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ABSTRACT

This research is concerned with the problem of optimisation of steady
state large scale systems using mathematical models. Algorithms for on-line
optimisation of interconnected industrial processes are investigated. The
research is concerned with two different kinds of algorithms which are
based on the structure of the model used and the way of incorporating the
real process information in order to compensate for model-reality
differences.

The first class of algorithms are developed from the price method with
global feedback information which is mainly based on the normal Lagrangian
function. Two existing algorithms are examined:

The double iterative price correction mechanism and the augmented
interaction balance method. Both methods use a double iterative
coordination strategy and global feedback measurements from the real
process. They are based respectively on the normal and the augmented
Lagrangian functions. Hence, the first algorithm can only be recommended
for application to convex problems. An algorithm, namely the augmented
price correction mechanism, has been developed to extend the applicability
of the previous price correction mechanism to non-convex problems. It is
also applicable to convex problems with the advantage of reducing the
number of times that information is required from the real process.

The second class of algorithms is known as integrated system optimisation
and parameter estimation (ISOPE) • The model used contains uncertain
parameters and the algorithm solves the optimisation and parameter
estimation tasks repeatedly until no furthur improvement is obtained.
Developed ISOPE algorithms are involved in this research to cover the
problems with output dependent constraints.

Simulation results show superiority of the double iterative algorithm over
that of single loop method in considerably reducing the number of times
that information is required from the real process and hence saving on-line
computing time.

It is hoped that this work will provide useful information for implementing
and furthur developing on-line steady state optimisation techniques.
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Chapter 1

Introduction

L~ Computer. control of indus.tr.ial processes:

The field of computer control is growing rapidly and achieving widespread
'-'

industrial recognition and acceptance. Forecasts indicate that computing

power is expected to continue to increase and be available at moderate

cost. This is mainly due to continuing advances in microelectronics

technology and computing.

Today, in general, computers are the first choice for control where they

can be used to perform several tasks. Typically, these tasks include

measurements, actuation, direct digital control, hierarchical functions,

operator and management functions (Roberts, 1988a).

For large scale systems, complex and multivariable processes, the control

objective is fundamentally to achieve economically superior process

performance. An ideal controller would take into consideration all

significant interactions among process variables, as well as their economic

impact, and apply control action which will result in optimum process

performance. In controlling an industrial process, it is common practice to

split the control action into two parts: the follow-up or regulatory control

and the supervisory or optimising control. The regulatory control is

responsible for keeping the chosen process variables at their desired values

in spite of fast disturbances acting upon the process. The supervisory

control is responsible for determining and maintaining optimal values of the

- 17-



set points.

The main concern of this thesis is to describe and investigate some

techniques which can be implemented to solve the optimising control

problem.

1.2 Steady-state optimisation and control:

Optimising control is difficult to accomplish because disturbances

continually upset the process. Indeed, if it were not for disturbances, no

control action would ever be required. Thus a process might be operating

smoothly at optimum conditions but, when a disturbance occurs, some

changes must be made in the process in order to counteract the

disturbance.

Process optimisation problems may be solved by three ways. These are by

utilising the system measurements directly or indirectly using a

mathematical model of the process. The third is a combination of these two

methods where the optimisation process is based on a mathematical model

and also incorporates measurements from the process.

1.2.1 Direct process optimisation:

In direct process optimisation, a continual experimentation on the system is

required in order to arrive empirically at the optimum operating point.

Direct experimental optimisation could be practical for a process which

involves only a small number of variables, and where the dynamic response

is rapid with respect to the frequency of disturbances. However, for a

multivariable complex process and a process with a slow dynamic response,

the approach has two major disadvantages which severely limit its

applicability. For a multivariable process, a large number of experiments

are required and for each experiment the process must be allowed to reach

the steady state before making another move. If the system response is

slow, this method can be time consuming. It is not usually recommended for

optimisation (Savas, 1965).

- 18-



1.2.2 Mathematical model-based optimisation:

Optimisation using a mathematical model of the process has two major

advantages over the direct methods. Firstly, the system need not be

perturbed if a model is employed. Secondly, by simulation work on the

computer, even processes with a large number of variables can be optimised

rapidly.

However, the crucial problem in this method is the accuracy of the model

used compared to the process. In order to guarantee the system optimum,

the model representing the process has to satisfy certain sufficiency

conditions (Durbeck, 1965; Foord, 1974; Ellis and Roberts, 1982). The process

output derivatives with respect to the controller set points have to match

exactly with their corresponding model derivatives. To satisfy these

conditions, accurate models are required which are generally difficult to

obtain. This is due to external uncertainties, like measurement noise,

environmental conditions, etc. which can not be represented accurately in a

model. Furthermore, if the structure of the model is assumed to be certain,

so that it is a faithful representation of the system, such a model will be

too complicated and this will tend to increase the computational complexity

of the optimisation process. The simulation of such complex models is

slower than real-time if standard solution techniques are used together

with modest present-day computer technology (Singh et al., 1985; Allidina,

Buro and Malinowski, 1985).

1.23 Optimisation using mathematical model and process measurement:

To overcome model-reality differences, it has long been recognised that

measurements from the system must be incorporated in the optimisation

process to accomodate model deficiencies. The measurements from the real

system can be used in different ways. First, the measured feedback

information may be used by the coordinator or by the local decision units.

For example, Findeisen and co-workers 0978, 1980) give a variety of

methods for optimisation of large scale systems. These methods are

designed for hierarchical structures. They are based on a mathematical

(fixed) model and use feedback measurements to improve the model based

- 19-



solution in the form of an iterative procedure.

There are, in general, two principal methods of coordination used in

hierarchical structures. The coordinator may set, for the local decision

units, its desired values of the outputs and inputs (Direct coordination), or

it may set prices on the outputs. and inputs (Price coordination).

The obtained solution using the direct or the price coordination methods

with feedback information is often better than the purely model based

solution. However, they, in general, converge to suboptimal results.

Secondly, process measurements may also be used to overcome the model

uncertainty by adopting a two step approach; optimisation and parameter

estimation (for example, Youle and Duncanson, 1970; Durbeck, 1965; Foord,

1974). The parameter estimation problem can be solved by comparing output

responses from the model with the corresponding responses from the real

system. The estimated parameters are used to update the model which in

turn is used in determining the optimum set point values. The two problems

of optimisation and parameter estimation are solved repeatedly until,

hopefully, the iterative process converges to the optimum. However, simply

combining the optimisation and parameter estimation does not guarantee the

optimum solution.

1.3 Scope of the research:

As was mentioned earlier, the mathematical model has to satisfy certain

sufficiency conditions (Durbeck, 1965; Foord, 1974; Ellis and Roberts, 1982).

This demand, in general, requires that the model structure is the same as

that of the real process. For many industrial processes, their structures

are highly uncertain and, hence, such a requirement is obviously

unrealistic.

Roberts (1978) proposed the modified two step (MTS) approach which is an

improved version of the standard two step approach (Roberts, 1977). It

involves an iterative procedure for updating model parameters and

modifying the model based optimisation problem. The optimisation

- 20



performance index is modified to incorporate an extra term which caters

for any mismatch between model and process output derivatives with

respect to controller set points. Therefore. by measuring the differences of

. these two sets of derivatives, the real optimal steady-state operating

condition can be achieved in spite of model-reality differences. The method

has proved to be successful in providing optimum solutions to many

problems (Roberts, 1979; Roberts and Williams. 1981; Roberts and Lalui, 1982;

Stevenson, Brdys and Roberts, 1985; Ellis and Roberts, 1981, 1982, 1985).

Since the MTS approach couples the optimisation and parameter estimation

together, it is sometimes called the integrated system optimisation and

parameter estimation (ISOPE) technique. The original version of the MTS

approach was first proposed (Roberts, 1978) for centralised systems and the

process inequality constraints were assumed to be independent of process

outputs. The often required large number of set point changes was also a

problem.

The applicability of the modified two step approach was extended to large

scale interconnected processes (Michalska, Ellis and Roberts. 1985; Brdys

and Roberts, 1986) by incorporating the price method (Findeisen et. al.,

1980). A group of hierachical adaptive optimal algorithms were proposed

(Brdys and Roberts, 1986) which utilise whatever is available from the real

process measurements. Some other proposed algorithms are: the single loop

technique, system based double loop and the model based double loop

techniques (Chen, Brdys and Roberts, 1986; Brdys, Abdullah and Roberts,

1986).

The model based double loop techniques have successfully reduced the

number of set point changes compared with the single loop technique (Chen,

Brdys and Roberts, 1986).

In an attempt to extend the modified two step approach to encompass a

more general class of problems, a certain technique has been introduced to

deal with output-dependent inequality constraints (Chen, Brdys and

Roberts, 1986). However, the feasibility of the model-based optimisation

solution of this algorithm is not ensured during the course of iteration

and, also, the convergence conditions of the algorithm have not been
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derived.

In this thesis, the research will be concentrated on two main areas:

Firstly: For the integrated system optimisation and parameter estimation

technique, two algorithms will be developed to cater for output

dependent inequality constraints and reduce the number of set

point changes and consequently the on-line computing time.

Secondly: For the price coordination method with global feedback, a

comprehensive study of the double iterative price correction

mechanism (Shao and Roberts, 1983) and the augmented

interaction balance method with feedback (Tatjewski, 1985) will

be presented. A developed algorithm based on the augmented

Lagrangian will be introduced. It extends the applicability of the

double iterative price correction mechanism to non-convex

problems.

Optimality and sufficient conditions for local convergence of the ISOPE

algorithms will be derived. A comprehensive simulation study of all the

algorithms will also be carried out.

1.4 Layout of the thesis:

This thesis consists of nine chapters which can be divided into four groups

as follows:

The first group contains chapters 2 and 3, where they respectively provide

a broad scientific and mathematical background on which the research

reported in this thesis is based on.

Chapter 2 introduces the basic concepts of multilayer and multilevel

structures used in hierarchical control systems. These concepts provide a

background for developing hierarchical control used in designing complex

control systems for large scale industrial processes.

In chapter 3, some basic mathematical definitions, relations, notation and

theories are summarized.
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The second group of the thesis contains chapters 4 and 5 where the main

concern is devoted to three algorithms based on the price coordination

method in an iterative structure using feedback information from the real

process.

Chapter 4 presents an extensive simulation study of the double iterative

price correction mechanism (Shao and Roberts, 1983) and the augmented

interaction balance method (Tatjewski, 1985). Various aspects are studied

including non-linearity and sensitivity.

Chapter 5 provides an algorithm which extends the applicability of the

double iterative price correction mechanism to the non-convex problems.

Discussion of the optimality conditions is presented and a simulation study

to test the algorithm is also provided.

The third group of the thesis contains chapters 6, 7 and 8 where the

integrated system optimisation and parameter estimation technique is their

main concern. A brief summary of the centralised and the decentralised

ISOPE techniques is presented in chapter 6.

-Chapter 7 provides a new ISOPE algorithm which is an extension to the

modified two step approach to include problems with inequality output

dependent constraints. It has the advantages of ensuring the feasibility of

the model based optimisation solution during the course of iteration.

Chapter 8 is devoted to another developed ISOPE technique. It has a

double loop iterative strategy with self-adaptive properties where

derivatives from the real process measurements are used to update the.
model. The optimality of the algorithm is examined and computer simulation

is presented to demonstrate the behaviour of the algorithm.

The fourth and the final part of the thesis is represented by chapter 9

which summarizes the conclusions of this research and gives suggestions

for further work.
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Chapter 2

Control and Optimisation of large scale systems

2. 1 The Complex System

Many of today's industrial systems are often too complicated to

comprehend in their entirety. An example of a complex system is a large

scale industrial process which can be considered as a collection of

interconnected subsystems. The properties of the integrated systems are

defined by understanding the properties of each individual subsystem

together with understanding the interconnection between the subsystems,

including the interconnections with the environment.

A comple xs system can be viewed as an arrangement of elements or

subsystems in which outputs of one subsystem are connected with inputs

of another subsystems, as shown in figure (2.1). Another structure can be

used to describe most industrial processes by introducing an orderly

input-output interconnection matrix H, as shown in figure (2.2). The matrix

H represents the structure of the system. Each row of this matrix is

associated with a single input of a subsystem. The elements in the rows are

zeros except where a one shows the single output to which the given input

is connected.

By exploiting the structure of a large scale system as an interconnected

assembly of subsystems, it is possible to decompose the problem of

controlling a complex system into interlinked subproblems of manageable

size. Each subproblem can be solved independently of the other
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subproblems, with some form of coordination procedure to account for the

interconnections and to ensure that the overall system objectives and

constraints are satisfied, as shown in figure (2.3). This is usually done via

an iterative information exhange between the lower level and the

coordinator level. Such an approach leads to decentralised and hierarchical

control structures.
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2.2 Control Structure of Large Scale Systems

Computers can be used in process control to solve the system optimisation

problem in two different schemes; centralised or decentralised control. In

centralised control, all the system information is available at a central

location in which all the system variables are manipulated and control

decisions are taken directly from that centre as shown in figure (2.4). In

decentralised control, the system to be controlled is divided into individual

subsystems and each subsystem has its own local decision unit to solve its

control task as shown in figure (2.5). Such a system has benefits of

improved control, reliability, flexibility and reduced cabling costs.

However, it is recognised that decentralised control may produce sub­

optimum results (Maxwell, 1983) if each local decision unit has not taken

into account the effect of the other subsystems. Such a conflict may

occur because the optimum for the individual subsystems does not need to

give rise to the global optimum of the overall system objectives.

Therefore, the coordination unit has an important task of coordinating the

infimal level units and preventing any conflicts between the individual

decisions. In addition, the coodinator has to solve another problem

(coordinator problem) due to the decomposition of the global problem into

several subproblems.

A decentralised control system can also be hierarchical if the information

subsets of some subsystems depend directly on the action of other

subsystems at higher or lower levels.

A hierarchical control system consists of local decision units arranged in a

priority structure, where at each level a number of units may operate in

parallel giving rise to a pyramid structure as shown in figure (2.6).

The decision of implementing a specific control scheme will depend on some

factors such as the size of the system, the cost and the achieved overall

efficiency (Maxwell, 1982). However, the low cost of communication

components have attracted control system engineers to decentralised

control and forced them to rethink the way computers in process control

(Maxwell, 1983) can be used.
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There are some reasons for favouring decentralised and hierarchical

control of large scale systems (Roberts, 1988b) in comparison with a

centralised sytem, such as :

1. The division of the decision makes it easier to handle a complex

organisation;

2. The subsystems of a large organisation often are distant from one

another and the transmission of information is both expensive and subject

to distortion;

3. If one of the control units breaks down, the system will still survive;

4. The possibility that the system as a whole will be less sensitive to

disturbance inputs if the local units can respond faster and more

adequately than a more remote control decision unit; and

5. It is faster to perform more tasks in a given period of time if the jobs

are performed in parallel.

2.3 Basic~ of hierarchical structure.

In dealing with large scale systems, complexity is generally recognised

where in the process industry many complex plants are difficult to

comprehend as a whole. A natural way of viewing such a plant IS to

consider it as a collection of interconnected subprocess. Hence, it is

possible to decompose the problem of controlling a complex industrial

process into a number of interlinked smaller problems of managable size.

The subproblems are solved more easily and independently of each other

with a coordination procedure to account for the interconnections. This

approach leads to integrated hierarchical control structures.

There are three basic types of hierarchical structures (Me:sarovic, 1970),

these are:
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1. The stratified description;

2. The mutilevel description; and

3. The multilayer description.

It is important to note here that a system may belongs to more than one

class of these description.

2.3.1 The stratified description

The stratum approach is concerned with describing the system by a family

of models. Each model is concerned with the behaviour of the system as

viewed from different level of abstraction. These levels are referred to as

strata, where the lower levels are assigned more specialised description

and details of the large scale system than the higher levels. The problem is

separated Into a number of smaller better defined subproblems and each of

the subproblems are solved separately. It is necessary that the functioning

on any level be as independent as possible of the functioning on other

levels.

The characteristics of the stratified decomposition are :

i) Each stratum has a different task than others;

ii) The higher strata have priority over the lower ones;

iii) Each strata considers a different time horizon where the higher the

level, the longer horizon they have and the less often the control action

takes place. Figure (2.7) illustrates the stratified decomposition approach.

23.2 The multilevel description----

The multilevel control description is one of the most general hierarchical

structures. The system is divided into a family of interacting subsystems.

Some of the subsystems are defined as decision making units which are

arranged in a hierarchy having a pyramid structure and a principal

characteristic is the existence of a supremaI (top level) unit, as shown In

figure (2.6). In general, the various decision units have conflicting goals but

the units in a certain level can coordinate those in a lower level to them

and be coordinated by a higher level one.
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At an intermediate level each decision unit receives and transmits

information from units superior to it in the hierarchy and also to those

units inferior to it. The conflicts between decision units are resolved by

the higher level units which play the role of coordinators and assure

global solution in the end.

2.3.3 The multilayer description

This structure is a direct outcome of the complexities involved in a

decision making process. The multilayer control hierarchy (Lefkowitz,

1966,1977) provides a systematic procedure for resolving the control task.

In the control of a large scale system using the multilayer approach, the

overall problem is naturally split into a set of subproblems which are

identified by four functional aspects of the overall control problem. The

layers are:

i) Regulation or direct control whose task is to maintain the chosen process

variables at their desired values in spite of fast disturbances acting upon

the process.

ii) Supervisory or optimising control whose task is to determine the optimal

set points of the process according to a defined criterion. This layer often

employs a mathematical model which is only valid for a given set of

circumstances. As these change with time, the employed mathematical model

contains uncertain parameters which may be updated according to the new

state of the process. The values of the uncertain parameters may be

prescribed by the next upper layer in the hierarchy (learning layer).

iii) The learning or adaption layer is concerned with adapting or updating

the uncertain parameter values used in the mathematical model employed in

the optimisation layer.

iv) The management or self-organising layer which has various tasks such

as selecting the structure, functions and strategies for the lower layer so

that an overall goal is achieved.

Figure (2.8) illustrates the above functional four layer hierarchy.
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2A S1ead¥ state op.1imisation of large scale. systems.

Industrial large scale process, which are regarded as decomposed into

interconnected subprocesses, are usually considered to be controlled using

a two layer hierarchical structure as shown in figure (2.9). The lower layer

of the structure performs direct regulation control where the upper

supervisory layer has the responsibility of determining the set points of

the regulatory controllers to obtain optimum steady state performance.

Each subsystem has its own local regulatory and optimising decision units,

and coordination is performed at a supremal level to ensure that overall

system objectives and constraints are satisfied. Figure (2.9) shows a two

layer hierarchical structure for a process consisting of a two

interconnected subsystems.

In the design stage of a large scale system, it is often required to

determine the optimal dimensions of unit processes and their optimal

operating conditions to satisfy specified overall goals of the process under

certain conditions. A process might be operating smoothly at optimum

conditions, but when a disturbance occurs, some changes must be made in

the process in order to counteract the disturbance and determine the

optimum operating set points of the process for the new conditions. This

process is called the steady state optimisation problem.

As it was mentioned in chapter 1, there are three methods to solve the

optimisation problem of the process in order to determine its optimum

conditions. These are:

1. Direct process optimisation.

2. Purely mathematical model based optimisation.

3. Optimisation based on a mathematical model and process measurements.

The third method of optimisation which is based on using a mathematical

model with process measurements to overcome the model-reality differences

has proved to be the most efficient and reliable of all (Lowe and Hidden,

1971), as it discussed in chapter 1. For the first instance, a simple process

model is used to avoid complications of the optimisation problem, then the
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process model will be appropriately updated according to the measurements

taken from the real system. The process of the optimisation and updating

the model is repeated until the optimum operating points of the system is

determined.

The optimising control process has three distinct but interrelated

computational functions (Savas, 1965) required of the computer in this

application: identification, optimisation and control, figure (2.10).

Identification: The identification step has the task of determining the

present position or status of the process. It identifies the current values

of all the model variables which are used in the optimisation step as a

necessary starting point.

Optimisation: In this step, the optimisation calculation is performed in

order to determine the optimal settings for the control variables.

Control: This step has the task of determining the strategy necessary to

guide the process from the present operating condition to the desired

optimum condition."
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The steady-state performance of the controlled system is described 1TI a

decomposed way by the input-output mapping F* as :
t

* * * *y =F (c,u,z)
t t t t t

tEl, N (2.1)

where N is the number of subprocesses and the variables c ,u*, z* and
t t t

Y7are respectively the controller set points, inputs, disturbance inputs and

outputs vectors.

