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ABSTRACT

This thesis examines the economic evaluation of forecasting strategies based on past
prices, bringing together academics and practitioners techniques Forecasting methods
based on past prices are convex and path-dependent dynamic strategies Therefore, they
must be able to profitably exploit positive serial dependences in financial prices The most
important measure of financial forecasting ability is the rate of return achieved by the
predictor The expected return of forecasting strategies is first investigated by applying
stochastic modelling Then, the presence of serial dependences in financial prices is tested
by comparing expected and observed rates of returns of forecasting strategies

According to the academic literature, the expected return of investment strategies is best
established by applying stochastic modelling That is done analytically for linear
forecasters, assuming that the underlying process of asset returns is not only a random
walk with drift but any Gaussian processes The rate of return from financial strategies is
zero under the assumption of a random walk without drift, and non-zero in all the other
cases Then, it is shown that many forecasting techniques used by market participants are
in fact linear forecasters and consequently fall in the scope of this study

Minimising the mean squared error is a sufficient but not necessary condition to maximise
returns Under the random walk without dnft assumption, error measures and profits are
negatively correlated but very few in absolute value Only the directional accuracy
exhibits high degree of linear association with profits When the true Gaussian process is
not known, there are cases for which a decrease in mean squared error does not imply an
increase in returns Therefore the mean squared error criterion is of poor use to maximise
returns when the true model is not known The directional accuracy is of no further help
Market timing ability tests based on the percentage of correct forecasts have very low
power in presence of low positive autocorrelations

It is why a test of the random walk hypothesis based on the joint profitability of trading
rules is investigated It happens to be powerful against a broad range of linear
alternatives Its ruee feature is to exhibit a power almost equal to the best of its
components unknown when the true model is unknown It constitutes as well a tool to
separate mean from variance non-hnear models Simple tests of adequacy of Gaussian
processes are subsequently proposed from the joint profitability of trading rules

Applying previous tests, the random walk hypothesis is rejected for daily exchange rates
against Dollar, over the period 1982-1992 The hypothesis of normal underlying returns
is very weak compared to the independence assumption Among a few Gaussian
processes, the price-trend model along with some technical models appear to be the best
alternatives to explain observed trading rule returns Statistical forecasters based either on
ARMA(1,1) or fractional Gaussian processes do not outperform simple technical rules
Taking Into account transaction costs reduce profits to zero for individual but not for
institutional Investors who might have to act on strategies that assume the foreign
exchange markets exhibit positive dependencies, if not inefficiencies

12



Chapter I

INTRODUCTION

11 FORECASTING FINANCIAL PRICES

Numerous techniques have been used to forecast financial prices Despite their apparent

diversity, most of the predictors can be classified into two categories, fundamental or

technical

Forecasts based on exogenous variables constitute the "fundamentalist approach" In the

stock market, analysts study the fundamentals of companies e earnings, dividends, risk,

assets, management, etc ), industry sectors and the economy as a whole, to identify

in estment opportunities Attention is focused on specific items of information which are

unknown to the market or considered to be incorrectly valued In the foreign exchange

market, the primary focus is on monetary policy Fundamentalists claim that in the long

term what underpin the trends of currency movements are the balance of payments and

relative prices Recent experience has questioned the out-of sample accuracy of structural

models of price-rate determination Simultaneously, the rising importance of price-based

forecasts has been observed

Price-based forecasts constitute the "technical approach" These forecasts are determined

using only historical price data The basic assumption is that "everything is in the rate"

Such forecasts are generally developed using one of two methods The first method

consists in creating a model based on statistical algorithms The most well-known

technique is the Box-Jenkins(1976) method This minimises the mean squared error

between the realised return and the one-ahead forecast It is the technique preferred by

academics The second method consists in building heuristic predictors such that the

implied decision rule is profitable in monetary terms These forecasting methods are

called technical indicators and are preferred by market practitioners

13



1,2 THE OBJECTIVE OF THIS RESEARCH

This research aims to contribute to the knowledge of price-based forecasts by focusing on

their economic evaluation as measured b)X profitability A popular theory, among

academics is that technical 'indicators are suboptimal predictors and that statistical

forecasters should be preferred Only complex nonlineanties in financial prices could

Justify the use of technical indicators However for market participants, the usefulness of

a forecaster is best measured by the profits and losses it generates and previous studies

have indicated that technical trading rules perform at least as well for this purpose

The research described in this thesis seeks to unify technical and statistical forecasters and

formalises their expected returns using stochastic modelling More precisely, the thesis

addresses four questions not yet answered despite a growing literature Namely

(1) What is the economic evaluation of price-based forecasts?

The main goal of a financial forecaster is to possess market timing ability Its raison d'être

is to accurately predict the direction of the trend, up or down, such that a profitable

trading rule can be elaborated Therefore the most important statistic is the expected

return following the forecasting strategy It is established in the thesis assuming that the

process of underlying assets is Gaussian

(2) Are the most accurate forecasters the most profitable ?

This point is investigated by studying in depth the theoretical relationships between mean

squared error and profits criteria

(3) How similar and different are trading rules?

This research formulates the linear correlation coefficient between trading rules returns to

deal with this issue

(4) What models are compatible with observed trading rule returns?

The ability of a few Gaussian processes to explain technical profits is checked for a set of

exchange rates series

14



1.3 LAYOUT OF THE THESIS

Chapter 2 presents dynamic strategies including portfolio insurance, market timing

strategies, fundamental and techmcal approaches The similarities and differences between

the various price-based strategies are examined and the statistical attributes of the returns

specified A forecasting technique is considered as useful in the financial market if it

generates profitable transactions Therefore a better understanding of these techniques

might be achieved by studying their returns distribution However, a hterature review

shows that very little is known about the theoretical distribution of returns generated by

trading rules In particular there are no analytical results assuming that prices exhibit

dependencies Since dependency in prices is a necessary condition to the usefulness of

financial forecasting, that is a serious limitation that this thesis attempts to solve To do

so, a technical description of plausible models of financial prices is provided m the last

section of the chapter

Chapter 3 is the key chapter of the thesis The statistical distribution of rule returns is

established using stochastic modelling Stochastic modelling has the advantage to

encompass a far broader set of possible market conditions than any single empirical

financial time series The expected return which is the most important statistic is given

analytically for linear forecasters and price models An extension to nonlinear models is

provided by considering heteroskedastic volatility and fractional processes Then it is

shown that many technical indicators are in fact implicit linear statistical forecasters

Chapter 4 deals with the relationships between error measures and profits The sufficient

and necessary conditions to maximise expected returns are formulated Mrnmising the

mean squared error is a sufficient but not a necessary condition In practice, the true

model is not known and a misspecified forecaster has to be used Therefore we assess to

what extent various misspecifications affect the profitability and error measures of a

forecaster That is done in the thesis by measuring the relative loss of returns and increase

of mean squared errors Finally, it is shown that market timing ability tests based on

directional accuracy have very low power in the presence of low positive

autocorrelations Under such circumstances, it is possible for no market timing ability to

be detected even though there exists one

Chapter 5 proposes new tests of random walk based on the Joint profitability of trading

rules A preliminary result, the theoretical correlation between trading rules, is first

15





Chapter 2

RECLASSIFICATION OF DYNAMIC STRATEGIES

Investors who invest in financial markets are exposed to uncertain price changes As a
risky asset fluctuates in value, the value of the investment containing it may change One

must decide how to redefine the investment in response to such chan ges Dynamic

strategies are explicit rules for domg so

Dynamic strategies differ from static strategies, such as a buy-and-hold rule, in that

trading in the asset occurs throughout the investment honzon,, at times and in amounts

that depend upon a fixed set of rules and future price changes Dynamic strategies are

developed following the expectations investors have formed about the statistical nature of

the price process

In random markets, price changes can not be predicted Current prices fully and correctly

reflect all currently available information Dynamic strategies are then employed to reduce

the price nsk exposure of an investor The probability distribution of returns from a nsky

investment is tailored to suit a particular set of preferences For instance, the most

popular application of these techniques, portfolio insurance, has the objective of placing a

lower limit on the rate of return to be earned on an investment over a specified time

period

In non-random markets, price change can be predicted There are market imperfections,

such as the existence of price trends and cycles The goal of dynamic strategies in this

case is to exploit these imperfections and to outperform the market To this end, market

timing or forecasting strategies are used

Section 2 1 presents dynamic strategies, namely portfolio insurance and market

timing, and defines their statistical attributes Section 2 2 descnbes forecasting techniques

used to predict financial prices Section 2 3 carries out a literature review of forecasting

strategies The key issues not yet solved by academics and considered m the research are

emphasised Section 2 4 shows how stochastic modelling can be employed to assess the

ability of forecasting strategies to meet their goal under a broad set of market conditions

A number of plausible models of financial pnces are then considered Finally, Section 2 5

summarises and concludes our results

17





2 1 2 Aim ket tuning

Market timing strategies are "speculative rules" They suppose that markets are non-

random and therefore that pnce changes can be predicted Market timing strategies are

then created to exploit imperfections in the nsky asset

The goal of market timing strategies is to profit from price trends and cycles

Market timing strategies are based on the idea that excess returns can be achieved by

buying and selling at the "right" time The corresponding rules can be loosely described as

"run with your winners, cut your losses" and "sell at a new high, buy at a new low"

2 1 3 Statistical attributes

Dynamic strategies can be characterised by use of four features , of which three are pure

statistical attributes

a) implementation cost of the strategy2

b) convexity

c) path-dependency

d) underlying return preferred stochastic process

Convexity

Strategies that "buy stocks as they fall "give rise to concave payoff curves That is they

tend not to have much downside protection This terminology denves from the concave

payoff curve relating the terminal value of a portfolio to an unidirectional move up or

down from its initial value

Strategies that "sell stocks as they fall " give rise to convex payoff curves That is they

tend to give good downside protection

It must be emphasised that most of the dynamic strategies, portfolio insurance and market

timing, employ convex rules Leland(1980) clearly stipulates that general insurance

policies are those that provide strictly convex payoff functions, since convexity implies

greater protection from loss at lower values of the reference portfolio Like portfolio

insurance techniques, market timing strategies are convex rules because they are designed

on the idea that there are trends in financial prices

2 The study of this financial aspect is postponed to Section 7 4 2
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Path-Dependency

Path-independence means that the terminal portfolio value depends only on the terminal

market pnce of the assets, and not on the history of price movements prior to the end of

the investment horizon Path-dependency reflects that the rate of return on the insured

portfolio is not only dependent on the rate of return on the uninsured portfolio but also

the path taken in the value of the uninsured portfolio over the insurance period

Let us give some examples of path-dependent \and independent strategies

Most of the portfolio insurance strategies are path-independent, since under the random

walk assumption path-independence is necessary for expected utility maximisation The

idea is that investors wish to minimise uncertainty and so minimise path-dependency The

use of a protective put or continuously rebalancing strategy, to implement portfolio

insurance is truly path-independent (Cox and Leland, 1983, Black and Perold, 1992)

When rebalancing takes place discontinuously, CPPI strategies become path-dependent

(Tnppi and Harnff, 1990, Black and Perold, 1992) An other rule that is clearly path-

dependent is the stop-loss strategy (Rubinstein, 1985, Black and Perold, 1992) In this

case the return of any profitable position will not be a predictable percentage of the rate

of return that would have been earned by investing all funds in stocks

Unlike portfolio insurance techniques, market timing rules are path-dependent strategies

With path-dependent strategy, a portfolio manager can hold positions throughout a flat

market yet still make money because of the particular price fluctuations that happened to

occur along the way That simply reflects the main purpose of a market timer which is not

to loose any profit opportunity in the hope of maximising returns at any level of nsk

(Philipps and Lee, 1989)

Underlying return preferred stochastic process

Dynamic strategies are developed to exploit the market conditions most likely to occur

Consequently, the choice of which dynamic strategy to follow, is closely related to the

investor expectations about the statistical nature of the price process

Under the random walk assumption, Cox and Leland(1983), Rubinstein(1985)

have proved that path-independence is necessary for expected utility maximisation Cox

and Leland(1983) add that without a path-independent strategy a portfolio manager could

hold a long position throughout a nsing market yet still lose money because of the

particular price fluctuations that happened to occur along the way Cases in which the

market ends up far from its starting point are likely to favour buy-and-hold strategies A

buy-and-hold strategy tends to be almost optimal if there is a major move in one

direction

20



Under the assumption of serial dependence, Kntzman(1989) sees two ways to

exploit this hypothesis depending on the nature of the senal dependence, positive or

negative If one expects returns to follow trends (positive serial dependence), he can add

value to a buy-and-hold strategy by following a linear investment rule that generates a

convex payoff function Perold and Sharpe(1988) presume that this generally does

relatively poorly in flat (but oscillating) markets and very well in up markets If on the

other hand, one believes that returns are characterised by frequent reversals (mean-

reverting process), one can add value to a buy-and-hold strategy by following a linear

investment rule that produces a concave payoff function Perold and Sharpe(1988)

suggest that this generally does relatively poorly in up markets and very well in flat (but

oscillating) markets They add that cases in which the market ends up near its starting

point are likely to favour concave strategies because they trade in a way that exploits

reversals Greater volatility (i e more and/or larger reversals) will accentuate this effect

The question being, following Perold and Sharpe(1988), to know if markets are

characterised more by reversals than by trends

Table 2 1 summarises the preferred stochastic process of strategies following their

statistical properties convexity, path-dependency A list of studies having formulated

these classifications is given

Table 2.1: Preferred stochastic process
Rule Preferred stochastic process Author

Cons Cl. up markets

positive senal dependence

Pcrold and Sharpc(1988)

ICritzman( 1989)

Tnppi and Harnff(1991)

Concave fiat but oscillating markets

frequent reversals (mean reverting process)

transiently cyclical markets

Perold and Sharpe(1988)

Kritzman(1989)

Tnppi and Hamff(1991)

Path-independent random walk with drift Cox and Leland(1983)

Rubinstein( 1 985)

Black and Perold(1992)

Path-dependent dependence Tnppi and Hamff(1990)

Finally, Table 2 2 summanses the principal components of portfolio insurance and market

timing strategies

Table 2.2: Features of dynamic strategies
Rule Feature Determinants Convexity Path Preferred stochastic process

Portfolio Instname insurame against loss spot price convex Independent random

Market Tuning maxinusing return recent price history convex Dependent non-random

21



2.2 FORECASTING TECHNIQUES

Market timing rules have been sometimes derived from portfolio insurance techniques

That is the case for example of path-dependent options (Goldman, Sosin and Gatto,

1979) But most often they have been developed from forecasting techniques The basic

assumption is that "everything is in the rate" Then if markets move in trends, defining the

prevailing trend and being able to identify 'early reversals throughout forecasting methods

is certainly helpful in assessing future rate 4/elopments Forecasting techniques which

use only past pnces to forecast future prices are called technical indicators They can be

classified in three categories chartism, mechanical system and statistical modelling The

technical approach is often opposed to the fundamental approach which forecasts future

rates by determining the economics affecting pnces

2 2 1 Chartzsm 

Charting is the oldest branch of technical analysis Chartism is based on the assumption

that trends and patterns in charts reflect not only all available information but the

psychology of the investor as well Analysts who use charts look for graphical cycles and

repetition of patterns to discern trends

The rules derived from the analysis of charts are often subjective and as such

chartism is considered more of an art than a science This is primarily why it has not been

possible to define chart patterns with mathematical rigour Curcio and Goodhart(1991)

do some empirical work to study the effect of chartist analysis They use the predictions

of a chartist based in London, in a form which enables them to do a controlled

expenment Their study suggests that trading with chartist lines does not obtain better

mean returns than not using charts However they recognise that their research was not

designed to evaluate the profitability of screen trading Curcio and Goodhart(1992)

investigate the usefulness of support and resistance levels provided by Chartists and

offered to investors by Reuters The rule consists of a range within which the asset is

expected to fluctuate if the asset moves above the higher end of the range, a buy signal is

generated, while a sell signal is generated if the asset moves below the lower end of the

range Curcio and Goodhart(1992) show that abnormal returns can be obtained by

applying chartists decision rules

The problem with such a rule is that the determination of the trading range can be

highly subjective and person-dependent It follows that the predictive power ability of

chartist techniques might be difficult to measure Neftci(1991) demonstrates this point for

at least two popular charts methods He proves that they are ill-conceived and

subsequently that no proper testing of their usefulness can be achieved
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This is why chartist techniques will be ignored m the thesis which concentrates

instead on objective rules only

2 2 2 Technical indicators

This type of technical analysis tends to convert subjective impressions of patterns or

trends in mechanical trading rules An example is to replace subjective support and

resistance levels by a well-defined trading range A trading range may be characterised by

the maximum and minimum of the series (of various lengths) of latest pnces Mechanical

systems are conceived in a way to trigger indisputable sell and buy signals following a

decision rule based on past data, usually by calculating if the price is above or below a

particular entry point These systems are typically not concerned with how much the pnce

is above or below the entry point They attempt to predict the direction of the future price

without searching to forecast its level They are used to detect major downturns and

upturns of the market The appropnateness of this indicator is conditional to the fact that

trends in prices tend to persist for some time and can be detected

Three main features characterise mechanical systems path-dependency,

convexity, and non uniqueness

By design, mechanical systems depend on the history of pnce movements prior to the end

of the investment horizon Consequently, they are highly path-dependent strategies The

usual rule is to trade with the trend The trader inmates a position early m the trend and

maintains that position as long as the trend continues

Almost all mechanical systems are trend-following and so exhibit convex payoff The very

few which are not belong to the family of contrary opinion indicators, known as well as

reverse trend-following rules, and so display concave payoff They are very rarely used

on their own and are only applied m combination of trend-following systems

The main difficulty with mechanical trading systems is that a rule has to be chosen

from an infinite number of alternatives Since those systems are assumed to reflect

(mechanically) the expectations of the forecaster, there exist almost as many rules as

there are different expectations

There are so many relevant trading rules that it is unrealistic to list them all In what

follows we concentrate on the basic definitions of the most popular rules among

practitioners and academics To each mechanical system numerous alterations have been

made and hybrid indicators constructed Details, justifications and uses of these derivative

rules can be found in Kaufinan(1987)
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Moving Averages
Moving averages are certainly the oldest and most widely used methods The simplest

rule of this family is the single moving average which says when the rate penetrates from

below (above) a moving average of a given length, a buy (sell) signal is generated

By using a linear or exponential weighting, greater importance can be given to

more recent observations Despite these more complex systems, a simple moving average

appears to be the most widely used form It thust be emphasised (as will be proved in the

thesis) that the decision of what length of moving average system to use is held to be

particularly important as short or long term averages can give very different signals

Fibbonacci numbers have been used for this purpose (Pnng, 1985)

Two moving averages of different time lengths can be used to generate signals via

the double crossover method A buy (sell) signal occurs when the shorter average

penetrates from below (above) the longer Widely used combinations are 5 and 20 day

averages, 10 and 40 day averages It is worth noting that the double cross-over method is

a generalisation of single moving average signal generation, as the price line in the latter

can be regarded as a "one-period moving average" Finally, the double cross-over method

admits other, although strictly equivalent, representations The usual way the

transformation is done is to plot the difference between the two averages Buy (sell)

occurs this time when the moving average oscillator moves above (below) the zero line

When a trading rule triggers a signal around a zero line, it is often called an oscillator

Momentums

A standard momentum line is constructed by subtracting the closing price of k days ago

from the last closing price The result positive or negative figure is then plotted around a

zero line Then the general trading rule is based on the crossing of the zero line Buy (sell)

when the oscillator moves above (below) the zero line

Channels or Breakouts

Breakout systems also known as price channels or trading range say buy (sell) an asset if

the rate penetrates from below (above) the maximum (minimum) of the past m days m is

a given number of days which features the length of the channel

Filters

Filter systems are the primary technique for testing market efficiency, introduced by

Alexander(1961) and have since been used widely by other researchers However it must

be recognised that compared to the mechanical systems presented above this method is

far less popular among practitioners An x percent filter rule leads to the following
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strategy Buy an asset whenever it rises by x percent above its most recent trough Sell

the asset whenever it falls x percent below its most recent peak

All the systems we have examined so far share two characteristics in common

First, they are always "in" the market, either long or short of one asset unity That

means in practice that positions are never neutral or of variable amounts That will be the

primary assumption of this thesis The many hybrid indicators which have been

constructed allowing neutral positions to avoia whipsaws due to trendless markets, are in

fact, most often, nothing else than the association of basic trading rules, (Kaufman, 1987,

Schwager, 1984, Bechu and Bertrand, 1992, Cahen, 1990) A well known example

comes from the simultaneous use of momentums and moving averages, (Goldberg and

Schulmeister, 1988) Then it is simpler to study first the behaviour of elementary rules,

and second to consider the possibility of combining rules via rules correlations

Second, these four systems are all trend-following systems or convex strategies

They work best in trending markets During period of sideways movement they are

especially prone to generate false signals when trend (trendless) is measured by positive

(zero or negative) autocorrelations

2 2 3 Statistical techniques

Another forecasting approach is to study the properties and power of advanced

time-series techniques models By restricting the field of investigation to linear models, it

is possible to develop procedures such as Box-Jenkins(1976) to derive the linear

forecaster which minimises the mean squared error between forecasted and realised value

Proponents of these techniques are essentially found among academics and statisticians

and are widely used to forecast economic time series A comprehensive study of such

procedures can be found in Granger and Newbold(1986), Gouneroux and

Monfort(1990) An application to forecasting exchange rates is provided by Keller(1990)

Although preferred by academics, they are not ignored by quantitative investors as

testified by the journal "Stock and Commodities" from Weiss(1982a, 1982b, 1983) and

Parish(1990) It is often not easy to beat convincingly these simple linear univanate

ARIMA So these simple methods make excellent base-line models

There are two reasons that underpin the popularity of the Box-Jenkins methodology First

it allows to identify the underlying model and so to build efficient if not optimal

predictors Contrary to technical systems, they are designed to exploit specific

autocorrelations The second one is given by Neftci(1991) If the true process is linear,

time varying vector autoregressions (VARs) should be optimal forecasters over and

above technical analysis on the conventional basis of mean squared errors (MSE)
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2 2 4 Tundamental models

A detailed review of the economics affecting prices is beyond the scope of this thesis, but

it may be useful to outline the "fundamentalist approach"

Fundamental analysts study the fundamentals of companies (i e earnings,

dividends, risk, assets, management ) industry sectors and the overall economy to

identify investment opportunities Attention is focused on specific items of information

which are unknown to the market or which ar considered to be incorrectly valued by the

market In the foreign exchange market, the primary focus is on monetary policy

Fundamentalists claim that in the long term what underpin the trends of currency

movements are the balance of payments and relative prices

2 2 5 Patterns in financial forecasting and new avenues

In the last fifteen years, technical analysis has become increasingly used for financial

forecasting while fundamental analysis has decreased in importance

Recent experience has questioned the out-of sample accuracy of structural models

of pnce-rate determination Empirical studies of monetary/assets models developed in the

early 1980's3, indicate that no structural technique could appreciably outperform the

random walk model for any forecasting honzon less than 12 months In the foreign

exchange market, Frankel and Froot(1990 22) suggest that" It may [indeed] be the case

that shifts over time in the weight that is given to different forecasting techniques are a

source of changes in the demand for dollars, and that large exchange rates movements

may take place with little basis in macroeconomics fundamentals"

DuBois(1992) finds that technical indicators provide higher returns than

conventional fundamentals models in the equity market In addition technical and

fundamental models are very little correlated This strongly indicates that technical

methods must be used in addition (if not substitute) of fundamental models It might

explain why technical analysis has been increasingly used Firstly in the futures market,

and then in the foreign exchange market

Irwin and Brorsen(1985) review the trading strategies employed by public futures

funds Eighty-three percent of the funds used technical analysis The remaimng seventeen

percent applied a combination of technical analysis and fundamental analysis

In the foreign exchange market, Allen and Taylor(1989) report that 90 percent of

the market participants apply chartists techniques for short term investing Frankel and

3 See Table 2 3 for references
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Froot(1990) examine the data of reviews made by Euromoney of between 10 and 27

foreign exchange forecasting services In 1978, 18 forecasting firms descnbed themselves

as relying exclusively on economic fundamentals, and only 2 on technical analysis By

1985, the positions had been reversed Only one firm reported relying exclusively on

fundamentals, and 12 on technical analysis Alcabas(1991) observes a similar pattern in

France He discovered that, among dealers and portfolio managers, the use of technical

analysis has increased in frequency from thifty-five percent in 1985 to seventy-seven

percent in 1990

Technical indicators have been preferred by market practitioners to linear

forecasters because as Section 2 4 2 illustrates, the behaviour of financial prices is non-

linear However, one of the limitations of technical analysis is the difficulty in developing

models of financial prices Consequently, new technologies have then been proposed to

take profit of nonlineanties expert system and neural network

Conventional expert systems techniques have been studied by Lee, Tnppi, Chu and

Kim(1990), Pau(1991) Those technologies are especially suited for simulating in pattern

detection Pau(1991) uses expert systems to learn usual chartist techniques such that

recognition of patterns is improved An artificial intelligence approach to analysing the

stock market prediction decision has been presented by Braun and Chandler(1988)

Neural networks can assist directly with risk assessment, asset selection and timing

decisions They can be purely techmcal and so based only on the history of past prices

(White, 1988, Tnppi and DeSieno, 1992) In this case, neural network-based rules,

although more complicated in nature, can behave and exhibit performances close to well-

known mechanical systems Alternatively, neural networks can use external inputs such as

exogenous or fundamental variables, (Collard, 1991)

The above list is not exhaustive There are many other techniques which can be

used to forecast financial prices such as the nonparametnc rate prediction performed by

Diebold and Nason(1990), Satchell and Timmermann(1992a, 1992b)

23 A REVIEW OF THE LITERATURE

The weakness of forecasts based on fundamentals emphasises the need for other

forecasting strategies This research aims to contribute to the knowledge of financial

forecasting techniques based on past prices More precisely, it attempts to provide

answers to three issues, not yet addressed in the literature Namely
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Table 2.3 (continued) Financial forecasting studies
commodities filter

filter

newal netwoik(fundamental)
statistical

yes
yes
yes
yes

Bird(1985)
Kamdem(1988)
Collard(1988)

Leuthold and Garcia(1992)
exchange rates

'

statisical
filter

statistical

filter

moving average

monetary/asset model

statistical
moving average

moving merage, filter
techmcal adviser

filter

statistical
monetary/asset model

technical adviser

monetary/asset model

moving average filter, momentums
technical adviser
moving average

statistical
moving average, channel, statistical

non parametric technique

moving average, filter
moving average

monetary/asset model
moving aNerage, filter

trend lines

moving average

moving average
support and resistance

statistical
channel, statistical

statistical

non parametric technique

moving average, filter

no

no
yes
yes
yes

no
no
yes

maybe

no
yes

yes
yes

maybe

no

yes
maybe

yes

yes

yes
no
no

yes

yes

yes
no
yes

yes
yes
yes
yes
yes
yes

yes

Giddy and Dufey(1975)
Cornell and Dietrich( 1978)

Bilson(1981)

Dooley and Shafer( /983)

Bera Debeinex and
Domergue(1983)

Meese and Rogoff(1983a, 1983b)
Nawrocki(1984)

Neftci and Poliano(1984)

De la Bruslcric and dc Lattrc(1985)
Murphy(1986)
SWeeney(1986)

Bilson and Hsieh(1987)
Boothe and Glassman (1987a)

Cumby and Modest(1987)
Thomas and Alexander(1987)

Schulmeister(1988)
Allen and Taylor(1989)

Durus(1989)
Bilson(1990)

Tay lor(1990a, 1990b)
Diebold and Nason(1990)

De la Bruslerie(1990)
Neftci(1991)

Gerlow and Irwm(1991)

Levich and Thomas(1991)
Curcio and Goodhart(1991)

LeBaron(1991)

LeBaron(1992b)
Curcio and Goodhart(1992)

Taylor(1992a)
Taylor(1992b)

Lai and Pauly(1992)
Satchell and Tirnmermann(1992b)

Surmaras and Sweeney(1992)

As Table 2 3 shows, there has been a renewed interest in academic literature about

financial forecasting techniques and its ability to predict future prices However not all

results are comparable for at least three reasons Firstly, the methods employed differ

from chartist techniques and mechanical systems to statistical and monetary models

Secondly, performance has been evaluated in different ways, mainly error measure and
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profitability Thirdly, the underlying asset and penod of investigation have considerably

vaned although there is a net preference for exchange rates studies

An homogenous framework might be better achieved by studying the statistical

distribution of techrucal investments A better understanding of financial forecasting

methods might result from such researches

2 3 2 Statistical distribution of dynamic straegies

Many of the previous studiel of forecasting strategies have used historical returns to

explore the investment trade-offs involved These studies serve a very important role in

suggesting the histoncal behaviour of such rules However they may not constitute an

appropriate guide, because their results are highly dependent on the asset and time period

covered by the research Also a historical study might provide inadequate precision in

defining the shape of the return distribution Historical data allow only a very narrow

interpretation of historical events (i e that there was only one course history might have

taken and the fiiture could take) We believe this to be an unreasonably restrictive view of

reality For this kind of information, one has to turn to theoretic or stochastic modelling

The use of stochastic modelling to study the statistical distnbution of dynamic strategies

consists in three steps

(a) Determining plausible models of prices (Section 2 4)

(b) Establishing corresponding returns distributions of dynamic strategies (Chapters 3

and 5)

(c) Checking the validity of the model by comparing observed and theoretical returns

of dynamic strategies (Chapters 6 and 7)

The returns distnbution of a Buy-and-Hold strategy has the same shape as the distribution

of price returns used to produce it The same isn't true for more complex strategies The

returns distnbution of dynamic strategies can be different from that of the underlying

model and subsequently needs specific studies Tables 2 4 and 2 5 list some of these

works for portfolio insurance and technical analysis strategies They indicate

- the assumption made about the underlying process

- the rule under study

- the finding, distribution or moments, expected value plus vanance

- the technique used to establish results exact analytical development, Monte-Carlo

simulation or Bootstrap methodology4

4 See Section 6 3 1 for details about the bootstrap methodology
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Table 2.4: Distribution of portfolio insurance returns
Assumption rule distribution moments Author

Random Walk
with Drift

option
option

constant proportion
option
option

constant proportion
constant proportion, option

constant proportion
constant proportion, option

constant proportion. stop loss

simulation
simulation
simulation
simulation

k

sunu/ation

simulation

exact

exact

exact

exact

Cot and Rubinstem(1985)
Asa, and Edelsburg(1986)

Etzioni(1986)
Bookstaber and Clarke(1987)

Clarke and Arnott(1987)
Perold and Sbarpe(1988)
Thu and Kbaxee(1988)

Perold and Sharpe(1988)
Bird et *1990)

Black and Perold(1992)

Serial Correlation constant proportion simulation Inpqn and Rim% /990)

Table 2 4 shows that most often the strong assumption that active and reserve

assets follow geometnc Brownian motion is made Except Black and Perold(1992) who

give some results concerning path-dependent strategies (discrete rebalancing CPPI and

stop-loss strategy), studies have mainly focused on path-independent strategies since

under the random walk assumption only path-independency can maximise expected utility

and be of interest Exact analytical results of expected value of portfoho insurance

techniques can be found in Cox and Rubmstem(1985) for the option strategy, Black and

Perold(1992), Perold and Sharpe(1988) for the constant proportion strategy Simulations

have been necessary to establish the whole shape of option returns Clarke and

Arnott(1987), Bookstaber and Clarke(1987), Zhu and Kavee(1988) among others have

shown that options returns are able of reshaping the distribution of underlying returns

The distribution of options returns is not any more symmetric, but left-truncated and the

natural skewness of the log-normal return distnbution mcreases dramatically Zhu and

Kavee(1988) shows that those features apply as well for the constant proportion

technique The robustness of portfolio insurance strategies to meet their goal under

different market conditions and m particular their ability to protect against loss, have been

proved by Tripp' and Hamff(1991), Fong and Vasicek(1989), Bird, Cunningham, Dennis

and Tippett(1990)

On the one hand, the distnbutions of portfolio insurance returns have been the object of

numerous researches in the literature On the other hand, the distribution of technical

analysis returns has been the subject of very few academics researches as Table 2 5
shows
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On the other hand, if prices or price changes exhibit time dependence, then the past

history of prices can potentially be used to develop a reasoned and profitable strategy

(Sherry, 1992) As far as market efficiency tests are concerned, the statistical question of

dependencies is not particularly relevant on its own The question is instead can investors

exploit any dependency (be it "statistically significant or not')?

Serial correlation is probably the simplest and most easily understood

characteristic of a price series capable of justifying path-dependent strategies and so the

use of many mechanical systems Establishing expected value of path-dependent

strategies for any Gaussian process is of interest since it will ascertain whether such

dynamic strategies meet their goals Solving this issue will allow to determine if non-zero

profit can be expected from such methods and if this is the case what the parameters are

that make such a rule profitable The problem of specifying the relationship between

technical rule returns and standard statistical measures of serial dependency is pursed in

previous research using empirical observations (Corrado and Lee, 1992) but not using

stochastic modelling The latter specification is useful because technical rule returns

provide a measure of economic significance for serial dependencies in financial returns

that otherwise might not be readily interpretable French and Roll(1986), for example,

note that gauging the economic significance of daily stock return autocorrelations

difficult The reverse question is "How large deviations from randomness, as measured

for instance by runs tests and serial correlations, are required if there is to exist profitable

mechanical trading rules of the filter type 9" (Jennergren, 1975 67)

An informal answer is at the present state of knowledge that there exist trends

The reason is that convex technical rules require trends to be profitable (Perold and

Sharpe, 1988, Tnppi and Hamff, 1991) The main concern of market practitioners is to

elaborate statistics allowing to separate random drifts from trends (Poulos, 1991, 1992a,

1992b) Despite the fact that academics themselves recognise the difficulty they have in

giving a formal definition of trend, attempts have been made nevertheless, and then will

be discussed in details in Section 2 4 Formulating trends from a pure statistical point of

view is of importance because it permits to study the profitability of technical rules when

there are such trends (Taylor, 1990a, 1992b, Brock, Lakomshok and LeBaron, 1992,

LeBaron, 1991, 1992b) Previous studies have proceed by bootstrap or simulation

approach and so, as Curcio and Goodhart(1992) admit, they have not been able to

examine how trading rule returns are related to the statistical characteristics of the

underlying series Empirically, the relationship between the magnitude of serial

correlation coefficients and the expected profits of technical trading rule is difficult to

exhibit (Fama and Blume, 1966) Our goal is to show that using stochastic modelling, it is

possible to establish the parameters of the underlying process which can generate non
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zero expected return from technical analysis This will be informative for both

practitioners and academics

It could firstly allow practitioners to know under which market conditions what technical

rules perform Chapter 3 and Section 4 1 intend to solve this issue when the underlying

asset follows a Gaussian process Secondly relating rule and underlying returns would

allow academics to test the adequacy of their models by measuring the fitness of observed

with expected rules returns That is the purposk of Chapters 5, 6 and 7

2 3 3 Error measures and profitability

The methods that are proposed as providing useful forecasts of price changes or returns

need to be evaluated The problem is that there does not exist an unique universal

performance criterion In finance there are mainly two, profitability and error measure,

usually depending on the nature of the forecaster technical or statistical It explains why

those two kinds of forecasters have often been considered as unrelated investment

strategies For instance Dums(1989) and Keller(1989) treat both financial forecasting

methods in different chapters of a same book ignonng any possible analogy The same

applies for Herbst(1992) Recently efforts have been made to compare technical and

statistical forecasters in a common literature review (Granger, 1992), survey (Allen and

Taylor, 1989) and theoretical work (Neftci, 1991) Allen and Taylor(1989) compare a set

of empincal chartist forecasts in the London foreign exchange and the Box-Jenkins

approach Then they establish ranking of forecasting techniques in terms of mean squared

error and find one chartist able to significantly outperform Box-Jenkins forecasters

Neftci(1991) stipulates that if the underlying price process P t) is linear in the sense he

defines then no sequence of Markov times obtained from a finite history of {P,} can be

useful in prediction over and above (vector) autoregressions Nevertheless he does not .

quantify forecasting accuracy of technical analysis and implicitly concludes that in terms

of error measure, technical forecasters are suboptimal when the process is linear

However a puzzling question first asked by Elton and Gruber(1972) has not yet been

answered what are the sets of conditions under which particular mechanical techniques

are optimum forecasters ? This of course raises the question of how does one define

optimality ? Are the rankings of forecasting methods cntena dependent 9 Is the most

accurate system in term of mean squared error the most profitable ?

In the affirmative, how misspecified are technical analysis indicators relatively to

optimal ARMA forecasters Are technical analysts "in complete darkness" or not too far

from the optimal system ?

In the negative what is the most profitable forecaster ? This question is still open

at the present time
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Economists are often puzzled as to why profit-maximising firms buy professional

forecasts when statistics such as the root-mean squared error or the mean absolute

percentage error often indicate that simple extrapolative models such as the random walk

forecast almost as well Leitch and Tanner(1991) conclude that a possible reason is that

these traditional error measures may not be closely related to a forecast's profitability

Fnend and Westerfield(1975) argue that trading rules could test the economic quality and

quantity of information whereas statistical t9ts can only test for the existence of the

information White(1988) believes on the one hand that the method of least squares is

adequate for testing the efficient market hypothesis On the other hand, he strongly points

out that least square is not necessarily the method that one should use if interest attaches

to building a rule for market trading purposes Such rules following White(1988) should

be evaluated and estimated using profit and loss in dollar from generated trades, not

squared forecast error Leuthold and Garcia(1992) express a slightly different opinion

They believe that relative Mean Squared Errors provide only an indication of the potential

for market inefficiency A sufficient condition for market inefficiency would be whether

the forecasting method can generate risk-adjusted profits which exceed the cost of usage

Mills(1992 36) states "Financial market are often predictable to some extents, but the

crucial question is whether this predictability can be exploited to make excess profits

from trading in the markets"

In sum, academics unanimously recognise that error measures and profits are different if

not unrelated performance criteria They however disagree on the consequences of these

discrepancies on market efficiency tests Still no theoretical attempts to our knowledge

have been made to relate ex-ante profits and error measures That will be the object of

Chapter 4 which will compare accuracy and profits of quantitative techniques assuming

that the price process is Gaussian

2 3 4 Similarities and differences between trading rules

Theoretical correlations between statistical and technical trading rules are an alternative

way to relate forecasting methods Establishing theoretical correlations between trading

rules has been considered as an extremely difficult task (Brock, Lakoiushok and LeBaron,

1992) However in Section 5 1, it is shown that exact analytical results can be obtained

under the assumption that the underlying process of pnce returns follows the random

walk without drift There are three reasons for investigating correlations between trading

rules

Firstly, rules correlations would provide a measure of similanty between trading

systems With the exception of Lukac, Brorsen and Irwm(1988a), rules have been merely

listed than classified on the basis of their properties Rules belong normally to two
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classes (a) trend-following and (b) overbought-oversold indicators (Kaufman, 1987,

Schwager, 1984, Bechu and Bertrand, 1992, Cahen, 1990) Overbought-oversold

indicators differ from trend-following systems in that they are designed to anticipate

rather than simply lag changes in price movements They include among others the

momentum and moving average oscillators They often have been considered and

reported as non-trend-following rules (Allen, 1990) That is obviously a misconception

that this thesis will attempt to solve Many sntems which are considered to be different

are extremely similar if not completely identical A simple example is the strict identity

between the indicators simple moving average of order 2 and momentum of order 1 6 So

it seems to us that distinguishing rules on the basis of their convex-concave properties is

far more relevant and less ambiguous than on the basis of trend-following, overbought-

oversold A proper classification of trading rules is therefore needed Such a classification

would be of immense help For instance, it is not unusual to find trading rules based on

more than three parameters So testing the profitability of such a rule, at each

combination of possible parameters, can be time consuming and a demanding task even

for powerful computer Prado(1992) designs to this effect search algorithms He however

recogmses that the lack of thoroughness caused by the very limited scope of the step

search can prove to be large drawback in some cases, especially if the step search reveals

that each variable contributes significantly to performance It follows that the knowledge

of trading rule correlations might allow more efficient search algorithms

Secondly, rules correlations would permit the construction of an efficient

portfolio of rules Until now such portfolios have been build empirically for given

financial time series, (Brorsen and Lukac, 1990) but have never been established

theoretically for given stochastic processes

Thirdly, rules correlations would allow the establishment of the Joint profitability

of mechanical systems The resulting tests of non-zero profitability could then be more

powerful than any single test (Brock, Lakomshok and LeBaron, 1992) This pomt will be

considered in Chapter 5

2.4 MODELS IN THIS RESEARCH

Section 2 3 2 has shown the advantages of establishing the return distribution of a

technical strategy using theoretic or stochastic modelling Stochastic modelling is used in

the research to assess the ability of forecasting strategies to meet their goal under a broad

6 This fact has been ignored by Goldberg and Schulmeister(1988)
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set of market conditions Subsequently, this will allow to determine models for prices or

returns which can reproduce all the known properties of recorded pnces, and in particular

the trading rules performances

The probabilistic foundations of prices changes have been first established by

Bachelier(1900) The basic hypothesis is that the market does not believe, at a given

moment, either to an increase nor to a decrease of level Consequently, the expected

value from speculation is zero There are in fact three statistical hypotheses in

Bacheher(1900) model

(a) the process is strictly stationary

The multivariate distribution of pnce changes does not depend on the choice of time

(b) the process is without memory

Price changes are independent over time The knowledge of past variations cannot give

any indication about its future values

(c) the variance of the process exists

More precisely, Bachelier(1900) implies that prices changes have independent and

normal distributions Then Osborne(1959) instead of considering the process of price

changes prefers studying the quantity

Xt = Ln(Pt /13„.1 )	 [2 1]

where Pt is the asset price recorded once on each trading day t (week, month, year),

always at the same time of day It is assumed in addition that no dividends are paid during

day t Osborne's(1959) transformation is due to the fact that direct statistical study of

financial prices is difficult because consecutive prices denote non-stationanty

Subsequently first differencing is necessary to achieve stationanty In addition, the

logarithmic transformation aims in particular at diminishing scale effects Then continuous

time generalisations of discrete time results are then easier and returns over more than

one day are simple functions of single day returns Returns are said to be normally

distributed or alternatively prices lognormally Numerous operational applications have

followed from these results and its continuous version such as option and portfolio

insurance theories For instance, the Black-Scholes(1973) option pricing formulae are still

widely used

However two observations seem to contradict the assumptions of independent

normal returns Firstly, market prices exhibit slow and irregular cycles which question the

hypothesis of independence Alternative models can still be normal but dependant (linear

models) Secondly, financial time series often present discontinuities or jumps far too big

to be compatible with normal process (nonlinear models)
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It appears in many cases difficult to refute the stationanty hypothesis (a) which might be

the most important in Bachelier(1900) assumptions When the stationanty hypothesis is

rejected, the statistical framework becomes unoperational if not unclear A notable

exception is the ARCH moder

A choice of which models to include in this research had to be made because

financial models are abundant and in growing numbers The reader is referred to

Duffie(1988) and Roger(1991) for good introductions to financial modelling, and for

deeper approaches to Taylor(1986) and BaiIlie and McMahon(1989) It seems here

unrealistic to consider all the models proposed in the literature to charactense financial

pnces Our selection has been based on two criteria, popularity and tractability The

models presented below reproduce the broad, popular and plausible features of financial

pnces previously mentioned In addition, it will be possible to study their ability to

duplicate trading rules returns

2 4 1 Linear models

Stock indices have often exhibited trends and cycles implying the presence of serial

correlation over business and election cycles and during period of economic instability In

addition serial correlation has been frequently observed in the prices of other types of

assets, such as commodities and currencies

So it is not unreasonable, at least as a first approximation, to consider Gaussian models of

financial prices That is, the joint distnbution of (X,÷1,X,+2, Xt+k) is multivariate normal

for every possible integer k Gaussian processes will be defined by

u = E(X)	 a2= Var(Xt) ,

Ph = Corr()C,Xt+h) = autocorrelations between )C and Xt+t,

Stationary Gaussian processes are always linear

A more general definition of linear process is

00

Xt = p. + E b je t_j	 [22]
j=0

where (st ) is a zero mean strict white noise process and constants hi

There are three important special cases of linear models the moving average mgo , the
autoregressive AR(p) and the autoregressive-moving average ARMA(p,q) models They

are respectively defined by

7 See Section 2 4 2
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One simple example assumes the return )C is the sum of an autoregressive trend

component p, and an unpredictable residual ;

Xt p„ + et	[27]

1-L t 	= PO-4-1 - 12) + Ct [28]

A = Var(p„)/Var(Xt )	 [2 9]

The returns then have autocorrelations ph = Aph	[2 6]

The processes (4,), and {et) are supposed to 6e stochastically independent and Gaussian

processes (hence linear)

Equation [2 8] is a measure of the proportion of slowly reflected information The first

day, there is a probability p that the news is slowly reflected and contnbutes to pcp and a

probability 1-p that the news is quickly reflected and contnbutes to ; Prices, therefore,

would tend to move in one direction (the trend) for a penod of time and that these trends

themselves change in a random and unpredictable fashion Then the total response is
equal to md times the first day's response and m d will be called the mean trend duration

of such trends It is shown to be

ma
	 13)
	

[2 101

The price-trend model is in fact nothing else than a state representation of an ARMA(1,1)

defined by

X1	 P(Xt-i — 11) = —	 [2 11]

where the vanance reduction A is linked to p and q via

A = (p— q)(1— pq)/(p (1— 2pq-Fq 2 )}	 [2 121

Consequently, it allows to include this particular pnce-trend model as a special

case of Gaussian processes8

There are many more statistical models consistent with the price-trend hypothesis, such

as models which include changing conditional variances and nonlmearthes They can be

found in Taylor(1986) For the sake of tractability, these models will be ignored m this

thesis and other nonlinear models preferred

242  Nonlinear models

One of the first complete studies on daily returns was done by Fama(1965) who found

that returns were negatively skewed and leptokurtic More observations were in the left-

hand (negative skewness) tail than in the right-hand tad In addition, the tails were fatter,

