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Abstract 

This thesis concerns the optimisation of maintenance and inspection for stochastically 
deteriorating systems. The motivation for this thesis is the problem of determining 
condition based maintenance policies, for systems whose degradation may be modelled 
by a continuous time stochastic process. Our emphasis is mainly on using the 
information gained from inspecting the degradation to determine efficient maintenance 
and inspection policies. 
The system we shall consider is one in which the degradation is modelled by a Levy 
process, and in which failure is defined to occur when the degradation reaches a critical 
level. It is assumed that the system may be inspected or repaired at any time, and that 
the costs of inspections and repairs may depend on the level of system degradation. 
Initially we look at determining optimal inspection policies for systems whose 
degradation may be directly and perfectly observed, before extending this analysis to 
the case where the degradation is unobservable, and a related covariate process is used 
to determine maintenance decisions. In both cases it is assumed the replacement policy 
is fixed and known in advance. Finally we consider the case of joint optimisation of 
maintenance and inspection, for cases in which the maintenance action has either 
deterministic or random effect on the degradation level. 
In all of these cases we use the properties of the Levy process degradation model to 
form a recursive relationship which allows us to determine integral and functional 
equations for the maintenance cost of the system. Solutions to these determine optimal 
periodic and non-periodic inspection and maintenance policies. 
Throughout the thesis we use the gamma process degradation model as an example. For 
this model we determine optimal perfect inspection policies for the cases when 
inspections are periodic and non-periodic. As a special case of a covariate process we 
consider the optimal imperfect periodic inspection policy. Finally we obtain jointly 
optimal deterministic-maintenance and periodic-inspection policies. 
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CHAPTER 1 

Chapter 1 

Introduction: Maintenance and Inspection of 

Deteriorating Systems 

1.1 Introduction 

Engineering advances in recent years have meant that the complexity of many systems 

has increased greatly. Systems are now being designed to carry out ever more complex 

and difficult tasks. This has resulted in engineers seeking more effective methods to 

improve and monitor the reliability of these systems. 

There is a limit, however, to how far the reliability of a system may be improved by 

improvements in the quality of components and construction. When this limit has been 

reached other methods must be found to ensure that systems are reliable enough to 

safely complete their required task. An important consequence of this is that 

maintenance and inspections of these systems is now of much greater importance. 

However, the improvements in reliability achieved by quality improvement methods 

mean that traditional methods of reliability centred maintenance are much less effective. 

The main reason for this is that, in the case of a highly reliable system, it is difficult to 

estimate the failure characteristics of the system, when failures occur very rarely This 

means that the distribution of the time to failure is unavailable, so that other methods of 

analysis must be found. 

10 



CHAPTER 1 

Since the event of system failure cannot be observed, an alternative measure of system 

performance must be found. It is natural, as a proxy for failure, to consider the 

degradation of the system, where degradation is a measure of performance, capability, 

quality or damage. For example, the degradation of a tyre is measures by tread depth. 

The tread depth clearly affects the safety, performance and capability of the tyre. Using 

crack length as a degradation measure is natural for many mechanical systems under 

cyclical loading. In this case, the length of the crack does not affect the performance of 

the system, until the crack becomes large enough for the material to break, in which 

case the system fails. Clearly, the degradation is related to failure, and so 

measurements of degradation allow us to indirectly determine the failure characteristics 

ofa system. 

The main focus of this thesis is the analysis of deteriorating systems, with the aim of 

determining optimal maintenance and inspection policies. We are mainly interested in 

systems whose degradation may be observed by the system user. On the basis of 

observed degradation, decisions can then be made regarding the inspection and 

maintenance of the system. 

In this introductory chapter we will consider the practical problems associated with the 

maintenance of deteriorating systems, and look in detail at the aspects of these systems 

which are important when developing mathematical models. The presentation is largely 

non-mathematical, since a survey of mathematical models for maintenance and 

inspection is given in Chapter 2. 

We shall divide our discussion of maintenance into four sections:. 

1. Modelling System Degradation 

2. Failure Characteristics 

3. Inspection and Maintenance Policies 

4. Optimisation Criteria 

Each section presents an important practical aspect of a system or its management, and 

discusses problems which arise when considering mathematical models for 

deteriorating systems and their inspection and maintenance. 
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CHAPTER 1 

1.2 Modelling System Degradation 

In cases when it is not possible or economical to test a system to failure, it is usual to 

measure the degradation of a system, to gain insight into the system failure 

characteristics. In what follows we shall assume that degradation of a system is 

measured by a physical observation of a characteristic of the system. 

A classical example of this type of model is that of Crack Growth (Sobcyk, 1987). In 

this case the 'system' fails when the crack length becomes too large. It is natural, then, 

to use crack length as a measure of system degradation. By observing the crack length, 

and by using knowledge of system characteristics, we are able to determine how much 

longer the system is likely to function successfully. Using this information we can 

formulate a maintenance and inspection policy. 

Another classical example of degradation is in erosion or wear processes. In this case 

the system has a specific characteristic which is eroded or wears out over time. For 

example, in the case oftyres, the tread depth is reduced by tyre wear, and eventually the 

tread is worn away, making the tyre useless. Another example is given by Van 

Noortwijk (1996), who considers the problems of maintaining coastal flood barriers. In 

this case the sea gradually erodes the flood barrier, and the barrier is deemed to have 

failed when it is no longer able to withstand the pressure of the sea. In this case by 

observing the height and width of the barrier, a prediction can be made regarding the 

expected failure time of the barrier. Using this information maintenance can be planned 

to prevent the barrier from failing. 

In the two preceding examples, the degradation process clearly has a direct influence on 

the failure of the system. In many systems however, the degradation process which 

should be considered is not obviously apparent. In this section we shall consider the 

problems in modelling degradation, and how they may be overcome. 

Before considering a model for degradation, it is necessary to determine which system 

characteristics are of use in 'predicting' failure. It is clear in the crack growth example 

that crack length is of prime importance. It may also be the case however that other 

variables influence the failure time of the system, and so should be incorporated into 

any degradation model. In general, we assume that there are a number of system 

variables which directly describe the failure characteristics of the system. This implies 

that our general degradation model should be in the form of a vector valued stochastic 
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CHAPTER 1 

process. We shall assume that an analysis of the system has been carried out and that 

the system variables influencing failure have been identified. 

Having identified which variables affect system failure, we must address the problem of 

observability. If a system variable cannot be observed, for technical reasons say, then it 

cannot be incorporated directly into a degradation model. In this case it may be 

necessary to consider a 'covariate' of the system variable. By a covariate, we mean a 

system variable which is conditionally independent of system failure, given the 

degradation process. This means that the covariate does not directly influence system 

failure, but provides statistical information about failure, when the underlying 

degradation process is unobservable. Clearly there may be more than one covariate 

relating to any single unobservable system variable, so that the covariate model may be 

a vector-valued stochastic process. 

There is a possibility that some of the covariates are themselves unobservable, in which 

case we could consider covariates of the initial covariate under consideration. Carrying 

on in this fashion we obtain a hierarchy of processes, each level being less important to 

failure than the previous level. To avoid this type of hierarchical model we shall 

assume that all covariate processes are observable. Therefore the model of degradation 

is restricted to three levels, as illustrated in the graphical model shown in figure 1.1 

below. This is the most general type of model we shall consider. 

COVARIATE I -I DEGRADATION 1 ~I '--__ F_A_I L_U_R_E_---' 

Figure 1.1 - Graphical Representation of a degradation model 

In this model, the main point is that the covariate influences only the degradation of the 

system. If the degradation process is observable, then the covariate process and the 

event of failure are independent. From a modelling perspective this is important since it 

allows us to greatly simplify the analysis of a system. 

Having determined the degradation variables and covariates, it is necessary to define a 

mathematical model defining the relationship between (i) The covariate process and the 

degradation process~ and (ii) The degradation process and failure. In the first case it is 
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CHAPTER 1 

assumed by definition of our terminology that a known relationship between the 

covariate and the degradation process exists. For example, it could be the case that the 

average rate of deterioration of the system is a function of the value of the covariate 

process. In the crack growth example this might correspond to the average rate of crack 

growth being a function of the operating temperature of the system. In the coastal flood 

protection example, the level of rainfall is an obvious environmental factor influencing 

the failure of the system. Regarding the second case, it is often much more difficult to 

adequately define a relationship between degradation and physical failure. This 

problem is discussed further in the following section. 

In both cases however, it can be seen that for systems with vector valued degradation 

and covariate processes, the system models become very complex. The choice of 

model for each of these processes plays a very important role, since it determines how 

useful and accurate the model is. Much work has been done on the estimation of 

reliability for systems subject to random covariates. However, most of this literature is 

related to medical statistics, and analysis of survival data (for example see Jewell and 

Kalbfleisch, 1996). This means that the models considered are generally regression 

models, which attempt to explain the effect of various covariates/factors on the lifetime 

of a system/individual. These models are not generally suited to optimisation of 

maintenance and inspection. We consider some of these models in greater detail in the 

following chapter. 

Further aspects of degradation modelling are more mathematical in nature and are 

discussed in the following chapter. 

1.3 Modelling Failure as a Result of Degradation 

While the degradation of a system is often relatively easy to model, the actual failure is 

not as easy to predict. Clearly, modelling degradation can only provide us with partial 

information regarding the failure of the system. 

Given that this is the case, the question arises as to how failure can be modelled as a 

function of the degradation of the system. In general we are interested in preventing a 

physical failure of a system. Physical failure is generally defined as 'the termination of 

the ability of an entity to perform a required function' (lEe 1991). Clearly, in the 
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general model we are using we must define a relationship between the degradation 

process and failure. There are two common assumptions which have been made. 

The first, and perhaps simplest method, is to define a threshold failure model in terms of 

technical failure. More precisely, if X represents the degradation process of the system 

we are considering, then a technical failure occurs at the first time Xl E C , where C is 

some critical failure set. Under this definition the failure time represents the hitting 

time of the set C. The set C is then chosen so that the system is unlikely to physically 

fail for values of degradation outside the critical set (with a specified probability). 

The most common example of this model is shown in figure 1.2 below. 

x 

cr------------~-

+---------------------------.t o T 

Figure 1.2 - Example of Threshold Failure Model 

In the example of figure 1.2, failure is assumed to occur when the degradation process 

first reaches the barrier C. In this particular case the degradation reaches C at time T, 

and this is defined as the failure time. 

In some senses this definition is unsatisfactory, since failure is now assumed to occur 

when the degradation reaches a specific value; in reality this is not the case. While this 

model can be criticised as being overly simplistic, its simplicity allows computations to 

be carried out, which would be impossible under more realistic assumptions. With a 

good definition of technical failure this model can be very useful, and has often been 

used in the literature. 

One difficulty with threshold failure models is that they take no account of external 

factors on the system. For example, it may be the case that a system will fail due to 

incompetence of a system operator. This cannot be incorporated into a threshold failure 
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model. In general we must be careful to ensure that a technical failure, defined by first 

entrance to a critical set C, must occur for the system to fail (within reason, and subject 

to external factors). Clearly, these external factors are much more difficult to model 

than the degradation of the system. 

A simplification of this type of threshold failure model may be defined when we are 

dealing with a degradation process with discrete state space. In this case it is common 

to view failure as the culmination of the degradation process, and to define failure as a 

state of the process. Examples of models using this approach are given by Milioni and 

Pliska (1988a,b) and Dagg and Newby (1998). These models, however, are based on 

systems with precise properties and cannot be applied to more general models. 

The second main failure model which has been proposed is the doubly stochastic 

Poisson Process (See, for example, Cox and Isham, 1980). The idea of this model is to 

assume that failures occur according to a Poisson Process, whose intensity is given by a 

function of the stochastic covariate process. While this assumption seems more realistic 

there are some difficulties, principally in determining the nature of the failure intensity. 

If this can be obtained, however, the assumptions result in a realistic model, allowing 

failures to occur at any level of degradation, and to allow the level of degradation to 

influence the failure rate of the system. 

A comprehensive review covering much of the material of sections 1.2 and 1.3 may be 

found in Singpurwalla (1995) or Yashin and Manton (1997). We consider some 

particular failure models in the following chapter. 

1.4 Modelling Maintenance and Inspection 

Having outlined how the system degradation and failure may be modelled, we now 

consider the important topic of how this failure can be prevented. In general, to prevent 

a system from failing it must be maintained in some way. To decide on effective 

maintenance, it is necessary to obtain information about the system degradation, which 

is done by inspecting the system. Clearly, the introduction of inspection and 

maintenance complicates the degradation models somewhat, as it is now assumed that 

the maintenance of the system affects the level of degradation. 
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Graphically, the model we are dealing with is shown below 

----I DEGRADATION ----I FAILURE 

'"-----------::~ / ~. 

'~ 

MAl NTENANCE I_ r---I N-S-'-P-E-C-T-IO-N----., 

COVARIATE 

Figure 1.3 - Graphical Representation of Degradation Models Incorporating Inspection 

and Maintenance 

The arrows in the diagram are interpreted as meaning 'directly influences'. Thus, as 

before covariates affect degradation, which in turn affects failure. Additionally, we 

now have that the level of degradation affects the observed value of inspection, which 

in turn determines the maintenance action, which affects degradation and possibly also 

affects the value of covariates. 

It is important, given what we have said above, to define inspections and maintenance 

actions as precisely as possible. In general there are two main forms of inspection 

model, namely perfect and imperfect inspection. Under perfect inspection we assume 

that the true value of the degradation process is observed at each inspection. Similarly 

imperfect inspection assumes that the degradation process is observed with some error. 

The exact way these are defined depends on the underlying system model. There are 

commonly two assumption made in regard to imperfect inspection: 

1. Measurement Error 

2. Classification Error 

As the name suggests, measurement error occurs when the true level of degradation 

cannot be measured because of inaccuracies or faults with equipment. A common 

model for measurement error assumes that the degradation process is observed with an 

additive error term (See for example Whitmore, 1995). This is not the only model 

available, but its structure makes the analysis of this type of model quite 

straightforward. 
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Classification error occurs usually when the system has a discrete state space, and the 

system is categorised as being in one state, when in fact it is in another. In this case 

imperfect inspection may be defined by allowing a probability of observing degradation 

is state x when in fact degradation is in state y, and this model fits well with standard 

models of systems with discrete state space. 

As with inspection, there are many possible types of maintenance action. The first 

distinction which can be made is between complete and partial maintenance. Complete 

maintenance is defined as any action which returns the system to a good-as-new 

condition. The most common example of such maintenance is replacement, but others 

do exist. In contrast to complete maintenance we define incomplete or general 

maintenance. In this case the maintenance action results in the degradation of the 

system being reduced to a specified level. This is clearly more realistic in terms of 

maintenance than complete repair, although problems still exist. Principally it is often 

difficult to determine the exact effect maintenance will have on the degradation and/or 

covariate process of the system. 

We may also distinguish between perfect and imperfect maintenance. As with 

inspection, perfect maintenance occurs when the affect of maintenance on the system is 

known deterministically. For example, with replacement, we know the degradation of a 

system will be reduced to the level of a new system. With imperfect maintenance, the 

effect of maintenance is in some way random. This randomness may be intrinsic to the 

maintenance action itself, or may be the result of errors on the part of those carrying out 

maintenance. We may also define hazardous maintenance, in a similar way to 

hazardous inspection, but we do not consider this here. 

Having defined the types of maintenance action which may be available, it is also 

important to consider the purpose of maintenance. Broadly, maintenance actions are 

described as being either preventive or corrective. Preventive maintenance takes place 

prior to system failure, and aims to prevent failure occurring by improving the condition 

of the system. The actual level and quality of improvement depends on the 

maintenance action applied. Corrective maintenance, however, takes place after a 

system has failed, and aims to fix the system so that it can be re-used. In many cases, 

however, it is impossible to fix a failed system, and a replacement will be carried out 
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Having defined the maintenance and inspection actions available, we must now 

consider the timing of maintenance and inspection. Broadly, both of these may be 

characterised in terms' of periodic and non-periodic policies. As the name suggests, 

periodic policies involve making inspections or carrying out maintenance actions at 

periodic intervals. Generally non-periodic policies are in some way adaptive, defining 

the next maintenance action or inspection in terms of the results of previous inspections. 

Generally non-periodic polices result in lower costs than periodic policies for the same 

system, although periodic policies are often considered easier to implement by 

maintenance managers 

It can be seen from the above discussion that incorporating inspection and maintenance 

results in considerable complication of the degradation model. As a result, there are 

few papers in the literature which deal with the maintenance-inspection problem as a 

single entity. Most of the results in the literature tend to be focused on either 

maintenance or inspection, while ignoring the other. 

It seems clear that maintenance and inspection should be jointly modelled, since both 

actions are very much inter-dependent, and we proceed with this in mind. The survey 

paper by Pham and Wang (1996) considers the literature on imperfect maintenance in 

more detail. 

1.5 Optimisation Criteria 

The idea of maintenance optimisation is that, based on observations of state variable 

and or covariates, we choose a maintenance policy (which may include inspections, 

repairs, and replacements and any other relevant action which may be taken to affect the 

state of a system) which best meets our objectives, however they are defined. Therefore 

we are dealing with a constrained optimisation problem which is time dependent. 

At outset, even during system design, it is important to consider the objectives of the 

system and the criteria on which the system will be judged a success or not. These 

criteria will be defined by the system-user, based on his requirements and 

responsibilities. Assuming such criteria are set out, we assume that we wish to optimise 
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inspection and maintenance, such that we achieve the least possible cost of system 

operation and maintenance, subject to the system satisfying its objective criteria. 

The procedure of optimisation then, is a mathematical problem, and the possibility of 

computing optimal policies depends upon the underlying models being used. In this 

thesis we shall assume that our objective in maintenance optimisation is to minimise the 

'costs' of inspection and maintenance. Generally we shall define the costs as either 

1. Expected Average cost per unit time; or 

2. Expected Discounted total cost (over an infinite horizon) 

These two criteria are the most commonly found in the literature on maintenance. 

In some applications it is important to consider optimisation of quantities other then 

cost. For example, we may be required to find the maintenance policy which reduces 

costs, but does not allow the probability of failure to be greater than 1 % at any time. 

We do not consider this type of problem, assuming that the costs of failure in the model 

will fully reflect the consequences of failure, so that the results of failure occurring are 

taken into account by the model and optimisation process. 

1.6 Summary of Thesis 

We have, in the preceding sections considered the most important problems in the area 

of maintenance modelling, from a practical point of view. The main outcome of this 

analysis was the need for coherent models incorporating degradation, covariates, 

inspection and maintenance. It is the aim of this thesis to go some way in presenting a 

model of degradation which allows these various factors to be incorporated, and hence 

to obtain corresponding optimal inspection and maintenance policies. 

In Chapter 2 we consider in detail some of the most important mathematical 

degradation models which have been recently considered. Broadly we look at the 

whole range of models, but we pay special attention to those models which are related 

to those we shall consider later in this thesis. We also briefly look at maintenance 

models which have been considered for various types of systems, to set the scene for the 

analysis of the following chapters, 
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In Chapters 3, 4 and 5 we propose and extend a model for optimisation of inspection 

and maintenance, based on Levy process degradation. Chapter 3 presents the basic 

derivation of a model for optimal markovian non-periodic inspection of a deteriorating 

system, based on methods of dynamic programming theory. These results are extended 

in chapter 4 to the case in which the degradation process is unobservable, and covariates 

are observed. Chapter 5, then considers optimal markovian maintenance policies for a 

similar system, allowing one to obtain jointly optimal (markovian) non-periodic 

inspection and maintenance policies. 

Throughout the thesis the example of Gamma process degradation is used as an 

example. In chapter 3 and 5 optimal maintenance and inspection policies are found for 

gamma process degradation, and in chapter 4 the special case of imperfect inspection of 

a gamma process is considered. 

We conclude in chapter 6 by summansmg the mam findings of the thesis, and 

considering possible extensions of the model proposed, and other future work based on 

our findings. 
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Chapter 2 

Modelling Systems subject to Stochastic 

Degradation 

2.1 Introduction 

CHAPTER ~ 

Having looked at reliability and maintenance in general, let us now consider how we 

can best encapsulate system properties in a mathematical model. As we have said, there 

are a great many types of system in use, and no single model is adequate for all systems. 

A great many models have been considered in the literature, but many of these are used 

for modelling a specific system. We shall mainly consider here models for systems 

whose degradation is a continuous time stochastic process, and look at related models 

for optimisation of maintenance and inspection of these systems. 

From a modelling point of view, we are now interested in translating the system 

properties into a mathematical model. The aspects of reliability and maintenance 

described in the previous chapter must each be considered to find an appropriate model, 

so the system as a whole can be described. For the type of system we are interested in 

most previous work has been done in the field of degradation modelling, and the review 

which follows necessarily reflects this. 
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In what follows we let Xr be a random variable representing the accumulated amount of 

degradation of a system. In general, Xl may be a multivariate process, but we assume 

for the moment that it is a univariate stochastic process. It is possible to deal \\-ith the 

case of multivariate degradation case, by considering the multivariate process as set of 

correlated univariate processes. 

Further, we assume that the degradation of the system is measured on an increasing 

scale. That is, if Xs < Xl then the system is in a better condition at time s that at time t. 

If U(x) represents the utility function of having a system in state x and if {XI: t> O} is a 

univariate Stochastic Process representing the degradation of the system, we assume 

that 

This assumption is not universal in the literature, since some authors assume that a 

decrease in the level of degradation X decreases the utility of the system. In certain 

applications it is more logical to consider the degradation process as a decreasing 

measure of the system condition. This is particularly the case when the state of the 

system is given by some measurement of system quality. In particular the models of 

Doksum and Normand (1995) and Van Noortwijk (1996) are of this type_ In the former 

the system state is taken to be the number of Healthy cells in a blood sample, and in the 

latter the system state is, for example, the amount of sand remaining on a coastal flood 

barrier. However, by defining the degradation as decreasing measure, we avoid any 

confusion between the cases of monotonic increasing and decreasing processes 

separately, and allow ourselves to be completely consistent throughout. Clearly, if XI is 

an increasing process, then the process X; = K - XI is a decreasing process, for any K. 

Transforming the process in this way always allows us to use an increasing measure of 

degradation. 

In the case of a multivariate stochastic degradation process, we can assume that all of 

the component processes follow the above convention, i.e. smaller levels of degradation 

are preferred to larger levels of degradation. This, however, does not provide an 

ordering on the state space of the multivariate process, and so their may be problems 

when dealing with multivariate processes, and decisions regarding which states are 

preferable to others. 
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When discussing degradation process above we did not preclude the possibility that X is 

not-monotonically increasing. In most applications, we observe that the degradation of 

a non-maintained system is monotonically increasing, and it is preferable to incorporate 

this feature into a degradation model. Under the further assumption that X is a 

monotonically increasing process, i.e. for all s < t, Xs:::; Xl' it is clear that the 

degradation process then has the property that 

s < t ~ U(XJ~ U(XJ 

This is clearly an intuitively desirable property for a degradation process to have, saying 

that as a system ages, its condition deteriorates. A degradation process satisfying the 

above condition will be called a monotone degradation process. We assume a 

multivariate process X is a monotone degradation process if all of the components are 

monotone degradation processes. This avoids the partial ordering problems described 

above. In this case equation (2.2) applies to a stochastic process in any number of 

dimensions. 

With these basic definitions in mind we now consider some desirable properties of 

degradation processes, before looking at three common degradation models: the Wiener 

process, the compound Poisson process and the Gamma Process. We then consider 

some particular models which are useful in the case of a system in which covariates are 

observed. Finally we consider models for optimisation of maintenance and inspection 

of deteriorating systems. 

2.2 Technical Properties of degradation processes 

Let us now consider the properties of system degradation which must be encapsulated 

in our mathematical model of degradation. From these system properties we are able to 

decide which stochastic model is the most suitable for any given system. 

Firstly, let us consider how the degradation of a system occurs. Various models have 

been considered, but most of these are in some sense based on the concept of 

accumulated damage. This is a natural assumption in many situations, where the 

degradation and resulting failure of a system may be viewed as the results of the 
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accumulation of wear and tear over the lifetime of the system. Van Noortwijk (1996) 

points out that in many systems which are subject to shocks, the order in which the 

damage (i.e. the shocks) occur is immaterial. This suggests that the random 

deterioration incurred in equal time intervals form a set of exchangeable random 

variables (Bernardo and Smith, 1992). This also implicitly assumes that the distribution 

of the degradation incurred is independent of the time scale, i.e. the process has 

stationary increments. The properties of exchangeable and stationary increments are 

very close indeed to the stronger properties of stationary and independent increments, 

which suggests Levy processes may be a suitable candidate for our model. See 

Breiman (1968) for a discussion of the properties of general Levy processes. 

This reasoning however may be criticised in at least one important respect. While the 

independent increments property seems intuitively correct for many applications, the 

stationary increments property does not seem so intuitively appealing. In some 

applications (as described by Van Noortwijk 1996) it may be possible that this 

assumption holds, but it is reasonable to expect that under some circumstances, that the 

degradation accumulated by the system was in some way related to the age and/or the 

state of the system. We shall consider this problem further below. 

This criticism however is overshadowed by the advantages that are to be gained in using 

certain Levy processes as degradation models. The class of Levy processes contains 

certain processes which are extremely tractable and for which there are many results 

readily available; namely the Compound Poisson Process, the Wiener process and the 

Gamma Process. In this respect, the simplification made in assuming independent and 

stationary increments is justifiable simply on the basis of tractability. 

An important result which is proven by Breiman (1968, Ch 9,14) regarding Levy 

processes is Levy-Khinchine Decomposition. This states that that the characteristic 

function of a Levy process X(t) may be decomposed as q;(B) = E(e,BX(t)) = e'l'(O)t where 

If/(B) = IcB - +o--B- + e -1- " v( ) . "" 1 {iOb i B b } db 
- \{o} (1+b-) 

where cER 0- > 0, and v is a measure on R\{ O} such that r (b~ A J)v(db) < x. This 
, JR\~} 

result is extremely important because it shows that any Levy process can be expressed 

as the sum of a Wiener process and a jump process. This has the consequence that any 
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degradation model based on Levy processes must be either a Wiener process, a jump 

process (such as a Compound Poisson process or shot noise process) or the sum of these 

two processes. This decomposition also shows that the Wiener process is the only 

continuous Levy process, and so if we want to model a system which degrades 

continuously (such as a fatigue crack) using a Levy process, we are theoretically limited 

to a Wiener Process. 

As we have said above, monotonicity may be a crucial property of degradation 

processes in many applications. It can be seen from the above decomposition that only 

processes which do not have a Wiener process component can be monotonic. It is clear 

from the above discussion then, that any monotonic increasing Levy process must be a 

Jump process. Rogers and Williams (1994) give a decomposition of the Laplace 

transform for such processes, known as subordinators: The distribution F on R- is 

infinitely divisible if and only if there is a representation 

r e-lx F(dx) = exp[- CA - ~f(1- e-lx)p(dx)] 
J[o,~) 

o 

for some c>O, and measure J1 on (0,00) satisfying the integrability condition 

fo~(x /\ 1)J1(dx) < 00. This condition is useful in determining whether or not a Levy 

process is monotonic or not. 

We have therefore something of a paradox. In many applications we expect 

degradation to be both continuous and monotonic, but using Levy processes, we cannot 

model both of these conditions simultaneously. In such an application it is necessary to 

decide which of these properties is more important, and choose a model on this basis. 

Within the class of Levy processes the two processes which are most important are the 

Wiener process and the Compound Poisson process. These are the basic building 

blocks form which all Levy processes are constructed. In reliability modelling, both of 

these processes have been used extensively in the literature. There are however other 

Levy processes which have been used such as the Gamma process applied by Van­

Noortwijk (1996) among others and Stable processes used by Hougaard( 1986). In 

terms of degradation modelling we shall focus mainly on the Wiener process and its 

extensions and the Gamma process, although the compound Poisson process has formed 

the basis for many degradation processes of the Shock model type. 
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Firstly, the Wiener process is ubiquitous in the literature on probabilistic modelling 

The reason being that it has many useful properties and has been studied extensively. 

Secondly, the Gamma process, which is less commonly found, but perhaps more 

important for our purpose, since it addresses some of the shortcomings of the Brownian 

motion process (see below). The gamma process captures the global features of the 

physical process and provides enough structure to enable calculations of interest to be 

carried out. 

As was mentioned above, of all of the assumptions underlying Levy processes, for our 

applications that of stationary increments seems most restrictive. In certain applications 

we may decide that to provide a suitable model it is necessary to drop this assumption. 

Doing this gives us further possibilities for our degradation model. 

The most obvious generalisation is to make the assumption that the parameters of a 

Wiener process may be time and/or state dependent, which defines the Class of 

Diffusion processes. These processes inherit many of the nice properties of Wiener 

processes, but are much more general and flexible for modelling. The analysis of such 

processes is more difficult than for a simple Wiener process, but much work has been 

carried out and many results are available. Karlin and Taylor (1981, Ch 15) provide an 

extensive survey of the elementary properties of such processes. 

A more general approach however, is to allow the parameters of a Levy process be 

dependent on another stochastic process. In this way the resulting process evolves 

locally as a Levy process, but the distribution of increments is dependent on another 

stochastic process. In the particular case where this second process is a Markov 

process, the resulting bivariate process is known as a Markov Additive process. This 

allows a Markovian covariate process to be incorporated into a Levy process 

degradation model. These processes however are less tractable than the preceding 

examples, and much less work has been done on their application to reliability. 

In what follows we survey the properties of Wiener processes and gamma processes 

before considering their application as univariate degradation processes. We conclude 

this chapter by looking at how the models can be extended to the case where a covariate 

process is involved and how useful the models are in terms of maintenance 

optimisation. 
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2.3 The Wiener Process as a Degradation Model 

2.3.1 Relevant Properties of Wiener processes 

The Brownian motion process is perhaps the most important stochastic process in all of 

probability theory. It falls into all of the main classes of stochastic processes, namely: 

Markov processes, Levy Processes, Martingales, Right Processes (Rogers and Williams, 

1994). This means that there are a great many results available so that many useful 

calculations can be made. 

The definition of a Brownian motion is given by 

Definition 2.3.1 (Standard Brownian Motion) 

A Stochastic Process {Bt : t ~ 0 } is said to be a Brownian motion if 

(i) Bo = 0 a.s. 

(ii) The map t ~ Bt is a continuous function of t E R+ 

(iii) For every t, h ~ 0, Bt+h - Bt is independent of {Bu:O ~u ~t}, and has a Gaussian 

distribution with mean zero and variance h. o 

However, the Brownian motion clearly has some undesirable properties for use as a 

degradation process. The main problem is that the expected value of the process at any 

time is zero. This means we cannot use it as a degradation process in general, since to 

do so would implicitly assume that a system neither degrades or improves on average as 

time passes. While it is plausible such a system could exist (i.e. when the failure of a 

system is subject to a random environmental factor, and the system otherwise does not 

deteriorate), it is not common. Another difficulty, which is inherited by most models 

based on the Brownian motion process, is that the sample paths are non-monotonic. 

The Wiener process is a transformation of the Brownian motion that is a more suitable 

as a degradation model. If Bt is a Brownian motion, as defined above, we define a 

Wiener process 11't as the following function of a Brownian motion 
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This process is essentially a scaled Brownian motion about the line J.i. t. \vhich 

represents the mean value of the process at time t. This process is clearly a much more 

flexible modelling tool than a standard Brownian motion In fact this process is the most 

general continuous Levy process available. It is clear however that the Wiener process 

inherits the non-monotinicity property of the Brownian motion. While this is not ideal 

for degradation modelling, it has been found that the Wiener process is a suitable model 

in many cases (See for example Newby, 1991 and 1998) 

In addition it is clear from the definition that this process is a Levy process. The fact 

that increments are normally distributed means that any estimation and inference based 

on data from this process will benefit from Normal distribution theory, and so will take 

place in the standard setting. 