The subsystems are assumed to be interconnected as the structure shown

in figure (2.2). The interconnection relation between the subprocess is

defined by :

where H is the interconnection matrix.
jt

tEl, N (2.2)

The global preformance of the system Q(c,u,y) is assumed to be the

summation of the separable indices Qt(Ct, u., Yt) of the subsystems

(Findeisen et.al., 1980; Singh and Titli, 1978), ie.

* * N * *Q(c,u,Y)-LQ (c,u,y).-1 iii t

(2.3)

In addition, there will be inequality constraints to be satisfied, represented

by :

* * * z*) 0g(c,u,y, <
t t t t t

tEl, N (2.4)

In solving the optimisation problem using a- mathematical model the mapping

F* is not known exactly and, in general, approximate equations to reality

are used. Thus, the model equations corresponding to equations (2.1) to (2.4)

are written as :

y F(c,u,z)
t t t t
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u =
t H Jt Y t (2.6)

Q(c,u,y)
N

2:(C,U ,y)
t-lt t t

(2.7)

g(c,u,y,z) < 0
t t t t t

where t € 1 , N

(2.8)

Now, the model based overall optimisation problem may be considered in the

form:

min Q ( c , u , y )
C,U,Y

subject to :

Y = F(c,u,z)
t t t t t

g(c,u,y,z) < 0
t t t t t

and t € 1 , N
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2.6. Summary.

In this chapter, a complex or large scale system was defined and control

structures of such systems were summarized. Two structures were

described; centralised and decentralised control. Experience shows that the

decentralised control structure is favourable for flexibility, reliability,

parallel processing and economic reasons. The basic types of hierarchical

structures were examined. These are : the stratified, the multilevel and the

multilayer descriptions, where a system may belong to more than one class

of these descriptions.

The steady state optimisation problem is discussed and a statement of the

problem is finally introduced. The discussion in this chapter gives a wider

environment where the research of this thesis is within.
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Chapter 3

Mathematical background

~:L_

The purpose of this chapter is to summarize and review some basic

definitions, notation and relations that are used in this thesis. It also

contains a background of optimisation which 1S fundamental to the thesis

content.

3.2 Topological concepts:

3.21 Continuous function:

A real valued function f defined on a subset of En is said to be continuous

at x if x" --. x implies f(x,,) --. f'(x). Equivalently, f is continuous at x

if given e > 0 there is a 6 > 0 such that I y - x I < 6 implies I fey) - f'(x) I

< E (Luenberger, 1984).

3.2.2 Sets:

If x is a member of the set S, we write xES. The union of two sets S

and T is S U T and is the set consisting of the elements that belong to

either S or T. The intersection of two sets Sand T is denoted S n T and

is the set which contains the elements belonging to both Sand T. If S is a

subset of T, that is, if every member of S is also a member of T, we write

s c r or T ::J S.

- 40-



Minimisation of a function f over the set S can be represented by either

of these two ways:

min f'(x)
xES

or min { f'(x) : xES }

3.2.3 Bounded and closed sets:

A bounded set is a set which has both an upper bound (or supremum) and a

lower bound (or infimum). Upper and lower bounds of a set S are denoted

respectively by:

sup (x)
xES

inf (x)
xES

A set S is closed if every point that is arbitrarily close to the set S is a

member of S.

3.2.4 Sequence and limit point:

A sequence of vectors xc, Xl' ..., X1c:'.'" denoted by { X1c: }1c:00 = 0 (the index

set is understood simply by { X1c: }), is said to converge to the limit X if:

I x1c: - X I -..... 0 as k --+ 00.

If { x1c: } converges to x, we write X1c: --+ X or limit X1c: = x.

Limit point: A point X is a limit point of the sequence { X1c: } if there is a

subsequence of { X1c: } convergent to x. Thus x is a limit point of { X1c: } if

there is a subset M of the positive integers such that {X1c:}1c: E M is

convergent to x.

3.2.5 Compact set:

A set is compact if it is both closed and bounded. An important result, due

to Weierstrass, is that: If S is a compact set and { X1c: } is a sequence, each

member of which belongs to S, then { X1c: } has a limit in S (that is, there is

a subsequence converging to a point in S).
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3.2.6 Weierstrass theorem:

Weierstrass theorem is a theorem connected with a continuous function

which states: A continuous function f defined on a compact set S has a

minimum point in S; that is, there is an x* E S such that for all xES,
f'(x) 2 f(x*).

3.3 Basic definitions (Luenberger, 1984)

3.3.1 Mapping:

A correspondence f that associates with each point in a space A a point in

a space B is said to be a mapping from A to B, and and symbolized by

f : A ---. B.

The mapping f may be either linear or non-linear.

3.3.2 Linear independence:

A set of vectors a1' a2' 000' a1c' is said to be li¥arly dependent if there are

scalars Au A2' .. 0' A1c not all zero, such that LAtat = o. If no such set of

scalars exists, the vectors are said to be lineat'l\r independent.

3.3.3 Symmetric matrix and non-singular matrix:

If A is an mxn matrix, then its transpose At is an n-m matrix. A symmetric

matrix is a square matr-ix with A = At.

Non-singular matrix is a square matrix whose determinant is non-zero.

3.3.4 The Hessian matrix:

If f is a continuous function and has first and second derivatives, then f is

denoted f E e2. The Hessian matrix of f at x is \72f (x). It is a symmetric

n-n matrix of second partial derivatives, i.e the element in the i-th row and

. th I is o2f
J- co umn OXtox/
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3.3.5 The matrix definiteness:

A symmetric matrix A is said to be positive definite if the quadratic form

x
t
Ax is positive for all non zero vectors x. Similarly, A is positive semi­

definite, negative definite and negative semi-definite if x t Ax :2 0, < 0 or ~

o respectively for all x, The matrix A is indefinite if xtAx is positive for

some x and negative for others. It is easy to obtain a connection between

definiteness and the eigenvalues of A (Luenberger, 1984). The matrix A is

positive definite (or positive semi-definite) if and only if all eigenvalues of

A are positive (or non-negative). Fortunately, it is not necessary to

calculate the eigenvalues of A to determine whether or not A is positive or

negative definite. By only investigating the principal minors of the matrix

(Binmore, 1983), it has been shown that:

a - The matrix A is positive definite if all its principal minors are positive.

b - The matrix A IS negative definite if all its principal minors of even

order are positive and all its principal minors of odd order are negative.

3.3.6 Convexity:

A non-empty set e in n-dimensional Euclidean space En is said to be convex

if the line segment joining any two points of the set also belongs to the

set. In other words, if Xl and X2 are in e, then ~XI + (l-~)X2 must also

belong to e for ~ E [0,1]. This is illustrated in figure (3.1)

Convex and concave functions: A function f defined on a convex set e is

said to be convex if, for every Xh X2 E e and every ~, 0 ~ ~ ~ 1, there

holds:

f'(Xx , + (l - ~)X2) s: ~f(xl) + (l - ~)f(x2)

Figure (3.2) illustrates the definition of a convex function of a single

variable (Reklaitis et. al., 1983).

If, for every ~, 0 < ~ < 1, and x, ~ X2' there holds:

then f is said to be strictly convex.
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A function g defined on a convex set e is said to be concave if the

function f = -g is convex. The function g is strictly concave if -g is

strictly convex.

Test of Convexity and concavity: A function f'(x) is a convex function if

the Hessian matrix of f is positive definite or positive semi-definite for all

values of x. If the Hessian matrix of f is negative definite or negative

semi-definite for all values of x, then the function is concave (Binmore,

1983)
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3.3.7 Monotonic functions:

A function f'(x) is monotonic (either increasing or decreasing) if for any two

points x, and X2' with x , ~ X2' it follows that:

(monotonically increasing)

(monotonically decreasing)

Figure (3.3) shows a monotonically increasing and decreasing function.

3.4 Optimisation

Optimisation can generally be defined as the act of obtaining the best

result under given circumstances, or mathematically as the process of

finding the conditions that give a maximum or minimum value of a function.

In considering optimisation problems, it is always desirable to know whether

the determined solution is optimal or not. Thus, it is desirable to know the

characteristics for an optimal solution. To answer this, some preliminaries

are summarized in the next few subsections of this section.

3.4.1 Stationary points:

For a function f : R n --+ R, a stationary point is a point at which the

rate of change of f in all directions is zero (Binmore, 1983).

For one variable case; f : R --+ R, a stationary point x* for which

f'(x*) - 0; i.e, if f has a horizontal tangent line where x = x* (Figure 3.4).

A stationary point of well behaved functions fall into three classes; which

are: local maxima, local minima or a saddle point.

In order to distinguish between these classes, we need the optimality

conditions which are contained In the following theorem (Reklaitis,

Ravindran and Ragsdell, 1983).
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Theorem 3.1:

Suppose at a point x* the first derivative is zero and the first non-zero

higher order derivative is denoted by n, then:

a- If n is odd, then x* is a saddle point.

b- If n is even, then x* is a local minimum.

Moreover,

1- If this derivative IS positive, then the point is a local minimum.

2- If this derivative is negative, the point is a local maximum.

The proof of the theorem is derived directly from Taylor series expansion

and is shown in Reklaitis et. al. (1983).

To generalise Theorem 3.1 for functions of several variables, the following

results are summarized:

a- If f'(x*) = 0 and f"(x*) is positive definite, then x* is a local mmimurn.

b- If f'(x*) = 0 and f"(x*) is negative definite, then x* is a local maximum.

c- If f'(x*) = 0 and determinant f"(x*) ~ 0, but f"(x*) is neither positive

definite nor negative definite, then x* is a saddle point.

Theorem 3.2: Necessary conditions

For x* to be a local minimum, it is necessary that:

f'(x*) ,.,. 0

and

f"(x*) is positive semi-definite.

Theorem 3.3: Sufficient conditions

If:

f''(x") = 0

and

f"(x*) is positive . -def'inite,

then x* is an isolated local minimum of f'(x). However, if f"(x) ~ 0 v'x, then

f'(x) is called a convex function and the local minimum is also a global one.
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3.4.2 Structure of optimisation problems:

Most practical problems can be expressed as problems requiring the

minimisation of a real valued function f'(x) of an N-component vector

argument x = (x.;.. .,x n ) whose values are restricted to satisfy a number of

real valued equations h1c,(x) = 0, a set of inequalities g(x) ~ 0 as:

minimise

subject to

f(x)

hex) = 0

g(x) ~ 0

(3.1)

In solving such problem, all possible values of x that satisfy the subjected

constraints are called feasible points and the feasible region is the set of

all feasible solutions. The best feasible solution is called the optimal.

Optimisation problems are classified into different categories according to

the properties of the objective and constraint functions (such as linear,

non-linear, quadratic, etc.). The problem (3.1) is called a constrained

optimisation problem. However, if there are no constraints, the problem is

known as an unconstrained problem. There is a wide range of optimisation

methods for all classes of optimisation problems (see for example; Fletcher,

1987; Bertsekas, 1982; Gill et. al., 1981). However, the augmented Lagrangian

is one of the optimisation methods commonly used. It has been used by the

Nag library Fortran routine in the simulation studies for Chapters 4, 5, 7

and 8 of this thesis and will be summarized later in this chapter.

3.4.3 Regularity condition:

It is said that the point x* is a regular point of equation (3.1) if the

gradient vectors of all active constraints at that point are linearly

independent.
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3.4.4 The Kuhn-Tucker conditions:

Kuhn and Tucker (1951) have developed the necessary and sufficient

optimality conditions for the non-linear programming (NLP) problem. For

the general NLP problem (3.1), assume that the functions f, g and hare

differentiable. The Lagrangian function associated with the problem (3.1) is:

(3.2)

and assuming the existence of the multipliers f.. and u. Then the Kuhn­

Tucker conditions are:

V'f(x) + f.. tV'h(x) + j.J.tV'g(x) = 0

g(x) ~ 0

hex) = 0

j.J.g(x) = 0 j.J. ~ 0

Conditions (3.3)-(3.6) give the necessary conditions of optimality.

(3.3)

(3.4)

(3.5)

(3.6)

Kuhn-Tucker necessary theorem:

Consider the NLP problem given by equation (3.1). Let f, g and h be

differentiable functions and x* be a feasible solution to NLP. Furthermore,

let g(x*) ... 0, and V'g(x*) and V'h(x*) be linearly independent. If x* is an

optimal solution to NLP, then there exists a (j.J.*, f..*) such that (x'", u", f..*)

solves the Kuhn-Tucker (K-T) problem given by equations (3.3)-(3.6). The

proof of the theorem is given in Bazaraa and Shetty(l979).

The conditions that V'g(x*) and V'h(x*) are linearly independent at the

optimum is known as a constraint qualification. It essentially implies the

regularity conditions on the feasible region there exists at least one

feasible point x that is strictly inside the feasible region of the inequality

constraints.

When the constraint qualification is not met at the optimum, there may not

exist a solution to the K-T problem.
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3.4.5 Dual gap:

For a convex set, it is known (Bazaraa and Shetty, 1979) that there exist a

supporting hyperplane for every point (and therefore, for the solution

point) of the set (Figure 3.5 a).

In case of a nonconvex set, the existence of supporting plane at each

boundary point is not guaranteed and inaccessible regions such as that

shown in figure (3.5 b) may be found. This region is known as dual gap.

Such a dual gap arises if some choice of Lagrange multipliers" produces at

least two solutions (Stephanopoulos and Westerberg, 1975) to the Lagrangian

problem; equation (3.1).

The normal Lagrangian methods can solve some nonconvex problems.

However, if the solution point is inside a dual gap, such methods will fail

to discover the solution and the methods based on the augmented

Lagrangian are recommended for such problems.
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3.4.6 The augmented Lagrangian method:

The augmented Lagrangian method is one of the most effective general

classes of non-linear programming methods. It has proved (Findeisen et. al.,

1980) to be more convenient, where it can be applied on convex and non­

convex problems, and therefore more often used.

The augmented Lagrangian for the equality constrained problem:

minimise f'(x)

s.t: hex) .. 0
} (3.7)

is the function La(x,A,P)j such that (Hestenes, 1969; Powell, 1969):

(3.8)

where p is a positive constant, and the quadratic term is to convexify the

problem.

For a large class of non-convex problems, normal Lagrangian do not yields

suitable saddle points which correspond to the optimal solution, but

because of the convexification, the augmented Lagrangian yield saddle

points for these non-convex problems if p is chosen appropriately.

-
The augmented Lagrangian function can be used sequentially to give a way

of solving the optimisation problem (3.7). There exists a value of A for

which x* minimises La(x, A, p), and this is in fact }..*, the Lagrange

multiplier vector associated with the solution x*. This result (Fletcher,

1987) is usually independent of p (provided p is sufficiently large). So if

the minimiser of the augmented Lagrangian function (3.8) is denoted by x(}..)

and p is fixed during the algorithm, then the basic implementation of the

approach is as follows:

a- Determine a sequence {}..(kl} --+ >-.*.

b- For each }..(k), minimise the augmented Lagrangian function (3.8) to find a

I .., o(kl)loca minimiser x {\ .

c- The process is terminated whenf,4(x(}..(k ln IS sufficiently small (Fletcher,
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1987).

. A standard method to update }.,.1<. (Luenberger, 1984) is:

(3.9)

The augmented Lagrangian method can also be applied for a more general

non-linear programming problem involving both equality and inequality

constraints, as In problem (3.1). The augmented Lagrangian function

associated with the NLP problem (3.1) is as follows (Bertsekas, 1982;

Luenberger, 1984):

(3.10)

Typical advantages cited in favour of the augmented Lagrangian approach

are its robustness and its ease in programming, and its capability of

application to a broad class of problems (Rockafellar, 1974).

3.5 Summary:

A summary of some basic definitions, notation and relations that are used

in this thesis has been given in this chapter. Structure of the optimisation

problems and the conditions of optimality are included. The augmented

Lagrangian method is also described as an example of the non-linear

optimisation method. It has been used by the NAG library routines in most

of the simulation studies in the next chapters of this thesis.
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Chapter 4

Algorithms for steady state large scale systems

4.1 Introduction:

This chapter is generally concerned with hierarchical control algorithms

but specifically the aim is to make a comparison between the double

iterative price correction mechanism DIPCM (Shao and Roberts, 1983) and

the augmented interaction balance method with feedback AIBMF (Tatjewski,

1985).

Hierarchical control algorithms are characterised by the use of local

decision units and a supremal coordinating unit. Each subprocess of the

industrial plant has its own optimising decision unit which computes its own

set point values to maximise its local performance subject to local model

equatio.ns, constraints and estimates of disturbances.

A coordinator is often required at a second level within the supervisory

layer, to ensure that overall system objectives, interconnections and

constraints are satisfied. Coordination is performed at a higher level unit

which can intervene in local decision problems (Findeisen et. al., 1980).

There are two principal methods of coordination; firstly by the interaction

prediction method, and secondly by the interaction balance method.

In this chapter, the involved algorithms (DIPCM and AIBMF) are both based

. on the price coordination method. Therefore, the basic version of the price

method is introduced, then a brief summary for each algorithm is given.
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Finally, a comparative study between the double iterative pr ice correction

mechanism and the augmented interaction balance method with global

feed back is provided.

4.2 Interaction balance method:

The interaction balance method or price coordination is based on equating

supply and demand, that is, equating the corresponding outputs and inputs

(Findeisen et. al., 1980). In terms of the system description, the aim of the

coordinator is to adjust parameters within the modification in order to

provide satisfaction of the interconnection equation, i.e,

u=Hy (4.1)

where u is .the inputs vector, y is the outputs vector and H is the

interconnection matrix of the system.

In price methods, the interconnections between subprocess models are all

removed by "cutting" the links between subsystems and introducing

corresponding additional equality constraints. It is only in the obtained

final solution that the interconnection relations between the subsystems

(equation 4.1) are required to be fulfilled and this condition is ensured by

the coordinator.

An efficient implementation of the interaction balance method is the closed

loop method with global feedback since open loop methods rely on accurate

mathematical models of the steady state behaviour of the industrial

processes. But, in practice, model-reality differences often exist; therefore,

closed loop methods are preferred in order to overcome these difficulties.

Also the interaction balance method with local feedback suffers from

stability problems (Bakalis, 1986; Findeisen et. al., 1980).

In the next section, the interaction balance method with global feedback is

summarized, since the double iterative price connection mechanism (Shao

and Roberts, 1983) and the augmented interaction balance method with
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global feedback (Tatjewski, 1985) are both based on the basic version of

the interaction balance method with global feedback (Findeisen et. al.,

1980).

4.3 Interaction balance method with global feedback:

The tasks of local decision units which are based on mathematical models

are to find the set points c, and the model interconnection inputs u., The

solutions of the local decision units c, and u, are transmitted respectively

to the local real subprocesses and the coordinator.

The coordinator determines the modifiers >.. such that tiC>") = u*C>"), where

u* are the real process interconnections ( u* = H v" ) which are produced

as a result of applying the set points c, to the real process and are

measured and transmitted to the coordinator.

The task of each local decision units is:

For a given value of coordinator variable>" find Ct(>") and Ut(>") such that:

N

min Qt(Ct, u.) + >..tt u, - L (>..tt HJt Yt)
Ct,U t J-1

subject to: Yt= Ft(ct , u.)

gt(Ct , u.) ~ 0

The task of the coordinator is:

For a given value of Ct, iit, f'ind X such that:

(4.2)

(4.3)

The structure of the interaction method with global feedback is shown in

figure (4.1).
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Figure ( 4. 1) Closed loop Price method with global feedback.
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One of the biggest disadvantages of the interaction balance method with

feedback CIBMF) is the large number of set point changes which may be

required to achieve a converged solution. Therefore, the real system may

need to be disturbed many times, requiring a large amount of on-line

computing time.

Shao and Roberts (1983) have proposed another approach which modifies

the IBMF method to reduce the number of set points changes required and

hence, less disturbance of the real system is caused .It is summarized in

the following section.

4.4 Double iterative price correction mechanism:

The proposed double iterative price correction mechanism (DIPCM) with

global feedback by Shao and Roberts (1983) was designed to reduce the

number of times that information is required from the real system. The

idea of the basic version of the IBMF method is for every iteration, that

is for every change of f-, it was necessary to apply the control set,

obtained by the local decision units, to the real system and wait for a new

steady state in order to obtain the required information. In the double

iterative price correction mechanism, the coordinator's task has been

modified so that the coordinator has to find two variables, sand Ms),

where >-'(8) is the price vector and s is the shift vector. The two variables

are adjusted by the coordinator using a double iterative process, where the

price vector, >-., is adjusted in the inner loop using model information only.

