the blocking number of the
operation is decreased by the number of arcs of o that overlap its
region. Operation o is now executed, creating new arcs. We update
the blocking numbers again, but now increase the values where re-
quired. Finally, we construct new operations involving at least one
of the newly created arcs and initialize their blocking numbers. The
algorithm proceeds until either no operation is possible or a target
complexity has been reached. Pseudocode is given by Algorithm 1.

At most 5 arcs need to be checked for updating the blocking
numbers. Moreover, only a constant number of operations is con-
structed in each step, taking linear time per operation. Hence, the
algorithm runs in O(|S|?) time.

Ideally we would prove that any planar shape has at least one ad-
missible operation. Unfortunately, this is not the case. In theory our
algorithm could terminate at an undesirably high complexity. How-
ever, we did not observe this in practice with territorial outlines:
they are typically quite sparse with well-separated boundaries.

Weighting. Since our algorithm selects operations based only on
their score, we can reweight operations to introduce a preference.
We propose the weight &“, where @ denotes the average central an-

gle of the new arcs created by an operation and c is a parameter. We
multiply the score given above by this weight. The weight gives a
preference based on central angles and yields a more curvy result
(large central angles) or less curvy result (small central angles). By
varying parameter ¢, we can aim for a certain style of schematiza-
tion. For positive c, results with small central angles are prefered
over results with large central angles. This results in a flat schema-
tization style: arcs are relatively straight and have low curvature.
Negative c obtains the exact opposite, resulting in a curvy style with
arcs that are far from straight. For ¢ = 0, the weight is always one
and no change occurs, no preference is given and the result could be
either style or even a mix. We refer to this as regular schematiza-
tion. This weighting scheme only steers the selection of operations
and does not give a guarantee on the resulting shape. In particular,
it does not behave monotonously in c: for example, ¢ = 2 does not
necessarily yield a result that is less curvy than ¢ = 1. However, in
our experiments, we found that the preferred style clearly emerges
when using a ¢ of either -1, 0, or 1; we use only these values.

Alternative termination. The algorithm stops when the shape has
complexity k or less (or no admissible operation exists). However,
it may also be desirable to stop based on some measure of shape
similarity instead. For each operation, we compute the Fréchet dis-
tance (a similarity measure) of its result to its original part [24]. If
this is larger than a given threshold, we disallow the operation.

Subdivisions. We described our algorithm for simple polygons.
However, it can also easily be applied to subdivisions (e.g. multiple
countries): we allow only operations that (re)move vertices of de-
gree two. Other vertices are fixed. An operation may still use such
vertices as its endpoints. An example is given Fig. 11.

3.3 Results

Fig. 6 illustrates results obtained on the outlines of China and Aus-
tralia. For both outlines we have generated flat schematizations
(c = 1) and curvy schematizations (¢ = —1). The smoothing step
presented in Section 3.4 was applied to the results shown. For the
interested reader, more results have been made available online at
http://www.win.tue.nl/ wmeulema/results.html.

3.4 Postprocessing

Smoothing. In our method we fit an arc without considering its
neighbors. This may cause very small or large angles between
neighboring arcs. Small angles create shallow dents in the outline,
causing an increase in complexity without adding to the shape. Very
sharp angles can negatively affect perception of the schematization
[1]. To avoid small angles, we use the following postprocessing.
We inspect each vertex v of the result and check whether the
angle between tangents is less than a threshold (we use 20 degrees).

SUASAS A RS
OO

Figure 6: (Top) China with flat 8-arc and 13-arc schematizations on the left and curvy 4-arc and 13-arc schematizations on the right. (Bottom)
Australia with flat 6-arc and 15-arc schematizations on the left and with curvy 6-arc and 15-arc schematizations on the right.



Figure 7: Vertex v is to be smoothed (bend exaggerated). Circle C
contains exactly the positions where the arcs meet smoothly.

Figure 8: Regular 13-arc schematization of France. Smoothing a
nearly smooth bend may reduce visual complexity without compro-
mising on shape. Tangents are indicated.

If this is the case, we move the vertex to a new position, v/, such that
the bend becomes smooth. This should not change the tangents at
the other endpoints of the involved arcs as it could cause a different
bend to lose its smoothness. The solution space for V' is in fact a
circle C [7]. We choose for v/ the nearest point on C; this fully
determines the incident arcs (see Fig. 7).

This smoothing method is not area-preserving; such a solution
need not exist given that tangents are maintained. Our proposed
method does not heavily distort the area; this distortion may be ac-
ceptable depending on the application. Fig. 8 illustrates the benefit
of smoothing; the area distortion is less than 0.4%.