Then, if we use the Wiener process as a degradation model, there are various quantities 

of interest to us. Firstly, if we consider a threshold failure model, failure will occur at 

the hitting time of the threshold. If we assume the Wiener degradation process is 

defined as above, and the failure threshold is c, then the failure time distribution is an 

inverse Gaussian distribution with density 

This density is relatively simple, and provides a flexible model for many. A detailed 

discussion of the properties of the inverse Gaussian distribution may be found in the 

book of Chhikara and Folks (1989). 

The definition of the Wiener process makes it clear that, given an initial value Wo = x , 

the distribution of a future value of the process, Wt is a normal distribution with mean 

x + Jl t and variance (5"'2t. Hence, for a known initial value of degradation we can 

determine the probability the system has reached a given level of degradation as 

29 



CHAPTER 2 

which is a special case of the more general results, which is easily shown as a 

consequence of the independent and stationary increments property of the Wiener 

process: 

There are many other useful results that are of interest when dealing with the Wiener 

process degradation model. In particular the joint density of Wt and its maximum 

variable defined by M( = sup {Xs : s :s; t}, given Wo = x, is given by 

.f ( I) - 2{2m - Y - x) {(y -x - ,u t y } {2(m - x Xm - y)} 
J~,M, y,m x -.J exp - 2 exp -

27r(Y6t3 2(Y t (Y2t 

where y represents the future level of degradation, and m represents the maximum level 

of degradation attained during the period, for an initial level of degradation x. The 

proof of this, and other, results can be found in appendix A2. 

It is clear from these results that the Wiener process model is very tractable. Most of 

the important results we might require are readily available, or can be easily derived. 

This is the main reason the Wiener process model is so commonly used. 

As we have said the Wiener process has some problems which can make it unsuitable as 

a degradation model. In particular, being a Levy process, it has independent an 

stationary increments, the problems associated with which, have been described above. 

A natural generalisation of the Wiener process is to the class of processes known as 

diffusions. 

Diffusion processes are a general class of continuous processes which satisfy the strong 

Markov property. They are generally not Levy processes, since the distribution of 

increments is not usually stationary. However, because they are Markov processes, 

they are tractable and a large theory has built up around them giving many results of use 

in reliability and degradation modelling. (Karlin and Taylor, 1991) 

Manipulation of the above general definition of a diffusion, results In a practical 

definition of a diffusion process which is most easily expressed in terms of a stochastic 

differential equation. So, in general a diffusion with drift parameter,u( I, x) and 
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diffusion parameter a(t, x) is a stochastic process X which is a weak solution of the 

Stochastic Differential Equation (SDE) (Rogers and Williams, 1987) 

Where B is a standard Brownian motion process. This process is the obvious 

generalisation of the Wiener process. The difference being that the parameters of the 

process are now permitted to depend on the time parameter t and the current state of the 

process X. It is clear that the local properties of the diffusion process are similar to 

those of a Wiener process. 

Further information on the definition and application of Stochastic differential equations 

may be found in, among others, Rogers and Williams (1987). We shall however not use 

the theory of SDE's in this thesis, as we will not be dealing further with general 

diffusion processes. A classical treatment of diffusion processes (which does not use 

the SDE approach) may be found in Karlin and Taylor (1981). We do not use the 

theory of SDEs in this thesis, and Karlin and Taylor (1981) is more than adequate for 

our purposes. 

For degradation modelling we are more likely to be concerned with the case in which 

the diffusion parameters are dependent on the current level of degradation. In this case 

we have a time-homogeneous SDE 

This simplification makes the analysis of these processes slightly easier. There are of 

course some examples of systems whose degradation will exhibit a time dependent 

component, but the analysis in this case is similar to the homogeneous case. 

The properties of diffusion processes are well known, so we will concentrate on the 

specific features of diffusions that are of interest to failure modelling. As with the 

Wiener process it is often possible to determine the distribution of the hitting time of a 

point in a diffusion process. In general this is found to be a generalised inverse 

Gaussian distribution. Further information on this and similar results may be found in 

the work of Barndorff-Neilson et al (1978). 

In addition to distributional results much work has been done in computing functionals 

of Diffusion processes. In particular, if X(t) is a diffusion process, and T represents the 

Hitting time of the set R \ (a, b), the functional 
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w(x) = E[I g(X(S»dsi X(O) = x ] 

is found to be a solution of the differential equation 

dw d 2w 
J.1(X)- + o-(X)-2 = -g(x) fora < x < b 

dx dx 

with boundary conditions w(a) = w(b) = O. This is the classical Fokker-Planck 

equation, and can generally be solved using analytical methods. Solving and letting 

b ~ -00 gives expected value of the integral up to the hitting time of a. This functional 

is of importance, since if we let g(x) be the instantaneous cost of being in state x, this 

functional represents the total cost incurred up to failure, which we assume occurs when 

the process hits point a. Clearly, in many cases this differential equation will have an 

explicit analytical solution. In more complex cases it is a relatively simple matter to 

obtain a numerical solution to this type of equation. 

Similar results to those described above may be obtained for many other functionals. 

Some of these results may be found in the book of Karlin and Taylor (1981), which also 

described how the results may be derived. 

2.3.2 Degradation models based on the Wiener Process 

The diffusion model has been used extensively in the literature as a degradation model. 

The main models which have been used are described below. 

Non-monotonicity is the main drawback of using a diffusion process as a degradation 

model. The problem can be reduced if the drift of the process is increased relative to the 

variance, but in the case where we are fitting a model to data the drawback is obvious. 

If the degradation process is monotonic increasing (which is a very reasonable 

assumption), all of the increments which we observe will be positive. If we try to fit a 

normal distribution to this data we will clearly not be proceeding according to best 

statistical practise, instead we are forcing the data to fit the model. 

Having said this however, there are certain cases where these drawbacks do not apply 

Sobczyk (1987) provides justification for using a diffusion process in the case of Crack 
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Growth governed by the Paris-Erdogan law, while Newby (1998) and Whitmore(l995) 

provide details of estimation and inference for crack growth processes under this model. 

In addition, there are cases, particularly with regard to deterioration of biological 

systems (such as the human body), where there is the possibility of non-monotonic 

degradation processes occurring. This can be seen for example in the model of CD4 

counts of Doksum and Normand (1995). Further, it is often the case that the 

degradation properties of a system are not particularly well known, in which case a 

Wiener process, being the limiting process of the random walk model, can be used as an 

apporoximation. 

The Wiener Process WI = f..J.t + O".BI , which retains most of the structural properties of 

the Brownian motion process, is the most common diffusion process found in the 

literature on reliability and failure modelling. This process is the basis for most of the 

work done on estimation and inference on degradation processes, and its tractability 

mean that useful results are relatively easy to come by. We shall now consider some 

important examples of such models. 

As we have mentioned above Doksum and Normand (1995) present a model based on 

the Wiener process to model the CD4 marker for a HIV infected individual. Under their 

assumptions the marker is assumed to follow a geometric Brownian motion, so that log 

Xt is a Wiener process, namely 

where Xt represents the CD4 count, which measures degradation, with Xo being the 

initial CD4 count. Using this model, standard estimation and inference procedures are 

carried out and predictions are made of latency time and time until development of 

AIDS (Time to Failure). However, as with many applications outside the field of 

maintenance, no attempt is made to consider how we may intervene to affect the 

degradation process. 

A similar model is proposed by Whitmore (1995) who assumes the degradation process 

follows a Wiener process, but makes the additional assumption that inference is based 

on observations which are subject to some measurement error. So if X represents the 

true degradation process, and Y represents the observed degradation we have 
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where Gt - N(O, v 2
). Clearly, the assumption of normal errors and normally distributed 

increments simplifies the analysis of this problem to a great extent. Whitmore (1995) 

gives results concerning the estimation and inference of degradation from such 

processes. In this model, and that of Doksum and Normand (1995) failure is defined 

according to a threshold failure model, and so in each case it is possible to derive the 

time to failure distribution under the model. 

A more complex model which uses a more general diffusion process was presented by 

Lemoine and Wenocur (1985). They assume that the degradation of a system is 

modelled by a diffusion process satisfying the time homogeneous SDE (2.3). The 

system is also assumed to be subject to failure according to killing at rate k(x) (Karlin 

and Taylor, 1981) when the system state is x, and is also defined to fail when the 

degradation reaches a predetermined threshold value. The survival function of the 

system is then given by 

Since X follows a diffusion process, it is shown in Karlin and Taylor (1981, Ch. 15) that 

w(x, t) is a solution to the partial differential equation 

aw aw 2 a2w 
-= -k(x)w+b(x)-+ta- (X)-2 at Ox ax 

which can be solved numerically (and in some cases analytically) to give the required 

survival function. Lemoine and Wenocur (1985) then go on to consider various special 

cases of this model and show that many common reliability models can be derived form 

this kind of analysis. This model has an advantage over the previous models in that it 

can incorporate state dependent behaviour in the degradation model, making it more 

flexible if more difficult to work with. , 

Another generalisation of the Wiener process is given by Whitmore and Schenkelberg 

(1997). This model assumes that degradation follows a Wiener process, but that the 

time scale may be accelerated so that, to a certain extent, a time dependent factor may 

be taken into account. While this is less flexible than the model of Lemoine and 
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Wenocur, it is easier to work with, and for most standard transformations of the time 

scale, inference and estimation procedures carry over easily from the Wiener case (See 

Lee and Whitmore (1993) or Feller (1971, Ch. X.7) for a general description of 

stochastic process under a randomised time transformation). 

There are other models based on diffusion processes, some of which are similar to the 

above, and others that deal with either maintenance or incorporate covariates in the 

analysis, which are considered below. 

2.4 The Gamma Process as a Degradation Model 

As we noted above, a general Levy process contains two components: a Wiener 

component and a pure jump process component. Intuitively, if we seek a degradation 

model which has only positive increments, we should be able to define a process in the 

same way as Brownian motion is defined, but replacing the normally distributed 

increments, with increments from a distribution which takes only positive values. If we 

assume that the distribution of the increment X t - Xs follows a gamma distribution with 

density 

Pa(t-S) a(t-s)-I -fJx 
X e 

f(x) = reaCt - s)) 

we obtain a gamma process, which is defined as 

Definition 2.4.1 (Gamma Process) 

A Stochastic Process {Xt : t ~ 0 } is said to be a Gamma process if 

(i) Xo = 0 a.s 

(ii) X has independent and stationary increments 

(iii) The distribution of Xt - Xs is Gamma with parameters a(t . s) and p. 

In the case where a = 1 and 13 = 1 we call.\' a standard Gamma process 
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This process as it is defined here is not, however, a Levy process, SInce it is not 

generally time homogeneous. For the process X to be a Levy process we must assume 

that a(t) = a.t , for some constant a. Henceforth we assume that we are dealing with 

this form of Gamma process. 

Let us consider some of the mam properties of this process. Firstly it is clearly 

monotone increasing, which is the behaviour observed in most physical degradation 

processes. Secondly, from the properties of Levy processes it is discontinuous, unlike 

the diffusion models considered above. The gamma process can be thought of therefore 

as the accumulation of an infinite number of small shocks. This interpretation gives 

credence to the model, since this is often how degradation occurs. Thirdly, the 

independence and stationarity of increments of this process mean that this model 

assumes future degradation is independent of the current level of degradation, and 

depends only on the period over which the system will be allowed to deteriorate. This 

is in some ways unrealistic, although models based on the Gamma process should be at 

least as suitable as those based on the Wiener process since both have the flexibility of 

two parameters, while the Gamma process has the advantage of monotonic sample 

paths. 

However, just as Wiener processes can be extended to a Diffusion processes, the 

gamma process can be extended in a similar way. The results of these extensions in this 

case are not as tractable as in the case of diffusions, since there is not a well developed 

framework for stochastic differential equations involving Gamma processes. 

U sing the gamma process as a model for degradation, it is straightforward to compute 

the hitting time distribution of a point. Let Hx be the hitting time of point x, and assume 

that X(t) is a gamma process started at zero. Then it is clear that 

P{H x ~ t) = p{X(t) > x), since the process is monotonic. Then it is simply found that 

[
pat at-le-/lv r(at·px) 

P(H. ~t) =p(X(t»x)= Y . dy= ' =F(tlx) 
.\ r(at) r(at) 

where r{a; x) = r t a -
1 e -t dt is the incomplete Gamma function. So, if we assume that 

X
t 
measures degradation, and the system fails when degradation first reaches the point c, 
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it is clear that the expression above represents the failure time distribution function for 

the system. It is possible to obtain the density of the hitting time distribution as 

!(t) = (log(ft(e - x))- a \feat)). F(t,e _ x)+ p(e - x)G 
rea t) 

Where G is a Meijer G function (See Erdelyi, 1954b) and \f is the derivative of the 

natural logarithm of the Gamma function. In this particular case we have 

G=G;'~(P(C-X) 0 0 OJ 
' -1 aT -1 -1 

This density was found using the symbolic manipulation package MAPLE. This 

density is not suitable for carrying out computations regarding the gamma process, and 

it is better to work with the much simpler distribution function. 

The first failure model to use the gamma process was that of Abdel-Hameed (1975). 

However, this model is based on a slightly different model in which the wear at time t, 

is defined to be a random variable X(t), where X(t) - f( a(t),jJ). The idea behind the 

model is that there is a known probabilistic relationship between the degradation of the 

system and its failure. This is expressed simply by the survival function 

G( x) = p(w > x), where W is the wear at fai lure. The Gamma process is then 

hypothesised as the relationship between the age of the system and the degradation of 

the system. Then if we let!r(x) be the probability density function of X(t), it is clear that 

the survival function of the time to failure T is given by 

00 

F(t) = f ft(x)G(x)dx 
o 

It is clear that (2.4) is simply a mixture of the G(x) distributions, where the mixing 

distribution is Gamma. Abdel-Hameed (1975) then provided conditions under which 

the lifetime distribution properties of G(x) are inherited by F(t). 

The model is intuitively very appealing, since it is often the case that the relationship 

between degradation and failure are well known, but the time until a critical amount of 

deterioration has occurred is stochastic. However, the model has several shortcomings 

Firstly, it assumes that the degradation process is continuously monitored, and that the 

degradation process can be observed without error. Both of these assumptions may be 
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unrealistic for certain applications. Secondly. The underlying gamma process has 

stationary increments, so that the process evolves according to the same probabilistic 

laws, independently of the current level of degradation and the current age of the 

system. This assumption is very restrictive. 

Another model based on a gamma process is that of Wenocur (1988). This model is a 

generalisation of diffusion processes, but with the Brownian motion replaced by a 

standard gamma process. In stochastic differential equation form the model may be 

written as 

where Yt follows a gamma process with parameters a= /3= 1. This model is a 

generalisation of the gamma process defined above, and appears to be a much more 

flexible modelling tool. There are some problems however, since the 'drift' and 

'variance' of the process Xl are possibly dependent on Xl, thus losing the property of 

stationary increments, and any results based on the theory of Levy processes. The 

process Xl is still a Markov process however, and various results have been obtained by 

Wenocur (1988) who derived the backward equation for the Kac Functional 

w(x,t}= Exl expU -k(X(s}}is }f(X(t)}] 

This is important, since many quantities of interest can be put into this form, and may 

be able to be derived by solving the associated integro-differential equation. It was 

found however, that the generator of the process does not take a nice form, and so many 

calculations which can be carried out easily in the diffusion case, are impossible here. 

It remains to be seen if this process offers any advantage over the original gamma 

process defined above. The diffusion process defined by a SDE can be interpreted 

intuitively as a deterministic process with an additive 'error' component, so that the 

process fluctuates around its expected value (drift component) in a random manner. In 

the case of the SDE driven by a standard gamma process, the drift component cannot be 

interpreted as the average value of the process, and is instead interpreted as the 

'baseline' rate of change of deterioration at level x. This gives perhaps a more flexible 

model than the basic Gamma process, but at the cost of increased complexity. It is 

possible that a similar effect can be achieved by adjusting the shape parameter aU), so 
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as to increase the rate of increase of the process by increasing the average size of the 

Jumps. It is clear however that making the shape parameter of the basic Gamma 

process dependent on the system state would result in a model more complex than that 

of Wenocur(1988). The fact that no papers using this variant of the Gamma process 

model have been published since its origination may be indicative of its lack of 

tractability and practical application. 

2.5 Models of Degradation in the Presence of Covariates 

As was noted in Chapter 1, it is common to find that a system characteristic which 

provides direct information on the failure characteristics of the system is not observable. 

In such cases it may be possible to consider a covariate process as an alternative to 

observing degradation. To make allowance for this it is often desirable to jointly model 

the degradation of the system (which is unobservable) along with a (possibly multi­

dimensional) covariate process. 

In many circumstances a similar problem arises in that the degradation of the system is 

only observable subject to some kind of measurement error. This case may be included 

under the structure of covariates outlined above, if the measurement taken from the 

system is assumed to be the covariate, while the true degradation is represented by the 

unobservable degradation process. In this case the relationship between the covariate 

and system variable is determined by the observation error structure. 

The above factors make the modelling of degradation in the presence of covariates a 

much more complex task. We can no longer assume that the process involved is 

stationary, and we must make allowance for the evolution of the state and the covariate 

over time. The resulting modelling becomes complex even under the most simple 

assumptions. 

There has been a great deal of interest recently in this subject because of its relevance to 

the subject of AIDS epidemiology. In that field, covariate processes are known as 

marker processes and generally refer to measurements taken from the human body 

which are of some relevance to the unknown condition of the AIDS sufferer (because 

time since infection is unknown) In comparison there has been relatively little work 
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done specifically in the area of maintenance modelling. (Desmond, 1985 and 

Singpurwalla, 1995 give detailed overviews of this area) 

Most of the work in this area, from both bio-statistical and reliability perspectives has 

involved the use of hazard rate modelling. This is unsurprising, since much of the work 

can be seen as a stochastic generalistion of the Cox Proportional Hazards model, of Cox 

(1972) in which regression is carried out in the presence of covariates using a hazard 

function of the form 

h(t; z) = A(t) exp(pT z) 

where A(t) represents the baseline hazard function, ~ is a vector of parameters and z is a 

vector of covariates. 

Jewell and Kalbfleisch (1996) consider the case where the hazard rate is related to the 

covariates by the formula 

where H; = {X (s) : 0 :::; t :::; s} represents the history of the covariate process X, f3 is an 

unknown parameter and ho(t) represents a baseline hazard function. They consider 

some special cases including the case of a Poisson Marker process and a Multivariate 

zero-one marker process, and prove some results relating to residual and past life. 

A similar model is given by Fusaro et al (1992) and Shi et al (1996) who consider a 

hazard function of the form 

h(t I H;) = h(X(t» 

so that the survival of the item is completely dependent on the value of the covariate, 

with no other time varying factors allowed. Shi et al (1996) consider various marker 

processes X(t) including the processes (which are applicable to the case of CD4 count 

modelling for AIDS survival data) 

(i) X(t) = [a + bt + B(t)]-l 

(ii) X(t) = [a+bt+U(t)]4 

Where B(t) is a Brownian motion, U(t) is an integrated Omstein-Uhlenbeck Process 

(Karlin and Taylor, 1981) and [a, b] T follows a bivariate normal distribution. It is 
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unlikely that these covariate models (i) and (ii) above have any application to this area 

of reliability. 

A similar approach is taken by Myers (1981) who considers the case in which the 

hazard rate of the system is a quadratic form, dependent on a multidimensional 

diffusion covariate process. 

where Z is a vector of covariates, B is a positive definite matrix and C is a parameter 

vector. Myers makes the further assumption that the covariate Z follows the m­

dimensional diffusion process defined by 

where Bt is an m-dimensional Brownian motion and a and b are continuous functions of 

I. In this case it is found that the Survival function for the system may be written in 

terms of the solution of a Matrix Ricatti equation. 

A review of this type of hazard modelling may be found in Yashin and Manton (1997), 

who also consider a model similar to that of Myers (1981) described above. 

A model which deals more directly with this type of problem is that of Whitmore, 

Crowder and Lawless (1998). The underlying structure of the model is based on a 

bivariate Wiener process (X (t), Y (t») . The components of the Wiener process 

(X(/), Y (t») represent the (unobservable) degradation process and the covariate (or 

marker) process, respectively. To simplify the modelling, it is further assumed that the 

system is observed for a fixed time I, at which time it is inspected and found to be either 

failed or operating. Using standard results from the theory of Wiener process, a 

likelihood is created and this allows for estimation and inference on the process. 

The model of Whitmore, Crowder and Lawless (1998) explicitly assumes that the 

covariate is correlated to the degradation process, but the simplification of a fixed time 

frame makes the model unsuitable for considering systems over more than one time 

period or operating cycle. In chapter 4, we shall propose a model which extends the 

results of Whitmore, Crowder and Lawless, by allowing optimal inspection policies to 

be computed. 

~l 



CHAPTER 2 

A more indirect method of dealing with covariates is given by Rishel (1991) and 

extended by Lefebvre and Gaspo (1996a,b). Rishel (1991) proposes a model in which 

the wear of a system is related to a stochastic process (which represents environmental 

variables) by an ordinary differential equation which represents the evolution of system 

degradation in the presence of the environmental factor. This system is described by 

the stochastic differential equations 

dXt = p(Xp Zt)dt 

dZt = !(XpZt)dt + cy(Xp Zt)dBt 

Where p(x, z) is a nonnegative continuous function of x and z and Zt is a vector valued 

diffusion process. Under the assumption that the environmental process Z and the wear 

process X are dependent on a control parameter u, Rishel(1991) and Lefebvre and 

Gaspo (1996b) go on to consider optimal control policies which minimise the wear of 

the system. This assumes that the system can be controlled continuously, which is not 

always the case. In the models we shall consider and our only allowable actions are 

those which come under the scope of inspection and maintenance, and which therefore 

take place at discrete time points. For models which are monitored and may be 

maintained continuously, this control theoretic approach has many advantages. We shall 

not consider this approach further in this thesis. 

A recent paper by Lim (1998) applies regime switching techniques to a related problem 

in which the failure time distribution of an entity is dependent upon the state of a 

Markov chain. While this is not directly comparable with the degradation models we 

have been considering, the underlying structure appears to allow covariates to be taken 

into account in certain cases. The technique of regime switching models has been 

applied in the financial literature to the prediction of time series. See Hamilton (1994, 

Ch. 21) for further analysis of such problems 

The regime switching model described above allows the state of a degradation process 

over the next 'period' to depend on the current state of the covariate process. While this 

partly achieves our aims, in many cases this would not adequately describe the problem 

at hand. To generalise further we must consider Markov Additive Process of Cinlar 

(1972b). 
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Markov Additive processes may be regarded as generalisations of Levy processes, the 

Brownian motion and Gamma processes both being special cases. We do not give a 

definition here, as we shall not consider these processes outside of this section. 

The diagram below (figure 2.5.1), which is modified from Cinfar (1977) shows the type 

of situation that Markov Additive processes may be used to model: 

Degradation Y(t) 

1 Time, t 

Value of 2 
Covariate 

3 

Figure 2.1 - Example of a Markov Additive Process Degradation Model 

This situation may be thought of (for example) as a degradation process which evolves 

according to a Gamma process when the covariate is in state 1, evolves according to a 

Compound Poisson Process while the covariate is in state 2, and remains constant when 

the covariate is in state 3 (which may correspond to the system being under repair, say). 

While this situation may seem rather unlikely, it shows the potential flexibility of 

Markov Additive processes as modelling tools. 

As we remarked above, Markov Additive processes are a general and flexible modelling 

tool in that they allow for the presence of one or more covariates in the model. This 

model therefore, if fully developed, should allow us to take into account the effect of 

other factors on the failure mechanisms, and therefore gain better understanding of 

system behaviour so that maintenance effort is better applied. However, although the 

model appears to be suitable for more general applications than those discussed above, 

the modelling process and any subsequent optimisation is made more difficult by the 

increased structural complexity of the process. 
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This complexity however has not been a barrier to the application of these processes in 

other fields. In particular Markov Additive processes have been widely used as models 

for the arrival and departure processes in Storage process (see for example the papers of 

Kaspi (1984) and Asmussen and Kella (1998)). 

It appears, however, that there has been minimal application of MAPs in the field of 

failure time modelling. Some of the reasons for this are clear. For the most part 

degradation models have been constructed by those seeking to model the failure time 

characteristics of a system or a component, without looking at inspection or 

maintenance of the system. In such cases there has been little interest in modelling a 

covariate process alongside the degradation process, possibly because the increased cost 

of data collection and testing is prohibitive. Another possible reason is that it was felt 

the added complexity of the model was too much to justify the added information it 

may provide. As has been pointed out by Singpurwalla (1995), there may be some 

problems in obtaining results about these processes because of an apparent lack of 

tractability. 

2.6 Maintenance and inspection Models 

These failure models are constructed to describe systems, so that we can compute the 

optimal maintenance strategy for the system. While much work has been carried out on 

optimisation of maintenance and inspection, relatively little of this seems to be applied 

to these types of degradation model. 

For the most part, classical models of inspection and replacement are based on the 

distribution of the inter-failure times of a system. Most of these may be regarded as 

extensions of the classical models of replacement such as age replacement and block 

replacement (See Barlow and Proschan, 1965). By assuming that the system is replaced 

by an identical system at failure or preventive replacement, the act of replacement is 

seen as a renewal event. This assumption allows the theory of renewal processes to be 

applied to replacement problems. In particular the renewal reward theorem (Ross, 

1970) allows us to show that the long run average cost per unit time is equivalent to the 

average cost per cycle. This result is perhaps the most often used in maintenance 
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modelling, since it reduces the general problem to one in which only the expected cost 

and expected length of a single cycle needs to be found. As we have said, the literature 

on this type of modelling is vast, and since it does not directly influence the remainder 

of this thesis we shall not expand on it here. The reader is referred to the book of 

Jardine (1973) or the excellent review paper of Valdez-Flores and Feldman (1988). 

While the literature on the models described above is vast, the literature on models 

which directly apply degradation processes is much less commonly found. As before, 

the models may be broadly split into inspection models, replacement models and 

maintenance models. (Replacement models are of course a special case of maintenance 

model, but we differentiate them here as their properties make modelling much 

simpler). 

By inspection models we generally mean models designed to address the question 'At 

what times should the system be inspected'. In answering this question using a 

mathematical model, it is generally necessary to make assumptions about the 

maintenance or replacement policy being applied to the system, and the relative costs of 

these policies. For example, the inspection policy instructs us when to inspect the 

system, and hence obtain information on the level of degradation. Based on this level a 

rule must be applied determining what maintenance actions will be taken. If no action 

is to be taken, the inspection is unnecessary and there is no problem. 

An example is given by Anderson and Friedman (1977). The basic model proposed 

assumes that the degradation of a system is modelled as a Brownian motion process B(, 

and that costs are incurred continuously at rate f(BJ per unit time. If, at an inspection 

time T, it is found that B'( E A the system operation continues, otherwise it is shut down 

at cost y( B'( ). Further, each inspection is assumed to incur a cost P( B r ). Extensions 

of this model also consider the case when the inspection is subject to a Gaussian 

measurement error and when the system degradation is reduced, rather than shut down 

when B'( (l A. The model was extended by Anderson and Friedman (1978) to consider 

the case when the underlying degradation is a bivariate Brownian motion, one 

component of which is continuously observable, while the other may only be observed 

via costly inspections. 

Using techniques of quasi-variational inequalities, Anderson and Friedman (1977,78) 

are able to obtain an optimal sequence of inspections which minimises the discounted 
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total cost of operating the system. While this analysis is useful, there are problems with 

applying it in real situations. The work is largely theoretical in nature, and so ignores 

some important practical factors. Primarily, the system cannot 'fail' between 

inspections, which clearly is unreasonable for most systems. Further, the underlying 

degradation process is a Brownian motion, which, as we have said, is generally not 

suitable as a degradation model. 

Yeh (1996) also considers the case of optimal inspections. The underlying degradation 

process is assumed to be a semi-Markov process. By transforming this process into an 

equivalent Markov process, techniques from Markov decision theory are used to 

determine optimal inspection intervals. The model is extended to allow for the case of 

imperfect inspection. This model has a much more application oriented perspective 

than that of Anderson and Friedman (1977,78), and it would seem that it is general 

enough to be applied in many situations. 

In general optimal replacement policies for deteriorating systems are specified in terms 

of a control limit policy, with a pre-specified inspection policy. Such policies define a 

control limit, say r, and assume that the system is replaced if an inspection reveals a 

level of degradation greater than the control limit, r. In many replacement problems, it 

is possible to show that the control limit type policy is optimal. 

Park (1988a,b) gives an example of this type of model. The models given in Park 

(1988a,b) differ only in their failure assumptions. The first assumes threshold failure, 

while the second assumes a wear dependent hazard rate. In both cases the degradation 

level at time t is assumed to have a known probability distribution. In the first model 

(Park 1988a) it is assumed that the system is replaced if inspection reveals a level of 

degradation greater than r~ but fails if the level of degradation reaches level c. (See 

Figure 2.2 overleaf). In this case, failure or replacement define a regeneration point of 

the degradation process, allowing the renewal reward theorem to be applied. Having 

computed the expected cost and length of a cycle, an expression for the average cost per 

unit time is obtained, so that optimal control limit r may be computed. In Park (1988b), 

similar calculations are made, but the system may now fail at any time, according to a 

degradation dependent hazard rate. The model of Park (l988a) is particularly important 

for what follows in the remainder of this thesis. In Park (1988a) the problem of 

determining a control limit for a given inspection policy is considered. We shall begin 

by considering a 'dual' of this problem (using different methods) of obtaining the 
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optimal inspection schedule for a given control limit. We further extend these results 

obtaining optimal non-periodic inspection policies, along with policies for imperfect 

inspection and maintenance. In particular, our methods allow computation of jointly 

optimal control limit and inspection policies as a special case of more general 

maintenance policies. 

X(t) 

c 

r 

t 

Figure 2.2 - Example of degradation with a control limit replacement policy and 

threshold failure model 

Another model which is similar to that we shall consider is that of Antelman and 

Savage (1965). Here two models are considered, one with continuous and one with 

discrete inspections. Both of these are applied to industrial process control making 

them unsuitable for degradation modelling. As with Anderson and Friedman's 

(1977,78) work, the underlying process considered is the Brownian motion and failures 

are not considered. In each case expressions are found for the costs of operating the 

system. However, in the case of discrete inspections the resulting functional equation is 

not solved, and no optimal policies are obtained. 

Other models for optimal replacement, not based on inspection policies, have also been 

considered. In particular Zuckerman (1978) considers optimal replacement times for a 

system with degradation modelled by a one-sided Levy process (subordinator). The 

model incorporates threshold failure, but the threshold itself is modelled by a random 

variable with known distribution. This is particularly applicable to stress-strength 

models for loading of structures. In this case, failure is not only determined by the 

degradation of the structure, but also by the loading applied to it. 

-l7 
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As one might expect, maintenance models are much less commonly found, than models 

for replacement of corresponding systems. The basic reason for this lies in the added 

complexity of maintenance. In the case of replacement models, intervention in 

degradation behaviour is characterised by returning the level of degradation to zero, 

which naturally defines a regeneration point for the process. When more general 

maintenance actions are allowed, it may be the case that the level of degradation is 

reduced, but this does not provide a regeneration point for the degradation process. 

There are few maintenance models based on 'degradation' models. One example is that 

of Hontelez et al (1996). In this case the degradation of the system is modelled by a 

Wiener process. The state space is then discretised so that the discretised system is 

represented by a discrete time Markov chain., and Markov decision theory can then be 

applied to determine optimal maintenance policies. 

Another common model is the so-called 'Virtual Age' model, based on Kijima et al 

(1988). The model assumes that the 'degradation' of the system is measured by its 

'virtual age', which represents the effective age of the system, taking maintenance into 

account. In this way, each maintenance action corresponds to a reduction in virtual age. 