The shift vector s, is adjusted in the outer loop where here only real

system information is required.

Two versions were introduced by Shao and Roberts, 1983, which are based

on shifting techniques and will be described in the following subsection.
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4.4.1 By shifting the interaction balance condition (Version 1):

This algorithm is based on shifting the interaction balance condition of the

overall problem using an auxiliary parameter vector s, where s c 'U and s

is provided by the coordinator. It is expected that at convergence, at some

value of s, the model interaction inputs ii will be equal to the real

interaction inputs u* = HK*(c), within a desired tolerance. So, the

interaction balance condition of the overall problem is shifted by s as:

u = H Ftc.u) + s (4.4)

Then, applying the normal Lagrangian technique to the problem, we obtain:

L(c,u,y,,,) Qfc.u.y) + <" , u-Hf'(c.ul-s>

where Q is the performance index of the problem, " E A C CU.

The task of local decision units and coordinator are:

For a given value of '" find Ct(")' Ute,,), such that:

(Ct(") , Ute,,)) = arg min Lt(ct,ut,")

LP,{ where: L,(c"u"t-) - Q,(c"u"F,(c"u,))

s. t: gt(Ct, u.) ~ 0

The task of the coordinator is:

Find ~(s) and s, such that:

U(~(s)) - HF(c(~(s)) , ii(Ms))) - s = 0

cp{
u(~(s)) - HK*(c(~(s))) 0

N

+ <"hUt>-L <"Jt, HJtFt(ct,Ut»
)=1

(4.5)

(4.6)

This task is performed using a double iterative mechanism. The

implementation aspects of the algorithm will summarize the process, and the

structure of version 1 is shown in figure (4.2)

- 6~ -



---------------------,
I
I
I
I
I
I
I

- I..

r---------------------
: Coordinator { C P l
I .,

I
I
I
I
I _

•

s
.,

L. _ ----~

U 1 (i(s»

••

-
Local decision

unit 1

Local decision

unit N -

r------------
I
I

Real System
------------------- ---,

K*
--•
• •

.Ir • •
• H •

u* y*. •
~ N_.. subsystem N • I--

•

•
•

•

u; yi
• subsystem 1 1--~----------+-------1~

L ~
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4.4.2 Implementation aspects of version 1:

1 - With a given fixed values of s (initially usually zero) and starting

points of ,,0, c t
Oand Uta, a solution of the local decision units problems,

LPt, (ct("k.), ut(}..k.)) are obtained. It is worth mentioning here that the

starting point of the algorithm (,,0, ctO, Uta) can not be any value but it

has to be the solution of the open loop model based optimisation

problem ( Findeisen et. al., 1980).

2 - The price vector " is adjusted in an interior iterative procedure on

the basis of imbalance using the LP t solutions as follows:

(4.7)

where El is a step length coefficient, 0 ~ E 1 ~ l.

3 - The procedure is continued between the coordinator, to update "

according to equation (4.7), and the local decision units to obtain

solutions of their problems based purely on a model basis until the

shifted balance condition (4.8) is achieved within a desired tolerance.

(4.8)

4 - The control set c(}..(§)) is applied, as controller set points,. to the real

system. After the system reaches steady state conditions then the

real steady state interconnection inputs u* = HK*(c(~(s))) are measured

and transmitted to the coordinator.

S - The coordinator uses this feedback information to update the values

of the shift vector s within an outer iterative procedure according to

the equation (Shao and Roberts, 1983):

(4.9)

6 - The new values of s are used to modify the values of " and then the

coordinator will send these updated values of " to the local decision

units which solve their problems again and then the iterative

procedure restarts from (2) until the coordinator achieves the

following condition in the outer loop:
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ii(~(s)) - HK*(c(~(s))) =- 0 (4.10)

When condition (4.10) is achieved within a desired tolerance, the

overall process is terminated.

4.4.3 By shifting the model outputs (Version 2):

This algorithm is based on application of the normal Lagrangian as in

version 1 but with the vector s E '1J to shift the model outputs from

y = Flc,u) to:

v" =- Ftc,u) + s (4.11)

Hence, the interaction input vector u is accordingly shifted from u Hy

to:

US - u + Hs (4.12)

The performance index and the constraints are modified according to

equations (4.11) and (4.12) as follows:

N N

Q - L (Qt(Ctt ut, YtS
) = L Qt(Ct, Ut+Hts, Yt+St)

t-l t=1

(4.13)

(4.14 )

In version 2, it is expected at some value of s that the real outputs v"
will match the shifted outputs of equation (4.11).

The tasks of the local decision units (LPt) and the coordinator (CP)

respectively are:

For fixed values of ~ and s specified by the coordinator, find Ct(~,s)

and iit(~,s) such that:

, where:
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N

L Qt(Ctt Ut+Hts, Fi(cttUt)+St) + <~itUi>
i=1

N- L <~Ji , HJi Ft(Ci,Ut»
J=1

(4.15)

The coordinator problem 1S:

~

Find sand Ms), such that

cp{ K~(C(~(S))) - F:c(~(s». _ii(~(s») - s - a
u(Ms)) - HF(e(Ms)), ii(Ms))) = 0

(4.16)

(4.17)

As in version 1, the coordinator task is performed by a double iterative

process, where the inner loop is involved with obtaining ~ using model

information only while, in the outer loop, information from the real process

is only required to be -used in updating s, The structure of version 2 is

shown in figure (4.3).

4.4.4 Implementation aspects of version 2:

1 - The first step here is exactly as in the case of version 1.

2 - The price vector ~ is updated within the inner iterative loop according

(Shao and Roberts, 1983) to equation ( 4.18):

(4.18)

where C1 is the step length and 0 s: C1 s: 1.

The updated values of A are applied to the local decision units to

solve their problems obtaining solutions of (e, ii) which in turn will be

used to adjust the values of ~. This process is continued until

condition (4.17) is satisfied within a desired tolerance.
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3 - The local decision units solutions C(A(S)) are applied to the real system

as controller set points. When the real system reaches the steady

state condition the real outputs v" are measured and transmitted to

the coordinator.

4 - The measured outputs are used by the coordinator to obtain a new

value of the shift vector s according to equation (4.19):

(4.19)

5 - The new values of s are sent to the local decision units to calculate

(c) and (ii) which in turn will be used to calculate new values of A.

Then, the process restarted from step (2) and continued until (4.16) IS

achieved within a desired tolerance, whence, the iterative procedure is

terminated.

4.5 The augmented interaction balance method with
feedback (AIBMF)

The augmented interaction balance method with feedback was developed by

Tatjewski (1985) to extend the applicability of the interaction balance

method with feedback (Findeisen et. al., 1980) to cover the case of problems

with duality gaps. This algorithm is based on the application of the

augmented Lagrangian; where an augmented term is introduced to convexify

non-convex problems. The structure of the algorithm is iterative with

double loops. The inner loop involves model based information only while

feedback information from the real system is only required in the outer

loop to update the price vector A.

The algorithm of AIBMF is based on the augmented Lagrangian which IS

distinguished from the normal Lagrangian by adding an extra term as:

La(c,u,>-.,p) ~ Qtc,u) + >-. t (u - Hf'(c.u i) + 0.5pllu - HF(c,u)1I2 (4.20)

Eq uation (4.20) can be expressed In terms of indi vid ual subsystems as

follows:
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~

L Qt(Ctt u.) + }..t t Ut
t=1

(4.21)

The last term in equation (4.21) IS not separable. A suitable linearization

(Stephanopoulos and Westerberg, 1975) around some point (Uk, HF(c\ Uk))

can be used to overcome this problem as in equation (4.22):

(4.22)

Using this result in equation (4.21), we obtain:

Aa(c,u,p,c\uk)
N

L Qt(ct, u.) + }..t t Ut
t=1

N

L}..JtHJtFt(ChUt)
j=1

N

- 2 L}../t HJtFt(cttut))] + puK.t HF(cK.,uK.)
"=1

N

~ L Aat(Ct,UtJ}..,p,CK.,Uk) + PUK.t HF(cK.,uK.)
t=1

(4.23)

In this approximate separable form; Aat(CiJUt,}..,P,cK.,uK.) can be used in

formulating the optimisation problems which are solved in the local decision

units.

Implementation aspects of AIBMF:

1 - For a given value of }.., solve the local decision unit tasks as expressed

as minimisation problems of equation (4.23). The starting points of the

algorithm for the first iteration (}..O, CtO, u.") are those obtained from

solving the open loop model based optimisation problem.

2 - Compare the obtained solutions (e t(}.. ), Ut(}..)) with (ck, Uk):

(4.24)

If equation (4.24) is achieved within a desired tolerance, then go to

step 3 otherwise reset:
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k+1
C C

k+l
U U

} (4.25)

for subsequent solving of local decision unit problems until equation

(4.24) is achieved. This is the inner loop procedure of the algorithm.

3 - The controls elf..) are applied to the real system as controller set

points. When the system reaches a steady state condition the

interactions u*C}") are measured and transmitted as feedback

information to the coordinator.

4 - The coordinator uses the feedback information to improve the values

of r.. according to (Tatjewski, 1985) equation (4.26) in an outer iterative

loop:

}..J+1 = }..J + cx.tp[tiCr..J) _ u*O.,J) _ HF(eC}..J), tiC}..J»

+ HF(e(}..J), tt(}..J»] (4.26)

where cx.t E (0,2) and p is a penalty coefficient.

S - The coordinator sends the updated values of r.. to the local decision

units where they can be used in calculating new values of e(r..), li(}..).

6 - The obtained values of interaction inputs li(}") are compared with the

real measurements u*(}..). If:

tic}..) - u*(r..) = 0 (4.27)

is fulfilled within a desired tolerance the overall process is terminated

otherwise go back to step (1) and continue until condition (4.27) is

achieved.

The structure of the augmented interaction balance method with feedback

is shown in figure (4.4).
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4.6 Simulation study:

Simulation examples:

Example 1

For the first example consider a simple system composed of two

interconnected subsystems, with interconnection constraints:

and

i.e. with interconnection matrix H of the form:

H - [~ •

Each subsystem has one control variables c., input u, and output Yu i.e.

Yt E %1 and 1 1,2.

The subsystem's real and model equations are:

The performance indices are:

Ql(Cl, u.) - 32c~ - l Sc , + (2Cl + Ul - 1)2



The local constraints are:

2c I + UI ~ 1

Example 2

This example contains two subsystems where the performance indices and

the constraints involve system outputs.

The reality and model equations are:

The performance indices are:

The interconnection equation is:

[ o
1

1
o

o
o
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and the system constraints are

where:

Example 3

Yl Yll

The third example involves three interconnected subsystems, where the

system constraints do not involve the outputs but the system equations

contain non-linear terms.

The subsystems real and model equations are:

*YZl
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where:

Yll

Y3 = Y31

The subsystem performance indices are:

The system constraints are:

e'U1 ~ {(C UU1) E %3, C~1 + C~2 ~ 1, 0 ~ Ull~ O.S}

e'U2 ~ {(C2,U2) E %5, O.SC21 + C22·+ 2C23 ~ 1,

Finally, the coupling equation is:

Ull 0 1 0 0 Yll

U21 1 0 0 0 Y21

U22 0 0 0 1 Y22

U31 0 0 1 0 Y31
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Example 4:

This example consists of two subsystems with interconnection constraints

u , = yz, Uz = Yl' i.e., with interconnection matrix:

H = [~ ~]

Each subsystem has one control Ci, input u, and output Yt, i.e.

, 1 1,2.

The subsystem output mappings are:

and their models are:

The performance indices are:

The local constraint sets are:
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4.7 A comparison between algorithms

In this section, a comparative study between the double iterative price

correction mechanisms (Shao and Roberts, 1983) and the interaction balance

method with feedback (Tat.iewski, 1985) is discussed. In comparing the

algorithms, some important factors must be considered. The study presented

in this section includes the following factors:

1 - Generality, reliability, and computational effort.

2 - Study of non-linearity.

3 - Sensitivity to parameters.

4 - Convergence and precision.

4.7.1 Generality, reliability and computational effort:

The generality and reliability of an algorithm refers to the variety of

problems that the algorithm can solve with reasonable accuracy and the

restrictiveness of the assumptions required by the algorithm.

The chosen simulation examples were selected to cover a wide range of

various classes and sizes of problems. The first example is taken from the

work by Tatjewski, 1985. It is a simple example, contains two subsystems

and each subsystem has only one set point (see fig. 4.5). The first

subsystem is subjected to only one linear inequality constraint and the

performance index is a function of a second order.

The second example is taken from Shao and Roberts, 1983. It also consists

of two subsystems. The first subsystem has two set points while the

second has three set points (see fig 4.6). The performance index is also a

function of the second order and the system is subjected to fixed bounds

and non-linear inequality constraints. In addition, the system constraints

involve outputs.

The third example is also taken from Shao and Roberts, 1983. It is a bigger

and more labourious problem. It contains three subsystems with seven set

points (see fig 4.7). The performance index is a function of the fourth
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order and the system is subjected to fixed bounds and non-linear inequality

constraints. The system equations involve non-linear terms.

The fourth example is taken from Tatjewski, 1985. It is a non-convex

problem with a duality gap. The construction of the system IS the same as

that in example 1; figure (4.5).

In the simulatinn study of all the examples, the starting values of t.., c, u

were obtained by solving the problem using the open loop model based

optimisation technique (Findeisen et. al, 1980). This was carried out for

both considered algorithms.

A selected representative set of simulation results for the double iterative

price correction mechanisms (version 1 and version 2) and the augmented

IBMF are presented for the simulation examples 1, 2, 3 and 4 in Tables (4.1)

to (4.4) respectively.

The first two columns show the tolerances of the inner loop (Toll) and

outer loop (ToI2) respectively. The second two columns give the gains (E l,

E2) for updating A and s respectively, while in the case of AIBMF, they

show the penalty coefficient (p) and the gain (at) for the outer loop to

update >-.. The following three columns show the final value of the

performance index, the number of system iterations and the total number

of optimising iterations. The last two columns represent the suboptimality

figures and the computer processing time (cpt) respectively. The

suboptimalities are calculated using the expression (Shao and Roberts,1983):
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. --p

u 1 Yl u 2 Subsystem 2 Y2

Figure ( 4. 5) The Structure of the System of Examples 1 and 4.

! ! 1 1 !
U11 Y11 U21 Y22

Subsystem 1 Subsystem 2 Y21

Figure ( 4. 6) The Structure of the System of Example 2.

Cll C12 C12 C22 C23 C31 C32

! 1 U 22 ! ! ! j !
r

Y21 y
r fioo

Ul1 Subsystem 1 Yll U21 Subsystem 2 Subsystem 3

Y22

31

Figure ( 4. 7) The Structure of the System of Example 3.
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ALG. Toll

p

Q IS IT Sub.% CPt

m s

VI

V2

0.95 0.95 -0.06833 4 355 0.778

5a::10-s 5a::l0-s 0.95 0.95 -0.06824 5 671 0.905

0.90 0.90 -0.06845 6 525 0.607

5a::l0-s 5a::l0-s 0.95 0.95 -0.06812 5 818 1.082

2 12

3 54

4 39

8 47

AIBMF 10-" 10-" 30 1.0 -0.06852 10 40 0.501

Sa::1O-s s,1O-s 30 1.0 -0.06827 11 41 0.861

Table (4.1) Comparison of Algorithms for Example 1.
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ALG. Toll

p

C2

ex.

Q IS IT Sub.% CPt

m s

VI

V2

0.95 0.95 5.98463

50%:10-5 50%:10-5 0.90 0.60 5.98459

0.95 0.95 6.04331

50%:10-5 50%:10-5 0.90 0.60 6.04333

6 115 0.988

11 137 0.987

6 79 1.978

13 151 1.978

1 52

2 19

1 18

2 29

4

4

1.0

1.0

5.98457

5.98457

18 63 0.987

19 72 0.987

1 08

1 15

Table (4.2) Comparison of Algorithms for Example 2.
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ALG. Toll

VI 0.2 0.6

Q

6.33583

IS IT Sub. % CPt

m s

8 209 0.1475 12 3

V2 0.2

0.6

0.6

0.6

6.33583

6.33578

6.33581

9 278 0.1475 16 13

8 216 0.1467 15 34

9 265 0.1471 18 46

1.0

1.0

6.33577

6.33576

4 51 0.1465

5 67 0.1464

6 38

8 3

Table (4.3) Comparison of Algorithms for Example 3.
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ALG. Toll E.2

a.

Q IS IT Sub. % CPt

m s

V1

V2

0.5

0.5

0.5

0.5

NOT WORKING

NOT WORKING

1.0

1.0

1.0

-9.54912

-9.54893

-9.54881

12 34 0.0108

11 38 0.0128

13 36 0.0140

26

22

27

Table (4.4) Comparison of Algorithms for Example 4.
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Suboptimality Q-:}* x 100% (4.28)

where Q is the obtained final value of performance index, and Q* is the

real optimum performance that would have been obtained if the model were

perfect.

The computational effort of the algorithms were measured by the number

of system iterations (IS), number of optimising iterations (IT) and computer

processing time (cpt) which are shown for the algorithms and the simulation

examples in tables (4.1) to (4.4)

4.7.2 Sensitivity to parameters:

The sensitivity of the double iterative price correction mechanisms, both

versions (VI and V2), were studied using example 1. The results are shown

in figures (4.8) to (4.11). Figures (4.8) and (4.9) show respectively the effect

of the gain coefficients C€1) for updating the price vector ~ and the gain

coefficient C€2) for updating the shift vector s on the number of system

iterations (IS) and total iterations (IT). These results are obtained for

version 1 and a similar set of results are shown in figures (4.10) and (4.11)

for version 2. The tolerance of the double loops were both satisfied to

10-"1 and in studying the effect of a gain, the other gain value was kept

constant to an average value of 0.5.

In the augmented interaction balance method with feedback the contained

parameters are the gain coefficient for updating ~ ; at and the penalty

factor o, A study of the effect of at on the number of system iterations

and total iterations are presented respectively in figures (4.12) and (4.13)

for penalty coefficient p = 10 and using example 1. Figure (4.14) shows the

effect of varying the value of the penalty coefficient on convergence for

example 1. During the study of penalty coefficient effects, the gain at was

kept constant to a value of 1.0 and the tolerance for terminating the

iterative loops of the algorithm were both 10-"1.
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4.7.3 Study of non-linearity:

Example 3 has been modified to include a varying non-linearity term in the

reality equation of the first subsystem. So, the system equations become:

* - F*( ) - 2Y21 - 21 C2' U2 - C21 - C22 + 1.2U21 - 3U22 + 0.lc22

where {3 :2 0 is a parameter scaling non-linear term in y~l with a nominal

value of {3=O.15.

The model equations, performance indices, sujected constraints and coupling

equations are the same as in example 3.

Results for {3 E [0, 1] are shown in figures (4.15) and (4.16) for the double

iterative price correction mechanisms (VI and V2) and the augmented

interaction balance method with feedback (AIBMF). The shown results were

obtained using a penalty coefficient p = 10 and an average gain value <X£ =

1.0 for the AIMBF and for versions VI, V2 the gain values for the inner

and outer loop respectively are 0.2 and 0.6. The tolerances for the

iterative loops for all the results of this study were satisfied to a value

of 10-~.
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4.7.4 Convergence and precision:

The convergence and the quality of the points produced by both

algorithms are measured from the previous simulation study of the

examples.

The quality of the final converged performance function is measured by

comparing it with the real optimum value and the suboptimality for each

solution is shown in tables (4.1), (4.2), (4.3) and (4.4) for examples 1, 2, 3 and

4 respectively.

The convergence of the performance index of example 3 is shown in figure

(4.17) for the algorithms (VI, V2 and AIBMF) while figures (4.18) and (4.19)

show the convergence of the set point changes (Cll' C12) for the first

subsystem of the same example. For Vl and V2, the gain of the inner and

outer loops were respectively 0.2 and 0.6. The penalty coefficient value for

the AIBMF was 10 and the tolerance for all algorithms for both loops were

achieved to 10-4
•

4.8 Discussion of results:

The results obtained from the simulation study using four examples are

presented in tables (4.1) to (4.4). These indicate that the DIPCM and the

AIBMF are both applicable to a wide range and different sizes of problems.

However, the DIPCM are not applicable to non-convex problems which have

a duality gap since they are based on normal Lagrangians, as it is evident

from table (4.4).