Rendering. Obtaining a schematization is only a first step in de-
veloping a map or visualization. The presentation of the resulting
map also plays a crucial role. We present some results obtained by
combining our schematizations with different rendering styles.

In Fig. 9 we combine the sketchy rendering by Wood et al. [29]
with a flat 12-arc schematization of France. We believe the flat
schematization style matches well with the hand-drawn style pro-
vided by the renderer. A manual sketch would prevent using arcs
with a large central angle as these are generally harder to draw. The
implied imprecision of the sketch reinforces the geographic inaccu-
racy of the schematization. In Fig. 10 we rendered a regular 12-arc
schematization of Vietnam with a variable stroke thickness. This
also yields a hand-drawn appearance. However, in contrast to the
sketchy style, this style feels more controlled and thus more curvi-
ness can be allowed. Inspired by Christophe et al. [4], we apply
a pop-art rendering style to a curvy schematization of Italy (see
Fig. 11). The high curviness of the drawing is unusual, but this
matches the rather unusual coloring typically seen in pop art.

Figure 9: Sketchy rendering of a flat 12-arc France using the Handy
library [29].

Figure 10: Stroked rendering of a regular 12-arc Vietnam.

Much of the pop-art movement (e.g. Lichtenstein) focussed on
mimicking the automated, often cheap and crude, printing process
with carefully crafted hand drawn paintings. The “unusual” col-
ors used can be seen as a reflection of the simple, bold, three color
printing processes. One could argue that the highly curved edges
of the Italy example are reflecting and exaggerating that bold sim-
plicity. In almost complete contrast, the sketchy work (and all non-
photorealistic rendering) is mimicking hand-crafted drawing with
an automated process. Here we are deliberately avoiding the bold
exaggerated curves to emphasize that process.

These preliminary results look promising, but a more thorough
study of the relation between rendering and schematization styles is
necessary. This need not be limited to only curved schematization,
but could also include the more traditional straight schematization.

o
Florence

Rome

B Biogm
0 o

Figure 11: Pop-art rendering of a curvy ltaly.

4 USER STUDY

To assess both the appeal and the utility of curved schematization
we constructed a user study to evaluate three hypotheses.

1. People prefer the visual appeal of curved schematizations of
shapes over their straight-line equivalents.

2. Curved schematization improves the recognizability of shapes
for any given degree of simplification.

3. Curved schematization creates shapes that are judged to be
simpler than their straight-line equivalents.

We explore these hypotheses to establish empirical evidence to sup-
port or refute our initial assumption that by creating curved rather
than straight-line schematizations of object boundaries, we may in-
creasing user engagement (visual appeal) and reduce visual clutter
(simplicity), while maintaining the information carrying capacity
(recognizability).



4.1 Generating schematizations
In our user study, we compared four styles of schematization.

Straight-line images. To minimize influences due to the type of al-
gorithm used, we chose to use the same algorithm for straight-line
schematizations as we did for the curved schematizations. With
straight lines, it is not possible to construct an area-preserving op-
eration that replaces two straight lines by one. That is, there is no
direct equivalent with straight lines to our vertex-restricted opera-
tion with arcs. The non-vertex-restricted operation, however, does
admit a straight-line variant with a uniquely defined optimal solu-
tion. The solution space for the connecting vertex V' is a line par-
allel to the line through v;_; and v;;,. We determine the optimal
position on this line using a golden search. Initial end positions for
the search are determined using a binary search. We did not apply
the smoothing step for straight-line results as “smoothing” a vertex
would be equivalent to removing it.

Curved images. We generated curved schematizations with our al-
gorithm in the three styles: curvy (¢ = —1), flat (c = 1), and regular
(¢ = 0). To all results, we applied the smoothing step.

4.2 Experimental protocol

We constructed trials using a range of shapes based on country out-
lines with varying degrees of schematization and curviness param-
eterizations. We recruited unpaid volunteers to take part in an unsu-
pervised online survey, largely through social networks and email
lists. The estimated completion time was about 15 minutes per per-
son. We used a mixed-design varying shape and schematization
style in three tasks. Before the main evaluation tasks, we asked for
basic demographic and background information: age, gender, back-
ground (“visual art/design”, “geography/cartography”, “computer
science/IT” and “other”) and experience with geographic maps,
schematized maps, and schematized representations. This allowed
us to define the term “schematized” before it was used in subse-
quent tasks. While there might be a risk of introducing some bias
by asking these questions first, we considered the benefit in clarify-
ing the terms used in the tasks as outweighing this potential cost.