Applying techniques from dynamic programming theory integral equations are derived, 

which can be solved to obtain the costs of operating the system. While this model uses 

the lifetime distribution of the system rather than a degradation process, it is included 

here since the methods used are similar to those we shall use in the following chapters. 

Stadje and Zuckerman (1992) extend their earlier results by considering two different 

maintenance models, one allowing only minimal or perfect repair and one allowing a 

general degree of repair. A similar model is proposed by Dagpunar (1997), who 

considers the effect of different types of maintenance on a system. 

2.7 Summary 

The choice of degradation model in any particular situation depends largely on the 

properties of the system being considered. It is clear however that the choice of model 

will greatly affect the techniques which must be applied to determine optimal 

maintenance and inspection policies. 
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Many degradation models have been proposed whose main aim is to determine the 

reliability characteristics of a system in terms of that system's degradation. In this 

application it is clear that a large amount of model complexity is useful, the main 

purpose of the analysis being to encapsulate as much information as possible into the 

model. However, the complexity of these models often means they are unsuitable for 

maintenance modelling. 

On the other hand, many models of inspection and maintenance have been proposed 

which are based on simplified degradation models, for the sake of tractability. In 

addition, many of the models proposed treat maintenance and inspection as separate 

entities, when it is clear that they are inter-related. 

These observation suggest that there is a need for models which can adequately 

combine maintenance and inspection with a realistic degradation model. In what 

follows we consider various models which we believe go some way in addressing these 

problems. We begin by considering optimal inspection of a general Levy process 

degradation model, before extending this to the case of inspection of a system with 

covariates. Finally we look at the case of joint optimisation of maintenance and 

inspection. The models considered are similar to those of Park (1988a) and apply 

methods similar to those of Stadje and Zuckerman (1991). 

-l9 



CHAPTER 3 

Chapter 3 

Optimal Perfect Inspection Policies 

3.1 Introduction 

In the following chapter we shall consider optimal inspection policies for systems which 

can be modelled by a Levy Process, i.e. a process with stationary and independent 

increments. We shall also consider a particular example of this type of process: the 

gamma process. 

The general set-up of the system we shall look at is as follows: we consider a system or 

component whose degradation may be modelled by a Levy Process. We assume that 

the level of degradation is not continuously observable, but may be found by inspecting 

the system/component, at any time of the decision-maker's choosing. On making an 

inspection, the Decision-maker may decide to replace the system/component or allow it 

to continue operating until the next inspection. The system/component may however 

fail if the level of degradation reaches a high enough level. We assume that no other 

action may be taken and that the replacement policy is predetermined. We further 

assume that the income from the system is the same irrespective of its level of 

degradation (and therefore disregard it in what follows) and that replacement is 

instantaneous. Any loss of income incurred due to failure or replacement is assumed to 
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be incorporated into the cost of replacement or failure. The general set-up is similar to 

that considered by Antelman and Savage (1965) and Park (1988a,b). 

We begin by looking at the case of periodic inspection and in particular the case of 

systems with degradation modelled by Wiener and gamma processes. We consider the 

case of perfect inspection and consider both average cost per unit time and discounted 

total cost criteria. In each case integral equations are developed giving the expected 

costs and expected time to replacement for a general degradation model. The 

development of these equations is similar to that of Stadje and Zuckerman (1991), who 

consider optimal maintenance strategies using a virtual age model. 

Following this, the case of non-periodic inspection is considered in general. Again we 

consider perfect inspection, but consider only discounted total cost criterion in this case. 

The main reason for this simply being that the average cost criterion is much more 

complicated. Applying the theory of Semi-Markov Decision processes optimality 

equations are derived, and solved numerically, obtaining the optimal inspection policy. 

The gamma process provides the basis of our examples. In addition, we consider briefly 

the case of no inspections and of continuous condition monitoring, for comparison 

purposes. Finally we examine the numerical results from this model and discuss 

practical issues relating to the model. 

3.2 Underlying Inspection and Replacement model 

In order to proceed we must make precise the definition of the system we are 

considering and how inspections and replacements affect the system. The basis for our 

system is that of a threshold failure model. We assume that the level of degradation is 

measured at inspection, and on the basis of this a decision is made whether or not the 

system is to be replaced. The cost of any such replacement may depend upon the state 

of the system, and the system is replaced immediately on failure. 

We make the following assumptions regarding the nature of the system and the 

replacement policy. The policy is assumed to be fixed in all respects, other than the 

inspection interval. Throughout this chapter we assume that the degradation process is 

denoted by the stochastic process X = {Xl: t ~ O}, and assume the initial level of 
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degradation is given by X 0 = 0. This implies a new system is assumed to have zero 

level of degradation. If this is not the case a simple transformation of the model results 

in a model for which the initial level of degradation is indeed zero. 

MODEL ASSUMPTIONS Ml (perfect inspection) : 

1. We assume the state-space of the system S = (-co, ro) is partitioned into intervals Ao, 

AI, A2, ... ,An. such thatAo= (-co,so), and Ak = [Sk,Sk+l) for all k = 0,1, ... ,n-l with Sk 

< Sk+l and Sn+l = ro, 

2. Each inspection reveals the true state of the system, and the state can only be 

determined by carrying out an inspection. 

3. If, at an inspection Xt EAo, the system is not replaced and is allowed to continue 

operating until the next inspection. Each inspection incurs cost Co, which may be 

regarded as the cost of inspection and any loss caused by the system being 

unavailable during inspection. 

4. If, at an inspection, Xt E Ai for i = 1,2, ... , n - 1 then, the system is replaced at cost 

Ci . This may be regarded as the cost of replacing a system with degradation level in 

Ai and any loss incurred due to the system being unavailable. It is assumed the 

replacement system is identical to the original system, with zero level of 

degradation. 

5. The system is deemed to have 'failed' at the first moment the process hits the set An 

and this failure is immediately observed resulting in an immediate replacement of 

the system. 

6. The cost of replacing a failed system is en, and is assumed that C1 < C) for i < j. 

(That is, the cost of replacement does not decrease as degradation increases) 

We assume throughout that the degradation of the system is modelled by a Levy process 

X, having increments Xt + T - X t with probability density function It (z), which are 

independent of t by the Levy property. When XI = x, we denote the density of X I+ T 

given .X I = X as fT (z I x) . 
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Let us now consider in detail the implications of these assumptions carefully The 

definition of the replacement policy implies that there are a number of distinct phases 

which the process goes through, before reaching the final failure level. 

For example, we may have a system that has four different levels for costs. \Ve may 

consider Ao to represent the situation in which the system operates effectively, A 1 

represents a situation in which the system operates effectively, but is close to a possible 

failure and so should be repaired at low cost, to restore it to a good-as-new position. A.: 

represents the situation in which the system is very close to failure and can no longer be 

repaired, but must be replaced. A3 represents failure, in which case the system must be 

replaced, but additional costs are incurred, perhaps for loss of production, compensation 

etc. It is clear that this general situation covers many different possible applications. It 

is probable that the most common case would be the case where n = 2 and there are 

three regions, one representing effective operation (A 0), one for planned replacement 

(Al) and a third for failure (A2)' We shall consider this case in a numerical example 

below. As we have said, this is similar to the case considered by Park (1988a) who 

considers the optimal wear limit replacement policy for a general degradation process, 

under the assumption of known periodic inspection times. Figure 3.1 below, 

graphically shows the operation of this type of inspection policy. We shall consider this 

model in our gamma process example of section 3.6. 

X(t) 

c ...... -.--.-------...... -............. -.-------.-.... - ................. -.-. 

r 

• t 

Figure 3.1 - Example of a three region replacement policy 

In addition, assumption 4 is also important because it assures us that the process is 

replaced immediately the process hits set An. In the case of non-monotonic degradation 

processes there may be the possibility of failure having occurred, but being ignored 

because the process had left state An before the time of the next inspection. This implies 
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that in the case of a general degradation model, we must not only consider the state of 

the process at inspection, but also the values of the process between inspections. The 

simplest way to do this is to introduce a supplementary process Mr, where Mr represents 

the maXImum value of the process Xr In the period [0, t), formallv 

M t = sup{ Xu: 0 ~ u ~ t }. Having done this, the actions taken after an inspection are 

completely determined by the state of the bivariate process (Xr, Me). Alternatively, 

depending on the circumstances, it may be more convenient to introduce the 

supplementary variable H ~n ' which is the hitting time of the critical set starting from 

state x. (See Rogers and Williams, 1994). The derivations which follow emphasise 

these points in more detail. 

3.2.1 Model for periodic inspection 

We begin by considering the optimal periodic inspection policy for a system whose 

degradation can be perfectly observed, at any time. By periodic inspection we mean 

only policies which are of the form 'Inspect the system every r time units'. This 

means that there is an inspection schedule 0' = {1; 2 r, 3 r, ... }, so that inspections 

continue at this fixed time interval, until the system fails or is replaced, at which point 

we reset time to zero, and continue with this inspection schedule, so that an inspection 

occurs rtime units after replacement/failure. 

This policy is simple to understand and apply. Because there is no adaptive component, 

inspections can be planned well in advance. In some cases it may be advantageous that 

the timing of maintenance and inspection is the same for all components, because fixed 

costs may be reduced. Additional to these practical benefits, a static policy also avoids 

the complications of Dynamic programming arguments, making the solutions to these 

problems easier to obtain. 

The disadvantage of such a policy is that it is fixed. Once the system is running it does 

not matter what we observe, the inspection intervals remain the same. This policy is 

generally sub-optimal when compared to a more general state dependent policy, which 

takes into account the level of degradation of the system. The policy may result in too 

frequent inspections in the early life of the system, and too infrequent inspections as the 
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system nears failure. We consider the difference in costs of these static and dynamic 

polices later in this chapter. 

3.2.2 Model for non-periodic inspections 

In the more general case of non-periodic inspections, we still apply model assumptions 

Ml as above. We amend the inspection policy, so that we now consider a stationary 

state-dependent policy. This policy is of the form: 

'We observe the state of the degradation process to be x. If x E A replace the 

system, but if x <l. A, allow the system to continue operating and inspect 

again after 'l(x) time units' 

This policy is similar to that used by Antelman and Savage (1965), who consider 

optimal inspection and replacement of a system modelled as a Brownian Motion with 

zero drift. This policy is adaptive, in the sense that the inspection intervals change as the 

degradation level changes. It is perhaps more suitable for systems which are safety 

critical. In addition, the policy should be less costly than the periodic policy considered 

above, because the inspections take into account the current level of degradation, and so 

are optimal at each stage rather than only at the beginning of the operation period. It is 

expected therefore that savings are available using this policy over periodic 

aIternati ves. 

The optimal policy in this case is defined completely by the function T*(X). We apply 

the standard approach of Dynamic programming, and consider the discounted total cost 

of applying the policy 'l(x). Applying a standard policy improvement routine to an 

arbitrary discretisation of the problem, easily provides an optimal policy. 

3.2.3 Model for No Inspections and Continuous Condition Monitoring 

The model described above has been defined for the case when the system is inspected 

by periodic perfect inspections. In some cases however, periodic inspections may not 

be applicable, and a limiting case of these inspections may be optimal. The two such 

limiting cases are the case where no inspections occur (the system being simply 
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replaced on failure), and the case where there is some form of continuous condition 

monitoring. 

The first of these cases is likely to occur for systems that have low replacement cost in 

relation to the cost of making an inspection. An example of this would be a component 

of a system, which is cheap and easy to replace, but inspection required the system to be 

shutdown, so that the state of degradation of the component could be ascertained. The 

condition monitoring case is likely to be applicable when the replacement cost of the 

system is extremely high, and inspections are thus relatively inexpensive. We treat 

these two cases using similar methodology to those of the more general cases already 

discussed. 

3.3 Optimal Periodic Inspection: Average Cost Criterion 

To compute the optimal inspection policy, which in this case is defined completely by 

the number T, we apply the Renewal Reward Theorem (Ross, 1970). This is done using 

standard arguments by considering the expected cost and expected length of a cycle, 

where a cycle is defined as the time between replacements of the system (either 

preventive or corrective). Defining the start of each new cycle as a regeneration point, 

we can apply the renewal reward theorem to calculate the average cost per unit time 

over an infinite horizon. 

Application of this technique implies we must assume that the lengths of cycles are 

independently and identically distributed. This assumption holds only if each 

replacement system has initially zero degradation, and is identical to the original system 

in its degradation characteristics. In this chapter we assume this is the case throughout. 

In addition assumptions 4 and 5 ofM1 ensure that the replacement system is identical to 

the original system, with zero level of degradation. This implies that replacement may 

be regarded as a regeneration point, so that we may regard the process as being a 

renewal reward process with renewals occurring at replacement of the system. 

Following Ross (1970) , if C(t) represents the cost incurred up to time 1, then the 

limiting average cost per unit time is given by 
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E[C(t)] ~ E[X] as t ~ 00 

t E[Y] 

Where E[X] and E[Y] represent the expected cost per cycle and expected length of a 

cycle, respectively. 

3.3.1 Derivation of Expected Cost per Unit Time 

We define Vex, r) to be the (random) cost per cycle for a system with initial level of 

degradation level x and inspection interval r. Similarly, let L(x, r) be the (random) 

length of a cycle for a system under the same conditions. Although, at this time, we are 

only really interested in obtaining the average cost and cycle length for a system which 

starts with zero level of degradation, we find it advantageous to use a formulation which 

is state dependent. This is for computational reasons and because it allows us to 

generalise the results easily to a state-dependent non-periodic inspection policy. In 

addition, we note that the terms derived above represent an abuse of notation. The 

random variables V and L are not functions of x and r, and the functional notation is 

used simply for convenience in further development, and to simplify the following 

derivations. 

Following the above discussion we definev(x, r) = E[V(x, r) I Xo = x] to be the 

expected cost until replacement, and lex, r) = E[L(x, r) I Xo = x] to be the average time 

until replacement for a system with initial degradation level x, assuming that we apply 

inspection policy r. By the renewal reward theorem we may then find the expected total 

cost per unit time as 

C(O, r) = v(O, r) 
I(O,r) 

We now develop integral equations for the expected cost and length of a cycle, enabling 

the optimal inspection policy to be obtained, under the average cost criteria. 

Expected Cost per Cycle 

Using a standard dynamic programmmg argument, we can express the cost until 

replacement as the sum of the cost incurred at the next inspection and the cost incurred 
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thereafter. Let us assume that Xl represents the degradation process, and M t represents 

the maximum value of that process over the period [0 , t]. Since we are dealing only 

with Levy processes, the results are independent of the current time, and so, without 

loss of generality, we assume that the current time is t = 0, and condition all variables 

on the event Xo = x. (1 A is the indicator function of the set A) 

n-I 

V(x, r) I X"M, = [Co + V(X" r)]l{x,EAo,M,eAnl + Lei l{X,EA j,M,,,Anl + en l{AirEAn} (3.1) 
;=1 

where we have expressed the cost function as the sum of the cost in the event of 

continuing (i.e. not replacing the system) and the costs for each possible replacement 

event. The expected cost is thus 

n-I 

= E(v(x, r) I X"MJl{xTEAo,M,eA
n

} + Le; l{xTEA ,,;\freAn} + en l{MrE..Jnl (3,2) 
;=0 

Define f,(y,m I x) to be the joint density of Xrand M r, conditional upon Xo = x. Taking 

expectations of the above expression with respect to the joint density of Xr and Mr we 

get 

v(x, r) = E(E(v I X"M.)) 

= E( v(X" r)l IX,EA"M,EA. I + %Ci llx,EA,)f"A.1 + Cn IjM,EA.I J 
n-I 

= f f v(y,r)f,(y,mlx)dmdy+ Lei px(x, EA I,M, CiAn)+CnPx(Mr EAn) 
A S\A ;=0 o n 

Where S represents the whole state space, and superscript x indicates probabilities are 

conditional on Xo = x. 

(3.3) 

As we have mentioned in previous chapters, a failing (in certain circumstances) of many 

non-monotonic degradation models is that they allow for some unrealistic 

consequences. The fact that the process can decrease means that, however unlikely, it is 

possible to have a negative level of degradation, which would correspond to an 

improvement beyond what we would regard as a new system. This is a shortcoming of 

the degradation model that we would like to remove from our model for inspections. To 
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this end, we assume that, for y < 0, v(y, r) = v(O, r), so that we assume a negative level of 

degradation is equivalent to zero degradation. Of course in some applications it may be 

that one would like to consider the case where improvement beyond a new system is 

allowed, but we do not consider this case here. 

From our initial assumptions we know that the set Ao has the form (-X' ,so), so we can 

rewrite the integral in the previous expression as 

J J v(y, r)fr (y, m I x)dm dy 

o So 

= J J v(y, r)fr(y,m I x) dm dy + J J v(y, r)fr(y,m I x)dmdy (3.4) 

So 

= v(O, r)px(Xr < O,Mr ~ An)+ J J v(y, r)fr(y,m I x)dmdy 
o S\An 

Now define C(X,1) to be expected cost incurred at the next inspection, which 

corresponds to the non-integral terms in the above expression, giving 

n-I 

c(x, r) = ICi pX(Xr E A i,Mr ~ An}+CnPx{Mr E AJ (3.5) 
i=O 

And define u(x,t) to be the probability that there is a negative level of degradation, and 

the system does not fail, so that 

(3.6) 

Substituting these functions into the integral equation and interchanging the order of 

integration, we obtain: 

So 

vex, r) = c(x, r) + v(O, r)u(x, r) + J J v(y, r)fr(y,m I x)dm dy 
o S\An 

So 

= c(x, r) + v(O, r) u(x, r) + J v(y, r)K r(y I x)dy 
o 

Where K,(Y1 x) is given by 

Kr(Y I x) = J fr(y,m I x)dm 
S\An 

This function represents the probability density that the process is in state y at the ne>;t 

inspection, and the process does not hit the set An before the next inspection, given the 
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current state is x and the inspection interval is r. Whether or not this integral can be 

computed in closed form depends largely on the nature of the underlying degradation 

process. It is known that using the Wiener process degradation model, this integral can 

be computed in closed form. (See appendix A2) 

The integral equation above has general form 

s 

vex) = p(x) + q(x)v(O) + f v(y)K(y, x)dy 
o 

In general this is a Fredholm integral equation of the second kind. The nature of the 

functions c, u and K mean, however, that the equation is unlikely to have a closed form 

solution. In general numerical methods have to be used, but fortunately there are simple 

effective methods available. 

Expected Length of a cycle 

To calculate the average cost per unit time to replacement it is necessary to calculate the 

expected time to replacement defined by lex, r) = E[L(x, r)IXo = x]. We calculate this 

in a similar fashion to the calculation of average cost, the only further complication 

being that on absorption in set An, a full inspection period r is not completed, and so we 

must incorporate the hitting time of the set An. However, since An is an interval, we 

need only consider the hitting time of the least point in that interval, which is Sn 

according to our definition above. Define H ~ to be the hitting time of this point 

(3.9) 

starting from Xo = x. Therefore when considering the time to failure we must take into 

account the distribution of the failure time, which is just the hitting time distribution of 

the set An. Then proceeding as above we find the (random) time until replacement, 

starting in state x. So conditioning on the values of X" M, and H~ we find 

Now, applying the same reasoning as in the case of the cost per cycle, the conditional 

expectation of L(x, r) given (X T' M T' H~:) is simply given by 
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Taking expectations of the above expression with respect to the joint density of H, X and 

Mwe get 

E(E(L(x) I Xr,Mr,H
sn

)) 

= E(I(X" r)l{x,EA,.M, <A. I + rl/H;. ><1 + H:' l/H;.«I) 

= E(I(Xr, r )l{x,EAo,M,ltAn })+ r P(H~ > r)+ J hg(h I x)dh 
o 

r 

= f[1- G(h I x)]dh + f f ley, r)fr(y,m I x)dmdy 
o AOS\An 

Where g and G represent the density and cumulative distribution functions of H:·, 
n 

conditional on the current state x. As in the case of the equation for cost per cycle, we 

wish to prohibit negative levels of degradation, and to this end we define, as in the 

above case, 

and using the same reasoning as in the case of cost per cycle, we find the integral 

equation for the expected length of a cycle to be 

r ~ 

lex, r) = f [1- Gr(h I x)]dh + 1(0, r) u(x, r) + f ley, r)KrCy I x) dy 
o o 

where K, is the same function as in the previous case, namely 

Kr(Y I x) = f fr(y,m I x)dm 
SIAn 

It is easily seen that this integral equation has the same general form as the equation for 

the expected cost per cycle function, and hence the same considerations will apply in 

solving this equation. 

Optimal Inspection Policies 

Having computed the average cost and length of a cycle, we can now directly apply the 

renewal reward theorem to compute the average cost. So the expected average cost per 
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unit time over an infinite time horizon, for a new system with inspection policy r IS 

given by 

C(O, r) = v(O, r) 
1(0, r) 

Since we are assuming that each new system has degradation level zero, the policy used 

for inspection of the system should be that which minimises C( 0, r), that is 

1"* = arg inf { CC( 0, r) } 
r>O 

Finding the optimal periodic inspection policy is now a matter of optimising this 

function. An example of this optimisation is given in sections 3.6.1 and 3.6.4 where the 

case of a gamma process degradation model is considered. 

3.3.2 Special Case of Monotone Degradation Process Model 

In the case of a monotonic increasing degradation process we can simplify the above 

equation since Xtand M t are identical. As above we define vex, r) = E[V(x, r)IXo = x] 

to be the average cost until replacement/failure a system with degradation level x. Then 

applying the same reasoning as on the case of the general model we find 

n 

= V(Xr' r)l{x,EAo} + Le, l{XrEA,} 
;=0 

Where we assume Ao = B. Taking expectations we find 

n 

= v(Xr' r)l\X
r
EAoI + L C; l\x,EA, 1 

;=0 

Thus, taking expectations with respect to X, we get 

vex, r) = E(EV'(x, r) I X r )) 

= E(V(X,,r)l{X,,Ao} + ~C, l{X,q}J 

n 

= f v(y, r)!r(Y I x)dy + 'Ie; fP'(X r E A,) 
,~ ;=0 
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In this case we can define c(x, r) as 

n 

c(x, r) = Ie i pX(Xr E AJ (3.21 ) 
i=O 

which again represents the average cost incurred at the next inspection. In this case 

.ft(Ylx) is the density of X, conditional on Xo = x. So rewriting the above expression we 

find that v(x) satisfies the integral equation 

So 

v( x) = c( x, r) + f v(y) ir (y Ix) dy (3.22) 
o 

So that, in this case, we need only consider the transition density for period r, rather 

than the joint probability of the state after period r, and the probability that the process 

does not reach the set An in that period. In addition, because the process is assumed to 

be monotonic increasing, there are no difficulties here with the problem of negative 

levels of degradation. 

Applying identical reasoning to the derivation of the equation for average length of a 

cycle, we find that 

(3.23) 

so that the expectation over L becomes 

so that, upon taking expectations with respect to the density of Xt and Hs, we get 

r 

l(x,r) = f[1-Gr(hlx)]dh+ f1(y,r)ir(Ylx)dy 
o Ao 

The structure of the monotonic degradation process implies that these integral equations 

are of the Volterra type. An example of this is shown in section 3.6.1 below where a 

Gamma process is used as the degradation model. The details of the numerical solution 

of this form of equation is given in Appendix AI. 

As in the general case, the average cost per unit time is given by 

C(O,r)= v(O,r) 
I(O,r) 
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which is minimised to determine the optimal inspection interval. 

3.3.3 Costs of No Inspections and Condition Monit~ring 

Under the average cost per unit time criteria, the cases are particularly simple. We 

consider first the case of no inspections, before looking at CCM. 

No Inspections (NI) 

Let us assume that we are dealing with the same system as described above. Then the 

expected length of a cycle, starting in state zero, is simply the expected failure time of 

the system which is simply the hitting time of Sn. Likewise the only cost incurred 

during a cycle is the failure replacement cost of the system CF-

(3.27) 

Which represents the average cost per unit time of allowing the system to run without 

making any inspection, and simply replacing on failure. 

The limiting value for the cost of replacement given by equation (3.27) can also be 

easil y derived from the integral equations (3.7) and (3. 14) in section 3.3. 1, by letting r 

~ 00, and rearranging the resulting simplification. 

Continuous Condition Monitoring (CCM) 

Suppose now that condition monitoring is available, and incurs monitoring cost p per 

unit time. Now assume that the CCM replacement limit is given by r, and the cost of 

replacement is given by CR. Then, denoting Gr(hIO) as the distribution of the hitting 

time of r from zero, we have simply 

tee\! 
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These simple results can now be used to compute the limiting cases, which are not 

covered directly by the model described above. 

These results can be used to give an indication of when condition monitoring is more 

appropriate than a traditional inspection regime. 

Relationship to the Age Replacement model 

While we are considering alternative polices based on our model, we make the 

following comment regarding an age replacement model. By letting So = ° in our model, 

the integral equations for v and 1 become 

v(x, r) = c(x, r) + v(O, r)u(x, r) 

r 

I(x, r) = f [1- G Sn (h I x)] dh + 1(0, r)u(x, r) 
o 

Letting x = 0, and rearranging, it is clear that the average cost per unit time becomes 

C( 0, r) = -r __ c--=(:.........:O,_r~) --

f[l- G
Sn 

(h 10)] dh 
o 

since the u function is cancelled when the ratio if formed. In this expression c may be 

regarded as the expected cost incurred on replacement, given by equation (3.5). As in 

the usual age replacement model, the denominator is simply the expected length of a 

cycle under policy r. 

(3.29a) 

(3.29b) 

(3.30) 

It is clear then that this is exactly the same as the simple age replacement policy, except 

that the replacement cost at the end of a cycle is a function of the level of degradation. 

If we define a simple two region replacement policy with cost CR incurred if 

degradation is below the failure limit, and CF incurred otherwise then we have exactly 

the simple age replacement policy, as defined in, for example, Cox (1962). This 

generalisation however allows degradation dependent age replacement policies to be 

considered, and seems suitable for modelling perfect repair, with repair costs dependent 

on the level of degradation. 
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3.4 Optimal Periodic Inspection: Discounted Cost Criterion 

3.4.1 Derivation of Discounted Total Cost 

Let us now consider the optimal perfect inspection of Levy degradation processes under 

the discounted total cost criteria. This criteria is perhaps simpler than the previous case, 

and also allows future costs to be discounted, which is a significant factor in real 

applications. In addition, this criterion is not dependent on the renewal reward theorem 

for its validity and can be extended easily to the case of non-periodic inspections. 

The system we shall consider is identical to that considered above, and we again use 

model assumptions Ml as given in section 3.2. We apply the same reasoning as in the 

prevIOUS case. 

We define V8(X, r) to be the discounted total cost for a system which has current level of 

degradation x. So, if we define t/ to be the inter-event times (an event being either an 

inspection or failure), then define 

to be the expected discounted total cost, where C(x,y; r) represents the (random) cost 

incurred if the system is in state y at time tn when it was in state x at time tn-i, and the 

inspection policy is T. 

Using standard dynamic programming arguments, we can express this cost function as 

the sum of the cost incurred at the next inspection and the cost incurred thereafter. This 

case differs only slightly from the calculation of expected cost per cycle in the average 

cost criterion case above. The differences are simply that we must now discount all of 

the costs and include the cost of operating the new system, after a replacement or failure 

occurs. 

Again we assume that Xr represents the degradation process, and Mt represents the 

maximum value of that process over the period [0 , t]. Let 6' represent the discount rate 

which applies to our calculations, and assume 6' > O. The cost function may be written 

n-i 

+ Le-OT(C, + J'o(O, r)) l{XrEA,.,\/,'iAnl + e-
6H

;' (en + 1~(0,r)) 1\;1:<rl 
1=1 
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where we have expressed the cost function as the sum of the cost in the event of 

continuing (i.e. not replacing the system) and the costs for each possible replacement 

event. Equation (3.32) is equivalent to (3.1) in the average cost criterion case. We 

proceed similarly 

E(vo(x, r) I XpMpH:,,) 

e-OT(Co + VO(XT, r))I(xrEA
o
,MreA,,} + 

=E n-\ 

Le-
OT 

(Cj + Vo(O, r))I(xrEA
t
,Mr eAn} + e-

OH
: (Cn + Vo(O, r))I!H: <T} 

1=\ (3.3 3) 

n-\ 

+ Le-OTvo(O, r)l(xrEA ;,Mr eA,,} + e-
OH

: vo(O, r)l{H:<r} 
1=\ 

We define /1' (y,mlx) to be the joint density of Xr and M r, conditional upon Xo = x. 

Taking expectations of the above expression with respect to the joint density of M l' and 

Xr we get 

=E 

n-\ 

e-OTv(XT, r)I(XrEAoMr eAnl + Le-OTCj I(XrEA
t
MreA,,} 

j=O 

n-\ 

+e-OH: C If", } + '" e-OT v 0 (0, r) I(X EA.M eA 1+ e-
OH

: v 0 (0, r) If... } 
n rs<T ~ r , r " rs<T (3.34) 

i=\ 

n-\ r 

+ Le-OT (Cj + vo(O, r))px(XT E ~,MT ~ An)+ (Cn + vo(O, r))f e-OhgT(h I x)dh 
i=\ 0 

where g(h I x) is the probability density function of H~, the hitting time of the critical 

set from x. 

As in the case of the discounted total cost criterion, we make the assumption that 

v 0 (x, r) = v 8 (0, r) for x < 0. The integral term in the above expression becomes 

So 

e-8rvo(0, r)px(Xr < O,M r ~ An)+ f f e-8T v8(y, r)fJy,m I x)dmdy 
o S\An 
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the details following from the average cost case. Substituting equation (3.35) into 

equation (3.34) we obtain 

So 

v,,(x, r) = c,,(x, r) + v,,(O, r)u,,(x, r) + f v,,(y, r)K,(Y I x)dy 
o 

where 

n-l , 

c,,(x, r) = Le-"'C; px(X, E A;,Mr fI. An)+ enf e-"hgr(h I x)dh 
1=0 0 

u" (x, r) = e -", px (Xl' fI. Ao + U An' M r ~ An) + J e -" h g r (h I x) dh 
o 

K,(Y I x) = f e-'" i,(y,m I x)dm 
S\An 

A; denotes the set of positive states which are in Ao, i.e. A; = Ao\(-oo,O). 

The optimal policy in this case is given by 

r" * = arg inf { v( 0, r) } 
,>0 

which in all but degenerate cases must be obtained by numerical methods. 

We note that the forms of the functions c, u and K are more complicated than is the case 

for the average cost criteria. It can be seen however, that the integral equation above 

has the same general form as in the previous case, and can be solved using the same 

methods. 

As in the average cost case, this equation is simplified if we are dealing with a 

monotonic degradation process. It is this simplification that we consider in the next 

section. 