8 This point will be of extreme importance m Chapter 3
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and the peak around the mean was higher than predicted by the normal distribution

(leptokurtosis)

Since then, many studies have shown that market returns are not normally distributed

(Taylor, 1986, Boothe and Glassman, 1987b, Tucker and Pond, 1988, Hsieh, 1988) but

rather follow a stable paretian distribution, meaning that the variance is infinite,

(Mandelbrot, 1971, Cornew, Town and Crowson, 1984, McFarland, Petit and Sung,

1982) More generally there is a growing evidtrice that prices are nonlinear, (Hinich and

Patterson, 1985, Goouer, 1989, Brock, Hsieh and LeBaron, 1991) Since the class of

nonlinear stochastic model is extremely large, we restrict our attention to two classes,

which encompass all nonlinear stochastic models discussed in the time series literature

(Brock, Hsieh and LeBaron, 1991)

Mean-Nonhneanty
	

Xt = A(J) + et

Variance-Nonlineanty
	

xt = BUJ et

where Jt	et_k]' Here et is an IID random variable with zero man and

independent of past X's and e's, and A and B are arbitrary nonlinear functions ofJt

In this thesis, attention will be limited, for the sake of tractability, to the ARCH(p) model

for the variance-nonlineanty case and to the fractional Gaussian process for the mean

nonhneanty case

Autoregressive conditional heteroskedasticity ARCH(p)

The approach to modelling changes in conditional variances is due to Engle(1982)

Engle(1982) defines a zero-mean, autoregressive conditional heteroskedasticity ARCH(p)

process, Xt, by

Xt=,t+{ a o	 (xt-i —14 2 }st
	 [213]

1=1

there being p+1 non-negative parameters a, with cc 0 >0 and et Gaussian white noise, with

et—N(0, 1) This model has very complicated unconditional distnbution and it is difficult to

establish conditions for stationanty and then to find the moments However, it must be

emphasised that an ARCH process constructed from stnct white noise will always be

uncorrelated Then extensions have been proposed to introduce small autocorrelations,

(Taylor, 1986) The ARCH model is in fact one of the many possibilities to model

changes in conditional vanances (Taylor, 1987, Curdy and Morgan, 1987, Badhe and

McMahon, 1989) It has nevertheless profound implications on financial theory,

(Gouneroux, 1992)
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Fractional Gaussian process

The efficient market hypothesis implicitly assumes that all investors immediately react to

new information, so that the future is unrelated to the past or the present Peters(1991)

assumes on the other hand that most people wait for information and do not react until a

trend is clearly established The amount of confirming information necessary to validate a

trend vanes, but the uneven assimilation of information may cause a biased random walk

Biased random walks were first studied by Hukst(1951) They are equally called fractional

brownian motions or fractal time senes Since Mandelbrot(1971), fractional noise has

become a quite popular model of financial rates and is now considered as a plausible

alternative to the random walk hypothesis (Walter, 1990, 1991, Peters, 1991, Sowell,

1992)

A good introduction to long memory time senes and fractional differencing can be found

in Granger and Joyeux(1980) A discrete time analogue of continuous-time fractional

noise is given in Hosking(1981) Hoslcing(1981) discretization has got the advantage

beyond others to be a simple extension of linear Gaussian processes While still keeping

the stationanty hypothesis, this model has now the potential to explain pnce jumps

empirically observed

An ARIMA(0,d,0) process or fractional Gaussian process, is formally defined by

Hosking(1981) as

Vd (Xt — = e t [214]

where vd	 B)d = ( Id()(— B)k = 1—dB-1d(1—d)132 -1d(1—d)(2—d)B 3 —	 [215]
k =0

and B is the backward operator defined by B(X t)=Xt_ i , 1.1 the mean return and (;) the

white noise process In this thesis, the (et ) consists of independent identically distnbuted

(normal) random variables with mean zero and variance a! The following theorem gives

some of the basic properties of the process, assuming for convenience that a! =1

Theorem I

Let {X,} be an ARIIVIA(0,d,0) process

(a) When d <I, { X,} is a stationary process and has the infinite moving average

representation

(k+d-DI
+ Wket-k Where Nik

k=0	 kl(d —1)1

CO
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(_1) k (_2d),

(k—d)1(—k—d),
(c) the covariance function of {X,} is Yk E(Xt Xt_k ) =

(b) When d >	 {Xt } is invertible and has the infinite autoregressive representation

Et k ( Xt-k	 = e, where ; 
k 	 d-1)I

k=0	 k	 —

=and the correlation function of { Xt } is Pk =	
(—d)I(k+d-1)1

(C=0,+1, ) [2 16]
70	 (d-1)'(k —d)'

From the theorem we see that when	 <d < I, the process {Xt} is both stationary and

invertible Both xii k and k decay hyperbolically, rather than showing the exponential

decay characteristic of an ARIMA(p,0,q) process McLeod and Hipel(1978) define a

stationary process as having a long or short memory according to whether its correlations

have an infinite or a finite sum Theorem 1 implies that the ARIIVIA(0,d,O) process is a

long memory stationary process when 0 <d <f

When 0< d <4, the ARIMA(0,d,0) as such may be expected to be useful in modelling

long-term persistence The spectrum as a whole has a shape "typical of an economic

variable" (Granger, 1966) The correlations and partial correlations of PC} are all

positive as for the pnce-trend model If the series has been up (down) in the last period,

then the chances are that it will continue to be positive (negative) in the next period

Walter(1991), Peters(1991) even add that in this case trends are apparent The closer d is

to 0, the noisier the trend-reinforcing behaviour will be, and the less defined its trends will

be

When d=0, the ARIMA(0,d,0) process is white noise, with zero correlations and constant

spectral density The present does not influence the future

When -- <d <0, the ARIMA(0,d,0) process has a short memory and is an antipersistent

or ergodic series It is often referred to as "mean reverting" Except pc, = 1, the

correlations and partial correlations of the process are all negative If the series has been

up in the previous period, it is more likely to be down in the next period This kind of

series would be choppier, or more volatile, than a random series, because it would consist

of frequent reversals

The fractional Gaussian process has only three parameters, mean, variance and

fractional parameter d or alternatively the Hurst exponent H which is linked to d by the

relation given by Hoslcing(1981), Geweke and Porter-Hudak(1983)
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H=d+0 5	 [2 17]

The Hurst exponent describes the likelihood that two consecutive events are likely to

occur (Peters, 1991) If H=0 6, there is, in essence, a 60 percent probability that if the last

move was positive, the next move will also be positive

Financial fractional Gaussian process usually fall in the range 0< d < or

equivalently <H <1 (Walter, 1991, Peters k 1991) They so are charactensed by a

tendency to have trends and cycles, as the price-trend model However opposite to this

one, the fractional Gaussian process exhibits abrupt and discontinuous changes because

of an infinite, or undefined variance Cycles are no longer regular but erratic and

apenodic

Two important properties of chaotic time series must be highlighted

(a) The generated time series are completely apenodic, i e they never repeat themselves

This does not mean that the observed patterns have to be totally disorderly It is very

possible as mentioned earlier that one can distinguish patterns that look like cycles but

that suddenly disappear after a number of periods Also it is possible that the variance of

the observed time series remains constant for a long period of time and then changes

without reason

(b) In addition to this apenodic behaviour, chaotic systems have a second remarkable

property The generated time series are extremely dependent on initial conditions In

order to use the model for forecasting purposes, we should be able to obtain infinitely

precise estimates of the parameters of the model

Finally it must be said that the fractional Gaussian process is a particular case of a more

general model, the ARIMA(p,d,q) model (Hosking, 1981, 1984)

Benefits can arise from considering nonlinear models Granger(1992) indicates that many

forecasters need to break away from simple linear uruvanate AREVIA Following

Granger(1992), it is often not easy to beat convincingly these simple methods, so they

make excellent reference models, but he concludes that they often can be beaten Diebold

and Nason(1990) expressed a mixed opinion about nonlinear models On the one hand,

they recognise that important nonlineanties may be operative in exchange rate

determination On the other hand they ask a puzzling question " Why is it that while

statistically significant rejections of linearity in exchange rates routinely occur, no

nonlinear model has been found that can significantly outperform even the simplest linear

model in out-of sample forecasting 7 "Despite its increasing popularity, the evidence for
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chaotic and infinite variance models is not strong (Lo, 1991) Finite-variance models

often outperform asymmetric stable distribution (Tucker, 1992)

It follows that nonlinear models constitute a serious alternative to linear models,

although not yet a substitute It has not yet been proved that nonlinear models yield

significant ex-ante forecast improvement (Diebold and Nason, 1990) Finally, there

appear to be weak connections between , technical trading rules and nonlineannes in

foreign exchange series (LeBaron, 1992b, Antornewicz, 1992)

This is why our choice of models seems a priori rational in terms of both economic and

statistical importance

n

2.5 SUMMARY

Both portfolio insurance strategies and forecasting methods are similar in that they are

convex However they differ in that the forecasting methods applied in trading are path-

dependent, while portfolio insurance techniques are generally path-independent This

crucial difference is the result of opposite views about the statistical nature of the process

which drives prices

If financial pnces follow a random walk, path-independence is required to maximise the

utility function of an investor Then investment strategies are formulated not for purpose

of enhancing returns, which is not possible under the assumption of random walk, but in

order to reshape the onginal return distribution, so as to minimise the downside nsk

If financial prices do not follow a random walk, path-dependent strategies can be of use

However one needs to establish under what particular market conditions, what particular

forecasting strategy is useful The most apparent criterion for measuring the usefulness of

path-dependent strategies is profitability

To assess profitability, one has to turn to stochastic modelling, because it is the

only tool available which is independent of time period or asset Therefore, plausible

models of financial prices are presented Since maximising returns is the primary objective

of market timers, the expected return of a trading rule is subsequently the most important

statistic which needs to be established
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Chapter 3

STOCHASTIC PROPERTIES OF TRADING RULES

\

According to portfolio insurance studies, the best way to estimate the distnbutional

properties of an investment strategy is through stochastic modelling That is done in this

chapter for forecasting strategies, by assuming that logarithmic returns follow rather than

a random walk any Gaussian processes That constitutes a considerable improvement of

past studies since it covers a wider range of possible market conditions Particular

emphasis is given to the expected return of trading rules by providing exact analytical

formulae This chapter contnbutes to the discussion of economic versus time series

analysis by addressing two fundamental issues of this debate

a) Are the models proposed by academics useful for forecasts ? In other words

can a profitable decision rule be based on them ?

b) Are technical forecasters able to trade profitably ?

Section 3 1 defines the trading rule process Section 3 2 explains the goal of stochastic

modelling and our underlying assumptions Section 3 3 defines VARs models and their

expected rate of return Section 3 4 shows that many techrucal indicators can be

reformulated as VARs models Consequently, technical and VARs predictors used for

trading purposes are seen as "linear rules" and therefore can be examined in an umfied

framework Finally, Section 3 5 summanses and concludes our results

31 TRADING RULES

3 11 Rule signals

Suppose that at each day t, a decision rule is applied with the intention of achieving

profitable trades It is the price trend which is based on market expectations that

determines whether the asset is bought or sold When the asset is bought, the position

initiated in the market is said to be "long" When the asset is sold, the position initiated in

the market is said to be "short" A forecasting technique is assessed as useful and will
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" S ell " <7> B t = —1 a

" Buy" a B t = +1 a
Ft	 f (Pt ,	 ,11t-m+1,

Ft — f (Pt	 7 Pt-m+1

subsequently be used if it has economic value In short, the forecast is seen as useful if in

dealer terms, it can "make money" For achieving this purpose, market participants use

price-based forecasts Therefore the predictor F t is completely characterised by a

mathematical function f of past prices k 	 7Pt-m7 P

Ft = f( Pt	 )

The only crucial feature which is required from the forecasting technique is its ability to

accurately predict the direction of the trend it order to generate profitable buy and sell

signals Trading signals, buy (+1) and sell (-1), can then be formalised by the binary

stochastic process Bt

It must be remarked that the signal of a trading rule is completely defined by one of the

inequalities giving a sell or buy order, because if the position is not short, it is long

Only in the trivial case of a Buy and Hold strategy, the signal B t is deterministic and is +1

irrespective of the underlying process Otherwise, trading signals B t are stochastic

variables They are time series of binary data generated by an underlying time series of

continuous data The family of discretization mechanisms is broad since it is the one of

trading rules But in all cases, discretizations anse by a truncation of a continuous-valued

process which is a special case of Keenan(1982) By nature, the signal is a highly

nonlinear function of the observed price senes P (Neftct and Poliano, 1984, Neftci,

1991), and therefore it can be highly dependent through time Bt remains constant for a

certain random period, then jumps to a new level as P t behaves in a certain way Trading

in the asset occurs throughout the Investment horizon at times that depend upon a fixed

set of rules and future price changes

As an example, consider a moving average of order five (days) defined as

p Pt + Pt-1 + Pt_2 +P1_3 +P 4
f (Pt	 7 Pt- m+1	 )	 t

5

Figures 3 1 [a] and [b] illustrate this behaviour when applied to the moving average

method which says when the rate penetrates from below (above) a moving average of a

given length, a buy (sell) signal is generated

or logarithmic returns {Xt,	 }, since these ones are simple function of past prices
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R, = — X, if 	 =— 1 1

R, =+ X, if B 1 =+1 f
[3 1]Rt = B1-1 XIt

 
<=>

3 1 2 Rule returns 

The study of the binary process of signals is of limited interest for trading purposes The

focus should be the economic consequence, i e the returns process implied by the

decision rule, rather than on the generating process of the signal

Let us recall the investment strategy

Assume a position is taken in the market for a Alven period [t-1 ,t} The loganthmic return
during this time is X= Ln(P1 /P1_ 1 ) The nature of the position (long or short) is given

by the signal tnggered at time t-1, Bt. , following a given technical rule

Returns at time t made by applying such a decision rule are called "rule returns" and

denoted R, Their value can be expressed as

Two important remarks should be made

(a) Rule returns are the product of a binary stochastic signal and a continuous returns

random variable Except in the trivial case of a Buy and Hold strategy, the signal B, is a

stochastic variable and so rule returns are conditional on the position taken in the market
(long B, +1 or short B, = —1) That is the main feature of rule returns Up to this point,

little attention has been paid to the rule returns process Earlier studies have mainly

focused on the pnce change process or underlying returns The fact is that when

evaluating forecasting ability the mean squared error criterion has been used to evaluate

their usefulness rather than any economic evaluation So their measures have been

unconditional to the position taken in the market

(b) Our rule return definition clearly corresponds to an unrealised return By unrealised

we mean that rule returns are recorded every day even if the position is neither closed nor

reversed, but simply carries on

3 1 3 Realised returns

By realised return we mean cumulated daily returns until a position is closed and

reversed from long (short) to short (long) A position is opened at time t if the signal

triggered at t is different than at t-1 and then is closed at time t+n when an opposite signal

occurs for the first time When opening a position, one cannot say with certainty when it

is going to be closed and reversed For technical indicator, it depends on the rule itself
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1
[32]

and the stochastic process of prices Indeed reversal of positions occur at random

moments even if signals are triggered on a deterministic (daily) basis For instance, they

occur on days 1, 6, 9, 10, 11 on figure 3 l[b] Nevertheless, realised returns are "true

returns" and exhibit the real timing of cash flows generated by technical strategy The

realised return can be expressed mathematically by

n

R = E Rt+D
D--.1

where D represents the stochastic duration of the position which will last n days if

tp ---11 } <=> ( Bi- i#13t, Bt=Bt+.1=4- =B1+n-1 3 Bt+n-1 413t+n 1	 [3 3]

Equations [3 2] and [3 3] show the main difficulty when studying realised returns They

are the sum of a stochastic number D of random variables X The fact that the duration

D depends on the logreturns )C through a quite complex relationships renders equation

[3 2] of limited practical use

Realised returns are highly heteroskedastic even if the underlying process is not

(Cumby and Modest, 1987, Hartzmark, 1991) Moreover, because trading systems are

usually designed to cut losses quickly and let profits ride, realised returns are in addition

positively skewed and leptolcurtic (Cornew, Town and Crowson, 1984, Bookstaber,

1985, Goldberg and Schulmeister, 1988, Rechner and Poitras, 1993) In what follows,

heteroskedasticty, skewness and leptokurtosis of realised returns are quantified for the

simple moving average rule using stochastic modelling

It is assumed that the process of logarithmic returns is a normal random walk

without drift Then the returns distributions of the simple moving average of orders 2, 10

and 50, have been established using Monte-Carlo simulations (Table 3 1) It can be seen

first that summary statistics (average, variance, kurtosis and skewness) of simulated

returns following the simple moving average of order 2 are very close to their exact

values determined in Appendix 3 4 Realised returns following the simple moving average

of order two exhibit identical expected value (zero) than underlying returns but double

variance due to non-normality When the order of the moving average increases, the

average duration of the position increases and consequently the variance of realised

returns A similar phenomena can be observed for the coefficients of kurtosis and

skewness In fact, realised returns exhibit for different rules very different shape of

distributions (risk, skewness and kurtosis), under the random walk without drift

assumption Subsequently, one could wrongly conclude that all rules are not equally risky

under the random walk assumption, but that the longer term the rule is, the riskier it is

This theoretical feature has unfortunate consequences when testing the significance of

trading rules profits Perfectly good performance records will be downgraded in
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comparison to others which simply possess a more nearly normal distribution (Cornew,

Town and Crowson, 1984) Thus, Sharpe ratios from non-normal distributions will on

average underestimate trading performance

Table 3 1: Realised returns statistics under the random walk assum tion

Realised returns statistics following a simple moving average rule

Monte-Carlo simulations N(0,t:7
2

) , o-=--7 E-3 2500 observations replicated 250 times
\

Statistic\Order 2 10 50

Average -1 408 E-5 (0)2 -8241 E-5 2 1154 E-4
Standard deviation 9 876 E-3 (9 900 E-3) 16 309 E-3 24 792 E-3

Kurtosis 5 057 (5 320) 13 477 21 776
Skewness 1 663 (1 693) 2 663 3 814

Trading practices when recorded on a realised basis produce asymmetry Then this raises

the issue of whether " the average abnormal return is a sufficient and even interesting

statistic when the trading rule generates a skewed distribution of abnormal returns ",

(Ball, 1989 605) It is not absolutely certain that the variance of realised returns

adequately describes the risk of a technical indicator Past studies based on realised

returns might be flowed, mainly because they imply different risks for different rules

applied to a same underlying process (Goldberg and Schulmeister, 1988, Lukac, Brorsen

and Irwin, 1988b, Taylor, 1990b, Balsara, 1992 Table 9 3, Rechner and Poitras, 1993)

The T-Student given in these studies and technical analyst reviews (Knight, 1993) might

say nothing about the usefulness of a technical indicator for reasons given above

In sum, the use of realised returns as a measure of performance should be avoided

whenever possible because it may be confusing to compare dynamic strategies that have

different variances, skewness and kurtosis Sometimes there is no other alternative as

when investment performance is recorded through surveys (Cumby and Modest, 1987,

Hartzmark, 1991) However when studying mechanical systems, unrealised returns can be

easily evaluated and should indeed be preferred to realised returns for their statistical

properties we now establish

2 In bracket are the theoretical results which can be found in Appendix 3 4
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3 2 STOCHASTIC MODELLING

321  Goal

An important question not yet answered in the literature is to know how profitable are

forecasting strategies Can non-zero profit be awaited from such methods and if yes what

are the parameters of the underlying price process making the rule profitable'? The goal of

this chapter is to specify the theoretical relationship between rule returns and standard

statistical measures of serial dependency Such a specification, although not pursed in

previous research, is useful because rule returns provide a measure of economic

significance for serial dependencies in financial returns that otherwise might not be readily

interpretable As emphasised in Section 2 3, gauging the economic significance of

observed daily asset return autocorrelations is difficult The relationship between the

magnitude of observed serial correlation coefficients and the profits of technical trading

rule is indeed difficult to exhibit This chapter attempts to solve this issue by examining

how trading rule returns are related to the statistical charactenstics of the underlying

series Our goal is to show that using stochastic modelling, it is possible to establish what

are the parameters of the underlying price process which generate if any non zero

expected return from trading rules

3 2 2 Assumptions

For the remainder of this chapter, we will assume that the underlying process of

logarithmic return X. is stationary and Gaussian3 Two reasons can be given for

restricting our study to such processes

(a) The very few studies that have tried to analyse forecasting strategies have all

investigated the case of Gaussian processes (Neftci, 1991, Bird, 1985, Sweeney, 1986,

Praetz, 1976, Taylor, 1990a, 1992b, LeBaron, 1991, 1992b) Indeed as Neftc1(1991)

points out very little is known about the statistical properties of forecasting strategies So

a Gaussian process may be the preliminary step to more complex models Gaussian

processes contain by themselves a wide class of models and therefore monitor a wide

range of possible market conditions

(b) It is questionable whether complicated nonlinear models will bring much additional

support to our argumentation For instance, rule returns are not very sensitive to the

conditional heteroskedasticity effects m comparison to the positive autocorrelation

effects That is shown via Monte-Carlo simulation, m Taylor(1992b, Table 2) for the

3 There will be one exception the ARCH(p) model
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channel rule under the , assumption of a price-trend model with conditional

heteroskedasticity, and in Antomewicz(1992, Chapter 4 Section 4) for the simple moving

average rule under the assumption of a GARCH(1,1) and an AR(1) model with nonlinear

moving average structure LeBaron(1992b) shows that trading rule results themselves are

not necessarily indicative of nonlmeanties in foreign exchange series He finds in

particular that linear models are capable of replicating the trading rule returns along with

the small autocorrelations observed in these series

Since very little is known about the properties of forecasting strategies when the

underlying model is nonlinear, the cases of ARCH(p) and fractional Gaussian processes

will be studied in detail Despite the fact that many other non-linear processes have been

considered for modelling financial returns (Section 2 4 2), they will not be studied here

since corresponding rule returns are difficult to establish

In order to model rule returns, restrictions must be placed not only on the nature of the

underlying process but on the nature of the rule used as well We have already restricted

our choice to well-defined rules in the Neftci(1991) sense and rejected some of the

arbitrary rules used by chartists such as various patterns, trend crossing methods of which

certain are ill defined (Neftci, 1991) However even when indicators are well defined, it

does not mean their statistical properties can be tracked analytically This is why the set

of trading rules investigated in this thesis will be restricted to VARs models and linear

technical rules we now define

3.3 VECTORS AUTOREGRESSIONS (VARs) MODELS

3 3 1 Definition

Instead of considering the process of prices, academics prefer studying the compound

logarithmic returns (logreturns) process4 defined by

Xt = Ln(Pt / 1Pt-i,	 [2 1]

The return )C is the change in prices between time t-1 and t, assuming that no dividends

are paid during day t A linear forecast is then used to predict one-step ahead return Xt±i

given by

.0
Ft = 5 + E d j Xt_j	 [341

i=0

4 See Section 2 4
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with 5 and the d being constants
J

We will note 1.I F the expected value of F, and cii. the variance of Ft

This type of forecasting technique is referred to as a vector autoregression VAR model

The predictor is normally defined such that it minimises the mean squared error between

the forecast value and the one-step ahead return to be estimated If the true process of

returns is linear, VARs forecasters must yield the best forecasts of a stochastic process in
\

the mean squared error sense (MSE) VARs models do not generate explicit trading
,

signals However if we assume zero transactions costs, the intuitive decision rule denved

from VARs models is to go short if the [one-ahead] forecast is negative and go long if it

is positive That is the forecasting technique implicitly triggers a daily signal B, specifying

a long (+1) or short (-1) position following the decision rule
I

I "Sell" <::> B, =-1 a Ft = 8+E d i x <0
j=0
. [35]

3 3 2 Rule returns process

[Unrealised] rule returns are the product of a binary stochastic signal B 11 and a

continuous return random variable Xt Equation [3 1] represents the trading rule return

equation assuming discrete trading in markets where the underlying asset is lognormally

distnbuted Lee, Rao and Auclunuty(1981) make similar assumption concerning option

valuation

If we assume that the underlying process X, is Gaussian, and the rule linear, the forecaster

Ft is equally Gaussian It can be seen from equations [3 1] and [3 5] that m this case, the

rule return function is a mixture of marginal density functions of truncated bivanate

normal density Such a distribution has been studied in the literature by Cartinhour(1990)

He has derived it in a form that can be evaluated using an available computer algorithm

developed by Schervish(1984) He showed that the marginal density function is a

truncated normal density function multiplied by a "skew function" In general the greater

the degree of truncation, the more severe the skewing effect will be

A truncated distribution is a common feature of portfolio insurance strategy As

shown in Tnppi and Harriff(1991), the terminal return distribution of dynamic asset

allocation rules is highly asymmetric being either left-truncated or positively skewed

00

"Buy" a Bt = +1 a Ft = 5+E d j x, >0
J=0
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Bookstaber and Clarke(1987) showed that the put option strategy truncates the lower tail

and maintains the upside potential Zhu and Kavee(1988) showed using Monte-Carlo

simulations that two strategies, namely the synthetic put approach and the constant

proportion strategy have the ability to reshape the return distribution so as to reduce

downward nsk and retain a certain part of upward gains

There is however a main difference between option and technical rule returns On

the one hand when using a put option, the leftauncation is fixed at a deterministic level,

the exercise price for a option On the other hand when applying a mechanical system,

downside risk reduction still occurs5, but the left or right truncation is a random one, due

to the signal effect A trading rule generates by nature random infrequent trading The

signal of a rule remains constant for a certain random period, then jumps to a new level as

the pnce behaves in a certain way (figures 3 l[a] and [b])

This point highlights that rule returns are in fact closely related to the literature of

infrequent trading and in particular with the Lo and Mc Kinlay(1990) approach The

stochastic model of nonsynchronous asset prices they developed is based on sampling

with random censoring They give explicit calculation of the effects of infrequent trading

on the time series properties of asset returns6 Contrary to Lo and Mc Kinlay(1990), we

will have to consider explicitly two situations they only mentioned Firstly, our nontradmg

process is by its nature dependent, trading tomorrow (reversal of signal) depends on the

signal of today Secondly, we will relax their assumptions of independent and identically

distributed underlying returns

Expected value of rule returns can be established analytically assuming that underlying

returns follow a Gaussian process, although the exact distribution cannot This is the

most important statistic for trading purposes In addition, the one-period variance can be

deduced from the expected value using the relation

Var(R t )=E(Rt2)—(E(Rt))2 = E(B i )q)—(E(Rt))2

We know that by definition B 1 = 1, and E(X) = CY 2 ± 1.12

where 11 is the expected value or drift of X, and o 2 the variance of X, Therefore,

Var(Itt )=E(q)—(E(R t ))2 = G 2 +112 (E(Rt ))2	 [36]

5 The distribution of realised rule returns is highly skewed, see Appendix 3 4

6 Further details can be found in Section 3 5 1
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3 3 3 Expected rule rent/ its in models without di ift

We first assume that the underlying process Xt is without drift, 1 e E(X t.)=11=0 and that

the forecaster is unbiased, i e 8=0 in equation [3 4] implying that E(F)=-1.4=0

Generalisation to biased forecaster and model with dnft is postponed till Section 3 3 4

Random walk

Proposition 3 17

If the underlying process of returns PC} follAis an ild normal distribution N(0, 2 ), the

process of rule returns tilt} is an lid normal distribution N(0,2)

That implies more specifically that

E(Rt) = 0 [3 7]

Var(Rt) = cy2 [3 8]

Cov(Rt,Rt+h) = 0 for h>0 [3 9]

That is a very unusual case where the distribution of the rule return is identical to the one

of the underlying return and independent on the rule itself All rules exhibit the same

standard deviation which is the underlying volatility Consequently the standard deviation

seems in this case a good measure of risk, since under the random walk assumption no

trading rules should be considered as riskier than others This decisive feature justifies ex-

post the use of unrealised rather than realised returns

The distribution of the rule return must not be surprising since past and present returns

used to generate the signal and the one-ahead return are here independent That is

incidentally the result provided by Broffitt(1986, example 1) An important remark made

by Broffitt(1986) is that although functionally dependent, rule and underlying returns are

uncorrelated, the Joint distribution being degenerated This is why a study of both

processes could lead to apparent differences in the results

ARCH(p)

Proposition 32

If the underlying process of returns {X} is a zero-mean, autoregressive conditional

heteroskedasticity ARCH(p) process, the expected value of linear rule returns Rt is zero

It has been recognised that models for returns should have either non-stationary variance

or conditional upon past observations, a variance dependent on such observations and

additional variable This paragraph has just established rule returns expected value for one

of these alternatives the ARCH(p) still assuming process without drift As long as the Xt

7 Proofs of propositions are given in Appendix 3 3
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Praetz(1976), Bird(1985) and Sweeney(1986) (thereafter PBS) have derived

expected value and variance from filter rules under the assumption of a normal random

walk with drift They are shown to be

E(Rt) = 141-20	 [3 15]

Var(R) = c72	[3 16]

Cov(R,,R,,h) = 0 for h>0	 [3 17]

where f is the frequency of short positions 	 \

Surujaras and Sweeney(1992 34) recognise that their tests treat f as a constant,

although f is of course endogenous and stochastic and will differ over samples In

addition, Surujaras and Sweeney(1992 35) admit that their tests require constant mean

and constant finite variance for the rule returns distributions Using the probability of

being short given by equation [3 11] rather than the ex-post frequency of short positions

will change expression [3 15] with the exact formulae [3 12] However formulae [3 16]

and [3 17] are still misspecified and strictly speaking, should be replaced by [3 13] and

[3 14] The latter results share in fact two common properties with the presence of

nonsynchronous trading (Lo and Mc Kinlay, 1990) Firstly, technical trading increases the

vanance of individual security returns (with non-zero mean) The smaller the mean (in

absolute value), the smaller is the increase in the variance of observed returns, [3 13]

Secondly, technical trading induces non-zero senal correlation in individual security

returns (with non-zero mean) The smaller the mean (in absolute value), the closer the

autocorrelation is to zero, [3 14] Although theoretically different, PBS formulae [3 15],

[3 16], and [3 17] are very close to [3 12], [3 13], and [3 14] for usual values of mean

and standard deviation of logarithmic returns However PBS strong assumptions must be

underlined especially if further researches investigate other Gaussian processes than the

Random Walk with Drift It is not certain in those cases that returns can still be

decomposed into two almost uncorrelated groups, long and short positions This is why

we prefer carrying on investigations following the basic decomposition [3 1] applicable to

any process

General Gaussian Process

Proposition 3 5

If the underlying process of returns {X,1 follows a linear Gaussian process with drift, the

expected value of linear rule returns Rt is given by

E(Rt ) = —
2

cyCorr(Xt,Ft_i)exP(-1-d /2)-- 4(1 — 2 (13{-11F /aFD
	

[3 18]
ir
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As in the case without drift, no known distributions can be established So we will limit

results to the expected value of rule returns which is composed of two components One

comes from the general Gaussian process without drift and the other from the random

walk with drift

Equation [3 18] represents the most general case in terms of linear Gaussian process All

the earlier formulae are special cases

To the best of the author's knowledge, the epected value of rule return for a general

Gaussian process has not been derived before It is not surprising that exact analytical

formulae of expected value of linear rule returns can be established for any Gausssian

processes since linear rules are well defined (Neftci, 1991)

A first comment is that a biased forecaster might be suboptimal s That can be

simply noted by considenng a Gaussian process without drift (l1=0) Assuming that 1.1 F =

5 # 0 gives an expected return of

2	 2E(R) = —
2

cyCorr(Xt , Ft_ i ) exp(—p. F / 2aF)
TC

That is of course below the expected return of a similar but unbiased forecaster given by

equation [3 10]

3.4 TECHNICAL INDICATORS

The majority of traders forecast price changes using technical analysis, even though

VARs techniques should yield better forecasts Financial market players often prefer

technical rules to VARs models, mainly because they are not looking for the forecaster

which minimises the mean squared error (VARs) but maximises profits (technical rules 9)

Technical analysts have claimed that opposite to VARs models, technical indicators are

able to capture the complexe nonhneanty observed in financial pnces

Although technical analysis and VARs models might have different objectives, they both

use the same information, that is historical prices As outlined in Section 2 2, technical

analysis covers a broad category of forecasting rules However, certain of which are

highly subjective and ill defined To be objective, buy and sell signals should be based on

data available up to the current time t and should be independent of future information

8 An in depth discussion can be found in Chapter 4
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Using the theory of Markov times, Neftci(1991) shows that the moving average method

constitutes such a well defined methodology The simplest rule of this family is the single

moving average which says when the rate penetrates from below (above) a moving

average of a given length a buy (sell) signal, is generated A formal algorithm of this

decision rule is given by

{ " Sell" <=> pt < Pt ±Pt-i + +Pt_rri+k

m

where Pt is the price of the asset recorded once on each trading day t, always at the same

time of day, and m [>11 is the length (or order) of the moving average

Since the process of rate is assumed to be continuous, the equality case is of zero

probability and is subsequently ignored in the remainder of this research

Rules based on mathematical formulas using past pnces {P t„Pt4n, } are well defined

and objective in the sense that their performances can be assessed It must be emphasised

however, that there does not exist any theory or "research algorithm" to design technical

rules A current practice among traders is to measure the profits and losses generated by

an arbitrary set of trading rules and to select the rule which maximises profits

3 4 1 Technical indicators as VARs models

Technical indicators signals are usually expressed by an inequality in terms of past prices

("price" signal) An equivalent formulation in terms of (logarithmic) returns should be

sought whenever possible ("return" signal) There are two reasons for this

(a) ability to model rule returns

It has been shown in the previous section that when the signal is expressed by a linear

combination of returns, expected value of rule returns can be easily found for any

underlying Gaussian processes

(b) purposes of comparison with VARs models

VARs models are expressed in terms of returns So if technical indicators signals were to

stay a function of price, direct comparison with VARs models would be difficult

For purposes of clarity, the steps allowing to reformulate a "price" signal in "return"

signal relates to the crossing of a simple moving average Next it is shown that this

methodology applies to many other popular mechanical systems and more generally to

any system triggering a signal from a linear combination of past prices

"Buy" ,=, pt > 
Pt 4-Pt_ i + +Pt_.+,

m
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We have seen that the signal generated by a trading rule is completely defined by the

inequality giving a sell order For the simple moving average method of order m, the

signal is

sell (go short) if
	 p < Pt ± Pt-1 + ±Pt-m41 	 [3 19]

Straightforward rearrangements show that the inequality triggering a sell signal can be

reformulated as 	 (1-Pt_11Pt) ( 1 -131-2113)±	 ( 1 -13t-m+i /Pt) <

At this point, we assume that variations of rates can be approximated by their

loganthms9 That is 1-131IP1—Ln(P1/P1_j) for j= 1, m- 1	 [3 20]

Therefore, equation [3 19] can be reformulated as

Ln(P t/P14)+Ln(Pt/P1_2)+ +Ln(Pt/Pt_m+,) <0

(m-1)Ln(Pt/P„)+(m-2)Ln

Because Xt = Ln(P/Pt_,), it follows that

m-1

Eon — i)X t_i+i <0
	

[321]
j=i

Since if the position triggered by a moving average rule is not long(short), it is

short(long), the inequality triggering a buy signal is given by

m-1

Eon- j)Xt_j+ , > 0
1=1

The new signal formulated in terms of logarithmic returns can now be considered as a

VARs model It belongs to the oscillator family of trading rules It triggers signals around

a zero line If the "return" oscillator is negative (positive), a sell (buy) signal is generated

Thus the simple moving average signal admits a return oscillator reformulation given by

(P1-1/Pt-2)± +11-n(Pt-niPt-m+i)<0

{Bt =1 <=> Pt < Pt ± Pt- I + +1)t-tn+i 

III

m-1

=-1 a Ft = E(n- .1)Xt_j+1 < 0

J=1
m-1

= +1 <=> F= E(rn- i)Xt_ i+i > 0
J=1

B t +1 <=> pt > Pt ±Pt_i	 +Pt-m+1 

ITI

where B, is the original "price" signal and .1. t is the "return" signal

9 The validity of logarithmic approximations [3 20] is discussed just after the end of the demonstration
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Figures 3 I [a] and 3 1[c] illustrate the equivalence price/return signals generated by

equations [3 19] and [3 21] for arbitrary financial pnces A study of the equivalences of

the two rules is provided in the next section

Validity of logarithmic approximations

First it must be remarked that if m=2, there is no approximation but strict equivalence,

since
\

Pt < Pt + Pt-1
2

Pt < Pt-i <=> Pt iPt-i < 1 <=> Ln(131 /Pt_ 1 ) <0 <=> Xt <0

For larger values of m, the validity of return formulation was checked empirically for a

set of exchange rates series against the Dollar lo and various Gaussian processes, using

Monte-Carlo simulations What is tested is the equivalence between price signals B t and

return signals Il t As can be seen from Table 3 2, signals are different in less than 0 4% of

all cases for exchange rates series The largest deviation comes from the simulated

random walk N( IA, a 2 ) with p=0 001 and (3=-0 03, for m=200 This case represents an

upper bound in terms of both volatility and average returns over ten years for financial

series (Taylor, 1986 Tables 3 3 and 3 4) Even for this, returns signals differ from pnce

signals in less than 2 6% of all cases

Table 3.2: Return/price signals equivalence for the sinjple moving average rule

Price signal Bt / return signal fl t Case of the simple moving average rule

Exchange rates series

Order m Nb obs Percentage (number) of B t � fit
DEM YEN GBP FRF CHF

25 2601 0 19 (5) 0 08 (2) 0 12 (3) 0 15 (4) 0 04 (1)

50 2576 0 23 (6) 0 19 (5) 0 12 (3) 0 08 (2) 0 27 (7)

100 2526 0 28 (7) 0 24 (6) 0 36 (9) 0 28 (7) 0 24 (6)

200 2426 0 33 (8) 0 37 (9) 0 37 (9) 0 37 (9) 0 08 (2)

Simulated Random Walk N( .t, (7 2 ) , 100 replica

Order m Nb obs Average(maximum) Percentage of B t � -i't

p.---0, 0--,9 01 !JAI On cy--3 01 p.--=0, o=0 03 p.--0 001, cr---0 03

25 2500 0 18 (0 44) 0 15 (0 48) 0 50 (1 2) 0 50 (0 96)
50 2500 0 22 (0 56) 022 (044) 0 72 (1 40) 0 /9 (1 08)
100 2500 0 37 (0 68) 0 26 (0 60) 1 08 (1 96) 1 05 (1 84)
200 2500 0 48 (0 84) 0 30 (0 68) 1 46 (2 44) 1 46 (2 60)

10 A full description of which is given in Chapter 6
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On the basis of the empirical results presented in Table 3 2, one can safely conclude that

return signals lead to the same investment strategies as price signals for values of m as

large as 200

3 4 2 Technical linear rules

Definition	 \
A rule is said to be "linear" if it can be expressed in the form of equation [3 5],

Proposition 3 6

Any mechanical system tnggenng a sell signal from a finite linear combination of past

prices of the form
1

m-i
sell B, = —1a Ea P <0j t-j

j=o

where m being an integer larger than one, and a j constants,

admits an (almost) equivalent linear return formulation of the form

m-2

sell Bt = —1 a 5+ Ed X <0
j=0

[3 22]

[323]

where X, = Ln(P/P 1_ 1 ) ,
m-i	 m-i

5 = Eaj ,	 d = — Ea,
J

j=0	 i=j+1

Consequently many popular technical systems are implicitly linear rules That is specially

the case of indicators of the moving-average type as well as the momentum Let us recall

their definition throughout the necessary and sufficient conditions which triggers a short

position (when the position is not short, it is long)

*) Simple moving average, SMAV, of order m>1

Sell if Pt < SMt (m) = 131 ± P1-1+ +13E-111+1
m

where SM, (m) denotes the simple moving average over m rates up to Pt

*) Weighted moving average, WMAV, of order m>1

Sell if P, < 
(m —1)P, + (m — 2)P,.. 1 + +1P,,/ 

m(m-1)12
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*) Exponential moving average of coefficient 1>a>0

Sell if 13, < a(Pt + (1 — a)Pt_ t + +0 — ar-l Pt-m+1)

*) Momentum of order m>1 11

Sell if Pt <Pt_ra+1

*) Double moving average of orders r, m, 0<rfin

Sell if SM, (r) < SMt(n)

It must be noted that the simple moving average is a particular case of the double moving

average when the short moving average is the rates themselves (r=1)

Explicit establishment of coefficient di of equation [3 5] for all the technical
indicators mentioned above can be found by applying the results of Proposition 3 6 and

are given in Table 3 3

11. m-1 in Kaufman(1987)
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Table 3 3 . Return/ nce sina1s e uivalence

Rule Parameter(s) Price Sell Signals Return Sell Signals

Simple order
m-I

Pt < Ea l P,_ i
J...-0

rn-2
EdiXt_i <0
1.0

Simple MA m � 2
I

aj ' —
m

di =. (m-3-1)

Weighted MA m � 2 al '	
m-3 di.-	 01-1)(m--/-1)

fm(m-1)]/2 2

Exponential MA />a>0,m _�. 2 a = a(1-a)1-1 --A	 f(i-a)m -(1-a)m	 13]
'3

a2

Momentum m � 22 ar 1 for 3=m-1, a_r9 for ktm-1

r

d,'	 1

Double orders

,

r-I	 m-1
Eby 	 < EaiP
PO	 1=0

.

m-2
Ecyc,_, <0
1=0

Double MA m> r > 2 b , 1"-	 a = —1
J	 '	 Jr	 m

n

di---(m-r)0+1) for 0 535 r -1

dr(m-3-1) for r 535 m- 2

Generalisation

,

,

m-1
E aiPt_i < 0
p0

m-2
S+ Ed iXt_ i < 0,

1=0

m-I	 m-1
with di .-- - Ea, and a = Di

.,-0
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Equivalence price/return signals have been checked for the momentum (Table 3 4) and

weighted moving average rules (Table 3 5) Once again, deviations are very small and do

not exceed 0 5% in all cases for exchange rates series and 3% for simulated volatile

stocks

le 3.4 Return/ me signals equivalence for the momentum rule.	 .

Pnce signal Bt / return signal b t Catse of the momentum rule

Exchange rates senes

Order m Nb obs Percentage (number) of B t � bt
DEM YEN GBP FRF CHF

25

50

100

200

2601

2576

2526

2426

0 04 (1)

0 04 (1)

0 (0)

0 (0)

0 04 (1)

0 (0)

0 (0)

0 (0)

0 04 (1)

0 16 (4)

0 (0)

0 (0)

0 12 (3)

0 (0)

0 (0)

0 (0)

0 12 (3)

0 08 (2)

0 (0)

0 04 (1)

Simulated Random Walk N(12 , 6 2 ) , 100 replica

Order m Nb obs Average(maximum) Percentage of Bt � bt

1.4.0, 0=0 03 ii..) 001 cr=0 03

200 2500 0 (0) 0 (0)

Table 3 5. Return/price signals equivalence for the weighted moving average rule.	 _	 .

Pnce signal Bt / return signal bt Case of the weighted moving average rule

Exchange rates senes

Order m Nb obs Percentage (number) of Bt # if31

DEM YEN GBP FRF CHF

25

50

100

200

2601

2576

2526

2426

0 04 (1)

0 19 (5)

0 16 (4)

0 25 (6)

0 15 (4)

0 12 (3)

0 40 (10)

0 41(10)

0 15 (4)

0 12 (3)

0 20 (5)

0 37 (9)

0 19 (5)

0 16 (4)

0 12 (3)

0 25 (6)

0 08 (2)

0 19 (5)

0 08 (2)

0 37 (9)

Simulated Random Walk N( p., 6 2 ) , 100 replica

Order in Nb obs Average(maximum) Percentage of B t # fit
p.=0, cr--0 03 p.=0 001, cr--0 03

200 2500 1 57 (2 52) 1 55 (2 92)

The nice feature of the linear rules, expressed by a linear combination of returns, is that it

includes in an unified framework VARs predictors (by construction) and technical
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systems (by reformulation) Finally, it must be emphasised that although rather general,

linear rules do not cover all technical rules used by practitioners

It is doubtful that certain rules signal will ever accept an (almost) equivalent

formulation of type equation [3 5] Rules which might be non-linear are in particular rules

based on Intra-day High and Low data or on the maximum and minimum of certain

values

(a) Intra-day High and Low data
	 \

Such trading rules are numerous (Kaufman, 1987, Schwager, 1987) The pertinence of

High and Low data in addition of close and open rates has even been recognised by

academics Parkinson(1980) for example demonstrates that High and Low data can be

used to estimate volatility of rates However Wiggins(1991) points out the statistical

problem posed by such estimates true maxima and minima are ,unlikely to be observed

and that the use of recorded high and low rates will bias the results

(b) Rules based on the maximum and minimum of certain values

An example of such rule is the channel rule studied by Lukac, Brorsen and Irwm(1988b),

Taylor(1990a, 1992b), Brock, Lakorushok and LeBaron(1992), Curcio and

Goodhart(1992) It uses only close prices to determine breakout levels It says "buy (sell)

an asset if the rate penetrates from below (above) the maximum (minimum) of the past m

days" m is a given number of days which features the length of the channel Opposite to

the preceding case they are maximum and minimum of a finite number of rates So the

argument of non-observability of such extrema vanishes

Nevertheless, these rules have not been included in this research because they can not be

easily modelled

3 4 3 Expected rule returns

Expected rule returns given by equation [3 18] are highlighted in what follows for a few

linear technical trading rules and underlying Gaussian processes Our purpose is to

quantify the profitability of popular trading rules under plausible market conditions More

precisely, we consider the simple moving averages, weighted moving averages and

momentums rules applied to daily rates We will assume that a year includes 250 days and

that the daily process which dnves underlying loganthmic returns is successively

a) an Auto-regressive process of order 1 without drift, AR(1)

b) a price-trend model without dnft, ARMA(1,1)

c) a fractional Gaussian process without drift

d) a random walk with dnft

Definitions and notations concerning these models are given in Section 2 4
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Figure 3.2 exhibits that for a given system (moving average type) positive autocorrelation

is required to make profitable the investment and that short order system captures better

the auto correlation of order 1 than long order ones.
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Figure 3.2: Technical returns as a function of the autoregressive coefficient

Figure 3.3 shows that for a given order of rules, certain strategies perform better than

others. The quicker the rule responds to a new price, the most profitable it is. For

example, a weighted moving average systematically reflects a new price value better than

a simple moving average.