Both algorithms produce suboptimal results, but the optimality of the

DIPCM (V2) in most cases is worse than the other two algorithms. The

AIBMF produces results closer to the optimium. The total number of

iterations of the AIBMF is much less than those of Vl and V2. Therefore,

its computer processing time is also often very much less than Vl and V2,
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but the number of system set point changes (IS) of the AIMBF IS higher

than VI and V2 for examples I and 2.

Increasing the value of the price gain El will help to decrease the total

number of iterations (IT) of VI as it is shown in figure (4.8) for example 1,

while the system set point changes are not affected by varying E 1•

However, for this particular example, IS and IT of the algorithm VI both

vary with the gain Ez, where by increasing Ez decreases IT and IS, until Ez

~ 0.8, then increasing 0.8 < Ez ~ 1.0 gradually increases IS and IT as shown

in figure (4.9).

Version V2 is sensitive to El and E2 as it is evident from figures ( 4.10) and

(4.11).

A study of the effect of varying the gain ext (which is required to update

the price vector A of the AIBMF, where 0 ~ ext~ 2) is shown in figures

(4.12) and (4.13) for p = 10 and using example 1. It can be noticed that the

number of set point changes sharply decreases for increasing ext within the

range 0 ~ ext ~ 0.6, then it gradually decreases for 0.6:5: ext ~ 1.0. Any

increase in ext will increase IS gradually in the beginning then sharply until

ext = 1.7. For ext > 1.7, the algorithm fails to converge for this example.

The effect of varying ext on IT is exactly the same as on IS as is seen In

figures (4.12) and (4.13).

A study of the effect of the penalty coefficient p on the convergence of

the AIBMF is shown in figure (4.14) for 0 ~ p :5: 200 for example 1. The

performance of the algorithm improves by increasing p until p ~ 100 then

IT and IS increase for every increase of p, for this example.

A test of the DIPCM (VI, V2) and the AIBMF, with respect to non-linearity

can be seen in figures (4.15) and (4.16). The DIPCM and the AIBMF

algorithms show a good performance throughout the range 0 ~ {3 :5: 1.0,

where for the DIPCM the converged solutions were always obtained after 8

set point changes and 4 to 5 set point changes for the AIBMF. There is an

exception of V2 where IT deteriorates for {3 > 0.65.
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The convergence of the DIPCM and the AIBMF for example 3 is shown in

figure (4.17) where figures (4.18) and (4.19) present the convergence of the

set point changes Cll and C12 of the first subsystem of this problem. It can

be noticed that the AIBMF initially converges sharply towards the optimum

for this example, and therefore the number of set point changes of the

AIBMF is consequently smaller than VI and V2.
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4.9 Summary and conclusions:

Both algorithms, the AIBMF and the DIPCM are applicable on a wide range

and different sizes of problems with the exception of the DIPCM in case of

non-convex problems. An extension of the DIPCM to make it applicable to

non-convex problems is described in chapter 5.

The DIPCM and the AIBMF both produce suboptimal results but the

suboptimality of V2 is often higher than VI and the AIBMF.

The solution of Vl of the DIPCM often converges within less set point

changes than V2 and the AIBMF with the exception of example 3, where

the AIBMF was superior. But the total number of iterations IT of the

AIMBF are always less than those of the DIPCM. This is due to fast

convergence of the inner loop of the algorithm (Tat jew ski, 1985).

Therefore, the computing processing time of the AIBMF are always smaller

than those of the DIPCM.

Both algorithms have two parmeters to be selected; (Eu E2) for the DIPCM

and '», a.t ) for the AIBMF.The best values of these parameters are obtained

by trial and errors, where high values of (E u E2, ext) may cause divergence

and too small values will considerably slow the solution unnecessarily, but

V2 is more sensitive to these parameters than Vl and AIBMF.

Finally, both algorithms can cope with system non-linearity with the

exception of an observed deterioration of V2 which, for the particular

example investigated exhibited an increase in the total number of iterations

for {3 > 0.65.
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Chapter 5

An on-line Augmented Price Correction algorithm

In previous chapters it was mentioned that it IS always difficult to

formulate a mathematical model of a system with no differences between

the mathematical model and reality. To cope 'with this problem, techniques

with feedback information from the real system have been introduced by

Findeisen et. al. .(1980). Another problem which occurs when using these

methods is that a large number of set point changes may be required in

order to converge to the final solution, where for every iteration it IS

necessary to apply the control set points to the real system and wait for a

new steady state in order to obtain the required information. Hence, a large

amount of on-line computing time may be needed. Some research work has

been done to reduce the number of times that information is required from

the real process by Shao and Roberts .(1983).

However, there are some application limitations on the double iterative

technique by Shao and Roberts (1983). For instance, the technique can not

be safely applied if the problem is non-convex and has a duality gap.

In this chapter, an alternative approach is introduced which was proposed

by Hendawy and Roberts (1989). The new algorithm is designed to extend

the applicability of the previous price correction mechanism to cover the

case of non-convex problems, and to improve the effectiveness of the

iterative correction process. The structure of this algorithm is of a
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hierarchical nature with three loops. The real process measurements are

required only within the outer loop while the other two inner loops involve

model based computations only. This reduces on-line control correction time

and makes application of the algorithm also useful for convex problems

which have no duality gaps.

52 The Augmented Price Correction Mechanism

5.2.1- Description of the algorithm

The algorithm is originally based on two main principals:

i) Shifting the model outputs of the problem

The model output is shifted from

y = FCc, u)

to

v" = FCc, u) + s = y + s

(5.1)

(5.2)

where s E ey is a fixed vector provided by the coordinator. It is expected

at some value of s, the model output Y will be equal to the real output y*.

The interconnection input vector is also shifted from

u Hy

to

US H ~s = H (y + s) u + H s

(5.3)

(5.4)

The performance index and feasible set within the local problems are also

modified as follows:

N

Q = L Qt(Ct, uf, yf)
t=t

NL Qt (c, , u, + Hts , Y t + St )

t=l

(5.5)
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j E r. (5.7)
and

where i E 1 , N

ii) Applying the augmented lagrangian technique

The augmented lagrangian of the overall problem is:

La (c, u, y, A, p ) = Q (c , u , y ) + "t (U - HF (c , u »)

+ 0.5 p II u - HF (c , u) II 2

By shifting the model outputs, equation (5.9) can be written as follows:

Las (c , u , y , A , P , s) = Q (c , u + Hs, y+s) + "t (u - HF (c , u »)

(5.8)

(5.9)

+ 0.5 p II u - HF (c , u) II 2 (5.10)

fI
The shifted augmented Lagr~ian in equation (5.10) can be written in the

form of a hierarchical decomposable structure as:

N

Las (c, u, y • ". P. s) = 2: [Qi ( c, • u, + H.s. F i( c, • u, ) + s, )
t=l

N

+ "/ u, - 2: "/ HJ t Fi ( c, , u, )
;=1

(5.11)

The augmented Lagrangian in this form can not be applied directly because

the last term in equation (5.11) is not separable.

Using a suitable linearisation technique as proposed by Stephanopoulos and

Westerberg (975), this term can be linearized around some point

(uk. , HF (c k
, u le »as :
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U t HF ( c , u )
t

uk. (HF ( c , u ) ) + U t HF ( c k. , uk.)

t
+ uk. HF ( c , u ) (5.12)

Substituting from equation (5.12) into equation (5.11), the augmented

Lagrangian can be transformed to the following separable form:

Nhas (c, u, A, p, s, ctc, u") =2: [ Qt ( c, , u, + Hts, Ft( c, , u, )+ s, )
t=1

N

+ A/ u, -2: A/ H)i F t ( c, , u, ) + 0.5 P (II u, 11 2 + II F t (c, , u, ) 11 2

)=1

N

-2 Ut
t H F (c\ uk. ) - 22: u/'t H

Ji
F t ( c, , u, )] + P uk.

t
HF (ck. , uk. )

J=1

t
(c, , u, , A , P , s , ck. , uk.) + P uk. HF( ck. , uk. ) (5.13)

5.2.2 Implementation aspects of the algorithm

The computer flow chart of the augmented price correction mechanism with

feedback is illustrated in Figure (5.1) while the proposed structure of the

algorithm is shown in Figure (5.2). It can be described as follows:

For given initial values of A , CO , U
O which are obtained by solving the

problem using the open loop model based optimisation caculation (Findeisen

et. al., 1980) the on-line implementation involves performing repeatedly the

following procedure:

1. For a given value of s, solve problem (5.14) using model based

calculations to obtain solutions (ct ( A , s ) , ut (A , s ) ).

, i= 1, ... , N (5.14)

2. Repeat solving problem (5.14) until condition (5.16) IS achieved, otherwise
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reset

(5.15)

for the following solution of problem (5.14) until condition (5.16) is satisfied

within a desired tolerance.

(c (~ , s) , ii(~ , s) - ( Ck , Uk )) =0 (5.16)

3. Compare the obtained interaction input vector u(f..,s) with the overall

balance condition HF(c (~ , s) , u(~ , s)) , using

ii(~ , s) - HF(c (~ , s) , ii(~ , s)) = 0 (5.17)

If condition (5.17) is not fulfilled within a reasonable tolerance, then the

coordinator improves the values of f.. according to:

(5.18)

where p is a penalty coefficient factor, E 1 is a step length coefficient and

The updated values of ~ will be used, and the process is repeated from the

beginning until condition (5.19) is satisfied within a desired tolerance.

4. Control c (~(s)) is applied to the real system as controller set points.

After the transient process in the system is terminated, and the system

reaches a steady state condition, an outer iterative procedure is employed

to adjust s from knowledge of the difference between real and shifted

model outputs. The real steady state outputs y* = K* ( c(s)) are measured

and transmitted to the coordinator.

5. The coordinator improves the values of "s" according to equation

(5.19) (Shao and Roberts, 1983) and then sends it to the local decision units

to start from the beginning, as long as condition (5.~0) is not satisfied.
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where E.2 is a step length coefficient, 0 s: E.2 s: 1

K* ( c (~ (8))) - F ( c (~ (8)), li(}" (8))) - 8 = 0

(5.19)

(5.20)

The iterations are continued until condition (5.20) is fulfilled within a

desired tolerance.
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Figure (5.1) Flow chart of the Augmented Price Correction Algorithm.
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The upper level or coordinator has two tasks:

a) adjusting the multipliers A

b) adjusting the shifting vector s.

1. To adjust the multiplier A, the method of successive approximation is

used (Luenberger 1984, Hestenes 1969) as an iterative process, according to

the formula,

An+1 =- An + Pn h(xn)

where 0 < Pn S P and P is a penalty coefficient.

(5.21)

Various rules can be given (Hestenes 1969) for selecting Pn. For example,

we can choose Pn '"'" ""I P, where ""I is a positive constant normally assuming a

value S 1. However, a simulation study is given later in this chapter, to

show the effect of varing ""I on the convergence of the algorithm.

The initial values of A for the first iteration are obtained from the open

loop model based solution of the problem (Findeisen et. al., 1980). The

process for updating A is repeated until the difference between An and An+ 1

satisfies the required tolerance.

2. For adjusting the shift vector s, a simple Newton-type algorithm is used

in the same manner described by Shao and Roberts (1983) (see for example

Luenberger, 1984). The updating formula for s has the form

where

R*( s) = K*( c (sl) - F ( c (s) , ii (sf) - s
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R*( s) = F*( c (s) , u *(s)) - F ( c (s) , U (sl) - s

Then using the Taylor series expansion (Luenberger, 1984) we obtain

F*( c (s) , u*(s)) = F*( c (s) , U (s)) + F u *'[ u* - U ]

Substituting from (5.25) into (5.24), we obtain:

R*( s) = F*( c (s), u (s))- F u *'[u*-u]- F(c(s), u (s))- s

(5.24 )

(5.25)

(5.26)

Since the real system mapping F* is not known exactly, it 1S necessary to

make the further approximation (Shao and Roberts, 1983) ;

F* ~ F

and

substituting from (5.27) into (5.26), we obtain:

R*( s) = F~ [ u* - ii ] - s

substituting by:

u* = HK* (c ( sl)

ii = HF(c (s) , ii(s))

into equation (5.28), we obtain

R*( s) = F~ [ HK*( c (s)) - H F ( c (s) , ii (s)) ] - s

Equation (5.29) can be written as:

(5.27)

(5.28)

(5.29)

R*( s) = F~ [{ HK*( c (s)) - H F ( c (s) , ii (s)) - Hs } + Hs ] -s (5.30)

From equation (5.23), equation (5.30) can be written as:
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R*( s) = F~ [ HR*(s) + Hs ] - s

Hence:

(5.31)

R*( s) = F~ HR*(s) + F~ Hs

R*( s) - F~ HR*(s) = F~ Hs

- s

- s

[ I - F~ H] R*(s) = - [ I - F~ H ] s

and if [ I - F~ H] is non-singular, we obtain:

R*( s) = - s

Then,

*'R ( s) = - I

(5.32)

(5.33)

Hence, substituting equations (5.32) and (5.33) into (5.22), the updating

formula for s can be written as:

where E2 is a step length coefficient.
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5A~ conditions

A system augmented Lagrangian for the system optimisation problem can be

formula ted as follows:

L*(c, u, A, u, p) = Q( c ,u*, F*( c , u*)) + At
( u* - H F*( c , u*))

+ f.J.*tG* ( c , u*, F*( c , u" ) )

+ 0.5p II u* - H F*( c ,u*) li 2 (5.35)

where A, f.J.* are Lagrange multiplier vectors and p is a penalty coefficient.

The Kuhn-Tucker necessary optimality conditions (for example, Luenberger

1973) take the form:

at F* -k ,..It- ~
- p H ac (u - H F (c , u)) = 0

+ p(I- H a;u*)t (t - H F*(c , \1)) = 0

V'>.L* = ( u* - HF* (c • ti )) = 0

V')I* L* = G* ( c, u*, F* (c , u*)) = 0

V' p L* = 0.5 II S - H F*( c , u) 11
2

= 0

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

and,

if

if

G*J < 0

G*J = 0
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The model augmented Lagrangian analogous to equation (5.35) can be formed

as follows:

L(c , u , >- , jJ. , p) = Q ( c , u +Hs, F( c , u ) + S )

+>-t (u - H Ftc ,u)) + jJ.tG (c, u + Hs, Ftc ,u ) + s)

+ 0.5 p II u - H F( c , u) ii2

The Kuhn-Tucker necessary optimality conditions are:

atF
- p H - (u - HF(c u) = 0

ac '

(5.42)

(5.43)

'V L= atQ + atF
u au au

+ P ( I - H aF)t (u - HF(c , u) = 0au (5.44)

(5.45)

'V L = G ( c , u, F (c , u) + s) = 0 (5.46)
~

'V L = 0.5 II u - H F( c , u) 11
2 = 0 (5.47)

p

'Vs L =
atQ

+jJ.t aG = 0 (5.48)
dS dS

and

jJ.j = 0 if c, < 0

if (5.49)

Comparing between the model equations (5.43)-(5.49) and the system

equations (5.36)-(5.41) , we can derive the conditions to ensure that the

model will produce optimum results if they are achieved, i.e. if the

following conditions apply:
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F = F*

u = u"

s = 0
} (5.50)

If conditions (5.50) apply, there will be agreement between the model and

system constraints and it ensures that the respective multipliers are in

agreement. That is:

And if there is derivative matching, there will be full agreement between

the model and system optimality conditions:

i) a F a F*
ac ac

ii) a F = a F* (5.51)au au*

iii) F = F*

iv) u u"

v) s 0

Thus, if the sufficient conditions of equation (5.51) are fulfilled, the

results of the model based optimisation problem will provide the system

optimum. With looking at the equation (5.51), these conditions can be

satisfied, only by using a perfect model. However, these conditions are

difficult to satisfy for the following reasons:

1- Since the vector s is mainly required in this algorithm to shift the

model outputs in order to match the system outputs, therefore, the last

condition s = 0, can only be achieved within a desired tolerance.

2- It is often impossible to obtain a model which is a perfect representation

of the system. Therefore, this algorithm will remain suboptimal since the

conditions of optimality can not be achieved.
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5.5 Simulation stucht-

5.5.1 Simulation examples

Example 1:

This example is a convex problem consisting of two interconnected

subsystems, with interconnection equations:

u , = yz

Uz = Yl

and an interconnection matrix H of the form:

The model and reality equations of the system are respectively:

y z = 0.5 Cz + 0.5 Uz

and

y{ = 2.1 c 1 + U 1 + {3 C lUI

y~ = 0.6 Cz + 0.55 Uz

where {3 = [ 0 , 1]

The performance index is:
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subject to the inequality constraints:

Example 2:

This example consists of two interconnected subsystems. The

interconnection matrix, model and reality equations of the system are the

same as for examle 1. The performance index of the system and subjected

constraints are modified for the problem to be non-convex, as follows:

subject to the inequality constraints:

Example 3:

This example consists of two subsystems where the constriants involve

system outputs. The model and reality equations and performance indices

are:

- 117 -



The system constraints are:

Y21~ 0,

where:

Finally, the coupling equation is:

[:~: 1- [

Example 4:

o
1

1

o
o
o ]

Yll

This example involves three interconnected subsystems. The real and model

equations of the system are:
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where:

Yll

C2 ( C31 , ~32 )

The subsystem performance indices are:

The system constraints are:

, 0 ~ Ul l ~O }
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0.5 C21 + Cn + 2 Cn I ~ 1 ,

Finally, the coupling equation IS:

U Z 1

Example 5:

=

o

1

o

o

1

o

o

o

o

o

o

1

o

o

1

o

Yll

Y22

This final example is modified to be a non-convex problem (Stoilov, 1980).
.

The model equations, performance indices, system constraints and coupling

equations are the same as in example 4. The system equations are as

follows:
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5.5.2 Simulation Results

The simulation work was performed on a Prime 750 computer and the local

optimisation problems were solved using the NAG Library subroutine

E04UAF which uses the augmented sequential Lagrangian technique (see

Chapter 3).

The simulation results show that the algorithm is applicable to a wide class

of non convex problems. It is also useful for convex problems due to the

reduced number of controller set-points changes which results in reducing

on-line control correction time.

A comprehensive study of the algorithm is carried out to investigate the

effects of non linearity and penalty coefficient on convergence and to

investigate the sensitivity of the algorithm to various gains. Five

numerical examples were used to test the applicability of the algorithm and

to investigate the effects of the various factors on the algorithm's

convergence. Table 5.1. shows the obtained simulation results for the

simulation examples. In the first two columns the gains E:1' E2 are shown

which are used for updating the price vector ~ and the shift vector s in

intermediate and outer loops respectively.

The tolerance for the various loops for the inner, intermediate and outer

loop iterations Toll' To1 2 , Tol are presented in the next three columns. The

following column shows the penalty coefficient p,

The simulation results are presented in the last four columns; where IS is

the number of system set-points changes, and IT is the total number of

model based optimisations.

From an extensive simulation study, it is evident that the algorithm is

applicable to both convex and non convex problems. It is also applicable to

problems with output dependent inequality constraints (Example 3).
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Representative results obtained from the algorithm, applied to example 2, to

study the sensitivity of the algorithm for all combinations of tl and t2'

and are presented In Tables 5.2. and 5.3. The step length of the

intermediate and outer loops, tl and t2' which were used in the formula to

update " and s respectively were studied over the range [0.1, 1.0] for

different values of penalty coefficient, p = 5, 20, 40 and 100.