3.4.2 Special Case of Monotone Degradation Process Model 

As before, in the case of monotonic degradation process, Xc and Me are identical. We 

therefore find that the total discounted cost may be expressed as 
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So that the expected cost conditional on X and H is given by 

n-l 

+ ~ e-
8r 

v 8 (0, r) l!xrEA;} + e-
8H

; v 8(0, r) 1 (H;<rl 

Thus, taking expectations with respect to X and H, we get 

= f e-8rv8(y, r)/r(Y I x)dy +e-8rCoPx(Xr E Ao) 
Ao 

n-l r 

+ Le-8r (C; + v8(0, r»)px(Xr E AJ+ (Cn + vo(O, r»)f e-8hg r(h I x)dh 
1=1 0 

In this case we define c(x, r) as 

n-l r 

c8(x, r) = Le-8rC; pX(Xr E ~)+Cnf e-8hgr(h I x)dh 
;=0 0 

Also, because we have a monotonic (increasing) degradation process there is no 

possibility that the level of degradation will become negative, so ud..x, r) is given by 

r 

u8(x, r) = e-8r pX(Xr ~ Ao U An)+ f e-8hgr(h I x)dh 
o 

Where A; is defined as in the preVIOUS section. Then, making the appropriate 

substitutions we get the integral equation 

So 

v8(x, r) = c8(x, r) + v8(0, r)u8(x, r) + f v8(Y, r)Kr(y I x)dy 
o 

with c and u defined as above and 

is the discounted transition function. Once again, the integral equation is in the same 

standard form, and may be solved by the methods given in appendix AI. 
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3.4.3 Costs of No Inspections and Continuous Condition monitoring 

The case of no inspections and condition Monitoring are again much easier than in the 

general case. In the discounted total cost criteria however, a recursive definition must 

be used 

No Inspections 

As in section 3.3.3, we assume that the system is allowed to run until failure, so that the 

only costs incurred are the costs of replacing the system at each failure. We define CF to 

be the cost of replacing the system on failure, and assume failure occurs when the 

degradation level hits the critical set Sn. Letting Vo( 0,00) denote the total discounted 

costs with discount rate 8, staring in state zero. Then 

so that 

hence, in the particular case when x = 0, which is the case we are most concerned with, 

we have 

=> 

C$) 

v§(O, (0) = [CF + v§(O,oo)]f e-§h gsn (h 10)dh 
o 

C$) 

C F f e-§h gSn (h 10)dh 

v § (0,00) = ---:~=--------­
}-f e-§h gsn (h 10)dh 

o 

(3.45) 

(3.46) 

(3.47) 

Where g (h Ix) represents the density of the hitting time of the critical set Sn from x. If 
Sn 

we define g- (0 I x) to be the Laplace transform of g, it is clear that the discounted total 
Sn 

cost in this case may be written in terms of the Laplace transform of g as 

(3.48) 

70 



CHAPTER 3 

:t can be easily shown that the solution of the integral equation above gives values 

;onsistent with those found directly using the above formula. 

[n this case the integrai equation is given by equation (3.36) and (3.37a,b,c). It is clear 

:hen, that as r --)0 00, the summations of probabilities in c and 'Ii tend to zero because of 

:he presence of the exponential function. Thus we find from equations (3.35a) and 

:3.36b) 

CI) CI) 

co(x, r) --)0 Cnf e-Ohgsn (h I x)dh u 0 ( x, r) ~ f e -0 h g Sn (h Ix) dh 
o 

(3.49) 
o 

K; (y I x) represents the probability that the system is in state y, for some y < r, at time 

r (without having first failed). Clearly, for degradation modelled by a Levy process 

with positive drift, K must tend to zero as r ~ 00. Thus the integral equation may be re­

written as 

CI) CI) 

V 0 ( x, (0) = C n f e -0 h g Sn (h Ix) dh + v 0 (0, r) f e -0 h g Sn (h Ix) dh (3.50) 
o o 

So, letting x = 0, and rearranging gives 

CI) 

CF f e-Ohgsn (h 10)dh 

v 0 (0,00) = -~~------

1-f e-Oh 
gSn (h 10)dh 

(3.51 ) 

o 

As is found by direct argument above. 

Continuous Condition Monitoring 

In the case of CCM we use the same approach, the only difference being the cost of 

monitoring. We assume that the cost of CCM is incurred continuously at rate p per unit 

time, and that the system is to be replaced with cost CR, when the degradation reaches 

level r. Then starting in state x we have 

H' • 
Vo(x) I H; = f pe-otdt + [CR + Vo(O)]e- OH

; 

o 
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so that, taking expectations, we get, 

vo(x) = E[E[Vo (x) IH~]] 

=EH[ ~ +[ CR + V.(O) _ ~ }-.H;] 

= ! {~ + [ C R + v. (0) - ~ } -Jh } g, (h I x) dh 

= ~ + [ CR + V.(O) - ~]l e-
Jh 

g,(h I x)dh 

=~ +[CR +v.(O)-~l~,(OIX) 

so that, in the particular case when x = 0, we have 
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(3.53 ) 

v.(O) =~ + [CR + v.(O) - ~ ]g-,(c5 IO) 

~ +[ CR - ~ ]g-,(O 10) 
(3.54) 

=> v (0) - --=----=---
o - 1-g

r
(oI0) 

Depending on the nature of the degradation process, the Laplace transforms of the 

hitting time densities may be computed directly, or by numerical integration. In both 

cases however, the computations are simple enough to give a good idea of the costs 

involved in condition monitoring. 

Age Replacement Model 

As for the average cost case above, by letting the replacement limit tend to zero, we can 

replicate the simple age replacement model, with a degradation dependent cost of 

replacement. 

In this case, equation (3.36) becomes simply 

With c and u defined by (3.37a,b). So that upon letting x = 0, we get 

0) 
c(O,r) 

1'( ,r =-~~-
1- 1/(0, r) 

(3.55 ) 
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On calculating these functions with So = 0, we find that the discounted total cost is 

simply 

e-
or 

(C]P(Xr E Al ,Mr ~ An) + ... + Cn_IP(Xr E An_I,M r ~ An)) -t- en f e-Shg(h i x)dh 
(0,7")= 0 

r 

l-e-orP(Mr EAn)- fe-Ohg(hlx)dh 
o 

Which, in the case of a two-region replacement policy gives an expreSSIOn for the 

discounted total cost of an age replacement policy. 

3.5 Optimal Non-Periodic Inspection: Discounted Cost 

Criteria 

3.5.1 Optimality Equations in General 

Let us now consider the case of optimal non-periodic inspection. This case is more 

general and often more useful than the previously considered case of periodic 

inspection, since it generally results in policies with lower costs. This is because each 

inspection interval is in some way determined by the state of the system at the previous 

inspection. This case however, is more complex and requires the use of dynamic 

programming to obtain the optimal policies. 

As in the case of periodic inspection under the discounted cost criterion we assume a 

total discounted cost function of the form 

where Jr represents the inspection policy, and other notation is as in section 3.4.1. \\' e 

are only concerned with deterministic stationary policies, since the Levy property of our 

degradation process implies the current time has no bearing on future levels of 

degradation. 

We define the function Vs to be the value function for the c').·optimal policy, i e 

(3.58) 
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V 0 ( x) = inf v 7r ( X ) 
7r 

For the general cost function given by equation (3.57) above, we find that the optimality' 

equation is given by 

where c represents the discounted costs incurred at the next inspection, when in 

inspection interval ,is chosen. A derivation of this based on Ross (1970) is given in 

appendix A3. In the particular case we are dealing with, the results of section 3.4. 1 

show that the optimality equation is given by 

where c, u and K are given by equations (3.37a,b,c) of section 3.4 

Now let us consider the convergence of this dynamic programming equation. We 

follow the standard method, given by, among others, Ross (1970). 

We now assume that c is continuous and bounded, as it will be in reasonable cases, and 

define To : Cb [0,00) ~ C b [0,00) as 

Now, assume that vI'v
2 

E Cb [0,00) and x ~ 0. Then let '0 = Jr* (x, v2 ) be a minimising 

point of the function 

So 

,~co(x, r) + v2 (O)uo (x, r) + f v2(y)K.(y I x)dy 
o 

over the range [0, x]. Then 

(To VI )(x) - (To v2 )(x) 

= inf{C' (x,r) + v, (O)u, (x, r) + 1 v, (y) K, (Y I X)dY} 
1">0 0 

So 

-c 0 (x, r 0) + l' 2 (0)110 (x, r 0) + f l' 2 (},) K TO (.~' i x) ci.}' 
o 

7~ 

(3.59) 

(3.60) 

(3.61 ) 

(3.62) 

(363) 

(3 6-t) 



So 

~ Us (x, To)' (VI (0) - V2 (0»)+ f (VI (y) - V2 (y»)K;" (y I X)dy 
o 

"IIVI - V2 +. (X, TO) + 1 K,(Y I X)dy} 

~ KIIV I - v2 11 
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We note that K is less than unity for 0 > 0, since it represents the discounted total 

transition probability out of state x. The function u in the penultimate line of the 

derivation is the discounted probability that the system will be replaced (or have 

negative degradation) and the integral term is the discounted probability that the system 

will not fail or be preventively replaced. It is clear from equation (3.64), and a similar 

derivation with VI and V2 interchanged that 

(3.65) 

so that T defines a contraction mapping on C b [0,(0). We deduce therefore, under the 

assumptions given that T'v converges to Vo uniformly on [0,(0) as k ~ 00. 

We can apply a standard policy improvement algorithm to the discretisation of this 

problem, where the discretisation is carried out by applying a quadrature rule to the 

integral. The policy improvement algorithm based on Puterman (1994) is 

1. Set k = 0, and select an arbitrary inspection rule TC 0 = { Tg, ... , r~ } 

2. (Policy Evaluation) Obtain v k by solving vk = M;IC k ,where the subscript k 

indicates the matrix is to be evaluated with policy TCk. 

. Ch {k+1 hI} t t' f 3. (Pohcy Improvement) oose Jrk+1 = To "'" Tn 0 sa IS Y 

TCk+1 = argmin{T,,(vk
)} 

"EO 

4. If Jr = TC stop and set TC* = Jrk . Otherwise, increment k by 1 and return to 
k+1 k' 

step 2. 

The exact definition of the matrix M depends on the situation, but the methods of 

appendix Al may be used to determine its form. 
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See the example of section 3.6, where this algorithm is used to compute optimal non­

periodic inspection policies. 

3.5.2 Special Case of Monotone Degradation Process Model 

Applying the same reasoning as above to the monotone degradation case in section 

3.4.2, gives us the following optimality equation for the case of a monotonic 

degradation process 

V,(x) =0 i!!f {c,(X, r) + v,(O)u,(x, r) + 1 v,(y)K,(Y I X)dy} 

with c, v and K defined as in equations (3.41),(3.42) and (3.44), namely: 

n-I r 

Co (x, r) = Ie-orC; pX(Xr E ~)+Cnf e-Ohgr(h I x)dh 
;=0 0 

r 

uo(x, r) = e-or pX(Xr ~ Ao uAn)+ f e-Ohgr(h I x)dh 
o 

K r (y I x) = e -0 r ir (y I x) 

The argument showing that the mapping 

(3.66) 

(T, v)(x) =0 i~! {c, (x, r) + v(O)u, (x, r) + 1 v(y) K Jy I X)dY} (3.67) 

is a contraction mapping, is identical to that above for the non-monotonic degradation 

process. 

In both cases, of general and monotonic degradation processes these equations must be 

solved numerically, since their complexity makes closed form analytical solutions 

unavailable. However, using the methods given above we may determine the cost of 

any particular policy. Using a standard policy improvement routine, we can derive the 

optimal policy. An example is shown in section 3.6, immediately below. 

In this case, it is clear that the costs of no-inspections and of continuous condition 

monitoring are identical to those given in section 3.4.3, namely 

76 



CHAPTER 3 

where g represents the Laplace transform of the density of a hitting time, the suffix 

denoting the point which we are considering. 

3.6 Example: Gamma Process Degradation 

As an example we assume that we are dealing with a Gamma degradation process. 

Therefore the increments of the degradation process have a gamma distribution 

XI - Xs - Gamma(a(t - S), p) 

Under our notation this means that the transition density function is given by 

paT (y _ XtT-1 e-P(y-x) 

IT (y Ix) = r( aT) 

Let us in addition simplify the problem by assuming that the replacement policy is 

determined by only three sets. We assume that the system fails if the degradation 

reaches a certain level c, and we replace the system with a new system, if an inspection 

reveals a level of degradation greater than amount r < c. Figure 3.1 shows how the state 

space is subdivided under these assumptions. 

We further assume the following cost structure 

(i) Each inspection incurs a cost Cj . 

(ii) Each preventive replacement incurs cost CR, in addition to the cost of inspection. 

(iii) Replacement on failure incurs cost C F, with no inspection cost incurred. 

This simplified model, then, corresponds to the more general model previously 

considered with 
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Now let us consider the three cases of Periodic inspection (average and discounted 

costS) and non-periodic discounted costs separately. 

3.6.1 Periodic Inspection : Average Cost per unit time 

From the results of section 3.2, for the case of a monotonic degradation process we find 

the cost and length per cycle are the solution of the equations (3.7) and (3.14), which are 

vex, r) = c(x, r) + f v(y, r)fr(y I x)dy 
Ao 

r 

lex, r) = f[l- Gr(h I x)]dh + f ley, r)fr(y I x)dy 
o Ao 

where c is given by equation (3.5), and u is zero since we are dealing with a monotone 

process. 

n 

c(x, r) = Lez pX(Xr E AJ 
i=O 

and as before, frey I x) is the probability density function of X, given Xo = x, and 

Gc(h I x) is the cumulative distribution function of H;, the hitting time of c starting 

from Xo = x < c. These are as follows: 

and it is simple to compute the CDF of H; in terms of the incomplete gamma function 

00 j3ah yah-Je-PY 

= L f(ah) dy 

f(ah~j3(c-x)) 
-

f(ah) 

= Q(a h, j3(c - x)) 

Where the incomplete Gamma function is defined as f(a~x):= f:ta-le-tdt , and Q is an 

incomplete Gamma Ratio defined by 
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Q(a;x):= r(~) 
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The function c(x, r) is found by computing the probabilities shown in the general case 

above. In this particular case we have that 

n 

c(x, r) = LCi pX(Xr E 4)= c]p(Xr < c)+CRP(r S; Xr < C)+CFP(X
T 

;::: c) 
;=0 

= C] (1- rea r; P(c - X))J 
rear) 

+cR(r(a r; p(r - x)) - rea r; P(c - X))J + C (r(a T; P(c - X))J 
rea T) F rea r) 

= C] + CR Q(a r, per - x)) + (CF - CR - C] )Q(a r, P(c - x)) 

And in addition we find that 

S
T Srr(ah·P(c-x)) Sr 
[I-Gr(hlx)]dh=T- ' dh=r- Q(ah,p(c-x))dh 

o 0 rea h) 0 

Substituting these functions into the integral equations for average cost and average 

time per cycle we get: 

v(x,r)=Cj +CRQ(ar,p(r-x))+(CF -CR -C])Q(ar,p(c-x)) 

r par (y _ xtr - 1 e-P(y-x) 

+ f v(y, T) () dy 
x raT 

Given the form of these integral equations we use a numerical approximation to solve 

them. Details of the approximation used, and other methods used later in this chapter 

are given in Appendix AI. Using this approximation we compute values of vex) and I(x) 

for various values of x, thus obtaining the cost function C. Section 3.6.4 below 

summarises the numerical results found for this model, and compares them to 

alternative policies. 
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3.6.2 Periodic Inspection: Discounted Total Cost 

In the case of periodic inspection under the discounted total cost criterion we must solve 

the integral equation 

So 

v15(x, r) = c15(x, r) + v15(O, r)u15(x, r) + f v15(Y, r)Kr(y I x)dy 
o 

where the functions c, u and K in this case are given by equations (3.41), (3.42) and 

(3.44) of section 3.3. Expanding these functions we find them to be 

Par (y _ x)ar-I e-P(y-x) 

K r (y Ix) = e -15 r y ~ X 
fear) 

r 

+8CF fe-15hQ(ah,p(c-x»dh 
o 

r 

u15 (X, r) = e-t5r Q(a r, p(r - X») + 8 f e-§hQ(a h, p(c - x»)dh 
o 

where we have used the elementary relation 

J e-15hg(h I x)dh = J e-15h ~G(h I x)dh 
o 0 8h 

r 

= [e-15hG(h I x)]:=o + 8 f e-15hG(h I x)dh 
o 

r 

= e-15rG(r I x) + 8 f e-15hG(h I x)dh 
o 

This transformation is necessary, since the density of the hitting time does not have a 

useful closed form expression. Substituting these values into equation (3.45) above we 

have the integral equation 

vt5 (x,r)=e- t5r {C j +CRQ(ar,p(r-x»+(CF -CR -Cj)Q(ar,p(c-x»} 

(3.70) 

+" C F ! e-§hQ(a h, jJ(c - x))dh + v 6 (o,r{ e-6'Q(a T, jJ(r - x)) + <5! e-OhQ(a h, jJ(c - xl )dh ] 

So pare )ar-I -P(y-x) 

f t5r y-x e d + vt5 (y,r)e- Y 
fear) x 
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Which we solve by the Modified Nystrom Method (Press et. al.. 1992). The details of 

the numerical solution are given in Appendix AI. 

3.6.3 Non-Periodic Inspection: Discounted Total Cost 

Let us now consider the case of non-periodic inspection. From the analysis of section 

3.6.2 it is clear that the dynamic programming equation we must solve is: 

T 

+0 CF f e-8hQ(a h, f3(e - x))dh 
o 

v 8 ( x) = inf [( fT J 
T>O + V 8 (0) e-8TQ aT, fl(r - x)) + 0

0 

e-8hQ(a h, fl(e - x))dh 

To solve this, we discretise the integral equation and apply a standard policy 

improvement algorithm, described above. Because we use the discretisation, we can 

find optimal polices for arbitrarily fine meshes over the state-space and time domain. 

While these do not give the exact optimal policy, we may find a policy which is 

arbitrarily close to that policy from the discretised problem. 

3.6.4 Numerical Results and Comments on the model 

Let us now consider the numerical results found by solving the equations of section 

3.6.1 to 3.6.3. In all three cases, our underlying assumptions are as follows: 

(i) The underlying degradation process is a Gamma process with a / f3 = 1. We 

vary the parameter a to look at the effects of changing the variability of the 

underlying process, for a given average rate of degradation 

(ii) The failure limit of the process c = 1. We vary the replacement limit r to see the 

effect of changing this limit. 

(iii) The cost of an inspection C1 is 1 unit. We vary the replacement cost C Rand 

failure cost C F, to look at changes in the optimal policies. 
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For the numerical work we assume that the state space is subdivided into 10 steps, and 

the time domain is divided into steps of length 0.05. We choose the state and time steps 

simply because they are small enough to show the nature of the optimal polices, and still 

not be too computationally demanding. Firstly, we consider the optimal periodic 

policies found in the average cost and discounted total cost case. We consider them 

together since their solutions are very similar, in that, for all cases considered, they 

result in the same optimal policy. This seems to be because of the high probability that 

each cycle will have the same length and costs under periodic inspection. 

The optimal periodic policy in these cases is determined by the inspection period. The 

optimal policies for the average cost and discounted total cost are shown in tables 3.1 

and 3.2 on pages 87 and 88 respectively. These tables, however, conceal many 

interesting facts about the cost functions. 

Properties of the cost function for Periodic Policies 

We now consider the form of the cost function under periodic inspection. For the model 

we are using we have found three distinct shapes for the cost function. 

(i) Single Local Minimum (Fig 3 .2a ) 

(ii) Double Local Minimum (Fig 3.2b ) 

(iii) Monotone Decreasing (Fig 3.2c) 

v(tau) 

~ ______ ~~ __ ~~-----------tau 

Figure3.2 (a) 
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v(tau) 

1-~r-f---------------------tau 

Figure 3.2 (b) 

v(tau) 

~--------------------------~tau 

Figure 3 .2 (C) 

The first of these, Single Local Minimum, is the standard cost function found in most of 

the literature. As the name suggests it corresponds to the case in which the costs are a 

decreasing function of the inspection interval up to the optimal point, and thereafter the 

cost is an increasing function of the inspection interval. 

The second case of a double local minimum is more interesting. As can be seen from 

figure 3.2b, the cost function has two local minima. For the model we are using this 

unusual behaviour is intuitively correct, and results from the nature of the periodic 

inspection policy. 

The third case shown in figure 3.2c is also a standard one, and occurs when the cost of 

failure is not sufficiently high to outweigh the costs of inspection. The resulting curve 

is thus monotone decreasing, and the optimal policy is not to carry out inspections, and 
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replace the system on failure. We do not consider this case in detail, since we are 

assuming the system is important enough that failure has large consequences. 

Let us now consider how variations in the parameter values affect the shape of the cost 

function. We do not give details of the precise numbers used, since we are only looking 

at how the parameters effect the shape of the cost function. Later we consider how 

these variations effect the optimal policy itself. 

Firstly let us consider the effect of the choice of replacement level on the shape of the 

cost function. We have found that low replacement limits result in single minimum 

cost functions, which become double minimum as the replacement limit gets closer to 

the failure limit. When the replacement limit is low, it has very little effect on the 

optimal inspection policy. The lower the replacement policy, the more likely that a 

preventive replacement will occur at the next inspection. So, for low replacement 

limits, we are simply assuming that every inspection is in fact a replacement and are 

effectively applying an age replacement policy. The optimal policy then is close to that 

found for an age replacement policy. It is clear then that the cost function will have a 

single minimum, as in the age replacement case, for low values of r. 

As the replacement level increases however, the cost function tends towards a double 

minimum form, especially in the presence of large failure cost as a proportion of 

replacement cost. The reason for the double minimum is clear. If the replacement limit 

is high, the difference between the failure and replacement limits is reduced, whereas 

the difference between the replacement limit and zero has increased. Because the 

distance between the two limits has fallen, this results in an increased chance that the 

system will fail between two inspections. This would imply a shorter inspection 

interval, but this would mean more frequent inspections during the time when the 

system is below the replacement level. 

Thus, at the first minimum, inspections are often enough to reduce the chance that a 

system may fail before the next inspection interval. At the second minimum, the 

inspection period is long enough so that the first inspection is likely to find the 

degradation level between the replacement and failure limits. Beyond this minimum, 

the cost function increases, tending toward the limit, which is equivalent to the case 

where no inspections take place Between these two minima, we must ha\'e a local 

maximum. This represents the worst of both positions, as the increased inspection 
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interval is too large to be able to avoid failures occurring, but too small for the first 

inspection to reveal a level of degradation between the replacement and failure limits. 

Now we have seen why these shapes of curve occur, it is important to see how the 

parameters effect the cost functions. Firstly let us consider the effect of increasing the 

process variance, while holding the rate of degradation constant. This has a very 

predictable effect. Low process variability results in predictable behaviour, which 

causes the problems described above to become more prevalent. Since we know with 

more certainty the level of degradation at a specific point in time, we can more 

accurately choose the inspection intervals, hence reducing costs. However, the cost of 

making the wrong decision (as in the case of the local maximum described above) is 

increased. This emphasises the local minima and maximum in the cost function. 

In the case of high process variance, the increased uncertainty makes the problem 

described above less important, and the shape of the curve becomes smoother, so that 

the local maximum and minima are less pronounced. This is exactly as we would 

expect. 

It is also very important to consider which of these two local minima will in fact 

represent the global minimum of the cost function. This is largely determined by the 

costs of replacement and cost of failure. Essentially there are two cases: those of the 

single and double minima. 

In the case of a single minimum, the results are largely as expected in, say, an age 

replacement model. Increasing failure cost relative to replacement cost results in 

optimal inspection period becoming closer to the origin. 

In the case of a double minimum, the effects are more interesting and practically more 

important. It is the relative values of the replacement and failure cost which determines 

which of the local minima is the global minimum. Essentially, for large failure cost, the 

first local minimum is emphasised and the global minimum tends to be located at this 

minimum point. This is also intuitively clear, since for larger failure costs it is more 

important that we prevent failure, rather than have our first inspection occur at a time 

when we expect the degradation to be between the replacement and failure levels. For 

smaller values of the failure cost, emphasis is placed on the second minimum, which 

may even disappear, so that the cost function becomes monotonic decreasing beyond 
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the local maximum. In this case it is the second local minimum which becomes the 

global minimum. 

The question of these double local minimum values is also important practically. As we 

have seen, it is possible that small changes in the costs, replacement levels and process 

variability, can have large changes on the optimal policy. It is perhaps also the case 

(although this has not been investigated) that the optimal policy is not a continuous 

function of the parameters of the model. This is particularly the case in the double 

minimum case, when small changes in the cost of failure can result in the global 

minimum jumping from one local minimum to the other. 

Properties of Optimal Inspection Policies 

Having looked at the properties of the cost functions, let us now consider the optimal 

inspection policies themselves. Tables 3.1 to 3.3 show respectively, the average cost 

optimal periodic policy, the discounted total cost optimal periodic policy, and the 

discounted total cost for the optimal non-periodic policy, expressed as a percentage of 

the costs of the periodic policy. 

As we have noted above the average and discounted total cost periodic polices have 

largely the same properties, so we consider them together. These periodic policies 

behave largely as expected, and as described in the above discussion. Firstly, we 

consider the effect of the costs of replacement on the optimal policy, basing our 

comments on the results shown in Table 3.1. It can be seen that there are two effects on 

the optimal inspection interval, based on movements in the cost of failure and 

replacement. The first of these relates to the absolute value of these costs, and the 

second to the ratio of failure cost to replacement cost. Increasing the absolute values of 

either cost tends to make the inspection interval become shorter. This is simply because 

the cost of inspection becomes relatively cheaper, and so it is optimal to inspect more 

often. Similarly, if the costs are increased (or decreased) so that the ratio of failure to 

replacement costs increases, this has the effect of decreasing the optimal inspection 

interval. The reverse of this situation is that an increase in the costs which reduces the 

ratio of failure to replacement costs, may increase the inspection interval. The exact 

effect on the inspection interval depends upon the interaction of these two factors. In 

86 



CHAPTER 3 

lome cases the increasing costs will cause the inspection interval to fall, but this 

iepends upon the change in the cost ratio. 

Optimal Inspection Interval and Average Cost Per unit Time 
Low Variance (a 20) Medium Variance (a-1 0) High Variance (a-5) 

Cp 10 30 100 Cp 10 30 100 Cp -lO 30 100 

CR = 0.9 0.65 0.5 0.95 0.5 0.3 l.2 0.4 0.2 

Low 
5 8.346 10.746 13.249 8.706 12.640 15.726 8.754 14.404 20.734 

Rep. 0.95 0.65 1.15 0.5 1.55 0.35 
Limit 20 

27.322 37.259 27.724 43.010 27.076 47.416 

r=0.3 0.8 0.85 0.95 
50 

74.855 80.001 82.620 

CR = 0.9 0.3 0.2 0.95 0.25 0.15 1.1 0.25 0.15 

Med. 
5 8.424 11.689 13.931 8.729 13.133 17.919 8.710 15.172 25.777 

Rep. 0.95 0.25 1.05 0.2 l.25 0.15 
Limit 20 

27.223 34.187 27.506 37.633 6.904 42.951 

r=0.6 50 0.35 0.3 0.3 

7l.786 73.816 75.503 

CR= 1.1 0.1 0.05 l.25 0.15 0.05 l.65 0.2 0.1 

High 
5 9.487 22.039 34.366 9.408 22.986 55.717 9.057 23.591 54.892 

Rep. l.0 0.05 1.1 0.05 l.35 0.1 

Limit 20 
28.464 448514 28.150 53.576 27.106 62.124 

r=0.9 0.05 0.05 0.1 
50 

65.822 72.884 76.588 

Table 3.1 This figure shows the optimal inspection interval, and corresponding 

discounted total cost subject to variations in replacement limit r, degradation process 

variance, cost of failure and cost of replacement. 

We can certainly say however that, from these results, an increase in failure cost, 

holding all other costs fixed, will result in a decreased inspection interval. Likewise, 

decreasing the cost of replacement, holding other costs constant will result in an 

increased inspection interval. Also, increasing both costs, and holding them in the same 

ratio, will result in a decreased inspection interval. These results show the importance 

of using an appropriate model for choosing an inspection interval. It is difficult to tell 

in any particular case how the costs, and other variables that have an effect, will affect 

the optimal policy. 
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Optimal Inspection Interval and Discounted Total Cost ~ 

Low Variance (a 20) Medium Variance (a-lO) High \'ariance (0 5) 
Cp 10 30 100 Cp 10 30 100 Cp 10 30 100 , 

CR= 0.9 0.65 0.5 0.95 0.5 0.3 1.2 0.4 0.: I 

! 

Low 
5 83457 107462 132488 87054 126398 157259 87538 144035 20;333 I 

Rep. 0.95 0.65 1.15 0.5 1.55 I 0.35 
Limit 20 

273206 372577 277220 430083 270735 ·P4144 

r=0.3 0.8 0.85 0.95 
50 

740515 799975 826155 I 
I 

CR= 0.9 0.3 0.2 0.95 0.25 0.15 1.1 0.25 0.15 

Med. 
5 84231 116884 139309 87283 131324 179187 87093 151719 257761 

Rep. 0.95 0.25 1.05 0.2 1.25 0.1 S 
Limit 20 

272217 341855 275039 376316 269019 429498 

r=0.6 50 0.35 0.3 0.3 

717830 738130 754999 

CR= 1.1 0.1 0.05 1.25 0.15 0.05 1.65 0.2 0.1 

High 
5 94860 220381 343653 94075 229850 439203 90561 235899 548898 

Rep. 1.4 0.05 1.1 0.05 1.35 0.1 
Limi 20 

284641 448500 281479 535738 271028 621216 
t 

0.05 0.05 0.1 
r=0.9 

50 
658193 728809 765853 

Table 3.2 - This figure shows the optimal inspection interval, and corresponding 

discounted total cost subject to variations in replacement limit r, degradation process 

variance, cost of failure and cost of replacement. 

It is also clear from the table that the variability of the degradation process plays an 

important role, but seems less clear cut than in the above case. Increasing the variability 

of the process has various effects depending on the level of the costs involved. The 

general pattern is that the inspection interval will increase for systems whose failure and 

replacement costs are not large relative to the inspection cost, while it will decrease for 

systems that have high costs relative to the cost of inspection. The reason for this is 

clear. Under a periodic policy, it is important that the replacement region is not missed 

by inspections, so increasing the variability of the process makes this more likely to 

happen. When costs are small, the inspection interval increases so that the inspection is 

unlikely to take place before the replacement limit has been reached. On the other hand 

with high costs it is more important that the system does not ever fail, so that a much 

lower inspection interval occurs. 
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Discounted Total Cost as percentage of Periodic Optimal 1 DTC 
Low Variance (a 20) Medium Variance (a-l0) High Variance (a 5) 

Cp 10 30 100 Cp 10 30 100 Cp 10 30 100 

CR= 100% 99.5% 94.5% 100% 98% 97.5°0 100% 99°'0 98% 

Low 
5 83457 106860 125259 87046 123917 153513 87532 142844 20r68 1 

Rep. 100% 99.5% 100% 98.5% 100% 100~0 
Limit 20 

273206 370651 277220 423975 270736 -173395 

r=0.3 100% 100% 100°0 
50 

748453 799519 825597 

CR= 98% 85% 81.5% 98% 88% 84.5°0 99°0 92°0 88.5° ° 

Med. 
5 82310 99463 113706 85367 116003 151239 86282 139871 228721 

Rep. 99% 94% 99.5°'0 94.5°0 100% 95°0 
Limit 20 

270451 320533 273305 355392 268731 408925 

r=0.6 50 98% 98.5° ° 99~0 

702130 728081 747815 

CR= 91.5% 65.2% 74% 96% 76% 83.5° ° 98.5% 84.5°0 89.soo 

5 94860 143825 254144 90311 172898 267128 89340 199920 490960 
High 
Rep. 91% 85% 94.5% 89% 98% 92.5°0 
Limit 20 

259020 382543 266366 475919 265006 575126 

r=0.9 96.5% 95°0 97~0 
50 

635076 692967 741044 

Table 3.3 - This figure shows the minimum discounted total cost of the optimal non­

periodic Inspection Policy subject to variations in the replacement limit r, degradation 

process variance, cost of failure and cost of replacement. 

The other parameter that we have considered is the replacement level r. As we have 

said above, lower replacement levels imply a simple age replacement model. For small 

r it is clear that the aim of the policy is to stop the process as close as possible to, but 

not above, the failure level. It is clear from the table of costs that this level of r is less 

costly than higher levels of r, for low replacement and failure costs. For higher levels of 

failure and replacement costs, it is clear that the low level of r results in higher costs. In 

this case it is often much better to consider a medium or high level of r. Which of these 

gives the least cost is uncertain, but it appears that the process variability plays a big 

role. 