Yearly Expected Rule Returns %

AR(1) alpha=.1 without drift

Daly Volatiely ..0068

Figure 3.3: Technical returns as a function of the order of the rule,
under the AR(1) assumption.
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Trend-following models require positive autocorrelations to be profitable However it is

perfectly possible to create rules designed to take profit of negative autocorrelations

(opposite strategies for example) It is even possible to build rules which display positive

expected return whatever is the sign of the first-order autocorrelationu

These results are consistent with the findings of LeBaron(1992b) He performed Monte-

Carlo simulations to estimate the expected returns following simple moving averages of

orders 20, 30 and 50 under the assumption\ of AR(1) models The AR(1) models he
simulates are for a=0 to 0 4 by step 0 1, where a = Corr( X t , Xt_ 1 ) The standard

deviation he used is relative to its DM senes and is therefore 0 01465 (LeBaron, 1992b

Table 3) It is not clear however in the simulations he performs if he holds constant the

standard deviation of underlying returns a = 0 01465 or the standard deviation of the

residuals a s =Vi-7(7c2 a = 0 01465 Consequently, we establish trading rule returns in

both cases (Table 3 6) It appears that formulae [3 151 exactly reproduce

LeBaron(1992b Table 4) Monte-Carlo simulations, keeping the standard deviation of

residuals constant

Table 3.6: Expected returns under the AR (1) assumption
Expected return * 10000 following a simple moving average rule under the AR(1) assumption

LeBaron(1992b Table 4) ,	 cr, = 0 01465 cr = 0 01465

AR(1) MA(20),MA(30)MA(50) Average MA(20) MA(30) MA(50) Average MA(20) MA(30) MA(50) Average

0 0 0 0 0 0 0 0 0 0 0 0 0

01 5 4 3 4 45 37 29 37 45 37 29 37

02 9 8 6 8 93 77 59 76 91 75 58 75

03 15 12 9 12 148 12 I 94 121 141 116 9 0 115

04 21 18 14 18 213 175 136 175 195 160 124 160

ARMA(1,1), Price trend model

Expected rule returns are from equation [3 101

(a) a positive function of A for p and a fixed The larger the proportion of the vanance of

the returns that can be explained by the variance of the trends, the more profitable the

trading rules are

(b) a positive function of p for A and a fixed More the trend component is

autocorrelated, the more profitable are the trading rules

12 An example of such strategy is Bt = -1 .4= Xt_1 < 0 11
Bt = +1 ex* Xt_i >0
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(c) a proportional (and positive if convex rule and positive autocorrelations) function of

the volatility for A and p fixed

Figure 3 4 gives an example of some rule returns of orders 2 to 50 for {a

0 0068, A=0 03, md = 20 days) The most profitable simple moving average corresponds

to the order r=29 days It seems logical that given a mean duration of trend a technical

rule finds its optimal parameter around this value In the case of the moving average it is

slightly bigger (order 29 for a mean duratiork of 20 days) Ranking between systems is

more complex and should be in favour of exponential moving average since Taylor(1986)

has remarked that such representations can be very close to the optimal forecaster Rules

are not any more uniformly ranked that is either in systematical favour of short (AR(1))

or long (see Random Walk with Dnft) strategies but depend on the mean duration of the

trend

Those properties of linear trading rules might hold for non-linear strategies such as the

channel rule Taylor(1992b Table 3) finds in particular that channel rule returns are a

positive function of A for p fixed (property a) and a positive function of p for A fixed

(property b) The distribution shape of channel rule returns (Taylor, 1992b fig 1) is

extremely similar to the one of weighted moving average returns (Figure 3 4) The best

order of channel rule as for the weighted moving average finds its optimal parameter

close to the true mean duration of the trend

Yearly Expected Rule Returns %

Pnce-trend model without drift

7

Order Of Rule

A.. 03 Mean Cturation.20 days
	

Daly Wedgy- 0088

Figure 3.4 Technical returns as a function of the order of the rule,
under the price-trend model assumption
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Fractional ARIMA (0,d,O)

As in the financial literature, the fractional Gaussian process is interpreted here as a

function of the Hurst exponent rather than the parameter d It is recalled that H is related

to d by the relation H=d+0 5 [2 17]

Expected rule returns assuming a fractional Gaussian process, can once again be

established using equation [3 10] Figures 3 5 .rid 3 6 exhibit that they are quite identical

to the ones corresponding to 'an Auto-regressive process of order one (Figures 3 2 and

3 3) That is due to the fact that technical indicators do not exploit the feature of a

fractional Gaussian process which is the long term dependence (for H>0 5) They only

extract the short-term dependence which is very much the one of an AR(1) 13 There

exists nevertheless a major difference with usual Gaussian process That is the maximum

possible gain is not anymore finite but infinite Indeed it appears that the optimal

forecaster defined by Hosking(1981) displays both infinite expected return and vanance

because autocorrelations are not summable Therefore, technical predictors might

produce returns very far from the maximum achievable gain However, it has been

claimed (Mandelbrot, 1966) that the best linear forecaster is useless to predict the time

series because it relies on parameter estimation

Consequently, the fractional Gaussian process might constitute a case where technical

trading rules might be preferred to the best linear forecaster That would contradict

Mandelbrot(1963) opinion that expected gains from "filter method" depends entirely on

the assumption that price is continuous Mandelbrot(1966 242) stated "[ ] it is also

possible to conceive of models where successive price changes are dependent so that

prices do not follow a pure random walk, but where the nature of the dependence is such

that it cannot be used to increase expected profits" This does not apply to the fractional

Gaussian process Indeed in the latter case, technical rules are quite profitable and does

not rely on parameter estimation which makes the forecaster useless to predict the time

series

13 Distinguishing fractional Gaussian process from AR(1) model is known in the literature as a difficult
task (Davies and Harte, 1987)
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Figure 3.5: Technical returns as a function of the order of the rule,
under the fractional Gaussian process assumption
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Random Walk with drift

Figure 3 7 exhibits returns from a Buy and Hold strategy and from a Simple Moving

Average (SMAV) rule of orders 5, 20, 100 as a function of the drift Overall, three

remarks can be made

(a) expected return will be a fixed percentage of the drift

So it will underperform a buy and hold strateg if the drift is positive and outperform it if

the drift is negative The expected return of SMAV rule is a positive function of the

absolute value of the drift ti and a negative function of the volatility a It is a positive

function of the order m of the SMAV That can be explained by the fact that the most

profitable strategy is buy and hold if the drift is positive

(b) the drift increases the instantaneous variance of return

(c) Only in the absence of any drift in the data are rule returns uncorrelated

Yearly Expected Rule Returns %
Random Walk with Drift
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Figure 3.7 Technical returns as a function of the dnft

Figure 3 8 illustrates that in decreasing order of profitability, we have 1)Momentum

2)Simple MA 3)Weighted MA It means that ex-ante certain technical rules will capture

systematically better the drift than others
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Figure 3.8 Technical returns as a function of the order of the rule,
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35 SUMMARY

Under the assumption that underlying asset returns follow a Gaussian process, the

linear rule returns distribution is a mixture of marginal density function of a truncated

bivanate density function Exact expected values can be obtained and are of importance

since the objective of a market timer is to maximise return and that risk is merely

considered an opportunity cost

The expected return following a linear trading rule is zero if the underlying process is a

random walk without drift This IS non-zero if the underlying process exhibits a drift

or/and autocorrelations If the underlying process is a random walk with drift, the

expected return of a convex trading rule is a positive function of the drift and a negative

function of the volatility If the underlying process exhibits positive (negative)

autocorrelations but no dnft, the expected return of a convex (concave) strategy is a

positive function of the volatility

Many popular technical trading rules can be expressed as VARs forecasters Doing so

allows applying both technical and statistical predictors in an unified framework called

"linear rules"
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APPENDIX 3.1

NOTATIONS AND MULTINORMAL MOMENTS USED IN THE RESEARCH

The following notations and multinormal moments are used throughout this research

Umvartate normal law

	(x) 	 e-(1/2)x 	 —00<x<+oo

(h) = fh. 9(x) dx , —00<h<+co

	

[r] =	 x r (p(x) dx , r EN

A short notation will be [r]=5
0

Bwartate normal law

1 
4)(x, P) = 	 r	 exp[--f(x2 —2pxy+y 2 )/(1—p2 )] , --co<x,y<+00 _1<p <1

27c 111— p2

[r, s]=1,7 .1r xr 3rS cp(x, y, p) dx dy , (r, s) EN2

A short notation will be [r,s].
5X>0 $Y>0 Xr Ys

[r,s](p) will denote the value of [r,s] as a function of p

The incomplete moments [r,s] have been evaluated by Kamat(1953)

particular

[0,0] = +* Arc sin (p)

[1,01	 (1+p)

[1,1] = irt(p[11-1-Arcs1n(p)]+-F-7)

[2, 0] = +*(Arc sin(p)+ p 1 -F-7)

We have in

[Al]

[A 2]

[A 3]

[A 4]
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Trivariate normal law

33
L x x9 (	 , x2 ,x3 ,P12 P13 D23 ) =_-(2n)-3/2 A-1/2	

=1 j=i
A, 	 i

1

where -oo < x i <+ co , -1 < pu < 1, 1	 3,1	 3a

A=1 - 13223 P2i3 P212 + 2 P12 P 1 3 P23

A, 1 = (1-p3)A-1 , A22 (1-p 3 )A-1 , A\33 = (1-pf2)Y1

Al2 = A21 = (P13 P23 - P12) /1-1 2 A13 = A31 = (P12 P23 -P13)

A23 = A32 = (P12 P13 -P23) A-1'

+CO f+00 r+.0
[r,s,t]= io Jo Jo x r xs x t 9(x	 x2 3	 1 x 2 3 -3 /. 12 ).-D13 23	 dXi CIX2,dX3 (r, s, t) eN3

A short notation will be [r, s,t]= 	 Xr s t.11( i >0 SY,>0 SX,>	 X x0 1	 2	 3

.	 ,[r, s, t]	 12 13 3 . 023	 12 13 7 .23will denote the value of [r,s,t] as a function of ( 0 0	 1

The incomplete moments [r,s,t] have been evaluated by Kamat(1958) for all r,s,t with
r + s+ t 3 However some of these moments are ill defined" It is why we prefer to use

the tnvanate moments established by Tallis(1961) which lead to

[1,1,0] —
1 

[13 12 { -7-c +i Arc sin(pu )} + 111 - p 12 2 + p /3 111 - p232 + p23	 _ 1) 132 ] [A 5]
47c	 2

l	 7C	 3	 1 [2,0,0]=—47t[—+E Arc sin(p u )+ 	 	  1J12 P13 -P23 P122 -P23 P132)] 	[A 6]
 2

In what follows, a star will design standardised normal vanates For instance, X:+1,Fts

design unit normal vanates

A variable Y conditional to the knowledge of a variable X will be either noted Y/X or
y{X}

14 See Appendix 3 2

1<j

Ail P 232
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[1,1,0]= -1- [ P12 { 1c- -F ±Arcsin(Pd} +I1 
- Pt22

4n	 2
+ p23 Ail -- p232 + pi3 Vi -- p /32 ] [K 1]

1C3

APPENDIX 3.2

A NOTE ABOUT MULTINORMAL MOMENTS

Kamat(1958) has given exact formulae' s of a few tnnormal truncated moments Similar

work has been performed by Tallis(1961) Tallis(1961) and Kamat(1953) formulae are

identical for the bwanate case They, however, diverge for the tnvanate case as it will be

shown It appears that Kamat(1958) formulae must be ill defined since they do not

satisfy, contrary to Tallis(1961) results, some simple checks This point is illustrated

below with the two moments used in the study
	 n

Kamat(1958)

1 x 3
[2,0,0] = --[ —+ E Arc sm(p,i )+ A p23 1 -F—PT3 + ( 2/312 pi3 — p23)FpT3 +p12 1-T-72 +p i3 IFFTIC } [K 2]

47c 2 1,)

where
	

A = 1 — P122 — P132 —P232 +2 13 12 PI3 P23

Talhs(1961)

It can be shown that using Tallis(1961) and the bwanate normal moments Kamat(1953)16

that

1	 7t	
3

[1,1g = ,--1---7c [P12 { — ± E Arc sin (Rj )} + 1F1-- Pi2
2
 +P13 1/1— P232 + P23 1,1 1 — Pi32

2

n 3	 1 [2,0,0] = 1
-- [ — ± E Arc sin(pd + 	 -	 k"' 1) 12 P13 — 1323 P12

2
 — P23 P132 ) ]	 [T 2]

zlic 2	 V,	 2

0

1 — P23

15 recalled in Johnston and Kotz(1972b 93)

16 recalled in Johnston and Kotz(1972b 92)
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Those tnvanate moments obviously differ between Tallis(1961) and Kamat(1958)

Formulae [K 1] and [K 2] are misspecified since they do not pass, contrary to formulae

[T 1] and [T 2], some simple coherence tests

Coherence Tests

Simple tests of coherence can be applied to those formulations It consists in checking the

compatibility between univanate, bivanate arid tnvanate moments from two elementary

examples

If pi2 =P13 =0 , P23 .=P , the following equality must be verified

1 .n
[2,0,0] = Y2 [0,0] = —(-- +Arc sin(p))

4n 2

If P12 =P23 z" 0 , p13= 1 , the following equality must be verified

1
[1,1,0] -- [1] [1] =  i-7r-

[K 1], [K 2] formulae do not pass these simple coherence tests Indeed

1
when P12=P23= 0, po= 1, [K 1]	 [1,1,0] = —47t

when p l2 =p 13=0, p23 =p , [K 2]	 [2,0,0] = —41.7r (-72-t- + Arc sin (p) – p3 All — p2 )

On the other hand, it is straightforward to exhibit that formulae [T 1] and [T 2] pass these

simple checks That can be seen from the fact they are recurrent formulae and that

tnvanate moments are established from bivanate ones

In sum, Kamat(1958) results for those two tnvanate moments appear dubious and so

Tallis(1961) has been preferred and applied in this research

1
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APPENDIX 3.3

PROOFS OF PROPOSITIONS

\

Proposition 3 1

We show here that the distribution of rule returns is the same than the distribution of

independent underlying returns if the latter is symmetrical around zero, normal or not If
we note C„ the characteristic function of the underlying return and assume that it is

symmetrical around zero, we have C x(z) = E{exp(aX,)} = E{exp(-12X3) = C(-z)

Rule returns R, admit the characteristic function

C R (z) = Efexp(-izB,_,X,)) = E(E{x"}[exp(-1zB,_,X,)])

with E t  } means the expected value conditional to the knowledge of past returns

{ Xt-i } = { Xi-i, Xt-2, / Xt-m , }

{ -1 with probability Pr(F_,, <0)
By definition, B,_, =	 and only depends on {X}

+1 with probability Pr(F,_, >0)

Therefore

C R (Z) = E( Pr[F,_, < 0] EIXt-1) [exp(-izX, )] + Pr[F,_, > 0] Elx" } [exp(+1zX, )] )

Because X, is independent on {X,}, we have

C R (z) = Pr[F,..,<O] E{exp(aX,)) + Pr[F,..1>0] E{exp(-izX,)}

Pr[F,,,<01.--Pr[F,..,>0]=72 because the distribution of the linear unbiased forecaster, F,.,, is

symmetrical around zero, as for the underlying returns X, Then, it follows that

C R (z) = Y2 C„(-z) +y2 Cx(z) = C(z)

So Iti follows the same law than the underlying returns In particular, R, follows a centred

normal law N(0,a2 ) if X, follows a centred normal law N(0,a 2 ) Then it implies

equations [3 7] and [3 8]

Finally, we have

Cov(R,,R,A) - E(R,R,,h) =E(Bt-iXiBi+h-iXt+h) -E( 3i-iXtBt+h-i)E(Xt+h) =E( 3t-iXtBti-h-i)0 = 0
That is due to the fact that Xt+h is independent on X,, B,, Bt+h_i

Cov(R	 for,,R,,h)=0	 h>0	 [3 9]
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Proposition 3 2

E(Rt) = E{E{\"}(Bt_IX)) with E {X" 1 means the expected value of X1., 1 conditional to

the knowledge of { Xt-1i= { XCIAL-2, Atin, )

P	 P

E(t) = E(Btlia„ +Ect i Xt2  c t ) = E(B4a0 +Ea,Xt2 1Efx-1(at))
i=i	 n 	 1.--1

Since the stochastic process st is independent of {Xt.. } E K 2) (6) = 0 Then

P

E(R) = E(Bt_	 ± E a , Xt2_, 0) = 0

1=1

Proposition 33

See Proposition 3 5 which includes Proposition 3 3 as a special case

Proposition 34

Let us note C x the characteristic function of the underlying return

C(z) = exp(i z A) exp(- 62 z2/2)

Rule returns Rt admit the charactenstic function C R (Z) = E{exp(-1zB1_1Xt)}

Replicating the steps of Proposition 3 1, we have

C R (Z) = Pr[F1_ 1 <0] E{exp(aXt )) + Pr[F1_ i>0] E{exp(-izXt))

C R (Z) = PS exp(-1 z u) exp(- w2 z2 /2)+( 1 -P S) exp(i z u.) exp(- 4:52 z212)

where PS is the probability of being short given by Pr[Ft_1<0]

So RE follows a mixture of normal laws

{

Rt - N(-p., <3.2) with probability PS = Pr[Ft_i < 0]}

Rt - N(ii,a2 ) with probability 1-PS = Pr[F,_4 > 0]

That implies equations [3 11], [3 12] and [3 13] In addition

Cov(R,,Rt+h) = E(R,Rt+h) - E(RA(Rt+h)

E(Rt Rt+h) = E(Bt4 X,13,„./ Xt+h) = E(Bt_ t Xt Bt±h4)E(Xt+h) = E03t_ 1 Xt Bt„.1 ) li.

That is due to the fact that Xt+h is independent on Xt, Bo Btl-h-1

Cov(Rt,Rt+h)=E(Bt_ i Xt Bt,h_ 1 )g-m, 2 (1-2 PS) 2 for h>0
	

[3 14]

80



Proposition 3 5

E(R, )=E(3,_, X t )= E(Bt_i (oX: +11)) = aE(B t_I X: ) + p,E(13,_1)

where X: designs an unit normal vanate, = E(X) and cr2 = Var(Xt)

E(B t_i ) = Pr(Ft_ i > 0)—Pr(Ft_t <0)=1— 2Pr(Ft_1 <0)=1— 20 (—	 sup)

E(Bt_i X: ) =	 X:
	

x:

X; F:_i>-14.F/aF	 Ft7-1<-1-LF/aF

where F 	 an unit normal vanate, 1.4 = E(Ft_i ) and o = Var(Ft_i)

Then using the truncated bivanate moments given by Johnston and Kotz(1972b 116), it

follows that

E(Bt_i	= —
2
 p exp(-14/ 2a2F ) with	 p = Corr(Xt,Ft_i)

TC

Therefore equation [3 23] results from the weighted summation of the two previous

terms as follows

E(Rt ) = GE(B t_I X:) + ilE(Bt-i)=a —
2

p exP(- 14/ 2c4) + 1-4 1-20 [— I-L F/c7 F1) [3 18]

Proposition 3 6

m-i
sell B1=-1 <z> Eay <0

J=0

m-1
.4=>	 Pt — byt _j < 0 , with bo = 1-a0 and bj = - aj for j = 1, m-1

J=0

m-i
<=>	 Pt — Eb,p,_, +Ebyt —by, <0

J=o	 J=0	 J=0

m-1	 m-1
<=>	 Ebi(Pt —Pt_j)<(Ebj--1)Pt

J=0

a	 Eb (1—P /P)<Eb —1
J=1	 j=0

[3 22]

81



Let us assume that 1-P/P T Ln(Pt/Ptl) for j=1,m-I and noting that Xt = Ln(TyP1..1 ), we

J-1
can so approximate 1-P t.j/Pt Ln(Pt/PO 	 X1 It follows that

v.0

	

m-1 1-1	 m-1

EbJEXt, <b
J=1	 i=o

	

m-1	 m-2m-2-3
<=>	 - Eb ) + E	 Xt_i < 0

3=0	 3=0	 1=0

m-2
<=7>	 5 + EdjXt_j <

m-1	 rfa-1	 m-2---j	 m-2-3	 mi-I

with 5=I Ebi = Ea, , and dr	 Ea,
i=o	3=0	 1=1	 1=3+1

[3 23]
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APPENDIX 3.4

DISTRIBUTION OF REALISED RETURNS

FOLLOWING THE SIMPLE MOVING AVERAGE OF ORDER 2 RULE

Realised returns following the simple movin average rule of order 2 are not normal

under the assumption of norrnal independent underlying returns Firstly, the conditional

distribution of realised returns knowing the duration of the position is established Exact

formulations are given for expected value and variance Secondly, the unconditional

distribution of realised returns is established Exact values of the four first moments are

provided It is shown that the distribution is non normal, positively skewed, and

leptokurtic

Simple moving average of order 2 rule

The strategy consists here of being long if the price is above the moving average of order

2 and being short otherwise That is more explicitly

Bt=+1 a Pt >  + Pt-1 a Pt > Pt_ i	 Xt Ln(13, / Pt_ i ) > 0
2

Bt--+1	 Xt > 0	 [324]

Let us note D the stochastic duration of a position If we assume that a new position

starts at time t, that is we know that {13 1#Bt_ 1 }, the stochastic duration D will last n days if

and only if	 {D=n}a B Bt= - t+1= •=13t+n-1) B t+n_ i#B t+, / Bt#Bt./
	 [3 31

That is for the simple moving average of order 2 rule, applying equation [3 24]

{D=n }	 {Xt > 0, X t+1 >0, Xt+n_1 > 0, Xt, < 0 / Xt_i <0}

or {X t < 0, Xt+1 < 0„X t+n_i < 0, Xt+n > 0 / X1 _1 > 0}

The corresponding realised return is so

R = E Rt+D EBt+D-1Xt+D
	 [321

D=1	 D=1

Subsequently, we assume that logarithmic returns X t follow a normal random walk

without drift Therefore due to the symmetry of both the underlying stochastic process

and trading rule, the expected realised return initiated by a long position is equal to the

one initiated by a short position Let us assume to simplify that a long position starts at

time t=0 and is reversed at time t=n The duration of the position is equal to n days if and
only if {D = n} = {X I > 0, Xn > Xn+i <
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Conditional distribution
Let us note C R/D=1, the characteristic distnbution of realised returns knowing that the

duration of the position D is equal to n days Then

CR/D=n (Z) = [C H (Z)r i C H (-z)	 [3 25]

where Ca is the characteristic function of the absolute value of a normal variable

N(0,a2 ), known in the literature as half-normRlvanate (Johnson and Kotz, 1972a 81)

Proof

C R/D ( Z) = E(eXp[1Z( Xi + +Xx i_. 1 ± Xn )] / D)

= E(exp (izX 1 ) / D) E(exp(izX n_i ) ID) E(exp(aX. ) ID)

= E(exp(mX i ) / X 1 > 0) E(exp(izX n_i )/ X,1 > 0) E(exp(i2X n ) / X„ <0)

= [C H (z)]1-1CH (-z)

Using the relationships between characteristic function and non centred moments, it

follows after straightforward arrangements that

E(R/D= n)= —
2

a(n-1)
It

= —
2

cr(n- 2)
7

[3 26]

7 —
Var(R/D = n)= n(

2 
)a2	 [3 27]

7

Equation [3 26] says that the expected return, knowing the duration of the position,

depends on the duration and more precisely is proportional to its If the duration of the

position is equal to one day, it generates a loss which is natural since the simple moving

average method by construction reverses its position on an unrealised contrary move

Then the longer the position is, the more profitable it is in average

Equation [3 27] indicates that even when rule returns have constant variance per unit of

time which is equal to the underlying volatility, equation [3 8], the variance of holding-

period returns will not be constant but depends linearly on the duration of the position

Then a correction for heteroskedasticity is necessary The Hartzmark(1991) procedure

can be applied for this purpose It consists in using the squared root of the number of

days between each transaction as a weight in the adjustment procedure
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Unconditional distribution

Let us note C R the characteristic distribution of realised returns Then

CH(—z) 
C R (z) =

	

	 [328]
2—CH(z)

where C H is the characteristic function of the absolute value of a normal variable

N(0,a2)

Proof

The unconditional characteristic function of realised returns is established by taking the

expected value of the conditional characteristic function

C R (z)= E(CR,D(z))= EaCH(z)r-/CH(—z))=	 = n) [C H (Z)r -1 C H (— z)

n=1

It is straightforward to show that under the random walk assumption, the duration D of a

position follows the distribution

Pr( Xt > 0, Xt+1 > 0„ Xt, -1 > 0 5 X <0 / X < 0)n	 t+n 
= (1 )n ThereforePr(D n) = 

+ Pr(Xt < 0, Xt+1 <„0 Xt+,1 < 0, Xt, > 0 / Xt_1 >0)
 (f )fl

 (z) = E (-1)n[cH(z)].--'cll(-z)=1-CH(-z)E 
qc.(z)r-i =  iC H (-z)  =  CH(-z) 

l-i-c H (z) 2-CH(z)

Using the relationships between charactenstic function and non centred moments, it

follows after lengthy arrangements that
E(R) = 0	 [329]

E(R2 ) = Var(R) = 2 o- 2	[330]

n=1	 n=-1

E(R3) 	 3
E(R)= 6i&	 Y	 =	 a 1 693

TE	 (VVar(R))' Nirc
[331]

E(R4 ) = 2 (9 +L
4

)a 
4	

y 2 = 
E(R4 ) 

= 1 +-1-
2
	5 320	 [332]

It	 (11 Var(R)) 4	2

Under the random walk without drift assumption, realised returns following a moving

average of order 2 are not any more normal, contrary to unrealised returns but follow a

complicated truncated law defined by equation [3 28] The expected value of realised

returns is still equal to zero as for the unrealised case, equation [3 29] The variance is

however double than the variance of unrealised or underlying returns, equation [3 30]

The distribution is at present positively skewed and leptokurtic, equations [3 31] and

[332]
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Chapter 4	 ,

ERROR MEASURES AND PROFITABILITY

\

,
In Chapter 3, the expected returns of a linear rule applied to price movements that are

assumed to be Gaussian are derived However, the most profitable forecaster has not

been determined Whether or not maximising profits and mirumising squared errors leads

to the same forecaster is an important issue If not, certain existing statistical procedures,

algorithms and cntena might be of little value in an investment purpose This chapter

examines the reality and complexity of this problem

Section 4 1 defines the forecaster which maximises expected rule returns Section

4 2 shows that the relationships between error measures and profitability must be highly

nonlinear and possibly degenerated when the true model is a random walk Section 4 3

assesses in terms of profitability and error measures the implications of using a

ausspecified forecaster when the true underlying process is Gaussian Section 4 4

evaluates the implications of previous findings on market timing ability tests Section 4 5

summarises and concludes our results

4.1 MAXIMISING EXPECTED RETURNS

Recent studies on forecast evaluations are concentrated on quantitative measures of

prediction errors They have not focused on the value of the forecasts for the user

Economic evaluation of price forecasts consistent with the underlying decision problem is

an alternative preferred by practitioners to accurate forecasting models which minimise

squared errors

The mean squared error criterion measures how closely the model fits a time

series by averaging the sum of the squared deviations of the two series It does not

differentiate between deviations resulting from a failure to predict a change in the trend of

the series or the cyclical component Despite its wide acceptance by academics, market

participants who try to forecast financial time series have found this criterion inadequate
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The reason for this is that traders, for instance are interested only in forecasting changes

in the underlying trend of the financial prices rather than forecasting the level of the price

series A trader will take long position in the market in anticipation of a price rise,

without attempting to forecast level The forecasting problem of traders has given rise to

a particular measure reflecting the profitability of the strategy rather than the accuracy of

predicting the price level Empirical studies (Boothe and Glassman, 1987a, Leitch and

Tanner, 1991, Satchell and Tinunermann, 1992b) have found that squared errors (SE)

and profits based forecasters can differ sigracantly One explanation might be that the

SE criterion is of poor use to build efficient forecasters of turning points (Wecker, 1979,

Kling, 1987), which is a necessary condition for profitability Therefore, what is needed is

to determine which forecaster maximises expected returns

Proposition 411

If the underlying process of returns {X,} is assumed to be Gaussian, a linear forecaster Ft

maximises expected rule returns if and only if

(a) it maximises p= Corr (X,,, ,Ft )

(b) 11F/ aF = IA / (Pa)

Where 11, a are the mean and standard deviation of X, and [i F aF are the mean and

standard deviation of Ft

First let us compare the forecaster which maximises expected returns with the forecaster

which nuiumises expected squared forecast error Following Granger and Newbold(1986,

p283), expected squared forecast error can be written as

E( (X +1 —Ft 
)2) 

(4F 
-4)2 +(Cry	 (5)2 + (1p2 )0.2

Taking IA and a to be fixed numbers, it is clear that expected squared error is nuninused

by

(c) maximising p= Corr (Xt+i , Ft )

(d) 11F11
(e) aF-P cY

The forecaster which minimises squared errors F t  is defined by conditions (c), (d) and

(e) and therefore satisfies conditions (a) and (b) Then Ft' maximises expected returns,

but it is not any longer unique since any forecaster proportional with a>0 to F,

still maximises profits

I Proofs of propositions are given in Appendix 4 1
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Hence, if the Xt process is Gaussian, no linear trading rules obtained from a fitute history

of Xt can generate expected returns over and above vector autoregressions It has been

shown here that although trading rules display non-zero expected value when the process

is Gaussian with autocorrelations or drift, they cannot be more profitable than the optimal

linear forecaster Neftci(1991) shows that under the hypothesis pnce time series are

linear, even well-defined rules are shown to be useless in prediction So technical

forecasters, although exhibiting some forecasting value, should be considered

misspecified models

In reality, the above conclusion must be refined The technical trading rules that are

implicitly linear can be optimal forecasters Let us give a simple but meaningful example

m-i
by assuming that the true underlying model is X, a E(m —j)X_ 1 + e t , with s t white

i=1

noise, a>0 and m is an integer greater than one It follows from Section 3 4 1 and

Proposition 4 1 that the simple moving average of order m will then maximise profits

There are cases for which technical indicators are linear models (Section 3 4 2) and

therefore generate optimal forecasters

Proposition 4 1 mainly defines the necessary and sufficient conditions to maximise

expected returns The forecaster which maximises profits is the predictor which

maximises the correlation between the one-step ahead forecaster and the future

underlying return, condition (a), and satisfies condition (b) It is not limited to the one

which minimises squared errors Divergences between the two predictors might be

significant Baczkowslu and Mardia(1990) have studied the prediction procedure based

upon maximising the squared correlation between the predictor and the value to be

estimated, which is condition (a) only On the one hand, they find that the maximum

squared correlation is similar to the minimum squared error as an interpolator As

interpolators both methods capture the general "structure" of the data, such as non-

stationanty On the other hand, they differ considerably as extrapolators

Consequently the criterion most often used to determine optimal vector autoregressions,

minimising squared errors, might be irrelevant to maximise returns The next sections

investigate in more details the relationships between error measures and profits
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the squared error

the absolute error

4.2 ERROR MEASURES AND PROFITABILITY

4 2 1 Performance Criteria

A forecasting method is used to predict the one-ahead underlying return At time t-1,

generates forecast F, 1 to predict the one-ahead logarithmic return )C The one-period

forecasting performances of the model can b evaluated by various techniques (Stelder,

1991) such as

the directional accuracy

SEt = (X, —F,_ 1 )2	[4 1]

AEt =	 — Xt1	 [42]

if1	 xiFt_1>0
{ + XtFt_1<0

[43]

Academics widely regard error measures as reliable criteria of performance, mainly due to

the existing theory which surrounds them The minimum squared error in particular

possesses attractive properties which have contributed to its widespread use among

researchers (Box and Jenkins, 1976) The directional accuracy or percentage of correct

forecasts has been widely used to test the usefulness of market timing strategies and

advisory services (Levich, 1980, Hennksson and Merton, 1981, Pesaran and

Timmermann, 1992)

However, for trading purposes, a more appropriate forecasting performance measure is

obviously profitability Then according to Chapter 3, the rate of return following a

trading rule (rule returns) can be defined by

Rt = Bt__ I X,	 [3 1]

Where Bt.1 is a signal triggered by the trading rule at the start of the period and which

takes the values 1 and -1 depending on whether an up or down price movement is

expected i e

I "Sell" a 13 t =-1 <z> Ft_t <0

I "Buy" a Bt_t = +1 <z> Ft_, >0

Figures 4 1 to 4 4 graphically represent the profit (equation [3 1]), and error measures

functions, squared error (equation [4 1]), absolute error (equation [4 2]) and directional

accuracy (equation [4 3])
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Absolute Error

Profit function of realised and forecasted values

Figure 4.1: Profit function

Squared Error function of realised and forecasted values

Figure 4.2: Squared Error Cost Function

Absolute Error function of realised and forecasted values

Realised Value X

Figure 4.3: Absolute Error Cost Function
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Directional Accuracy function of realised and forecasted values

Figure 4.4 Directional Accuracy Function

The specificity of the profit criteria clearly appears by comparing figure 4 1 to figures 4 2

to 4 4 Differences with error measures are now put forward by establishing theoretical

linear correlation between one-period error measures and rule returns

4 2 2 Linear correlation between error measures and profits under the random walk
without drift assumption

Relating expected squared errors and expected rule returns as a function of the statistical

characteristics of the underlying Gaussian series is usually possible and will be done in

Section 4 3 by use of Proposition 3 5 However when the true process is a random walk

without drift, the expected rule returns is zero whichever rule is applied and so no

relationships can be worked out between error measures and expected profits

Nevertheless, the linear correlation coefficient can be used to analyse the relationships

between those varied performance criteria This section establishes the one-period

correlation between profits and error measures as previously defined

We assume that the underlying returns X, are without drift, independent normally

distributed with volatility (3 2 , then that the forecaster Ft is linear without constant, that is

it can be expressed by either a linear combination of past logarithmic underlying returns

Xt
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[44]

[45]

Proposition 4 2
If the underlying process of returns {C,} is assumed to be a normal random walk without

drift, the linear correlation between rule returns (equation [3 1]) and squared error

(equation [411]) is

Corr(Rt,SEt) — 	
-47t(l+v(f))

where v(f) = a 2r /a2 and a2r is the variance ofhe forecaster Ft

Proposition 43

If the underlying process of returns (Xt} is assumed to be a normal random walk without

drift, the linear correlation between rule returns (equation [3 1]) and absolute error

(equation [4 2]) is

—2Arc sm(Vv(f) /[1+ v(f)])
Corr(R,,AEt) =	 v(f) 

where v(f) is given by equation [4 5]

Proposition 44

If the underlying process of returns MI is assumed to be a normal random walk without

drift, the linear correlation between rule returns (equation [3 I]) and directional accuracy

(equation [4 3]) is

Corr(Rt,DAt)	 [47]
TC

The correlation between rule returns and squared error (equation [4 4]) and correlation

between rule returns and absolute error (equation [4 6]) are both negative That is not

surprising since minimising the squared errors maximises profits Both correlations

depend heavily on the rule which is being used throughout the variance of the forecaster

v(f)

Table 4 1 gives some numencal values obtained from one of the most popular

technical trading rule, the simple moving average method 2 (Brock, Lakorushok, and

LeBaron, 1992, Levich and Thomas, 1991, LeBaron, 1991, 1992b) Table 4 1 indicates

that the correlations in absolute value terms are a strong negative function of the order of

the rule These results suggest there are rules displaying errors very few correlated, in

2 Section 3 4 1 has shown that the simple moving average method can be considered a linear forecaster

[46]
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absolute value, with profits They are in accordance with Leitch and Tanner(1991) who

empirically find no systematic relationship between the widely used ex-post error criteria

and ex-post profits All their conventional error-magnitude cntena are only marginally

related to profitability They find in particular that the criterion absolute average error is

only weakly correlated to profitability and conclude that profits may not be related to the

size of the error

Table 4 1 Correlations between error measurks and profits
Moving Average of order 2 5 20 100

Corr(Rt,SEt)
Corr(Rt,AEt)

-0
-0

564
587

-0
-0

199
264

-0
-0

023
033

-0
-0

002
003

The correlation between error measures and profits is maximal, in absolute terms, if the

variance of the forecaster is constrained to be equal to the variance of the underlying

returns Therefore we homogenise variances by constraining the variance of the

forecaster to be equal to the variance of the underlying returns (v(f)=1 in equation [4 5])

Then it follows that correlations between error measures and profits do not depend any

more on the rule being used and are equal to

—1
Corr(R,,SE E )= 	= — 0 564	 Corr(R,,AE,)= 	 ,	 	 0 587

Ain -	 2V2 -Or —2

In contrast, the correlation between directional accuracy and rule returns is high and

constant at 0 80, and independent of the rule itself as equation [4 7] proves Irrespective

of the rule, directional accuracy and profitability will appear very dependent cntena

Leitch and Tanner(1991) display similar results In particular, they find that directional

accuracy consistently demonstrates a high degree of statistical association (measured by

the linear coefficient of correlation) Their results suggest that if profits are not

observable, directional accuracy of the forecasts might be used as the evaluation criterion

The theoretical formulae exhibited in this section might explain the empirical

findings of Leitch and Tanner(1991) which are that directional accuracy is a lot more

linearly correlated to rule returns than error measures, Root Mean Squared Error and

Average Absolute Error Nevertheless the conclusion they give that profits may not be

related to the size of the error, should be understood profits may not be linearly related to

the size of the error Section 4 1 has proved that for Gaussian processes, expected

squared errors and expected rule returns are functionally dependent and that muumising

squared errors maximises profits However, the stochastic variables squared errors and

rule returns display very few linear relationships, as shown in this section under the

random walk assumption
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Where V(h) and V *(h) are the variances of the h-step prediction errors using the correct

and misspecified models respectively That is

V(h) E((Xt.fh —Ft h )2 ) and V(h) E((Xt+h — Ft:h )2)

where Ft, h and Ft:h are the optimal and misspecified h-step forecasts

PSE (h ) measures the relative increase of squared errors It shows the excess volatility

resulting from the use of the nusspecified model

For a trading rule though the cost of using a misspecified model should be better

measured by its monetary consequences in terms of foregone profits and therefore a

suitable measure is the relative loss of returns

E(R(h))—E(R*(h)) 
PR (h) =

E(R(h))

Where E(R(h)) and E(R*(h)) are the expected h-period returns of the true and

misspecified models respectively

We shall restrict here our study to the one period ahead forecasts, h=1, since many

trading rules are not designed to forecast longer than a single period Chapter 3 has

shown that in this case the expected return of a linear trading rule is given by equation
[3 18] Then it must be remarked that the relative loss of returns, PR (1) is a positive

number which takes values between 0 and 2 That is due to the fact that the expected

return of the misspecified forecaster can not be above the expected return of the true

model which is the maximum achievable return Consequently the expected return of the

misspecified forecaster can not be either below minus the expected return of the true

model If this were the case, that would mean that the contrarian strategy of the

misspecified forecaster would outperform the expected return of the true model, which is

not possible

A first obvious difference between the two misspecification criteria is that criterion [4 8]

is scale dependent when criterion [4 9] is not Let us explain what we understand by scale

dependent What is argued is that equation [4 9] is unaffected by a change of positive

scale in the forecasts It can be seen from equation [3 18] that replacing F t by a F, (a>0),

will not affect E(R) and so criterion [4 9] does not change On the other hand, criterion

[4 8] is changed since E((X t+1, — Ft )2) # E((Xt+i - aFt )2)

In what follows, we shall evaluate the effect of misspecification on the mean squared

error and the expected return for a general time series models that has been widely

employed in finance, the ARMA(1,1) model with drift defined by

Xt	 + P Xt-i + et cle t-i	 [4 10]

[49]
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The maximal profit is

p and q are constant and s t is a normal white noise without drift et - N(0,a!)