It is generally observed that the algorithm is less sensitive to the choice

of the step length of the outer loop t2' Exceptionally, when the value of

step length t2 is approaching 1.0, there is a small difference of one or two

iterations, as is shown in Figure (5.3). Concerning the choice of the step

length th it can be remarked that the higher the value of step length tlJ

the lower the number of iterations will be achieved. This is observed for

the used values of penalty coeffiecients p = 100, 40 and 20 as shown in

Figure (5.4.).
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....
tV
W

I I I I I I I I I R.al I R.alEXaMP1. £i £. Tol i Tol. Tol , IS IT
P.rto~. OP~1MUM

0.~ 0.~ 10-· 10-· 10-· 16 6 19 -0.00~10

1 0.9~ 0.~ 10- 4 10-· 10-· 16 1 30 0.03140 -0.069939
0.9~ 0.1 10-· 10- 4 10-· 16 4 31 0.03633

0.~ 0.~ 10- 4 10-· 10-· 32 ~ 1~~ -9.39003
2 0.9 0.1 10- 4 10-· 10-· 32 1 103 -9.3~299 -9.~'01~4

1.0 1.0 10-· 10- 4 10-· 16 4 142 -9.3~199

1.0 1.0 10-· 10- 4 10-· 120 4 91 6.0333~

3 1.0 1.0 10-· 10-4 10-· 100 4 109 6.04031 ~.9926

1.0 0.9 10-· 10- 4 10-· 90 4 140 6.04028

0.~ 0.~ 10- 4 10-· 10-· s ~ 41 6.33361
4 0.~ 0.~ 10- 4 10-· 1e-· 6 , 12 6.33204 6.326'66

0.~ 0.~ 10- 4 10-· 10-· 40 ~ 312 6.34416

0.~ 0.1 10- 4 10-· 10-· , 3 42 6.31062
s 0.~ 0.~ 10- 4 10-· 10-· s 4 ~3 6.33203 6.314206

0.' 0.~ 10- 4 1e-· 10-· 30 3 309 6.39419

Tabl. (~.1) SiMula~ion R••ul~••



p = 5

IT IS IT

p = 20

IS IT

p = 40

IS IT

p = 100

IS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1208

755

557

438

366

304

843

6

6

6

6

6

6

6

820

449

319

235

190

155

140

6

6

6

6

6

6

6

720

390

232

193

149

132

107

5

5

5

5

5

5

5

564

295

200

144

118

94

81

5

5

5

5

5

5

5

0.8

0.9

1.0

DIVERG.

DIVERG.

DIVERG.

121

113

98

6

6

6

97

79

66

5

5

5

86

63

50

5

5

5

Table ( 5.2) Sensitivity of the algorithm to El ( Ez = 0.5 ), Example 2.
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p = 5 p = 20 p = 40 p = 100

0.1

0.2

0.4

0.6

0.8

1.0

IT

1010

693

396

270

194

220

IS

32

15

7

4

3

3

IT

449

304

210

141

106

124

IS

31

15

7

4

3

3

IT

336

263

189

129

97

125

IS

31

15

7

4

3

4

IT

269

214

149

97

77

128

IS

31

15

7

4

3

5

Table ( 5.3) Sensitivity of the algorithm to E2 ( E 1 = 0.5 ), Example 2.
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However, for p = 5, the total number of iterations is decreased as the step

length Eo l is increased until Eo l = 0.7, then increasing Eo l any further will

cause divergence.

The effect of the penalty coefficient p on convergence of the algorithm

has been studied. Examples 4 and 5 were used in this study. Figures (5.5.)

and (5.7.) represent the effect of varying the penalty coefficient on the

number of system iterations for examples 4 and 5 respectively, while

Figures (5.6.) and (5.8.) show the effect of varying the penalty coefficient

on the total number of iterations for both examples. It seems evident that

the number of system iterations IS not much affected by varying p, where

IS remains at approximately 5 iterations for example 4 and 4 iterations for

example 5 over the range 0 < p ~ 50. However, choosing the value of p

affects the total number of iterations, where the minimum value of IT may

be achieved in the range 4 ~ p ~ 10 for example 4 and in the range 4 ~ p.
~ 8 for example 5.

Finally, a simulation study of the algorithm to investigate the effects of

non linearity is illustrated by Figure (5.9.). Example 2 was used, where a

non linear term is introduced to Fi and various degrees of non linearity

were investigated. That is with:

Fi ( c, u )

Where {3 LOis a parameter.

Results for {3 E [0, 0.75] are shown in Figure (5.9.), for p = 32. Over that

range, the algorithm is shown to perform satisfactory, within a range of 3

to 5 set point changes to achieve the various loop's accuracies.

A selective simualtion comparative study between the Augmented Price

Correction Mechanism (APCM) which is described in this chapter and the

previous correction mechanism (Shao V1, Shao V2) is presented in Table

(5.4) for two convex examples; 3 and 4. The study shows that the present

algorithm is applicable on convex and non-convex problems, and in addition
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it reduces the number of system iterations as well as the total number of

iterations for both examples. However, Shao's technique VI provides a final

converged solution closer to the real optimum than the present algorithm.

Table (5.5) shows another simulation study to compare the Augmented Price

Correction Mechanism with the Augmented Interaction Balance Method with

feedback (AIBMF) by Tatjewski, 1985. The results shown in table (5.5) are

obtained from a variety of problems; where example 1 is convex but

example 2 1S non-convex. Both examples are taken from the paper by

Tatjweski, 1985 while example 3 is taken from the work by Shao and

Roberts, 1983. It is convex, but its performance indices and constraints

involve system outputs. From that study, it seems evident that augmented

price correction mechanism (APCM) achieves the converged solution to the

required tolerance using a number of set point changes less than AIBMF at

the expense of increasing the total number of iterations. However the

converged results of AIBMF is closer to the optimum.
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­w
U'l

Real Rea.1
A1goritrhM E'i E'. Tol i Tol. To1 , IS IT

PerforM. OptriMUM

.
Pre.entr 1.0 1.0 10-· 10-" 10-- 120 4 91 6.0333'

Shao Vl 1.0 1.0 10-· - 10-- - 6 168 '.98438 '.9261

Sha.o V2 1.0 1.0 10-· - 10-- - , 144 6.04314

Pre.entr 0.' 0.' 10-" 10-- 10-- , , 4' 6.3318'

Shao VI 0.2 0.6 10-" - 10-- - 6 192 6.33'60 6.3261

Shao V2 0.2 0.6 10-" - 10-- - 6 190 6.33'"

Table ('.4) COMPari.on ot .1Mu1atrion re.u1"trs tor eXaMPle. 3 4 4.



~

W
0'\

Real Real
A1gorit.hM EXaMPle To1 i Tol. To1 E';l £. , IS IT

PertOrM. Opt.iMUM

Pre.ent. 1 10-· 10-" 10-" 1.0 1.0 16 6 41 6.0333'

AIBnF 1 10-· 10-"
-0.0692- - 1.0 32 9 26 '.98438

Pre.ent. 2 10-· 10-" 10-· 1.0 1.0 16 4 142 -9.3'189

AJBnF 2 10-· 10-· -9."02- - 1.0 32 , 121 -9.'4818.

Pre.ent. 3 10-· 10-" 10-· 1.0 1.0 120 4 91 6.0333'

AIBt1F 3 10-· 10-· 1.0 , 9 44 '.98431
'.9261- -

Table (,.,) COMPari.on ot .iMu1at.ion re.u1t.. tor eXaMPle. 1~2 and 3.



5£ Summary

In this chapter, an algorithm is proposed to extend the applicability of the

previous price correction mechanism, by Shao and Roberts, 1983, to cover

the case of non-convex problems. It is based on the augmented Lagrangian

and shifting of model outputs.

The algorithm is tested using five simulation examples of various types;

where convex and non-convex problems were used and also those which

involve system outputs. The study shows that the algorithm is applicable

on all those types of problems. It is also shown that it reduces the number

of system set point changes as well as model based optimisation iterations

if it is compared with the previous price correction mechanism.

Comparing this algorithm with the augmented IBMF (Tatjewski, 1985)

algorithm shows that using the augmented PCM algorithm, the converged

solution is achieved to the required tolerance with a number of set point

changes less than that with the augmented IBMF algorithm but with a less

degree of optimality.
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Chapter 6

Integrated System Optimisation and Parameter

Estimation (IS0PE)

6. 1 Introduction:

A common method for solving an on-line optimisation problem is to use a

steady state mathematical model of the real process (Yole and

Duncanson, 1970). In general, the model will not be a faithful

representation of the real system for different reasons such as:

1- The model might be deliberately chosen simple to' avoid

complications of the optimisation problem.

2- All the real process informations are not available.

3- There might be some factors in practical applications which are

difficult to represent accurately in the model.

The differences between model and reality give rise to a

suboptimal solution in the optimisation problem. This may be overcome

by using output feedback from the process to update the model

parameters. A common technique is to employ a two-step approach in

which the system optimisation problem and parameter estimation problem

are solved iteratively until convergence is obtained. Even though the

model parameters are updated, as in the Standard Two-Step approach

(Roberts, 1977; 1978), it still does not guarantee that the solution of the

optimisation problem will be optimal. This is because when the model is

inaccurate, the derivatives of the real process outputs with respect

to the controller set point values are not exactly matched with the
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corresponding derivatives In the model (Durbeck, 1965; Foord,1974).

The Modified Two-Step (MTS) algorithm was proposed by Roberts (1979).

In this algorithm, the interactions between the system optimisation and

parameter. estimation problems have been taken into account, where an

extra term is introduced to the optimisation performance index to

allow for any mismatch between model and real process output

derivatives. In spite of model-reality differences, the MTS algorithm

converges to the correct optimum. The algorithm has been successfully

applied to solve many example problems (Roberts and Roussias, 1980;

Roberts and William, 1981; Ellis and Roberts, 1981, 1985; Stevenson,

Brdys and Roberts, 1985).

Originally, these algorithms were developed for centralised optimisation

without decomposition. They have been extended (Brdys and Roberts,

1986; Ellis, Michalska and Roberts, 1984; Michalska, Ellis and Roberts, 1985)

to be applied to interconnected large scale systems. This was achieved

by combining the two-step approach with the price technique, and

this combined method is known as the joint coordination method.

Brdvs and Roberts (1987) gave optimality and global convergence

conditions of the algorithm in the situation where the system inequality

constraints do not depend on the outputs. These optimality conditions

are readily valid for general inequality constraints (Brdys and

Roberts, 1986; Chen, 1986).

The modified two-step approach has been extended by Lin, Chen and

Roberts (1986) to take into account - general inequality constraints. The

resulting algorithm has a similar structure to that given by Brdys, Chen

and Roberts (1986). Lin, Hendawy and Roberts (1988a) modified the

algorithm proposed by Lin, Chen and Roberts (1986) to extend its

applicability to interconnected large scale systems. The resulting algorithm

is a combination of the algorithm by Lin, Chen and Roberts (1986) and the

price method. The technique uses an output feedback structure and a

single loop iteration strategy. The algorithm is described in detail in

chapter 7.
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6.2 Centralised ISOPE Techniques:

In this section we will be looking at methods of determining the optimal

set points of the process feedback controllers using centralised integra ted

system optimisation and parameter estimation.

This means that the whole system is treated in its entirety where all the

information IS available to a single decision unit. Kambhampati (1988)

has listed most of the available ISOPE techniques but the selected

algorithms to be examined here are:

i- The standard two-step approach,

ii- The modified two-step approach,

iii- The approximate linear model approach.

Consider the optimising control problem for the centralised case as

follows:

min ore , y)
c,y

s, t: (6.1)

y = F*(c)

G(c , y) s: 0

where c and yare the vectors of controller set points and real process

outputs respectively. The performance index function is described by Q,

and G is the inequality constraints imposed on the system. F* is the

process input-output mapping which is usually assumed to be unknown.

The approximate model input-output mapping F will be used instead of F*,

where:

y = Ftc , ex) (6.2)

where ex is a vector of parameters of the process model.

The model equation (6.2) is assumed to be point parametric on e (Brdys,

1983); that is for every c E e there is an exec) such that:
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and

F*(c) = Ftc , o.(c))

that mappings F, F*, Q, G are twice continuously

differentiable.

6.2.1 The standard two-step approach:

The standard two-step approach considers the integrated problem as two

separate problems to be solved repeatedly; these are optimisation and

parameter estimation. The optimisation control problem can be written In

an equivalent form by substituting from equation (6.2) in (6.1) as follows:

min q(c, 0.)
c.o;

s. t: Ffc , 0.) .. F*(c)

g(c , 0.) ~ 0

where: q(c, ex.) = Q(c , FCc , 0.))

gCc , 0.) = G(c , FCc , 0.»

(6.3)

Starting from a given initial set point co, the algorithm has the following

form:

Stell 1: Allllly the current set point ck to the real process and obtain

steady state measurement F*(ck
) . Solve the parameter estimation

problem to determine the new value of CiCck
) :

Step 2: With the parameter estimates CiCck
) obtained from step 1, solve

the optimisation problem (6.3) to obtain c~.

Steps 1 and 2 are repeated until condition (6.4) IS satisfied within a desired

tolerance.
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(6.4)

otherwise, update the control ck and go to step 1 until no further

improvement is observed.

The standard two-step approach will not converge to the correct optimum

operating point (Roberts, 1979) as has been verified by simulation study

(Brdys, Chen and Roberts; 1986). This is due to the mismatching between

the gradients of the real process outputs with respect to the set points

and the corresponding gradients of the model (Durbeck, 1965). The

information structure of the standard two-step approach is shown in figure

(6.1).

6.2.2 The Modified Two-Step Approach:

The standard two-step approach has been modified by introducing an extra

term to the optimisation performance index to allow for any mismatch

between model and real output derivatives. The resulting algorithm is

known as the modified two-step approach (Roberts, 1979). In deriving this

approach, a new set of variables v is introduced into the problem. The

optimisation problem (6.3) then becomes:

min q(c, cc)
c, V,ex.

s.t: Ftv , o.) = F*(v)

g(c , ex.) s: 0

v-c

The Lagrangian function L(c , v , ex. , >-. , (3 , IJ.) for equation (6.5) is

L(c, v ,ex. , >-., Tl, E) "'" qfc ; ex.) +>-.t(v - c)

+ Tlt[F(v , ex.) - F*(v)] + Etg(c,ex.)

(6.5)

(6.6)

where >-. and Tl are the Lagrangian multipliers associated with the equality
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~,

Real Process

Figure (6.1) The Standard Two Step Approach.
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constraints in problem (6.5) and E is the Kiihn-Tucker CK-T) multiplier

associated with the inequality constraint g(c , cc).

Assuming that all required derivatives exist and regularity conditions are

satisfied, the first order necessary optimality conditions for the existence

of a stationary point of (6.6) are:

vc L(.)
oq(c , oc) '\

- " +oc (6.7)

'Iv L(.) .... }.. + [otp(v, a.) _
ov

otp*(v)
ov ] ry = 0 (6.8)

Va. L(.) = [ otq(c , a.) ] + [ otp(v , cd ] ry + [ otg(c , cx.) ]E = 0 (6.9)
oa oa ocx.

v}.. L(.) v - c = 0 (6.10)

Vry L(.) = Ftv , cx.) - p*(v) = 0

together with

VE L(.) = g(c ,a) S 0

(6.11)

(6.12)

(6.13)

Solving equations (6.7) to (6.13) to obtain a formula for }.. (Brdys, Chen and

Roberts, 1986), we obtain:

}.. =- }..(c , v , a , E) =

It is worth mentioning here that the formula (6.14) for updating }.. is the

same as in the original modified two-step approach (Roberts, 1978; 1979;

Roberts and Ellis, 1981; Roberts and Williams, 1981), except for the extra

term [otg(c,a.). E] in calculating }.., which was introduced by Brdys, Chen and
00.

Roberts (1986) to cater for the influence of system inequality constraints.
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For a given (c , v , a. , E), }.. can be evaluated such that conditions (6.8) and

(6.9) are satisfied. The conditions (6.7), (6.10) - (6.13) are satisfied by

solving the modified model based optimisation problem (Brdys, Chen and

Roberts, 1986):

min (q(c , o.) - }.. t c}
C

s.t: g(c, o.) ~ 0
} (6.15)

where a. is a parameter value such that:

Ftv , a.) F*(v) (6.16)

Implementation aspects of the modified two-step algorithm:

Given some initial V
O E e and some initial guess EO, the on-line

implementation involves repeatedly the following procedure:

Step 1: Apply the controls v 1G to the real system and obtain the steady­

state output measurements F*(v1c
) . Solve the parameter estimation

problem; equation (6.16); to determine a new parameter value ci1G
•

Perform additional perturbations around v 1G and take the

corresponding measurements to obtain finite difference

approximations for F*'(v1G
) . Then calculate }..1G = Mc1G

-
1,v \ a.\ E1G

)

using equation (6.14).

Step 2: Solve the model based optimisation problem (6.15) to obtain c1G for

given a. 1G and }..1G.

Step 3: The iteration is terminated when conditions (6.17) and (6.18) are

satisfied within a desired tolerance.

(6.17)
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(6.18)

otherwise, update v and E and go to step 1.

A simple relaxation may be used to update v and E (Brdys, Chen and

Roberts, 1986) as:

(6.19)

(6.20)

The algorithm was shown to be successful in solving many example

problems and produced optimal results in spite of differences between model

and reality. The information structure of the modified two-step approach is

shown in figure (6.2).
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••

F*(c)

Figure (6.2) The Modified Two Step Approach.
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6.2.3 The Approximate Linear Model Approach:

The Approximate Linear Model approach (ALM) is a modification of the

modified two-step approach and involves system linearization techniques. It

was proposed by Sheng and Ellis (985) and proved to be successful in

providing optimal results (Ellis, Roberts and Michalska , 1986; Kambhampati

and Ellis, 1987).

The -idea of the ALM approach IS to utilize the sufficient conditions

(Durbeck, 1965; Ellis and Roberts, 1982) which are required for the model

based optimisation problem to produce optimum results, these are:

i-FCc ,a.) = F*(c) (6.21)

ii -
aF(c , a.)

ac
aF*Cc)

ac (6.22)

where c represents the optimal value of the control, and ex is the

corresponding model parameter at this point.

The model used is a linear function in the form:

Ftc ,oJ = Wc + ex (6.23)

d W
aF(c , ex)

an =
ac

ap*(c)
ac

(6.24)

where W E ~nxm and ex. ERn.

Since the ALM approach uses the sufficient conditions (6.21) - C6.22), it

means that the model matches the system. In that case, the modif'ier X (as

In the modified two-step approach) which exists because of the differences

in the system and its model, will be zero. The optimisation and parameter

estimation of the ALM approach are:

Optimisation Problem:

min Q(c , y)
c

s.t: v > Wc + ex

GCc , y) ~ 0
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and

Parameter Estimation Problem:

aF(v , oJ
ov

= W = of*(v)
ov (6.26)

a. = F*(v) - Wv

Structure of the ALM approach:

(6.27)

As in the MTS approach, starting with some initial VO E C, and EO, the on­

line implementation of the ALM approach involves the following procedure:

Step 1: Apply perturbations about vk. to estimate the finite difference

approximation for the derivative of:~Vk.) and set it to W.

Determine a. by applying equation (6.27). Set the new model to

y - Wc + ex.

Step 2: Solve the optimisation problem (6.25) to obtain the controls ck..

Step 3: This is the same as in the MTS approach.

The control structure of The ALM approach is shown in figure (6.3).

In the ALM approach, the model can be considered as a local linear

approximation to the process (Ellis, Sheng, Roberts and Michalska, 1985).

This can be seen from equations (6.23) and (6.24) and assuming that a. is

estimated in a manner similar to the MTS approach. To clarify this,

consider the Taylor series expansion of a function F*(v) about a point vk.:

(6.28)

where /I 0 II denotes the higher terms of the expansion.

If the parameter ex. is set to:

(6.29)

the expression (6.28) will be:
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(6.30)

Equation (6.30) is the same structure as that used in the ALM approach

(equation 6.23).

6.3 Hierarchical ISOPE Techniques:

The ISOPE techniques were originally developed for centralised

optimisation without decomposition, but they have been extended for

application within decomposed hierarchical optimisation structures

(Michalska, Ellis and Roberts, 1985; Ellis, Michalska and Roberts, 1984). By

incorporating the modified two-step approach with the price method,

several approaches were proposed (Brdys and Roberts, 1986) depending on

how to utilize the available real process measurements efficiently. In this

section, two of the proposed schemes are examined. These are:

i-The structure with output feedback

ii - The structure with input and output feedback.

The ISOPE techniques which are described in chapters seven and eight of

this thesis use respectively the single loop technique with output feedback

and the input-output feedback structures using double loop technique.
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Figure (6.3) The Approximate Linear Model Approach.
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6.3.1 Control Problem of the Decentralised ISOPE Technique:

It is assumed that external disturbances which affect the system are

varying slowly and can be considered as constant in the considered time

interval of determining optimum control. The controlled system is assumed
r-

to be desc~bed in a decomposed way by the set of subsystem input-output

mappings:

i = 1,...,N (6.31)

where N denotes the number of subsystems and et, 'UH 9Jt are finite

dimensional spaces, as follows:

i = 1,...,N (6.32)

where the variables CH UH Yt are the i-th subsystem control, interaction

input (interaction) and interaction output (output), respectively, and c,

E et, u, E 'UH Yt E 'lit. The subsystems are interconnected through the

coupling equations:

N
u, = a, y .... L: HtJ y}

j=1
i = 1,...,N (6.33)

where Hi and Ht } are interconnection matrices composed of zeros and ones.