Task 1 involved selecting one of two presented shapes as the one
they found more aesthetically appealing. Specifically users were
asked to “Click on the image that you consider aesthetically more
appealing. Do not overthink your answers and try to decide within
a few seconds.” Each user was given 20 comparisons to make. The
images were generated from 6 different country outlines in four
different styles and two complexity levels (a 6- or 7-arc schemati-
zation and a 11- or 12-arc schematization). This yielded 48 basic
images in total. The pair of images being compared were of the
same country outline, but with varying combinations of schemati-
zation styles. Thus, there were 288 different pairwise comparisons
from which the sample of 20 was drawn without replacement (144
distinct pairs with randomized position).

Task 2 involved matching a schematized shape with one of four
unschematized possible originals. Specifically users were told “In
this section, we show you a single schematic image. Below this
image are four shapes. The schematic image represents one of
these four shapes. Click on the shape that is represented by the
schematic.” The four alternatives were displayed in a random order
and represented different, but equivalently complex originals. They
were constructed to resemble typical but fictitious country outlines
(see Fig. 12). We had 6 sets of original outlines, each set consist-
ing of four similar but different variants. For these 24 outlines,
we generated 5-arc, 10-arc, and 15-arc schematizations in each of
the four styles. The schematized stimulus outline was drawn from a
random selection without replacement of 288 possibilities (6 “coun-
tries”, 4 variants per “country”, 4 styles and 3 complexity levels) but
were selected to ensure even distribution over the complexity lev-
els. Each user was given 18 questions for Task 2. This task counter-
balances for oversimplification (e.g. representing everything with a

Which figure is the original?

Figure 12: Example from the online schematized shape matching
task. Each user was presented with 18 such tasks where they must
match the schematized shape to one of four possible alternatives.

perfect circle). We chose a high number of outlines to avoid biasing
the outlines to a particular style.

Task 3 involved identifying which of two possible alternative
shapes they regarded as the “simpler”. Specifically users were
asked to “Click on the image that you consider “simpler”. Do not
overthink your answers or count elements. Give your intuitive an-
swer and try to decide within a few seconds.” Random shapes were
drawn from a pool of 72 (6 countries, 4 schematization styles, 3
levels of Fréchet distance). The thresholds on the Fréchet distance
were 0.015, 0.03 and 0.06 times the diameter of the input, yield-
ing “high”, “medium” and “low” levels of similarity (to the input)
respectively. The same level of similarity and same basic country
outline were used in any given pairwise comparison leading to a
possible pool of 216 question combinations (108 distinct pairs with
randomized position). Each user was given 20 comparisons that
were selected without replacement. Fig. 13 illustrates the various
styles and levels of similarity. We chose to use a consistent level
of similarity instead of complexity. A single arc may be consid-
ered more complex than a single line segment; however, arcs have a
higher expressive power. Using a consistent complexity risks bias-
ing judgements towards straight-line schematizations, though these
sacrifice similarity (recognizability) to achieve this simplicity.

Jedade
Jddeds
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Figure 13: Sample of shapes (China outline) provided in user test.
Columns show curvy, regular, flat, and straight schematization. Rows
show low, medium and high level of similarity.

4.3 Results

Of the 322 people who attempted the questionnaire, we processed
the results from the 303 who completed all questions. This pro-
vided 6060 responses for Task 1 (visual appeal), 5454 responses
for Task 2 (recognizability) and 6060 for Task 3 (simplicity). The
breakdown of respondents by age, gender and background is shown
in Fig. 14. Caution has to be exercised in relating responses to
background because there is some dependency between gender and
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Figure 14: Profiles of the 303 respondents who completed all tasks.

background as well as age and background (e.g. the majority of
male participants are computer scientist). The group of 68 years
and older had only 3 participants and was excluded from analysis.

To investigate hypothesis 1, we used loglinear Bradley-Terry
(LLBT) modeling [11] of the 6060 pairwise aesthetic preference
comparisons to produce ranked “worth” scores for each of the four
schematization styles. The worth score allows the consistency of
preference to be assessed in forming an overall ranking of the four
classes. Fig. 15 shows the ranking of the four styles in terms of
aesthetic preference, broken down by both gender and age. Con-
sistently, the straight schematization was regarded as the least aes-
thetically attractive. There was a significant influence of gender on
the most preferred style with women preferring the curvy style over
other curved styles and men preferring the slightly less exagger-
ated regular and flat styles. This difference may in part also reflect
the differing backgrounds of men and women in the study, but we
conclude from this work that while there is strong evidence for a
preference of curves over straight lines, there appears to be no uni-
versal agreement over which style of curviness is preferred.