We will study more specifically three cases due to their popularity in Finance
the Random walk with drift where p. # 0 and p=q=0m equation [4 10]

That is	 p, + et

the AR(1) model without drift where p =CL # 0 and p, = q = 0 in equation [4 10]

That is Xt = dt Xt.. , +et

the ARMA(1,1) model without dnft where p ¶0. q # 0 and p. = 0 in equation [4 10]

That is Xt p Xt_t +st -clet-I

In the next sections, we examine the behaviour of the two measures, relative increase of
mean squared error, Ps E (1), and relative loss of returns, PR (1), for each of the three

sources of nusspecification (a), (b) and (c) mentioned above

4 3 2 Optimal trading strategies

Before examimng the effects of using a misspecified forecaster, it is important to

determine the performances of the correct model noted thereafter Ho , both in terms of

error measures and profits The reason is that Ho represents "the" optimal forecaster It is

the only one to display both the mnumal variance of the prediction error and the maximal

profit

Random Walk with Drift; RW(1.0

The true underlying process is assumed to be a random walk with dnft Returns Xt are

independent identically distributed following a normal law with drift N(g, a') That is

= + st , with et-N(0,a2)

The most accurate forecaster is the drift itself Frse = [4 11]

The minimal variance of the prediction error is V(1) = a2 [4 12]

The maximal profit is generated by the passive strategy and equals	 E(R(1)) =1111 [4 13]

Autoregressive of order 1, AR(1)

The true model is an autoregressive of order one AR(1) without drift having a first order

autocorrelation CL	 Xt = ctXt_i +;,, with cc-N(0,a2)

The optimal forecaster is the quantity 	 Fimse = axt-i 	 [4 14]

The minimal variance of the prediction error is	 V(1) = a2 (1_ a2) [4 15]

96

E(R(1))	 —
2

alai



Autoregressive Moving -Average of order I; ARMA(1,1)

The true model is an autoregressive-moving average process of order one AR(1) without
drift X t — pXt_ i = E t — gE t_ i , with et normal white noise, p and q constants

00

The optimal forecaster is the quantity (Taylor, 1986 186) Ftinse = (p —q)Eq'Xt_, [4 17]
t=0

\
(1—p2)2 	

[4 18]The vanance of the prediction error is (Taylor, 1986 187) V(1) =
(1-2pq+q

2
 )

The maximal profit is (equation [3 10]) E(R(1)) 	 —
2

cy Corr(X,, 1 ,F7) [4 19]
TC

with Corr(Xt+1 ,Ftmse ). li(p — q)2 /(1-2pq+ q 2 ) (Taylor, 1986 193)

4 3 3 Parameter muspectfication

Random Walk with Drift; RW(g)

Parameter misspecification on this model means that the estimated drift parameter 111

differs from the true parameter IA assumed to be non-zero The resulting increase in term

of variance is so

V*(1) = (14) 2 + cy2 and Ps5 (1) = 
V. (1) — V(1) -= (pt — 4)2 

V(1)	 c.Y 2

The expected return following the misspecified forecaster is

411 if pi.i i > 0 1
E(R* (1)) = {Hill if ti II' < 0

0 if t'=0

Therefore, the percentage loss of returns is

{0.1-10 / 1/21 = 0%	 If

PR (1) = 
E(R(1))— E(R*(1)) =

E(R(1))	
aLl—(-1121))/1121= 200% if

{jli— 0} / lp.1= 100% if
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E(R* (1)) =

When both drifts, true and estimated, have the same sign, there are no losses of profits

since the rules deduced by both forecasts are identical Indeed the magnitude of the

forecast is not taken into account in the decision process, only its sign matters

Consequently both trading rules will still maximise profits although they display different

mean squared error due to over/under estimation as shows the following example

a = 0 007	 t = 0 0002 (5% yearly) 	 = 0 0008 (20% yearly)

That is a case where an obvious overestimation of the true dnft p.= 5% (yearly) is
being done Forecasting = 20% implies that PSF (1) = 0 63 Nevertheless from a profit

point of view, both misspecified and optimal forecasters will generate the same profit,

that is = 5%

Autoregressive of order 1; AR(1)

Let us assume that an estimate a' is used instead of the true first lag coefficient a There

is a loss of accuracy

V* (1)= (1+ a' 2 —2ace)(72
V(1) —V(1)

PSE ( 1 ) =	 = (a' -C)2
V(1)

For instance if a = 0 05, a' = 0 10, it follows that PsF (1) = 0 25

The expected return of the misspecified forecaster is

j77c ;al	 if a a . > 0
—V2hr loci if act ' <0

0 if

Therefore, the percentage loss of returns is

— V-277t 411 / .\12/7c la! = 0%	 if a a' > 0
E(R(1))— E(R*(1)) 

{V2/rc lal — (— .11/7rIal)} / V2Irc!al = 200% if a a: <0
R ")	 E(R(1))

{V21 n 1a l — / 7\177rIal =100% if a =0

No loss of profits will occur as long as a' the misspecified parameter has the same sign as

the true parameter a because m this case, both predictors will trigger the same rule
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ARMA(1,1) without drift (Price-trend model)

In practical situations how much can a model be misspecified 2 A realistic answer

is now given when attempting to fit an ARMA(1,1) model Due to its financial

interpretation, the state representation of an ARMA(1,1), the price-trend model (see

Section 2 4 1), will be adopted in what follows Therefore the two parameters of interest

will be the vanance reduction A and the mean duration m d It is recalled that the mean
duration is defined by equation [2 10] m d =4/(1— p), and the variance reduction A is

defined by equation [2 12] A '---: (p — q)(1 — pq)/(p (1— 2pq +q2)}

Let us assess the statistical and financial consequences when a poorly defined model is

applied We consider that instead of the true model, a misspecified forecaster is used and

co
defined by Ft = E X i Xt_„ where k i are constants

	 i

t=0

An example of misspecified forecaster is X i = (p ' — q . ) q n , where p' and q' are two

constants If (ps,q1)#(p,q), the forecaster F t is nothing else than a pnce-trend model using

misspecified parameters

The variance of the prediction error is then given by

.	 0.	 .
V* (1) = Var(E X,X t , — X, i ) = Var(E A.,Xt_, ) + Var(X, ÷i ) — 2Cov(E X,X,_„ Xt,1)

t=0	 t=0	 1=0

co	 co .0	 co
v. (1) = {E vi a2 +2 E E kix j Api-j cy 2 } ± (5 2 _ 2E kiAp i+i a2

1=0	 I=J+1 j=0	 F--.1)

Therefore, using equation [4 18], the relative increase of squared error is equal to

_L. 0,
f *± A2, +2 1 EX,A,J Ari +1-2 i X,Ap1+1)—(1— p 2 )/ (1— 2pq +q2)

PsE( 1) = t=0
	 1=J+1 t=0	 1=0 [4 20]

(1—p2)/(1-2pq+q2)

The coefficient correlation between the misspecified forecaster and the one-step ahead

return is given by

	

00	 00 cc,
Corr(X t+i , Ft ) = Corr(Xt+i, E A', xt--.) -- PE X i Ap i f( EA?, + 2 E EX,XJAP I—j )

1=0 1=0	 \i 1=0	 t=i+li=0
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Therefore, using the last result and equation [3 10], the expected return following the

misspecified forecaster is given by

00	 CO	 00 00

Es (R(1)) = —
2

a (pEX, Ap t )/ ( EA!, +2 E E X i XjAp'-' )	 [421]
ic	 1=0	 \r0	 I=J-1-1.1=0

Then using equation [4 19], the relative loss of returns is equal to

( pi k, APT(
PR (1) =--	 '-'3

co .
i X2, +2 E Ek l a.;Api-J ) — 4(p-q)2/(1-2pq+q2)

	

1.-.0	 i=j+iro 

	/ 	 4(p-q)2 /(1-2pq+e)
[4 22]

Parameters misspecification on the price-trend model is common because the

standard deviation of the estimates is large Results for maximum likelihood estimates of

A and md might be found in Box and Jenkins(1976) for linear process, and for Taylor

estimates A and md in Taylor(1980, 1986) Taylor(1986) specially finds that averages

estimates of md are less than 10 days whereas the true parameters are m d = 20 days and

A=0 02 This downward bias causes estimates A to have an upward bias Taylor(1980

Table 3) shows that estimates of md are not accurate when m �20 Also it appears that

increasing the series length n does not substantially improve the accuracy For a given md,

the estimate of A has standard error of approximately {2/m d n}'4 That is for n=1000 and

md=20, cy(A) - 0 01

Let us now quantify the financial and statistical consequences when a poorly defined

model is applied First assuming an erroneous mean duration (md' instead of md), second

an incorrect vanance reduction (A' instead of A), third both inexact

The application of an erroneous mean duration m d' instead of md produces a maximum

relative increase in SE (equation [4 20]) of only 0 49% (Table 4 2) On the other hand,

the relative loss of profits (equation [4 22]) is far higher, ranging from 2 6% to 26% If a

mean duration is estimated equal to five days and it is actually equal to forty days, the

profit made by following such suboptnnal forecasts will be worth 9 63% (equation

[4 21]) when the maximum achievable return is worth 13 06% (equation [4 19]), that is a

relative loss of 25 5% (equation [4 22])
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Table 4.2 Miss ecified mean duration onl rice-trend model
True price-trend model A = 0 03, m, u=0 and a = 0 007

Yearly returns % using a nusspecified mean duration, ai d' Yearly returns % using the optimal forecaster

Ind\mdi 5 10 20 40

5 532 506 450 388 532
10 639 666 648 684 666
20 885 10 04 10 41 10 13 10 41
40 963 11 61 12 63 11 06 13 06

Relative loss of returns %

md\ind 5 10 20 40
5 0 49 154 260
10 48 0 36 120
20 150 36 0 26
40 255 112 26 0

Relative increase in SE % i

Incl\mds 5 10 20 40

5 0 004 016 030
10 005 0 005 018
20 021 006 0 005
40 049 025 006 0

When applying an erroneous variance reduction only, both increase in SE and

percentage loss of profits are small That can be seen from the diagonals of Table 4 3

When A1=0 01 and A=0 03, the maximal increase in SE equals to 0 24% and the maximal

relative loss of returns to 1 2%, both for m d = mdi = 40 days

Table 4 3 Miss ecified nce-trend model
True price trend model { A = 0 03 , md }, Misspecified model { A = 0 01 , rnd' }

Relative loss of returns %

md\rndi 5 10 20 40

5 01 61 208 351
10 36 03 61 192
20 133 20 06 64
40 236 85 06 12

Relative increase in SE %

indkrndi 5 10 20 40

5 006 004 005 010
10 018 012 009 011
20 040 028 019 015
40 060 055 036 024
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Under/overestimating the vanance reduction or the mean duration

under/overestimates ex-ante true possible profits Table 4 2 says that if the true model is

(a = 0 007, A=0 03, md=40) the maximum return is equal to 13 06% (equation [4 191)

Assuming instead an erroneous parameter, A'=0 01 or md'=5 would let think that the

highest returns which can be achieved in those conditions are respectively equal to 5 26%

and 5 32% These figures are the results of using the misspecified parameter A'=0 01 or

md'=5 for both rule and process in equation [419] Using a wrong mean duration has ex-

post far more financial consequences than estimating incorrectly the vanance reduction

The true return triggered by such forecasts is measured by using the incorrect parameter,

A' or md', for the rule but true A and md parameters for the process in equation [4 211 A

misspecified mean duration m'40 instead of md=5 when A=0 03 reduces potential

profits by 26 0% (Table 4 2) when an incorrect variance reduction A1=0 01 instead of

A=0 03 when md=40 decreases it only of 1 2% (Table 4 3) This 'primary example shows

that a forecaster should not be judged from the discrepancy in terms of ex-ante returns it

generates using a misspecified parameter for both rule and process (-5 3% in both cases

instead of 13 6%) Instead, it should be evaluated in terms of ex-post relative loss of

profits the decision process involves using a misspecified parameter for the rule but true

parameters for the process (1 2% and 26 0%)

Predicting inaccurately future profits (returns expectations) is of little importance for an

investor point of view if the decision making process which results from these forecasts

happen to be an almost optimal strategy ex-post (relative loss of profits) Indeed an

investor would prefer to be inaccurate in his expectation but correct in his decision

process

So it does not seem that equal focus on both parameters should be given on a decision

making process It does appear that the mean duration of the trend should indeed require

special attention After all would it have been possible to reach such conclusion from a

squared errors cntenon ? Does the mean squared error give a good idea of how

misspecified a rule is in terms of profitability ? Without knowing the source of

misspecification can one use the mean squared error to extrapolate the returns of its

forecasting method ?
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Figure 4 5 aggregates the results of tables 4 2 and 4 3 and shows that this is unfortunately

not the case

% Lost Profits = F ( % SE Increase)

Price-Trend Model
40

30

% Lost Profits	 20

10

0 00 010	 020	 030	 040	 050	 000	 070

% SE Increase

Figure 4.5 Relative loss of returns as a function of the relative increase in SE

Increase in SE is ordmanly extremely low The maximum increase is here equal to 0 60%

for (A1=0 01, md'=5} when [A,--0 03, md=40} On the other hand, the relative loss of

profits can be huge It can reach here 351% for {A 1=0 01, md1=40} when (A=0 03, md=

5} More significantly, there does not seem to be any link between an increase in SE and

a loss of profits The explanation might be that the relationships between the increase of

SE and the percentage lost of profits is highly nonlinear and quite complicated That can

be seen by comparing analytical formulae [4 20] and [4 22] for the pnce-trend model So

if the true model is the price trend model, the minimum squared errors criterion might not

be relevant to assess the usefulness (profitability) of a forecaster

4 3 4 Model muspeoficatzon

H0 : Random walk with positive drift (1P0)

Rule returns based on a AR(1) model depend only on the sign of the autoregressive

parameter, a, and not on its size (Table 4 4) When the true model is a random walk with

drift, the return of such a rule is positive when a is positive but very small 4 The relative

loss of profit is substantial and rather insensitive to the size of the dnft parameter For

4 When a. is positive, the rule triggered by an AR(1) forecaster is identical to the simple moving
average of order 2 rule The expected rule return is consequently extremely low under the random
walk with drift assumption, see Chapter 3
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example assuming a = 0 007 and 11 = 0 0002 (5% yearly) produces a relative loss of

96 6% When the drift parameter increases to 0 0006 (15% yearly), the percentage loss is

93 2% In comparison, the value of both the drift and the autoregressive parameters have

very little effect on the percentage increase in the SE

Table 4.4 AR(1) forecaster when the true model is a Random Walk with drift
Relative loss of returns %

(Standard Deviation a = 0 007)

p.(y early %) \ a ,	 AR(1), a > 0

5 966
10 954
15 932

Relative increase in SE

(Standard Deviation a = 0 007 )

143 early %) \ a 0 025 0 05 0 1

5 014 033 108
10 039 056 132
15 080 098 162

i

H: AR(1) without drift and a>0

We examine here, the reverse case of using a Random Walk model with positive drift

instead of the true AR(1) model The strategy of the RW model with positive drift is a

buy and hold strategy with excepted return equal to zero The relative percentage loss is

therefore 100 percent The percentage increase in SE is

„ 
2 +a2  -(1 + 0(2 

L'
N .,,,2	 , 2 +a202

PSE ( 1 ) = IA.	 1 	 = i"(1 + a2 )02 	 0 _ a2 )0,2

When the RW model used has no drift (1=0) the percentage increase in SE is

ct2

PsE (1) = 
(1 - a

2	
)

For example if a=0 1, the percentage increase in SE is 1 01% compared to 100%

relative loss in profit

H : AR1VIA(1,1) without drift

Employing a RW model with dnft instead of the true model ARMA(1,1) gives results

very similar to the ones in the last section A more interesting case is when the model

employed is an AR(1) The net returns issued from the two models, misspecified AR(1)

and correct ARMA(1,1), are given in Table 4 5 The relative loss m profits can still be

derived from equation [4 22] and depends on the mean duration m d of the true model but
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as it has been shown before not on the size of the autoregressive parameter of the

misspecified model The relative loss vanes from 36% for md=5 to nearly 69% for md--40

The percentage increase of the SE is still derived from equation [4 201 and depends as

expected on the size of the autoregressive model The relative increase in SE is a negative

function of md When md increases, that is a striking case where the AR(1) model

becomes more accurate but less profitable in relative terms
\

Table 4.5 AR(1) forecaster when the true model is the rice-trend model
Yearly returns

True Model ARMA(1,1) , { A = 0 03 , m d , cs = 0 007 }

md Yearly returns % using an AR(1) with a>0 Yearly returns % using the optimal forecaster

5 335 532
10 366 666

1
20 398 10 41
40 408 13 06

Relative loss of returns %

md AR(1) with a >0

5 36 00
10 51 46
20 61 68
40 68 65

Relative increase in SE %

met. 0 025 005 0 075 01 0 125

5 083 089 109 141 185
10 081 086 104 135 168
20 0 80 0 85 1 02 132 1 64
40 080 084 101 130 162

4 3 5 Technical Indicator

We now study the effect of using technical forecasters when the true model is a Gaussian

process More specifically, we measure the consequences of following simple moving

average techniques of orders 5, 10, 20 and 40 in terms of mean squared error and

profitability for the three models we have considered until now The use of a technical

indicator in those conditions can be seen in fact as a special case of misspecification

model, because simple moving averages are linear models (Section 3 4 1)

H0 : Random walk with positive drift (p0)

From Table 4 6, it can be seen that the higher the order of the moving average, the lower

the relative loss of returns This result is a direct consequence of Chapter 3 in which it is

shown that with equation [3 12] the higher the order of the moving average, the closer it
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is from the optimal strategy, buy and hold In addition as volatility decreases, the relative

loss of returns decreases

Table 4.6 Relative loss of returns following a simple moving average rule,
when the true model is the RW with dnfl

Relative loss of returns %

(Standard Deviation a = 0 007)

u(yearly) S(5) S(10) S(20) S(40)

5 958 940 913 866
10 916 869 826 656
15 866 819 643 641
20 835 661 662 534

The mean squared error does not seem a relevant cntenon to judge the potential

profitability of a technical indicator due to its sensitivity to a change of scale The fact

that tecluucal forecasters display very different variances is a serious drawback which

prevents the use of squared errors in performances measurement Homogenisation for

equal vanances between forecasters is required Then minimising squared errors will be

nothing else than maximising correlation between predicted and actual values That is

what achieves our profit criterion, which is scale independent

H0 : AR(1) without drift and o20

Since the optimal strategy is nothing else than a simple moving average of order 2, it is

logical that the lower is the order of the moving average, the smaller is the relative loss of

returns (Table 4 7)

Table 4.7 Relative loss of returns following a simple moving average rule,
when the true model is the AR(l' model

Relative loss of returns %

CI, S(5) S(10) S(20) S(40)

0 025 268 466 616 628
005 266 465 616 626
01 261 462 615 626

H0 : ARMA(1,1) without drift

For a given variance reduction, Table 4 8 reflects that the best single moving average

corresponds to an order relatively higher than the mean duration
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Table 4.8 Relative loss of returns following a simple moving average rule,
when the true model is the nce-trend model

Relative loss of returns %

A = 003

md S(5) S(10) S(20) S(40)

5 80 16 113 296
10 221

,
60 18 124

20 356 169 \	 36 26
40 461 269 113 18

A = 0 02

md S(5) S(10) S(20) S(40)

5 86 16 106 286
10 238 61 16 111
20 385 195 51 20
40 499 320 145 t 8

4 3 6 Conclusions on misspecification

The linear forecaster which minimises squared errors maximises expected returns

However the mean squared error does not seem a relevant criterion to judge the

predictive power of forecasting strategies When the true model is not known, one has to

use a misspecified forecaster Then loss of profitability in relative terms is almost

unrelated to loss of accuracy One cannot conclude that a decrease in mean squared error

will provide a gain in returns The most plausible explanation to this phenomenon is the

degenerescence in the multwanate law of rule and underlying returns Broffitt(1986) has

shown that although functionally dependent those two processes can be uncorrelated and

follow a bwanate degenerated law It is why error measures might be in practice of poor

use to study the predictive power of a forecasting strategies and that only profitability

criterion should be considered for investment purposes

In theory, if the underlying process is Gaussian, technical forecasters are misspecified and

cannot outperform vector autoregressions forecasters In fact, technical forecasters might

not be misspecified and be optimal forecasters, because many of them are in fact vector

autoregressions forecasters Another argument m favour of technical analysis has been

given by Taylor(1992b 16) " The channel rule may be superior because it may require

less information to learn about a satisfactory value of its one parameter than an ARIMA

rule needs to find satisfactory estimates of its AR and MA parameters" We have shown

here that for trading purposes, it was far more important to accurately estimate the mean

duration of the trend than the variance reduction That is exactly what attempt technical

rules such as the weighted or simple moving average rules So technical analysts might

argue, with some reasons, that it is preferable to use an ill-defined forecaster but
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adequately approximated because of relevant criterion (profits) than a well-defined

forecaster but wrongly estimated because of inadequate cntenon (error measures) In

practice, complicated misspecified models can outperform much worse than simple (also

probably misspecified) models Indeed, attention should be given to models where the

financial implications of interest (rule returns) are not sensitive to the model of the trend

Ideally we would like a forecasting strategy which implies the same expected rule return

whichever trend model is used

4 3 7 Extension to chaotic time series

If the data are chaotic, one can potentially forecast the time series perfectly, but one can

practically never succeed in long-run forecasting (Brock, Hsieh and LeBaron, 1991) In

those conditions, forecasting is close to impossible (Mandelbrbt, 1966, Butler, 1989)

Suppose that we estimate the model of a chaotic time senes and that we make an error of

1 percent in the estimation of just one parameter This exceedingly small estimation error

will be sufficient to introduce large errors in predicting the time senes In order to use the

model for forecasting purposes, we should be able to obtain infinitely precise estimates of

the parameters of the model Anything less precise makes the use of the model for

predictive purposes useless De Mandelbrot(1966), Butler(1989), Grauwe and

Vansanten(1991) show that in the chaotic world they have modelled, time series models

of the financial asset cannot be used for forecasting purposes In this case, market

participants have no incentive to invest time and money in acquiring information about

the underlying economic model In order to be useful this information must have a degree

of precision which is unattainable in the social sciences

The above conclusions relate to forecasting errors and stochastic modelling and

therefore might not be applicable for profits and technical rules The exact nature of the

underlying chaos needs not to be known to build profitable strategies Under the null

hypothesis of a fractional Gaussian process, the optimal forecaster given by

Hoskings(1981) is a very profitable forecaster It exhibits an infinite gain because the

autocorrelations are not summable It is however very dependent on the initial conditions

and is not known when the true model is not Consequently a more robust rule might be a

simpler forecaster such as technical rules Indeed, we have seen in Section 3 4 3 that

technical rules such as the simple moving average are quite profitable under the fractional

Gaussian process assumption

In sum, chaotic time series might be a case where technical forecasters should be

preferred to time series models
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4 4 MARKET TIMING ABILITY TESTS IN PRESENCE OF LOW

AUTOCORRELATIONS 

As proved theoretically in Section 4 2 2 and empirically by Leitch and Tanner(1991),

directional accuracy is certainly the best candidate as a substitute of profits if those ones

are not observable So it is not surpnsing Tat tests of market timing ability have been

based on it ,

Section 4 4 1 supports the close link between expected profits and directional accuracy

by establishing their formal relationships for any Gaussian processes without dnft

However, Section 4 4 2 questions the usefulness of market timing ability tests based on

directional accuracy, such as the Hennksson and Merton(1981) test, and its extension the

Cumby and Modest(1987) test, in presence of low autocorrelations

4 4 1 Directional Accuracy and Rule returns

Market timing ability can be looked at from several perspectives error measures and

profitability We will examine here the required accuracy for profitable market timing

assuming that the underlying asset follows a Gaussian process without dnft5

Proposition 45
If the underlying process of returns PC} is assumed to be Gaussian without dnft, the

expected value of directional accuracy DAt is given by

E(DA, ) = —
1 

+ 
Arc sin (p) 

[4 23]
/	 7r

where p = Corr(X, i ,F)	 [4 24]

In addition, the expected value of rule returns is known and again a function of p only

Equation [3 10] says that

E(Rt ) =
2

p—CY

n
[425]

Expected values of directional accuracy D t and profitability Rt can be linked easily using

equations [4 23] and [4 25] The relationships is given by

5 That is a similar study to the required accuracy for successful asset allocation under the bivanate
random walk by Clarke, Fitzgerald, Berent and Statman(1990)
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E(R  )1	 1	 ,	 t  )E(DA) =--- :-5: 
+ it 

Arc sink
 J2/it

[426]

When the correlation p between one-ahead return and forecaster is quite low, Arcsin(P)—

p, and equation [4 26] can be approximated by

21 ±  217ra
  E(R 1 ) [4E(DA t ) =

	

	 27]
\

So directional accuracy as expected is once again positively and almost linearly related

with profitability Table 4 9 provides some numerical examples assuming a given

volatility

 4.9 Relationships between directional accuracy and profits,
Directional Accuracy, Profit assuming a volatility a = 0 007

Corr(Ft,Xt, 1 ) E(R) Yearly % E(DAt) %

0 0 50
0 025 35 508
005 70 516
0 075 105 524
01 140 532

0 125 175 540
015 209 548

0 175 244 556
02 279 564

The most interesting result from this table is that it is enough of very few directional

accuracy (DA-55%) to generate big profits (>21%) Such results have been empirically

noted by Kester(1990) and would contradict the findings of Chua, Woodward and

To(1987) and Sharpe(1975 67) in which he states that "[ ]unless a manager can

predict whether the market will be good or bad each year with considerable accuracy

(e g be right at least seven times out often), he should probably avoid attempts to time

the market altogether"

4 4 2 Market Timing Ability Tests

The fact that it is enough of very few directional accuracy to generate big profits has

profound implications on testing the market timing ability of forecasters This might

indeed question the usefulness of market timing ability tests based on the percentage of

correct forecasts These ones might not be powerful enough to detect market timing

ability This point is now investigated in more details by considering Henriksson and

l'snerton(1981)'s non parametric test and its extension by Cumby and Modest(1987)
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Predicted	 X,_�0 (B,4=1)

Returns	 X,<0 (B,1=-1)
ni N2-n2

n2N1 -n1

Hennksson and Merton(1981)'s test and its extension by Cumby and Modest(1987) are

certainly some of the most popular tests employed to mvestigate the usefulness of

technical advisory services as market timers Schnader and Stelder(1990), Beebower and

Vankooty(1991), Gerlow and Irwin(1991), Hartzmark(1991) are recent examples The

advantage of these methodologies is to measure the value of a forecast (advice) which is

independent of an investors preference, endowments, or pnor assessments of an asset's

return stream

The Hennksson and Merton(1981) non parametric test simply studies the percentage of

correct forecasts following a given trading rule They make the additional assumptions

that the conditional probability of a correct forecast does not depend on the magnitude of

subsequent returns Then the test may be implemented in a sample of N observed

forecasts by classifying the N outcomes as follows

Actual Returns
X,_�0	 Xt < 0

N1	 N2

where X, is the excess rate of return of the underlying asset

N 1 = number of outcomes with X, 0

N2 number of outcomes with )C <0

nt = number of correct forecasts that X, 0,

n2 = number of correct forecasts that X, < 0,

and n = ri 1 +n2-N number of correct forecasts that X, 0

The test proceeds by using the fact that, under the null hypothesis of no timing ability, n,

is distributed as an hypergeometnc When the probability under the null of observing n1

or more correct forecasts that X, 0 (given N 1 , N2 and n) is unacceptably small, the null

hypothesis is rejected

The Cumby and Modest(1987) test extends Hennksson and Merton(1981) test by

removing the critical assumption that the conditional probability of a correct forecast

does not depend on the magnitude of subsequent returns The relationship for assessing

market timing ability can be defined, similarly to Gerlow and Irwm(1991), as

Xt a +1313t-i ± et ut 28]

cc and 0 are constant Et is a white noise X, equals the percentage excess rate of return,

and 13,.. 1 is the signal triggered by the rule
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Market timing ability is found under the Cumby and Modest(1987) test if B is significantly

different from zero Testing 13=0 is therefore a test of forecasting ability or to be more

precise a test of whether the forecaster possesses any information not contained in the

unconditional sample mean

The assumption of the Hennksson and Merton(1981) test that the probability of a correct

forecast is independent of the magmtude of subsequent asset returns, is likely to be

violated when technical indicators are used t umby and Modest(1987) note that even if

market returns have constant variance per unit of time, the variance of holding period

returns following a technical rule will not be constant6 Breen, Jagannathan and

Ofer(1986) show that correction for heteroskedasticity can significantly affect the

conclusions The heteroskedasticity corrections suggested by White(1981) seem

particularly effective (Breen, Jagannathan and Ofer, 1986, Cumby and Modest, 1987) A

simpler approach is to consider when available unrealised instead of realised returns as

shown in Chapter 3 Section 3 3 has shown that if the underlying process is

homoskedastic, so will be unrealised rule returns process Then the use of unrealised

returns will remove the artificial heteroskedasticity induced by realised returns, it might

not however be sufficient if the underlying process is itself heteroskedastic

So there is a theoretical framework, possible linear relationships between directional

accuracy and rule returns, and constant variance per unit of time, which may justify the

use of Hennksson and Merton(1981) and Cumby and Modest(1987) tests to assess the

usefulness of technical indicators Yet the power of such tests must be investigated under

the most plausible alternative in defence of technical analysis, the presence of low

autocorrelations

4 4 3 Power Study

A most plausible model which can explain trading rule returns is the price-trend model

due to Taylor(1982) The trends ti t had normal distributions and zero drift Similarly to

Taylor(1982), series of 1500 returns were simulated with A=0 034 and p=0 944, and the

model was replicated 1000 times The market return has been assumed to be equal to

zero, therefore the excess rate of return is equal to the underlying rate of return

Xt = Ln(Pt / Pt_i)

Let us study the power of popular market timing ability tests namely, Hennksson

and Merton(1981), Cumby and Modest(1987) what we respectively note HM(x) and

CM(x) for the simple moving average rule of order x=5, 10, 20 and 40 Table 4 10

6 See Appendix 3 4 for a simple proof
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Table 4 10 Power of market timing ability tests under the
Estimated Powers for 1500 observations from a pnce-trend model

A=0 034 , p=0 944, ii.=0 ,N=1000

Percentage rejections of RW

Statistic Significative level

1% 5% 10%

Hennksson-Merton
HM( 5) 21 29 33
HM(10) 28 36 38
HM(20) 36 40 43
HM(40) 41 45 47

Ciunby and Modest

CM( 5) 23 46 58
CM(10) 36 60 71
CM(20) 44 66 77
CM(40) 40 63 74

Taylor

T 75 88 93
U 71 84 90

nce-trend assumption

1

indicates in addition for comparison purpose the power of two statistics T, U7,

specifically constructed to test the price-trend hypothesis

The most powerful statistics are the Taylor(1980) statistics, T and U It must not be

surprising since they have been explicitly elaborated to test the price-trend hypothesis

The HM market timing ability test has very low power, below 50% at a critical level of

10%, whichever rule is applied Jagannathan and Korajczyk(1986) exhibit similar results

and show that in most reasonable cases there is a nonlinear relation between portfolio

returns and the independent variables in the timing models They prove that is

theoretically possible to construct portfolios that show artificial timing ability when no

true timing ability exists We Just have shown that is theoretically possible to find trading

rules that show no timing ability when true timing ability exists This result theoretically

confirms a finding of Jagannathan and Korajczyk(1986) which is that nonhneanty in

market-timing models need not be due solely to violation of the assumed linear return-

generating process

The CM market timing ability test has significantly higher power than the HM test The

most powerful statistic is CM(20) which is quite natural since the simple moving average

7 Definitions of statistics T, U are given in Section 6 1 4 and Taylor(1982)
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of order 20 is the most profitable rule in the portfolio under this particular price-trend

assumption

Therefore criteria and tests based on directional accuracy to assess market timing ability

of technical indicators, might be of poor use to detect the usefulness of a trading rule

when the financial underlying time series exhibits low autocorrelations The main

difficulty is then to find a proper test of market timing ability This is the object of

Chapter 5

45 SUMMARY

If price time series data is assumed to follow a Gaussian process, then linear rules were

shown to be useless in maximising returns over and above vector autoregressions This is

also the conclusion of NefIci(1991) However, this finding needs to be refined because as

shown in Chapter 3, there are technical rules which are implicitly linear The most

important result is that minimising squared errors is a sufficient but not necessary

condition to maximise expected profits

Despite a functional dependence, profits and error measures are only weakly

linearly correlated under the random walk assumption In this case directional accuracy

seems the best substitute to profits if those ones are not observable In presence of low

autocorrelations, misspecification criteria based on error measures and profits behave

quite differently The main finding is that it is difficult to deduce from an increase of mean

squared error a loss of profits and vice-versa In practical terms, a decrease of mean

squared error is not linearly and positively related to a gain of profits That would mean

that for trading purposes, optimal vector autoregressions although maximising returns in

theory will have to be determined via other step researches than decreasing the mean

squared error The explanation of this fundamental issue might be that the functional

dependence between error measures and profits is of very few practical use because

highly nonlinear and possibly degenerated Therefore, when the true model is not known,

a decrease in mean squared error does not necessarily imply a gain in profits

In presence of low autocorrelations, expected directional accuracy and profits

seem linearly related Nevertheless in this case, tests of market timing ability based on

directional accuracy exhibit very low power These tests might say nothing about the

usefulness of trading rules for maximising profits Nonhneanty in market-timing models

need not be due solely to violation of the assumed linear return-generating process
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APPENDIX 4.1

PROOFS OF PROPOSITIONS

Proposition 41

Expected returns given by equation [3 18] are function of two variables

x = 11 F /0 F the ratio mean/standard deviation of the forecaster

p = Corr(X,,,,F) correlation between forecaster and one-ahead return

Equation [3 18] can so be rewritten as

E(R) 1J —x2 / 2) + 4(1— 2c1)[—x])
It

[4 29]

The two variables p and x are independent So the forecaster which maximises expected

return must first maximise p Then for a given p, the forecaster which maximises profits is

obtained by deriving formula [4 29] as a function of x It follows that the second

condition is given by

dE(11)/dx

<:=>	 j-ap(—x)exp(—x2 /2) + —
2 

exp(—x2 /2) = 0
7t

<=>	 a P X = <z> =	 <Z> P. F/GF =1-1./(aP)

Proposition 42

We first know from Chapter 3 that

E(R)= O	 [37]

Var(R) = 02 [3 8]

Then if we note v(f) c / a 2 , and Z., = X - Ft_i , we deduce that

Z, N(0,a2z ) where 2 = 6 2 +62F = 02(1+v(f))

It follows that

E(SE,) = E((X, —	 )2)= E(Z ) =c72,

Var(SE1)=E(4) - (E(4)) 2 =3a4z-cyl = 2c71

-2F,_1X,+q_1))

[430]

[431]
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E(11,SEt)= E(B 1_IX3, )-2E(Bt_ iFt_iXt2 )+E(B1_1F11X1 )

Since Xt follows a normal centred random walk, we have

E(Bt_i)q)-= E(Bt_i)E()q) = E(B t_i ) 0 = 0

E(Bt _ I Ft2_1 Xt )= E(Bt_IF 1 )E(Xt )= E(Bt_iFtli )0 = 0

E(Bt_IFt_X)= E(Bt_,Ft_i )E(Xt2 )=( f Ft-1,— 5Ft_1 ) 62 = a 2 a
	 It

Therefore	

7F1-1> o k Ft-140

,

Therefore	 E(R1SEt)=-2E(Bt_ IFt.1)q )= —2 a2 a F \II
It

From the last result and equations [3 8] and [4 31], we deduce that

i

—2a 2
a

corr(Rt,SEt) — a	 2z

Since by definition v(f) = a2F /a2 and a2z =a 2 (1+v(0) from [4 30], it follows that

—2.,j1)
corr(Rt,SEt) — Jo ±v(f))

Proposition 43

Using the auxiliary vanable Zt defined by formula [4 30],

E(AE,) = E( I Xt-Ft_ 1 1) = E( I Zt l) = ifoz
Var(AEt) = E( I Xt-Ft_i 1 2 ) - (E( I X1-11-1 I )) 2 = E(Z) - (E( 1 Zt I ))2

Cov(Rt,AE) = E(RAE) = E( 3t-iXt I Zt I)

Cov(Rt,AE) = if xtzt - ff xt zt - ff xtz, + ff xt zt
Ft_t >0,Z t >0	 Ft_1>0,Zt <0	 Ft_t <0,Z t >0	 Ft_t <0, Zt <0

= a2z (1-2/n) [432]

Cov(111,AEt) = 2 { if XtZt — if Xt Zt }
Ft_ t >0,4 >0	 Ft_i >0,Z t <0

The last equality results from symmetry argument

In addition, we know from equation [4 30], that )C = Zt + Ft_i Consequently,
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ff xtz, = If Z + Zt Ft-i = al [2,0](P)-bazaF[1,1](P)
F,_, >0,7., >0	 F,_, >0,Z, >0

55 XtZt = 554 + ZtFt-1 --.- al [2,0](-p)+azaF[1,1](-p)
F,_, >0,Z, <0	 F,_, >0,Z, <0

where [1,11(p) and [2, 0](P) are truncated moments of bivanate normal laws, and
p = Corr(Zt , F_) = Corr( Xt --• Ft-i , Ft-i ) = -Cov(Ft_i , Ft_i ) / (a F az ) because Xt and Ft-1

are independent Consequently

p = -a F / CY z = -VV(f )/U ± v(f )]	 [433]

Subsequently, we deduce that

Cov(Rt,AE) = 2 ( al ([2,01(P)42,01(-13))+a7.aF([1,1i(p)+[1,1](-p))}

Using the exact formulation of [1,11(p) and [2,01(p) respectively given by [A 3] and

[A 4] in Appendix 3 1, we have

Cov(R,,AE) = (3/R)a2z (Arc sin (p)+ pA/1- p2 - p{pArc sin (p) + All - p2 })

Cov(Rt,AE) = (3)a2z (1- p2 )Arc sin (p)

From equations [430] and [433], we deduce that (5 2, (1- p2)=a2

Then, Cov(ICAE) = -(Y,) a! Arc sin (p) = - (3/ )a2Arc sin (Vv(f) / [1+ v(f)])

From the last result and equations [3 8] and [4 32], we deduce that

, -2ArcsinOv(f)/[1+v(f)]) 
Corrat t ,	 )AEt  -	 Vi Viz - 2 V1+ v(f )

Proposition 44

E(DA) = Pr(XtFt.i>0) = Pr(Xt>0,Ft4>0)+Pr(Xt<0,Ft_i<0)

= Pr(Xt>0)Pr(Ft.1>0)+Pr(Xt<0)Pr(F1.1 <0) ----- 0 25 + 0 25 = 0 5

Var(DA) = E(DA)- (E(DAt ))2 = E(DAt){1-E(DA)} = 0 25

Equations [3 7] and [3 8] say respectively that E(t) = 0 Var(Rt) = a2

Then

Cov(RI,DAJ = E(Rt DA) = 55x1 - if Xt ' % ( j Xt - j Xt ) = a/r-
..., 27c

F,_, >0,X, >0 F,_, <0,X, <0	 X, >0	 X, <0

Corr(Rt,D
a

- N / 27c _
 Vic0 5a - TC
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Proposition 4 5

E(DAt)= 55 Xt — 55 Xt = 2 55 Xt for symmetry reason
Ft_ t >0,X t>0 Ft_ i <O,X t <0	 Ft_i>0,Xt>0

E(DA)= 2 [1,01(p) where p= Corr (Xt ,Ft_i)

and [1,0](p) is the truncated moments of standardised bivanate normal laws given by

equation [A 2] in Appendix 3 1 Subsequelr,

E(DAt) — 
1 

+ 
Arc stn(p) 

2	 7C

1
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2
E(Rt) = — C7 p

7C

Var(R) = a2 {1_p2]

APPENDIX 4 2

CORRELATION BETWEEN DIRECTIONAL ACCURACY AND PROFITS

ASSUMING A GAUSSIAN PROCESS WITHOUT DRIFT

Proposition 46

Under the Gaussian process assumption without dnft, the lmear correlation between rule

returns (equation [3 1]) and directional accuracy (equation [4 3]) is

1	 -nri
7-72-pArcsin(p)

Corr(Rt,DAt) — 	
-\/[1— 2p2 / 'ITN% + X Arc sin (p)	 — X Arc sin (p )

With p Corr (Xt ,Ft_i)

[4 34]

Proof

Equations [3 101 and [3 6] respectively say that

Using the results of Proposition 4 5

E(DAt) = % + X Arc sin (p)

Since E(DA. ) = E(DAt) ,

Var(DAt) = E(DAt)(1—E(DAt)) = (% + )/ Arc sm(p))(% — X Arc sm (p))

E(RtDA) = ff xt - 1.1 xt
Ft_ >0,Xt >0 Ft_ t <0,X <0

Using the truncated moments [1,0](p) of standardised bivanate normal laws given by

equation [A 4] in Appendix 3 1 It follows that

E(RtDA) — cr 2 v21 7c  (1+p)

From these results, we easily deduce Cov(Rt,DA)

Cov(Rt,DA) 
1 

4pArcsm(p)

and so Corr(Rt,DA) given in equation [4 34]
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Chapter 5

TRADING RULES DIAGNOSTIC TESTS

As outlined in Chapter 2, the choice of which dynamic strategy to follow depends on the

expectations one has about the stochastic process which drives prices It is consequently

crucial to establish proper tests of the randomness of financial prices Then if prices are

not random, statistics must be found which enable to determine the most likely

alternatives This chapter intends to solve both issues by considenng tests based on the

joint profitability of trading rules

The profitability of dynamic strategies might be one of the most powerful statistic to

detect market inefficiencies as state Leuthold and Garcia(1992 53) "Relative Mean

Squared Errors [however] provide only an indication of the potential for market

inefficiency A sufficient condition for market inefficiency is whether the forecasting

method can generate risk-adjusted profits which are greater than the cost of usage"

Therefore market timing ability might constitute a more powerful way to detect market

imperfections than standard statistical test However we have seen in Chapter 4 that the

well known market timing ability tests, by Hennksson and Merton(1981) and Cumby and

Modest(1987), exhibit low power in presence of low autocorrelations

This is why new tests based on the joint profitability of trading rules rather than

directional accuracy or mean squared error should be sought

Section 5 1 establishes the necessary preliminaries, trading rules correlations under the

random walk assumption Then Section 5 2 proposes new tests of the random walk

hypothesis based on the joint profitability of trading rules Finally Section 5 3 extents

previous results such that the adequacy of any Gaussian processes can be checked using

trading rule returns As before, the last section of the chapter summarises and concludes

our results
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5 1 TRADING RULES CORRELATIONS
UNDER THE RANDOM WALK WITHOUT DRIFT ASSUMPTION

Establishing trading rules correlations is essential to enable achieving three objectives

Firstly, a proper, objective and quantified classification of trading rules, non-existent at

the time of writing, could be performed using rules correlations Secondly, it might help

to construct an efficient portfolio Thirdly, and perhaps more important, it will allow the

joint profitability of a set of trading rules to be tested Brock, Lakonishok and

LeBaron(1992), Surujaras and Sweeney(1992), Prado(1992) have emphasised that such a

test might have power, specially against nonlinear alternatives

Consequently, correlations between trading rules are worth being investigated and are

explored under the assumption of a random walk without drift Section 5 1 1 defines our

basic assumptions Section 5 1 2 gives the main results of this section, the correlations

between two technical rules applied to a bivanate random walk without drift

5 1 I Basic assumptions

We are now assuming that two financial senes, with returns X 1 , and X2 t , follow a

centred bivanate normal law with variances (7 2/ and cy; and correlation coefficient p,

Then two unbiased linear trading rules (similar or different) F t,t and F 21 are respecti‘ ely

applied to the two processes {X 11 } and {X 2 t )

m / -2	 m,--z

Fl,t =
	

[5 1]	 F2 t :7" E	 [5 2]
i=0
	

i=0

m 1 and m2 are called the orders or lengths of the trading rules

The linear rule F 1,1_ 1 generates signal B, ,t_t and return R11 from the underlying process

{X,,t ), given by, R, 1 =B 1 t_ 1 X1 t It must be noted that this chapter assumes that linear

rules are without constant (8 = 0 in equation [3 4]) Popular technical forecasters such as

momentums, simple moving average, weighted moving average and double moving

average rules are examples of linear rules without constant as can be seen from Table 3 3,

and so are unbiased if the true model is without drift
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5 1 2 Linear rules correlations 

To the author's knowledge, the only researchers who have attempted to establish

theoretical trading rules correlations are Praetz(1979) and Sweeney and Lee(1989) In

both studies it is recognised that the covanances of trading rules depend on the

covanances of underlying returns and on the positions the speculator had in the two

assets Proposed formulae are expressed as a function of the frequency of short positions

taken by the trading rules However their results are not exact and have to be considered,

at best, as approximations, as it is now recognised, that the frequency of short positions is

an endogenous variable (Surujaras and Sweeney, 1992) This section will attempt to

remedy this limitation by giving precise theoretical correlations between trading rules

Precise theoretical correlations are now being established for any linear rules without

constant and highlighted, for the sake of clarity, throughout three popular technical linear

rules which are simple moving average, weighted moving average, and momentum

systems, respectively noted S, W, M

Proposition 5 11

Assuming that two underlying time senes, X 1 t and X21 , follow a centred bivanate

normal law with underlying correlation p„, linear rule returns, R 1 t and R 21 , exhibit linear

correlation coefficient PR , given by

PR p(Itt t , It2t ) = —
2

p, Arc sin(pp)
	

[53]
ir

where p F is the correlation between the two different forecasters which would have been

applied to the same underlying process We call it systems correlations It is given by

Min(mi m.2)-2
Ed,,d2,
i=0 	 	 [5 4]

PF =	 I1m1	 „,-2	 1".2-‘•
E d2 E d 21,1 A	 2,1

\ 1=0	 t=0

In addition,	 P(R-1,t 3R2,t+h)=13(iti t+h)R2,0=0 for h>0
	 [55]

I Proofs of propositions are given in Appendix 5 1
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[56]

[57]

with o,Foo --= P( Fi,i / F2,t-I-h ) =-- m 1 -2	
i
m,-2

E 4, l E clL
1=0	 ‘ 1=0

[5 8]

M/n(m i m2—h)-2
Eci, ,, d, ii_h
1=0

Proposition 5 2

Assuming that two underlying time senes, X 1 t and X2t , follow a centred bivanate

normal law with variances af , o- 22 and coefficient correlation p,, linear rules signals, Bit

and B 21 exhibit linear correlation coefficient p B , given by

ID B =P(B i,t,B 2t)= 72 Arcsin(PxPF)

and p F is given by equation [5 4]

, 2
In addition, p(Bi,t,B2,i+ht------ Arc sin (PxPF(h))

it

Expressions [5 3] and [5 6] suggest a few comments

(a) correlation between rules signals, p B , is higher in absolute value than correlation

between rule returns, PR

(b) rule signals correlation, p B , is an odd function of underlying correlation p, and of

systems correlation p F That means that rules signals will be negatively correlated if either

the systems correlation or underlying correlation is negative

(c) rule returns correlation, P. is an even function of the underlying correlation p, and

an odd function of the systems correlation p F That means that rule returns will be

negatively (positively) correlated it and only if, the systems correlation is negative

(positive)

(d) rule returns correlation is always lower in absolute values than the underlying

correlation

If one wants to minimise the risk of an investment, it turns out that diversifying trend-

following systems between positively correlated assets can be beneficial beyond

diversification of passive strategies, because the correlation between trading systems will

be lower (property d) However, this will be disadvantageous if the underlying assets are

negatively correlated, because trading systems will be positively correlated (property c)2

2 See for a graphical representation of this fact Figure 5 1
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For the remainder of this section we shall primarily focus our interest on returns

rather than signals correlation since it has more implications vis-a-vis a portfolio context

We shall detail and interpret previous results by considering three cases from the simplest

to the most general different rules applied to the same underlying process, the same rule

applied to different underlying processes, different rules applied to different underlying

processes

Different rules applied to the same underlying process

When two different unbiased linear trading systems are applied to the same underlying

process, X I t =X2 t =Xt and px =1 In this case, correlations between rule returns, equation

[5 3], and correlations between rules signals, equation [5 6], become identical and equal

to

PR = Pg = —
2

Arcsin(PF)
	

[59]
it

Table 5 1 gives examples of correlations between two successive orders of a given rule

For instance, the correlation between simple moving averages of orders 2 and 3 is equal

to 0 705 That tells us that for all three rules successive orders are less correlated for low

than high orders This is not surprising and has been noted by Prado(1992) Prado(1992)

recommends testing wider intervals as the moving average days increases He adds that

on the one hand, a three day moving average is very different from a four day moving

average, but on the other hand a ninety day moving-average is very similar to a ninety-

one day moving-average Table 5 1 illustrates in addition that two successive orders of

weighted moving averages are more correlated than simple moving averages and

momentums

Table 5 1 stresses a common misunderstanding raised by practitioners, we now describe

Smith(1992) studies the moving average rule applied to the Standard&Poor index and

finds that the profitability is erratic except for parameter values 48 through 65, where a

broad area of profitability is detected He then concludes that areas of erratic profitability

should not be considered significant It does not seem that such results indicate at all

presence of profitable trading rules or inefficiencies, since under the random walk

assumption it is expected that low order rules will be less correlated than high order ones

Table 5.1 Correlations between rules of successive orders
RuleOrder (23) (3,4) (45) (10,11) (2021) (40,41) (100,101)

M 500 608 667 795 856 899 936

S 705 811 860 945 972 986 994

W 795 870 903 960 980 990 996
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Table 5 2 shows correlations between vanous systems and orders For instance
p[S(5), W(10)] means the rule returns (or signals) correlation between the simple moving

average of order 5 and the weighted moving average of order 10 It is equal to 0 799

Table 5.2 Rules correlations
p S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)

S(5) 1 666 460 322 880 799 574 409 732 417 275 189
S(10) 1 680 472 600 859 823 593 697 697 419 281
S(20) 1 685 416 596 849 834 497 721 681 419
S(40) 1 291 416 593 844 351 523 732 674
W(5) 1 728 521 371 621 372 248 171
W(10) 1 732 524 755 574 363 246
W(20) 1 733 606 755 554 358
W(40) 1 441 635 752 545
M(5) 1 465 303 208
M(10) 1 483 319
M(20) 1 492
M(40) 1