Consider the usual assumption that (6.32) and (6.33) are uniquely solvable

with respect to the controls, so that the input-output mapping can be

expressed as:

y =- K*(c)

where:

K*: c ---. cy

K*(c) = (K*(c), ... , K* (c)
1 N
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U =a ( U 1 , ..• , UN) E ttl 1 X '" X 'liN ~ 'li

y - (y 1 , ••• , y N) E cy 1 X .•• X cyN ~ cy

The constraints can usually be partitioned into two parts. The local

constraint set which is output independent takes the form:

1= 1, ... ,N (6.35)

or globally,

C U = C U 1 X ••• X C UN

where:

f t : et X 'lit --+ RS i 1, ... , N

(6.36)

The global constraints which are generally output dependent can be

expressed as:

G(c , u , y) ~ 0

where:

(6.37)

G: c x -u x c.y --+ RL

In general, the real system relations are not known exactly, so their

approximate models are used.

1 = 1, ... ,N
} (6.38)

(6.39)}

where At is a finite dimensional space and at E At is the i-th subsystem

model parameter variable.

As in the case of the real system relations, the global model mapping can

be written as:

F : c x 'U x .A --+ cy

Y - Flc , u , a)
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where:

(6.40)

Finally, a known local performance index is associated with each subsystem:

i = 1, ... ,N

which is required to be minimised. The overall performance function

Q : c x 'U x 'Y --+ R

is assumed to be:

N
Q(c , u , y) = .L: Qt(Ct , u, , Yt)

t=1

(6.41)

The task for determining the optimal operating condition for a real process

can generally be defined by the following optimisation problem (ROP):

min Qfc , u , y)
C,u,y

s.t:

y = K*(c)

u-Hy

G(c , u , y) ::;;: 0

(c ,u) E ecu

It is usually assumed that the following assumptions are satisfied:

(6.42)

AI: Mappings G(c, u ,y), f'(c , u), Flc , u ,y), K*(c) and the

performance index Q(c

differentiable.

u y) are continuously Frechet

A2: Mappings Gfc , u , y) and f'(c , u) are convex.

A3: The model input-output mapping is point parametric on e'U (Brdys,

1983).
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That is; a simple property is required for a chosen model, such that

there exists ex. E ~t such that F( c ,ex.) = F*( c).

The model is point parametric on e if it is point parametric at every point

c E e. According to these assumptions (Brdys, 1983), the real optimisation

problem ROP (6.42) is equivalent to the following optimisation problem EOPl

(6.43):

s.t:

min q(c, u , o.)
c.u.o,

Ftc , u , o.) = K*(c)

u - H Ftc , u , oc)

g(c , u , ex.) ~ 0

(c ,u) E e'U

} (6.43)

where:
, L

g : e x 'U x.A --+ R

q : .e x 'U x.A --+ R

with:

(6.44)

(6.45)

g(c , u , oc)

q(c , u , a.)

similarly,

A- G(e , u , F(e , u ,ex.»

A
= Q(c, u , Ftc , u ,ex.»

(6.46)

(6.47)

q*: e x CU --+ ~

with:

g*(c , u ) ~ cre , u , K*(c»

q*(c , u ) ~ Qtc , u , K*(c»
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6.3.2 Single loop ISOPE with output feedback information:

The equivalent optimisation problem (6.43) is extended by introducing new

variables v and w as follows (Brdys and Roberts, 1986):

min q(c , u , ex.)
c.u.v.w,o.

s.t:

u = H Ftc , u , a)

g(c , u , a) =::;;: 0

Ftv , w , a) = K*(v)

v:zc

w"'u

The Lagrangian optimisation problem for (6.52) is:

L(c , u , v , w , a , p , A , t , 1] , E) ...

(6.52)

(6.53)

where A, t, E, 1] are Lagrangian multipliers and p is the price vector.

For given values of v, w, a and p, the Lagrangian analysis provides the

f'ollowina optimisation problem (Brdvs and Roberts. 1986):

min [q(c , u , a) - At C + pte u - HF(c , u , a» - ttul

. s,t.: g(c , u , a) =::;;: 0
} (6.54)

where:
~( ~) _ [atF(v , w ,a) _ atK*(v)l [atF(v , w , a)l-l
f\ v , W , a , p , c av av aa
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(6.56)

The parameter ci(v , w) IS determined by solving the parameter estimation

problem:

Ftv , w , a.(v , w» = K*(v) (6.57)

It is assumed that all the required inverse matrices exist.

The real optimisation problem (6.42) can be solved by the equivalent

problem (6.54) obtaining a solution c , u. The parameter a. is obtained from

equation (6.57) and the variables v, w, E, p are adjusted in an appropriate

way (Abdullah, 1988; Brdys, Abdullah and Roberts, 1986) such that:

c (v , w , E , p) =- p

ii (v , w, E , p) = w

E(v , w, E , p) .... E

ii (v, w, E, p) - HF(c(v, w, E, p), ii(v, w, E, p), ci(v, w)

(6.58)

(6.59)

(6.60)

(6.61)

Three different strategies were proposed (Brdys, Abdullah and Roberts,

1985) to solve equations (6.58) to (6.61). These are:

1. System based double loop technique,

2. Model based double loop technique,

3. Single loop technique.

In single loop techniques, all variables (p , v , wand E) are iterated with

the same frequency. The variables are updated using a simple relaxation

technique as suggested by Brdys and Roberts (1985) and Chen, Brdys and

Roberts (1986):

(6.62)

157 -



k+l k -k'~
W = W + €,., (ii - wI<.)

(6.63)

(6.64)

(6.65)

where €p, €v, €"" and EE are positive constants named gain coefficients

which are less than or equal to unity.

Figure (6.4) shows the information structure of the algorithm. The

procedure of the algorithm can be described as follows:

a- For a given control v k applied to the real system, take

measurements K*( v).

b- Solve the parameter estimation problem (6.57) and obtain a new

parameter (ik.

c- Perform additional perturbation around v k and take the

corresponding measurements to find finite difference

approximations at~:(v) which are required to calculate A.

d- For a given a., A, t, E and p, solve the optimisation problem (6.54)

to obtain the solution c, ii.

e- The overall convergence is achieved when successive solutions of

v, E are unchanged and interaction balance is satisfied:

Ek
- Elc

- 0

-1c HF(-lc ... k t) - 0U - C,U,a.-

(6.66)

(6.67)

(6.68)

f- In practice, the overall process may be terminated when v, ii and E

satisfy the conditions (6.66) to (6.68) within some desired

tolerances, otherwise update the parameters (p, v, w, E) according

to equations (6.62) - (6.65) and start again from step (a).
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6.3.3 Model based double loop ISOPE with input-output feedback information:

The equivalent optimisation problem (6.43) can be extended by introducing a

new variable v as follows :

min qfc , u , cx.)
e,u,v,a

s.t:

U =a H Ftc , u , a)

g(e , u , a) ~ 0

F(v , HK*(v) , a) = K*(v)

v-c

The Lagrangian associated with problem (6.69) is:

L(e , u , v , a , p , A, E, T'J) = qfc , u , cc) +

+ pot lu _ HF(c , u , a)] + A't(V - c)+ Etg(c , u , cx.) +

+ T'J't [F(v , HK*(v) , cx.) - K*(v)]

(6.69)

(6.70)

For a given value of v, a, E and p, the Lagrangian analysis provides the

following optimisation problem (Brdys and Roberts, 1986):

min [q(c, u , a) + pte u - HF(c , u , a» - AtC]}
c,u

s, t: g(c , u , a) ~ 0

where A is given by

[a'tF(v , HK*(v) , cx.)r 1. [ _ atq(c , u , oj
aa aa
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In double loop algorithms, the idea is to separate the function of improving

the modifier A and the local parameter estimation from that of improving

the price p and local optimisation. The task of the local control problem

(LP) and the coordinator can be described as follows (CP):

a- For given controls v, obtain the corresponding measurements K*(v)

and HK*(v), then find the model parameters a which satisfy:

Ftv , HK*(v), a) - K*(v) = 0

b- For given a, A, E and p, find a solution (c , ii) for the optimisation

problem (6.71).

The coordinator task can be stated as follows:

Find p such that:

ii - HF(c, ii ,a) = 0

} (CP)

where the price vector p IS adjusted in the inner loop and A, E are updated

in the outer loop.

The overall process is terminated where v and E remain sufficiently

unchanged between successive iterations.

The information structure of the algorithm is shown in figure (6.S).

It can be observed that all the parameters which need real system

information (A, a) are determined or adjusted in the outer loop. In the inner

loop where most of the calculations are required, it remains purely model

based. Hence, double loop structures are expected to reduce on-line

computing time which has been confirmed by many simulations results (for

example Chen, Brdys and Roberts, 1986; Lin Hendawy and Roberts, 1988b).
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SA Summary:

The modified two-step approach proposed by Roberts (1979) proved to

produce optimal results in spite of model-reality differences.

The applicability of the modified two-step approach was extended by Ellis,

Michalska and Roberts (1984); Brdys and Roberts (1986) to interconnected

large scale systems. This was achieved by combining the price method with

the modified two-step approach.

Lin, Chen and Roberts (1986) have further modified the modified two-step

approach to include the output dependent constraints (Chen, 1986). Sheng

and Ellis (1985) had combined the linearization technique with the modified

two-step approach to produce the approximate linear model approach (ALM).

It has been proved that the ALM approach provides optimal results

(Kambhampati, 1988).

Several optimal structures are proposed by Brdys and Roberts (1986). The

choice of a particular structure depends on the measurements capabilities

and the method of utilizing the system feedback information. The input­

output feedback information structure has proved to be superior than

structures with output feedback only (Brdys, Chen and Roberts, 1986) and

the model based double loop algorithm reduces the number of set point

changes significantly.
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Chapter 7

An extension of ISOPE to hierarchical control of

steady state systems with output dependent constraints

7.1 Introduction:

As it is mentioned in Chapter 6, the integrated system optimisation and

parameter estimation technique can achieve the real optimum result in spite

of model-reality differences. However, in the early versions of integrated

system optimisation and parameter estimation, there are some practical

limitations. For instance, the steady-state optimal condition can be achieved

only when the system inequality constraints are not output dependent.

Chen, Brdys and Roberts (1986) have attempted to introduce a certain

technique to deal with output dependent constraints, to encompass a more

general class of problems. However, the existence of the model based

optimal solution of that algorithm (Chen, Brdys and Roberts, 1986) is not

ensured during the course of iteration. Also, the convergence conditions of

this algorithm have not been derived.

In this chapter, an alternative technique is described to take into account

general inequality constraints. The resulting algorithm is a combination of

the apporach given by (Lin, Chen and Roberts, 1986) and the price method.

This algorithm used the output feedback structure (Brdys and Roberts,

1986) and the single loop iterative strategy (Brdys, Abdullah and Roberts,

1986).

- 164-



The main advantages of the algorithm are that the existence of the model

based optimisation solution is ensured during the course of iteration and

the model based optimisation problem can be simplified considerably.

7.1 Viability of output dependent constraints:

The importance of considering output dependent constraints lies on some

reasons, the most important of them are:

1- For some practical reasons, it is necessary to consider output

dependent constraints. By converting these constraints in terms of set

point c and interaction balance u, the significance of inequality

constraints may be lost. Moreover, in some applications, this conversion

is meaningless in spite of its validity from a theoretical point of view.

To clarify that, consider the following two subsystem example, shown In

figure (7.1), where the interconnection relations are:

[ :~ ] - ~] [~:]

and the system is subjected to the inequality constraint:

Yl s: 30

In this example, the output of the first subsystem y 1 should be equal

to or less than 30. If this output dependent constraint is converted to

c, u form, it becomes U2 s: 30 which can be misleading.

2- Handling inequality constraints in their equivalent c, u can lose the
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decomposability of the constraints. For example; the global constraints

which are generally output dependent can be expressed as:

G (c, u, y) ~ 0

or in a decomposable form:

(7.1)

i = 1, ... , N (7.2)

The interconnection of subsystems is given by

u = H Y (7.3)

Assuming H is a square and non-singular matrix, equation (7.3) can be

written as:

v > H- 1 u (7.4)

Substituting from equation (7.4) in equation (7.2) leads to:

i =- 1, ••• , N (7.5)

Obtaining inequality constraints in the form of equation (7.5), makes the

constraints in a not decomposable form.

Therefore, in some cases it is essential to solve the problems subjected to

output dependent inequality constraints in their original form.
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Figure ( 7. 1) Two Subsystem Example with output-dependent

inequality constraints
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7.3 Formulation of the algorithm:

To determine the optimal operating condition of a real process, the task is

to solve the real optimisation problem (6.42); that is rewritten again as:

min Q(c , u, y)
c, u, y

s.t:

y = K*(c)

G (c, u, y) ~ 0

(c, u) E e'U

ROP

If assumptions Au A2 and A3 that were mentioned in Chapter 6 are

satisfied, the ROP is equivalent to the EOPl (6.43); which is:

min q (c, u, oc)
c, u, <X

s. t: Ftc, u, <X) ... K*(c)

u - HF(c, u, <X)

s (c, u, o.) ~ 0

(c, u) E e'U

EOPl

In order to separate the optimisation and parameter estimation problems,

additional equations v ... c, w = u are introduced. The (EOP1) is transferred

to the equivalent control problem (EOP):

min q (c, u, ex.)
c, u, v ; ex.

s.t: F(v, w, o.) = K*(v)

u - HF(c, u, ex.) EOP

s (c, u, <X) ~ 0

v - c

w-u
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The Lagrangian associated with (EOP) can then be written as:

L(c, u, v, w, 0., p, A, TI, E, t) = q(c, u, 0.) + pt[u - HF(c, u, 0.)] +

+ Et g(c, u, 0.) (7.6)

where p, A, TI, t and Eare Lagrange multipliers.

In particular, p is known as the price vector, A is known as the modifier

vector and E is denoted as the Lagrange multiplier vector associated with

G. Assuming that all required derivatives exist and regularity conditions

are satisfied, the Kuhn-Tucker necessary optimality conditions (see, for

example, Luenberger, 1984; Gill, Murray and Wright, 1981) of (EOP) can be

stated as:

. t t t)
V L( ) =- a.q(c, u, 0.) _ a [u -HF(c, u, 0.)] _ t+a g(c, u, 0. E-O (7.8)
u· a u au p a u

V", L( • ) = t + atF(~,:' 0.) T] - 0 (7.10)

+ atg(c, u, 0.) E "'" 0
ao.

Vp L( • ) .... u - HF(c, u 0.) .... 0

V>. L( • ) - v - c - 0

Vt L( • ) - w - u - 0

Y'11 L( • ) - F(v, w, 0.) - K*(v) .. 0

- 169-

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)



Vc L( • ) = g(c, u oj s a

Et Vt L( • ) = Et g(c, u, cc) = 0, E:2 a

(7.16)

(7.17)

To obtain a solution of equations (7.7) to (7.17), assume [ atF(va:' ex.) ]-1

exists, Tl is solved from (7.11) and substituted into (7.9) to obtain the

formula of A:

>-. = [ atF(v, w, oj _ atK*(v)] [ atF(v, w, a)]_l
av ov oa.

(7.18)

Using the chain rule (Binmore, 1983) and equations (6.46) and (6.47) we

obtain:

atq(~a.u, a) = Vor. F (c, u, a) . Vy Qtc, u, Ftc, u, a»

atg(caau, a) = Vor. F (c, u, a) . Vy G(c, u, Ftc, u, a»

Substituting equation (7.19) into 'equation (7.18) we obtain:

A = [ atF(v, w, a) _ atK*(v)] [ atF(v, w, a.)]_l .
av av aa

} (7.19)

[
atF(c, u, a)

a a .
atQ (c, u, F(c, u, a»

ay

or: A - [V',.. Ftv, w, a.) - V,.. K*(v)] [Vy Q(v, w, y) +

- Vy G(v, w, Ftv, w, y»E - Htp]

Where:

y - Ffv, w, y), and

F',..(v, w, a.) is the derivative of F with respect to v ,
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'Vv Ffv, w, o.) = [F'v(v, w, a)]"t are the gradients of F with respect to v

and so on.

To obtain a formula for the modifier t; from equation (7.10) we obtain:

(7.22)

Substituting from equation (7.11) by the value of 77 in equation (3.2) we

obtain:

t _ [atF(v, w, a)] [atF(v, w, a)]_l
aw aa

(7.23)

Substitution equation (7.19) into (7.23) we obtain:

t = [atF(v, w, a)] [a"tF(v, w, a)]_l [atF(v, w, a) • atQ(c, u, y) _
aw aa aa ay

atF(v, w, a)Ht +{atF(v, w, a) • atG(v, w, y)} E ]
aa p aa ay

or

tfv, w, a, E, p) ... ['V,., F(v, w, a)] ['Vy Q(v, w, y) +

(7.24)

7.4 Implementation aspects of the algorithm:

Given some initial v", Wo satisfying (v", wo) E e'll and some initial guess

EO, po the procedure of the algorithm is described as follows:

Step 1:

Apply v" to the real process to obtain the corresponding steady state

measurement K*(v").
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Determine a.k. by solving

Perform additional perturbations about vk. and measure the corresponding

process outputs to compute the finite difference approximation of K*'(vk.).

Finally, calculate the modifiers

according to equations (7.21) and (7.24) respectively.

Step 2:

For a given ak., A\ tk., Ek and pk. solve the following model based

optimisation problem:

} MOP(7.2S)

s,t: (c, u) E ecu

The solution of (MOP) is denoted as c(vk., wk., ak., Ek, pk.) , ii(vk., wk,a\Ek.,pk.)

or c~, ii~ for short.

The iterative variables v", wk., Ek and pk. are updated according to the

formulae (Lin, Hendawyand Roberts, 1988a):

(7.26)

(7.27)

(7.28)

(7.29)
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where:

Rlv, w, E, p) ::a g*(v, w) + vo g*(v, w)t [c(v, w, ci, E, p) - vl +

Vu g*(v, w)t [il(v, w, ci, E, p) - wl

'I'(v, w, E, p) is a projection operator satisfying:

(7.30)

[T (v, w, E, p) Rlv, w, E, p)]t = 0

[T (v, w, E, p) Rlv, w, E, p)]. = R (v, w, E, p).

where [ . l. denotes the ith element of the vector.

The gain parameter E:"~ is determined as follows:

(7.32)

Define N2(v,
W, E, p) 4 { i : E. >0 and R(v, w, E, p). < 0 } (7.33)

and €"( ... min { - E"t / R(v", w", E", p")} i E N2 (v", w", E", p")} (7.34)

where E:", E:w, E:E and E:p are positive constants, known as gain coefficients.

Equation (7.29) is representing the updating formula for the price vector p,

and the innovation term in that equation;

is simply the Taylor expansion of [ii" - HK*(c")] at v", Also R(vk,w",Ek, pk)

in equation (7.30) is the Taylor expansion of g*(c", ilk) at (v\ wk).

In equation (7.28), the purpose of introducing the projection operator T

which is defined by equations (7.31) to (7.35) is to exclude the possibility

of E becoming negative. This can be seen clearly through equation (7.31).
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For those i which belong to N\ we have E\ = 0 and R\ ~ O. Therefore, for

any positive gain, the updating formula will produce negative ti k + l • Hence,

the gain for those i E N l should be zero. Instead of changing gain from

element to element, a projection operator T was employed for this purpose.

After the multiplication of T in equation (7.28), the updating formula of E
will be:

c k+l e k
I;t - q

e k+l e k + L k R k
I;t .... q ~E t

for every i E N\ and

for every i II Nl
•

Since for those i which belong to N2
, we have Et

k > 0 and Rt
k < 0, the gain

for updating E can not be increased arbitrarily, therefore, the purpose for

having equations (7.34) and (7.35) is to calculate the upper bound for the

gain. Hence, the possibility of having a negative value of Et
k + l is totally

excluded.

Then

(7.35)

E", E,." EE and Ep are prescribed gain parameters. The purpose of introducing

N2(Vk
, W

k
, Ek

, pk.) is to exclude the possibility that E/+ l becomes negative.

The iteration is terminated when:

, , and k+l k
P = P •

In the model optimisation problem, the output dependent constraints

g(c, u, ex) ~ a are excluded from the constraint set of (MOP). This

simplifies the model based optimisation, especially when there are no local

constraints f'(c.u) ~ a because in that case (MOP) becomes an unconstrained

problem.

The influence of the output dependent constraints is taken into

account by introducing the extra terms [V'v g(v\ wk., a.k
) Ek]tc and

- 174-



[V'u g(VK, w\ a.K) EK]tu into the performance index of (MOP). The terms

[V'v g(vK
, w\ a.K ) EK

] and [V'u g(vK
, wK

, a.K ) EK
] can be viewed as additional

modifiers.