In some cases, the parameter r may be chosen at the discretion of the decision-maker. 

In this case, it is clear that the optimal value of r may be found by considering the joint 

optimisation of r and the inspection interval. This is easily done using our model. We 

note further that fixing the inspection interval allows us to use the model to find the 

optimal replacement limit, as in, for example, Park (1988a). 
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Now let us consider the optimal non-periodic policies. Table 3.3 on page 89 shows the 

minimum costs for various choices of parameters, and compares them to the 

corresponding non-periodic policies. Table 3.4 on page 91 shows some examples of the 

optimal policy, and corresponding costs, along with the optimal periodic policy in the 

same case. In the table, values of 100% indicate that the cost was greater than 99% of 

the periodic policy. 

Firstly, table 3.3 shows how the minimum costs for the periodic and non-periodic cases 

compare. We note, and emphasise, that in all but one extreme case, the optimal general 

policy is non-periodic. In only one of the cases shown, did the optimal general policy 

coincide with the optimal periodic policy. It is clear then that in many cases the 

periodic policy is very nearly optimal. This is seen particularly for the case of a low 

replacement limit, with exception of the extreme case in which the failure cost is 20 

times greater than the replacement cost. The reason for this is simply that low 

replacement limit is equivalent to an age replacement model and so we are looking for a 

replacement time rather than an inspection time. 

It can be further seen that the benefits of having a non-periodic structured policy is seen 

most when we have a high ratio of failure to replacement cost, with a high replacement 

limit, and with a low process variance. This is largely as we would expect. The non­

periodic policy will always result in a larger number of inspections, but is more likely to 

prevent failure occurring. Thus the benefit is seen most when the consequences of 

failure are greatest, and this is when the ratio of failure to replacement costs is high, and 

both of these are high relative to the inspection cost. 

These findings are again found in Table 3.3, which gives the optimal inspection policies 

for various values of CF, CR and r. The policies themselves are as we would expect, 

being decreasing functions of the level of degradation. 

Therefore, we have seen in this section that the model produces policies that are 

sensible and useful in the examples we have considered. The model produces results 

that are consistent with alternative models, such as the simple age replacement model, 

and with common sense. Also, it shows new and interesting behaviour of cost functions 

for degrading systems, which has important consequences for application to real life 

systems. 
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Rep. Limit CR Cp 

5 10 

r =0.25 10 50 

20 200 

5 10 

r = 0.5 10 50 

20 200 

\0 

5 10 

r ~O ~5 10 50 

20 200 

Optimal Non-periodic Policy under Discounted Cost Criterion Cost of 
Optimal 

Discretised State x Policy 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.5 0.65 0.7 0.75 

0.9 0.85 0.75 0.7 0.65 0.6 83458 

0.65 0.6 0.55 0.55 0.5 0.45 193329 

0.6 0.55 0.5 0.45 0.4 0.4 413721 

0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 83029 

0.55 0.55 0.5 0.5 0.45 0.4 0.4 0.35 0.3 0.25 0.25 180262 

0.45 0.45 0.4 0.35 0.35 0.3 0.3 0.3 0.25 0.2 0.2 357592 

0.8 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.25 0.2 0.05 82003 

0.55 0.5 0.5 0.45 0.4 0.4 0.35 0.3 0.3 0.25 0.2 0.2 0.15 0.1 0.1 0.05 170443 

0.45 0.4 0.4 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 326842 
. - ._ . -

Table 3.4. This table shows the optimal policies for various combinations of the parameters r, 

CR and CF- The optimal periodic policy and corresponding costs are shown for comparison 

Optimal Periodic 
Policy 

f* DTC 

0.9 83458 

0.65 193512 

0.6 .415688 

0.9 83529 

0.35 191100 

0.3 379530 

0.95 87833 

0.15 212081 

0.1 394383 

~ 
~ 
w 
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3.7 Conclusion 

In this chapter we have considered the problem of computing optimal inspection 

intervals for systems whose degradation follows a Levy process, and fail when this 

degra~ation reaches a given threshold level. We have applied arguments from dynamic 

programming theory to derive integral equations and optimality equations to determine 

the costs of maintenance for such systems. The solutions of these equations can then be 

used to determine the optimal inspection policy for the system. 

The main example considered in the chapter is that of a Gamma Process. The results of 

the model provide sensible and realistic inspection policies for such systems, and gives 

insight into the behaviour of the system and the effect of applying various inspection 

policies. 

There are many extensions of this model that could be considered. Firstly, we could 

consider the case of imperfect inspection, and this case is treated as special case of 

chapter 4. Another important extension is to the case where the system is not replaced, 

but instead is imperfectly repaired. This is considered in chapter 5. 

Now let us consider some possible extensions that we do not consider in this thesis. 

Firstly, it is important to note that we have used a stylised example to show the 

properties of the model. There can be no substitute however for considering a real life 

system, so that the results can be compared with the observed reality. To do this it 

would be useful to extend this model to the case of a multivariate degradation process. 

so that more than one indicator of failure could be considered. While this extension is 

theoretically possible, we have found that the solutions of the integral equations and 

optimality equations are more difficult to find. This is because the equations then 

involve multi-dimensional integrals, and the probabilities are much more difficult to 

compute, especially when the processes are correlated. 

As we noted in chapter 2, the threshold failure model can be criticised since it implies 

that the system cannot fail unless the degradation reaches a specific point. As we have 

suggested, we believe that this criticism is unfounded for many modern complex 

systems, since failure may only be rarely or never observed, and is often itself extrinsic 

to the measure of degradation being considered. However, for systems where this is not 

the case it would be interesting to consider the case when the system may' fail at any 

level, according to a degradation dependent hazard rate. 
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Also, it would be interesting to consider a model in which we are not only trying to 

reduce the costs of inspection. For example, we may wish to find the least cost subject 

to a safety constraint etc. 

We note that the model as it stands only applies to a simple Levy process model of 

degradation. The model can be used however for systems modelled by a generalised 

gamma process as defined by Van-Noortwijk (1996). If we assume that the results 

above are derived conditional on the value of the parameter a of the gamma process, we 

may compute the overall expected cost under a generalised gamma process, taking 

expectations with respect to the distribution of a. 

The model as it stands however, seems to provide a useful first step in the analysis of 

optimal inspection and maintenance of systems which degrade stochastically. We 

believe these models will become increasingly important, as degradation type models 

gain more emphasis over the traditional failure time model. 
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Chapter 4 

Optimal Inspection Policies in the Presence of 

Covariates 

4.1 Introduction 

In the previous chapter, we obtained approximate optimal inspection polices for systems 

whose degradation is perfectly observable. In many cases however, it is not possible to 

observe the system in this way, and a proxy for the true degradation process must be 

used. With this in mind, we now extend the analysis of the previous chapter to the case 

of observation of a covariate process. The system we shall consider is identical to that 

considered in chapter 3, in all respects, except that inspections now reveal the state of 

the covariate process, rather than the degradation process of the system. Once again we 

apply ideas from dynamic programming and Markov Decision Processes to obtain 

integral equations and optimality equations which we solve numerically to obtain the 

( approximate) optimal policies. As in chapter 3 we consider both average cost and 

discounted total cost criteria, for periodic inspections and discounted total cost criterion 

for non-periodic inspections. 

We begin by looking at the general case of a Levy degradation process, and a Len' 

covariate process. We then look at the case of imperfect inspection of the degradation 

process, which is a special case of a covariate process. As in the previous chapter we 
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then consider the specific case of Gamma process degradation, subject to imperfect 

inspection. The model proposed is quite general in nature, and can be applied to any 

case of Levy process' degradation with threshold failure. The exact nature of the 

degradation and covariate processes determines the extent to which useful results can be 

obtained. 

4.2 Underlying Inspection and Replacement Model 

We now consider the underlying inspection and replacement model, which is largely the 

same as that considered in Chapter 3. The list below makes all of the assumptions 

explicit. Throughout this chapter the process X = {Xt : t ~ 0 }denoted the degradation 

process of the system, and the process Y = {Yt : t ~ o} denotes the corresponding 

covariate process. We make, for now, no assumptions about the relationship between 

the degradation and covariate process. 

MODEL ASSUNlPTIONS M2 (Inspection of a covariate process): 

1. We assume the state-space of the covariate process Sc is partitioned into intervals Ao, 

A l • A 2, ... ,An. such that Ao = [O,so), and Ak = [Sk,Sk+l) for all k = 0,1, ... ,n-l with Sk 

< Sk+l and Sn+l = roo 

2. We assume the degradation process has state space Sd partitioned into a set 

B = [b, (0) and its complement [0, b). The system is deemed to have failed when the 

degradation process hits the critical set B, corresponding to level of degradation b .. 

3. Each inspection reveals the true state of the covariate process Yt . 

4. It is assumed that a new system has covariate level Yo = A E Ao. A new system is 

assumed to have degradation level O. 

5. If, at an inspection Y E Ao, the system is not replaced and is allowed to continue 

operating until the next inspection. Each inspection incurs a cost Co which is 

regarded as the cost of inspection and cost of any loss incurred by the system being 

unavailable during inspection. 
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6. If, at an inspection, Y E Ai for i= 1,2, ... , n then the system is replaced at a cost C/. 

This may be regarded as the total cost of inspection, of replacing the system and of 

costs incurred by having the system unavailable during replacement. The replaced 

system is assumed to have covariate level starting at level 2. 

7. The system is deemed to have 'failed' at the first moment the true le\·el of 

degradation process Xt hits the set B and this failure is immediately observed 

resulting in an immediate replacement of the system at cost C. Otherwise the state 

of the system cannot be revealed. 

The main difference between these assumptions and those for perfect inspection given 

in Chapter 3 is that all of the replacement decisions are now based on the covariate level 

Yt rather than the level of degradation. 

The fact that measurements are made of a covariate means that much greater care is 

required with definitions. The most important point concerns the nature of the covariate 

process. We make the assumption that the covariate process is a time-homogeneous 

Markov process. It may be possible to consider more general Markov processes, but we 

do not consider this here. We note that all Levy processes fall into this category, as well 

as many diffusion processes. 

Secondly we assume that the covariate process is bounded, in the following sense. If 

X = { X t : t ;;:: o} represents the theoretical covariate or degradation process we are 

using, we define a truncated process X' = { X: : t ;;:: 0 } such that 

A 

for A,BER 

We shall assume throughout that the process we are using is truncated in this form. In 

terms of degradation process with a threshold failure model it is natural to let A = 0, and 

to let B equal to the failure threshold level. In the case of a covariate process such 

natural truncation points may not arise. The point of this truncation is to remove the 

possibility of infinite covariate or degradation values. In practical terms, the le\·el of 

degradation and covariate will have a known range of possible values, and so the 

imposition of upper and lower limits will not cause any problems. It should be noted 
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that we have already informally made an assumption that X; = 0 for Xc < 0 in the 

analysis of non-monotonic degradation processes given in Chapter 3. We formalise this 

here as it is more important in the case of a covariate process, to avoid the theoretical 

possibility of infinite levels of the covariate. 

The assumptions described above have largely been made for technical reasons, and so 

that an integral equation with infinite limit may be avoided. We comment now on the 

implications for practical application of these methods. Firstly, the nature of the 

covariate process is that it must be in some way dependent on the degradation process, 

or at least correlated with it. Otherwise there would be no benefit in observing the 

covariate as a proxy of the degradation level. This means that, to some extent the two 

processes measure the same effects, and so we should expect them to have similar 

values and patterns (perhaps subject to scaling). It is thus reasonable to assume that the 

covariate process cannot take negative values, since a similar assumption is made 

regarding the degradation process. 

4.3 Periodic Inspection of a Covariate Process: Average Cost 

Criterion 

Following the methodology outlined in Chapter 3, we now consider the optimisation of 

periodic inspections of a covariate process. As in chapter 3, we derive integral 

equations for the average cost per cycle, and average time of a cycle, and appeal to the 

renewal reward theorem to obtain the average cost per unit time. In this case, and 

throughout this chapter, we restrict attention to policies which are dependent only on the 

current observation of the covariate process. The reason for this is to simplify the 

problem, and avoid problems with full history dependence. 

4.3.1 Derivation of Expected Cost per Unit Time 

As we have described in the section 4.2, the main difference between this model and 

that of Chapter 3 is that the decision variable is now the value of the covariate r The 

analysis may be simplified, however, by simply conditioning on the current le\·el of 
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degradation. By doing this, we can apply the results of the previous chapter, before 

integrating over the density of the degradation level, conditional on the covariate level. 

With the previous remarks in mind we define V (y, r) to be the random cost per cycle for 

a system currently in state y, that is with covariate level y, and likewise let L(y, r) be 

the remaining length of a cycle for s system currently with covariate level y. Now we 

define the expected cost and length per cycle as 

v(y, r) = E[ V (y, r) I Yo = Y ] 

ley, r) = E[L(y, r) I Yo = y] 

Now, applying the same methodology as in chapter 3 we compute these by deriving an 

integral equation based on a recursive relationship, proved using dynamic programming 

arguments. 

Expected Cost per Cycle 

Let us assume that Xt and Yt represent the degradation process at time t, and the value of 

the covariate process at time t, respectively. In addition we define the process M, to be 

the maximum of the process X t over the period [0, t), and H: to be the hitting time of 

the critical set B, by the degradation process X t started at x. Then, conditional on the 

initial values of these processes, and on the values of M, and Y, we can write 

V(y, r) I Y"M" Xo = x,Yo = y 

= [Co + V(Y" r )]I{y,EAo.M,e:B} + C1 l{y,EA1.M,IlB} + ... 

... + C n-l I{Y,EAn_1.M,e:B} + C n I{YrEAn.M,IlB} + C~F) I{MrEB} (4.1) 

n 

= V (Yr> r) I {Y,EAo.M,IlB} + I C; I{Y,EA;.M,IlB} + cF 
1{M,EB} 

;=0 

Which is essentially the same as the perfect inspection case except that X has been 

replaced by Y. Then, the conditional expectation of V(y) given Y, is simply 

E(y(y, r) IY"M"Xo = x,Yo = y) 

= E(ny" r)I{Y,EA,.M,<B} + t.c, l{r,EA,.*J,<B} +CF 
1{M,EB}IY"M"Xo = x, Yo = Y) (4.2) 

n 

= E(T'(Yr' r) I Yr,M" Xo = x,Yo = y)1{Y
r
tAo.AlrltB} + I C; I{Y,EA,,\frolB} + c

F 
l!.\f,EB! 

1=0 
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Now, we define V
X 
(y, r) = E(v (y, r) I Xo = x, Yo = y) to be the expected cost per cycle 

conditional on the current state of the degradation process. 

Then, writing the density of Y n M, conditional on Xo = x as ir (u, m I x), we have 