Rather than listing differences between systems and orders which could happen to be

endless due to the infinite number of linear rules, it is worth emphasising two points

Firstly, trend-following systems are positively correlated Zero or negative correlation

obviously requires the combination of trading rules of different nature such as convex

(trend-following) and concave (overbought-oversold) strategies Secondly, buy and sell

signals and then returns of technical systems are not independent over time under the

random walk assumption Related findings are attnbutable to Working(1960) This

established that if in a time senes constructed from independent increments, the

individuals items are replaced-let say-by monthly averages, spunous correlation is

introduced between successive first differences of the averages Correlation between

trading signals would contradict, however, the hypothesis of Lukac, Brorsen and

Irwm(1988a) who considered, as an approximation, that buy and sell signals of systems

are independent over time They then concluded that all the systems are on the same side

of the market significantly more than might randomly be expected and that monthly

returns are positively correlated Our results show that it is not absolutely certain that the

similanties between systems Lukac, Brorsen and Irwm(1988a) found are nothing more

than would randomly be expected
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Same rule applied to different underlying processes

When the same linear rule (non-deterministic, and so excluding Buy and Hold, or Sell and
Hold strategies) is applied simultaneously to two assets, pp = 1 and equations [5 2] and

[5 6] become

PR = —
2

pArc sin(px )	 [5 10]
It

p B = —
2 

Arc sin(p, )
	

[5 11]
rc

We can see two additional properties, when the same rule is applied to two different

assets

(a) rule returns correlations become independent of the rule itself and the sole function of

the underlying correlation

(b) rule returns correlations are now an even function of the underlying correlation and

thus are always positive

Table 5 3 and Figure 5 1 highlight formulae [5 10] and [5 11] for some values of

correlations of the underlying process

Table 5.3 Rules correlations as a function of the underl in correlation
Underlying Correlation

Px
Signals correlation	 p B Returns correlation P R

1 I I

099 091 090

098 087 086

095 080 076

09 071 064

085 065 055

08 059 047

07 049 035

05 033 017

03 019 006

02 013 003

01 006 001

005 003 —0

0 0 o
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Figure 5.1 Rules correlations as a function of the underlying correlation

Different rules applied to different underlying processes

Let us now examine the most general case where different rules are applied to different

underlying processes We use for this purpose different orders of simple moving

averages

Having just proved that correlations between rule returns (when the same rule is applied

to two different processes) do not depend on the rule itself, Table 5 4 exhibits constant

diagonals

Table 5.4 Rule returns correlations PR for different underlying correlations

Underlying correlation p x = 0 95

P S(2) S(5) S(10) S(20) S(40)
S(2)
S(5)

0 758 0 464
0 758

0 321
053

0 225
0 411

0 158
O29

S(10) 0 758 0 595 0 422
S(20) 0 758 0 599
S(40) 0 758

Underlying correlation p x = 0 90

A S(2) S(5) S(10) S(20) S(40)
S(2) 0 642 0 411 0 287 0 201 0 142
S(5) 0 642 0 511 0 365 0 258

S(10) 0 642 0 52 0 375
S(20) 0 642 0 524
S(40) 0 642

Underlying correlation p x = 0 85

P S(2) S(5) S(10) S(20) S(40)
S(2) 0 55 0 362 0 254 0 179 0 126
S(5) 0 55 0 447 0 323 0 229

S(10) 055 0 455 0 331
S(20) 0 55 0 457
S(40) 055
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Our results are consistent with Praetz(1979) but disagree with Sweeney(1986) and

Surujuras and Sweeney(1992)

On the one hand, Praetz(1979) noted that the results from both different securities and

trading rules are likely to be positively correlated due to the presence of the market factor

among security returns and due to the presence of many common rates in the returns

from short selling of similar trading rules

On the other hand, Sweeney(1986 177) concluded that "even if [exchange] rates are

correlated, excess rates of return on trading strategies should be virtually uncorrelated

because the signals are only randomly synchronised across currencies" Surujuras and

Sweeney(1992) then expressed the assumption that on the one hand, under efficiency

rules signals would be completely out of synchronism and, on the other hand,

inefficiencies would create positive cross correlations This section comes to a different

conclusion, i e, even when underlying processes are correlated white noises, rules

correlations- although lower in absolute value- cannot be zero The presence of

inefficiencies, more specifically positive autocorrelations, would even increase rules

correlations Our results clearly indicate that correlations between trading rules are

strongly dependent on underlying correlations That could explain why the correlations

between trading rules can be low for equities (Sweeney, 1988) and high for currencies

(Surujaras and Sweeney, 1992) Accordingly t-statistics can be highly sensitive to

whether the covanance terms are included or not

Overall, these results suggest that correlations between the same system applied to

various assets can be much lower than correlations between various trend-following

systems applied to the same asset It seems that these results might hold empirically since

diversification between assets has been found more beneficial than diversification between

systems (Taylor 1990b, Brorsen and Boyd, 1990)

3 Empirical trading rule correlations for a set of exchange rates can be found in Section 6 2 3 They
happen to be quite close to their expected value under the random walk assumption
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5 2 A TEST OF NON-ZERO PROFITS

5 2 1 Previous tests of profits from technical analysis

Testing the usefulness of trading rules is not an easy task in the presence of a strong non-

zero drift If market timing ability, as in the Cumby and Modest(1987) test, is a test of

whether the forecaster possesses any information not contained in the unconditional

sample mean, non-zero profits are not a relevant criterion Praetz(1976) and Section

3 3 4 have shown that if prices follow a random walk with drift, trading rules can be

profitable but below the absolute value of the drift and so do not display any market

timing ability

Praetz(1976) showed that expected rule returns are approximately E(R t )= p.(1— 2f )

where f is the frequency of short positions The expected return on buy and hold is simply

the drift itself, p. The expected rule return suggests that comparison between the rule

return, Rt, and the return on buy and hold, X t, leads to a bias, in favour of buy-and-hold if
p,>0 and in favour of the filter rule if i_t<0 To avoid this problem, Sweeney(1986)

proposes the statistic

N	 N

Y =-:+i-ERt —(1-2f) -EXt
t=1	 t=1

where N is the total number of days in the period and f the frequency of short positions

A formal definition off is given by

N

f =--- 4,-E13, with B t = —1 <=>
 "short position"

1=1	 +1 <=> "long position"

Subsequently, Sweeney(1986) shows that E(Y) = 0 and V(Y) = cy2/N

The underlying assumptions of Praetz(1976), Bird(1985) and Sweeney(1986) are that

E(R) = [L(1-2f)	 [315]

V(R)G2	[3 16]

Cov(RoRt+h) = 0 for h>0	 [3 17]

We know from Section 3 3 4 that these formulations are inexact and that they should be

replaced by

E(R) = 11(1-2135)	 [3 12]

V(11) = az+ 4g2PS(1-PS)	 [3 131

Cov(RtAt+h) = 11E03t_ I Bt+h_ iX) - p.2(1-2PS)	 [3 14]
where PS is the probability of being short at time t PS = Pr(F t<O) = (1)(--p.F/aF) [3 11]

and (I) is the cumulative function of a N(0,1)
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Although theoretically different, PBS formulae [3 151, [3 16], and [3 17] are very close to

[3 12], [3 13], and [3 14] for usual values of mean and standard deviation of price

returns Therefore, the validity of PBS test should not be questioned The main limitation

of this test lies rather in the fact that it can not be extended to assess the Joint profitability

of trading rules The presence of a drift complicates to the extreme trading rules

stochastic properties Rule returns are not any more normally distributed but follow a

mixture of normal laws (Proposition 3 4) Then correlations between trading rules are

extremely difficult to establish and might be of poor use anyhow, because rule returns

would follow a mixture of normal distributions

5 2 2 Removing the drift

It seems to us easier to remove the drift in the original series Doing so will allow us to

use the numerous exact results of trading rules stochastic properties In particular

Proposition 3 1 permits us to consider random walk tests from the Joint profitability of

trading rules

Removing the logarithmic drift in the original price series 	 , t = 0„ N} can be done

by

(a) Estimating Ct= +E x t , where X, = Ln(P, /	 )
,=1

(b) Detrending the original price senes by applying the transformation 1)= P, exp(--ilt)

This process requires the sample mean la to be equal to the true mean p. of the financial

series It seems to us difficult to prevent such hypothesis Indeed, without this

assumption, no comparison can be done with Buy and Hold strategy since the sample

mean return will not reflect the true reference value Subsequently, we will assume that

the sample mean is an accurate estimate of the true mean Therefore in what follows, we

will consider that the series can be detrended Technical indicators will then be applied to

detrended series P:

5 2 3 Random walk tests from the joint profitability of trading rides 

Trading rules have been widely used as a tool to detect abnormal profits and so market

inefficiencies (Brock, Lakorushok and LeBaron, 1992, Levich and Thomas, 1991,

LeBaron, 1991, 1992b)

There are however pros and cons to the use of trading rule returns to test market

efficiency One of the possible benefits is that such approach might have power against

non-linear alternatives (Brock, Lakomshok and LeBaron, 1992) Second, even if the true
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model is linear, standard statistical test are often derived by minimising the mean squared

error which is a sufficient but not a necessary condition to maximise profits (Section 4 1)

Although exhibiting some possible decisive advantages, tests based on trading rules

profits have nevertheless several severe drawbacks In particular, a trading rule can be

profitable without exhibiting any market timing ability for at least three reasons Firstly,

Praetz(1976) and Section 3 3 4 have proved that, if the financial series follows a random

walk with drift, certain trading rules can be profitable but below the unconditional mean

and by consequence do not display any market timing ability Nevertheless, this

inconvenience can be removed using the steps descnbed in Section 5 2 2 Secondly,

among one hundred rules, five can appear profitable by pure chance only, when a test is

performed at a critical level of 5% (Taylor, 1900b) In other words stated, the application

of filter analysis to financial market is deficient because possible variations in models

designs are infinite (Stevenson and Bear, 1976) Finally, filter models require

development independent on the sample upon which they are applied (Stevenson and

Bear, 1976, Lukac and Brorsen, 1989)

Previous shortcomings can be remedied by considenng instead of any single rule, a broad

and arbitrary set of trading rules Studying the joint profitability of a large basket of

trading rules constitutes therefore a better way to test the random walk hypothesis We

are going to show that a generalisation of the univanate T-Student test can achieve this

purpose

T-Student

The univanate T-Student is widely popular among academics (Lukac, Brorsen and Irwin,

1988b, Taylor, 1990) and practitioners (Kaufman, 1987) to test the hypothesis that

returns to technical analysis are zero Its attractiveness is due to its simplicity It can be

defined as

R
T =-Nr1•1 „

a R

with N number of (daily) observations

[5 12]

_
R the average (daily) rule returns,

a R the standard deviation of (daily) rule returns

The T-statistic is an one-tail test of the hypothesis of zero profit against positive profits

Its use assumes that the distribution of rule returns, R, is normal and independent, which

is the case if the rules signal is defined by a linear forecaster, and the distnbution of

underlying returns, X, is without dnft, normal and independent (Proposition 3 1)
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The expected value k is typically estimated from the series of observed portfolio rule

returns as

k- iN R
N t„.1

Usually, the standard deviation is equally estimated empirically from the series of

observed portfolio rule returns We will however prefer to estimate portfolio rule returns

standard deviation under the random walk assumption via the underlying volatility, using

the results of Section 5 1

Proposition 3 1 says that when the underlying time series, )C follows a normal law

without drift with variance a 2 , different linear rule returns, R i,t and R2, , follow univariate

normal laws with variance a 2 Proposition 51 adds that the linear correlation coefficient
between rules returns PR is known and given by equation [5 9] 4 In addition, rule returns

taken at different epochs are uncorrelated It results that under the random walk

assumption without drift, the variance of a portfolio equally weighted of p linear rules is

equal to

{pp
a 2 (p +2E Ep(R„RI))/p2

1=1,=1-1-1

for p =1

for p >1

and p(R„R j ) is the correlation between trading rules i and j given by equation [5 9]

Let us define the constant K by

P P

p + 2E p(R„R
i r--1 j=i+1

for p =1 }

)/P	 forp>1
[5 13]

It then follows that under the random walk assumption without drift a R = Kcr

We will subsequently estimate standard deviation of rule returns via the only underlying

volatility using the estimate

=	 [5 14]

4 It must be remarked that R I r and R2 t do not follow a centred bivanate normal law, although R13 and
R2 t are umvanate normal laws That can be shown by extending the demonstration given in
Appendix 3 1 to the multivanate case Nevertheless, we will consider here that the bivanate normal
law is a good approximation because the central limit theorem applies In particular, we will assume
that weighted portfolio of trading rules follow a normal law, although it is not true strictly speaking
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where a is the usual standard deviation estimate of the underlying returns series

There are two major advantages to such an estimate First, it only requires the estimation

of underlying volatility irrespective of the portfolio of rules under consideration

Secondly, estimates of standard deviation via the observed series of portfolio rule returns

can be quite different from the true standard deviation under the random walk

assumption5 Consequently, their use may lead to incorrect rejection/acceptance of the

hypothesis of non-zero profits

It follows that comparing performances from single systems (p=1) will simply be

comparing mean percent return since technical indicators display identical standard

deviation, equal to the volatility of the underlying asset (K=1)

There might be another limitation to the use of the umvanate 1-Student If several

systems are evaluated, by chance some will look better than they deserve Reporting

results for only the best rule would be very misleading Taylor(1990b) advises that results

should be given for all the systems considered in the research study However when all

the systems are tested separately, results are highly dependent on each other because

trading rules can be highly correlated (Proposition 5 1) So a test from the joint

profitability of trading rules should be preferred It has been seen that testing the joint

non-zero profitability of techrucal rules is possible and requires the only estimation of

portfolio returns and underlying volatility Now, portfolio of indicators can exhibit quite

different standard deviations (K<1 ) depending on the theoretical correlations between

indicators and so the T-test applied to varied portfolios is not anymore a simple

comparison of mean returns

Such test might allow to distinguish luck (only one rule performing by chance)

from forecasting ability (profitability of a broad set of trading rules) At last considering

portfolio of technical indicators has got an additional advantage which is that portfolio

rule returns exhibit a distribution more normal than single rule returns (Lukac and

Brorsen, 1990)

5 2 4 Power Study

The multivariate T-test presented above proposes in fact an almost infinite number of

tests, as many as there are possible different portfolios of linear rules Determining what

rules to incorporate into the portfolio is an extremely delicate task which will be

discussed further in Section 6 2 4 Let us first investigate the power of a simple, although

rather arbitrary portfolio of trading rules It includes four simple moving averages of

5 Chapter 6 will discuss further the adequacy of empincal rules returns stochastic properties with the
random walk without drift assumption
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orders 5, 10, 20, 40 Orders of the rules have been chosen such that they are almost

equicorrelated under the random walk assumption Applying equation [5 9], the

correlation is approximately equal to 0 67

The statistics investigated in this study are the single T-Student applied to the simple

moving average of orders x=5, 10, 20, 40, which we denote as S(x) and the multwanate

T, which we denote as S(5,10,20,40) The alternative models considered here are all

plausible representations of financial rates The price-trend model has been studied by

Taylor(1982) and all the other processes, excluding the random walk with drift, have

been investigated by Brock, Hsieh and LeBaron(1991)

H/ : Linear hypothesis

Table 5 5 indicates the power of the T-test against linear alternatives Let us first

assume that the underlying time series follow the price trend-model defined by Section

5 4 3 consistent with Taylor(1982) First of all, it must be noted by comparing Tables 5 5

and 4 10 that the 1-Statistics have systematically higher power than Hennksson and

Merton(1981), identical power than Cumby and Modest(1987) tests, but lower power

than Taylor(1980) statistics, which have been specifically constructed to test the price-

trend hypothesis Secondly, the most powerful single T-Statistic is the one corresponding

to the simple moving average of order 20 It can be explained by the fact that the simple

moving average of order 20 is the most profitable rule in the portfolio when the true

mean duration is equal to md = 1/(1-p) = 111- 944 — 18 days This can be shown by use of

equation [3 10] Thirdly, the portfolio test turns to be more powerful than any single T-

Student The multwanate T-test would rank high in the power competition performed by

Taylor(1982), fourth over 13 statistics, just behind Taylor(1980) statistics

Returns were then simulated following a second popular alternative, the auto-

regressive model of order one with a=0 15 The most powerful single T-Statistic happens

to be the simple moving average of order 5 The power of the test is a quite sharp

negative function of the order of the rule This fact is simply the consequence that one

optimal linear forecaster (maximising profits) is nothing else than a moving average of

order two under the AR(1) assumption It can be noted than the multwanate T-test

performs quite acceptably It ranks just below the single T-Statistic of order 5 but above

order 10, 20, 40

If the underlying returns follow a moving-average model of order one

model, the multivariate T-Statistic is more powerful than any of its component

We now measure the consequences of not removing the drift in a test of non-zero profits

If the underlying returns follow a random walk model with drift ii=25%, the multivanate
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T-Statistic rejects the zero-profits hypothesis in 76% of the cases at a cntical level of 5%

That is due to the fact that under the random walk with positive drift assumption, the

strategy which maximises profits is "Buy and Hold" and that bigger is the order of the

rule closer it is from the "Buy and Hold" strategy and so higher is the rate of rejection of

zero-profits It follows that the multivanate T-Statistic might not be able to distinguish a

random walk with dnft from autocorrelated alternatives since under both assumptions,

trading rules profits can be significant

H1 : Non Linear hypothesis

Table 5 6 indicates the power of the T-Statistic test against non-linear alternatives

The multivanate T-test has very low power against purely variance-nonlinear alternative

When price rates follow an ARCH(1) model, they are not forecastable in the mean and so

zero rule returns are expected (Proposition 3 2)

T-Statistics have high power against the tent map model significantly less against the

threshold auto-regressive model (TAR), and almost none against the nonlinear moving-

average model (NMA) Antornewicz(1992) finds as well that the moving average rule has

little power against some simple nonlinear models There exists many other mean non-

linear model which could have been considered, among which the Garch-M model The

problem with the Garch-M model is that processes can substantially deviates from the

mean of the original series (Weiss, 1986) That is a serious specification problem when

interpreting technical indicators performances It might be that the rejection of the

random walk hypothesis is not due to the hypothesis we want to test (such as Garch-M

model) but is the result of strong unpredictable non-zero drift
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Table 5 5 Power of T-Student test under linear assum tions
Estimated Powers for 1500 observations	 1000 replica

Price-trend model
Xt = 4t + el and 1.4 = ppit_ i + et with Val' (1-10=A Var(er)

A=0 034	 p=0 944	 N=1000

Percentage rejections of RW
Statistic Significance level

1%	 5%	 10%
Univanate T-Statistic
S(5)
S(10)
S(20)
S(40)

25	 46	 59
39	 62	 72
45	 70	 80
42	 67	 77

Multivariate T-Statistic S(5 10 20 40) 55	 73	 83
AR(1) model

Xt = aXt_ i + et	 a= 15.
Percentage rejections of RW

Statistic Significance level
1%	 5%	 10%

Univanate T-Statistic
S(5)
S(10)
S(20)
S(40)

86	 96	 98
54	 78	 89
26	 53	 66
12	 30	 46

Multivanate T-Statistic S(5 10 20 40) 64	 85	 92

MA(1) model
Xt = et + Elet_ i	0=05

Percentage rejections of RW
Statistic Significance level

1%	 5%	 10%
UnivanateT-Statistic
5(5)
S(10)
S(20)
S(40)

89	 94	 95
84	 92	 94
70	 85	 89
44	 69	 82

Multivanate T-Statistic S(5 10 20 40) 89	 95	 97

Random Walk with drift model
Xt = fi. + et	pi= 0 001 (25% yearly)	 a = 007 (15 8% early)

Percentage rejections of RW
Statistic Sigmficance level

1%	 5%	 10%
Univanate T-Statistic
S(5)
S(10)
S(20)
S(40)

14	 31	 44
26	 50	 62
49	 72	 80
72	 88	 93

Multivanate 1-Statistic S(5 10 20 40) 56	 76	 85



Table 5 6. Power of T- Student test under non-linear assumptions
Estimated Powers for 1500 observations 	 500 replica

ARCH( 1) model

2
Xt= \fl-Ce t and ht = 1 4 epX t _I ,	 (I) = 0 5

Percentage rejections of RW
Statistic Significance le\ el

1%	 5%	 /0%
Univanate T-Statistic
S(5)
S(10)
S(20)
S(40)

1	 5	 8
1	 5	 9
1	 5	 8
1	 3	 8

Multivanate T-Statistic S(5 10 20 40) 1	 4	 8

Tent Map model X[0] E [0,11

Xt = 2Xt-1	 If	 Xt_1 < 0 5
2-2Xt _ t	if	 Xt _ i � 0 5

Percentage rejections of RW
Statistic Significance le‘ el

1%	 5%	 10%
Umanate T-Stausuc
S(5)
S(10)
S(20)
S(40)

7	 80	 97
7	 80	 97
7	 80	 97
7	 80	 97

Multivariate 1-Statistic S(5 10 20 40) 52	 96	 99

NMA model
Xt =et +yet _ t et _)	'(=08 .

Percentage rejections of RW
Statistic Significance level

1%	 5%	 10%
Utuvanate T-Statistic
S(5)
S(10)
S(20)
S(40)

2	 10	 17
2	 10	 18
1	 6	 12
1	 6	 11

Multivariate T-Statistic S(5 10 20 40) 1	 6	 14	 .
TAR Map model

Xt = -0 5Xt_1 + et	 if X11 S 1
Xt = 0 4Xt _ i + et	if X i > 1

.
Percentage rejections of RW

Statistic Significance level
1%	 5%	 10%

Umvanate T-Statistic
S(5)
S(10)
S(20)
S(40)

0	 0	 1
2	 5	 8
18	 37	 51
68	 81	 88

Multivanate T-Statistic S(5 10 20 40) 10	 25	 38
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5 2 5 Features of the multivariate T-Student

The multivariate T-Statistic is a test of non-zero profit It is why results might be biased

by the presence of a drift This disadvantage however can be removed by choosing either

a period without drift or by detrending the original price series as described in Section

5 2 2 Once the drift is removed, the multivariate T-Statistic has power against linear and

nonlinear means alternatives for which EPC/X t_ i Xt_kl # 0 However, the multivanate T-

Statistic cannot detect or distinguish nonlinear variances models 6 So it might be used as a

tool to distinguish mean from variance non-lineanty

The multivanate T-Statistic test seems to display a decisive advantage over any single T-

Statistic test, it seems to be robust for a broader range of alternatives Unequivocally it

can perform well under the price-trend model hypothesis whatever is the duration of the

trend, under the autoregressive of order one or the moving average of order one

hypothesis It appears to have the nice property of exhibiting a power almost equal when

not above the best of its components (which is unknown when the true model is

unknown)7

53 ABILITY OF A DRIFTLESS GAUSSIAN PROCESS
TO REPLICATE RULE RETURNS 

The random walk assumption can be inadequate to explain trading rule returns which are

often significantly positive (See Table 2 3 for references) It means that plausible

alternatives of returns models might have to include dependencies

This section provides tests of adequacy of Gausssian processes which are assumed

without drift If a process includes a drift, it must be removed using the method described

in Section 5 2 2

5 3 1 Methodology

LeBaron(1991, 1992b) has proposed an original way to incorporate the trading rule

diagnostic tests into the estimation procedure The goal is to see whether a simple linear

6 Distinguishing nonlinear alternatives for which E[Xt/Xt_i Xt_m+1] = 0 is known in the literature as
a difficult task For instance it is often impossible to distinguish between Garch and stable processes
(De Vnes, 1991, Elie et at 1992)

7 An application of the multwanate T-Student to exchange rates senes is provided in Section 6 2
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process, E(R) its expected value and CI its sxs covariance matrix As shown in

Hansen(1982), if the moment condition framework is satisfied

N(Rt — E(R,))WN (R t —E(Rt))-->D x2 (s)

where WN is a consistent estimate of W = fit

When the underlying process is Gaussian without drift, E(R t) is analytically known and

given by equation [3 10] It can be noted that it satisfies the moment conditions

However, W = fr is not known, but can be replaced by a consistent estimate for n such

as

P-1	 1 NI	
n

a= E -Eut+put+P-1
1.---p+I N t=i+i

1 N
where u t+1, = R+ --ERt+p and p is the number of population autocovanancest p N

determined by the order of non-zero autocorrelations of 11, Instead using empirical or

simulated estimates of C2, and so being dependent on the estimate covanance, we prefer

using the exact one-penod covariance matrix defined in Appendix 5 2 It results that

under the null hypothesis of low positive autocorrelations, the multi-period covariance of

rule returns might be slightly underestimated and therefore the test might have a slight

tendency to reject the null hypothesis of positive dependences more often than necessary

5 3 2 T-Student test

Autocorrelated stochastic models have a tendency to underestimate trading rule returns

(LeBaron, 1992b) Therefore it is natural to use a one-tail statistic to test if observed

trading rule returns are equal to theirs expected value or still above them The

multivariate T-Student previously established can be used to this effect The major feature

of the T-Student test opposite to the previous approach is that, it is an one-tail test and

by consequence is more powerful for given alternative such as low positive

autocorrelations As before, the covariance of rule returns will be approximated via the

exact one-period covanance matrix defined in Appendix 5 2 Once again, this test might

have a slight tendency to reject the null hypothesis of positive low autocorrelations more

often than necessary Let us recall the T-Student, it is given by

yN i R., —E(R)

T= 'I-
V Var (R)

t= 1
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where R, is the observed portfolio rule return at time 1, E(R) is deduced from equation

[3 10], and Var(R) from equation [3 6]

5.4 SUMMARY

Correlations between trading rules applied to a same asset are non-zero, and even highly

positive for trend-following systems Correlations between a same trading rule applied to

multiassets are positive but lower in absolute value than underlying correlations In

addition, one-period correlations between rule returns do not change drastically assuming

the presence of low dependencies'

The knowledge of trading rule correlations has then allowed to build a new test of

random walk from the Joint profitability of techrucal trading rules The test is a

generalisation of the univanate T-Student which appears to be extremely powerful

against linear autocorrelated alternatives, efficient against mean non-linear alternatives

and not at all against variance non-linear models It has been shown that non-zero profits

tests can be seen as tests of market timing ability if and only if the financial time series to

which they are apphed are without drift

Finally, it has been seen that trading rule returns can be used in a similar way to check the

ability of any Gaussian processes without drift to replicate observed rule returns

9 See Appendix 5 2
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Mm(mi m2)-2

1=0

E d22,,

[54]Corr(F i t ,F2t ) = Pp
' • 1 2 =
	 pF where p F —

APPENDIX 5.1

PROOFS OF PROPOSITIONS

Proposition 51

By assumption, Xi,t and X2,t are normally distributed with

E(Xi,t ) = 0 E(X21) = 0 Var(X t,t ) = c5 Var(X2t) =

That implies that F 1,t and Fz t are normally distributed with

2 m1-2 2E(F i,t ) = 0 E(F 2 ) = 0 Var(F i,t ) =	 Ed ,1 Var(F 2,t ) = o22	 d'2,t
1=0	 1=0

ktm(m, m2)-2
Cov(F Lt ,F2 t ) = E(Fit F2 t ) cri a2 p 2, Ed d14 2 t

t=0

1=0
	 t=0

E(B it ) = Pr(F it >0)—Pr(F Lt <0) = 1-2 Pr(F Lt <0) = 0

That is due to the fact that the distribution of the linear unbiased forecaster, F it , is

symmetncal around zero, as for the underlying returns X, Then, it follows that

Similarly, E(B 2,t ) = 0

E(B) = E(BL) 1

Var(B it ) = Var(B 2t ) = 1

p(B 1t ,B 2t ) = Cov(B B 11,t3- 21, = E(B 1 t B2,1)

= Pr(F 4t >0,F2t >0)+Pr(F 1,1 <0,F21 <0)—Pr(F I t>0,F21<0)—Pr(F1,1<0,F2>0)

= 2 f Pr(F t >0,F 2,t>0)-Pr(F/ 1 >0,F2 t <0)} by symmetry reason

= 2 { [0,0](pFi, )—[0,0](-pFu )}

where P EI, has just be defined, and [0,0] is the bwanate truncated probability given by

[A 1] in Appendix 3 1 It follows that
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CS12

[53]

p B = p(B 1 ,B, t ) = — Arc sin (p,p /. )
	

[56]

The demonstration which gives Corr(B 11 ,B 2 t+h) is totally similar to the preceding one

and won't be provided for length purpose

Proposition 52

Proposition 3 1 has shown that if the underlying time series X t are independent identically

distributed following a normal law without drift and variance (7 2 , linear rule returns Rt are
independent identically distributed following a normal law without drift and variance (72

Applying this result, it follows that rule returns k t and Rzt are normally distnbuted

with

E(R11 ) = 0	 E(R2,1) = 0	 and Cov(Rt t ,kt+h ) = 0

Var(Rt,t ) =	 Var(R2,t) = a.22 and Cov(R23 ,R2,t+h) = 0

Covariances between trading rules are deduced from

Cov(ti t ,R21 ) = E(R I,t R2 t ) E(B 1 1_ 1 13 2 t_i Xi X2 t )=— E(B 1 t-1 8 23_ / )E(X 11 X2 1)

Applying equation [5 61

EMI t-1 B 2,t-1) - (B1 t-1/B 2,t-1) =-7c
2 

Arc sin (p \pF)

Since by assumption E(X 1,t X2,t ) = a t cY2 P , it follows that

Cov(Ri t ,R2t ) = cs2 p, —
2 

Arc sin(p,p F ), and then

E(R1tR2t)	 aia2P,-
2

Arcs1n(p,pF)
POti tA2 tY= 	

TC 

\IVar(R i t War(R2t)

P R = P(R1DR2,t) —
2
 p„Arc sin(P„pF)

it

In addition, p(R. 13 ,R2t+h)=P(Ri t+h,R2 i)=0 for h>0	 [5 5]

That can be shown considering that

Cov(k t ,R23,h)(E,B Lt_iB2,t+h_IX/,tX2,t+h) E(B t_ t B 23+h_ IXI t )E(X2,t+h ) = 0

Cov(kt+h ,R2t ) EMI t+h-1 B 2 t-1 X 1 t+h X2 t) E(B1,t+h-1B2,t-1 x2,t)E(xi,t+h) = 0
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APPENDLX 5 2

ONE-PERIOD RULES CORRELATIONS

ASSUMING A DRIFTLESS GAUSSIAN PROCESS

Formula [5 6] giving signal correlation under the univanate random walk assumption

applies in fact for any umvanate Gaussian processes without dnft However the

correlation between forecasters, p F , is not any longer given by equation [5 41 but is easily

established since F 1,t ,F2 t still follow a centred binormal law Noting p(h) the

autocorrelations of order h of underlying returns X t, p F is now given by

m 1 -2 tn2-2

E E d i i d 2,,P0 —II)
t=0 J=0

	

, m i —2 m 1 -2	 fm2 — 2 rn2 —2

' E E ciiidi P0-11),/ E Ed2,d2,p(b—i)

	

"\I i=0 ,=.0	 i	 v 1=0 J=0

The one-penod rule returns correlations satisfy

Corr(RLt ,R2 t ) — 
E(11.1R2 t ) — E(Iti , )E(R2 t )

V Var(Rtt )Var(R2t )

where E(RI,t ), E(R2 t ) are given by equation [3 10], and Var(R i t ), Var(R2,t ) by equation

[3 6]

Then E(11 13 R2 t ) = E(13 /,,_ 1 XtB 2 t_ t X) = E(B 1 t_t B 2,t-1 X2 )

We can use here symmetry argument between X, from one hand and [F, t_i ,F 2 t_1 } on the

other hand, then it follows that

E{Ri,tR2,t)
	

--. 2a2 {[2, 0 , 0](P12 ,P137P23) - [2, 0 , 0](P12 ' -.P 13 1 ..- P23 )

p13 , -1)23) + [21°A-13 12 , — P13, P23)}

where p 12 = Corr(F 1,1- 1 ,F 21_ 1 ) , p13 = Corr(F i t-i,X) , P23 '--- Corr(F23-1,Xt)

and [2, 0, 0](P12 , P13 /P23) is the moment of order two of a truncated tnvanate standardised

normal law given by equation [A 6] in Appendix 3 1

PF =
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Let us give a numerical example of previous formulations In the presence of a pnce-

trend model and low positive autocorrelations, one-penod rule returns correlations (Table

5 7) become systematically superior to rule signals correlations (Table 5 8) and, as

expected, both are slightly bigger than they would be under the random walk assumption

(Table 5 2)

Table 5.7 Rule returns correlations assuming a nce-trend model A=0 03, m =40
p S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)

S(5)
S(10)
S(20)
S(40)

W(5)
W(10)
W(20)
W(40)
M(5)

M(10)
M(20)
M(40)

1 678
1

482
700

1

351
506
715

1

883
613
437

319
1

803
867
618

449
734

1

586
831
863
626
533
742

1

428
613
845

864
389

545
749

1

745
712
522

382
637
769
621
463

1

451
724
748

562
405
608
782
662
500

1

322
476
728
774
291
417

610
798

354
543

1

238
346
495
736
216
306

431
620

261
390
573

1

le 5.8 Rules signals correlations assuming a rice-trend model A=0 03, m40
p S(5)

-
S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)

S(5)

S(10)
S(20)
S(40)
W(5)

W(10)
W(20)
W(40)
M(5)

M(10)

M(20)
M(40)

1 678

1

481

700
1

350

505
714

1

883

612
437
318

1

803

867
618
448
734

1

586

831
863
625
533
742

1

428

612
845
864
389
544

749
1

745

711
521
382
637
768
621
463

1

450

724
748
561
404
607

782
662

499
1

321
475
727
773
290
416
609
797
352
542

1

237

344
494
736
215 

304
430
618
260

388
372

1

Then we have proceed to some simulations to assess the multi-penod correlation between

trading rule returns (Table 5 9) Over 10 years (2500 rates), the trading rules correlations

increase significantly and show that the one-penod correlation must be considered as a

lower bound
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Table 5.9 Rule returns correlations assuming a price-trend model A=0 03, md=40
Monte-Carlo simulations 2500 rates, 250 replica

p S(5) S(10) S(20) S(40)

S(5)

S(10)

S(20)

S(40)

1 0 742

1

0

0

604

790

1

0

0

0

509

669

817

1



Chapter 6

TESTING THE RANDOM WALK HYPOTHESIS:

AN APPLICATION TO EXCHANGE RATES SERIES

If markets follow a random walk, price changes can not be predicted Current prices fully

and correctly reflect all currently available information Consequently, no profitable

dynamic strategy can be found If markets do not follow a random walk, price changes

can be predicted There are market imperfections such as the existence of price trends and

cycles, which can be profitably exploited by dynamic strategies Therefore, testing the

random walk hypothesis is of crucial importance from an investor point of view This is

done in this chapter for a set of exchange rates

Exchange rates are known in the literature to be one of the assets exhibiting the strongest

trends Empirical evidence of this point are given by the profitabihty of path dependent

strategies' Therefore the random walk hypothesis might not be adequate for exchange

rates This chapter investigates this issue by applying in addition of standard statistical

tests, the powerful and robust test based on the joint profitability of trading rules

developed in Chapter 5

Section 6 1 describes the elementary properties of exchange rates returns Section 6 2

tests the non-zero profitability of trading rule returns applying the multivanate T-Student

test established in Chapter 5 Normality and dependence of rule returns are basic

assumptions of this parametric test They are consequently first tested When using the

multivanate T-Student, the zero-profit hypothesis can be rejected because of departures

from the random walk model due to unequal variance, intercorrelation or/and average

rule returns Therefore, these stochastic properties of rule returns are compared with their

theoretical values under the normal random walk without drift to detect the origin of

departures, if any Finally, Section 6 3 assesses the validity of the normality assumption to

test the non-zero profitability of trading rule returns A non-parametric test based on the

bootstrap methodology is applied such that it does not depend any longer on the arguable

assumption of normality Non parametric and parametric critical thresholds are

subsequently compared Once again, the last section summarises and concludes our

findings

1 See table 23 for references
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6.1 BASIC STATISTICS

In this thesis, we have collected daily spot pnces for five currencies against the Dollar

German Mark [DEM], Japanese Yen [YEN], French Franc [FRF], Swiss Franc [CH=F]

and British Pound [GBP] for the period January 1982 through March 1992, or in total

2625 daily observations Our data source is Reuters Close rates are bid prices taken each

day of the week (except on Saturday and Sunday) at 21h15 GMT (approximately Close

of New-York market) A single time series is formed by considering the logarithmic

return Xt = Ln(Pt/Pt_ t), where Pt denotes the foreign currency price (DEM, YEN, FRF or

CHF) of a unit of US dollar, but the US dollar price of a unit of GBP By default, the

main results of this chapter are given for the full sample, from January 1982 to March

1992 Results are also provided for the five subpenods shown in Table 6 1

Table 6 1 Sam les nenods
Penod 1 2 3 4 5 Full

Date 01/82-02/84 02/84-02/86 02/86-03/88 03/88-03/90

\

03/90-03/92 01/82-03/92

Observations 525 525 525 525 525 2625

6 11 Summary statrstics

Table 6 2 contains descriptive statistics on the ongmal time senes of spot returns It must

be emphasised that exchange rates against the dollar exhibit quite similar standard

deviations The CHF displays the highest volatility and the YEN the lowest The

difference is however less than 15% of the average volatility between currencies

Exchange rates are approximately symmetric as the skewness statistics show There are

more observations several standard deviations from the mean than predicted by normal

distnbutions That can be seen from the high values of standard kurtosis which would

have been equal to zero if the distributions were normal

Table 6.2 Summary statistics for the nenod 01/82-03/92
Variable DEM LOG YEN LOG GBP LOG FRF LOG CHF LOG

Sample size 2625 2625 2625 2625 2625
Average -1 18414E4 -1 90271E-4 -3 95664E-5 -7 7496E-6 -6 79575E-5
Variance 5 07372E-5 4 72147E-5 5 16746E-5 4 977E-5 5 89678E-5

Standard deviation 7 123E-3 6 8713E-3 7 18851E-3 7 05478E-3 7 67905E-3
Minimum -0 0414075 -0 0640262 -0 0347257 -003876 -0 0440831
Maximum 0O34967 0 0415372 004S883 0O87457 O035405
Skewness -0144114 -0572466 0 139542 0 163043 -0149454

Standard Kurtosis 2 12304 6 5769 2 74848 4 29448 1 49801
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Table 6 3 gives mean and standard deviation for the five subpenods The mean daily dnft

for all currencies and subpenods is small and rather constant It averages near zero for the

full period and in any cases is very low in comparison with the daily standard deviation or

volatility This point will be of extreme importance in testing rule returns significance

On the other hand, the volatility is rather variable between currencies It is for the

full sample equal to 0 687% for the YEN and to 0 768% for the CHF Volatility finds its

peak in the second sub-penod for DEM, GBP and FRF, and in the third sub-period for

YEN and CHF

Table 6 3 Means and standard deviations
Currency Penod 01/82-02184 02/84-02/86 02186-03/88 03/88-03/90 03190-03/92 01/82-03/92

DEM Drift	 U
Volatility S

00044
0056

-00045
0079

-00053
0074

00003
0067

-00007
0077

-00012
00712

YEN Drift	 U 00013 -00050 -00064 00029 -00026 -00019
Volatility S 0064 00557 0083 0068 0071 00687

GBP Drift	 U -00061 00007 00038 -00013 00010 -00004
Volatility S 0056 0090 00651 0071 0073 00719

FRF Drift	 U 00080 -00045 -00033 00002 -00006 -00001
Volatility S 0065 00768 0072 0065 0074 00703

CHF Drift	 U 00044 -00034 -00057 00014 00000 -00007
Volatility S 0068 0080 0083 0074 0080 00768

6 1 2 Normality

Table 6 4 gives the results of the Kolmogorov-Snurnov test of normality (Siegel, 1956)

It appears that the YEN is clearly non-normal at the 5% level, irrespective of the

subpenod considered For the other exchange rates, normality is a more acceptable

assumption for a short period of time but not any longer valid for the full sample, what

has far more statistical significance In the latter case, departures from normality, namely

leptokurtosis, are too big

Table 6.4 Normality tests
Kohnogorov-Snurnov Approximate significance level %

Period DEM YEN GBP FRF CHF
01/82-02/84 27 4* 11 2* 16
02/84-02/86 20 5E-3* 4E-1* 41 3*
02/86-03/88 3* 9E-3* 13 3* 6
03/88-03/90 10 2* 6 7 16
03/90-03/92 6 5 11 11 59
01/82-03/92 0* 0* 0* 0* 0*

(K-S) (2 227) (3 373) (2 460) (2 422) (2 059)
* significantly not normal at the critical level of 5%
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6 1 3 Non hnearny

The rejection of normality might be explained by the presence of nonlineanty in exchange

rates Returns are leptokurtic Non-linearity tests have been applied in an attempt to

determine the validity of such an assumption

A stationary time series Y, can be written, in its very general form, as

	

= + Eb te + Eb ijet_,e,_, +	 uket_tet_iet_k + ,
j=-00	 ij k=—co

where IA is the mean level of Yt , and ite t ,—x, < t < is a strictly stationary process of

independent and identically distributed random variables Yt is nonlinear if any of the

higher order coefficients, fb u l, ijk 1, is nonzero Therefore a test of lineanty is

equivalent to a test on no multiplicative terms (be), tb ut, 1, To investigate non-

Imeanties in a partial realisation { lit „ ,Y Tsay(1986) has proposed a statistic based on

the following steps
(1) Regress Yt on (1,Yt_1 „Yt_ 4 } by least squares and obtain the residuals (8, ), for

t+M+1„n The regression model will be denoted by

Yt = Wt (I) ± et [61]

where Wt = (1,Y_ 1 , Yt__ M ) and (I) = (00 , (1) / „Om )1. with M being a prespecified

integer, n the sample size, and the superscript T denoting the matnx transpose

(2) Regress the vector Z t on {1,Yt_1„ \I } and obtain the residual vector {R, ), for

t=M+1„n Here the multivanate regression model is

Zt Wt H + Xt,

where Z, is an m = +1) dimensional vector defined by ZT, = vech(lir, lit ), with

Ut (Yt-1, Y) and vech denoting the half stacking vector In other words, Z Tt is

obtained from the symmetric matrix U tTU, by the usual column stacking operator but

using only those elements on or below the main diagonal of each column

(3) Regress et ) on Rt and let F be the F ratio of the mean square of regression to the

mean square error That is, fit

et = jZ tj3 + e t	(t = M +1, ,n)	 [62]

and define p	 E

•

 iz t atx 

• 

545c t 	 iR:rt at)/ m}/ { E/ (n	 — m--1)} [63]
t=m+1	 t=m+1	 t=m+i

where i t is the least squares residual in equation [6 2]

Tsay(1986) shows that if Y, is a stationary autoregressive process of order M and n

large, the statistic defined in equation [6 3] follows approximately a F distribution with

degrees of freedom M(M +1), n — .M(M + 3)—I
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This procedure reduces to Keenan's(1986) if one replaces Z, by 1-./. , where t ''C'',} are the

fitted values of equation [6 1]

An alternative approach to see whether linear time series models can be fitted to the data
Y, is attributable to McLeod-Li(1983) They consider the stationary ARIVIA(p,q) model

P	 q

which takes the form Y, = la + Ea j CY,_, — I-0+ 6 t — E b16t-1

J=1	 1=1

where 1..t is the mean level of Y, , (s,) is a zero mean strict white noise process and

constants ar b, Then to investigate non-linearities in time series data, they have proposed

the statistic

Q= n(n+2)ip2(k)/(n—k)
k=1

n	 n

where p2 (k) = E El ' t2_k / E *Et2 (k0,1, ,n-1) are the lag k autocorrelations of the
t=k+1	 t=1

squared residuals E 2t obtained after fitting an ARMA model to the data If the s t 's are

ii d then Q is asymptotically distributed as X, 2 with m df

The application of Keenan(1985), Tsay(1986) and McLeod-Li(1983) nonhnearity tests to

our exchange rates series is given in Table 6 5

Table 6 5 Nonlineari tests
Ciitical Threshold of Nonlinearity Tests %

Penod Test DEM YEN GBP FRF CHF
01/82-02/84 Keenan M=4 96 12 62 94 52

Tsay M=4 37 15 5 48 17
McLeod-Li m=20 0* 0* 0* 0* 0*

02/84-02/86 Keenan M=4 87 0* 52 91 75
Tsav M=4 71 3* 33 59 15

McLeod-Li m=20 0* 0* 0* 0* 0*
02/86-03/88 Keenan M=4 86 1* 87 78 60

Tsay M=4 59 0* 10 3* 53
McLeod-Li m=20 0* 0* 0* 0* 0*

03/88-03/90 Keenan M=4 73 0* 36 41 4*
Tsay M=4 23 0* 33 28 17

McLeod-Li m=20 0* 0* 0* 0* 0*
03/90-03/92 Keenan M=4 55 73 95 66 12

Tsay M=4 70 41 63 89 53
McLeod-Li m=20 0* 0* 0* 0* 0*

01/82-03/92 Keenan M=2 22 29 0* 15 22
McLeod-Li m=20 0* 0* 0* 0* 0*

* significantly not linear at the cntical level of 5%
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The Keenan(1985) and Tsay(1986) tests do not provide strong evidence of nonlineanties

in exchange rates, except perhaps for the YEN On the other hand, the McLeod-Li(1983)

test strongly rejects the linearity assumption irrespective of the currency and period under

consideration The problem with non-linearity tests is that they are always built to be

powerful for a given alternative Since nonlinear alternatives are not unique and cannot be

precisely described, it is not surprising that they often yield contradictory conclusions