In the above algorithm, the constraints of the model based optimisation

problem do not change during the course of iteration, since they are not

dependent on the parameter a. (see Chen, Brdys and Roberts, 1986).

Therefore, the possibility of having no feasible solution is excluded.
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7.5 Optimality:

The optimality properties of this algorithm are investigated in this section.

Define:

~o ={ (v, w, E, p) : (v, w) E e'U,

v -= c (v, w, a, E, p), w = Ii (v, w, a, E,p); E1 ~ 0,

[T(v, w, E, p)(g*(v, w)+ Vc g*(v, w)t(c(v, w, a, E, p)-v)+

1= 1,•••,L and W =- HF(v, w, a)} (7.36)

~0 1 -{ (v, w) : 3 E, p such that (v, w, E, p) En}

~O2 -{ (E, p) : 3 v, w such that (v, w, E, p) EO}

(7.37)

(7.38)

and the optimal solution set of the real optimisation problem (ROP) is

denoted by 0 1* . According to the definition of 0, it is easily seen that n
is the algorithm solution set.

Theorem 1: Let assumptions A1, A2 and A3 (in sections 6.3.1) be satisfied,

and assume that every (v, w) E 0 1 is a regular point of the

constraints fey, w) ~ o. Then for every (v, w, E, p) E 0 there

exists a 77 such that (v, w, E, p, 77) satisfies the Kuhn-Tucker

conditions of (ROP).

Proof:

For (v, w, E, p) E 0, c(v, w, a, E, p), ii(v, w, a, E, p) is the optimal

solution of (MOP). Since (c, ii) is a regular point ( definitions in Chapter 3)

of the constraint f(c, ii) ~ 0, there exists an 77; which is the Lagrange

multiplier vector associated with the local constraints f'(c, u) ~ 0; such

that:
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from differentiation of (MOP) w.r.t. c:

Vc q(c, ii, oJ - }..(v, w, ci, E, p) + Vc g(v, w, ci) E -

v c F(c, ii, ci) Htp + Vcf (c, ii) 77

from differentiation of (MOP) w.r.t. u:

Vu F(c, ii, ci) - t(v, w, ci, E, p) + Vu g(v, w, ci) E+

o (7.39)

(1- Vu F(c, ii, ci) Ht)p + Vu f(c, ii) 77 = 0 (7.40)

77t f c(c, ii) ... 0, TIt 2 0 and ft(c, ii) S 0, i = 1,.., N (7.41)

The formulation of the modif'ier X in equation (31) can be rewritten as:

Mv, w, a, E, p) = Vv Ffv, w, a). VyQ(v, w, y) -

+ V K* (v) ·.Vy Q(v, w, y) Vv F(v, w, a) . Vy G(v, w, y) E -

+ V K*(v) • Vy G(v, w, y) E - Vv Ftv, w, a) Htp +

Since Ffv, w, a) =- K* (v), then

Mv, w, a, E, p) .... Vc q(v, w, a) - Vc q*(v, w) + vc g(v, w, ci) E-

Vc g*(v, w) E - Vc F(v, w, ci) Ht p + V K*(v) Ht
P

(7.42)

(7.43)

Similarly, the formulation of the modifier t in equation (7.24) can be

rewritten as:

ttv, w, a, E, p) - V w Flv, w, a) . V y Q(v, w, y) + V w Ffv, w, a) .

Vy crv, w, y) E - Vw F(v, w, a) Htp
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where y == Ftv, w, a)

ttv, w, a, E, p) = Vu q(v, w, a) + Vu g(v, w, a.) -

(7.45)

Substituting (7.44), (7.45) into (7.39), (7.40) and using c = v, ii = w, equations

(7.39), (7.41) can be written as:

Vc q*(v, w) + Vc g*(v, w) E - V K* (v) Ht P + Vc f'(v, w) T7 = a

Vu. q*(v, w) + Vu. g*(v, w) E + p + Vu. fey, w) T7 = 0

(7.46)

(7.47)

i= 1, ..•, N (7.48)

According to the definition of 0, v, wand E satisfy:

Et[g*(v, w)]. - 0, Et ~ 0 and [g*(v, w)]t ~ 0 i =- 1,.••, L (7.49)

Examining equations (7.46) to (7.49), they are exactly the Kuhn-Tucker

conditions of (ROP) at (v, w),

Theorem 1 Shows that every (v, w) E 0 1 satisfies the necessary conditions

for optimality. If these necessary conditions are also sufficient, for

example, if CROP) is a convex problem, then 0 1 C 0 1* is ensured. If,

however, the problem is such that there is no equivalence between the

necessary and sufficient conditions for optimality, it is preferred that the

solutions of (ROP) belong to 0 1 so that any optimum solution of the

original problem can not be missed. The following theorem gives sufficient

conditions for 0 1* COl.

Theorem 2: Let assumptions Al, A2 and A3 (Chapter 6) be satisfied, and

assume:

1) every (v, w) c e'U is a regular point of the constraints

g*(v,w) s: 0 and f'(v, w) s: 0;

- 178-



2) for every ci E fP, where fP ~ {ex : (v, w) E ecu and

Ftv, w, ex) = K*(v)}, qtc, ti, ex) is convex on e'U.
Then 0 1* CO l •

Proof:

For (v*, w*) E 0 1*, since (v", w*) is a regular point of the constraints

g*(v, w) ~ 0 and fey, w) ~ 0, there exists p*, E*, ry* such that:

'1c q*(v*, w*) + Vc g*(v*, w*) E* - V'K*(y) Ht p*

+ '1e f(v*, w*) TJ* == 0

'1v. q*(v*, w*) + Vv. g*(v*, w*) E* + p + '1v. f(v*, w*) TJ* = 0

i = 1, •••, N

1 == 1,..•, L

(7.50)

(7.51)

(7.52)

(7.53)

Similar to the case of Theorem 1, differentiating the Lagrangian w.r.t. set

point c gives:

* * * -. *) (* * -. * t"* *) \"'7 (* * - *) t"*VCl Q. (v • w • a. - ~ v • w • ex • c • P + v Cl ~ V • W • ex c; -

* * - *) t * \"'7 f( * *),,*-Ve F( v , w ,ex H p + v e v, W t f -

Vo q*(v*, w*) + '1e g*(v*, w*) E* - '1K*(v*) Htp*

+'1 cf(v*, w*) 77* == 0

Differentiation of the Lagrangian w.r.t. u gives:
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" (* * ~ *) (* * ~ * * * *v u. q V , W ,ex - tv, w , ex , E , p ) + vu. g(V , w*, a.*) E* +

Vu. q*(v*, w*) + Vu. g*(v*, w*) E* + p* + Vu. f(v*, w*) TJ*

where ci* "'"' ci(v*, w*).

(7.55)

Because the (MOP) is a convex' problem, equations (7.42) to (7.45) imply

that its optimal solution for given ci*, Mv*, w*, ci*, E*, p*) and

t(v*, w*, ci*, €*, p*) is

{
c (v*, w*, ci*, E*, p*) = v*

11 (v*, w*, ci*, €*, p*) = w*

(7.56)

Equations (7.56) and (7.53) guarantee that (v*, w*, e*, p*) E 0, that is

(v*, w*) E 01. Q.E.D.

The convergence analysis of this algorithm is given by Lin, Hendawy and

Roberts, 0988a).

26 Simulation~

7.6.1 Simulation examples:

The following three examples have been used in computer simulation

studies to investigate the convergence properties of the algorithm.

Example 1

This example consists of two subsystems as shown in figure (7.2). The

model and reality equations respectively are:
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The subsystem performance indices are:

The system constraints are:

The output dependent constraints are:

Yll ~ 0 , and Y22 ~ 0

Finally, the structure equation is:

- [ o
1

1
o

o
o ]

Yll
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Example 2

This example consists of three subsystems, the structure of the

subsystems is shown in Figure (7.3).

The model equations and real system equations are:

Performance indices of the subsystems are:

Subsystem constraints:
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e'U3 - { (C3, U 3) E R 3
: C31 + U 3 1 + 1 :z 0, 0 ~ C3 1 ~ 1 }

The output dependent constraint is:

0.5 y 11 + Y 21 - Y 22 S 3

Finally, the coupling equation is:

u ll 0 1 0 0 Yll

U21 1 0 0 0 Y21

U22 0 0 0 1 Y22

U31 0 0 1 0 Y31

Example 3

This example consists of three subsystems. The structure of the example

is the same as that of example 2, Fig(7.3) except that the subsystem

constraints are of the form:

and the output dependent constraint is:

0.5 Yu + Y21 - Y22 + Y31 + 0.1 Y;l ~ 3

These examples are chosen such that the performance indices and some of

the constraints are output dependent to illustrate the behaviour of the

algorithm.
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! ! 1 ! !
Ull Yll U 2 1 Y22

Subsystem 1 Subsystem 2 Y21

~

Figure ( 7. 2) The Structure of the System of Example 1.

31

Cll C12 C12 C22 C23 C3 1 Cn

! 1 U22 t ! J l !
I

--,
Y21 v

, fi-

Ull Subsystern 1 Yll U21 Subsystern 2 Subsystem 3
,.

Y22

Figure (-7. 3) The Structure of the System of Examples 2 and 3.
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7.6.2 Simulation results:

The previous three examples were used in a simulation study to investigate

the behaviour of the algorithm. The study was carried out using a Prime

750 computer. The NAG library routine E04VBF was used In the

optimisation process which uses a sequential augmented Lagrangian method

(Gill and Murray, 1974; Murray, 1976).

At the start of the iteration process, all initial conditions of the vectors

which were required at that stage were all set to zero. The iterative

process is terminated when the stopping criteria are fulfilled within the

desired accuracy, which are:

where R(vTe, wTe, ETe, pTe) and T(v\ w\ E\ pTe) are defined by equations (7.30)

and (7.31) respectively. The Euclidean norm was used in each criterion.

The behaviour and convergence of the algorithm is shown in Table (7.1)

and Figures (7.4) to (7.6), where aQ is the deviation of performance index

from the optimal, ap, av and aware the deviations from the optimal

price, optimal set point values and optimal inputs respectively. These

deviations are assigned as:

N I

lIapll - [~ L: (PtTe - pi )2] 2
t-I

N I

1 ""' (Te *)2] 2lIav" - [N £..J v, - v,
t-I

N I

lIawll - [~ L: (w/, - wi)2] 2
t-I

- 185-



EX.

1 0.4

0.4

0.40

0.50

0.22

0.22

0.66

0.66

Iter.

39

39

Q Q*

13.54860 13.5489

13.54860

2

3

0.75

0.75

0.8

0.8

0.50

0.60

0.50

0.55

0.5

0.5

0.5

0.5

0.88

0.88

0.88

0.88

44

44

44

44

6.92052

6.92052

6.43886

6.43886

6.9206

6.4389

Table ( 7 . 1) Convergence behaviour of the algorithm for Examples 1, 2 and 3.
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Figure (1.4) Convergence behaviour of SIA for Example 1.
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Figure (7.5) Convergence behaviour of SIA for Example 2.
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Figure (7.6) Convergence behaviour of SIA for Example 3-
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It can be seen that for the particular examples the algorithm converges and

achieves real optima. The results of examples two and three show that the

convergence behaviour of the algorithm is excellent.

The deviations of the performance index from the optimal solutions are

monotonically decreasing except In the case of example one. The

convergence behaviour of example one, which is not strictly decreasing,

may be due to the fact that the associated convergence theorem of the

algorithm gives only sufficient local convergence conditions (Lin, Hendawy

and Roberts, 1988a).

The zigzag behaviour associated with the convergence of ~p, ~v and ~w

in example one and I1v in examples two and three may be due to the same

reason or the used gain values might be too high.

Comparing the convergence rate of I1Q and I1p, it can be seen, from the

simulation results of the shown examples, that the convergence of ~Q is

much faster than I1p. Therefore, double loop algorithms should be much

more efficient than single loop ones, in relation to set point changes to the

real system.
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7.7 Summary:

In this chapter, an algorithm has been introduced, which is a new version

of the integrated system optimisation and parameter estimation technique.

It is an extension of the algorithm by Lin, Chen and Roberts (1986) to the

hierarchical case.

In this algorithm, new modifiers are introduced in the model optimisation

problem to cater for the output dependent constraints. As mentioned

previously, an attempt was introduced to take output dependent constraints

in consideration by Chen, Brdys and Roberts (1986). However, the

feasibility of the solution of the model optimisation problem of that

algorithm (Chen, Brdys and Roberts, 1986) is not ensured during the course

of iteration and the algorithm's convergence conditions have not been

derived.

In this new algorithm, which IS described in this chapter, the feasibility of

the solution of the model based optimisation problem is ensured. The

simulation results exhibit excellent convergence behaviour of this

algorithm.

- 191-



CHAPTER 8

Modified model-based double loop iterative strategy

for ISOPE

When considering hierarchical optimal control of large interconnected

steady state systems, the difference between model and reality seem to be

the crucial difficulty. Therejf'ore it has been recognised that the model

must adapt itself to some extent in order to overcome the model reality

differences. This yields the idea of integrated system optimisation and

parameter estimation.

As far as on-line steady state optimal control is concerned, the number of

set point changes of feedback controllers remains to be a major problem

before any elaborate algorithm can be put into application. Efforts have

been made to reduce the set point changes (Brdys' and Roberts 1985; Chen,

Brdys' and Roberts 1986; Brdys' et.al. 1986a) and have proved to be very

successful. Most of these techniques are based in the strategy of splitting

the coordination task into two nested iterative loops. The inner loop

involves model-based optimisation only while the outer loop requires

measurements from the real process.

However, the new double loop technique which is presented in this chapter

has important advantages over several other existing methods. In the

previous model-based double loop techniques (Brdys' and Roberts 1985;
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Chen et. al. 1986; Brdys' et.al 1986a) the derivatives of the model used in

the inner loop optimisation are fixed, whereas in this new double loop

iterative strategy, derivatives of real process measurements are used to

update the model. So, before entering into the inner loop, the derivatives

of the real process are available. Therefore, it is possible to linearize the

model by using these derivatives . This is also an attempt to combine the

approximate linear model approach (Ellis et.al 1985) with the modified two­

step method in the decentralised case.

This algorithm has another advantage which is that it can be applied to a

more general class of problems in which the inequality constraints may be

output dependent. To cope with the output dependent constraints, this

algorithm uses the technique given by Lin, Hendawy and Roberts, 1988a.

Another advantage for this new double loop method over most of the

previous techniques (Brdys' et.al 1986a; Brdys' et.al 1986b Brdys' et.al 1987)

is that the convergence conditions of this algorithm are much easier to

satisfy than the mentioned previous techniques.

82 Formulation of the algorithm

Assumption 1

It is assumed throughout the analysis of the algorithm that:

a) Mappings G(c, u,y), f'(c, u), Ftc, u, y), K*(c) and the objective

function Qlc, u, y) are continuously Frechet differentiable.

b) Mappings G(c, u, y) and f'(c, u) are convex.

c)The model input-output mapping is point parametric on ~'U (Brdys' 1983)

The task of determining the optimal operating condition for a real process

can be defined as the following real steady-state optimising control (ROP):
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min Qlc, u, y)
c, u, y

s.t.

y = K*(c)

u = Hy

o«, u, y) S 0

(c, u) E elll

(ROP)

It has been proved by Brdys', 1983 that under very mild assumptions the

(ROP) is equivalent to the optimisation problem (EOP). These conditions are

also summarized in the previous chapter.

min q(c, u, ex.)
c, u, ex.

s.t.

F(c, H K*(c), o.) = K*(c)

u - HK*(c)

g(c, u, O{) S 0

(c, u) E elll

where

(EOP)

~q(c, u, <x) - Q (c, u, Ftc, u,ex.»

~g(c, u, ex.) ..... G (c, u, Ftc, u.o.l)

In this algorithm, the c dependent constraints are separable from the

constraints set e'U. By using the interaction relation u ". Hy, the

constraints which depend on both c and u can be converted to output

dependent constraints. Therefore , we always assume that the local

constraints are only c dependent.

In order to separate the optimisation and parameter estimation problems an

additional equation, v-c, is introduced. The problem EOP can be written as

follows:
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min q(c, u, ex.)
c, u, ex.

s.t.

F(v,H K*(v),ex.) ) = K*(v)

u = HK*(c)

g(c, u, ex.) ~ 0

v=c cE~

where c =- ( v : vE R n
, f'(v) SO} ,f

continuously Ferechet differentiable.

cnn ~~.
n -+ n 1S convex and

The Lagrangian associated with (EOP1) can be written as :

L(c , u , v , ex. , P , A , T/ , E) = q (c .u.o.) + pt [ U - HK* (c)]

+ Et g(c,U,ex.)+A t (v-c)+T7t [F(v, H K*(v), ex.)-K*(v)] (8.2)

where P , A , Tl , and E are Lagrange multipliers. In particular, P is known as

the price vector, A is the modifier vector and E is denoted as the Lagrange

multiplier vector associated with G.

Assuming that all the required derivatives exist and regularity conditions

(see chapter 3 ) are satisfied, the Kuhn-Tucker necessary optimality

conditions of (EOP1) are:

(8.3)

atg(c,u,ex.) E = 0
au

(8.4)

(8.5)

atg(c,u,ex.) E + atFev, HK*ev) ,ex.) T/ - 0 (8.6)
aex. aex.

vp L( • ) - u - H K*( c) = 0
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V).L( . ) = v -c = 0

VnL( . ) = Ftv , H K*(v) , cc) ) - K*(v) = 0

V~L( • ) = g(c, u , 0.) ~ 0

(8.8)

(8.9)

(8.10)

E L 0 (8.11)

To obtain a solution of equations (8.3) to (8.11), assume [ otF(v, HK*(v) ,0.)
00.r 1 exists, ." is solved from equation (8.6) and substituted in equation (8.S)

to derive the formula for calculating the modifier ~. That is:

Mc, u, v, 0., E) = [ Vv F(v, H K*(v), 0.) - Vv K*(v)l [~y Q(c, u, y)

+ VyG(c, u, y)El

where

y - F (v, HK*(v) , 0.).

(8.12)

In the stage of calculating ~, the vectors c and u are not available.

Therefore, these vectors are replaced by v and HK*(v), respectively.

Then, equation (8.13) can be written as:

Mv, 0., E) = [ »; F(v, H K*(v), 0.) -»; K*(v)] tv, Q(v, HK*(v), y)

+ VyG(v, HK*(v, y)El (8.13)

Because the real process description is not known, we approximate it by a

linear model:

utc, v) - H K*(v) -t-HK*'(v) (c -v) (8.14 )

Since the global constraints are 0. dependent, the model based optimisation

problem may fail to have a feasible solution during the course of iteration

(Lin, Chen and Roberts, 1986). To overcome this, we exclude the global
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constraints g(c,u, o.) ~ 0 from the model optimisation problem and take it

into consideration by introducing new modifiers.

Given some initial VO inside the feasible set and some initial guess EO, the

on-line implementation involves solving repeatedly the following two-step

procedure:

step!.

Apply v'k to the real process to obtain the corresponding steady state

measurement K*( v'k).

Determine a.'k ... a. (v'k) by solving

(8.15)

Perform additional perturbations about v" and measure the corresponding

process outputs to compute finite difference approximations of the
atK*(v'k )

derivatives ov

Finally, use equation (8.13) to calculate

step ~:

For given -'kA., v'k and e'k, solve the following model-based optimisation

problem by using the price method

{
'k t. 'k 'k 'k) [ " ('k H K*(vK) , a.K) ~Klt Cmin q(c, u, ci ) - X (v , a. ,E c + v « g V , c

C,u

(MOP)

s.t.

u - H K*(v'k) + HK*'(v'k) (c _v'k)

cEC:
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The solution is denoted as c( v", o.k., Ek.) and ii( vk., ak , Ek ) . For simplicity,

the minimised function will later be denoted by AA; i.e.

(8.16)

Since the model optimisation problem (MOP) is to be solved hierarchically

using the price method, it is. necessary to have an inner loop iteration to

achieve the interaction balance of the constraints

For given Ek., vk. and iik., the Inner loop coordination can be described as

follows:

step 2a

For given P', the inner loop optimisation problem for the rth subsystem is :

s.t. c, E C, ;

,

The solution is denoted as et( vk., iik., Ek., P' ) and iit ( v". ak
, E

k
, P~), or

c/ and iit ' for short.

step 2b

For given p', e~ and ii', where
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, ... ,

calculate

The inner loop iteration is terminated when pZ+l _ pt .