n 

= f fv(u,r)ir(u,mlx)dmdu+ L:Cjpx(Yr EAi,Mr ~B)+CF PX(Mr EB) 
~~~ i~ 

Since, given Y" V(Y,. r) is independent of Xo and Yo. (Superscript x on these probability 

functions signifies that the probabilities are conditional on Xo = x.) Now, we constrain 

the covariate process to have only positive values by assuming v(y, r) = v(O, r) for all y < 

0. This assumption is not restrictive, since we have already assumed that the process is 

truncated below, and by re-scaling the process we may make this lower limit equal to 

zero. 

As in section 3.3.1, this assumption implies that the integral in equation (4.3) above 

becomes 

f f v(u, r)ir(u,m I x)dmdu 

So b 

= v(O,r)PX(Yr <O,M r ~B)+ ffv(u,r)fr(u,mlx)dmdu 
o 0 

Now, we define analogously to the results of chapter 3, the functions 

n 

eX(y, r) = LC
I 
pX(Yr E Ai,Mr ~ B)+CF PX(Mr E B) 

j=O 

b 

K;(u I y) = f ir(u,m I x)dm 
o 

so that we can rewrite equation (4.3) as 

So 

"x (y, r) = eX (y, r) + lI x (y, r)v(O, r) + f v(lI, r)K~~ (ul y)dll 
o 

(4.3) 

( 4.4) 

(4.Sa) 

(4.Sb) 

(4. Sc) 

(46 ) 

Now, the expected cost per cycle, conditional on the level of the degradation process is 

clearly given by 
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b 

v(y, r) = E(vX(y, r)) = f VX(y, r)f(x I y)dx 
o 

where f(x I y) is the density of X. I Y. = y, ° < X. < b. The density is conditional on 

the fact that the level of degradation must be less than b, since otherwise the system 

would have failed already. The fact we are making an inspection shows that failure 

cannot have occurred. 

Substituting the right hand side of equation (4.6) into equation (4.7) we obtain 

so that 

v(y, r) = {I CX(y, r)f(x I Y)dx} + v(O, r){I uX(y,r)f(x I Y)dx} 

+ 1 v( u, r){I K; (u I y) f (x I y) dx } du 

So 

v(y, r) = c(y, r) + u(y, r)v(O, r) + f v(u, r)KT(u I y)du 
o 

The functions c, u and K are defined by 

b 

(4.8) 

u(y, r) = f pX(YT < O,M, ~ B)f(x I y)dx (4.9b) 
o 

b b 

K T (u I y) = f f fT (u, m Ix) f (x I y) dm dx 
o 0 

A difficulty which remains hidden in this analysis is computation of the joint density of 

the maximum variable of the process M, and the value of the covariate process Y. It is 

possible that the density can be obtained by conditioning on the true level of 

degradation at time r. Thus, using f to denote density functions, we have 
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co 

!Y,M, (u,m) = f !Y,M,IX, (u,m I z)fx, (z)dz 
o 

co 

= f !Y,(X, (u I Z)!Mr'rrXr (m I u,z)!x, (z)dz (4.10) 
o 
co 

= f !Yr(X, (u I Z)!M"Xr (m, z) dz 
o 

with all densities conditional on Xo = x. So that the density is obtained as an integral of 

the joint density of X and M and the density of the covariate process conditional upon 

the degradation process. In the case of a Wiener process, this density can be obtained 

in terms of the standard Normal density function. 

As in chapter 3, some simplification is possible if we are dealing with a monotone 

degradation process. This is considered in the next section. 

Expected Length of a Cycle 

As above we consider the value of L(y, r), conditional on Mr ,Yr, H: ,xo-'--x and Yo =y. 

Then, applying the same method as before we have 

L(y, r) I YT , M" H: ' X 0 = x, Yo = Y 

= L(YT' r)I{YrEAoMr(lB} + r 1 {Yr(lAo.Mr(lB} + H: IIH:<rl 

So that, upon taking expectations over L we get 

E(L(y,r)IYT,M"H:,Xo =x,Yo =y) 

=E(L(Y"r)I{YrEAo.Mr(lB} IY"M"Xo =x,Yo =y)+rl{Yr(lAo.Mr(lB} +H: 1{H:<rJ 

Now, taking expectations with respect to Yr and Mr. Then, using the notation of the 

previous subsection we have 

r(y, r) = E(L(y, r) I Xo = x,Yo = y) 
r 

= f f 1(1I, r)f,(u,m I x)dmdu + rPy,X(Yr \l Ao,Mr rl B) + f h gB(h I x)dh 
o Ao Sd \B 

= {rfY" (Y, 11. Ao,M, 11. B) + I h g. (h I X)dh} + /(OJ )P" (Y, < 0, M, 11. B) 

So b 

+ f f 1(11, r).(lI,m I x)dmdu 
o 0 
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Where gB(hl x) is the density function of the hitting time of the critical set B starting at 

x. So, unconditionally we have 

OCJ 

ley, r) = f r (y, r)f(x I y)dx (4.13) 

where, as before, f(x I y) is the density of X. / Y. = y, ° < X. < b . 

l(y,r) = H rPY,x (Y, ~ A",M, ~ B) + I h gB(h I x)dh k(X I y)dx 

b b So b ( 4. 1 4 ) 

+ 1(0, r)fpy,X(Yr <O,M r ~B)f(x/y)dx+ fffl(u,r)fr(u,m/x)f(xly)dmdudx 
o 000 

Now we define 

b 

u(y, r) = f Py,x (Yr < O,M r fl B)f(x I y)dx 
o 

b b 

Kr(u / x) = f f fr(u,m / x)f(x / y)dmdx 
o 0 

So that we can rewrite the equation in our standard form as 

So 

ley, r) = dey, r) + 1(0, r)u(y, r) + f leu, r)Kr(u / x)du 
o 

If all functions can be efficiently computed, this equation can now be solved by 

numerical means, giving the expected length of a cycle. It can be seen however that 

these equations involve probabilities of the form px (Yr fl Ao, M r fl B). Whether or not 

this can be computed depends on the nature of the degradation and covariate processes. 

Thus, as in the case of perfect observations, the average cost per unit time can be 

obtained and optimised as described in section 3.3.1. The only difference in this case is 

that the covariate process may have non-zero starting level. Hence we seek the 

inspection interval r which minimises the expected average cost per unit time given by 

'( 1 ) _ \'()., r) 
( /L r ---

, I()., r) 
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This can be done, by simply enumerating the costs for possible values of r and choosing 

the one which results in lowest cost. Alternatively some form of search algorithm may 

be used to find the optimal inspection interval. 

4.3.2 Special Case of a Monotone Degradation Process 

As in the case of perfect inspection, things can be simplified if we are dealing with a 

monotone degradation process. In this case however, the maximum of the process does 

not completely disappear from the solution, instead it is replaced by X T, so that we must 

now consider the joint distribution of the observation Yj and the true level of 

degradation X ... Thus we have 

V(y,r)IYr,Xr,XO =x,Yo =y 

= [Co + V(Yr , r )]l{y,EAo,x,01B} + C1 1{Y,EA
1
,x,01B} + ... 

... + Cn_1 1{Y,EA
n

_
1
,x,01B} + Cn l{Y,EA

n
,x,01B} + C

F 
l{x,EB} (4.18) 

n 

= V(Yr' r) 1 {Y,EAo,X,01B} + L: C, 1{Y,EA1,x,01B} + C
F 

lLrrEB} 
;=0 

We define, as in all of this sub-section, fr(u, z I x) as the joint density of YT, and XT, 

conditional on Xo = x. So, expanding as before we have 

So b n 

vX(Y,r)= ffv(u,r)fr(u,zlx)dzdu+ L:C;py,X(Yr EA;,Xr flB)+C F py,x(Xr EB) (4.19) 
o 0 1=0 

So that the integral equation is once again of the form (4.8) 

So 

v(y, r) = c(y, r) + u(y, r)v(O, r) + f v(u, r)Kr(u I y)du 
o 

with functions defined by 

(420a) 

b 

u(y,r)= fpx(Yr <O,Xr flB)f(xly)dx- (4.20b) 

o 
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b b 

K, (u I y) = f f f, (u, z Ix) f (x I y) dz dx 
o 0 

Likewise, the equation for the expected length of a cycle is given by 

So 

ley, r) = dey, r) + 1(0, r)u(y, r) + f leu, r)K,(u I x)du 
o 

Where 

r:t:J 

u(y, r) = f Py,x (Y, < 0, X, ~ B)f(x I y) dx 
-r:t:J 

b b 

K,(u I x) = f f f,(u, z I x)f(x I y)dz dx 
o 0 

So that these equations may be solved in the usual way, giving expected cost and length 

of a cycle, allowing the long run average cost per unit time to be calculated. 

4.3.3 Cost of No inspections and condition monitoring 

When no inspections are carried out, the problem reduces to that of the prevIOUS 

chapter, and the average cost per unit time is given by 

C(O, (0) = -r:t:J __ C-,--F -­

f [1- GB(h 10)]dh 
o 

Where G is the distribution function of the hitting time of the critical set starting at zero 

and IF is the cost of replacement on failure. 

In the case of continuous condition monitoring the most consistent generalisation of the 

above model is to assume that the covariate process is observed continuously and the 

system is replaced whenever the covariate reaches a specified level, or at failure 

whichever occurs first. Let us assume that the system is replaced when the covariate 

reaches a replacement level r, or when the true level of degradation reaches the failure 

limit b. The cost of replacement and failure are defined as CR and CF respecti\·ely Then 

1O-l 

(420c) 

(4.21) 

(4.22a) 

(4.22b) 

(4.22c) 

(4.23) 
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assume the cost of CCM per unit time is given by p, so that average cost is given by the 

expected cost to replacement divided by the expected time to replacement, thus 

which upon simplification gives 

C - CRP(H; <H;)+CFP(H; >H;) 
CCM - P + 00 

f t gr (t)dt 
o 

where H; represents the hitting time of the point x by the process Z. The random 

variable T represents the failure/replacement time of the system given by the minimum 

of the hitting times for the two processes: T = H; /\ H:. Clearly, to compute the 

average cost we require the joint density function of the random variables H; and H:' . 
Since the processes X and Yare not independent, it is likely that obtaining this 

distribution is not trivial. We do not consider the case of condition monitoring further 

in this thesis, as it is outside the main path of our analysis. 

lfthe joint density described in the previous paragraph is available, or may be estimated 

by simulation, then the model should provide a reasonable model for continuous 

condition monitoring of systems with Levy process degradation and Markov covariate 

processes. 

4.4 Optimal Periodic Inspection of a Covariate Process : 

Discounted Cost Criterion 

Having looked at the problem of optimal inspections of a covariate process under the 

expected average cost criterion, we now consider the case of the discounted total cost 

criterion. As in chapter 3, we expect that the results under this criterion will be \'ery 

similar to those under the average cost criterion. As before, we apply dynamic 

programming arguments to obtain integral equations for the cost functions involved. 
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4.4.1 Derivation of Discounted Total Cost 

The arguments here are similar to those given in section 3.4.1, the only difference being 

the additional term allowing for the non-zero initial value of the covariate process. \\'e 

also make the additional assumption, as described previously, that the policy is 

dependent on the history of observed covariates, only through the current observation. 

We define Va-(Y, r)to be the discounted total cost incurred for a system currently in 

observed state y. Then in the usual way we may write 

Where A is the assumed covariate level for a system with zero level of degradation. 

Then, the conditional expectation of V is given by 

E(va-(Y, r) I X"Mr,H:, Xo = x,Yo = y)= e-a-r (Co + va-(Yr> r» I!YTEAo.MTE1BI 

(4.25) 

n B (4.26) 
+ Le-a-r (C; + va-(A, r»l!xTEA

j
,MTE1BI + e-a-H, (C F + va-(A, r»l\H:<r) 

;=1 

Therefore, defining Ir (u, m Ix) to be the joint density of Y T and M T, given Xo = x. Then, 

as in the perfect inspection case we consider the conditional expectation of ~ r given Xo = 

x. Thus we define v;(y, r) = E(Va-(Y' r) I Xo = x, Yo = y) so that 

v;(y, r) = E(E(va-(Y, r) I X"M"H:)) 

= f f e-a-rv(u, r)/r(u,m I x)dmdu +e-a-rCopx(Yr E Ao,Mr ~ B) (4.27) 

AoSd\B 
r 

+ t e-a-r (C; + va- (A, r»)Px (Yr E A;, M r ~ B) + (C F + va- (A, r»)f e-a-h gB (h I x) dh 
;=1 0 

with g B (h Ix) being the density of the hitting time of the critical set. Making the usual 

assumption that v(y, r) = v(O, r) for all Y < 0, the integral in the above expression becomes 

f f e-a-r v(u, r)/r(u, m I x)dm du 
Ao Sd\B 

So b 

=e<lTv(O,r)pX(Yr <O,Mr ~B)+ ffe-a-Tv(lI,r)f~(lI,mlx)dmdll 
o (). 

So, we may rewrite the integral equation as 
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s
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+v8(O,r)e-
8
,pX(Y, <O,M, tiB)+ f f e-8,v (u,r)i,(u,m Ix)dmdu 

o 0 

So that, the integral equation in this case is 

So 

( 4.29) 

v;(y, r) = eX (y, r) + U
X 
(y, r)v8(O, r) + WX (y, r )V8 (A, r) + f v8(u, r)K;(lIl x)dll (4.29) 

o 

with functions defined as 

n , 

eX(y, r) = L:e-8r
Ci pX{Y, E 4,M, ti B)+ C F f e-8hg

B
(h I x)dh 

1=0 0 

( 4.30a) 

n , 

WX(y, r) = L:e-8rpx{y, E Ai,M, ti B)+ f e-8hgB(h I x)dh 
;=1 

( 4.30b) 
o 

( 4.30c) 

b 

K; (u I y) = f e -8, i, (u, m I x) dm ( 4.30d) 
o 

Thus, the unconditional average cost per unit time may be obtained by averaging over 

the true state of degradation, given the observed level of degradation. Thus, the integral 

equation becomes 

So 

v8(y, r) = e(y, r) + u(y, r)v8 (O, r) + w(y, r)v8(A, r) + f v(u, r)K,(ul y)du (4.31) 
o 

with functions given by 

( 4.32a) 

(4 32b) 

107 



CHAPTER-l 

b 

u(y,r) = Se-OrPX(Yr <O,Mr flB)f(xly)dx (-+.32c) 
o 

b b 

Kr(u I y) = f fe-or fr (u, m I X) f(x I y)dm dx (-+.32d) 
o 0 

As before these must be evaluated numerically, so that using standard methods the 

expected discounted total cost may be computed. Whether or not solutions can be 

obtained depends on being able to find the joint distribution of the maximum variable 

and the covariate. 

4.4.2 Special Case of Monotone Degradation Process 

Making the same observations as in section 4.3.2, it is clear that in the case of a 

monotonic degradation process, the results are simplified by replacing M r by Xr 

wherever it occurs. This implies we must solve equation (4.31) with functions defined 

by 

b 

uX(y,r)= Se-orPX(Yr <O,Xr flB)f(xly)dx 
o 

b b 

K; (u I y) = f f e -0 r fr ( u, z Ix) f (x I y) dz dx 
o 0 

it is clear that in this case there is little difference between the case of monotonic and 

non-monotonic degradation processes. However, it us likely that the joint density of the 

covariate and degradation process is more easily found than that of the covariate and the 

maximum of the degradation process. 
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4.4.3 Costs of No Inspection and Condition Monitoring 

As we remarked in the case of the average cost per unit time criterion, in the case of no­

inspections, the imperfect inspection may be disregarded and the results of section 3.4.3 

may be applied. Thus the cost of not carrying out inspections and allowing the system 

to fail is given by 

00 

CF f e-.5h gB (h 10)dh 

v 0 (0,00) = ---'~'----------

1-f e-.5hgB (h 10)dh 
o 

In the case of continuous condition monitoring, we can easily derive the equation for the 

discounted total cost, but its solution depends largely on the availability of the joint 

density of the hitting times of the degradation and covariate processes. 

Let H; represent the hitting time of the point x by the process Z. As before let T 

represents the failure/replacement time of the system given by T = H; 1\ H:, and let 

u = H; -H:. Then, we can express the discounted total cost recursively as 

So that 

T 

V(O) I U, T = f pe-ot dt + e-.5t (CR l{u>ol + C F l{u<OI + V(O)) 
o 

Expanding this we get 

00 00 

v(O) = p f (1- e-ot )J(t) dt + v(O) f e-
ot J(t) dt 

800 

00 OC> 

+C F f e -.5 t J (t ,U < 0) dt + C R f e -.5 t J (t , U > 0) dt 
o 0 

so that the discounted total cost is given by 
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00 00 T 

~ f (1 - e -0 t ) f (t) dt + C F f e -0 If (t, U < 0) dt + C R f e -0 t f ( t, U > 0) dt 
v(O) = 0 0 0 

ex> (4.39) 
1- f e-01f(t)dt 

o 

To compute the discounted total cost of condition monitoring we require the joint 

distribution of U and T, which is obtained from the joint distribution of H; and H b'( . 

As we have said, computation of this density is not a trivial task. We have considered 

the simplest case, in which both the degradation and covariate processes are modelled 

by (correlated) Wiener processes, and are unable to find the density required. Of 

course, in the case of uncorrelated processes, the hitting times are independent, and so 

the densities are easily found. This is of little use for modelling purposes, however. 

4.5 Optimal Non-Periodic Inspection of a Covariate Process: 

Discounted Cost Criteria 

We now briefly consider the case of non-periodic inspections. From the analysis of the 

previous section it is clear that these results may be easily extended to the case of non­

periodic inspections. Appendix A3 gives the theoretical derivation of the dynamic 

programming equation, in the general setting of a semi-Markov decision process, and 

this justifies our use of the previous section's results. As before we make the 

simplifying assumption that the policy is dependent only on the current observation 

simplifies the development. We note that this assumption also implies that the 

degradation process depends on the covariate process only through the current 

observation. This mayor may not be a reasonable assumption, depending on the nature 

of the underlying system being modelled. 

Our simplifying assumption that the policy is Markov, that is dependent only on the 

current observation, simplifies matters and means we do not have to consider the 

general partially observed semi- Markov decision process. 

As in the case of non-periodic perfect inspection we assume a total discounted cost 

function of the form 
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where Jr represents the inspection policy. We are only concerned with deterministic 

stationary policies, since the Levy property of our degradation process implies the 

current time has no bearing on future levels of degradation. 

We define the function Vg to be the value function for the 8-optimal policy, i.e. 

V g (y) = inf v 7r (y) 
7r 

For the general cost function given by equation (4.40) above, we find that the optimality 

equation is given by 

where c represents the discounted costs incurred at the next inspection, when in 

inspection interval r is chosen. A derivation of this based on Ross (1970) is given in 

appendix A3. We note that this derivation is identical to the perfect inspection case, 

since we make all decisions on the basis of the covariate process Y. The only remaining 

point of note is that the hitting time h in the above equation is for the process X. 

In the particular case we are dealing with, the results of section 4.4.1 show that the 

optimality equation is given by 

(440) 

( 4.41) 

(4.42) 

where c, u, wand K are given by equations (4.32a-d) of section 4.4.1 (or equations 

(4.33a-d) in the case of a monotonic degradation process). It is clear from the proof of 

convergence in section 3.5.1, that this equation produces a unique solution, subject to 

conditions on the functions c, u, wand K described in section 3.5.1. 

We shall not consider an example of non-periodic inspections in this chapter. The main 

reason, as we shall see, is that the computation of the required functions is extremely 

time consuming, making policy evaluation very slow. The periodic inspection 

examples given below utilise the same calculations. but require less function e\'aluations 

to determine the optimal policy 
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4.6 Models for Imperfect Inspection 

A special case of the above analysis is that of imperfect inspection. In this case the 

covariate process is simply the observed level of degradation subject to error. The 

nature of the imperfection in the inspection process often allows us to derive a 

relationship between the observed and true processes, so that numerical results may be 

obtained. 

The most common type of imperfect inspection in the degradation case is that the 

system degradation is observable, but with error. This is the case we are most interested 

in. The usual assumptions are that, if Xc is the degradation process, then we observe, at 

inspection times, the random variable 

Where G represents the error in making inspections. This structure is used by Whitmore 

(1995), who considers the case where Xc is a Wiener process and the errors c; are lID 

normally distributed with mean zero. In what follows we shall mainly consider this 

structure, under the assumption that Xc is a Levy process. Before doing that however, 

we consider some alternative inspection models, and look at possible problems in their 

analysis. 

Instead of considering additive models, in certain circumstances it may be plausible to 

consider using a multiplicative model of the form Yj = V, . XI,. It is possible that for 

certain models this would be more realistic. 

A third possible model could be that the inspection is imperfect in that we observe some 

discretised variable, which is based on the degradation process, for example this may 

take the form 

Y = t 

1 

2 

(4.43) 

for given intervals AI, ... ,An. In this case it is probably better to considered a discrete 

state space model, and assume that the discrete degradation model may be observed 

perfectly. In a sense, the cases we have considered in this and the previous chapter, 
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since the cost structure is dependent only on the structure of the sets AI rather than the 

actual level of degradation. 

In the case of a Levy process with additive normal errors, we are basically dealing with 

a filtering problem. The observed process has a component of noise which we would 

like to remove to find the value of the underlying degradation process. Determining the 

relevant probability distributions is largely dependent on the nature of the underlying 

process and noise process, and the interdependencies between them. In this general 

setting we can, however, obtain results about the relationship between the underlying 

and observed degradation processes. 

We will now give some properties of general Levy process models in the presence of 

inspection errors which are additive. This structure is given by equation (4.43) above, 

and additionally we assume that the inspection error 0 has mean j.1.E and variance / 

As we have said, this model has been proposed by Whitmore( 1995), when X is assumed 

to be a Wiener process and & follows a Normal distribution with zero mean. In this 

article, Whitmore (1995) fully discusses the estimation and inference of system 

parameters, for the Wiener process case. 

We shall assume for the moment that G may have any type of statistical distribution. 

Based on these assumptions it is an elementary fact that 

Hence, the correlation between the true degradation X t and the observation Yt is given 

by 

(X y)- Cov(Xf'YJ 
P f' t - ~V(XJV(YJ 

_ V(Xt) + Cov(Xf'Gt ) 

~V(Xt)V(Yt) 
_ sd(Xt) + p(Xf'GJ·sd(Gt) 

sd(Yt) 

As we would expect, when the errors are perfectly positively correlated \vith the 

underlying degradation process, so to is the observation process Y. However, in the 

case when the errors and the degradation process are uncorrelated, the correlation 

bet~een the actual and the observed degradation is just the ratio of standard deviations 

113 

(4.44 ) 



CHAPTER~ 

of the process value an the observed value. In this case we may rewrite the equation in 

terms of the variances of the errors and the process, thus 

(X Y) = sd(XJ = V(Xt) 2 _ V(&t)-2 
[

11 

sd (Y, ) V ( X, ) + V (Ii,) ] [ V ( X, J P t' t - 1+ 

which shows clearly that the correlation is always positive and decreases as the error 

variance increases. In addition, we note that the correlation is unaffected by the mean 

value of the error Il&. This is important because it implies that any consistent bias on 

the part of the inspector or monitoring system is irrelevant in terms of information 

provided about the degradation of the system. Of course, in the case where there is 

inconsistent bias this will not be the case. 

To make further progress from this point we must make some assumptions regarding 

the nature of the degradation process and the errors. In the following section we 

consider the case of gamma process degradation. 

4.7 Example: Imperfect Inspection of a Gamma Process 

(4.45) 

In this section we consider the case of gamma process degradation, with imperfect 

inspection. As we have said this represents a special case of the observation of 

covariate process. We use this special case since the structure of the inspection errors 

allows us to easily determine the stochastic relationship between the degradation 

process and covariate process (or observed degradation process). 

4.7.1 Model Assumptions 

In the following example we consider a system almost identical to that considered in the 

previous chapter. The system is deemed to have failed if the true level of degradation 

reaches a critical level c. Upon failure, the system is immediately replaced (corrective 

replacement). If, at an inspection, the 'observed' degradation is greater than the 

replacement level r, the system is preventively replaced. If the 'observed' level of 

degradation is found to be less than the replacement level r, the system continues 
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operating, and is inspected again according to an appropriate inspection schedule. \\"e 

note that the decision as to whether to preventively replace or not is only dependent on 

the 'observed' degradation process, while the event of failure is only dependent on the 

true degradation process. 

In addition the cost assumptions are identical: 

(i) Each Inspection incurs a cost C] 

(ii) Each Preventive replacement incurs cost CR, in addition to inspection costs 

(iii) Replacement on failure incurs cost CF 

The only difference between these assumptions and those of section 3.6.1 concerns the 

inspection process. Under these assumptions, it is possible to observe levels of 

degradation less than zero, and greater than the critical level c. It is now that our 

remarks about truncation of the degradation process (section 4.2) are applied. In this 

case, we assume that any observed level of degradation less than zero, is equivalent to a 

degradation level of zero, and assume that any observed level of degradation greater 

than c, is equivalent to degradation level c. The first assumption here is important, but 

the second is not, since when r < C, an observed level of degradation greater than C will 

result in immediate preventive replacement. 

4.7.2 Distributional Results for the Gamma Process with error 

We assume here that the inspection error is modelled by an additive normal random 

variable, with mean zero and variance v2
. We make the assumption that the Gamma 

process is defined as in Chapter 2, and that the errors are normally distributed with 

mean zero and variance v 2. Thus 

XI - XI- - Ga( a(t} - " ), f3 ) 
J ' 

Let us consider the conditional distribution of the true level of degradation given the 

observation at that time. Let us initially consider the joint distribution of the observed 

and true values of the degradation process. Then it is elementary that 
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P(Y. :> u I X. = z) = p(X. + C. :> u I X. = Z) = P( C. ,; 11 _ z) = ct{ u ~ z ) 

So that Y. IX. - N (X., y2) as we would expect. In addition, we are also interested in 

the distribution of the true level of degradation at a particular instant, given the observed 

degradation level. In this case more care must be taken, since our assumptions 

implicitly assume that the level of degradation is between level 0 and level c. Thus we 

have 

!(x I y)dx = Pr(X. = x I Y. = Y,O ::; X. ::; c)dx 

= Pr(X. = x 11': = y,) dx 
Pre 0::; X. ::; cl Y. = y) 

exp{- _l_(y _ X)2} 
2y2 

Where we have used the facts that Y. = X. + B., and c. - N(O, v 2
). 

We have by assumption that the density of X t I Xo = x is given by 

(-+.4""') 

(4.48) 

pat (z - xt t-I e-P<=-x) 

!(Xt = Z I Xo = x) = rea t) (4.49) 

From these basic results we can compute the joint density of the future observed and 

true levels of degradation using 

!f/,X/IXo (u,z I x) = !f/IXo,X/ (u I x,z)!X/IXo (z I x) = !f/IX, (u I Z)!X/IXo (z I x) 

So that substituting the appropriate densities from equations (4.47) and (4.49), we 

obtain the joint density of the observed and true level of degradation, conditional on the 

true initial level of degradation, 

1 {I 2}par(z-xtr-1exp{-P'(Z-X)} 1. (u Z Ix) = exp - - (u - z) 
r' v-J2;rr 2V2 rea r) 

As in the example of chapter 3, we require the distribution of the hitting time of the 

critical set from an initial level of degradation x. This is defined in terms of a 

distribution function as 
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P(HC < h) = rea h, J3(c - x» 
x r(ah) 

which is derived in section 3.6.1, as equation (3.69). 

4.7.3 Solution of Integral Equation 

As an example, let us consider the optimisation of periodic inspections under a 

discounted total cost criterion. The case of non-periodic inspections applies the methods 

given here, but additionally requires a policy improvement algorithm to compute the 

optimal policy. We shall not consider this further here. 

Given the information about the gamma process above, we can now proceed to solve 

the general integral equation given below 

So 

(4.:'1) 

vo(y, r) = c(y, r) + u(y, r)vo(O, r) + w(y, r)v,,(A, r) + f v(u, r)Kr(ul y)du (4.52) 
o 

Where c, u, w, and K are defined by equations (4.33a-d). From the assumptions given 

in section 4.7.1, the equations (4.33a-d) may be simplified, and we obtain the equations 

C C 

Kr(u I y) = f f e-
OT fT(U, z I x) f(x I y)dz dx 

o x 

(4.53b) 

(4.53c) 

where the equations for u and w have been combined, since the initial level of the 

observed degradation ( covariate) process is assumed to be equal to zero. 

The expressions for fr(u,z I x), f(x I y) and Gc(h I x) have been computed above and 

are given by equations (4.50), (4.48) and (4.51) respectivelYI. It now remains to 

compute the probabilities in equations (4. 53a) and (4 53b). Firstly 

117 



CHAPTER~ 

00 c 

PX(Yr > r,Xr < C) = I I fr(u,z I x)dzdx 
r x 

Ie Ioo
. 1 {I 2} par (z - xt r

-
1 e-/Jiz - x ) 

= ~exp --2 (U - Z) dudz 
x r V-V2TC 2v rear) 

= I 1-<p - dz 
c par (z - xr r

-
1 e-P(z-x) { (r -zJ} 

x rear) V 

=l-Q(ar,p(c-x»-I z-x e <I> r-z dz 
c par ( tr-1 -P(z-x) ( ) 

x rear) V 

since the gamma density in the integrand is independent of u. The function Q is the 

incomplete gamma ratio, defined by equation (3.70). 

Similarly, the second probability of interest may be calculated as 

PX(Yr ~ (O,r),Xr < c) = 

1 - Q ( a r, p (c - x» - I z - x e <p r - Z _ <I> _ Z dz c par ( rr-l -PCz-x) {( J ( J} 
x rear) v v 

The integral in both of the functions c and u may be calculated as in chapter 3. 

Equation (3.71) which gives 

r r 

I e-ahg(h I x)dh = e-arG(r I x) + 8 I e-t5hG(h I x)dh 
o 0 

with the distribution function of the hitting time being given by equation (4.51) above. 

Substituting these functions into equations (4.53a-c) we arrive at the functions 

( 4.54) 

(4.55) 

(4.56) 

(4.57a) 
r 

+e-t5r (CF - CR - C] )Q(ar,p(c - x» + 8CF I e- t5hQ(a h,p(e - x»dh 
o 

{ 

c par (z - xt r
-

1 
e-

PCz
-

x
) { (r - zJ (z J} } uX(y,r)=e-ar I-I <p -- -<1> -- dz 

rear) V V 
x (4 5 7b) 

r 

+ I e- t5hQ(a h, p(e - x»dh 
o 

where the functions C and 11 are now given by 
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c 

c(y, r) = f eX (y, r)f(x I y) dx 
o 

c 

u(y, r) = f UX(y, r)f(x I y)dx 
o 

and the function K is computed directly as 

K,(uly)= e-
t5 'pa, x 

27tV2f(aT){ q{ ~) _ ~(y; c)} 
c c { 1 } f f exp --2 [(U-Z)2 +(Y_X)2 J- P(z-x) (z-xtr-1dzdx 
o X 2v 

(457c) 

The functions in this form have been simplified as much as possible. All of the 

integrals above must be computed numerically. Clearly, computation of these functions 

requires us to calculate a number of double integrals, which is extremely 

computationally demanding. This means that the time required to compute optimal 

inspection policies in the case of imperfect inspection (and more generally in the case of 

a covariate process) is much longer than in the case of imperfect inspection policies. 

As an example, applying the Nystrom method of appendix AI, requires us to compute 

an n x n matrix with each entry being an evaluation of the function K, (u I y). If we 

apply a trapezium rule to the double integral in expression (4.57c), with n points, each 

function evaluation requires n2 evaluations of the integrand. Thus to compute the whole 

matrix requires n4 function evaluations. This compares to ,l function evaluations 

required for the perfect inspection case. 

4.7.4 Numerical Results 

The following tables give the results found in the case of a gamma process degradation 

model. Table 4.1 shows the optimal periodic inspection policy under the discounted 

total cost criterion. In addition the table shows what percentage of this optimal cost is 

given by the cost of the optimal periodic policy with perfect inspection. The 

comparison is not direct, since one would have to assume that perfect inspections are 

more expensive than imperfect inspections. 

The table is generated by solving the equation (4.52) with functions given by (4 57a-c) 

The equation is solved by the Nystrom method of appendix A I, and it is assumed that 

11 = 5, so that the integral in equation (4.52) is subdivided into:; intervals Clearly, this 
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is not ideal, and greater accuracy could be obtained by increasing the number of sub­

divisions. The reason for using such a small number of sub-divisions is simply one of 

time. As we described- above (section 3.5.3) the number of computations required in the 

case of imperfect inspection is much greater than under perfect inspection, and for 

illustrative purposes we feel it is adequate to reduce the accuracy of the calculation 

In chapter 3, 10 subdivisions were applied, and these figures (some of which are given 

in Table 4.2) are used for comparison purposes. Clearly, there is some error in these 

figures, but for comparison purposes we believe they adequately show the properties of 

the model. In particular, the starred entry in Table 4.1 (below) would appear to show 

that the cost of imperfect inspections is (slightly) less than the cost of perfect 

inspections at the same cost. Clearly this aberration is caused by computational error. 

In terms of the results from the model, the effect of variation in the costs and process 

variability is the same as that found in chapter 3 for the case of perfect inspection In 

general, increasing costs and increasing process variability tend to reduce the optimal 

inspection interval. In addition, it is clear from Table 4.1 that for systems with large 

corrective and preventive replacement costs, the proportionate increase in optimal DIe 

caused by having imperfect inspection is greater than for systems with relatively smaller 

replacement costs. (Table 4.2 shows optimal policy for a perfectly observed system) 

The imperfect inspection has an unexpected effect on the optimal inspection policy_ 

While we might expect that imperfect inspection would reduce the inspection intervals, 

it is found in many cases that the inspection interval is greater than in the case of perfect 

inspections. The reason for this is probably that it is important never to observe the 

system in a state slightly less than the replacement limit. If this occurs, the system will 

not be inspected again for a long period and so failure is certain to occur. Therefore, to 

increase the inspection interval reduces the probability that the observed degradation is 

less than the replacement limit at inspection. While the probability of failure is 

increased by increasing the inspection interval, it is likely that this increased cost is 

more than compensated for by the reduction in the number of cases in which 

degradation is observed to be less than the replacement limit. 
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DTC and Optimal Inspection Policy for v = 0.1 I 
I 

i 
I 
I 

Low Variance (a-20) High Variance (a 5) 
Cr- lO 30 100 Cr- lO 30 100 

0.9 0.6 0.45 l.35 OA5 0.25 
CR= 

5 89739 121007 147578 90116 159846 535216 

Low 93% 89% 89% 97% 90% 39% 

Rep. 1.0 0.55 00 0.-+ 
Limit 20 286869 417751 271485 535216 

95% 89% 99% 88% 
r = 0.3 0.75 1.0 

50 814338 868044 
90% 95% 

1.15 0.25 0.1 00 0.35 0.15 
CR= 

5 
97137 247882 567560 90495 254184 701353 

High 
97% 89% 60% >100%* 92% 78% 

Rep. 00 0.15 00 0.3 

Limit 20 291298 724764 271485 793832 
98% 62% 99% 78% 

r= 0.9 0.25 0.4 

50 894616 888093 

73% 86% 

Table 4.1 - Optimal inspection policy, corresponding discounted total cost and 

percentage of optimal DTC with perfect inspection, for a system with v = 0.1 

The table above (Table 4.1) shows the case when the inspection error & has standard 

deviation v = 0.1. Clearly, with our state space defined over the interval [0,1], this 

represents quite a large inspection error. This value was chosen, so that the effects of 

the inspection error could be easily seen. As the standard deviation of the inspection 

error is reduced, the effects described above are less pronounced, and tend to the perfect 

inspection case as the standard deviation approaches zero (subject to computational 

error). The effects on the optimal policy for very large errors, depends largely on the 

replacement level r. For small r, the inspection error has much less effect, and the 

optimal policy tends towards that for the perfect inspection case. When the replacement 

level is close to the failure level c, the large inspection error means that inspections have 

little effect in preventing failures, and so the optimal policy tends to be one of carrying 

out no inspections, and simply replacing on failure. 
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DTC and Optimal Inspection Policy for v = 0 I 
! 

Low Variance (a-20) High Variance (a-5) 
, 

Cr- lO 30 100 C,rlO 30 100 

CR= 0.9 0.65 0.5 1.2 O . .t 0.2 

Low 
5 83457 107462 132488 87538 144035 207333 

Rep. 0.95 0.65 1.55 0.35 
Limit 20 

273206 372577 270735 .t7.t1~.t 

r = 0.3 0.8 0.95 
50 

740515 826155 

CR= l.1 0.1 0.05 1.65 0.2 0.1 

High 
5 94860 220381 343653 90561 235899 548898 

Rep. 1.4 0.05 1.35 0.1 
Limit 20 

284641 448500 271028 621216 

r=O.9 0.05 0.1 
50 

658193 765853 

Table 4.2 - Optimal inspection policy and corresponding discounted total cost for a 

system with perfect inspection (given by Table 3.2) 

It is clear from the results given here, that the model provides a useful and reasonable 

policy for the inspection of systems subject to error (and more generally the inspection 

of covariate processes). The results are largely what would have been expected, the 

only problem with the model being the computational complexity, which means that the 

time taken to compute the optimal policy is very large. 

4.8 Conclusion 

In this chapter we have looked at the general problem of obtaining optimal markovian 

inspection policies for systems whose degradation is unobservable, but which have an 

observable, associated covariate process. We have assumed the system is modelled by 

a Levy process degradation model, with threshold failure, and a Levy covariate process. 

Using techniques from dynamic programming theory, integral and functional equations 

have been derived, allowing the optimal periodic and non-periodic inspection policies to 
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be obtained. As a special case, imperfect inspection of a Levy process degradation 

model is considered. 

As in the previous chapter, the main example used is that of the gamma process, \\·ith 

additive normal inspection error. The results provide sensible and realistic inspection 

policies, and give insight into the system behaviour, and into the effect of inspection 

error on the optimal inspection policy of a system. It is found however, that obtaining 

optimal inspection policies with inspection error is extremely computationally 

demanding, due to the large number of numerical multiple integrals which must be 

evaluated. This may provide a barrier in extending this model further. 

Generally, the extensions which could be considered are the same as those described in 

chapter 3. The main extension of this model which would be interesting to consider is 

that of Bayesian methods. In this model, we have considered a system with a known 

degradation process, but which cannot be observed. Clearly this is somewhat 

paradoxical: if the system cannot be observed, how can we know what the underlying 

degradation process is. If we assume that the underlying degradation process is of 

known form, but with unknown parameters, it may be possible to apply Bayesian 

techniques, so that the sequential estimation of the underlying degradation process may 

be based upon observation of the covariate process. Whether or not this can be done 

depends on the underlying form of the degradation process and covariate process. 

Future work will be carried out in this area. 

There are few models in the literature which explicitly deal with optimisation of 

inspections for systems in the presence of covariates, and as such this model provides a 

useful addition in the field of degradation modelling. 
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Chapter 5 

Optimal Maintenance for Deteriorating Systems 

5.1 Introduction 

In the following chapter, we extend the results of the two previous chapters to the case 

of maintenance. This is a more complex problem than that those considered in the 