There is some evidence of nonlineanties in exchange rates (Hsieh, 1989) but they are not

strong (Diebold and Nason, 1990) Nonlinear models are plausible alternatives although

there does not exist a consensus in favour of any particular one

6 1 4 Temporal dependence

This section deals with the testing of correlation between daily returns As mentioned in

introduction of this chapter, the presence or absence of correlation between data is of

importance to build adequate modelization and tests of financial rates We will test the

existence of serial correlations between returns using five different tests Correlogram,

Portmanteau, Taylor, Runs and Spearman tests

Historically the two most commonly used techniques to investigate the presence

of temporal dependence are the runs test and the examination of a correlogram, i e a set

of serial correlation coefficients A relatively new approach due to Taylor(1980) has been

established and seems more powerful to detect dependencies in returns Finally,

Spearman's non parametric test will complete our set of tests It is known to be more

powerful than the runs test

Serial correlation coefficients

It is usual in the study of time series to plot and examine the correlogram or

autocorrelogram The correlogram is a plot of the sample serial correlation coefficients,
Pk , at various lags, k, against k Each Pk is computed using the expression

n±k(Xt — R)(X t+i, — R)/(n — k)

Pk = t=1
	

n
	 [641

I(X t — Viin

t=1

In the analysis we computed P k , for k up to and including 50 for each period If the

returns constitute a sequence of serially independent identically normally distributed
random variables (the null hypothesis), the Pk values are each normally distributed with a
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mean of zero and a standard deviation of approximately 1/ v ---n Furthermore, under the

null hypothesis, the P k are mutually independent A test of senal independence thus

involves the computation of

Pk z =
k	 1 vii-

for k=1,2„ 20

values of zk outside the bounds delineated by the normal (e g 1 96 for 5% test) are

regarded as significant

If a variable follows a random walk, Granger and Newbold(1986) have shown

that absolute and squared values should follow too a random walk So in addition to tests

on original values, tests on absolute values, and on squared values, have been carried and

can be found in Appendix 6 1 The first order autocorrelation is positive for every

currency It is significant for GBP, DEM, FRF, at the critical level of 5%, for CHF at the

critical level of 10%, but not at all for YEN Overall there appear to be very few other

consistent positive or negative correlation Table 6 6 gives a count of the number of

significant Pk values over the entire period for each set of returns

Table 6.6 Number of significant autocorrelations
Number of significant Autocorrelations in 50 lags at the 5% level

DEM WY GBP FRF CHF
Original
Absolute
Square

4
22
15

3
37
11

2
36
29

4
21
7

2
21
15

For the original series we see that the number of significant Pk values are almost exactly

equal what one would expect (i e 5%) under the null hypothesis of no temporal

dependence In sum there seems to be no clear evidence of any temporal dependence in

any of the series The absolute and square value of the logarithmic series tell us another

story The number of significant autocon-elations is sigmficantly higher that one would

expect under the random walk hypothesis It suggests that there must be a kind of

dependence between returns although it may not be linear

Portmanteau and Taylor tests

In this section, we bnefly review Portmanteau and Taylor's statistical tests

The majority of researchers have used the Portmanteau test to detect the presence of

serial autocorrelations
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Qk nEP,2

where the p, are the sample autocorrelation coefficients of n daily returns and k is chosen

subjectively (here 20) Under the null hypothesis, Q k is asymptotically distnbuted as a

kk

Taylor(1980) proposed many models of financial pnces we have briefly described in

Section 2 4 1 In order to test the null hypothesis of a random walk against the alternative

hypothesis of a trend model, Taylor(1980) considered the test statistics T and U

Eti) k	 k
Pk	 q) Pk

T— 	 	 1=2 

k	 k
n iZek	 14,2k irn

1=1.	 /

with 0q<1

If the null hypothesis is true, each Pk is independently normally distnbuted with

mean zero and variance 1/n The T and U statistics would be asymptotically distributed

with mean zero and variance unity Taylor points out that previous researchers have used

Q in testing for temporal dependence but notes that the technique has low power Under
Taylor's alternative hypothesis the Pk are expected to be a sequence of monotonically

decreasing positive values and has proposed test statistics T and U designed to be

sensitive to the possibility of such an alternative hypothesis If errors are present in a time
series they will have most influence on p l and thus Taylor decides to test series with U

Experience suggests that suitable values of k and 4) are 30 and 0 92 respectively

Taylor points out that the high variances of conventional autocorrelation coefficients are

almost certainly caused by the non-constant conditional variance of the returns Therefore

he suggests that returns are rescaled to possess a reasonably homogeneous variance To

get reliable results, he advises to use the resealed returns y,---x t/at to calculate the

coefficients T and U, now noted T * and U* , with t=01 and ; defined by

at = (1 — t)a t_i -I-t:x_1

The first twenty returns are commonly used to calculate the initial value of;

20

a20 = -Eixt120 t=1
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Then for a series of n t returns, the coefficients are calculated from

E(y,- Y)(Yt+, —Y)
p1 _., t=21 ft 

E(Yt — Y)2
t=21

111-1

Di
where y=  t=21 

n t —20

The term n in U* and elsewhere now denotes the effective number of returns

n = n t. —20 In this way the series yt should have an approximately constant variance very

near the expected value 1/n It is therefore recommended that returns are rescaled before

calculating the autocorrelation coefficients

Results of the portmanteau and Taylor tests are given in Table 6 7

Table 6.7 Portmanteau and Taylor tests
Portmanteau and Taylor tests

(Cnucal Tbresho d %)
Currency DEM YEN GBP FRF CHF

Chi-square Q(20) 23 56 16 97 32 20 25 05 23 74
(21) (59) (3)* (16) (21)

T 117 2 02 2 35 1 53 1 63
(12) (2)* (1)* (6) (5)

U 011 131 241 091 088
(46) (10) (8) (18) (19)

T* 3 26 3 61 4 56 3 00 3 86
(0)* (0)* (0)* (0)* (0)*

U* 218 306 443 231 311
(2)* (0)* (0)* (1)* (0)*

* sigruflcantly not random at the cnucal level of 5%

As can be seen from Table 6 7, only one adjusted Box-Pierce Q statistics is significant at

the 5% level (GBP) All the U* statistics from the rescaled returns are positive That

means there is an excess of positive senal correlation coefficients Each one of these

statistics are significant at the 10% level and similar to previous literature findings

Taylor(1980) found for the spot series GBP/USD U s=2 78 during the period 1974-1978,

and Taylor(1986) 1=0 91, T*=6 56, U*=5 29 during the period 1974-1982 In this study,

therefore, all five series examined, and specially GBP, showed evidence of price trends

consistent with the model proposed by Taylor(1980)

155



2n1 n 2  + 1
1.1. r =

n 1 + n 2
ar =

Ai (n i + n 1 ) 2 (n 1 + n, —1)

I2n1n2(2nIn2 — nIn2)

6 1 5 Randomness Tests 

Parametric tests as Portmanteau and Taylor statistics have the advantage to be powerful

under specified alternatives Their drawback is however to rely on the assumption made

about the distribution of the returns and to be sensitive to the presence of outlying

observations and errors in the data An alternative is consequently to use non-parametric

tests which remove previous limitations but also are less powerful

The tests for randomness procedure we now study are all non-parametric and have been

described in full details in Siegel(1956) The first two examine the number of runs in the

data, and the third one establishes the rank correlation coefficient

Runs test

A runs test above and below the median counts the number of runs that are completely

above or completely below the median The system ignores values equal to the median

This procedure is particularly sensitive to trends in the data The classical runs test

examines the sequence of returns Each return is classified into one of two categones

chosen i e above the median and below or equal to the median

Let us note

n1 = number of outcomes in the first category

n2 = number of outcomes in the second category

n = n 1 + n2

It can be shown that if n is large (greater than 20) the number of runs r is approximately

normally distributed with mean 1.1., and standard deviation a, given by

A test of temporal dependence is then to compute Zr where

(r —11, )
z =r	 ar

which under the null hypothesis of randomness follows the standard normal distribution,

Zr — N(0,1)

Up and Down Test

A runs test up and down counts the number of times the sequence rises or falls The

number of rising and falling runs equals one more the turning points This procedure is

most sensitive to sequences with relatively long-term cycles, in which the number of
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turning points is less than those in a random sequence It can be shown that if n is large

(greater than 20) the number of up and downs r is approximately normally distributed

with mean p r and standard deviation a,. given by

(2n —1)
1-I r =	 -,

J

116n-29 

r	 \I	 30

Spearman test

This non parametric test is commonly used to detect correlation between variables

However it can serve to test the presence of trend if one variable is taken as the time

index The Spearman rank correlation coefficient is equivalent to ranking each variable

separately and calculating the usual (Pearson) correlation coefficient on the ranks

Results of the randomness tests as applied to our exchange rates series are

provided in Table 6 8

Table 6 8 Randomness tests
Tests for Randomness

Currency DEM YEN GBP FRF CHF
Median = 0 runs 7 44E-6 0 47 -0 90 7 44E-6 -0 37

(100) (64) (37) (100) (71)

Up and down -112 098 -189 -772 -158
(26) (33) (6) (99) (11)

Spearman Rank Correlation - 026 003 038 -038 -018
(19) (86) (6) (5) (39)

Nones of the randomness statistics are significant at the critical level of 5% Following

the up and down and Spearman tests, GBP is not random at the critical level of 10%

FRF does not follow a random walk following the Spearman test at the critical level of

5%

6 1 6 Summary of results

Table 6 9 attempts to summarise temporal dependence results It says that only the GBP

exhibits strong departures from the random walk hypothesis irrespective of the test at the

10% level For the other currencies, rejection of serial independence only occurs under

Taylor's tests at the 5% critical level No one of the randomness statistics is significant at

the 5% level, and only three are significant at the 10% level (two for GBP, and one for

FRF)
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Table 6.9 Summary of randomness tests
Rejection of Random Walk at the level alpha %

Alpha DEM JP'( GBP FRF CHF
Portmanteau 10%

Taylor T 5% 10% 10% 10%
U 10%
T* 5% 5% 5% 5% 5%
U* 5% 5% 5% 5% 504

Runs
Up and Downs 10%

Speannan 10% 10%

62 T-STUDENT TEST

The random walk is now being tested using the multivariate T-Student test

derived in Chapter 5 This statistic is an alternative way to test the existence of serial

correlation in exchange rates of returns Its pnmary advantage beyond standard statistical

tests is its power and robustness (See Section 5 2)

It must be known when applying the parametric T-Student test what are the possible

causes of departures with the random walk hypothesis To do so, Section 6 2 1 discusses

the normality and serial independence of rule returns which are two basic assumptions

Then Sections 6 2 2 to 6 2 4 test the equality of variance, intercorrelation and average

rule returns with their theoretical values

Proposition 5 1 assumes that financial prices are without drift That does not seem

unrealistic for our exchange rates time series in regards of the sample means given in

Table 6 2 Such hypothesis has been commonly assumed in the literature (Taylor, 1986,

Engel and Hamilton, 1992, Lai and Pauly, 1992) and will be adopted here

The rules we are investigating are once again the simple, weighted moving averages and

momentums Successive orders of rules, (5, 10, 20 and 40) have been chosen such that

trading returns are almost equicorrelated under the random walk assumption (Table 5 2)

In fact, there appears to be little need for concern about how parameters are selected in

academics studies as long as they are not based on in-sample returns (Lukac and Brorsen,

1989)
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6 2 1 Prehminclry remits

Distribution

Table 6 10 proves that for the full sample none of the trading rules follow a normal

distribution, although for shorter penods (2 years) rejection of normality occur far less

often In addition, it can be seen that rejection (acceptance) of the normality of rule

returns occur simultaneously to the rejection (acceptance) of the normality of underlying

returns Taylor(1986) argues that rule returns may have positive relative kurtosis due to

the positive relative kurtosis of price changes We have checked as well that amounts of

skewness and kurtosis of unrealised returns are identical and close to the ones of the

underlying process Subsequently, it seems that the shapes of the distributions of

unrealised rule returns and underlying returns are identical but not normal (Lukac and

Brorsen, 1990)
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Table 6 10 Normality tests of rule returns

Critical threshold %	 Kolmgorm -SminioN test

DEM

Period Underling S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)

1 27 49 42 36 40 47 52 36 35 34 36 37 44
2 20 25 36 35 15 31 41 30 30 41 38 18 25
I 3* 1* 2* 3* 0* 1* 1* 3* I* 1* 2* 3* 1*
4 10 9 8 19 18 6 10 10 19 10 7 10 11
5 6 29 9 12 4* 20 17 10 11 20 14 16 14

full 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*

YEN

Period Underlying S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)

1 4* 11 0* 11 10 13 9 13 13 14 14 12 13
2 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
3 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
4 2* 2* 0* 1* 3* 3* 3* 2* 2* 4* 1* 3* 2*
5 5 3* 3* 3* 8 2* 3* 3* 3* 3* 6 8 6

full 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*

GBP

Period Underlying S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)

1 11 49 42 36 40 12 4* 10 4* 10 22 11 4*
2 0* 25 36 35 15 1* 1* 4* 1* 2* 1* 0* 1*
3 13 1* 2* 3* 0* 16 15 20 32 15 8 15 7
4 6 9 8 19 18 2* 2* 10 17 15 15 14 9

3 11 29 12 12 4* 7 13 16 16 9 5 14 14

full 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*

FRF

Period Underlying S(5) S(10) S(20) S(40) W(5) W(10) W(201 W(40) M(5) M(10) M(20) M(40)

1 2* 1* 1* 2* 1* 1* 2* 3* 2* 2* 1* 2* 2*
2 41 34 42 28 24 35 27 31 32 28 32 23 23

3 -*.) 2* 3* 1* 0* 2* 1* 1* 0* 3* 0* 2* 0*

4 7 3* 3* 4* 8 3* 5 3* 9 2* 4* 12 9
5 11 13 13 21 26 38 20 16 22 33 18 35 37

full 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
1

0* 0*

CHF

Period Underlying S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)

1 16 28 25 31 9 30 25 25 12 13 25 6 4*
2 3* 12 8 15 6 13 12 15 14 12 12 6 6
3 6 12 11 5 2* 5 8 11 4* 5 4* 4* 6

4 16 33 7 11 17 32 20 15 13 13 14 39 41
5 59 54 33 38 68 61 43 32 57 48 70 52 51

full 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
* significantly not normal at the critical threshold of 50/0
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Temporal dependence

Table 6 11 shows that rule returns display on average similar randomness to underlying

returns for the runs, up and down and chi-square tests, and significantly less dependencies

for the Taylor tests Except in a few isolated cases, rule returns exhibit very low

autocorrelations and can be considered as independent An achantage of profits-based

tests might be that although daily pnces may be dependent, rule returns might still be

independent, and so the T-Student might still be applied

Table 6.11 Tests for randomness of rule returns
Tests for Randomness (Cntical threshold %)

Tests\DEM Under'sing S(5) S(1(J) S(20) S(40) W(5) W(10)W(20)W(40) M(5) M(10) M(20) M(40)

Runs 0 -112 0 14 1 48 0 57 -0 55 0 69 0 53 0 69 -0 06 0 77 1 08 -0 26
(100) (26) (89) (14) (57) (58) (49) (60) (49) (95) (44) (28) (80)

Up and down -112 -038 -043 -024 -113 107 -010 -159 -052 074 018 -080 -187
(26) (70) (67) (81) (26) (29) (92) (11) (60) (46) (86) (42) (6)

Q(20) 23 56 22 14 30 16 23 74 19 09 25 20 26 04 25 81 25 4(1 20 89 17 53 18 75 2418
(21) (28) (5) (21) (45) (25) (13) (14) (15) (34) (55) (47) (18)

T 117 -0 60 -2 00 -1 75 0 15 - 78 -0 94 -1 75 -0 77 - 54 -0 74 -043 1 5
(12) (72 5) (98) (96) (44) (78) (83) (96) (78) (71) (77) (67) (7)

U 11 -074 -285 -93 -065 -87 -154 -2)1 -061 -86 -088 -016 086
(46) (77) (100) (82) (74) (81) (94) (98) (73) (81) (81) (56) (19)

T* 326 -041 -174 -80 151 -45 -115 -170 49 -14 -050 002 216
(0)* (66) (96) (79) (7) (67) (88) (96) (31) (56) (69) (49) (2)*

U* 218 -080 -250 -58 073 -75 -151 -208 23 -Of -0% -013 1 36
(2)* (79) (99) (72) (23) (77) (94) (98) (41) (73) (83) (55) (9)

Tests\YEN Underlying S(5) S(10) S(20) S(40) W(5) W(10)W(20)W(40) M(5) M(10) M(20) M(40)

Runs 047 -0 90 -0 61 -0 43 -0 38 -6F-3 -1 36 -0 69 0 37 -1 00 077 4)40 0 81
(64) (37) (54) (67) (71) (100) (17) (49) (71) (32) (44) (69) (42)

Up and down 098 043 071 1 22 057 1 27 -083 1 08 113 005 1 50 1 03 1 03
(33) (67) (48) (22) (57) (20) (41) (28) (26) (96) (13) (30) (30)

Q(20) 16 97 20 77 35 39 28 60 23 82 13 65 27 33 31 13 26 38 27 24 36 59 22 64 12 60
(59) (35) (I)* (7) (20) (80) (10) (4)* (12) (10) (1)* (25) (86)

T 202 74 92 186 157 -11 59 108 177 139 170 187 -77
(2)* (23) (18) (3)* (6) (55) (28) (14) (4)* (8) (4)* (3)* (78)

U 131 70 39 199 114 0 -18 126 168 79 211 171 -52
(10) (24) (35) (2)* (13) (50) (57) (10) (5) (21) (2)* 14)* (70)

*
1 361 65 149 184 273 -28 69 86 236 76 271 298 192

(0)* (26) (7) (3)* (0)* (61) (25) (19) (I)* (22) (0)* (0)* (3)*

U* 306 55 78 136 218 -27 -14 51 209 24 259 271 212
(0)* (29) (22) (9) (2)* (61) (56) (31) (2)* (41) (I) (0)* (2)*
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Table 6.11 (continued) Tests for randomness of rule returns
rests for Randomness (Cnta-al threshold 0/0)

Tests\UBP Underlying S(5) S( 10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(401

Runs -090 -178 -163 116 -120 -099 -200 -096 041 -081) 043 -151 -065
(37) (8) (10) (25) (23) (32) (5) (34) (68) (42) (67) (11) (52)

Up and down -1 89 -0 97 -I 91 0 74 -0 74 -0 60 -I 35 -2 56 4) 97 -2 00 -I 07 -1 49 -2 05
(6) (33) (6) (46) (46) (55) (18) (1)* (33) (5) (29) (14) (4)*

Q(20) 220 1367 28 12 2174 19(19 25 86 4213 2811 1719 22 75 22 56 1094 1191
(3)* (2)* (8)* (21) (45) (13) (0)* (8) (1)* (25) (26) (4)* (3)*

T 2 35 -1 20 -1 52 -116 46 -1 02 -1 49 -2 01 -2 36 -1 43 -1 67 -2 69 - 99
(1)* (89) (94) (88) (32) (85) (93) (98) (99) (92) (95) (4)* (84)

U 241 -236 -275 -173 -29 -[34 -314 -280 -241 -258 -244 -218 -220
(1)* (99) (100) (96) (61) (91) (100) (100) (99) (100) (99) (99) (99)

T* 456 -100 -63 -34 141 -155 .91 -112 -72 -69 -25 195 34
(0)* (84) (74) (63) (8) (94) (82) (87) (77) (75) (60) (3)* (37)

U* 443 -192 -193 -120 61 -206 -221 -235 -115 -181 -107 117 -100
(0)* (97) (97) (88) (27) (98) (99) (99) (88) (97) (86) (12) (84)

Tests\FRF Underlying S(5) S(I0) S(20) S(40) W(5) W(I0) W(20) W(40) M(3) M(10) M(20) M(40)

Runs 000 022 -006 116 065 002 171 -006 085 171 104 124 076
(100) (83) (95) (25) (52) (98) (9) (95) (40) (9) (30) (22) (45)

Up and down -772 -038 037 074 -024 004 027 -061 111 018 111 06 -076
(99) (70) (71) (46) (81) (97) (79) (54) (27) (86) (27) (45) (45)

Q(20) 25 05 292 39 16 273 25 84 18 07 31 51 33 62 25 93 27 48 17 63 12 69 16 98
(16) (6) (0)* (10) (13) (52) (4)* (2)* (13) (9) (55) (85) (59)

T 153 -12 -187 -(86 -10! -94 -119 -197 -119 23 -22 -74 126
(6) (55) ( 97) ( 97) ( 84 ) ( 83 ) (88) (98) (88) (41) (59) (77) (11)

U 91 22 -235 -131 -181 -58 -143 -237 -98 -23 -44 -92 98
(18) (41) (99) ç90) (96) (72) (92) (99) (84) (59) (67) (82) (84)

1 * 300 -11 -162 -87 15 -42 -164 -169 07 25 17 -83 1 93
(0)* (54) (95) (81) (44) (66) (95) (96) (47) (60) (43) (80) (3)*

U* 231 -05 -218 -57 -37 -27 -167 -213 03 -48 -25 -92 173
(I)* (52) (99) (72) (64) (61) (95) (98) (49) (68) (60) (82) (4)*

Tests\CHF Underlying S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(10) M(20) M(40)
r

Runs -037 -037 -006 045 014 -064 061 030 002 041 136 010 -045
(71) (71) (95) (65) (89) (52) (54) (77) (98) (68) (17) (92) (65)

Up and down -158 -038 -187 -103 -215 -131 -0 57 -103 -131 055 -038 -192 -159
(1/ ) (70) (6) (30) (3)* (19) (57) (30) (19) (58) (70) (5) (11)

Q(20) 23 74 14 35 23 28 35 69 31 90 13 31 12 47 24 65 28 60 238! [765 16 59 15 70
(21) (76) (23) (1)* (3)* (82) (86) (17) (7) (20) (55) (62) (68)

T 163 -6! -187 -17 -04 -43 -115 -23 -94 -57 -28 -07 36
(5) (73) (97) (57) (52) (67) (88) (59) (83) (72) (O1) (53) (3o)

U 88 -1 05 -235 19 -64 -68 -150 -55 -8(1 -55 -42 05 -16
(19) (85) (93) (42) (74) (75) (93) (71) (79) (7I) (66) (48) (56)

T* 386 -1 03 -162 14 29 -76 -1 79 -47 -23 -47 -24 20 55
(0)* (85) (95) (45) (38) (78) (96) (68) (59) (68) (59) (42) (29)

U* 311 -147 -218 21 -12 -105 -215 -83 -35 -47 -17 07 04
(0)* (93) (99) (42) (55) (85) (98) (80) (64) (68) (57) (47) (49)

* significantly not random at the critical level ot 5%

162



6 2 2 Variance 

Table 6 12 indicates that the variance of rule returns is not significantly different from the

variance of underlying returns That means that, on an unrealised rate of return basis,

there is no rule riskier than others Every rule brings the same risk being equal to the

underlying volatility Corrado and Lee(1992, Table 6) studying the time series properties

of the S&P 500 similarly find that the standard deviation of the 0 5 percent filter rule

returns is equal to the underlying volatility Such a result confirms the random walk

assumption, or at least is not incompatible with As far as variances are concerned, it can

be concluded that the random walk hypothesis is strongly accepted and can be considered

as an excellent proxy of real trading rule vanances2

Table 6.12 Tests of ecivality of variances between rules and underl ying returns
N anance (E-5) of dail) stochastic processes

(Cnticil threshold % tests of equality of vanances between rules and under)ing returns)

Underlying S(5) S(10) S(20) S(40) M(5) ‘1(10) 11(20) K40) W(5) W(10) W(20) W(40)

DE11 5 0912 5 0809 5 0784 5 0669 5 0878 5 0858 5 0858 5 0799 5 0877 5 0827 5082i 5 0750 5 0793

(94) (94) (89) (94) (98) (98) (96) (99) (97) (97) (93) (95)

YEN 4 7162 4 7165 4 7143 4 7173 4 7171 4 7173 4 7137 47176 4 7181 4718i 4 7136 47i18 4 7157

(100) (99) (100) (100) (100) (99) (100) (100) (100) (99) (98) (100)

GBP 5 1924 5 1837 5 1827 5 1784 5 1859 5 1882 5 1808 5 1899 5 1846 5 1801 5 1864 5 1725 5 1746

(96) (95) (90) (99) (99) (96) (100) (97) (95) (911) (92) (92)

FRF 5 0062 4 9906 4 9911 4 9788 4 9923 4 9939 4 9964 4 9890 4 9982 4 9918 4 9883 4986i 4 9864

(94) (94) (89) (94) (9S) (96) (93) (97) (94) (92) (92) (92)

CHF 5 9226 59172 59098 59063 5918 59147 5 9145 59147 5 9127 59137 59137 59132 5909
(98) (96) (94) (98) (98) (98) (98) (97) (98) (97) ,	 (97) 1	 (9,)

We have seen in Section 5 2 3 that the standard deviation of a portfolio of systems, G R is

given under the normal independent assumption without drift by a R = Kcr, where K is a

constant given by equation [5 131 and a is the underlying volatility Subsequently, Table

6 13 tests the hypothesis (:Y R / K) 2 = G 2 It shows that the variance of a portfolio of

systems is still close to its expected value That would imply that the theoretical

correlation between systems is quite a good substitute for empincal correlations, an issue

that the next section investigates in more details

2 That confirms that if not the mean, the shape of the distribution (variance kurtosis skewness) of
unrealised returns is very much the same than the one of the underlying process That would not have
been the case for realised returns (See Chapter 3)

163



Table 6.13 Tests of equality of variances betv, cen portfolio rules and underlying returns

Vanance (E-5) / K 2 of daih stochastic processes
(cntical thresold % tests of equality of vanances between portfolio rules and underts ing returns)

Underbang S(5 10 20 40) W(5,10 20 40) M(5 10 20 40) SWM(5 10 20 40)

Constant K 0 81275 0 81724 0 731)55 0 76226

DEM 5 0912 4 9714 5 2270 5 2204 5 2003
(54) (50) (53) (59)

YEN 4 7162 4 7184 4 7509 4 8168 4 7933
(99) (85) (59) (68)

GBP 5 1924 5 1788 5 2270 5 22037 5 2003
(95) (46) (90) (64)

FRF 5 0062 5 1331 5 3310 5 29651 5 3262
(52) (11) (15) (12)

CHF 5 9226 5 7751 5 7834 5 8628 5 8344
(52) (55) (80) (70)

6 2 3 Rules correlations

We now check the adequacy of the random walk without drift in terms of trading rules

correlations We consider as in Section 5 1 2, first the case where different rules are

applied to the same financial time series, and second the case where the same rule is

applied to different financial time series Then a comment is made about the general case

where different rules are applied to different time series

Different rules applied to a same underlying process

Firstly, we shall test the adequacy of rule returns correlations with their expected values

for a set of techrucal trading rules applied to the same underlying process

Table 6 14 shows that irrespective of the currency, trading rules correlations are relatively

close to their expected values under the random walk without drift hypothesis, H o given

by Table 5 2 They are in fact slightly higher, which would let give the impression that

there are some low positive autocorrelations Then we have applied a test of equality of

correlations (Johnson and Wichern, 1982) to measure how close are the observed trading

rules correlations to their expected value under H o For the twelve trading rules,

rejections of adequacy occur in less than 40% of cases for DEM, GBP, CHF, YEN but

above 60% for FRF (Table 6 14) Therefore, it seems that the umvanate random walk

hypothesis is a fairly good assumption as far as rule returns correlations are concerned

Overall, mechanical systems are highly positively correlated (Lukac, Brorsen and Irwin,

1988a, Brorsen and Boyd, 1990, Taylor, 1990b), but not more than would randomly be

expected
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o a same currenc

s(DFM) S(5) S(10) S(20) S(40) W(5) W(10) W(20) W(40)
r

M(5) \1(10) M(20) \t(40)

S(5) 1 685 463 315 903* 780* 616* 428 804* 451* 296 177

S(10) 1 658* 393* 652* 898* 817 547* 746* 716 418 216*

S(20) 1 658* 448* 597 835* 824 516 740* 736* 430

S(40) 1 300 386 )43* 833 3)8 488* 776* 690

NV(5) 1 749* 603* 108* 122" 447* 278 185

W(l0) 1 756* 537 796* 636* 383 224

XV(20) 1 709* 662* 771 576 327

1V(40) 1 476* 638 801* 596*

M(5) 1 510* 341* 195

M(10)
1 542* 294

N(20)
1 507

1
M(40)
p(EN) S(5) S(10) S(20) S(40) VV(5) \V(10) VV(20) VV(4(J) M(5) M(10) \1(20) V(4(J)

S(5) 1 720* 488 314 893* 809 )91 404 791* 481* 257 110*

S(10) 1 665 445 653* 882* 810 560* 772* 736* 399 173*

S(20) 1 654* 494* 625* 853 795* 554* 769* 656* 363*

S(40) 1 325 415 597 852 358 496 788* 653

V(5) 1 737 593* 409* 685* 493* 278 121*

W(10) 1 742 529 844* 622* 377 176*

m(20) 1 718 656* 796* 560 290*

LV(40) 1 461 608* 801* 517*

M(5) 1 559* 338 147*

N(10) 1 516* 251*

M(20) 1 489

\g40) I

p(GBP)
J

S(5) S(10) S(20) S(40) W(5) \V(10) W(20) W(40) M(5) \ 1(10) M(20) \1(40)

S(5) 1 674 448 355 894 791 579 408 803* 448 278 298

S(10)
S(20)

1 694
1

434*
674

619
402

876*
604

843"
850

608
843

731"
536*

730,
730

418
682

249
440

S(40) 1 312 403 569 813* 392* 477* 772* 726*

V/(5) 1 730 525 368 699* 414* 244 193

V(10) 1 741 534 799* 610* 356 227

V(20) 1 750 668* 795* 540 341

V440) 1 484* 652 757 549

N(5) 1 535" 335 224

m(1o) 1 462 287

4(20) 1 )58*

M(40) 1

p(FRF) S(5) S(101 S(20) S(40) V/(5) V/(10) XV(201 V/(401 L1(5) M(101 M(201 M(40)

S(5) 1 719* 520* 364* 894* 810 627" 475* 804* 483* 336* 233*

S(10) 1 695 452 683* 903* 828 595 761* 734* 462* 271

S(20) 1 687 507* 639* 858 855* 546* 728 753* 468*

S(40) 1 356* 443 583 831* 395* 496 793* 106*

1,1(5) 1 773* 613* 467* 725* 455* 331* 224*

V(10) 1 765* 584* 794* 651* 426* 273

V(20) 1 749 66* 758 616* 374

V(40) 1 513* 641 800* 599*

M(5) 1 538* 376* 233

M(10) 1 543* 315

M(20) 1 552*
1

V(40)
p(CHF) S(5) S(10) S(20) S(40) VV(5) XV(10) LV(20) VV(40) M(5) M(10) M(20) M(40)

S(5) 1 642* 469 311 900* 781* 573 388 767* 457* 250 129*

S(10) 1 688 422* 583 852 811 599 711 727* 440 194*

S(20) 1 628* 426 592 877* 838 498 731 675 342*

S(40) 1 267 398 560* 789* 352 474* 786* 675

m(5) 1 722 527 343 670 409 213 121

Mr(10) 1 713* 504 786* 594 366 195*

M(20) 1 749 599 776* 575 304*

m(40) 1 428 ,	 636 789* 467*

N1(5) 1 487 296 140*

M(1O) 1 494 250*

N(20) 1 506

V(40)
1

* significantly different to the expected correlation p = 0 at the critical li.vel of 5%
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Same rules applied to different underlying processes

Secondly, we have tested the adequacy of rule returns correlations with their expected

values for the same mecharucal system applied to two different underlying processes It is

clear from Table 6 15 that observed correlations between trading rules are far higher than

that would randomly be expected Theoretical correlations are however better than

ante substitutessubstitutes and closer to true results than underlying correlations In addition, they

confirm two major properties of rules correlations established in Section 5 1 2, namely

(a) rules correlations are a positive function of the absolute value of underlying

correlations and lower in absolute value than underlying correlations Let us take the

example of GBP/USD and USD/CUIF The two processes are negatively correlated, -

0 76, however when the same moving average (10 or 20 days) is applied to each of the

two currencies, rule correlations decrease substantially in absolute value to reach 0 53

(b) rules correlations are almost identical as long as the same system is applied to both

assets That can be seen from Table 6 15, multtcurrencies correlations between S(5),

S(10), S(20), S(40) are quite close one from each other There is perhaps a very slight

positive function of the order of the moving average The correlation between two rules

of a given order applied to two assets does not depend on the order

These results imply on the one hand, that the bivanate random walk without drift is a

practical assumption allowing properties of rules correlations, (a) and (b), to be given

which are empirically confirmed but on the other hand, underestimating excessively

observed correlations to be an acceptable substitute We have checked that is still more

the case when different systems are applied to different currencies

Table 6.15 Correlations between rules annlied to different currencies
Correlation YEN-CI11- YEN-1-11F CBP-CIlf COP Ertr Cuff rRr DEM-YEN DEM-GBP DEM-Clir DEM rRr 1 L'\-(,DP

P x 068 066 -076 -077 089 067 -079 092 095 058

2
Po = —n P. Arc sin(N) 032 011 04 044 061 011 046 069 07 021

S(5) 044* 038' 050' 056' 069' 043' 052' 076' Q4 030'
S(10) 044' 043' 053' 060' 074' 041' 060' 077' 090' 034'
S(20) 041' 039' 053' 057' 074' 041' 057' 079' 089' 035'
S(40) 050' 046' _	 057' 059' 076' 047' 059' 078' 090' 039'

* significantly different to the expected correlation p = po at the critical level of 5%

166



6 2 4 Arpected value

Tables 6 16 and 6 17 show that rule returns and so single T-Student are heavily

dependent on the rule being used, although interrelated It results that no clear conclusion

about the currency randomness can be deduced from them

An alternative is to apply the multivanate T-Student developed in Chapter 5 We

have just seen in Sections 6 2 3 and 6 2 2 that trading rule correlations and variances are

close from their expected values under the random walk hypothesis So rejection of non-

zero profits from the multivariate T-Student should not be due to irrelevant variances and

correlations, but significant positive returns, what we want to test

The multivariate T-Student provided by Table 6 17 seems far more informative

than any single T-Student since it exhibits a critical threshold close from the best of its

component, unknown ex-ante It seems from the reduced portfolio S(5,10,20,40) that

DEM, GBP and FRF do not follow a random walk without drift at the critical level of

1%

In addition of this elementary portfolio, we have tested the profitability of larger

portfolios It is hoped that by enlarging the field of rules the most profitable ones

(unknown ex-ante) will be included and that their presence in the portfolio will make the

test more powerful despite the number of unprofitable rules Our biggest portfolio,

SWM(2 to 100) includes three different popular technical rules, simple moving averages,

weighted moving averages, momentums of orders 2 to 100 For large portfolios, all

currencies (except Yen) do not follow a random walk without drift at the critical level of

1% The ranking of currencies in terms of decreasing profitability for the largest portfolio

SWM(2 to 100) is FRF, DEM, GBP, CHF and YEN The YEN appears far less

profitable than the other currencies

There is no clear ranking of trading rules A slight dominance of weighted moving

averages over simple ones and momentums can be noted However results are too close

to be really meaningful

Table 6 16 Yearly rule returns
Yearly Returns % of trading rules

Yearly Returns % DEM YEN GBP FRP CHF
S(5) 797 526 744 909 471

S(10) 895 614 7-1-4 927 853
S(20) 12 30 396 904 12 47 957
S(40) 453 420 616 838 482

S(5 10 20 40) 844 489 752 980 691
Underlying Volatility 11 26 10 86 11 37 11 15 12 14

Portfolio Volatility 7 44 7 18 7 51 7 37 8 02
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Table 6.17 Critical threshold of T-Student test
Critical Thresho d % of T-Student test

Test OEM YEN GBP FRF CHF

S(5) 13 62 19 05 11
S(10) 06 36 19 04 13
S(20) 00 124 06 00 06
S(40) 103 110 44 09 105

S(5 10,20 40) 02 40 05 00 13

W(2 to 50) 0 1 3 3 0 1 00 0 5
W(2 to 100) 0 1 1 7 0 2 0 0 0 3
S(2 to 50) 03 29 02 01 09
S(2 to 100) 0 3 0 6 0 4 0 / 0 3
M(2 to 50) 02 15 02 00 05
M(2 to 100) 02 02 09 01 02

SWM(2 to 30) 02 13 02 00 05
SWM(2 to 100) 01 05 03 00 02

63 BOOTSTRAP TEST

6 3 1 Root wrap methodology

It could be argued the results reported in the preceding sections are of little value because

the T-Student test assumes a normal, stationary and time independent rule returns

distribution For our set of trading rules the time independence assumption seems very

reasonable, but not that of normality The results indicate that there are several deviations

from the normal distribution such as leptokurtosis, conditional heteroskedasticity and

changing conditional means So it may be argued that the results based on single and

multivanate T-Student tests may be biased An alternative is the bootstrap approach

which assumes nothing about the distribution generating function Testing procedures

based on bootstrap methodology to assess the significance of technical trading rules in

financial market are not new and have been implemented by Brock, Lakorushok and

LeBaron(1992), Levich and Thomas(1991), LeBaron(1991, 1992b) The simulation

technique is now described and applied to the full sample of exchange rates similarly to

Levich and Thomas(1991)

For each currency, we generate a new comparison series (a shuffled series), by making a

random rearrangement of logarithmic returns in the original series By operating on the

sequence of price returns, the starting and ending price levels of the new senes are
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constrained to be exactly as their values in the original data And by randomly rearranging

the original data, the new series is constrained to have identical distributional properties

as the original series, but the time series properties have been scrambled with each path,

by construction, drawn independently of the other notional paths The process of

randomly shuffling the series of returns is repeated 2,500 times for each currency Each

technical rule is then applied to each of the 2,500 and the profits measured The moving

average rules will be used as in Levich and Thomas(1991), LeBaron(1991, 1992b),

Brock, Lakornshok and LeBaron(1992) 5, 10, 20 and 40 days are fairly common lengths

used by traders and have been previously considered in this thesis The bootstrap

methodology should provide a good approximation of the rule return distribution under

the null model of random walk with a drift The profits of the original series can then be

compared to the profits from the randomly generated, shuffled series Comparisons will

be done once again throughout variance, correlation and expected value of rule returns3

6 3 2 Vanance

Variances of rule returns have been very little affected by the bootstrap methodology

(Table 6 18) They are still not statistically different from their theoretical values under

the normal random walk without dnft The ratio standard deviation of rule

returns/underlying volatility is constant and very close to its expected value which is 1 for

an unique system and K=0 81275 for the portfolio of systems S(5,10,20,40) Levtch and

Thomas(1991 Tables 4A, 4B) testing the assumption of a random walk without drift,

similarly exhibit rule returns variances extremely close to the volatilities of the underlying

assets

Table 6.18 Rules variances from bootstranned currencies
Vanance (E-5) of daily stochastic processes, issued from 2 500 Bootstrapped simulations

Underlying S(5) S(10) S(20) S(40) S(5 10 20 40) K(5 10 20 40)

DEM 5 0912 4 9567 4 9359 4 8036 4 9421 32258 0 808

YEN 4 7162 4 4570 4 5759 4 6011 4 5732 2 9412 0 803

GBP 5 1924 5 2775 5 1446 5 0658 5 1792 3 4345 0 816

FRF 5 0062 4 8958 5 1446 4 8880 5 1129 3 2871 0 812

CHF 5 9226 5 5509 5 6991 5 8661 5 4248* 3 6588 0 805

* significantly different from expected value (K a)2 assiu ung a random walk, at the critical level of 5%

3 We do not have attempted multicurrencies bootstrap That is each one of the simulations have been
performed independently for each currenc y That has the advantage of giving independent results
between currencies but prevents the study of trading rule correlations between currencies
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6 3 3 Rules Correlations

Correlations of different systems applied to bootstrapped currencies remain close to their

original values, and almost identical to their theoretical value under the normal random

walk without drift (Table 6 19)

Table 6.19 Rules correlations from bootstranned currencies

P(DEM) S(5) S(10) S(20) S(40) P(YEN) S(5) S(10) S(20) S(40)

S(5)
S(10)
S(20)
S(40)

1 691*
1

496
689

1

291
441

652*
1

S(5)
S(10)
S(20)
S(40)

1 652
1

443
661

1

295
439*
675

1

p(GBP) S(5) S(10) S(20) S(40) P(FRF) S(5) S(10) S(20) S(40)

S(5)
S(10)
S(20)
S(40)

1 667
1

452
674

1

351
487
691

1

S(5)
S(10)
S(20)
S(40)

1 659
1

467
687

1

319
465
676

1

P(CHF) S(5) S(10) S(20) S(40)

S(5)
S(10)
S(20)
S(40)

1 644

1

447
674

1

295

447
679

1

* significantly different to the expected correlation p = Po' at the critical level of 5%

6 3 4 Expected value 

Summary statistics for the simulated rules returns are shown in Table 6 20 Five statistics

are computed in these tables The first column refers to the conditional mean, the second

to the median, and the three next ones to the quantiles of 1%, 5% and 10% In all cases,

irrespective of the rule and currency, the average profit is not significantly different from

zero as in Levich and Thomas(1991 Tables 4A and 4B) So this is very close to what

would have been expected from a parametric random walk without dnft (equation [3 7])
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Table 6.20 Distribution of rule returns from bootstra ed currencies

OEM 2 500 Bootstrap replica Yearly returns %

Test average median quantile 1% quantile 5% quanUle 10%

S(5) 0 118 0 157 -8496	 8 989 -628t 	 6 891 -5518	 5 689

S(10) -0 175 -0 110 -9 125	 8 707 -7 169	 6 930 -5941	 5 492

S(20) -0 089 -0057 -8 484	 8 352 -6978	 6 531 -6034	 5 703

S(40) -0118 -0095 -9051	 8 506 -7154	 6 663 -6038	 5 429

S(5,10 20 40) -0066 -0019 -7068	 7 518 -5412	 5 336 4 701	 4 552

YEN 2,500 Bootstrap replica, Ycarb returns %

Test average median quanule 1% quantile 5% quantile 10%

S(5) 0 057 -0001 -8543	 8 777 -6381	 6 494 -5420	 5 412

S(10) 0 148 0 115 -8 722	 8 733 -6428	 6 595 -5289	 5 624

S(20) 0 127 0 119 -8471	 8 700 -6407 6 709 -5195	 5 645

S(40) 0 167 0116 -8728	 8 891 -6478	 6 854 -5186	 5 740

S(5 10 20 40) 0 125 0 123 -7016	 7 115 -5223	 5 245 4 246 4 534

GBP 2 500 Bootstrap replica, Yearly returns %

Test average median quantile 1% quantile 5% quanUle 10%

S(5) -0133 -0205 -8535	 8 690 -684 	 7 211 -5 958	 5 987

S(10) -0292 -0260 -9423	 8 387 -7335	 6 475 -6200 5 439

S(20) -0336 -0374 -8555	 8 341 -6950	 6 329 -5985	 5 435

S(40) -0 356 -0 300 -9 125	 8 202 -7042	 6 577 -6 247	 5 556

S(5 10,20 40) -0 279 -0 331 -7 431	 6 842 -5 911	 5 407 -5 070	 4 591

FRF 2,500 Bootstrap replica Yearly returns %

Test average median quanule 1% pantile 5% quantile 10%

S(5) -0083 -0066 -3512	 8 845 -6799	 6 591 -5967	 5 421

S(10) -0 140 -0 074 -8 970	 9 410 -7 194	 6 601 -5 949	 5 571

S(20) -0218 -0240 -9630 8 441 -6955	 6 615 -5560	 5 531

S(40) -0316 -0317 -8847 8 305 -6887 6 503 -6 117	 5 443

S(5,10 20,40) -0 189 -0236 -7 132	 7 435 -5 519	 5 552 -4835	 4 520

CHF 2 500 Bootstrap replica, Yearly returns %

Test average median quantile 1% quantile 5% quantile 10%

S(5) 0 107 0 071 -8 830 9 276 -7 195	 7 202 -5 964 6 182

S(10) -0208 -0179 -9538	 8 715 -76646	 6 632 -6195	 5 661

S(20) -0196 -0104 -10499	 9 386 -7779 7 286 -6378	 5 907

S(40) -0 326 -0 338 -9 597	 9 752 -7 220	 6 955 -6 220	 5 739

S(5,10 2040) -0 156 -01 58 -7216	 7 454 -5 829	 5 602 -5 062 4 645
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Average profits are normally distributed without skewness or kurtosis (Table 6 21)

Table 6.21 Normality test of bootstraooed returns

Cntical threshold % Kolmogorov-Smirno y test of normality of bootstrapped returns

Test DEM YEN GBP FRF CHF

S(5) 69 2 94 0 24 5 99 3 23 8

S(10) 819 898 909 852 541

S(20) 98 9 62 0 24 4 93 4 98 7

S(40) 95 2 96 0 30 6 94 3 69 4

S(5 10,20 40) 68 3 94 4 30 6 94 3 69 4

Table 6 22 presents the results comparing the actual series for the DEM, YEN, GB?,

FRF, CHF with the 2,500 corresponding simulated random walks It indicates the rank of

the rule returns for the actual series in comparison to the 2,500 randomly generated

series

Table 6.22 Ranks of on mal returns in bootstraoned returns

Ongznal returns rank (2 500 Bootstrap replica)

Test DEM YEN GBP FRF CHF

S(5) 2470 2355 2454 2490 2219

S(10) 2488 2414 2461 2487 2486

S(20) 2500 2183 2497 2500 2490

S(40) 2298 2227 2415 2490 2301

S(5,1020,40) 2496 2413 2495 2500 2482

Table 6 23 gives the cntical threshold of the bootstrap test The null hypothesis of a

random walk with a drift is rejected at the a percent level if returns obtained from the

actual currency data are greater than the percent cutoff of the simulated returns under the

null model For instance, the critical threshold of the DEM simple moving average of

order 5 is worth 1 2%, since over 2,500 simulations 30 generated a mean return greater

than that from the actual senes and 2470 lower (Table 6 22)