In contrast, there was much stronger agreement among respon-
dents as to what style of schematization appears to be the “sim-
plest”. All age groups regarded the (strongly curved) curvy schema-
tization as being the least simple and the straight-line representation
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Figure 15: Style preference by gender and age.
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Figure 16: Simplicity judgement by age.

to be among the simplest (see Fig. 16). This suggests we can reject
hypothesis 3 that curved schematization would be judged to ap-
pear simpler than its straight-line equivalents. Future work might
explore whether self-reported judgements of simplicity match the
cognitive load required in interpreting such shapes.

We analyzed the success of respondents in matching schema-
tized to non-schematized shapes (Task 2) to investigate the second
hypothesis on recognizability. Answers with response time over 4
minutes were excluded. Fig. 17 shows accuracy and response time
as the complexity and schematization style was varied. Chi-squared
tests were applied to the schematization type, complexity, as well
as both in combination. As expected, as the complexity increases,
the ability to correctly match shapes decreases and the time taken to
make a matching judgement rises (Chi-squared p < 0.01). For very
highly schematized shapes (5 arcs) as well as those with the least
schematization (15 arcs), the ability to match successfully is some-
what independent of style of schematization. This is largely ex-
pected since the matching task is either too challenging or too easy
under these conditions. For 10-arc schematizations though, there
was a significant difference in matching ability between schema-
tization types (Chi-squared p < 0.01) with all curved styles im-
proving the ability to match shapes over their straight-line equiv-
alent. This suggests that at the right complexity, curved schema-
tization may significantly improve the recognizability compared
to straight-line simplifications. However, this must be balanced
against the perception that straight-line shapes appear simpler than
curved shapes (as demonstrated via Task 3).
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Figure 17: Accuracy (top) and response time (bottom) for recogniz-
ability. For each combination of style and simplification n ~ 450. Error
bars indicate 95%-confidence intervals.



5 CONCLUSIONS

We presented an algorithm for automated curved schematization
using circular arcs. Our algorithm preserves area and topology and
is able to introduce new vertices. Using a single parameter we can
steer the algorithm to obtain “flat”, “regular” or “curvy” results.
The schematization style can be reinforced by choosing an appro-
priate rendering style. We illustrated this by combining three ren-
dering styles with our schematizations. The results are pleasing and
seem to imply that there is indeed an interaction between rendering
and schematization style.

To investigate what level of curviness is preferred in a schema-
tization we conducted a user study. Users were asked to determine
preference and visual complexity of schematizations of different
territorial outlines and curviness. We also tested the recognizability
depending on the curviness and the degree of schematization.

The results seem to indicate that the use of curves is preferred in
schematizations. Schematizations consisting of straight line seg-
ments were consistently deemed the least aesthetically pleasing.
There was, however, no concluding proof that a specific type of
curviness was deemed more pleasing. Although curved schema-
tizations were preferred aesthetically, straight-line schematizations
were deemed visually less complex. There appears to be a trade-off
between visual complexity and aesthetically pleasing results.

The use of curves has a significant effect on the recognizability
of schematized shapes. While recognizability was neither helped
nor hindered by the use of curves at low and high complexities, for
the mid-level schematizations the use of curves increased recogniz-
ability. We conjecture that within a certain range of schematization,
curves are better at characterizing shape. This would imply that the
use of curves is not only aesthetically pleasing, but increases the
information carrying capacity of a schematization.

Future work. In this paper, we have explored the concept of curved
schematization design and compared it to straight-line schematiza-
tions. It would also be interesting to investigate how our algorithm
compares to other schematization algorithms, e.g. [3, 5, 10].

The quality of schematization may depend on the chosen style.
Flat curved schematization works for most shapes, while the curvy
style seems suitable only for some. For example, a curvy schema-
tization of Antarctica (Fig. 18) does not capture its shape well. It is
unclear how to determine which type of schematization is suitable
for a given shape; we leave this to future work.

Further research into the use of curves to represent shape is nec-
essary, since so far most efforts have focused on straight-line rep-
resentations. Our user study seems to imply that the use of curves
might allow for a higher quality representation and as such pro-
motes the use of curves in future research. However, not just circu-
lar arcs, but also other types of curves (e.g. elliptical arcs, Bézier
curves) could prove interesting.

Figure 18: 6-arc Antarctica: regular (middle) and curvy style (right).
Antarctica seems unsuitable for the curvy style.
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