previous two chapters, since we now assume that the system may be repaired, and so 

the level of degradation may be changed by the system operator. 

We consider firstly the case in which the optimal inspection interval is found for a 

system with known maintenance policy. The basis of the model is that of the previous 

two chapters, but instead of replacement (or perfect repair) we assume that in each state, 

the system may be repaired, reducing the level of degradation by a deterministic or 

random amount. 

Following this we look at the optimisation of maintenance policies for a system with a 

given inspection schedule. This case is quite different to the optimal inspection cases 

previously considered, but the methods applied are similar. We assume that the 

maintenance action may have a deterministic or random effect on the system state. 
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Finally we consider jointly optimal periodic inspection and maintenance policies, for 

various cost structures. 

As in chapters 3 and 4, both periodic and non-periodic inspections are considered, but 

examples are confined to cases of perfect inspections for computational reasons. The 

methods applied in this chapter mirror closely those in the previous chapters. In each 

case integral equations or Dynamic programming equations are found for the cost of the 

system, as a function of the state of the system. Using the standard methods given 

previously these may be solved numerically to obtain an approximate numerical 

solution. Since all of the equations are solved by the same method, we restrict 

examples to the case of deterministic maintenance, which is less computationally 

demanding to solve. 

5.2 Underlying Inspection and Repair Model 

5.2.1 System Model 

Bringing maintenance and repair into our model means that some of our assumptions 

must be changed. As we have noted in chapter 1, there are many different types of 

maintenance and inspection policies that we could consider. In this section, we describe 

the model that we shall consider. This model has been chosen since we feel that it most 

adequately describes the general situation we are considering, while remaining 

computationally feasible. 

In general, we shall consider a system that is very similar to that found in chapter 3, 

with some minor changes. It is clear that the assumptions of chapter 3 are a special case 

of these assumptions. We consider two models, one incorporating deterministic 

maintenance, and another allowing for general (random) maintenance. 
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MODEL ASSillv1PTIONS M3 (Deterministic Maintenance): 

1. We assume the state-space of the system is Sd, which is partitioned into a set Band 

its complement. The system is deemed to have failed when the degradation process 

X hits the critical set B = (c, (0) . 

2. Each inspection reveals the true state of the system, and the state can only be 

determined by carrying out an inspection. 

3. Each inspection incurs a cost Co. At an inspection, a repair is attempted, and its cost 

is given by the function C(x,y), where x is the system state before maintenance, 

and y is the system state after maintenance. 

4. The cost of replacing a failed system is cP. On failure, it is assumed the system is 

immediately replaced by a new system, identical to the original. 

These assumptions are largely unchanged from those of chapter 3, except that we now 

do not specify a partition of the state space. This subdivision is now encapsulated by 

the maintenance policy, and corresponding cost function, which are discussed in the 

next subsection. 

In the model described above, it is assumed that the maintenance has a known effect on 

the state of the system. It is perhaps more realistic to assume that there IS some 

uncertainty about the effect of maintenance on the level of degradation. In the 

following set of assumptions, we assume that the uncertainty in the effect of 

maintenance is modelled by the random variable 0. 

MODEL ASSUMPTIONS M4 (Random Maintenance): 

1. We assume the state-space of the system is Sd, which is partitioned into a set Band 

its complement. The system is deemed to have failed when the degradation process 

X hits the critical set B = (c, 00 ) 

2. Each inspection reveals the true state of the system, and the state can only be 

determined by carrying out an inspection. 
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3. Each inspection incurs a cost Co. At an inspection a repair is attempted, the cost of 

which is given by the function Cd (X), where x is the system state before 

maintenance, and d represents the maintenance action used. We assume that the 

system state after maintenance is given by a function' x ~ d(x,B), where B 

represents a particular realisation of the random vector 8. (See section 5.2.2) 

4. The cost of replacing a failed system is cF. On failure, it is assumed the system is 

immediately replaced by a new system, identical to the original. 

Based on these assumptions, in the cases of random and deterministic maintenance the , 

two main problems we would like to consider are 

(a) Computation of optimal inspection intervals for fixed maintenance actions 

(b) Computation of optimal maintenance actions for a fixed inspection schedule 

The problem of optimal inspection of a maintained system is similar to those considered 

in chapters 3 and 4. The main difference being that the transitions to new levels of 

degradation must now incorporate maintenance. As we shall see, this has very little 

effect on the derivation of the dynamic programming equations, but does make their 

numerical solution more difficult. The second case of optimal maintenance is slightly 

different to the foregoing analysis. Integral equations are used to determine the costs of 

given strategies but new dynamic programming equations are derived to compute the 

optimal maintenance strategy. 

In the case of optimal inspections, as before, we simply assume a fixed maintenance 

strategy, and proceed in developing integral equations as before. The difference ill 

model assumptions, however, means that the integral equations are slightly different. 

5.2.2 Models for Inspection and Maintenance Actions 

Firstly, let us briefly look at possible inspection strategies. As we have said in chapter 

I, the main distinctions are between perfect and imperfect inspection, and between 

periodic and non-periodic inspection. In this chapter, we shall mainly consider the case 

of perfect inspection, both periodic and non-periodic. The main reason for this is that 
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they are the computationally easier to solve than the corresponding imperfect inspection 

case. Secondly, as we have seen in chapter 4, the inspection error must become quite 

large before the imperfect inspection has an effect on the optimal policy. 

Let us now look at some possible maintenance actions. The simplest policy from a 

computational point of view is that of perfect complete repair. Under this policy, 

maintenance is equivalent to a replacement, since the maintenance effectively results in 

the system becoming good as new. It is clear therefore that this policy may be dealt 

with using exactly the methods of the previous two chapters, where we redefine 

replacement as complete repair. 

Slightly more complex is the case of perfect incomplete repair. By this we mean that 

repairs are carried out, they affect the degradation of the system in a known and fixed 

way. An example of such a policy would be a maintenance action that reduces the 

degradation of the system by a fixed percentage. The costs of such deterministic 

maintenance can be determined by a simple adaptation to the methods given in chapter 

three. It is this model which we shall use for deterministic maintenance. 

A further modification is to allow imperfect or general repair, in which the level of 

repair is random. In this case, the repairs carried out have a random effect on the 

degradation of the system. This randomness may be caused by errors on the part of 

those carrying out the maintenance, or may be simply inherent in the system 

maintenance. The case of general repair is more difficult to solve, since the transitions 

now involve an added degree of randomness. 

In the derivations that follow, we shall make a general assumption regarding 

maintenance. We assume that, if the state of the system at inspection is y, then the state 

after maintenance is given by a maintenance function dey, 9). 8 represents a particular 

realisation of a random vector E> that in some way encapsulates the randomness found 

in the maintenance. We assume throughout that, conditional on the system's state y, the 

density of the parameter e is given by f(91 y) . This approach gives a great deal of 

flexibility, for example when maintenance does not occur at a given value of y; we set 

dey, 9) = y. Likewise, if in a certain region replacement is to be carried out, we can set 

dey, 9) = O. It is clear that these cases are the extremes of y, and we assume that 
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0::; dey, 8) ~ y. In the case of deterministic maintenance, the maintenance function is 

defined simply as dey) . 

For the problem of determining an optimal inspection schedule we assume that the 

maintenance function d is known in advance, for all values of y. Our task then is to 

determine the cost of maintenance for each possible inspection interval, and hence 

determine an optimal inspection schedule. 

The problem of computing an optimal maintenance strategy for a given inspection 

schedule is more complex. To determine the optimal maintenance strategy we must 

make some assumptions about the maintenance function d. The easiest case is that of 

deterministic maintenance. In this case we must determine for each x, the maintenance 

function d(x), which can be achieved using dynamic programming. 

In the case of general maintenance, we must be more specific. In the case of general 

maintenance, we must specify all of the maintenance functions, and the distribution of 

all random parameters. There may be n possible maintenance actions d, (y, 9) for 

i = 1, ... , n and corresponding probability distributions for 0, f (91 y) . A more 

straightforward assumption is that of a single maintenance action dey, 8), with a 

number of possible distributions of 0, f (91 y). In this case, we seek the optimal 

choice of probability distribution for 0, in each state. We shall restrict our attention to 

the second case. 

In the following sections we consider the problems described above and obtain optimal 

maintenance and inspection strategies. 

5.3 Optimal Inspection in the Presence of Maintenance 

As in chapters 3 and 4, we consider optimal perfect inspection in the periodic and non­

periodic cases. We shall consider only the total discounted cost criterion, as the 

examples of chapter 3 show that the results in the average cost case are almost identical 

The main application of the results of this section will come in sections 5.4 and 5 5 

below. A particular case for which the results of this section are directly applicable 
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would be the case in which there is only a single possible maintenance action in each 

state. For other cases, it is usually preferable to consider the joint optimisation of 

inspection and maintenance. 

We note that in this chapter it is important to distinguish between the state of the system 

before and after repair has taken place. For this reason we define r to represent a time 

just before t, and t+ to represents a time just after t. 

5.3.1 Optimal Inspection under Deterministic Maintenance 

We begin by considering the case of optimal inspection for a system subject to a fixed 

and known maintenance strategy, as described by assumptions M3 above. In this 

section, we assume that the inspection policy is periodic. In section 5.3.3 below, we 

consider the case of non-periodic inspections by direct extension of the results given 

here. 

As in chapter 3 we define Vc5(X, r) to be the discounted total cost for a system which has 

current level of degradation x. We assume that the system as just been inspected and 

has level of degradation x, and an appropriate maintenance action will be 

instantaneously taken, changing the state of the system to d(x). It is possible to assume 

that the argument of the function V is the state of the system immediately after 

maintenance. In this case, however, it is more difficult to obtain results. In particular 

this formulation makes it difficult to obtain optimal maintenance policies using standard 

methods. 

So, if we define t/ to be the inter-event times (an event being either an inspection / repair 

or failure), we define the expected discounted total cost as 

where C(x,y; r) represents the (random) cost incurred if the system is in state y at time 

t~_1 when it was in state x at time t:_1 ' and the inspection interval is r. It is assumed that 

the maintenance policy is fixed, and so we do not show explicit dependencies, except 

where necessary to avoid confusion. 
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Again we assume that Xt represents the degradation process, and M t represents the 

maximum value of that process over the period [O,t]. The cost function may be 

expressed recursively. Thus 

This equation closely resembles that given in chapter 3 for perfect inspection under a 

replacement policy. The main difference is that we now incorporate the cost of 

maintenance, which is incurred immediately. In addition, since the state of the system 

changes to d(x) , all probability functions must be adjusted to take this into account. In 

particular the failure time is now given by the hitting time of B from the point d(x). 

Taking expectations of the above expression, and applying the reasoning as in chapter 3 

gives the integral equation 

V 0 (x, r) = C (x, d (x)) + f f v 8 (y, r) e -0. ir (y, mid (x)) dm dy 
BS\B (5.3) 

r 

+(vo(O, r)+C F
) f e-OhgB(h Id(x))dh 

o 

In this section, we define K.(y I d(x)) = fe-or ir(y,m I d(x))dm, which is slightly 
S\B 

different to the definition of previous chapters. As before ir (y, m I x) and g B (h Ix) are 

the densities of X"M
r 
I Xo = x, and the hitting time H of the set B by the process X, 

given Xo = x , respectively. 

We now assume that the function d(y) is known for all y, and in particular, that 

dey) = 0 for y ~ 0, and that C(y,d(y)) = 0 for y ~ o. As in chapter 3, we do not want 

to allow negative degradation levels, treating these as aberrations of the model rather 

than a description of the physical reality. We thus assume v(y, r) = 0 'If Y < o. 

We can thus rewrite the integrals in the above expression as 
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f v s(y, r)Kr(Y I d(x))dy = 
B 

• c 

vS(O,r)e-
Sr 

pd(x)(Xr < O,Mr > c) + f v,,(y, r)Kr(Y I d(x))dy 
o 

where the superscript d(x) now indicates that the probability is conditional upon 

X 0 = d (x). Then the integral equation may be written as 

c 

vs(x, r) = c(x, r) + vs(O, r)u(x, r) + f v8 (y, r)Kr(y I d(x))dy 
o 

Where the functions in this case are defined as 

r 

c(x, r) = C(x,d(x)) + CF f e-ShgB(h I d(x))dh 
o 

r 

u(x,r)=e-Srpd(x)(Xr <O,Mr >c)+ f e-ShgB(hld(x))dh 
o 

Kr(Y Id(x)) = f e-Srir(y,m Id(x))dm 
S\B 

As in chapter 3, we expect that for a suitable degradation model the first term of the 

function u should be close to zero. Otherwise, the model suggests a large probability of 

the degradation becoming negative. 

In the case where the degradation process X is monotonic, the Maximum variable need 

not be considered and we obtain the functions c, u and K as 

r 

c(x, r) = C(x,d(x)) + CF f e-ShgB(h I d(x))dh 
o 

r 

u(x, r) = f e-ShgB(h I d(x))dh 
o 

Kr (y I d(x)) = e-Sr iT (y I d(x)) 

It is obvious from the form of these equations that they can be solved by the methods 

given in appendix 1. In this case however, there are some added complications, which 

we now consider. 

1]2 

(5 4) 
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The numerical solution of the integral equations in chapters 3 and 4 is based on a 

numerical integration procedure constructed over a suitable discretisation of the region 

of integration. In the case of a non-singular kernel K, the results apply almost directly. 

Applying a quadrature rule to the integral equation gives, for eachY1 EM 

n 

v(YJ ' r) = Cd (y] , r) + U d (y j , r) v( 0, r) + I v(y i , T)K T (y i I d (y j )) H'l, } (5 7) 
i=O 

As in appendix 1, by writing this equation replacing x by values in the mesh, 

Y i = ih, i = 0,1, ... , N where h = rj N , we can write this as a system of linear equations 

in matrix form as 

v=c+Uv+K~v (5.8) 

Where the matrices are defined as follows: 

K~= 

v= 

v(Yo) 

v(y\) 

v(Ym) 

c= 

K(Yo,d(yo »wo,o K(yo, d(y\ »WO,\ 

K(y\ ,d(yo»w\,O K(Yl'd(y\ »w\,\ 

U(yo) 0 

u(y\) 0 
U= . 

U(Ym) 0 

C(Yo) 

c(y\) 

C(Ym) 

0 

0 
. 

0 

K(yo ,dey m »WO•m 

K(y\ ,d(Ym»wl,m 

K(y m ,dey m »w m,m 

Clearly, the matrices are defined mainly as in appendix 1, which considers the solution 

of this integral equation in the case when dey) = y. It is clear that in this case, the 

above matrices reduce to those of Appendix 1/Chapter 3. 

So that the cost vector v may be found as 

K T )-\ 
V = (I - U - d C 

if the inverse exists. 
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In the case of a diagonally singular kernel, the approach given in appendix 1 may be 

applied, and a similar result to that given above is found. However, there are now some 

added complexities. . In this case the general integral equation (5.7) is rewritten, to 

remove the singularity. Thus 

vo(x, r) = c(x, r) + vo(O, r)u(x, r) 
c 

+ f [vo(y, r) - vo(d(x), r)]K,(y I d(x»dy + vo(d(x), r) J K,(Y I d(x))dy 
o 0 

For convenience of notation, we define 

c 

q(x) = f K,(Y I d(x»dy. 
o 

Discretising this equation, we obtain for values ofx on the mesh M = {Y, Ii = 0, ... , n} 

n 

V 8 (y j , r) = Cd (y j , r) + V 8 (0, r) U d (y j , r) + I v(y i , r)K, (y I I d (y ) » Wi ,J 
i=O 

n 

-v(d(YJ» IK, (Y, I dey J »wi,J + v(d(y f» qd (y J ) 

i=O 

it can be seen that this system of equations may be written in matrix form as 

v = c + Uv + K ~ v + Qv d - Wv d 

where the matrices c, U, Kd and v are defined as above. The matrix Q and vector v dare 

defined by 

Q= 

o o 

o 

° 
v(d(O» 

v(d(l» 

v(d(n» 

The matrix W is defined as W = diag( w), where the vector w is given by w = K ~ e 

where e is an (n + 1) x 1 vector containing 1 in each entry. 

(5 10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

It is clear then, that to solve these equations we must determine a relationship between 

the vector v and the vector Vd. The simplest method is to assume 

thaty EM=> dey) EM. Hence, for any point on our mesh the maintenance action d 

results in a state that is also in the mesh M. Now define a matrix 1\1,) such that , 
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[Md L,j= 1 if d(yJ = Yj and ° otheIWise. Then it IS clear that \' d = !\ I d \' 

Substituting this into the above matrix equation and rearranging gives 

when the inverse exists. 

We note that the assumption that the maintenance action results in a point on the mesh 

is not restrictive. In particular, as the mesh becomes finer the effect of this should be 

negligible. We note also that this assumption is not required in the case when the 

Kernel is non-singular. In that case, the model is able to allow the maintenance to 

change the state of the process in a completely general way. 

Then, as in chapter 3, for a given maintenance policy we may now compute the 

discounted total cost of operating any inspection policy. It is therefore simple to 

determine the optimal inspection policy. An example of this is given in section 5.7, 

using the gamma process as the model of system degradation. 

5.3.2 Optimal Inspection of Randomly Maintained Systems 

We now briefly consider the case described by assumptions M4, given in section 5.2.2 

above. Again, we restrict attention to periodic inspection policies, leaving the case of 

non-periodic policies to section 5.3.3 below. 

The main difference between the analysis of this section and that preceding it is that the 

decision-maker does not know with certainty how the system will be affected by the 

maintenance action. In terms of derivation of appropriate integral equations, this 

causes no problems. Problems, however, do arise when considering the numerical 

solution of these equations. These are discussed following the derivations below. 

In the main we use the notation of section 5.3.1, but we extend the notation to deal , 

with random maintenance. We assume, since the maintenance policy is fixed, that the 

maintenance function is given by d(y,O), where () has probability density function 

f(B I y) for each y E [O,c]. 
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Then, proceeding as before, the cost function V may be expressed recursively as 

Vo(x, r) I XpMpH:(x,e), e 
=Cd(x)+V(X;,r)e-orl{M,EB,xrEB} + {Vt5 (O,r)+C F }e-t5H:(,.9l 1 B (5.16) 

/Flu''' ",,<rl 

which is the same as in the deterministic maintenance case, except for the presence of () 

in the maintenance function. Taking expectations as before gives 

V 0 (x, T) = Cd (y) + f f f v 0 (y, r) e -t5 r f (0 I y) fr (y, mid (x, 0» dO dm dy 
B S\B e 

T 

+ (v t5 (O,r)+C F
) f f e-OhgB(h Id(x,O))dOdh 

oe 

Again, we assume that d (y, 0) = ° for y ~ 0, and that Cd (y) = ° for y ~ 0. So that the 

integral equation becomes 

c 

V 0 ( x, T) = c( x, r) + u (x, r) v t5 (0, r) + f v 0 (y, T)K r (y Ix) dy 
o 

with 

Kr(Y I x) = f fe-or f(O I x)fr(Y,m I d(x, B))dOdm 
S\B e 

r 

c(x, r) = Cd (x) + cF f f e-t5hg B (h I d(x, 0)) f(B I x)dO dh 
oe 

o r 

u(x, r) = f Kr (y I x)dy + f e-t5h gB(h I d(x, B)) f(B I x)dh 
-00 o 

From these equations, it is clear that the randomness in the maintenance policy is 

simply averaged out. Essentially then, the case of randomness can be approximated by 

simply considering the mean effect of maintenance rather than taking into account the 

effect of the parameter B. We have not investigated how this simplification affects the 

results of the models of this chapter. It is natural to expect, ho\vever, that the error 

caused by the simplification will become larger, as the variability of e gets larger. 
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As usual, in the case of a monotone degradation process, we can simplify the equation a 

little. In this case the integral equation is in the same form as equation (5. 17) and the 

functions are given by· 

Kr(Y I x) = fe-or f(B I X)fr (y I d(x, B))dB 
e 

r 

c(x, r) = Cd (x) + C
F 

f f e-OhgB(h I d(x, B)) f(B I x)dBdh 
oe 

r 

(5.20a) 

(5.20b) 

u(x, r) = f e-OhgB (h I d(x, B)) f(B I x)dh . (5 ~Oc) 
o 

where frey I x) is the density of Xr I Xo = x. This equation is of the same form as that 

given above. In this case, the kernel still involves an integral, and so the usual 

computational advantages of the monotone process are not present. This is the same 

effect as was observed in the case of optimal inspection of a covariate process. It 

would appear from what we have done that any attempt to add an extra degree of 

randomness into the problem results in a problem which is much more computationally 

demanding to solve. For these reasons, we shall not consider a numerical example of 

random maintenance, but we give an outline of the method of solution below. 

It is clear from the form of the equation that the method used in the deterministic 

maintenance case will apply. 

5.3.3 Optimal Non-Periodic inspections 

It is clear from the derivation of the integral equations above, and the development of 

dynamic programming equation in Appendix 3, that the results of the previous two 

sections on deterministic and general maintenance policies may be immediately 

generalised to the non-periodic case. 

Firstly, in the case of deterministic maintenance, it is clear that the underlying equation 

is almost identical to that shown in section 3.5. Clearly, then we may apply the same 

policy improvement algorithm as given in that section. Then, from the abo\'e results it 

is clear that the dynamic programming equation is of the form 
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with the functions c, u and K being defined appropriately by equations (5.5) or (5 6) 

depending upon whether the process is monotonic or not. 

Likewise, in the case of general (random) maintenance, the dynamic programming 

equation is given by 

where the functions c, U and K are defined by equations (5.19) or (5.20), depending on 

whether or not the underlying degradation process is monotonic. 

It is shown in Appendix 3 how these equations may be derived. The proof given in 

Chapter 3 showing that the dynamic programming equation of section 3.5 defines 

contraction mappings, applies equally well here. 

In both cases, assuming efficient numerical methods are available to compute the costs 

of any given policy, and a standard policy improvement algorithm may be used to 

compute the optimal inspection strategy. 

To apply the policy improvement algorithm, we must evaluate the costs of a specific 

policy. Thus, in equations (5.4) and (5.18) we define vex) = vex, r(x» , where r(x) 

defines a state dependent inspection policy. These equations may be thus written 

c 

vex) = c(x) + v(O) u(x) + f v(y)K rex) (y \ d(x»dy 
o 

and 

c 

v(x) =c(x) + u(x)v(O) + f v(y)Kr(x)(y\x)dy 
o 

To allow concise description is all possible cases, we assume now that the discretised 

integral equation, whichever one we are using, is written in operator notation \' =-= T( \') . 

In either case, let us assume that the integral equation has been discretised, using a 

mesh of m uniformly spaced points over the interval [0, c]. Following the development 
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of sections 5.3.1 and 5.3.2, the solution may now be expressed in the form v = :\I-Ie 

for some matrix M and vector c. The vector v, of course, gives the approximates 

solution at points on the mesh 

v= 

V(Yo) 

V(YI) 

V(Yn) 

The particular form of the matrix M depends upon the whether or not we are dealing 

with random or deterministic repairs, and on whether or not the Kernel of the integral 

equation is singular. In any case, we assume that it is invertible. We have not 

investigated conditions for the invertibility of these matrices, but in all cases considered 

we have yet to find a singular matrix. 

Then, we may apply the following policy iteration algorithm, which is similar to that 

given in chapter 3, (The algorithm is based an that given by Puterman, 1994), and is 

identical to that used in chapter 3: 

1. Set k = 0, and select an arbitrary inspection rule Tro = { rg, ... , r~ } 

2. (Policy Evaluation) Obtain v k by solving v k = M~lek ' where the subscript k 

indicates the matrix is to be evaluated with policy Trk· 

3. (Policy Improvement) Choose Tr k+1 = { r~+1 , ••• ,r:+1 } to satisfy 

Trk+1 =argmin{T,,(v
k
)} 

"ED 

4. If 1r k+1 = Tr k' stop and set tr* = 1r k' Otherwise, increment k by 1 and return to 

step 2. 

Where we emphasise that the minimisation in step 3. is carried out component-wise. 

We may of course use 'min' rather than 'inf, since we are dealing with a discretised 

system, having a finite state space and action space. Again, the effect of the 

discretisation is small for a fine mesh. 
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As with most of the work in this thesis, the solutions require large amounts of 

numerical work, and whether or not an efficient solution can be found depends largely 

on the underlying process and assumptions made. In particular it is found that the case 

of general maintenance is computationally demanding. It is doubtful whether or not the 

increased effort required to solve the general problem is worthwhile. While the general 

model is perhaps more realistic, the deterministic model has the advantage of being 

computationally easier and giving more informative policies. 

5.4 Optimal Maintenance for a given Inspection Policy 

In this section, we shall look at a problem closely related to that of section 5.3. In 

section 5.3 we considered optimisation of the inspection interval, for a given 

maintenance policy. We shall now consider the problem of determining which 

maintenance actions are optimal, for a given inspection policy. In this section, we will 

only consider the case of periodic inspection, since the results are easily extended to an 

arbitrary inspection policy. In the latter case, the inspection interval r is replaced by 

the function r(·) wherever it appears. 

This analysis of this section is similar to that of Stadje and Zuckerman (1991), who 

consider a model in which the virtual age of the system may be reduced by 

maintenance. The other main difference between what follows and the work of Stadje 

and Zuckerman, is that Stadje and Zuckerman define the failure mechanism in terms of 

a hazard function, whereas we consider a threshold failure model, for reasons already 

outlined. A model related to this is given by Dagpunar (1998), who develops integral 

equations for the various maintenance policies, in which the virtual age of a system is 

reduced by maintenance actions. 

While our model differs by not considering hazard based failures, we feel that it 

compensates by allowing us to model an observable effect, namely the effect of 

maintenance on degradation, as opposed to the unobservable effect of the effect of 

maintenance on the 'age' of a system. The models of course are different, and are 

appropriate for different types of system. 
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Our model is clearly focused on systems whose degradation can be affected by a 

maintenance action. We look at a general case in which the degradation can be reduced 

by any amount chosen by the system user. Of course, in reality the maintenance may 

be more restricted than this. These restrictions simplify the model below, and are easily 

accommodated. 

5.4.1 Optimal Deterministic Maintenance 

Let us assume that the inspection policy for our system is known and fixed. While an 

inappropriate assumption for many systems, it is often the case that there are a limited 

number of times available at which inspection, and subsequent repair may take place. 

A classical example of this is that of commercial aircraft, which may only be inspected 

at the end of each flight. In addition, an airline may only have facilities to carry out 

certain maintenance actions in certain places, so that it is only possible for it to do 

maintenance after a number of flights. 

We assume then, that the system has a fixed inspection schedule, which, without loss of 

generality, we assume is periodic. We shall briefly consider the case of joint 

optimisation of periodic inspections and maintenance in section 5.4.3. In that case, the 

results of this section are combined with a simple search algorithm to obtain the 

optimal inspection and maintenance policy. 

Thus, for a given maintenance function d and inspection interval r, we can compute the 

discounted total cost of this policy as described in section 5.3.1 above. It is of course 

the solution of the integral equation. 

c 

vo(x, r) = c(x, r) + vo(O, r)u(x, r) + f vo(y, r)Kr(y Id(x))dy 
o 

with the functions c, u and K defined as in equations (5.5) or (5.6), whichever is 

appropriate for the situation at hand.. As we have seen, this equation can usually be 

solved by simple numerical methods. 

From the nature and derivation of this equation, it is obvious that we may obtain a 

dynamic programming equation of the form 
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This functional equation can be solved by similar methods to those described above for 

optimal non-periodic inspections. Since T is assumed known, we drop it from our 

notation in this section. 

As usual, we begin by discretising the integral equation to form a set of linear 

equations. Let us assume that a mesh M = {y; Ii = 0, ... , n} is defined for the 

discretisation. Then we assume that Y EM=> dey) EM, so that the maintenance 

action always results in the system being on a state on the mesh M. Thus, in the 

dynamic programming equation above we must assume that d EM. Thus the problem 

is reduced to a discrete action space problem, and we can solve the discretised problem 

in the usual way. 

The policy improvement algorithm is defined as above, with slight amendments. 

1. Set k = 0, and select an arbitrary inspection rule 1ro = {dg , ... ,d~ } 

2. (Policy Evaluation) Obtain v k by solving vk = M;lC k , where the subscript k 

indicates the matrix is to be evaluated with policy 1rk· 

3. (Policy Improvement) Choose 1rk+l = { d~+l , ... ,d:+
1 

} to satisfy 

1rk+l = arg min {T!f(v
k

) } 
!fErr 

4. If 1C = 1r stop and set ;r* = 1r . Otherwise increment k by 1 and return to 2 .. 
k+l k' k 

This algorithm may be applied as in chapter 3. 

The policy found using this algorithm gives the state to which the degradation should 

be reduced. Thus, it provides us with a full description of the appropriate maintenance 

action in any given state. 
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It may also be the case that we are restricted to a small number of available 

maintenance actions, similar to the situation we have described in the random 

maintenance case. This restriction can easily be accommodated by simply restricting 

the available values of d in each state. These values, however, must always be 

members of the set M. Clearly, as the number of points in the mesh increases this , 
restriction becomes less important. 

5.4.2 Optimal General Maintenance 

In the case of general maintenance under perfect inspection, we assume that there is a 

single maintenance function d(x, f), but that the random variable f) may come from a 

number of distributions, at the choosing of the decision-maker. We assume therefore 

that there is a set of probability density functions D = { 1; (f) ,.), /2 (f) ,.), ... , fA (f) ,.) }, 

and that the aim of our optimisation problem is to decide which of these probability 

functions should be used in each state of the process. 

In particular we have in mind the maintenance function 

d(x,B)=x-f) 

In this case, we assume that B represents the reduction in the degradation. Then, two 

different distributions of f) correspond to two possible maintenance actions, both of 

which reduce maintenance, but by a random amount, with different probability 

distributions. There are of course many other possible forms for the maintenance 

function, but this one seems the most reasonable. 

As in the assumptions M4 at the beginning of this chapter, we assume that the cost of 

applying a particular maintenance action depends only on the state of the system prior 

to maintenance and the maintenance action. In this section, this implies that the cost of 

a maintenance action depends only on the state x and the distribution chosen for B. 

Thus, the policy is now described by JZ' = {ao, ... ,an } , where f" (tJ' x,) is the 

distribution chosen in state XI. Then it is clear that the dynamic programming equation 

is of the form 
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where in this case the kernel is defined by 

x 

K;(y I x) = f e-
tSr 

faCe I x)fr(Y I x - e)de 
o 

Therefore, the policy improvement routine described in section 5.4.1 may be applied 

directly, replacing the policy Jr k = { d; , .. " d: } with Jr k = { a~ " . " a~ }. 

As in the deterministic case, the policy gives a complete description of the optimal 

maintenance action in each state. In this case, it is likely that the number of available 

maintenance actions is small, and so the policy improvement is not computationally 

demanding. As in the case of inspection of covariates, it is the policy evaluation that 

proves to be computationally difficult. 

5.4.3 Joint Optimisation of Maintenance and Inspections 

It is possible, by a simple extension to the above results to consider optimal periodic 

inspection and maintenance. Simply, we may find for each r the optimal maintenance 

policy, and corresponding discounted total cost. By searching for the minimum optimal 

maintenance costs over all values of r; it is simple to obtain the value of rand 

corresponding maintenance policy that has the least cost. This approach is taken in 

section 5.6 below, using the Gamma degradation model as an example. 

In order to consider the case of non-periodic inspection of a maintained system, we 

need to extend the dynamic programming formulation of the problem. As before, we 

can compute the cost of maintenance and inspection under any given policy. The 

integral equation can thus be written explicitly in terms of the policies applied. Thus 

c 

vo(x) = c(x, r(x),d(x» + VtS(O)u(x, r(x),d(x» + f vo(y)Kr(x)(Y Id(x»dy 
o 

assummg we are dealing with deterministic maintenance. In the case of random 

maintenance, we amend the equation as in the above case We can now apply the 
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standard policy improvement algorithm described above. This can be done bv 

redefining the policy to be applied as 1[ k = { (d~ ,"', d:), (T~, ... , T!) }, where 11 is the 

number of points in the mesh and m is the number of time points considered. 

It is clear from previous results that the optimal policy will exist, at least for the 

discretised problem. The problem with this method is that there are a large number of 

policies that have to be evaluated during the policy improvement. In this case we have 

to compute the cost under the m x n different combinations of d and T. Clearly, for 

large values of m and n this will prove time consuming. 

A possible approach to reducing the complexity of this problem is to separately 

evaluate and improve the maintenance and inspection policies. We assume that the 

discretised integral equation under policy 1[ k = (d k 
, tk

) is written in operator notation 

as v = Tk k (v). Then the policy iteration algorithm is given by 

l. Set k = o. Choose arbitrary policies gIven by d O = (dg , ... , d~ ) and 

2. (Policy Evaluation I) Compute the discounted cost under policy (d
k

, e) by 

I . kk T, ( kk) so vmg v' = k,k V ' 

k+1 . h h 3. (Policy Improvement I) Choose d component-wIse suc t at 

dk+l = arg min { T(Vk,k) } 

dED 

4. d d I, (dbl,tk) by (Policy Evaluation II) Compute the discounte cost un er po ICY 

I , k+lk T, (k+l,k) so vmg v ' = k+l,k V 

5, (Policy Improvement II) Choose tk+1 component-wise such that 

e+1 = argmin{ T(v k+l.k) } 
r>O 

6. If (dk+l,e+I)=(dk,e) stop and set Jr*=(dk,e). Otherwise, return to step 2, 

incrementing k by 1. 
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This algorithm differs only slightly from the standard algorithm gi\'en above The main 

difference here is that much fewer evaluations are required in the policy improvement 

section. The minimisation now requires only m + n evaluations, which for large m and 

n reduces the computational effort required. On the other hand, this algorithm now 

requires two policy evaluations in each cycle, and it may take more cycles to converge. 

since not every combination of inspection and maintenance actions is considered in 

each cycle. Which of the two algorithms is preferred depends largely on how 

computationally demanding the policy evaluation is. In most cases, however, we would 

expect that this algorithm is more efficient. 

In the example that follows, we consider only the case of optimal periodic inspection 

and maintenance. The case of non-periodic inspection is more difficult and adds little 

to what we have already said. 

5.5 Example: Gamma Process Degradation 

In this section, we shall consider the case of a gamma process degradation model. We 

shall mainly be concerned with periodic and non-periodic inspections of systems with 

deterministic maintenance. The case of random maintenance may be solved by the 

methods described in the chapter, but these cases are much more computationally 

demanding than those we shall now look at. 

We assume therefore the maintenance is deterministic, so that the maintenance function 

is defined by d(x). Where necessary, we also make the assumption that 

Y EM=> d(y) EM where M = {Yi Ii = 0, ... , n} is our chosen discretisation of the 

state space. 

As in previous chapters, we assume that the degradation process is a gamma process, so 

that the transition density of the process is given by 

y>x 
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as we have seen this density function is singular along the line y = x, so that we apply 

the results for a diagonally singular kernel for a monotone process. The properties of 

this process as a degradation model are discussed in chapter 2. 

Unlike the case in the previous two chapters, the cost function in the presence of 