Table 6.23 Critical threshold of Bootstran test

Critical Threshold % of Bootstrap test

Test DEM YEN GBP FRF CHF

S(5) 12 58 18 03 112

S(10) 05 34 16 04 06

S(20) 0 127 01 0 04

S(40) 81 109 34 0-I 80

S(5 10 20 40) 0 2 3 5 0 2 0 0 7
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The bootstrap approach has added two important findings from previous results in

this chapter Firstly, this nonparametnc test confirms that exchange rates are not random

Trading rule returns are significantly different from the ones issued from bootstrapped

random walk Holding unchanged the exchange rates distribution and so avoiding

parametric assumptions such as the normal law, does not allow to explain any better rule

returns Independent dnftless vanations, even if nonlinear are not able to produce

significantly positive rule returns Indeed average returns are very close to zero and so to

the results of a parametric dnftless random walk Secondly, critical thresholds from the

nonparametnc bootstrap test (Table 6 23), are close to the ones issued from the

parametric T-Student test (Table 6 17) The average difference is equal to 0 4% and the

biggest difference to 1 7% Brock, Lakorushok and LeBaron(1992) criticise parametnc

tests as exhibiting dubious critical thresholds It seems that as far as rule returns are

concerned, normal assumption is more than an acceptable proxy and that T-Student based

tests are as powerful and robust as bootstrap based tests Such findings would confirm

the Diebold and Nason(1990), LeBaron(1992b) view that nonlineanties of financial prices

can be of little economic consequence This underlines that when attempting to explain

rule returns, it is far more important to correctly model dependencies even if linear, than

vanance-nonlineanties The latter haven't got, on their own, the potential to generate

non-zero profits

These results strongly suggest that the actual exchange rate series contained significant

departures from serial independence that allowed technical trading rules to be profitable

If the actual series had been generated randomly, our simulations suggest that average

profits would be close to zero Gauged against these simulations, the actual path of

exchange rates is seen to embody a significant degree of serial dependence

64 SUMMARY

Exchange rates are not derived from an identically distributed normal law They cannot

reasonably be considered as linear as proved by various tests However, a purely

nonlinear variance model is unlikely since there are some signs of significant positive

serial correlations as shown by Taylor(1980) statistics
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Table 6 24 Summ of random walk testsary
Adequacy of rule returns statistical properties

with the dnftless normal random walk

Distnbution

Vanance

Umvanate correlations

Bivanate correlations

Expected value

No

Yes

Yes

No

No
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Table 6 24 summarises our findings about the adequacy of the normal random walk

assumption with the statistical properties of trading rule returns The results present

conflicting evidences

On the one hand, the distribution of rule returns is not normal That might be due

to the fact that the underlying return distribution itself is not normal

On the other hand, the univanate random walk assumption is quite acceptable and

provides a fairly good proxy of rules variance and correlations between different trading

rules applied to a same financial time series The bivanate random walk is strongly

rejected when considering correlations between rules applied to different time series

Finally, and perhaps more important from an investor's point of view, trading rule

returns are not derived from a random walk time series because they are non-zero and

even significantly positive The profitability of trend following rules strongly suggests

some form of serial dependency in the data

Both parametric and nonparametnc tests bnng the same conclusion which happens to be

that exchange rates are not random Nonlineanty in the distnbution only, that is still

assuming independent variations, cannot generate nonzero profits Assuming normal

rather than exact currency distribution has very few economic consequences in terms of

average rule profit and risk as proved by the bootstrap approach Therefore the

hypothesis of normality is very weak in comparison with the independency assumption



APPENDIX 6.1

SERIAL AUTOCORRELATIONS OF EXCHANGE RATES SERIES

Table 6.25 DEM Autocorrelations
DEM LOG ABS( DF \ 1 LOG) SQL -\RE(DE\I LOCI)

Lag ,	 EstimateLag Estimate Lag Estimate Lag Estimate Lag Estimate Lag ' Estimate
1 04076* 2 -01277 1 05073* 2 07943* 1 05957* 2 09235*
3 01278 4 -00938 3 09784* 4 07954* 3 07277* 4 06549*
5 02503 6 -00319 5 07403* 6 08701* 5 04296* 6 10728*
7 00917 8 03234 7 06120* 8 10758* 7 02150 8 10311*
9 02447 10 -00257 9 05635* 10 10831* 9 02423 10 08176*

11 -00574 12 -00907 11 07115* 12 05195* 11 06866* 12 02508
13 01515 14 00545 13 08899* 14 07152* 13 07742* 14 06884*
15 04092* 16 -00667 15 06620* 16 01126 15 04219* 16 00626
17 -02675 18 -03573 17 04895* 18 06697* 17 04310* 18 04743*
19 -00918 20 01888 19 03330 20 08262* 19 02252 20 05969*
21 00406 22 02675 21 04333* 22 02901 21 02224 22 02116
23 -00572 24 03759 23 05085* 24 00611 23 02818 24 00489
25 -04042' 26 -04106' 25 05720* 26 03534 25 03425 26 03507
27 -00896 28 02345 27 03324 28 03867 27 01845 28 03589
29 01598 30 -03230 29 03130 30 01721 29 02045 30 01108
31 -00714 32 -01041 31 03768 32 -00387 31 03844 32 -00291
33 -01010 34 00045 33 -01795 34 00112 33 02021 34 00471
35 01495 36 00512 35 01829 36 02018 35 -00004 36 02829
37 00547 38 01691 37 04137 38 02961 37 01089 38 -00595
39 00723 40 00585 39 01341 40 02634 39 01045 40 01788
41 02057 42 -00424 41 02957 42 01714 41 01409 42 00792
43 03367 44 02086 43 00670 44 01599 43 00730 44 00203
45 -01874 46 -01436 45 03699 46 01226 45 01393 46 -00411
47 -02403 48 01076 47 02863 48 -00984 47 02116 48 02313
49 01411 50 02219 _ 49 05899* 50 03975 49 04050 50 02715

* significantly different from zero at the cntical level of 5%
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Table 6.26 YEN Autocorrelattons
NI\I(XJ \BS(11\10() SC11 \M(l F\ LAX,)

Lag hamint. lag ' 1-Milmat,. Lag Emunaie Lag Emunaw Lag Lstimate Lag EstunMe
1 00646 2 00355 1 11227* 2 14400* I 07661* 2 18640'
3 01272 4 01158 1 12947* 4 07199* 3 06413* 4 03417
5 02706 6 00714 5 10479* 6 09235* 5 04897* 6 03581
7 00416 8 02236 7 06561* 8 07774* 7 02964 8 05230*
9 02763 10 04117* 9 07689* 10 07937* 9 01652 10 04135'

11 -00327 12 01844 11 03641 12 05367' 11 01307 12 00945
13 01556 14 00980 13 05220* 14 07792* 13 01038 14 02774
15 03453 16 -00945 15 05729* 16 05971* 15 01796 16 02038
17 -01279 18 00557 17 05937* 18 06499' 17 02954 18 02290
19 -00059 20 00151 19 06574* 20 05876* 19 02114 20 01882
21 00042 22 01056 21 04581* 22 04123 21 01879 22 00231
23 -01405 24 03328 23 04530* 24 05863' 23 00725 24 02579
25 01574 26 01282 25 05742* 26 05702* 25 02640 26 07018*
27 02186 28 01636 27 06776* 28 06673' 27 03954 28 02503
29 00095 30 -01610 29 05984* 30 04925' 29 03541 30 01611
31 02631 32 -00043 31 06503* 32 05963* 31 04922* 32 02178
33 -01111 34 02452 33 04046 34 05542* 33 01624 34 03692
35 -02278 36 -05833* 35 01302 36 04133 35 00047 36 02334
37 02000 38 01474 37 03311 38 01781 37 00059 38 -00007
39 -01722 40 00762 39 02968 40 03555 39 00403 40 00966
41 -00784 42 01521 41 02834 42 05411* 41 00130 42 01362
43 02281 44 -01240 43 02851 44 04649* 43 00009 44 02506
45 -00768 46 -04682' 45 09776* 46 06860* 45 15038* 46 05564*
47 -00485 48 02254 47 07469* 48 00736 47 15257* 48 -00658
49 01077 50 01160 49 06060* 50 03912 49 01974 50 01091

_
slgrnticantly thflrent from zero at the cntical level of 5%

Table 6.27 GBP Autocorrelations
GBPLOC7 ABS(APLOG) SQUARE(GBPLOW

Lag — Estimate Lag Emanate Lag Estimate Lag EstinIu‘ Lag Estimate Lag Fstunate
1 05312* 2 -00061 1 09633* 2 06513* 1 07721* 2 06376*
3 -01828 4 -01534 3 08619* 4 10859* 3 06902* 4 14574*
5 02804 6 00639 5 11983* 6 10179* 5 08614* 6 11854*
7 00534 8 00845 7 05923* 8 10049* 7 04677* 8 08825*
9 01461 10 -03637 9 08747* 10 13327* 9 04425* 10 10975*

II -01242 12 -01922 11 08067* 12 06410* 11 11263* 12 05707*
13 01567 14 01129 13 07983* 14 07682* 13 05337* 14 06158*
15 06393* 16 00238 15 09705* 16 06548* 15 09276* 16 06373*
17 -01593 18 -01385 17 06546* 18 09515* 17 04204 18 08286*
19 00215 20 03121 19 04952* 20 08659* 19 04078 20 11332*
21 00274 22 02517 21 05018* 22 09061* 21 03512 22 07551*
23 -01929 24 03947 23 07418* 24 02536 23 06820* 24 01270
25 -03768 26 -03262 25 08280* 26 06661* 25 06394* 26 05325*
27 01620 28 03683 27 04739* 28 07302* 27 02763 28 04818*
29 -01025 30 -01030 29 05373' 30 02705 29 07901* 30 00078
31 -01085 32 00252 31 06724* 32 03196 31 08787* 32 02702
33 -01647 34 01224 33 03915 34 03410 33 05838* 34 02071
35 -00085 36 -01282 35 06292* 36 05753* 35 04531* 36 08006*
37 03467 38 03852 37 05857* 38 04984* 37 03080 38 02879
39 00064 40 01979 39 02180 40 01862 39 02354 40 01667
41 -00513 42 -01266 41 04313 42 00431 41 03337 42 00452
43 00958 44 -00302 43 03910 44 06440* 43 02948 44 03671
45 -02367 46 00082 45 05434* 46 00249 45 03155 46 -00137
47 -01082 48 01497 47 03233 48 01860 47 02036 48 02346
49 01499 50 02449	 _ 49 08727* 50 04160 49 08177* 50 04442

* significantly different from zero at the cntical level of 5%
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Table 6 28 FRF Autocorrelanons
I RI 1 (Nj 113S(F RI L0( ) SQUARE(FRF L((1)

Lag - Fauna, lag 1-4unMe Lag Faunal, Lag bannat, Lag Fmuna, Lag Emma,
1 - 04029* 2 00003 1 04391* 2 08127* 1 02361 2 04751*
3 01992 4 01196 3 11117* 4 08360* 3 05916* 4 04420*
5 02016 6 00618 5 09163* 6 06849* 5 05759* 6 04858*
7 02196 8 03444 7 05885* 8 09277* 7 01927 8 06326*
9 02887 10 00602 9 0783* 10 07700* 9 01935 10 03376

11 -01801 12 00074 11 07589* 12 03395 II 05696* 12 00303
13 01536 14 00359 13 06175* 14 06014* 13 03458 14 03024
15 04000* 16 -00682 15 05981* 16 01205 15 01948 16 00508
17 -01458 18 -03730 17 03751 18 05906* 17 01725 18 02382
19 -00512 20 02339 19 04975* 20 07508* 19 01323 20 03158
21 01509 22 02063 21 03213 22 04156 21 00591 22 01744
23 -00710 24 02272 23 03996 24 01166 23 00997 24 -00086
25 -04017* 26 -05014* 25 05138* 26 02944 25 01270 26 01239
27 -00543 28 01642 27 02636 28 04342* 27 00177 28 01696
29 00062 30 01454 29 02410 30 00279 29 00622 30 -00770
31 -00948 32 -00946 31 04662* 32 01075 31 02746 32 00383
33 -01199 34 00353 33 -00889 34 03159 33 -01250 34 02049
35 01041 36 00029 35 01233 36 03469 35 00939 36 02857
37 01302 38 00928 37 01397 38 04158 37 01190 38 00485
39 01316 40 01305 39 02866 40 00887 39 00801 40 00663
41 02918 42 -00406 41 01772 42 01959 41 -00636 42 00720
43 03238 44 02138 43 -00210 44 00444 43 00058 44 -01035
45 -02552 46 01238 45 02624 46 -00591 45 -00301 46 -01479
47 -01118 48 01613 47 02046 48 -00216 47 00211 48 00535
49 00763 50 01818	 , 49 04634* 50 02798 , 49 01574 50 02429

* significantly different from zero at the critical level of 5%

Table 6.29 CHF Autocorrelattons
11-IFLOG 1	 ABS(CHFLOG) SQUARE(CHFLOCT)

Lag Estimate Lag Estimate Lag Estimate Lag Estimate Lag Estimate Lag Estimae
1 03428 2 -01101 1 02471 2 05320* 1 03059 2 06183*
3 01849 4 -01577 3 08604* 4 04955* 3 07611* 4 05800*
5 02332 6 00672 5 05756* 6 06708* 5 03788 6 09572*
7 -00975 8 00710 7 07179* 8 09424* 7 03767 8 10332*
9 01688 10 00180 9 03566 10 08650* 9 01706 10 06453*
11 -00825 12 -00903 11 05330* 12 03775 11 07272* 12 01495
13 03049 14 01724 13 08244* 14 07456* 13 05873* 14 06706*
15 05747* 16 -00256 15 04846* 16 01114 15 03784 16 00647
17 -02693 18 01695 17 04543* 18 07222* 17 04560* 18 05190*
19 -02089 20 00048 19 01558 20 07059* 19 00925 20 04779*
21 01658 22 03696 21 04038* 22 03644 21 00855 22 03063
23 -00860 24 03931* 23 04734* 24 01550 23 02391 24 00177
25 -03850 26 -02018 25 07072* 26 00795 25 04439* 26 -00740
27 -00537 28 03039 27 01613 28 05463* 27 00231 28 04674*
29 02092 30 -02718 29 02930 30 02284 29 02421 30 00421
31 -01151 32 01563 31 04672 32 00405 31 04108 32 -01011
33 -01371 34 -00987 33 00692 34 00452 33 01756 34 -00163
35 01185 36 -02999 35 02009 36 00066 35 00262 36 01265
37 02524 38 03218 37 02347 38 02554 37 00724 38 -00123
39 01761 40 00147 39 02609 40 00737 39 02117 40 00273
41 00538 42 -00210 41 01546 42 00533 41 01439 42 -00604
43 03508 44 00897 43 -01116 44 01288 43 -00827 44 00359
45 -02989 46 -01260 45 04262* 46 01177 45 01898 46 -00367
47 -00037 48 -00635 47 02531 48 01493 47 03945 48 -00355
49 -00013 50 -00839 49 06213* 50 01061

....
49 04134* 50 02069

,
* significantly different from zero at the critical level of 5%
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Chapter 7

ABILITY OF EXCHANGE RATES MODELS

TO REPLICATE RULE RETURNS

Chapter 6 has shown that the random walk hypothesis is clearly inadequate to model

exchange rates So alternative models have to be found The main concern of this chapter

is to find models compatible with the observed trading rule returns, and relate trading rule

returns with the statistical properties of the underlying series Our goal is to show that

using stochastic modelling, it is possible to establish what are the parameters of the

underlying process which generate if any non zero return from technical analysis

Section 7 1 proposes models of exchange rates widely used in Finance and supported by

the evidence of Chapter 6 It has been shown that the assumption of normal distribution

of underlying returns was weak when the assumption of independence was strong when

attempting to explain observed rule returns Subsequently in what follows, the

assumption of normality will be maintained but in any case the assumption of independent

underlying returns removed More specifically, we will study the Box-Jenkins, price-trend

models and fractional Gaussian process The originality of this chapter is to consider as

well technical models Section 7 2 assesses and compares the in-sample ability of some

linear autocorrelated alternatives to replicate observed trading rule returns This is a

crucial point because the main objective of a financial model is trading Then the

performances of the fractional Gaussian process are compared with those of linear

models Thereafter, the relationships between volatility, magnitude of serial correlation

coefficients and profits of technical trading rules are exhibited Section 7 3 establishes the

performances of some strategies used to enhance returns from technical models Section

7 4 discusses the efficient market hypothesis Finally, Section 7 5 summanses and

concludes our results

178



7 1 MODELS OF THE UNDERLYING PROCESS

Chapter 6 has proved that the random walk assumption is clearly inadequate to explain

trading rule returns which are significantly positive It results that plausible alternatmes of

exchange rates models must include low positive dependencies The models presented in

this section meet all this requirement

7 1 1 Box and Jenkins.

Building empirical linear models is feasible through an iterative stages procedure for the

model selection This procedure was proposed by Box and Jenkins(1976) Firstly, it is

necessary to determine the degree of differencing (d) necessary to achieve stationanty

Osborne(1959) shows that the first difference of the logarithmic price is an appropriate

choice Then the variable under study is the logarithmic return X t = Ln(Pt I Pt-i)
Thereafter it is necessary to determine the order of the autoregresstve process (p), and

the order of the moving average process (q) Most models fitted to the data series of

logarithmic returns have p+ci 5_ 2 (Taylor, 1986 23), that is the convention which has

been adopted here In addition, exchange rates models will be assumed to have no drift,

an assumption supported by the results of Table 6 2 Secondly, the estimation of the

parameters of the model is performed by sok,ing the Yule-Walker equations Models

results can be found in Appendix 7 1

7 1 2 Price-Trend

The price-trend process is another plausible alternative to model loganthmic returns,
Xt = Ln(Pt I Pt _ t ) That can be seen from the large values of the Taylor statistics

reported in Table 6 7 Estimates of the two trend parameters, A and p have been obtained

using Taylor(1986, Section 7 3) estimates More precisely, estimates have been obtained

by matching theoretical and observed autocorrelations of the underlying time series The

following function defined for K autocorrelations has been considered

F(A,p)= n i(p, — Ap' )2
i.i

with p, the autocorrelations defined by equation [6 4] and n the number of returns used

to calculate the p, Similarly to Taylor(1986), we have used K=50 for spot series

179



To minimise F, mean trend durations m d =1, (1— p) = 2, 3, 4„ 40 are considered and for

given m d the best unconstrained A can be obtained using calculus For a fixed m d and

hence p, the function F is minimised by

AmD,I P /EP 21
1=1	 / 1=1

Sometimes A 	 negative, so it is necessary to consider

{A*„, if A*. > 0
=A m 

0 otherwise

Let S. =	 —1 / m d ) for m d =2„40 Minimising S. over m d gives the estimates

fi minimising F, and hence th d = 1 / (1 — 13)

As can be seen from Table 7 1, variance reduction is usually quite low (<0 026) except

for the GBP Mean duration of trend vanes between 2 days and 15 days More

meaningful is the total sum of autocorrelations, Ap/(1-p) From biggest to lowest, the

ranking is for the full sample FRF, YEN, CHF, DEM, GBP

Mean duration and vanance reduction vary considerably from one penod to the other and

from one currency to the other There are two possible explanations for this fact Firstly,

exchange rates might be non-stationary Secondly, the standard deviation of the

parameter estimates is huge (Taylor, 1986)
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Table 7 1 Pnee-trend models
DEM

Parameters\Penod 01/82-02/84 02/84-02/86 02/86-03/88 03/88-01/90 03/90-03/92 01/82-03/92
Drift	 U
Volatility	 S

Var-reduction A

0 00044
0 0056
0 0572

-0 00045
0 0079
0 0882

-0 (>0053
0 0074

0 00000

0 00003
0 0067
0 0117

4) 00007
0 0077
0 0574

-0 00012
0 00712
0 02067

Duration	 md 3 4 1 25 2 7
Trend AR(1) p 0 667 0 75 0 50 0 960 0 50 0 857

Ap/(1-p) 0 11 0 26 0 0 28 0 06 0 13
YEN

Parameters\Period 01182-02/84 02/84402/86 02186-03/88 03/88-03/90 03/90-03192 01/82-03/92

Drift	 U 0 00013 -0 00050 -000064 0 00029 -000026 -000019
Volatility	 S 0 0064 0 00557 0 0083 0 0068 0 0071 0 00687

Var-reduction A 0 0599 0 15150 0 00000 0 00000 0 00000 0 01759
Duration	 md 8 5 2 2 2 15
Trend AR(1) p 0 875 080 050 050 050 0 933

Ap/(1-p) 0 42 061 0 0 0 0 24
GBP

ParametersTenod 01/82-02/84 02/84-02/86 02186-03/88 03/88-03/90 03/90-03/92 01/82-03/92
Drift	 U -0 00061 0 00007 0 00038 -0 00013 0 00010 -0 00004
Volatility	 S 0 0056 0 0090 0 00651 0 0071 0 0073 0 00719

Var-reduction A 0 0350 0 1499 0 0023 0 0054 0 1137 0 07237
Duration	 md 2 2 40 14 2 2
Trend AR(1) p 050 050 0 975 0 929 050 050

Ap/(1-p) 0 036 0 15 0 09 0 07 0 11 0 072
FRF

Parameters\Penod 01/82-02/84 02/84-02/86 02186413/88 03/884)3/90 03/90-03/92 01/82-03/92
Drift	 U 0 00080 -0 00045 -0 00033 0 00002 -0 00006 -0 00001
Volatility	 S 0 0065 0 00768 0 0072 0 0065 0 0074 0 00705

Var-reduction A 0 0621 0 0964 0 00000 0 0104 0 0717 0 02567
Duration	 md 4 4 2 25 2 7
Trend AR(1) p 075 075 050 0 960 050 0 857

Ap/(1-p)	 _ 019 029 0 025 007 043
CHF

Parameters1Penod 01/82-02/84 02/84-02/86 02/86-03/88 03/88-03/90 03/90-03/92 01/82-03/92

Drift	 U 0 00044 4) 00034 -0 00057 0 00014 0 00000 -0 0()007

Volatility	 S 0 0068 0 0080 0 0083 0 0074 0 0080 0 00768
Var-reduction A 0 0186 0 1173 0 0026 0 0051 0 0080 0 01281
Duration	 md 2 4 2 38 40 12
Trend AR(1) p 050 075 050 0 974 0 975 0 917

Ap/(1-p) 002 0 35 0 03 0 19 0 31 0 14

7 1 3 Fractional Gaussian Process

As outlined in Section 2 4 2, the fractional Gaussian process is another popular model of

logarithmic returns This is supported by the data if the estimates of the parameter d

different from zero Many procedures have been proposed in the literature to estimate the

parameter d (Geweke and Potter-Hudak, 1983, Kashyap and Eom, 1988) or H = d +0 5,
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the most well known being the range scale estimate provided by Mandelbrot and

Wallis( 1969)

Geweke and Potter-Hudak(1983) 1 considers the problem of estimating the parameter d in

the general integrated time series model Results are collected in their theorem 2 which

suppose that {X t } is a general integrated linear process, with d<0 Let I(A, IT ) denote the

penodogram of {X t } at the harmonic frequencies X JT = 7tJ / T in a sample of size T Let

b i
	 denote the ordinary least square estimate of 13 1 in the regression

Ln { I( j T )} -= 13 0 +13 1 Ln (4 sin 2 (XIT / 2)} + c 	 j=1„n Then there exists a function

g(T) such that if n=g(T) then p km b / = —d If hm	 (Ln(T))2 / g(T)= 0, then

(b 1 + d) / (vfir(b 0)1/2 13_4. 
N(0,1), where vfir(b / ) is the usual least squares estimate of

var(b i ) We have estimated the parameter d in what follows using the function

g(T) = Ta , with a = 0 6

Kashyap and Eom(1988) 2 considers the long memory time senes model X1 } defined by

Xt = (1— B)_ d a Wt , where {Wt } is a white Gaussian noise sequence with zero mean and

unit vanance, a a positive constant and B is a unit delay operator Then the estimates

proposed in the paper are based on the following variables

f, (k / N) penodograms of sequence of {X t } in a sample of size N

a = y — Ln(a 2 ), where y is the Euler constant ? = 0 5772157

= [d,o4r , and Z(k)=
[-2 LnI2s

—
in

1
(nk / N)1]

The linear least-squares estimate ö of parameter B is obtained by the following formula

nLL2	 -1 N12

= [a,6-i]T [LZ(k)ZT(k)] [EZ(k)Ln(f,(k/ N))]
k=1	 k=1

Mandelbrot and Wallis(1969) have suggested to detect long-range or "strong"

dependence, the range over standard deviation or R/S statistic, also called the range scale,

which was first developed by Hurst(1951) in his studies of river discharges The R/S

statistic is the range of partial sums of deviations of a time senes from its mean, resealed

by its standard deviation Specifically, consider a sample of returns Xi , X2„ X 	 let

1 thereafter noted GPH

2 thereafter noted ICE
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denote the sample mean (1 n) E X, Then the classical rescaled range statistic,
i=1

denoted by Q„, is defined as

Q„ = [ Max	 — xn )— Min	 xn )1
S 	 j=1	 1 � n

where S n is the usual (maximum likelihood) standard deviation estimate

1 n
rE(Xj

1=1

The first term in brackets in equation [7 1] is the maximum (over k) of the partial sums of

the first k deviations of X j from the sample mean The second term in [7 1] is the

minimum (over k) of this same sequence of partial sums The difference of the two

quantities is called the range for obvious reasons and is therefore always non negative In

order to compare different types of time series, this range is divided by the standard

deviation of the original observations Then Hurst(1951) formulated the following

relationship Q n = (a *n)H where a is a constant and H the Hurst exponent

By taking the log of the range scale, we obtain
Ln(Q n ) H Ln(n)+ Ln(a)	 [7 2]

Finding the slope of the log/log graph of Q n versus n will therefore give us an estimate of

H This estimate of H makes no assumptions about the shape of the underlying

distribution

In sum, the first step has been in the thesis to convert the prices series into

logarithmic returns Our time series covers about 10 years of data which are converted

into N 2620 logarithmic returns Then we divide the series into N/n independent n-day

increments Because these are non-overlapping n-days periods, they should be
independent observations We can now calculate the resealed range Q each n-days

Subsequently we obtain N/n separate Q n observations By averaging the N/n

observations, we obtain the Q n estimate for the senes with n days

We repeat this process for n = 6, 7„ N /2 The stability of the estimate can be

expected to decrease as N increases, because we have fewer observations to average At

this point we run a regression of Ln(Q„ ) versus Ln(n) for the full range of n, taking the

slope as the estimate of H, according to equation [7 2]

Estimation results from the three previous statistics are provided in Table 7 2 It must be

remarked that the GPH estimate is rather inconsistent for small samples and consequently

there are subpenods for which it exhibits strong departures with the other estimates KE

[71]

s„ =
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and range scale For the full sample, all three procedures give an estimation of d slightly

above 0 5 That would argue in favour of long term trends and positive autocorrelations

The range scale estimate in particular clearly refutes the random walk hypothesis (H----0 5)

for each one of the currencies (H>0 59)

Table 7.2 Fractional Gaussian orocesses
DEM

ParametersTenod 01/82-02/84 02/84-02/86 02/86-03/88 03/88-03/90 03/90-03/92 01/82-03/92
D Fractional Exponent KE 0 038 0 098 0 029 0 048 0 018 0 028

GPH 0 185 0 136 0 015 0 075 0 185 0 088
H Hurst Exponent	 KE 0 538 0 598 0 529 0 548 0 518 0 528

GPH 0 685 0 636 0 515 0 575 0 685 0 588
Range Scale 0 595 0 609 0 567 0 656 0 561 0 603

Vanance	 KE 2 962E-5 6 427E-5 5 691E-5 4 515E-5 6 013E-5 4 865E-5
YEN

ParametersTenod 01/82-02/84 02/84-02/86 02/86-03/88 03/88-03/9003/90-03/92 01/82-03/92
D Fractional Exponent KE 0 051 0 159 -0 002 0 002 -0 037 0 029

GPH 0 391 0 212 -01 0 019 0 045 0 083
H Hurst Exponent	 KE 0 551 0 659 0 498 0 502 0 463 0 529

GPH 0 891 0 712 04 0 519 0 545 0 583
Range Scale 0 650 0 645 0 579 0 616 0 605 0 618

Variance	 KE 3 884E-5 2 990E-5 6 983E-5 4 572E-5 4 895E-5 4 782E-5
GBP

Parameteraenod 01182-02/84 02/84-02/86 02/86403/88 03/88-03/90 03/90-03/92 01/82403/92
D Fractional Exponent KE -0 001 0 138 0 005 0 029 0 074 0 037

GPH -0 005 0 073 0 019 0 043 0 168 0 053
H Hurst Exponent	 KE 0 499 0 638 0 506 0 529 0 574 0 537

GPH 0 495 0 573 0 519 0 543 0 668 0 553
Range Scale 0 558 0 593 0 606 0 641 0 616 0 595

Vanance	 KE 3 165E-5 7 744E-5 4 363E-5 4 466E-5 5 329E-5 5 097E-5
FRF

PammetersTenod 01/82-02/84 02/84-02/86 02/86403/88 03/88403/90 03/90-03/92 01/82-03/92
D Fractional Exponent KE 0 076 0 123 -0 001 0 046 0 022 0 034

GPI-1 0 073 0 132 -0004 0 085 -089 0 072
H Hurst Exponent	 KE 0 576 0 623 0 499 0 546 0 522 0 534

GPH 0 573 0 632 0 496 0 585 0 411 0 572
Range Scale 0 619 0 613 0 595 0 647 0 574 0 607

Vanance	 KE 3 948E-5 5 768E-5 5 470E-5 4 028E-5 5 525E-5 4 938E-5
CHF

Parameteraenod 01/82-02/84 02/84-02/86 02/86403/88 03/88-03/90 03/90-03/92 01/82-03/92
D Fractional Exponent KE 0 026 0 122 0 027 0 026 0 041 0 037

GPH 0 023 0 058 -0052 0 017 017 0 026
H Hurst Exponent	 KE 0 526 0 622 0 527 0 526 0 541 0 537

GPH 0 523 0 558 0 448 0 517 067 0 526
Range Scale 0 561 0 608 0 561 0 678 0 585 0 589

Vanance	 KE 4 580E-5 6 207E-5 6 617E-5 5 019E-5 6 311E-5 5 825E-5
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7 1 4 Technical models 

The originality of this chapter is to consider technical models as possible alternatives to

the random walk hypothesis That is we assume here that the true model is without drift

and such that the forecaster Ft which maximises profits is a linear technical rule as defined

in Section 3 4 2

m-2

Ft = 5 + Ed, Xt_i where 5, m and di are given constants
1=0

We restrict in what follows our study to technical rules based on an unique parameter m

We consider more specifically the simple moving average, weighted moving average and

momentum rules For all these rules, 5 is equal to zero and the coefficients d i only depend

on the parameter m as indicated in Table 3 3

Following the results of Section 4 1, the true model is defined by

m-2

Xt = A.Ft_i + e t = h( Ed i Xt_ t_i ) + si
J=0

where X is a positive constant and et white noise

Therefore the underlying model is a special case of AR(m-1) model If we assume that the

order m-1 of the autoregressive model is given similarly to Box-Jenkins(1976) models,

the autoregressive parameters, di , are known and linked one to each other The

important feature of technical models is that for given m, the coefficients d i need not to

be estimated In sum, linear technical models are long range autoregressive models with

imposed autoregressive parameters The only parameter to be estimated is the

proportionality coefficient X. It can be estimated using simple regression

-, P(Xt F )k , 	 7 t-1 
m-2

\I 11=0 d2
1

where 15(Xt ,Ft_1 ) is the common estimate of the correlation coefficient between the one-

step ahead return and the predictor
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It must be remarked that if the rule is the simple moving average of order 2, the model is

nothing else than an AR(1) model and therefore estimates will be those given in Appendix

7 1 Table 7 3 provides estimates of the proportionality coefficient X. for a few technical

models of exchange rates relatively to the full sample It must be emphasised that all the

coefficients X. are positive which would argue in favour of low positive autocorrelations

in exchange rates

Table 7.3 Technical models

Technical models with p.=0 cr3

Estimates r3(X t , Ft_ i )

Rule DEM YEN GBP FRF CHF
S(2) or AR(1) 0 041 0 007 0 053 0 040 0 034

S(5) 0 026 0 013 0 028 0 034 0 022
S(10) 0 029 0 028 0 024 0 037 0 022
S(20) 0 032 0 040 0 018 0 039 0 027
S(40) 0 022 0 039 0 019 0 027 0 024
W(5) 0 030 0 011 0 037 0 037 0 026
W(10) 0 028 0 022 0 027 0 035 0 023
W(20) 0 033 0 035 0 021 0 040 0 026
W(40) 0 028 0 040 0020 0 034 0 027
M(5) 0 016 0 017 0 009 0 023 0 012
M(/0) 0 037 0 039 0 022 0 046 0 022
M(20) 0 017 0 037 0 014 0 024 0 020
M(40) 0 014 0 027 0 021 0 016 0 021

...
10E5* A.

Rule DEM
,

YEN GBP FRF CHF
S(2) or AR(1) 4094 27 698 41 5314 36 4029 23 3434 15

S(5) 466 87 243 48 518 12 618 08 404 08
S(10) 173 98 164 33 144 10 220 25 130 14
S(20) 64 59 79 77 37 19 77 49 54 48
S(40) 15 55 27 09 13 27 18 56 17 07
W(5) 245 79 92 79 307 82 305 00 211 11
W(10) 39 66 31 28 39 11 50 46 32 76
W(20) 8 27 8 88 5 23 9 97 6 44
W(40) 1 24 1 77 0 89 1 50 1 20
M(5) 775 16 848 72 465 73 1174 19 621 00
M(10) 1244 69 1291 11 747 41 1528 34 727 38
M(20) 400 17 842 01 327 84 555 43 449 78
M(40) 230 36 427 85	 ._ 339 19 251 70 330 86

3 The standard deviations of underlying returns have been constrained to be equal to those given in
Table 6 2
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7 2 ABILITY OF LINEAR VIODELS TO REPLICATE RULE RETURNS

7 2 1 Linear models

The in-sample ability of the linear models just described in Section 7 1 to replicate

observed rule returns is first assessed More precisely, the parametric Chi-square and T-

Student tests developed in Chapter 5 are used to assess the ability of the

(a) Box-Jenkins (b) price-trend (c) technical

models to replicate the rule returns denved from an equally weighted portfolio of

(1) simple moving averages of order 5, 10, 20 and 40 S(5,10,20,40)

(2) weighted moving averages of order 5, 10, 20 and 40 W(5,10,20,40)

(3) momentums of order 5, 10, 20 and 40 M(5,10,20,40)

(4) all twelve rules just mentioned SWM(5,10,20,40)

The tests applied here have been described in full details in Chapter 5 They proceed in

four steps

-) measuring the average observed returns R following a portfolio of trading rules (1),

(2), (3) or (4)

-) estimating the linear process (a), (b) or (c) of the underlying logarithmic returns

-) establishing the expected return E(R) and variance Var(R) of the portfolio of trading

rules under the assumption of the linear process

-) comparing observed and expected rule returns, and concluding on the ability of the

linear process to replicate observed rule returns

The parametnc Chi-square and T-Student tests are based on the one-period rule

correlations instead of the multi-period rule correlations Therefore they are exact only

for the random walk hypothesis and must be considered otherwise as approximations To

measure the accuracy of these approximations, we have performed for the simple moving

average rules and autocorrelated alternatives some Monte-Carlo simulations Samples of

more than 2,525 rates corresponding to the number of observations of currencies rates

were replicated 100 times

The ability of the Box and Jenkins and pnce-trend models to replicate rule returns is

investigated in Tables 7 4 and 7 5 The case of technical models is then considered in

Table 7 6 and 7 7 All linear models are finally compared in Table 7 8 In following

discussions, when not explicit rejection or acceptance of a model occurs at the critical

level of 5%

Finally, it must be said that another technique has been used in the literature to measure

the ability of statistical models to replicate rule returns, the bootstrap methodology

Examples of which are the autoregressive processes AR(1) (Brock, Lakonishok and
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LeBaron, 1992, LeBaron, 1992b), AR(2) (LeBaron, 1991, 1992b) and autoregressive

moving-average process ARMA(1,1) (LeBaron, I 992b) Having exhibited in Chapter 6

the similarities between the bootstrap and T-Student tests under the random walk

assumption, it is not believed that the presence of low autocorrelations in exchange rates

will cause now significant departures between the two tests Parametric tests being a lot

more simpler to apply than the bootstrap methodology, they have been preferred in what

follows4

Box and Jenkins and Price trend models

A first remark is that the use of the exact one-period rule correlations instead of the

multi-period rule correlations affects very little the critical thresholds of the Chi-square

test (Table 7 4) Critical thresholds from Monte-Carlo simulations are given in bracket for

the simple moving average rules For instance, the adequacy of the AR(1) model for FRF

implies critical thresholds equal to 6 6% for the parametric test and 6 0% for Monte-

Carlo simulations Overall the two tests bring the same conclusions about the rejection or

acceptance of the model on 18 cases of 20 at the critical level of 5%, and in all cases at

the critical level of 10%

Table 7 4 clearly shows that the adequacy of a model can be rule-dependent using

the Chi-square test For instance, the use of weighted or simple moving averages to check

the adequacy of the RW for the GBP model brings opposite conclusions, namely rejection

and acceptance of the RW So no clear conclusion can be deduced from such results It

might be that bigger portfolios of rules should be used For the biggest portfolios of 12

rules, the random walk assumption is rejected only for the GBP It can be seen from the

critical thresholds, that Box-Jenkins modelling of AR(1), AR(2), MA(1), MA(2),

ARMA(1,1) are almost equivalent models, in any case better than the RW but worse than

the price-trend model The problem with the Chi-square test is that it is a two-tail test

which is unfortunately not powerful enough to detect the low positive autocorrelations

we observed in Chapter 6 So one has to turn to the T-Student test

As for the Chi-square test, the use of the exact one-period rule correlations instead of the

multi-period rule correlations affects very few the critical thresholds of the T-Student test

(Table 7 5) For instance, the adequacy of the AR(1) model for FRF implies critical

thresholds equal to 0 6% for the parametnc test and 0 8% for Monte-Carlo simulations

Overall the two tests bring the same conclusions about the rejection or acceptance of the

4 It must be underlined that testing the adequacy of four rule returns for seven models and five
currencies is an e \tremely demanding task using the bootstrap methodlogy, but straightforward using
parametnc tests (Section 5 2 3)
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model on 18 cases of 20 at the critical level of 5%, and in all cases at the critical level of

10% Table 7 5 strongly rejects the random walk assumption for all currencies as Table

6 17 did for even bigger portfolio of systems Table 7 5 exhibits that Box-Jenkins

modelizations of AR(1), AR(2), MA(1), MA(2) and ARMA(1,1) are slightly better than

the random walk model but still not very satisfactory representations of exchange rates

Only the price-trend model (Table 7 5) is not rejected irrespective of the rule or currency

at the critical level of 5% (except when simple moving averages are applied to the FRF )

It must be kept in mind that the variance used in the T-Student is slightly underestimated

under low positive autocorrelations alternatives It is why exact critical thresholds should

be slightly higher and so acceptances of the null hypothesis still more frequent

It can be concluded that autocorrelated alternatives explain better trading rule returns

than the random walk Taylor and Tan(1989), Taylor(1986, 1990a, 1990b, 1992a)

similarly demonstrate for exchange rates the superiority of the price-trend model beyond

the random walk They exhibit in particular sigmficant profits from statistical and

technical forecasters Lai and Pauly(1992) find as well that bandwagon forecasting

scheme can improve the forecasting accuracy in terms of both mean squared errors and

market timing upon the random walk The bandwagon expectations hypothesis involve

significant positive correlations between successive exchange rate changes Lai and

Pauly(1992) illustrate that bandwagon expectations can be rational and more precisely

that the AR(1) model describes the exchange rate dynamics better than a random walk

Aczel and Josephy(1992) present a new method of identifying ARIMA time-senes

models They use the bootstrap technique in estimating the distribution of sample

autocorrelations They find that the AR(1) model outperfomed the random walk model in

the production of the one-step ahead forecasts for the Singapore dollar exchange rate

LeBaron(1992d) does question the result that there is no nonlinear mean predictability

He then proposes as a possible explanation consistent with his results that the exchange

rate is following a slow moving average trend process

Among autocorrelated alternatives, the pnce trend-model appears to be the best

both across currencies and trading rules LeBaron(1992b) equally finds that the price-

trend model explains better moving average rule returns than AR(1) and AR(2) models

Once again, our result emphasises the specificity of the profit criteria since the rejection

of the random walk hypothesis was not strong using standard statistical tests (Section

6 1 4) Even if rule returns cannot provide tightest estimates of parameters, they certainly

are useful to check the adequacy of a model because they are unrelated to most of the

existing tests and specially the ones based on error measures
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Table 7 4 Chi-scivare test of adecivacvof statistical models

Chi-square test of adequacy of linear model 4=0 o.	Critical Threshold %

(Cntical Threshold % from Monte-Carlo simulations 100 replica)
,

Random Walk
'	

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 05 436 113 08 120
W(5,10,2040) 67 276 04 22 172
M(5,10,2040) 129 417 82 48 115

SWM(5 10 20 40) 9 7 72 6 2 4 22 3 12 7

AR(1)

Rule DEM YEN GBP FRF
A

CHF
S(5,10,20 40) 3 2 (1 8) 52 5 (52 4) 54 8 (54 4) 6 6 (6 0) 24 3 (26 5)
W(5 10,20,40) 30 1 33 1 5 1 176 475
M(5,10,20,40) 34 7 47 1 23 4 19 9 49 1

SMW(5 10 20 40) 304 769 131 597 393

AR(2)

Rule DEM YEN GBP FRF CHF
S(5 10,20,40) 2 0 (0 9) 57 8 (59 0) 52 4 (51 4) 6 3 (5 7) 20 0 (21 1)
W(5,10 20 40) 22 0 37 0 4 7 16 7 38 9
M(5,10 20 40) 264 508 224 190 389

SMW(5 10 20 40) 20 3 79 3 12 5 58 5 35 0

MA(1)

Rule DEM YEN GBP FRF CHF
S(5 10 20,40) 3 1 (1 5) 52 4 (52 1) 52 8 (53 6) 6 3 (5 4) 24 0 (22 1)
W(5,10,20,40) 29 5 33 0 4 8 16 8 470
M(5,10,20,40) 34 1 47 1 22 6 19 1 48 5

SWM(5 10 20 40) 24 9 76 9 12 7 58 6 19 1

MA(2)

Rule DEM YEN GBP FRF
,

CHF
S(5 10,20 40) 2 0 (1 1) 57 5 (56 4) 53 1 (52 9) 6 0 (4 2) 19 8 (21 2)
W(5 10 20 40) 220 368 48 161 385
M(5 10,20 40) 26 4 50 6 22 7 18 4 386

SMW(5 10 20 40) 20 3 79 2 12 6 57 7 34 8

ARMA(1 1) Model 1..i0, Bo'.. and Jenkins Estimates

Rule DEM YEN GBP FRF CHF
S(5,1020,40) 3 2 (2 7) 54 2 (55 7) 54 7 (53 5) 6 7 (6 9) 24 3 (19 2)
W(5 10 20,40) 304 341 51 176 479
M(5,10,20 40) 35 0 48 1 23 4 19 9 49 5

SWM(5 10 20 40) 254 776 131 598 395

Pnce-trend Model u.=0, Taylor Estimates

Rule DEM YEN GBP FRF CHF
S(5,10,20,40) 7 7 (3 3) 88 0 (884) 711 (64 1) 30 0 (29 3) 47 9 (494)
W(5,10,20,40) 60 8 83 4 14 2 60 5 69 6
M(5 10,20,40) 71 8 94 7 19 6 66 1 81 9

SMW(5 10 20 40) 394 938 127 873 509
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Table 7 5 T-Student test of adecivacv of statistical models

T-Student test of adequacy of linear model )1=-0 a , Critical Threshold '3/0

(Critical Threshold % from Monte-Carlo simulations 100 replica)

Random Walk

Rule DEM YEN GBP FRF CHF
S(5,10 2040) 02 40 05 00 13
W(5,1020,40) 03 21 01 00 12
M(5 10 20,40) 06 39 11 01 10

SWM(5 10 20 40) 02 26 03 00 09

AR(1)

Rule DEM YEN GBP FRF CHF
S(5 10 20,40) 2 5 (2 6) 5 4 (4 8) 9 2 (8 4) 0 6 (0 8) 7 9 (7 5)
W(5,1020,40) 46 32 62 13 93
M(5,1020,40) 34 45 83 11 39

SMW(5 10 20 40) 29 37 70 07 61

AR(2)

Rule DEM YEN GBP FRF CHF
S(5 10,20 40) 1 2 (0 6) 6 5 (6 4) 8 1 (8 2) 0 6 (0 5) 4 8 (4 6)
W(5 10 20 40) 24 40 53 12 57
M(5 10 20 40) 20 52 74 10 24

SMW(5 10 20 40) 1 4 4 5 6 1 0 7 3 6

MA(1)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40)

,
2 4 (3 2) 5 4 (5 7) 8 3 (8 3) 0 6 (0 3) 7 7 (7 3)

W(5,10 20 40) 4 5 3 2 5 5 1 2 9 1
M(5 10 20,40) 33 45 76 10 38

SWM(5 10 20 40) 28 37 127 07 59 .
MA(2)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 1 2 (1 1) 6 5 (6 6) 8 4 (8 0) 0 6 (0 4) 4 7 (4 7)
W(5 10 20 40) 24 40 56 12 56
M(5 10 20 40) 19 52 77 09 24

SMW(5 10 20 40) 14 45 63 06 35
4

ARMA(1 1) Model ).1) Box and Jenluns Estimates

Rule DEM YEN GBP FRF CHF
S(5,10,20,40) 2 6 (2 3) 5 7 (6 0) 9 2 (9 9) 0 7 (0 6) 8 1 (8 7)
W(5 10,20,40) 4 9 3 5 6 3 1 3 96
M(5,10,20,40) 3 5 4 7 8 3 11 4 0

SWM(5 10 20 40) 3 0 3 9 7 0 0 5 6 3 ..
Price-trend Model pr-0, Taylor Estimates

Rule DEM	 - YEN GBP FRF CHF
S(5,1020,40) 6 8 (6 8) 50 0 (48 3) 12 1 (12 6) 4 8 (5 1) 15 3 (16 6)
W(5,10 20,40) 8 4 35 7 7 3 5 6 13 1
M(510,20,40) 130 516 124 10 135

SMW(5 10 20 40) 82 452 94 57 130
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Technical models

The adequacy of the technical models descnbed in Section 7 1 3 is now tested using the

parametric Chi-square and T-Student tests

Table 7 6 Chi-scivare test of adecivacy of technical models

Chi-square test of adequacy of technical model i.t) a	 Cnttcal Threshold %

S(5)

Rule DEM YEN GBP FRF
,

CHF
S(5,10 20 40) 3 6 71 3 52 6 12 2 30 1
W(5 10 20 40) 33 3 48 9 3 5 30 8 48 9
M(5,10 2040) 386 611 234 579 544

SWM(5 10 20 40) 26 6 84 3 9 1 711 40 5

S(10)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 6 7 93 6 53 5 23 4 42 7
W(5 10,20 40) 511 83 0 3 5 51 8 53 7
M(5 10 20 40) 586 897 303 521 634

SMW(5 10 20 40) 33 9 93 8 8 3 80 7 45 0

S(20)

Rule DEM YEN GBP FRF CHF
S(5,10 20,40) 7 8 86 9 41 7 32 2 53 7
W(5 10 20 40) 62 8 88 0 2 9 59 0 68 1
M(5 10 20 40) 81 0 94 6 23 9 73 4 78 8

SMW(5 10 20 40) 41 9 93 4 6 2 884 504

S(40)

Rule DEM '	 YEN GBP FRF CHF
S(5 10 20 40) 2 0 76 3 34 9 9 1 34 5
W(5 10,20,40) 32 8 70 7 2 7 23 5 63 0
M(5 10 20 40) 53 2 87 8 25 7 42 1 776

SWM(5 10 20 40) 24 7 90 6 6 0 67 4 45 7

W(5)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 3 9 65 9 61 3 12 3 29 6
W(5,1020,40) 359 436 50 309 516
M(5 10,20 40) 39 9 56 8 25 4 32 5 55 7

SWM(5 10 2040) 28 2 824 II 7 72 1 41 5

W(10)

Rule DEM YEN GBP FRF CHF
S(5,10 20,40) 5 4 88 0 582 186 393
W(5,10,20,40) 445 70 0 4 0 43 7 54 5
M(5,10,20 40) 505 790 293 446 62 3

SMW(5 10 20 40) 31 6 90 9 9 3 78 1 44 8
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Table 7 6 (continued) Chi-square test of adequacy of technical models

W(20)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 9 3 93 8 48 6 34 6 52 4
W(5 10 20 40) 65 6 90 2 3 4 65 0 64 8
M(5,10 20,40) 76 4 95 6 274 69 8 75 1

SMW(5 10 20 40) 41 7 94 7 74 88 5 498.
W(40)

Rule DEM YEN GBP FRF CHF
S(5,10,20,40) 4 1 82 5 42 3 20 4 45 7
W(5 10 20,40) 50 3 80 4 3 4 44 9 70 8
M(5 10 20 40) 72 1 92 2 26 7 65 3 83 0

SWM(5 10 20 40) 338 925 65 824 500

M(5)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 1 9 78 1 21 7 6 6 23 3
W(5 10 20,40) 202 581 09 172 334
M(5,10 20 40) 293 674 134 240 415

SWM(5 10 20 40) 19 1 86 1 3 9 56 5 33 0

M(10)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 9 8 91 4 45 3 34 8 44 6
W(5 10 20,40) 66 4 92 0 3 0 65 3 49 9
M(5,10,20,40) 74 2 98 5 30 9 60 3 61 4

SMW(5 10 20 40) 36 9 95 3 7 0 80 7 42 6

M(20)

Rule DEM YEN GBP FRF CHF
S(5 10 20,40) 1 7 73 7 27 3 7 5 31 2
W(5 10,20 40) 23 1 69 0 1 7 17 3 48 8
M(5 10 20 40) 442 808 159 362 592

SMW(5 10 20 40) 23 1	 ' 87 9 40 63 7 39 4

M(40)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 08 698 268 23 212
W(5,10 20,40) 15 2 51 9 2 1 6 8 45 1
M(5 10 20 40) 27 0 76 8 28 2 14 9 62 2

SWM(5 10 20 40) 151 875 60 403 388	 .