The iterative variables vk. and Ek. are updated according to :

(8.17)

(8.18)

Pfv, E) is a projection operator satisfying some conditions (Lin, Chen and

Roberts, 1986), which are mainly to exclude the possibility of E~+ 1

becoming negative for a selected gain. The conditions for (v, E) which need

to be satisfied are shown in Appendix A.

The iteration is terminated when ck. - vk. and Ek.+ 1 ... Elc
•
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In this section, the optimality properties of this new model-based double

loop algorithm are studied. The optimal solution set of (Rap) and the

algorithmic solution set are denoted respectively by °1* and 0, where ° is

defined as:

o 4-{ (v, E) : vEe, v - c(v, ci, E); and EzO,

[P(v,E) (g*(v) +g*'(v) (c-v»]. = 0, • = 1, •.• , L } (8.19)

0 1 ~ { v : 3 E such that (v,E) EO}

O2 ~ { E : 3 v such that (v,E) EO}

(8.20)

(8.21)

Theorem 1

Let assumption 1 and the assumptions for (ROP) and (EOP 1) be satisfied,

and assume that every vEn 1 is a regular point of the constraints f(v)~ o.
Then for every (v, E) EO there exists a (77) such that (v, E, 77) satisfies

the Kuhn-Tucker optimality conditions of (ROP).

77 is denoted as the lagrangian multiplier vector associated with the

constraints f(inequality constraints depend only on controller set points).

Proof of theorem 1- -
For (v, E)EO, c(v, a, E) is the optimal solution of (MOP). Since c is a

regular point of the constraints f'(c) ~ 0, there exists a 77 such that:

Vo q(c, ii, a) + v K*(v) Ht Vu q (c, Ii, a) - M v, a, E)

+ Vo g (v, H K*(v), a) E+ v K*(v) Ht Vu s (v, H K*(v), a.) E

+ v f'(c) 77 - 0

77t ft(c) - 0 , 77t ~ 0 and r, (c) ~ 0
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where:

u = H K*(v) + HK*'(v) (c -v)

Since F (v, H K*(v), <i) = K*(v), then equation (8.13) for updating the

modifier ~ can be rewritten as:

~(v, 0., E) :z: Vc q(v, H K*(v), a.) + V K*(v) Ht 'Vu. q(v, H K*(v), ii)

- Vq*(v) Vc g(v, H K*(v), a.) + V K*(v) 'Vu. g(v, H K*(v), ii) €

- Vg*(v)E

Substituting (8.24) into (8.22) and using

-c .. v,

ii = HK*(v)

in both (8.22) and (8.23), we obtain:

Vq*(v) + Vg*(v) E + Vf(v) TI - 0

TIt ft(v) .. 0 , TIt ~ 0 and ft(v) ~ 0 , i =- 1, .•• , r

According to the definition of!1, the vectors Eand v satisfy

(8.24)

(8.25)

(8.26)

(8.27)

Equations (8.25) to (8.27) are the Kuhn-Tucker conditions of (ROP) at v.

Theorem 1 shows that every v E 0 1 satisfies the necessary conditions for

optimality. If these necessary conditions are also sufficient, for example, if

(ROP) is a convex problem, then 0 1 C 0 1* is guaranteed. If, however, the

problem is such that there is no equivalance between the necessary and

sufficient conditions for optimality, it is assumed that the solutions of

(ROP) belong to n 1.
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The sufficient conditions that ensure 0 1* C 0 1 are given m theorem 2.

Theorem 2 and the proof are given in Appendix B. The convergence

analysis of the algorithm is presented in Lin, Hendawy and Roberts (l988b).

as Simulation study.

85..1. Simulation example.

The following three examples have been used in a simulation study on a

Prime 750 computer. Local optimizations were solved using the NAG library

routine E04VBF (NAG fortran library manual 1983) which uses a direct

search and sequential augmented Lagrangian optimisation technique (Gill,

Murray and Wright, 1981).

Example 1:

This example consists of' three subsystems. The model and the reality

equations are:

Yll = Cll - C12 + 2 Ull + cx'll

y~l = 1.3 Cll - C12 + 2 Ull + 0.15 Cll Ull

* 2 1 25 C U21 + U22 + 0.25 C22 C23 + 0.1Y 22 - C22 -. 23 -
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The subsystem performance indicies are:

The subsystem constraints are:

The output dependent constraint is:

0.5 y 11 + Y 21 - Y 22 ~ 3

with the coupling equations:

U11 -= Y21 , U21 = Y11 , U22 = Y31 and U31 = Y22

and interconnection matrix H of the form:

H-

o

1

o

o

1

o

o

o

o

o

o

1

o

o

1

o
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Example 2:

The formulation of this example is the same as that of example 1 except

that the subsystem constraints are in the following form:

cu, ... { (c, , u.) E ~3; cil + Ci2 S 1 , Os Ull ~ 2.5 }

e'U2 = { (C2 , U2) E ~5; C~l + C~2 + C~3 s 0.5 }

Example 3

This example also consists of three subsystems. The model and reality

equations, performance indicies, local constraints and the coupling equations

are the same as in example 2. The output dependent constraint takes the

form:

0.5 Yll + Y21 - Y22 + Y31 + 0.1 Y~l ~ 3

The structure of the systems of examples 1, 2 and 3 is shown in figure

(8.1) •
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31

Cll C12 C12 C22 C23 C31 Cn

1 1 U22 ! 1 J l l
Y21 y
-, ~

Ull Subsystem 1 y 11 U 2 1 Subsystem 2 Subsystem 3

Y22

Figure ( 8. 1) The Structure of the System of Examples 1, 2 and 3.
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8.5.2 Simulation results

The simulation results are given in Table (8.1). The initial conditions for

vO, EO and pO are all zeros. The convergence behaviour of the performance

index and the controllers set points of the simulation examples are shown

in figures (8.2), (8.3) and (8.4) respectively.

Table (8.1) and figure (8.5) show comparison results between the single loop

technique and the new double loop technique.

The stopping criterion of the algorithm is:

together with

where P(v\ Ek ) and R(vk , Ek
) are defined by equations (8.27) and (8.28)

respectively (see Lin, Hendawy and Roberts, 1988b).

[ P(v, E) { g*(v) + g*'(v) (c(v, ci,E ) - v)}t

[ g*(v) + g*'(v) (c(v, ci,E ) - vl I, ,ViflN1(v, E)
-{

o ,
(8.27)

and

R(v,E) : g*(v) + g*' (v) [ (c(v, ci,E ) - vll
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Figure (8.2) Convergence behaviour of the performance
index and controller set points for Example 1.
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Figure (8.4) Convergence behaviour of the performance
index and controller set points for Example 3.
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The norm used in the criterion is:

Comparing this algorithm with the single loop iterative algorithm (SIA) of

Lin, Hendawy and Roberts, (1988a) shows that this new double loop (NDIA)

is much more efficient.

The improvement of efficiency in examples 2 and 3 is much more than In

example 1. The main reason is that there are more active c and u

dependent constraints at the optimum in example 1 than in examples 2 and

3.

It is also noticed the achieved convergence of all examples. In examples 2

and 3, the deviation from the optimum control II ~ v II is not strictly

decreasing. A possible explanation of the zigzags are:

a) The convergence conditions of the algorithm which are given by

theorem 3 (see Lin, Hendawy and Roberts, 1988b) only provides sufficient

local convergence conditions. Therefore, starting from any arbitrary initial

condition the Zangwill function (Zangwill, 1969) need not necessarily be

strictly decreasing.

b) Since the Zangwill function (Ztv, €» in theorem 3 consists of two terms

as:

zr-, E) J1 -t- II E -E 112 + a*1I v -v 112
~

where:

v ... Lim v'", € ... Lim €k and a* is a constant defined by theorem 3.
k-'OO k-'OO

Then II ~. v II need not necessarily be strictly decreasing even when the

Zangwill function is. However, when the local optimisation of this algorithm

is slightly modified (Lin, Roberts and Kambhampati, 1987) by adding a

convexification slack variable term, there was more improvement of the

efficiency and the zigzagging behaviour of II ~ v II has disappeared.
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The modified MOP (Lin, Roberts and Kambhampati, 1987) is:

min {AA + p II W 112 }
c, u, W

s.t.

(c, u, W) E ecuw

where AA is defined earlier by the MOP.

Wt are slack variables and p is a penalty coefficient.
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Figure I (8.5) Comparison between convergence of single
and double loop ISOPE techniques.
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EX. Algor. E:£ Iter. Q Q*

1 SIA 0.5 0.5 0.88 44 6.4389 6.4389

NOlA 0.36 0.25 0·4 36 6.4389 6.4389

2 SIA 0.5 0.5 0.88 44 6.9205 6.9206

NOlA 0.5 0.8 0.4 16 6.9205 6.9206

3 SIA 0.5 0.5 0.88 44 6.9205 6.9206

NOlA 0.5 0.8 0.4 16 6.9205 6.9206

Table (8. 1) Comparison of Single and Double Loop Algorithm.
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as. Summary and conclusions

The presented algorithm is a new double loop iterative technique which can

be viewed as a combination of the approximate linear model approach and

the ISOPE method in the hierarchical case. At the experts e of increasing

off-line iterations this algorithm has significantly reduced the applied set

point changes. New modifiers are introduced in the model optimisation to

cover the case where inequality constraints are output dependent.

Inspecting this algorithm, we find that in the outer loop, where v", E1t are

updated, the required real process measurements are also used to calculate

the modifier. In the inner loop, where model-based optimisations are carried

out, no real process information is needed to achieve the model interaction

balance. Unlike the previous double-loop techniques (Brdys", Roberts, Badi

and Kokkinos, 1986 ; Chen, Brdys' and Roberts, 1986 Brdys', Abdullah and

Roberts, 1986), the derivatives of the model used in the model -based

optimisation are updated each time the inner loop is entered using the

derivatives of real process measurements. Although the derivatives of the

real process are required to update the model, no extra set point changes

are needed due to the fact that the derivatives are already available when

entering the inner loop.

It is shown that the algorithm can achieve the real process optimum in

spite of large differences between the model and reality.
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CHAPTER 9

Conclusion and Suggestions for Further Work

It is always desirable for an industrial processes operating in real time, to

achieve and maintain optimal operating conditions. However, it is not an

easy task because of the differences between the process models and

reality.

111
In order to accol1).Odate model def'Liciencies, measurements from the real

system are incorporated In different ways according to the structure of

the models. For example, with a mathematical (fixed) model, feedback

information is used to improve the model based solution in the form of an.
iterative procedure (Finfsien and co-workers, 1980). Alternatively, with

adaptive models which contain uncertain parameters, process measurements

may also be used to overcome such uncertainties by adopting a two step

approach; optimisation and parameter estimat~ (for example, Youle and

Duncanson, 1970;Roberts, 1978).

This research is concerned with some steady state hierarchical optimising

control techniques. Two different kinds of algorithms have been

investigated in this thesis. The first c1ass of algorithms uses fixed models

and global feedback information. Three different algorithms of this class

are involved; these are : the Double Iterative Price Correction Mechanism
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(Shao and Roberts, 1983), the Augmented Interaction Balance

Method(Tatjewski, 1985) and the Augmented Price Correction Mechanism

(Hendawy and Roberts, 1989).

The second class of algorithms employs adaptive models with uncertain

parameters, namely: the Integrated System Optimisation and Parameter

Estimation (ISOPE) techniques (Roberts, 1978;1979).

The algorithms of both classes are based on either the normal or the

augmented Lagrangian technique.

92 Conclusion and Suggestions

A detailed simulation study of the Double Iterative Price Correction

Mechanism (DIPCM) and the Augmented Interaction Balance Method with

Feedback (AIBMF) has been presented. These results have shown that both

algorithms, the DIPCM and the AIBMF, are applicable to a wide range and

different types of problems. However, the DIPCM are not recommended for

non-convex problems which have a duality gap since they are based on the

normal Lagrangians, as shown in chapter 4.

The DIPCM and the AIBMF algorithms both converge to sub-optimal results

but the sub-optimality of version 2 (V2) of the DIPCM in most cases is

worse than the AIBMF and version 1 (VO of the DIPCM.

The solution of V1 mostly converges within less set point changes than V2

and the AIBMF, but the total number of iterations of the AIBMF are

always less than those of V1 and V2 of the DIPCM. This is due to the fast

convergence of the inner loop of the AIBMF. Therefore, the computing

processing time of this algorithm is always less than those of the

DIPCM.

The sensitivity of the algorithms against their dependent parameters is

investigated. Both algorithms have two parameters to be selected: «(1'(2)

for the DIPCM and (p,a.) for the AIBMF. A guideline for choosing these
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parameters for a certain example is presented in chapter 4 of this thesis

which may generally be used. However, trial and error must still be applied

to assign the best values of the parameters, but V2 is more sensitive than

Vl and AIBMF.

Finally, both algorithms can cope with system non-linearity with an

exception of an observed deterioration of V2 which, for the particular

example investigated exhibited an increase in the total number of iterations

for a non-linearity factor {3 > 0.65.

In this research, an Augmented Price Correction Mechanism (APCM)

algorithm has been proposed and formulated to extend the applicability of

the previous Price Correction Mechanism (Shao and Roberts, 1983) to cover

the case of non-convex problems. A comprehensive simulation study

consisting of five numerical examples shows that the algorithm is applicable

to a wide range and type of problems including convex and non-convex

problems.

Comparing the algorithm with the previous DIPCM and AIBMF algorithms

shows that the APCM can achieve convergence with a number of set point

changes less than with the previous mentioned algorithms. Analysis of the

sufficiency conditions for the model based solution of the APCM algorithm

shows that the algorithm will remain suboptimal since the conditions of

optimality can not be achieved. This is due to the model-reality differences

and the fixed models they use.

In order to gain a good understanding of any algorithm, a theoretical study

and convergence analysis is required. Further research is needed in this

line, where most of the existing hierarchical suboptimal optimisation

techniques require more theoretical study to analyse the mathematical

properties of the algorithms.

Further work is also required to extend the application of the most

efficient algorithms for example, (APCM, DIPCM(VI), AIBMF) to on-line

implementation using, for example, a laboratory pilot plant. The original

version of the price method has been successfully applied to an on-line

- 217-



control using a vaporiser and tank system (Bakalis 1986) Hen I ., . ce, app ymg

these algorithms which are modified versions of the price method might

improve the efficiency of its control system. An important advantage has

been reported (Bakalis, 1986) for these kind of algorithms that they require

only a fraction (= 1/4) of the on-line time required by the standard ISOPE

algorithms.

In this thesis, two optimal hierarchical integrated system optimisation and

parameter estimation (lSOPE) algorithms are proposed and investigated.

They are extensions of the modified two step approach(Roberts, 1978) to

extend the applicability of the method to cover the case of problems with

output dependent constraints and to reduce the required number of set

point changes from the real process.

One of the proposed ISOPE algorithms uses an output feedback structure

and a single loop iteration strategy. This algorithm has some advantages,

compared with the previous algorithm (Chen et. al. 1986), that the existence

of the model-based optimal solution is ensured during the course of

iteration and the model optimisation problem is simplified considerably.

Generally, the single loop iterative algorithms are not as efficient as the

double loop iterative algorithms. Therefore, In this research another

hierarchical optimal ISOPE technique is proposed with a double iterative

coordination strategy where the measurements from the real process is

only required for the outer loop to update the model. The algorithm has

several advantages over the prevros double loop ISOPE techniques (Brdys'

and Roberts, 1985; Brdys' et.al. 1986a; Chen et. al., 1986), in that problems

with output dependent constraints are included and a full use of the

information measurements is employed. In this algorithm, the derivatives

from the real process measurements are used to update the model.

Therefore, it is possible to linearize the model by using these derivatives.

Simulation studies show that the algorithm is efficient.

Enormous numbers of ISOPE and other algorithms have been and are being

developed in the Control Engineering Centre of City University for solving
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the system optimisation problem. However, most of these algorithms are

based on theoretical analysis and abstract simulation examples except for a

very few which have been tested in the laboratory (Bakalis, 1986; Ellis and

Roberts, 1985; Chen, 1986).

It is suggested that the most efficient algorithms (for example, those with

double iterative coordination strategy, augmented Lagrangian algorithms and

the algorithms using approximate linear model and sequence model

approaches (Liu and Roberts, 1988) ), should be tested on a real exisiting

system.

In this research, the main interest was restricted to a study of steady

state optimisation techniques. Further work is suggested to consider how to

extend the algorithms developed in this thesis and other efficient ISOPE

approches to be applied to dynamic systems. The modified two-step

approach has been successfully extended to the on-line control of a pilot

scale travelling load furnace, which is a batch dynamic plant (Stevenson,

1985). Current research in the Control Engineering Centre is in progress for

optimisation of steady state systems with non-linear constraints and slow

dynamics.

One of the major drawbacks of the modified two step approach and its

extended algorithms is the requirement for the measurements of real

output derivatives with respect to the real set points, in order to calculate

the modifier vector. Under noisy measurements the performance of these

methods are expected to deteriorate considerably. This imposes practical

limitations to the ISOPE algorithms because the differentiation amplifies

measurement errors. However, employing simple filter techniques to reduce

the modifier vector can significantly reduce influence of noise and improve

the performance of the methods.The effect of measurement noise on ISOPE

methods and the use of various types of filters to improve the method is

investigated by Filali and Ellis,(l988).

On the other hand, efforts have been made to either totally eliminate this

necessity (Chen, 1986; Liu and Roberts, 1988) or to make the algorithm

converge faster (Lin, Hendawy and Roberts, 1988b; Abdullah, 1988; Lin et. al.
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1988c, d). Families of double iterative coordination algorithms have been

developed to speed up the convergence and have proved to be successful.

However, furthur research can be conducted to eliminate the need of

derivatives totally where the efficiency of the algorithm developed by Liu

et. al.(l988) reduces as the number of set points of the problem increases.

The final concern is the application of the most suitable hierarchical

control algorithms to industry. This may be achieved by developing these

techniques in the form of software packages.
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APPENDIX A

The Conditions for Updating E

( A. 1)

p(v,E ) is a projection operator satisfying:

[ p ( v, E ) ( g*(v) + g*'(v) (c(v, a, E) - vl l I,

0,

-{ ( A.2)

N1(v, E)={ t : Et = 0 and [g*(v)+g*'(v) (c(v, a, E)-v)]t <0 } ( A. 3)

where [ • ]t denotes the rth element of the vector. The gain parameter ~~

is determined as follows :

Let

and

N2 (v, E)A ( t : Et > 0 and [g*(v)+g*'(v) (c (v, a, E)-v]! <0 ) ( A. 4)

then

- ~30-

( A. 5)



£~ - {

min { E( , ~ } ( A. 6)

( A. 7)

The equations ( A. 4) - ( A. 7) are prescribed to exclude the possibility of

€}+t:becoming negative.
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Appendix B

Theorem 2 and Proof

Let Assumptions 1 and the assumptions for ( ROP ) and ( EOP 1 ) be

satisfied. Assume:

a) every vEe is a regular point of the constraints g* (v) ~ 0

and f ( v ) < 0 ,

b) for every ci E tP and v*E n* , q( 0' u( ., v"), ci ) is convex on e, where

tP ~ { ex. : vEe and Ftv, HK*(v), ex) = K*(v) }

uf c, v* ) ~ HK*(v*) + HK*'(v*) (c- v)

Proof

For v* E n~ , since v* is a regular point of the constraints

g* ( v) s 0 and fey) s 0,

there exist e* and 77* such that

Vq*(v*) + Vg*(v*) E* + Vf(v*) 77* = 0
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t = 1, ° • ° ,r

( B. 1)

( B. 2)



€~ [ g*(v*) ]t = 0 , Ei ~ 0 , [g *(v*) It ~ 0;

t = 1, . . . ,z

On the other hand

\10 q(v* , HK*(v*), Ci*) + VK*(v*) Ht 'Yu q(v*, HK*(v*), 0.*)

- ~(v*, Ci*, €1+ 'Yo g(v*, HK*(v*), 0.*) €*

( B. 3)

= V'q*(v*) + Vg*(v*)€* + 'Yfev*)ry* = 0 ( B. 4)

where 0.* = Ci(v*). Because ( MOP) is convex problem, equations ( B.2) and

( B.4) imply that its optimal solution for a given 0.* and Mv*, 0.*, €*) is

c(v*, 0.*, €*) = v*

Equations ( B.S) and ( B.3) guarantee (v*, €*) E 0, that is,
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