maintenance is now very flexible. The function C(x,d(x)) represents the cost of a 

maintenance action that results in the degradation of the system being reduced from 

level x to level d(x), including inspection costs. Clearly, it should be chosen to reflect 

the costs incurred by the system to which the model is being applied. For our example, 

we shall consider the cost function given by 

C(x, d(x)) = Co + C1 (x - d(x)) + C2 (x - d(x)f-

Clearly, this is not ideal for most systems. In particular it is assumed that the cost of 

reduction in maintenance by a given amount is independent of the initial level of 

degradation. This is not the case for many systems. We emphasise however that this 

cost function is completely general and may take any form. 

In all the following examples we assume that the discount rate 8 = 0.01. In addition, 

as in previous chapters we assume that the average rate of degradation is 1 per unit time 

so that a/ f3 =1. We vary the parameter a to reflect different levels of variability of the 

degradation process. Similarly we assume that the failure threshold c = 1, in all the 

examples. These assumptions do not affect the results below, since other values can be 

achieved by either a scale change or time change or a combination of the two. 

5.5.1 Optimal Inspection of a deterministically maintained system 

In this section we shall consider the results of section 5.3.1 and 5.3.3, and gIve 

examples of optimal inspection policies for systems having a fixed and known 

deterministic maintenance policy. 

There are many possible maintenance strategies depending upon the type of system we 

are considering. In the examples of this section, we assume that the maintenance 

function d takes the following form: 
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x for x < ro 

d ( X) = x - ro for ro < x < 'i 

o for r1 < x < c 

The effect of this policy is simple. We define two control limits': if the first is breached 

a partial repair takes place, while if the second is breached the system is repaired to a 

good as new condition. This policy is suggested simply as an example, to illustrate the 

effect of the maintenance policy on the inspection schedule. 

We begin by looking at the case of periodic inspections. We arbitrarily fix the value of 

c to be c= 1 and assume the cost function is given by 

C(x, d(x)) = 1 + 5(x - d(x») + 15(x - d(X»2 

with cost of failure is given by CF = 20. Tables 5.1 and 5.2 below show the effect of 

variations in the maintenance policy on the optimal periodic inspection interval, in the 

cases of a high and low degradation process variability. In table 5.1 we assume that 

a = fJ = 7, and in table 5.2 it is assumed that a = fJ = 25. These result in process 

variance ofO.14 and 0.04 respectively. 

r] 
0.3 0.6 0.9 

4 2 2 
0.2 

1632.13 1639.03 1548.38 

8 4 
ro 0.5 

1905.82 1823,08 

00 

0.8 
-1950 

Table 5.1 - Table showing effect of maintenance schedule with a = fJ = 7 , on 

discounted total cost and optimal inspection interval (x 10) 

These tables are computed using the numerical methods previously described \\'e 

assume that the state space [0,1] is divided into 10 steps, of length 0.1 and the 
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inspection intervals considered are in multiples of 0 1 time unI'ts It's I th h" 
. . 1 C ear at t 1S 1S a 

crude approximation to the true integral equation but even thI' s ro gh '" , u'-' approx1matlOn IS 
sufficient to show the form of the optimal policy and the eC'C'ect of ' 

111 varIOUS parameters. 

'] 
0.3 0.6 0.9 
4 2 2 

0.2 
1457.46 1444.43 1396.49 

7 3 
'0 0.5 

1856.23 1714.25 

00 
0.8 

-2050 

Table 5.2 - Table showing effect of maintenance schedule with a = f3 = 25 , on 

discounted total cost and optimal inspection interval (x 10) 

It can be seen from these tables that model gives results which are intuitively 

reasonable. In both cases a similar pattern is observed, with any differences accounted 

for by the increased process variability. In the first case, with high variability, costs are 

on the whole higher, with inspection intervals being shorter. The opposite case is found 

when both values of,] and '2 become large. In that case, the process with lower 

variability is more expensive than that with high variability. 

The main feature of both tables is that the maintenance costs increase as the value of,o 

becomes larger. This behaviour is caused by the cost function chosen. The fact we 

have a convex cost function means that it is more optimal to have small ro because this 

results in maintenance actions with lower cost. We would expect to find this behaviour 

with any convex cost function. Other than this the results are large I y as we would 

expect, and exhibit many of the features described in chapter 3. The behaviour here is, 

of course, more difficult to predict, as the maintenance complicates matters. It is of 

course very difficult to generalise these results, since they are heavily dependent on the 

form of the cost function involved. In the case we have considered with a quadratic 
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cost function, it is clear that systems with high values of ro will cost more to run. as the 

relative cost of maintenance will be more. This effect is clearly visible in the results. 

In both of the above examples, the cases in which ro = 0.2 and rl = 0.9 give the least 

cost. Again, this is due to the form of the cost function, which implies small reductions 

in degradation cost relatively less than large amount of reduction in degradation. 

In the same cases as above, we can also obtain optimal non-periodic inspection 

schedules. The relationship between the two forms of policy is similar to that found in 

chapter 3, which is of course a special case. Again we assume that ro and rl may take 

values as in the above tables and consider the cases a = f3 = 7 and a = f3 = 25 The 

results are shown in table 5.3 overleaf. 

As in the above case, the results for different values of process variability are largely 

similar. The only difference of note comes in the case when ro = 0.8 and r
1 

= 0.9. In 

this case, with high process variability the optimal policy is to never inspect the system, 

and simply replace on failure. In the lower variability case however, this is only the 

case in certain states, the other states having a defined finite inspection policy. Looking 

at the corresponding periodic policy shows that the costs are almost identical. The 

approximation we have used in this example is very rough, and in this case, it would be 

necessary to use a finer subdivision of the state space in order to determine which 

policy should be used. We would expect to find a policy of no inspections would be 

optimal. 

Within each group, the policies seem, at first sight, very strange. In the case of the 

replacement model of chapter 3, it was found that the inspection interval was a 

decreasing function of the system state, as we would intuitively expect. In this case, 

however this does not appear to happen. If we take into account that the state will be 

changed by the application of the maintenance action, the policies are very reasonable, 

in terms of what we would intuitively expect. 
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a=7 

'J' 

\ (J.=25 
I 

i 
1 

Inspection interval in each state (state before maintenance) DTC Per. 
Policy 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

fo=0.2 0.4 0.3 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1601 0.4 
fl= 0.3 

fo=0.2 
0.4 0.3 0.2 0.3 0.2 0.1 OA 0.4 0.4 0.4 1574 0.2 fl= 0.6 

fo=0.2 
0.4 0.3 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.4 1432 0.2 

[1= 0.9 

fo=0.5 0.7 0.6 0.5 0.4 0.3 0.2 0.7 0.7 0.7 0.7 1861 0.8 
[1= 0.6 

[()=O.5 
0.6 0.5 0.4 0.4 0.3 0.2 0.5 0.4 0.4 0.6 1757 0.4 [1= 0.9 

[()=O.8 
~1950 [1= 0.9 00 00 00 00 00 00 00 00 00 00 00 

[0=0.2 
0.4 0.3 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1431 0.4 [1= 0.3 

[0=0.2 
0.4 0.3 0.2 0.3 0.2 0.1 0.4 0.4 0.4 0.4 1358 0.2 

[1= 0.6 

r,,=O.2 0.5 0.4 0.2 0.4 0.2 0.1 0.1 0.1 0.1 0.5 1296 0.2 r.= 09 

[{)=0.5 0.6 0.5 0.4 0.3 0.2 0.1 0.6 0.6 0.6 0.6 1745 0.7 
rl= OJ) 

[0=0.5 0.6 0.5 
[1 = () 9 

0.4 0.3 0.3 0.2 0.5 0.4 0.3 (H) 1578 0.3 

_. 

r,,=O 8 0.8 0.7 0.6 0.5 0.3 0.2 0.1 00 -2049 00 
[1= ()9 00 00 

-- ------ --- ~ 

Table) 3 - Optimal Non-periodic Inspection schedule for system subject to maintenance. Table shows optimal 
inspection policy and corresponding discounted total cost, alongside optimal periodic policy and cost. 

Per. 
DTC 

1632 

1639 

1548 

1905 

1823 

~1950 

1457 

1444 

1396 

1856 
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Looking at all of the cases (with the exception of the final one), the following pattern 

seems to apply. We see that for 0 ~ x ~ ro , the policy is indeed a decreasing function, 

and is in line with what we might expect. In the case when ro ~ x ~ 'I, the policy is 

'restarted', since the state of the system is reduced by,o if the system is found to be in 

state x. In the final case when x > fj, the system state is reduced to zero and so, the 

policy is identical to that which would apply if we had in fact observed the state of the 

system to be zero. 

With regard to the cost of the non-periodic polices, it is found in most cases that the 

cost of the non-periodic policy is less than the corresponding optimal periodic policy. 

The only exception being when a policy of no-inspections is optimal. 

In summary, the model provides inspection policies for given maintenance policies that 

are both intuitively sensible and informative. In this case, it is more difficult to be 

precise about the properties of the model, as each case IS highly dependent on the 

particular cost function used. As always, it would be very interesting to see the 

application of the model to a real system, where physical comparisons would be 

available to test the model. 

5.5.2 Optimal Periodic Inspection and Maintenance Policies 

In this section, we give an example of the computation of jointly optimal inspection and 

maintenance policies, given by section 5.4.3. We assume that the inspection is periodic 

and use a simple search algorithm to compute the least cost policy. We do not consider 

optimal random maintenance in this example. The methods used in the example may 

be easily applied to that case. The functions in that case are more difficult, and thus it 

takes much longer to compute the optimal policies. For similar reasons, we do not 

consider the joint optimisation of maintenance and non-periodic inspections. This case 

can be solved using the policy improvement algorithm given in section 54 3 above 

We make similar assumptions to those given in the section 5.5.1 above. In this case 

however, the maintenance policy is freely determined by the optimisation process \\'e 

do not, therefore, have to specify a maintenance function, and so the values of 1',. and '1 

152 



CHAPTER ~ 

are redundant. We now consider the effect of changes in the cost function parameters, 

but again assume a fixed form 

C(x,d(x» = 1 + C1 (x - d(x» + C
2 
(x - d( X»2 

and assume that CF may take different values. Once again, we consider both high and 

low process variability. Apply the methods described above, gives the results shown in 

Table 5.4 overleaf. 

The table shows the maintenance action in each state, alongside the optimal periodic 

inspection policy, and corresponding discounted total cost. As before, we consider 

inspection intervals in multiples of 0.1 time units, and subdivide the state space [0,1] 

into 10 intervals of length 0.1. We note that the 'maintenance action' in each state 

gives the 'level to which degradation should be reduced to'. Therefore, a value of 0 

implies a complete repair (or replacement) should be carried out, whereas a value of x 

in state x implies no action should be taken. Once again, the results are heavily 

dependent on the cost function, and it is difficult to generalise comments about the 

properties of the model results. 

As in previous cases, the cost function chosen means that a small reduction in 

degradation is relatively chapter than a large reduction. The effect of this can be seen 

in the results, which show that the optimal maintenance strategy is to reduce the 

degradation in each state by a small amount, rather than to have a complete repair 

Correspondingly, the inspection intervals in each case are relatively small, so that, in 

general, the optimal policy seems to be to carry out small maintenance actions quite 

often, rather than have longer inspection intervals. Deciding which of these strategies 

is most appropriate is very important for many systems. 

For given levels of a and CF , it is clear that the maintenance functions behave as 

expected. For lower repair costs, it is optimal to apply a complete repair in most states, 

only when the level of degradation gets close to 1, is it more cost effective to apply 

partial maintenance. When costs of repair become high relative to costs of failure, it is 

still optimal to carry out low levels of maintenance, but again this depends largely on 

the cost function. 
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, u=7 
Cr=20 

u=7 
CF=40 

u.=25 
( 'F=20 

(1.=25 
( ',=40 

I 
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C) = 5 
C2 = 5 

C)=5 
C2 = 15 

C) = 5 
C2 = 30 

C)=5 
C2 = 5 

C)= 5 
C2 = 15 

C) = 5 
C2 = 30 

C) = 5 
C2 = 5 

C, = 5 
C2 = 15 

C) = 5 
C2 = 30 

C1 = 5 
C2 = 5 

C, = 5 
C2 = 15 
C,= 5 

C2 = 10 

Optimal Maintenance Action in each state 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 

0 0 0 0 0.1 0.2 0.2 0.3 0.4 0.4 0.5 

0 0 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 

0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 

0 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 

0 0 0 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.6 

0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 

0 0 0 0 0.1 0.2 0.2 0.3 0.4 0.4 0.5 

0 0 0 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.9 

0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 

0 0 0 0 0.1 0.2 0.2 0.3 0.3 0.4 OA 

0 0 0 0.1 0.1 0.2 0.3 0.4 0.4 0.5 0.5 

Table 5.4 -Jointly Optimal Maintenance and Periodic Inspection schedule. Table shows optimal 
policy and corresponding discounted total cost 

1"* DTC 

0.4 1061 

0.3 1376 

0.2 1671 

0.3 1130 

0.2 1432 

0.2 1778 

0.4 960 

! 

0.3 1299 

0.2 165) 

OA 965 

0.1 1.102 
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In the case of a linear cost function, the results are sensitive to the relative cost of repair 

and failure. In general, if repair cost per unit reduction in degradation is less than 

corresponding failure cost, employ a complete repair at each inspection. Otherwise, do 

nothing and replace the system on failure. Clearly, this is an extreme case, and 

unrealistic in most situations. 

For high and low process variability, the optimal policies are very similar, the costs 

being slightly higher in the high variability case. Likewise, the cases of low and high 

cost of failure are very similar. This is particularly the case for low process variability, 

in which, the policies employed and costs are almost identical. The reason is clear: 

with low variability, chances of failure are very low, so the actual cost of failure has 

little effect on the optimal policy. For high process variability, the optimal policies are 

almost identical, but the case of high failure cost results in a higher discounted total 

cost, as we would expect. 

As before, the maintenance policies found are intuitively reasonable, and fit the system 

model well. It is clear that the model, as in previous cases, provides useful and 

informative information about the nature of the system, which can be effectively used 

by decision-makers. While we have not considered variations in all the parameters, the 

model responds positively to those we have considered, and is not overly sensitive to 

changes in any particular parameter. As before, the crucial assumption lies in the cost 

function. Any change to the form of the cost function may result in completely 

different policies. 

5.6 Conclusions 

In this chapter, we have considered optimal maintenance and inspection policies for 

systems whose degradation is modelled by a Levy process. We assume that the system 

may have a completely general maintenance and inspection policy, and that the system 

failure is modelled by a threshold-crossing model. 

Using the methods of previous chapters, we may derive equatIons for the optimal 

discounted total cost in each case, allowing us to compute optimal maintenance 
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policies. In particular we consider the cases of periodic and non-periodic inspections. 

coupled with both deterministic and random maintenance. 

The example of the gamma process degradation model is again used, and the model 

gives realistic and informative maintenance policies in this setting 

There are many possible extensions to this model that could be considered. Of these, 

the most obvious would be to consider the case of imperfect inspection, or inspection of 

covariates. This case is more difficult, since a separate model must be specified for the 

effect of maintenance on the observed degradation or covariate process. Clearly, if the 

true level of degradation cannot be observed with certainty, it is extremely difficult to 

model the effect of maintenance. 

Another extension would be to allow failure to occur in any state, rather than employ 

the restrictive assumptions of threshold failure models. This could easily be 

accommodated for a system with constant killing rate, but would become more difficult 

if a degradation dependent hazard rate were to be introduced. 

It would be very useful to apply the methods of this chapter to a real system, to see how 

the policy compares to that used in reality. This is of course the ultimate test of any 

model. In particular it would be interesting to consider whether intrinsic reliability of a 

system may be substituted by maintenance. For example, can a system which has low 

reliability, in conjunction with an appropriate maintenance policy, be more cost 

effective than a more advanced, higher reliability system. 

Clearly, maintenance and inspection decisions are difficult. There is so much 

information available, and it is difficult to combine this in a coherent way, to achieve an 

optimal result. As we have seen in the examples, the maintenance policies themselves 

are not always obvious. We believe this model provides a basis in which relatively 

complex systems may be analysed to determine which form of maintenance is better. 

Clearly, there is an increasing need for models that can incorporate all the features of 

such complex systems, and while this model does not accomplish this, it provides a 

useful starting point for further models in this direction. 
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Chapter 6 

Summary and Conclusions 

6.1 Summary and Conclusions 

In this thesis we have been largely concerned with the optimal inspection and 

maintenance of systems whose degradation may be directly or indirectly observed, and 

whose failure is a direct result of such degradation. To obtain optimal policies we make 

simplifying assumptions, most important of which are: 

1. System degradation is modelled by a Levy process 

2. The system fails when the degradation of the system reaches a critical level 

Subject to these assumptions, we have seen that this model provides a flexible way of 

looking at many problems in maintenance optimisation. Clearly, these assumptions are 

not appropriate for all systems, but some degree of simplification is necessary for 

progress to be made. We have focused on three important cases. 

Firstly, we considered the case of optimal perfect inspection, for a given replacement 

policy. This corresponds to the standard case in the literature in which we seek an 

inspection policy that gives the inspection interval in terms of the observed le\'el of 

degradation. Clearly, subject to the above assumptions, this type of policy is applicable 

to many types of system. 
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In some cases, however, the degradation of the system, while still being the cause of 

failure, cannot be observed. In this case it may be appropriate to use a related covariate 

process as the basis for an inspection policy. The case in which the covariate process is 

modelled by a time homogenous Markov process is given in chapter 4. 

Thirdly, we look at the important case of maintenance optimisation. In many cases it is 

not appropriate to use an inspection/replacement policy, and instead a maintenance 

action may be undertaken, to reduce the level of degradation of the system. In chapter 5 

we considered a general maintenance model, which applies to both deterministic and 

random maintenance. 

The gamma process model is used throughout. In chapter 3, optimal perfect inspection 

policies are found, and these are extended to optimal imperfect inspection policies in 

chapter 4, when the degradation is observed subject to a Gaussian measurement error. 

The results of these examples are described in the appropriate chapter. Mainly, the 

results are as would be expected. In summary, for periodic inspection policies 

1. The optimal inspection interval decreases, as the cost of failure increases over 

the cost of replacement. 

2. Increasing degradation process variability results in increased inspection 

intervals for relatively low cost systems, but results in decreased inspection 

intervals for relatively higher cost systems. 

3. The replacement limit chosen by the decision-maker is extremely important. 

Generally, an optimal value may be found minimising the overall cost of 

inspection. Extreme values of the replacement limit result in higher overall 

costs, showing that a structured inspection/r~lacement policy is better than an 

age replacement policy. 

In the case of non-periodic inspection policies, simil,," results are found. In most cases, 

the optimal general policy is not periodic, and in cases of high cost systems, 

considerable reduction in costs can be obtained by ustng a non-periodic policy. 

Extending these results to imperfect inspection, we find the same general pattern The 

main effect here is that of observation error. In thi~ case, it is found that the optimal 

inspection interval tends to be greater than in the ca~ of perfect inspection, depending 

on the relative costs of replacement and failure This result seems somewhat 

paradoxical but can be explained by looking at the effect of the error on the system 
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(Section 4.7.4). This result emphasises the importance of appropriate maintenance and 

inspection models. 

In chapter 5 we consider the case of optimal maintenance. As before the results are 

largely as one might expect, but are more difficult to generalise since the cost structure 

is more complex. Based on a quadratic cost function, jointly optimal periodic 

inspection and maintenance policies were obtained. The main feature of this model 

was that the costs of maintaining a system with large degradation process variability 

were less than the costs for a system with small degradation process variability. Again, 

this is somewhat paradoxical. 

In all of the models considered we have encountered the problem of computational 

complexity. All of the models require solution of integral equations, which in itself is 

computationally demanding. Additionally, in the case of imperfect inspection and 

general maintenance, the added degree of randomness results in an integral equation 

which is specified in terms of functions, which themselves are given by multiple 

integrals. This means that, for relatively simply defined systems, solutions take some 

time to obtain. Clearly, as computers become faster, this will become less of a problem. 

However, this problem must be borne in mind when considering extension of this model 

to more complex cases. 

Bearing this in mind however, the methodology used in this thesis can be applied as a 

general model. The Levy process structure implies that the future degradation of a 

system is independent of previous levels of degradation, thus allowing the costs of 

maintenance to be expressed recursively. Clearly, the picture is not so clear if any of 

our basic assumptions is relaxed. It is this possibility which we now consider. 

6.2 Possibilities for Further Research 

To make progress in the previous chapters we have made many simplifying 

assumptions. It is clear that some of these assumptions may be relaxed, providing more 

general models. We have commented on some of these possibilities in the chapter 

conclusions, and now focus on more general points. 

159 



CHAPTER 6 

Firstly, this thesis has focused entirely on the case of a Levy degradation process. A 

useful extension to the model would be to generalise the form of the stochastic process 

used to model degradation. It is clear from the derivations of cost functions gi\'en in 

chapters 3, 4 and 5 that the results may be extended to time-homogeneous t\1arkov 

processes (Karlin and Taylor, 1981) with little effort. Whether or not the results here 

can be simply extended to more general Markov processes remains to be seen. 

Secondly, as we commented on briefly in chapter 4, there is some scope for Bayesian 

methods to be applied in the case of an unobservable degradation process. When 

considering imperfect inspection we have assumed the degradation process has known 

parameters. In addition, we have considered inspection policies based only on the 

current observed covariate value. This could be extended to the case in which the 

underlying degradation process has unknown parameter values, and the inspection 

policy is based on the entire history of the covariate process, However, even the simple 

case described in chapter 4 is extremely computationally demanding. So we would 

expect that the general case involving complete history dependence would suffer these 

problems to an even greater extent. 

Thirdly, a clear extension of the model described here is to the case of multi-component 

systems, or systems with multivariate degradation processes. In previous chapters, we 

have assumed that the degradation of the system is modelled by a univariate stochastic 

process. In many practical applications this is not a realistic assumption, since failure of 

a system depends on more than one factor. From a theoretical point of view there 

should be little difficulty in extending the results and methods given here to this case, 

but we would expect that the resulting equations would be extremely computationally 

demanding to solve. 

Finally, it may be possible to consider the case in which system failure is not modelled 

by threshold failure, but instead is modelled as a degradation dependent hazard rate. As 

we have commented, this assumption is more appropriate for certain types of system, 

and this may provide a useful extension to our results. 

More generally, there is still a need for models of condition based maintenance of 

modern systems. The methods used in this thesis are not new, and the results required 

to carry out this work have been available for some years. 
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Appendix Al 

Approximate Solution of Integral equations 

A1.1 Approximate Solution of Fredholm Integral Equations 

We follow Press et al (1992). The equation we wish to solve is of the form 

r 

vex) = c(x) + u(x)v(O) + f v(y)K(y, x)dy (A1.I) 
o 

This is identical to the equation considered by Press et aI, except for the atom at zero. In 

this section we deal with the case of a non-singular Kernel, section A I .3 gi ves the 

corresponding result for the case of a diagonally singular Kernel, which appears in the 

case of gamma process degradation. 

Again, we define a mesh y, = ih, i = 0,1, ... , N where h = r/ N , and apply quadrature 

rule based on this mesh to the integral, giving, for a particular )'" 

\' 

v()'.) = c( r) + 1I( r )\'( r ) + ,,\.( \' )K( l'" l' )" J • J • J • II L.. . 1 • , • J .J 
1=1I 
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Rearranging this gives 

which can be written in Matrix Form as 

( T )-1 V= I-U-K c 

where I is the (n+ 1 )x(n+ 1) Identity Matrix and 

K T = 

V(Yo) 

v(y1 ) 
V= 

V(YN) 

K (Yo, Yo )w 0 0 K(Yo'YI )WO,I 

K(YI'Yo)w1,o K(YI 'Y1 )WI,I 

K(YN'YO)WN,o K(YN' YI )WN,I 

u(yo) 0 

U(YI) 0 
U= 

U(YN) 0 

C(YN) 

K(yo,Y,,: )WON 

K (YI , Y f;' )w 1..\' 

K(YN'YN )WN,N 

0 

0 

0 

The solution is thus reduced to solving a system of (n+ 1) linear equations, 

APPE~IX Al 

Having obtained the cost vector v, we can use the original approximation as an 

interpolation formula, thus giving 

N 

vex) = c(x) + u(x)v(O) + I V(Yj)K(Yi' x)w, 
i=O 

which gives vex) as a function of the elements of the cost vector v. 
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AI.2 Fredholm equations with diagonally singular kernel 

As in section A1.2, we have a Fredholm equation of the form 

r 

vex) = c(x) + u(x)v(O) + f v(y)K(y I x)dy 
o 

In this case however, we assume that the Kernel is singular wheny = x. We follow Press 

et al (1992) and modify the equation to remove the problem. 

To this end, we rewrite the above equation as 

r r 

v(x) = c(x) + u(x)v(O) + f[v(y) - v(x)]K(y I x)dy + f v(x)K(y I x)dy 

(--\1.3) 

o 0 

r 
(AI 4) 

= c(x) + u(x)v(O) + f[v(y) - v(x)]K(y I x)dy + vex) q(x) 
o 

where q(x):= S:K(y I x)dy, which we assume exists. In this case the integral becomes 

zero for x = y, and so for purposes of computing this integral we assume K(y, x) = 0 

Again, we define a mesh y; = ih, i = 0,1, ... , N where h = rj N , and apply a quadrature 

rule to the integral, giving, for a particular YJ' 

N 

v(y) = c(y) + v(Yo)u(y) + v(y)q(y) + Z)V(Yi) - v(y)]K(Y"YJ )wI,) 
1=0 

which, after some rearrangement becomes 

Which can be written in matrix form as 

-c=(U+K T -Q-W)v 

Where the matrices are defined by 

v= 

V(Yo) 

V(Yl) 

V(YN) 

c= 

C(YN) 
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0 K(yo I Yj )WO,) K(yo I y", )w,) " 

K T = K(y) I Yo )W1,O 0 K(y) I Yx )w j •v 

K(YN I Yo )WN,O K(YN I Y) )WN) 0 

U(YO) 0 0 1- q(yo) 0 0 I U(Yl) 0 0 0 l-q(Yj) 0 ! 

u= Q= 
I . 

u(yN) 0 0 0 0 1 = ;(YN) J 
and W is defined by W = diag( w) , and w is a vector defined by 

where e is an 1 x (n+ 1) vector of 1 'so So that if w T = (wo, w
j

, ••• , wJ, the matrix W is 

given by 

Wo 0 0 

0 Wj 0 
W= 

0 

0 0 W n 

Assuming the matrix M = Q + W - U - K is non-singular, (which in all cases we have 

considered it is), the cost vector v is found by 

v = (Q + W - U - K)-l C (AI,S) 

In this case however, interpolation is not as easy, since the numerical solution requires 

the value of the function v at the point YJ' Another problem is that numerical matrix 

inversion is often a difficult problem, and some combinations of parameters may lead to 

an ill-conditioned matrix, which does not provide a stable solution, We have not, 

however, encountered such problems in the calculations made for this thesis, 
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Results in the case of Wiener Process 

Degradation 

A2.1 Introduction 

APPENDIX A:: 

As we have remarked in this thesis an important practical example of a Levy 

degradation process is the Wiener process. The calculations for computing the optimal 

inspection and maintenance policies are generally no more complex than those for the 

gamma process examples given in chapters 3, 4 and 5. The most difficult part of these 

calculations has been found to be computation of the joint density of the degradation 

process (or observed degradation process) and the maximum variable of the degradation 

process. In this appendix we consider these calculations as they apply to the 

computation of these densities in chapters 3 and 4. 

Only basic numerical computations based on these results have been carried out. 

Generally it is found that the added complexity of a non-monotonic degradation process 

results in the time taken to find the optimum policy being greatly increased As in 

chapter 4 this is largely due to the number of multiple integrals which have to be 

numerically computed during calculation. 
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A2.2 Joint Density of X, and M, 

It is shown by Rogers and Williams (1994), that the joint density of a standard 

Brownian motion Bt and its maximum variable St is of the form 

f ( ) - 2(2a-x) {(2a-x)2} 
S B a,x - exp ----

/- / .J2m3 2t a> 0, x <a 

with Eo = O. Now let ~ = 0' Bl' so that 

PSW w {a, x)da dx = Ps B (!!.-,~Jdadx 
/ ' I /- / (j (j 

= Ps B (a', x')da' dx ' 
/- / 

2(2a' - x') {(2a' - X')2 } da dx = exp ------
~21Cf3 2t 0'2 

. 
Now define X t = ~ + f..l t , so that, upon dividing by a; we get 

Now applying the Cameron-Martin-Girsanov Theorem (Rogers and Williams, 1993), 

we can change the measure to one incorporating a drift term at the required rate. The 

Radon Nikodym derivative is thus given by 

_dP_i"_u = exp{-f..l x' _1._f..l_2 t} 
dPo (J 2 (J2 

So applying the change of measure gives 

p%(StW = a,~ = X)dadx= p(S; = a,Xt = x)dadx 

2{2a' - x') {(2a' - X')2} dadx {f..l, I ji t: = exp - x exp - x - -:;- -, ,. 
..J2m3 2t (J2 (J - (J- . 

2(2a - x) {{X - f..l t Y } {2a{a - x )}d dx = exp - 2 exp - 1 a 
..J27r(J6t3 20' t (J-' 

giving the density as required, so that in the notation of chapter 3, 

2(2m - y) {(y - f..l r r} {_ 2m{m - y)} 
f (m y) = exp - 1 exp 1 

r' ..J 6 3 2(J-r (J-r 27r0' r 

This however is conditional on Xo = O. It is clear that 
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iT (m, y I x 0 = X) = iT (m - X, Y - x I X 0 = 0) 

=> j,(m,y Ix)= 2(2m- ~~X)exp{_ (y-x~j.irrtexpJ_ 2{m-x~m- y)} 
.J21r(J" r 2(J" r J, (J"-;-

for - 00 < y < 00, m ~ x and m ~ y . 

A2.3 Distribution function of X, and M7: 

We require FXr.Mr (y,m I x):= P{XT s y,M. s m I Xo = x) for m ~ x,m ~ y. Then \ve 

get 

which we can simplify as follows: 

FXr •Mr (Yo,mo I x) 

_YfO 1 {_(y-X-,Ll7:)2}m
f
o2(2m- y -X) . {_2(m-x)(m- Y)}d 

- ~ exp 2 2 exp 2 m dy 
-00 2/rcr27: 2cr 7: x cr 7: cr , 

YfO 1 {(y - x - ,Ll,)2 }[l {2(mo - x )(mo - Y)}]d = exp - - exp - y 
-00 ~2/rcr2, 2cr2, (J"2, 

where we have made the obvious substitution u = 2{m - x ~m - y) in the inner integral. 
()-r 

Expanding this integral gives 

Expanding the exponent of the second integral gives 

(y - x - j.i r ) 2 + 4( m 0 - x)( m ° - y) = [y - (2m ° - x + ,Ll r ) ] 2 - 4 j.i r (Ill - x) 

So that 
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FX,,M, (Yo,mo I X) = 1.J 1 2 exp{- (y - X ~'ur)2 }dY 
-Of) 27r(5 r 2(5 r 

_~Xp{2'u(mO -X)}YfO 1 { (y-(2m( -x..;... IIr):) 
2 exp - ):-, d . 

(5 2 :; .1 
-co .J27r(5 r 2(5 r J 

= <I>(Yo - x - ,UrJ _ exp{2'u(m~ - X)}<I>(Yo + x - 2mo -,U rJ 
(5.[; (5 () J; 

For y > m, it is clear that 

Hence the distribution function of Mr alone is given by 

F
M

, (m I x) = <I>(m - x - .uTJ _ exp{2,U(m:- X)}<I>(- m + x - J1 rJ 
(5..Jr (J (J Fr 

We also require the form of the functions 

c 

Kr(Y I x) = f ir(y,m I x)dm 
x 

which represents the probability density that the process reaches state y by the next 

inspection, but does not fail before that time. Using the above derivation it is clear that 

which is the product of a normal density and an exponential term. This formula is also 

used by Whitmore, Lawless and Crowder (1998). 

A2.4 Probability density function of Y, and M, 

We now consider the joint density function of Y~, the observed degradation level, and 

M r, the true maximum variable of the process. This is required in chapter -l for the 

example of an imperfectly observed degradation process As is stated there, 
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computation in the general case of a covariate process depends largely on the assumed 

nature of the relationship between the degradation and covariate processes. 

We compute now the density conditionally on the true initial level of degradation, which 

can then be averaged out later. Thus we let 

ir(u,m I x) = PY"M,IXo (u,m I x) 

with p denoting probability density. We begin by conditioning on the true degradation 

level Xr. so that (with abuse of notation) 

m 

ir(u,m I x) = f P(Yr =u,Mr = m I Xr = z,Xo = x)p(Xr = z I Xo = x)dz 
-00 

m 

= fp(Yr =ulXr =z)p(Mr =m,Xr =zlXo =x)dz 
-00 

The first of these densities is simple to compute, 

So that 

p(Y = U I X = z) = exp - -, (u - z) 1 (1 2 ) 
r r v.j2;" 2v" 

The second of the densities in this integral is given by equation (A2. 1) in section A2. 2 

above. Combining these equations gives 

Jm 2(2m-z-x) {I (U-Z)2 (z-x- j.irY 2(m-xXm-z)\.:}dz 
f (u m I x) - exp - - + , + , 
r' - 2nv(J3r~ 2 y2 2(J-T cr-T, 

-00 

The exponent of this expression may be factorised after much tedious algebra as 

, )2 2 2 2 2)( u(J2r +(2m+j1r-x)y- + y cr r (2m+j.ir-x-uY -4j1T\'\m-x) (0 r + y z - " :; + II: (J-r + Y- (J r " 

So we obtain 
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Where 

u(J'2r + (2m + f..JT - x)y2 
m T = ---(J'--=2:--

r
-+......;y-2:-----.:.-

The first integral can clearly be expressed in terms of the normal cumulative distribution 

function, thus 

The second integral is a truncated first moment of a normal distribution. It is clear that 

making a simple substitution we have (see proposition immediately below) 

So the expression becomes 

Rearranging we find 

The following result is used in the above derivation: 

The first truncated moment of the normal distribution is given by 

m 1 {I 2} (rn- J1 ) (rn-J1) f(rn) = f x (J'.J2i exp - 2(J'2 (x - f..J) dx = J1<t> (J' - (J'¢ (J 

-00 

X-J1 
This can be shown using a simple substitution. Let II = , then 

C5 
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m-j.I 

m-j.I 

as 1 {I 2} as U {I,} = f.l ,-;::- exp - - u du + (J' .j2; exp - -1/- du 
~ ~2n 2 ~ 2n 2 

The first integral is clearly a normal cumulative distribution function, and the second 

may be easily integrated applying the substitution v = u: . Then, after some 

simplification we get, 
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Appendix A3 

Derivation of Dynamic Programming Equation 

(3.60) 

A3.1 Derivation of Dynamic Programming equation 

We follow Ross (1970) is showing that the dynamic programming equation (3.60) given 

in section 3.5. 1 results in an optimal solution. 

We consider a general inspection process, III which XL represents the level of 

degradation and let c(x,y, r) represent the cost incurred at time r, if inspection interval r 

is chosen in state x and the process jumps to state y at the next inspection. We assume 

that c is a bounded function for all x,y E Rand r> O. Let C denote the critical failure 

set. 

Let 7r be a policy which chooses inspection interval r in state x, so that n(x) = r. Then 

define the cost function to be the expected total discounted cost, namely 
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where Ii represent inter-event times (an event being an inspection or a failure) and r: 

represents the inspection interval chosen at the i th epoch. Expanding the summation we 

have 

00 00 

= c(x, T) + f f e-o(rl\h)v 1f (y)fr(h,y I x)dhdy 
-00 0 

where fr(h,ylx) is the density of H;,Xr givenXo =x. 

Since, if vo(x)is the optimal policy given by vo(x) = inf v1f(x). Then 
1f 

So that 

00 <L) 

v
7r

(x) ~ c(x, T) + f f e-O(rAh)vo(y)fr(h,y I x)dhdy 
-00 0 

Since ;rr is an arbitrary policy, this implies that 

Now, let To be such that (which exists since both c and the Kernel of the intergal are 

bounded) 

00 00 

C(X,To)+ f fe-O(roAh)vo(Y)fro(h,Ylx)dhdy 
-00 0 

= i~f {C(X, r) + II e-8
(,h)"8 (y)J,(h, y I x) dh dY } 

Let ;rr be the policy which chooses To at time zero~ and if the next state is y, then \·jews 

the process as originating in state y, and follows a policy Tr.r, which is such that 
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where 8 is arbitrary, hence 

00 00 

Vtr(X)=C(X,TO)+ f fe-O(ro'h)Vtry(Y)fro(h,y/x)dhdy 
-00 0 

00 00 

~ C(X, To) + f f e-a(rol\h) [Va (y) + 8Itro (h,y / x)dhdy 
-00 0 

00 CfJ 

= c(x, To) + f f e-aCrorh)vo(Y)fro (h,y / x)dhdy 
-00 0 

00 to 

+8 f f e-O(roAh)fr/h,y I x)dhdy 
-to 0 

00 00 

= c(x, To) + f f e-O(roAh)Vo(Y)fro (h,y I x)dhdy + 8 K(To) 
-00 0 

noting that K( TO) is greater than or equal to zero. 

Since vo(x):s; vtr(x) we must have that 

00 00 

Vo (x) :s; c(x, To) + f f e-O(rol\h)vo (Y)fro (h, Y / x)dh dy + 8 K( To) 
-00 0 

Hence, we obtain 

Since 8 is arbitrary, we may make it very small, and in the limit we have 

Which is the dynamic programming equation for the optimal non-periodic policy, 

In computation of the optimal solution, we make use of the relationship between the 

hitting time of a point and the maximum of the process, so that under certain 

circumstances we may use the distribution of the maximum variable rather than the 

hitting time. 
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