Table 7.7 T-Student test of adecivacy of technical models

1-Student test of adequacr of technical model 11 =0 a	 Cntical Threshold%

S(5)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 25 104 66 16 82
W(5,10 20 40) 39 68 32 25 85
M(5,10 20 40) 44 82 82 70 50

SWM(5 10 20 40) 3 0 7 5 4 9 1 8 6 4

S(10)

Rule DEM YEN GBP FRF
-

CHF
S(5 10 20,40) 5 0 29 3 6 4 3 7 102
W(5 10 20 40) 67 212 27 47 96
M(5 10 20,40) 9 4 24 7 9 6 7 4 7 3

SMW(5 10 20 40) 6 0 24 1 4 8 4 4 8 2

S(20)

Rule DEM YEN GBP FRF CHF
S(5,10 20,40) 7 0 52 7 3 8 4 8 15 6
W(5 10 20 40) 7 9 38 9 1 3 4 9 13 4
M(5 10 20,40) 15 3 52 3 7 3 122 13 6

SMW(5 10 20 40) 86 476 28 59 132

S(40)

Rule DEM YEN
_

GBP FRF CHF
S(5 10 20 40) 21 465 34 10 110
W(5 10 20 40) 24 305 10 09 87
M(5 10 20 40) 68 528 77 41 113

SWM(5 10 20 40) _	 28 423 J. 26 12 94

W(5)

Rule DEM YEN GBP FFtF CHF
S(5 10 20 40) 31 86 105 17 94
W(5 10 20,40) 5 0 5 6 6 1 2 9 10 1
M(5 10 20 40) 48 68 112 27 53

SWM(5 10 20 40) 3 6 6 1 8 1 2 (1 7 4

W(10)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 4 0 20 2 7 8 2 7 10 5
W(5 10 20 40) 57 143 37 38 104
M(5 10 20,40) 7 1 16 1 10 5 5 1 6 9

SMW(5 10 20 40) 48 158 59 32 84

W(20)

Rule DEM YEN GBP FRF CHF
S(5 10,20,40) 8 0 45 3 5 0 5 7 14 6
W(5 10 20,40) 95 339 19 64 132
M(5,10,20,40) 152 416 85 122 115

SMW(5 I() 20 40) 9 6 39 1 3 8 6 9 12 2

,
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Table 7 7 (continued) T-Student test of adequacy of technical models

W(40)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 46 533 44 29 154
W(5 10 20 40) 51 379 15 28 126
M(5 10 20 40) 120 563 89 91 147

SWM(5 10 20 40) 5 8 48 8 33 1 6 13 2

M(5)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 10 132 13 05 40
W(5 10 20 40) 14 87 04 08 37
M(5,10 20 40) 24 110 25 15 28

SWM(5 10 20 40) 12 99 08 07 30

M(10)
,L

Rule DEM ,	 YEN GBP FRF CHF
S(5,10,20,40) 8 3 43 9 4 6 6 6 8 9
W(5,1020,40) 95 317 17 69 77
M(5,1020,40) 172 427 86 153 74

SM'W(5 10 20 40) 13 0 38 7 3 5 8 1 72

M(20)

Rule DEM YEN GB? FRF CHF
S(5,10,20 40) 11 372 19 06 67
W(5,10,20,40) 1 3 23 3 0 6 0 6 5 4
M(5,1020,40) 3 7 42 2 45 2 6 6 5

SMW(5 10 20 40) ,_	 14 329 14 07 54

M(40)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 06 178 26 01 55
W(5,10,20 40) 0 7 9 6 0 7 0 2 4 2
M(5 10,20,40) 2 4 22 4 7 1 0 8 6 1

SWM(5 10 20 40) 08 148 _	 20 02 45

Summary models

Table 7 8 provides among all the statistical and technical models the ones which exhibit

the highest critical thresholds Therefore the following models are the ones which can

reproduce best technical trading rules
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Table 7 8 Models exhibiting the highest cntical threshold

Models evhibiting the highest critical threshold %

Chi-square

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) M(I0) W(20) Price-trend M(I0) S(20)
W(5,10 20,40) M(10) M(10) Pnce-trend M(I0) W(40)
M(5,10 20,40) S(20) M(10) M(10) S(20) W(40)

SWM(5 10 20 40) S(20) M(10) AR(1) W(20) Price-trend

T-Student

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) W(20) W(40) Price-trend M(10) W(40)
W(5,10 20,40) W(20) S(20) Pnce-trend M(10) S(20)
M(5,10 20,40) M(10) W(40) Pnce-trend M(10) W(40)

SWM(5 10 20 40) M(I0) W(40) MA(1) M(10) W(40)

For a given currency, the model exhibiting the highest cntical threshold is rather invariant

on the rule being used m the adequacy test Using of portfolio of trading rules, rather than

any single rules to check the adequacy of a model allows to minimise the reproach of

backward testin g5 All the models being proposed are very close from each other They

generate almost identical expected returns (see Chapter 3) and are extremely correlated

one from each other (see for instance the correlation between trading systems under the

random walk assumption in Chapter 5) What must be stressed is that for given statistical

models, there exist technical models able to reproduce closely expected returns and vice-

versa Performances of ARIIVIA and technical rules are very often indistinguishable

(Taylor, 1992b) Therefore, the crucial point is not to choose ex-ante between simple

moving average, weighted moving average, momentums or pnce-trend models but to

adequately estimate the duration of the trend either through the mean duration of the

price-trend model or the order of the technical rule Taylor(1992b) seems to indicate that

technical models might achieve better this purpose

Finally, further research is needed if one wants to check the adequacy of nonlinear

models via rule returns It is doubtful that pure variance nonlinear models will be able to

explain non-zero trading rule returns Nevertheless, mean nonlinear alternatives such as

the fractional Gaussian process are worthy being investigated Unfortunately,

corresponding tests using rule returns are difficult to establish because the vanance is not

any more finite but infinite

5 It could aptly be argued that the performances of a single trading rule is best explained by its implied
model For example it should not be surprising if the returns following the momentum rule of order
10 are best explained by the momentum model of order 10
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7.3 ENHANCEMENT STRATEGIES

Technical models are among the best models to replicate in-sample rule returns An issue

of interest is to establish their out-of-sample performances and to know if individual

performances of trading rules can be enhanced by a portfolio approach For doing so, we

consider the simple, weighted moving average, momentum of orders 5, 10, 20 and 40 and

study three kinds of strategies used to select particular subsets of trading rules

(1) Equally weighted portfolio

This strategy allocates equal weights between the twelve trading systems

(2) Optimisation method

It consists in choosing the best system in one period and applying it during the subsequent

penod8 This is called optimising over past data In a survey of public futures fund

advisory groups, Brorsen and Irwin(1987) found that fifteen of nineteen advisory groups

selected parameters by optimising over past data Such method aims to maximise returns

(3) Global Variance Portfolio (GVP)

This strategy allocates weights between systems such that they minimise the risk of the

portfolio The weights can be found by linear quadratic programming (Markowitz, 1952)

and depend only on the correlations between trading rules for given currency In what

follows, we assume that the volatility of trading rules are similar 9 and equal to the

volatility of the underlying asset We equally assume that correlations between rules when

applied to a same asset do not depend on the underlying asset and are equal to their

expected values under the normal assumption These two assumptions are reasonable

following the results of Chapter 6 They have got the tremendous advantage to induce

theoretical systems allocation which will be subsequently the same through time and for

each currency (Table 7 10) Table 7 11 provides expected risk reduction achieved by

some other portfolios for comparison purpose The small gain to diversification across

systems is directly related to the high correlations among the returns It must be

emphasised that the risk reduction potential through systems diversification is not large

8 The periods being used are the ones specified in Table 6 1 The out-of-sample performances are
consequently recorded throughout periods 2 to 5 for the 5 currencies

9 Lukac and Brorsen(199(i) assumes as well equal variances to determine if one technical rule is
statistically different from another
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Table 7.10 Minimum risk allocation
Systems S(5) S(1(1) S(20) S(40) W(5) W(10) W(20) W(40) M(5) M(I0) M(20) M(40) Total

Weights(%) 0 0 0 0 24 33 0 0 0 15 49 15 23 16 78 28 17_	 100

Table 7 11 Theoretical risk reduction
Systems Unique S(5 10 20 40) W(5 /) 20 40) M(5 /0 20 40) SWM(5 10 2040) GVP

Risk reduction(%) 1 0 813 0 837 0 731 0 762 0 697

The optimisation method is only marginally more profitable than the equally weighted

portfolio, but as expected far more than the Global Variance Portfolio (Tab)e 7 12) By

construction, the minimum standard deviation of returns is achieved for the Global

Vanance Portfolio In terms of Sharpe Ratio (average return/standard deviation), it

appears that diversification can pay Reduction of nsk can be obtained by simple

diversification of rules Such portfolio outperforms the optimisation method in 4

currencies out of 5 However, extra-reduction of nsk by choosing sophisticated

diversification via Markowitz approach decreases substantially the value of the Sharpe

Ratio

Table 7 12 Forward nerforrnances of selection strate es
Performances\Strategies i Equally Weighted G'VP	 I	 Optimtsatton

DEM

Return % 767 494 919
Standard Deviation % 8 97 8 19 11 77

Sharpe Ratio 0 85 0 60 0 78

YEN

Return % 491 430 411
Standard Deviation % 8 43 7 71 11 06

Sharpe Rano 058 056 037

GBP

Return % 798 665 958
Standard Deviation % 9 06 8 29 11 89

Sharpe Ratio 0 88 0 80 0 81

FRF

Return % 827 665 655
Standard Deviation % 865 7 91 11 35

Sharpe Ratio 0 96 0 84 0 58,
CHF

Return % 7 46 6 30 10 54
Standard Deviation % 9 50 8 69 12 41

Sharpe Ratio 079 0 73 0 85
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The superiority of the equally weighted portfolio beyond the optimisation method and

minimum risk approaches can be explained by two factors Firstly exchange rates series

are non-stationary and consequently the optimal forecaster is rarely the same from one

period to the other Then the usefulness of the optimisation method is arguable (Lukac,

Irwin and Brorsen, 1989) This strategy is of no additional value to a basic equally

weighted portfolio Secondly the differences between rules correlations are sometimes so

small that weights selected throughout the quadratic program are not really significant

The minimum variance cntenon excludes for instance seven systems on twelve (Table

711)

This does not mean that correlations between systems must not be taken into account

But rather than searching for the minimum risk, simple diversification might be preferable

The only problem stays in the determination of the ex-ante universe of rules Here this has

been chosen such that for each family of rules, systems are almost equicorrelated

The Markowitz approach either maximising returns, minimising nsk or a mixture of both

does not seem promising, as far as systems diversification is concerned On the other

hand, simple diversification among equicorrelated systems appears a lot more profitable

due to its robustness through time In sum, diversification between systems pays but it

must not be too complicated Goodman(1982) exhibits for instance than combining two

technical models is better than one but three are already two many

Diversification between currencies might still be more valuable than diversification

between systems, see Chapter 5 for theoretical evidence and Taylor(1990b), Brorsen and

Boyd(1990) for empirical evidence However optimal diversification is condemned to fail

for at least two reasons Firstly, the bwanate random walk is not an acceptable

hypothesis, even when restrained to rule correlations (Section 6 2 3) It follows that

finding the currencies allocation which minimise the nsk of the portfolio will now be an

hazardous task Secondly, correlations between underlying currencies vary through time,

opposite to correlation between systems applied to a same currency Then attempts to

build efficient portfolios of exchange rates have been fruitless (Praagmanand and Soenen,

1986) It is why Table 7 13 restncts its study to the effect of simple diversification of a

given system between currencies The equally weighted portfolio exhibits higher Sharpe

Ratio irrespective of rule for YEN, GBP and CHF, in 83% of all cases for DEM, and in

58% for FRF Currencies diversification is obviously valuable It outperforms systems

diversification for a few rules such as S(20), W(20) and W(40) The differences are

however too small to be really significant
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Table 7 13 Currencies diversification
Rules\Currencies DEM 1 YEN I	 GBP 1	 FRP CI-1F	 [Equally Wcfghted,

Yearly returns %

S(5) 797 526 744 909 471 690
S(10) 895 614 744 927 853 807
S(20) 12 30 396 905 12 47 957 947
S(40) 4 53 4 20 6 16 8 38 4 82 5 62
W(5) 709 396 880 856 669 702
W(10) 745 705 561 979 672 732
W(20) 991 701 10 80 10 54 673 900
W(40) 8 77 5 14 10 69 10 37 8 84 8 76
M(5) 5 78 3 87 5 00 7 74 6 48 5 78
M(10) 687 628 809 716 630 694
M(20) 865 368 319 937 630 624
M(40) 471 421 761 631 705 598 98

,.	 ..	 -
Sharpe Ratio

S(5) 068 048 063 080 038 076
S(10) 076 056 063 082 069 087
S(20) 1 05 0 36 0 76 110 0 77 1 03
S(40) 038 038 052 074 039 060
W(5) 060 036 074 075 054 077
W(10) 063 064 047 086 054 079
W(20) 084 063 091 093 054 097
W(40) 075 046 090 091 071 096
M(5) 049 035 042 068 052 063

M(10) 058 057 068 063 051 076
M(20) 073 033 027 083 051 068
M(40)- 040 038 064 056 057 065
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7 4 EFFICIENT M XRKET HYPOTHESIS

7 4 1 Jensen's definition

Jensen(1978) argues that a market should be considered efficient with respect to an

information set if it is impossible to make economic profits by trading based on the

information set The random walk model requires zero risk-adjusted returns in speculative

markets on the assumptions of zero transactions costs But transaction costs in financial

markets are not zero, so a market is still efficient as long as a technical trading system

does not produce returns greater than transaction costs

7 4 2 Transaction casts

We provide here a simple formula giving the expected transaction costs following a linear

trading rule Such result will allow to easily adjust previous findings such that

transactions costs are taken into account

The cost to a speculator of a currency trade depends on many variables The total cost of

taking a position is the sum of brokerage fees and liquidity costs Liquidity costs arise

because floor traders have different buying and selling prices Trading costs can be

expressed as a percentage of the goods traded (Taylor, 1986) We then assume that

trading costs are equal to c, where c is a same constant for all times considered A cost

figure of c=0 2% is suitably conservative for currencies, because such costs are still

higher than most non-floor traders would pay (Taylor, 1990) Sweeney(1986), Surujaras

and Sweeney(1992) estimate transaction costs to be lower than one eight of one percent

(c<0 125%) Further, large transactors or banks operating on their own account can

avoid brokerage fees and only pay liquidity costs Schulmeister(1988) reports average

transaction costs based on bid-ask spreads to be at maximum 0 04% per trade Satchell

and Timmermann(1992b) stipulate that transaction costs are very small in the foreign

exchange market and less than 0 06% The transaction costs used in this study will be

c=0 2% and c=0 05% which appear upper bound for respectively public and institutional

investors

Over a period of T days, there will be a number N of transactions and consequently a

total trading costs equal to TC= cN The number N of transactions is a stochastic

variable which depends on the forecaster Ft being used Nevertheless its expected value

can be established under the Gaussian process without drift assumption If we assume

that a position is opened at the beginning of the period (and not when a new position is
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triggered) and that the last position is closed at the end day of the period, it follows that

the expected number of transactions isio

E(N) = 1+ (T — 2) [-1---71-, Arc sin(p)1 where p= Corr(F,,F;_i)

Subsequently,

E(TC)=c (1 +(T— 2)[-H, Arc sin(p)])

Expected number of transactions under the random walk and pnce-trend model

assumptions, as well as observed values for currencies are given for the simple moving

average rule in Table 7 14 YEN values are almost equal to their expected values under

the random walk assumption For other currencies, numbers of transactions are lower

than expected under the random walk assumption It confirms previous findings which

accepted the random walk assumption for the YEN but rejected it for the other currencies

in favour of price trend models Therefore the expected number of transactions under the

random walk assumption is an upper bound for currencies This conservative figure will

be used to assess transaction costs It allows to get estimates depending only on the rule

being used, not on the currency being traded

Table 7.14 Number of transactions over a enod of 2586 days

Number of transactions over a penod of T=2586 days

Ru1elProcess Random Walk
Price-trend Currencies

A*9 03 m=20
AN erage DEM YEN GBP FRF CHF

S(2) 1293 1269 5 1294 2 1311 1313 1265 1302 1280

S(5) 692 3 660 5 638 4 617 662 638 626 649

S(10) 468 9 429 8 421 4 412 448 416 430 401

S(20) 325 I 280 8 252 6 220 322 242 228 251

S(40) 227 6 183 1 172 2 161 203 177 145 175

Expected transactions costs over a year (T=250 days) are given in Table 7 15 for a few

linear rules under the random walk and price-trend model It turns out from Table 7 15

that transaction costs cannot be ignored if the purpose of the investor is to "make

money", on a net return basis The most active trading generated by the moving average

of order 2 rule, implies for instance yearly transaction costs equal to 25% for small

investors , It clearly appears that for equal gross returns, longer term rules must be

preferred This result seems to hold for nonlinear rules, such as the channel rule (Taylor,

1992b fig 1)

See Appendix 6 2
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Table 7.15 Expected yearly transaction costs
Rules/Process Random Walk Price-trend A=0 03 m4=20

E(N) E(TC)% E(N) E(TC)%

c=0 2% c=0 05% c=0 2% c=0 05%
S(2) 11 125 25 625 122 7 24 55 614
S(5) 67 4 13 48 3 37 64 3 12 87 3 22

S(10) 460 919 230 422 844 211
S(20) 32 2 6 43 1 61 27 9 5 59 1 40
S(40) 22 8 4 56 114 18 6 3 71 0 93
W(5) 78 6 15 71 3 93 75 5 15 10 3 78
W(10) 562 11 25 281 524 10 48 262
W(20) 40 2 8 05 2 01 35 8 7 15 1 79
W(40) 28 8 5 77 1 44 24 1 4 82 1 21

M(5) 581 11 61 290 550 11 01 275
M(10) 386 771 193 34 85 697 174

M(20) 26 7 5 34 1 34 22 65 4 53 113

M(40) 18 9 3 78 0 95 15 0 2 99 0 75

7 4 3 T-Student adjusted for transaction costs

Original T-Student statistics (Table 6 17) have to be adjusted to take into account

transaction costs That is done in Table 7 16 for c=0 2%, and c=0 05% It results that

technical trading in foreign exchange is likely to be a challenging if not fruitless activity

for small investors who face big transaction costs 12 (c=0 2%) That is another story for

institutional investors or floor traders The critical threshold of the T-Student test

adjusted for transaction costs (c=0 05%) are overall still well below 5% Technical

analysis has information content that will allow floor traders to increase risk-adjusted

profits Financial companies might have to act on strategies that assumes the foreign

exchange markets are autocorrelated if inefficient 13 Some desequilibnum beyond that

caused by transaction costs and risk appear to be present in exchange rates

Our findings are similar to Murphy(1986) which are that the potential for abnormal

technical trading profits does exist, if expenses are reduced Our results demonstrate that

11 The three rules S(2), M(2) W(2) are the same

12 Nevertheless there seems to exist stock technical systems outperforming the market even after
allowing for round-trip transaction costs up to 2% per secunty trade (Pruitt and W/ute, 1988)

13 Including transaction costs in the calculations might not yet be sufficient to get a market efficiency
test The interest rate differential must be taken into account Nevertheless the size of this factor
might be negligible Previous studies (Schulmeister, 1988, Sweeney, 1986, Surujaras and Sweeney
1992 67-68, Satchel! and Timmermann, 1992b) have shown that the overall effect of the interest rate
differential on nile returns is insignificant
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it is possible to earn sufficient technical trading profits to at least cover brokerage and

management fees

Table 7 16 T-Student test ad usted for transaction costs

Critical Threshold % of T-Student test adjusted for transaction costs14

c=0 2%

Test DEM YEN GBP FRF CHF
S(5) 93 7 99 1 95 2 89 0 98 8
S(10) 51 4 80 5 67 7 47 8 55 7
S(20) 4 5 75 3 22 1 3 9 19 6
S(40) 487 525 313 129 458

S(5 10 20 40) 48 0 89 0 60 5 29 8 67 3
W(2 to 50) 33 0 86 5 38 8 26 5 52 8
W(2 to 100) 144 531 194 68 224
S(2 to 50) 367 723 318 198 447
S(2 to 100) 154 247 153 84 135
M(2 to 50) 443 410 470 340 329
M(2 to 100) 13 0 14 0 21 41 10 3 10 6

SWM(2 to 50) 36 7 73 1 40 8 27 5 46 1
SWM(2 to 100) 15 0 31 5 21 8 8 6 15 9

c=0 05%

Test DEM YEN GBP FRF CHF
S(5) 9 6 28 8 12 7 5 1 36 0
S(10) 30 129 74 23 51
S(20) 0 1 24 3 1 8 0 1 1 8
S(40) 16 7 18 3 7 9 1 9 16 5

S(5 10 20 40) 14 155 30 03 60
W(2 to 50) 05 136 08 03 10
W(2 to 100) 04 58 07 01 13
S(2 to 50) 17 105 13 04 37
S(2 to 100) 1 0 ? 0 1 5 0 3 1 0
M(2 to 50) 29 21 35 15 19
M(2 to 100) 08 08 25 05 08

SWM(2 to 50) 11 7 1 1 3 0 4 2 5
SWM(2 to 100) 0 6 2 1 1 2 0 2 0 8

14 Transaction costs for multisystems are established here from the sum of individual transaction costs
Then they are upper limit of real costs since by construction the number of transactions for a
multisvstem is equal or below the sum of the number of transactions for each system
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7 4 4 Market efficiency and dependencies 

Since a market is still efficient as long as a technical trading system does not produce

returns greater than transaction costs, the existence of serial correlation in the changes in

financial rates might indicate neither market efficiency nor inefficiency (Cram and

Havenner, 1988, Taylor, 1986) The transactions costs are a cause of desequilibnum and

it is difficult to assess the extent to which transaction costs should be taken into account

in assessing market efficiency We have just seen that the market could appear

efficient/inefficient for investors facing different trading costs Even if profits adjusted for

high transactions costs were to stay significantly positive, there may be three other

reasons which can rescue the hypothesis of efficiency

Firstly, there is a degree of uncertainty in the information received The statistical

tests performed in this research have not reached all the same conclusions Tests applied

to the underlying time series have argued for the random walk hypothesis' s when profits-

based tests have found significant positive dependencies Logue and Sweeney(1977)

provided a similar study where a mechanical trading rule detected dependence using

foreign exchange data while spectral analysis detected no dependence using the same

data If there is a perception of uncertainty in information received and/or if the

information is diverse across participants, then the past exchange rate may have a

prolonged effect on the current exchange rate If so lagged models need not be

inconsistent with market efficiency Uncertainty is one of the two factors proposed by

Irwin and Brorsen(1987) to explain rule returns Their results showed a strong positive

association between uncertainty (as measured by inflation) and technical returns,

suggesting traders may expect lower returns during periods of low uncertainty On the

other hand, they did not find any relationship between the second factor, the relative

amount of system trading and technical returns

Secondly, there may exist a time-varying risk premia, (Fama, 1984, Wolff, 1987)

Surujaras and Sweeney(1992) believe however that explaining trading rule profits as due

to time-varying risk premia might be a very long and arduous process Their argument is

that there is a wide variety of possible models of time-varying risk premia and so there

does not seem to emerge a clear theory of how these premia should behave in a system of

efficient markets Time-varying risk premia and profitable trading rules are compatible

hypotheses because null hypotheses do not to have to be statistically stable in order to be

exploited profitably (Boothe and Longworth, 1986) If financial prices follow a price-

15 Except Taylor(1980) statistics
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trend model, 'variance reduction and mean duration need not to be statistically stable If

the overall amount of autocorrelations Ap/(1-p) is nearly always positive, it is quite likely

that trend-following rules can be used to make profits

Thirdly, if price is discontinuous, prices will go up and down very

steeply 16 Mandelbrot(1963) advances that technical rules assume that one could buy or

sell during these periods of steep variation, but that this possibility is not open to ordinary

buyers and sellers Then trading rules profits might not be in contradiction with market

efficiency

To conclude, the purpose of this research has not been to test market efficiency which is

in itself a difficult task, but rather simply to provide an understanding of the superior

performance of some models relative to the random walk model

75 SUMMARY

Among a few linear autocorrelated models, the price-trend model appears to be the most

satisfactory to explain trading rule returns That is shown by both the Chi-square test and

more significantly by the T-Student test Technical models are as good alternatives The

reason is that they produce expected rule returns very close from those generated by a

price-trend model

Profits from trend-following (convex, pathdependent) rules are a positive fimction of the

volatility This result corroborates with the existence of low positive autocorrelations

Risk adjusted profits are still a positive function of the volatility It could mean that

volatility and autocorrelations are dependent variables More specifically, it seems that

the more volatile is a currency, the more autocorrelations it exhibits Subsequently, there

appears to be a premium in investing in risky currency The selection of assets trading of

which is most likely to generate profits is a relatively straightforward process that can be

derived from the statistical properties of the underlying asset

Statistical forecasters including the fractional Gaussian predictor, although profitable, do

not outperform simple technical rules Enhancing returns of technical rules is a difficult

task Maximising returns or minimising risk are poor selection criteria The most robust

approach seems to be an equally weighted portfolio of equicorrelated systems

16 The fractional Gaussian process is a good example of such pnce behavior
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Diversification between systems pays but this is neither less or more beneficial than

diversification between currencies

Finally, transaction costs alter the statistical significance of test results The magnitude of

the changes depend on the levels of transaction costs which are far higher for small

investors than for institutional investors On the one hand, nsk-adjusted profits from

technical analysis totally disappear for transaction costs equal to 0 2% per trade On the

other hand, they still remain significant for transaction costs equal to 0 05% per trade

Financial companies might have to act on strategies that assume the foreign exchange

markets exhibit dependencies, if not inefficiencies

We would conclude that for institutional investors there could be much to gain from

technical rules if dependencies persist and little to loose in terms of expectations if they

do not
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APPENDIX 7 1

CURRENCIES BOX AND JENKINS MODELS:

AR(1), AR(2), MA(1), MA(2), ARMA(1,1)

Table 7.17 AR(1) models

Summary of Fitted Model for DEM LOG

Parameter	 Estimate Stnd error	 T-value	 P-value
AR( 1)	 04094	 01951	 2 09896	 03592

Estimated white noise variance = 5 06658E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 11799E-3
Chi-square test statistic on first 20 residual autocorrelations = 18 7809

with probabilits of a larger value gir en white noise = 0 470967

Summary of Fitted Model for YEN LOG

Parameter	 Estimate Stnd error	 1-value	 P-value
AR( 1)	 00698	 01952	 35733	 72087

Estimated white noise variance = 4 72485E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 6 87375E-3
Chi-square test statistic on first 20 residual autocorrelauons = 16 6786

with probabilit) of a larger ralue gir en white noise = 0 611635

Summary of Fitted Model for GBP LOG

Parameter	 Estimate Stnd error	 T-value	 P-value
AR( 1)	 05314	 01949	 2 72570	 00646

Estimated white noise variance = 5 15303E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 17846E-3
Chi-square test statistic on first 20 residual autocorrelations =24 5896

with probability of a larger value gir en white noise = 0 174499

Summary of Fittcd Model for FRF LOG

Parameter	 Estimate Stnd error	 T-value	 P-value
AR( 1)	 04029	 01951	 2 06525	 03896

Estimated white noise variance = 4 96892E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 04906E-3
Chi-square test statistic on first 20 residual autocorrelauons = 20 2559

with probability of a larger value given white noise = 0 37933

Summary of Fitted Model for CHF LOG

Parameter	 Estimate Stnd error	 T-value	 P-value
AR ( 1)	 03434	 01951	 175987	 07855

Estimated white noise variance = 5 89028E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67482E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 3992

with probability of a larger value given white noise = 0 370927
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Table 7.18 AR(2) models

Summan, of Fitted Model for DEM LOG

Parameter	 Estimate Stnd error	 T-value	 P-N alue
AR( 1)	 04153	 01952	 2 12708	 03351
AR ( 2)	 -01428	 01952	 -73130	 46466

Estimated white noise variance = 5 06749E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 11863E-3
Clu-square test statistic on first 20 residual autocorrelations = 18 2404

with probability of a larger value gn en white noise = 0 439922

Summary of Fitted Model for YEN LOG

Parameter	 Estimate Stnd error	 1-value	 P-value
AR ( 1)	 00695	 01953	 35588	 72196
AR ( 2)	 00401	 01953	 20554	 83717

Estimated white noise variance = 4 72656E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 6 875E-3
Chi-square test statistic on first 20 residual autocorrelations = 16 6235

with probability of a larger N alue gn en white noise = 0 549119

Summary of Fitted Model for GBP LOG

Parameter	 Estimate Stnd error 	 T-1, alue	 P-value
AR( 1)	 05332	 01953	 2 73067	 00636
AR ( 2)	 -00342	 01953	 -17535	 86082

Estimated white noise N anance = 5 15493E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 17978E-3
Chi-square test statistic on first 20 residual autocorrelations = 24 5272

with probability of a larger N alue gn en NN hue noise = 0 138503

Summary of Fitted Model for FRF LOG

Parameter	 Estimate Stnd error	 1-value	 P-value
AR ( 1)	 04036	 01953	 2 06687	 03884
AR ( 2)	 -0016()	 01953	 -08175	 93485

Estimated white noise Nanance = 4 97081E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 05039E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 2489

with probability of a larger N alue g1 en white noise = 0 318983

Summary of Fitted Model for CHF LOG

Parameter	 Estimate Stnd error 	 T-‘aitie	 P-value
AR ( 1)	 03475	 01952	 1 78004	 07519
AR ( 2)	 -01215	 01953	 -62214	 53390

Estimated white noise variance = 5 89166E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67572E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 0375

with probability of a larger value given white noise = 0 330713



Table 7 19 MA(1) models

Summar% of Fitted Model for DEM LOG

Parameter	 Estimate Sind error	 T-value	 P-value
MA( I)	 -04162	 01951	 -213290	 03303

Estimated white noise vanancc = 5 06633E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 11782E-3
Chi-square test statistic on first 20 residual autocorrelations = 18 6503

with probability of a larger value given white noise = 0 479466

Summary of Fitted Model for YEN LOG

Parameter	 Estimate Stnd error	 T-Nalue	 P-value
MA( 1)	 -00697	 01952	 -35692	 72118

Estimated white noise vanance = 4 72485E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 6 87375E-3
Chi-square test statistic on first 20 residual autocorrelations = 16 6799	 9

NN 1 th probability of a larger value given white noise = 0 611542

Summary of Fitted Model for GBP LOG

Parameter	 Estimate Stnd error	 1-value	 P-value
MA ( 1)	 -05319	 01950	 -272734	 00643

Estimated white noise vanance = 5 153E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 17844E-3
Chi-square test statistic on first 20 residual autocorrelations = 24 5529

with probability of a larger N, a 1 ue given white noise = 0 175791

Summary of Fitted Model for FRF LOG

Parameter	 Estimate Stnd error 	 T-N. alue	 P-value
MA( 1)	 -04039	 01951	 -206981	 03857

Estimated white noise vanance = 4 9689E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 04904E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 2436

with probability of a larger N alue given white noise = 0 380053

Summary of Fitted Model for CHF LOG

Parameter	 Estimate Stud error	 1-value	 P-value
MA ( 1)	 - 03482	 01952	 -1 78433	 07448

Estimated white noise variance = 5 89011E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67471E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 3228

with probability of a larger value given white noise = 0 375393



Table 7 20 MA(2) models

Summary of Fitted Model for DEM LOG

Parameter	 Estimate Stnd error	 T-value	 P-• alue
MA( 1)	 -04161	 01952	 -213106	 03318
MA ( 2)	 01366	 01952	 69984	 48409

Estimated white noise vanance = 5 06729E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 11849E-3
Chi-square test statistic on first 20 residual autocorrelations = 18 1722

with probability of a larger value giN en white noise = 0 444363

Summary of Fitted Model for YEN LOG

Parameter	 Estimate Stnd error 	 T-value	 P-value
MA ( 1)	 -00689	 01953	 -35306	 72407
MA ( 2)	 -00396	 01952	 -20302	 83913

Estimated white noise vanance = 4 72657E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 6 87501E-3
Chi-square test statistic on first 20 residual autocorrelauons = 16 6299

with probability of a larger 'value given white noise = 0 548674

Summary of Fitted Model for GBP LOG

Parameter	 Estimate Stnd error 	 T-value	 P-N alue
MA( 1)	 -05319	 01953	 -272432	 00649
MA ( 2)	 -00046	 01952	 -02365	 98113

Estimated white noise vanance = 5 15495E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 1798E-3
Chi-square test statistic on first 20 residual autocorrelations = 24 553

with probability of a larger N alue giN en white noise = 0 137731

Summary of Fitted Model for FRF LOG

Parameter	 Estimate Stnd error	 T-value	 P-value
MA ( 1)	 -04036	 01953	 -206724	 03881
MA ( 2)	 00119	 01952	 06090	 95144

Estimated white noise variance = 4 97078E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 05038E-3
Chi-square test statistic on first 20 residual autocorrelauons = 20 2406

with probabilih, of a larger N alue gn en white noise = 0 319436

Summary of Fitted Model for CHF LOG

Parameter	 Estimate Sind error	 T-value	 P-N alue
MA ( 1)	 -03494	 01952	 -178938	 07367
MA ( 2)	 01225	 01952	 62781	 53019

Estimated white noise vanance = 5 89143E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67556E-3
Chi-square test statistic on first 20 residual autoconelations = 19 9517

with probability of a larger value given white noise = 0 335546



Table 7.21 ARMA 1,1 models

Summary of Fitted Model for DEM LOG

Parameter	 Estimate Stnd error	 1-value	 P-value
AR( 1)	 01913	 48779	 03921	 96873
MA( 1)	 -02350	 48770	 -04819	 96157

Estimated white noise variance = 5 06838E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 11925E-3
Clu-square test statistic on first 20 residual autocorrelations = 18 6969

with probability of a larger value giv en white noise = 0 410705

Summary of Fitted Model for YEN LOG

Parameter	 Estimate Stnd error	 T-value	 P-value
AR( 1)	 00418	 6 67021	 00063	 99950
MA( 1)	 -00416	 6 67020	 -00062	 99950

Estimated white noise variance = 4 72666E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) =6 87507E-3
Chi-square test statistic on first 20 residual autocorrelations = 16 6538

with probability of a larger value given white noise = 0 547015

Summary of Fitted Model for (3BP LOG

Parameter	 Estimate Stnd error	 1-value	 P-value
AR( 1)	 02694	 36218	 07437	 94072
MA ( 1)	 -02754	 36207	 -07607	 93937

Estimated white noise vanance = 5 15497E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 17981E-3
Chi-square test statistic on first 20 residual autocorrelations = 24 5615

with probability of a larger x alue given Nvhite noise = 0 137479

Summary of Fitted Model for FRF LOG

Parameter	 Estimate Stnd error	 T-value	 P-value
AR ( 1)	 02031	 50706	 04005	 96806
MA ( 1)	 -02099	 50699	 -04139	 96699

Estimated white noise vanance = 4 97081E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 0504E-3
Chi-square test statistic on first 20 residual autocorrelations =20 2401

with probability of a larger N alue given white noise = 0 319465

Summary of Fitted Model for CHF LOG

Parameter	 Estimate Sind error	 1-value	 P-N alue
AR( 1)	 01626	 61299	 02653	 97884
MA ( 1)	 -01935	 61293	 -03158	 97481

Estimated white noise vanance = 5 89244E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67622E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 3516

with probability of a larger N alue given white noise = 0 313379



APPENDIX 7 2

EXPECTED NUMBER OF TRANSACTIONS

This appendix establishes the expected number of transactions following a linear rule

under the Gaussian process without drift assumption

The average duration of a position triggered by a technical indicator is difficult to

establish because it involves truncated multivanate probabilities analytically unknown An

easier step is to determine the probability that there occurs a reversal of position a given

day, noted P[reversal]

A reversal of position the day t means that the signal triggered by the trading rule are of

opposite signs the days t-I and t Since the underlying process is symmetrical

13[ reversal] = P[F,_, < 0, F, > 0] + P[F,_, > 0, F, < 0] = 2P[F,_, < 0, F, > 0]

Kreversall= 2 [0,0](—p)

where p = Corr(F,_,,F; ), and [0,0] is the bivanate truncated probability given by equation

[A 1] in Appendix 3 1 It results that

P[ reversal 1 = 1— -: Arc sin (p)

Then the expected number of transactions over a period of T days is

E(N) = T[J2---:TArcsin(p)]

If we assume that a position is taken the first day of the period and there cannot be any

new position the last day (close of position), there are in fact T-2 days over which a

stochastic position can be triggered Then a slight adjustment to the previous formula

must be made

E(N) = 1 + (T — 2)[-1-- Arc sin (p)] for T �2
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Chapter 8

CONCLUSIONS

8.1 SUMMARY

The purpose of this thesis has been to advance the understanding of price-based

forecasts The main results of this research are summarised in what follows

(1) The economic value of forecasting methods is best measured by the pay-off generated

by the implied investment strategy Many more market conditions and forecasters can be

encompassed using stochastic modelling than any historical studies Therefore, the

expected value and variance of the rate of return using a linear forecaster have been

derived under the assumption that the process of underlying returns is Gaussian

Expected returns are zero if only and only if the underlying process is the random walk

without drift

(2) It is shown that a large class of mechanical forecasting systems used by market

participants can be transformed as linear forecasters and consequently that expected

profit can be evaluated

(3) Errors based measures are compared with profitability measures Mimmising the mean

squared error is a sufficient but not necessary condition to maximise profits However, it

appears that error measures including the directional accuracy are of poor use to detect

profitable strategies when the true model is not known

(4) A test based on the joint the profitability of trading rules is derived It has the

attractive feature to be almost as powerful as the best of its component which is unknown

when the true model is unknown It constitutes therefore an adequate test of market

timing ability if the series of which it is applied is without dnft

(5) Profitable strategies based on technical analysis exist in the foreign exchange market

Both the bootstrap methodology and the test based on the joint profitability of trading

rules bring similar results, which are that daily exchange rates 1982-1992 do not follow a

random walk
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(6) Profits from trading rules in the foreign exchange market are well approximated by

linear time-series models Among a few statistical Gaussian processes, the price-trend

model is the best alternative to explain rule returns There exist linear technical models

reproducing as well trading rule returns Technical models have got the advantage beyond

the price-trend model to rely on fewer parameters Selecting a particular technical rule is

a difficult task, because forecasting strategies are numerous and most often extremely

similar On the other hand, the selection of instrument trading is most likely to be the

crucial choice This is a relatively straightforward process that can be derived from the

statistical properties of the underlying asset The more volatile a currency, the more

autocorrelated it is and consequently the more profitable the instrument

(7) When transaction costs are taken into account, then profits are reduced substantially

However, opportunities remain for institutional investors which might have to act on

strategies that assume that the foreign exchange markets exhibit positive dependencies, if

not efficiencies

8.2 SUGGESTION FOR FURTHER RESEARCH

This research can be extent in several ways The first one consists in establishing exact

analytical multi-period variance and correlations of trading rules based on linear

forecasters, assuming that the underlying returns process is Gaussian These results will

allow to precisely test the ability of Gaussian processes to replicate trading rule returns

An other research is to establish the expected return of nonlinear forecasters under the

assumption of both linear and nonlinear models For instance, it might be informative to

understand the behaviour of rules based on minimum and maximum of past data such as

the channel rule (Lukac, Brorsen and Irwin, 1988b), because they are highly popular

among market participants Then, a crucial finding would be to determine when the true

pnce model is nonlinear, what is the forecaster which maxmuses returns and how

profitable it is These researches are highly dependent on the state of knowledge about

truncated multivanate laws At present, analytical results exist up to the truncated

tnvanate normal law This is why the study of nonlinear price models and forecasters

might be difficult to achieve
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The random walk and market efficiency hypotheses are of such importance in the

financial market, that they justify attempts to establish statistical tests based on an

economic evaluation of forecasting strategies To be powerful, these tests must take into

account the stochastic properties of trading rules

Then, it must be emphasised that the study of rule returns can lead to the discovery of

new models of financial pnces The technical models first descnbed in the thesis are a

good example of this point That would let think that more research is needed to build

automated selection cntena between linear models, if the purpose of the forecaster is

trading

Finally, the causes of profits, when any, to the technical trading strategies, have to be

found
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