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ABSTRACT

This thesis examnes the economic evaluation of forecasting strategies based on past
prices, bringing together academucs and practitioners techniques Forecasting methods
based on past prices are convex and path-dependent dynamic strategies Therefore, they
must be able to profitably exploit positive senial dependences 1n financial prices The most
important measure of financial forecasting ability 1s the rate of return achieved by the
predictor The expected return of forecasting strategies 1s first mvestigated by applying
stochastic modelling Then, the presence of serial dependences 1n financial prices 1s tested
by comparing expected and observed rates of returns of forecasting strategies

According to the academuc Iiterature, the expected return of investment strategies 1s best
established by applying stochastic modelling That 1s done analytically for lnear
forecasters, assuming that the underlying process of asset returns 1s not only a random
walk with dnft but any Gaussian processes The rate of return from financial strategies 1s
zero under the assumption of a random walk without drift, and non-zero n all the other
cases Then, 1t 1s shown that many forecasting techniques used by market participants are
in fact linear forecasters and consequently fall in the scope of this study

Mimimusing the mean squared error 1s a sufficient but not necessary condition to maximise
returns Under the random walk without dnift assumption, error measures and profits are
negatively correlated but very few in absolute value Only the directional accuracy
exhibits high degree of linear association with profits When the true Gaussian process 18
not known, there are cases for which a decrease in mean squared error does not imply an
increase in returns Therefore the mean squared error criterion 1s of poor use to maximise
returns when the true model 1s not known The directional accuracy 1s of no further help
Market timing ability tests based on the percentage of correct forecasts have very low
power 1n presence of low positive autocorrelations

It 1s why a test of the random walk hypothesis based on the joint profitability of trading
rules 1s investigated It happens to be powerful agamst a broad range of hnear
alternatives Its mce feature 1s to exhibit a power almost equal to the best of its
components unknown when the true model 1s unknown It constitutes as well a tool to
separate mean from vanance non-linear models Simple tests of adequacy of Gaussian
processes are subsequently proposed from the joint profitability of trading rules

Applying previous tests, the random walk hypothesis 1s rejected for daily exchange rates
agaimnst Dollar, over the period 1982-1992 The hypothesis of normal underlying retums
18 very weak compared to the independence assumption Among a few Gaussian
processes, the price-trend model along with some technical models appear to be the best
alternatives to explain observed trading rule returns Statistical forecasters based either on
ARMAC(1,1) or fractional Gaussian processes do not outperform simple techmcal rules
Taking into account transaction costs reduce profits to zero for individual but not for
nstituttonal investors who might have to act on strategies that assume the foreign
exchange markets exhibit positive dependencies, if not inefficiencies

12



Chapter 1

INTRODUCTION

11 FORECASTING FINANCTAL PRICES

Numerous techniques have been used to forecast financial prices Despite their apparent
diversity, most of the predictors can be classified into two categories, fundamental or
technical [

Forecasts based on exogenous vanables constitute the "fundamentalist approach” In the
stock market, analysts study the fundamentals of compames (1 ¢ earmings, dividends, risk,
assets, management, etc ), industry sectors and the economy as a whole, to identify
investment opportunities Attention 1s focused on specific items of information which are
unknown to the market or considered to be incorrectly valued In the foreign exchange
market, the primary focus 1s on monetary policy Fundamentalists claim that in the long
term what underpin the trends of currency movements are the balance of payments and
relative prices Recent experience has questioned the out-of sample accuracy of structural
models of price-rate determimation Simultaneously, the nising importance of price-based
forecasts has been observed

Price-based forecasts constitute the "technical approach" These forecasts are determined
using only historical price data The basic assumption ts that "everything 1s in the rate"
Such forecasts are generally developed using one of two methods The first method
consists 1n creating a model based on statistical algorithms The most well-known
technique 1s the Box-Jenkins(1976) method This mimimises the mean squared error
between the realised return and the one-ahead forecast It 1s the technique preferred by
academics The second method consists in building heunstic predictors such that the
implied decision rule 1s profitable in monetary terms These forecasting methods are
called techmical indicators and are preferred by market practitioners

13



1.2 THE OBJECTIVE OF THIS RESEARCH

This research aims to contribute to the knowledge of pnce-based forecasts by focusing on
therr economic evaluation as measured by\ profitabiity A popular theory, among
academucs 1s that techmical indicators are suboptimal predictors and that statistical
forecasters should be preferred Only complex nonlineanties m financial prices could
Justify the use of techmical indicators However for market participants, the usefulness of
a forecaster 1s best measured by the profits and losses 1t generates and previous studies
have indicated that technical trading rules perform at least as well for this purpose

The research described in thus thesis seeks to umfy technical and statistical forecasters and
formalises their expected returns using stochastic modelling More precisely, the thesis
addresses four questions not yet answered despite a growing literature Namely

(1) What 1s the economic evaluation of price-based forecasts ?

The main goal of a financial forecaster 1s to possess market timing ability Its raison d'étre
1s to accurately predict the direction of the trend, up or down, such that a profitable
trading rule can be elaborated Therefore the most important statistic 1s the expected
return following the forecasting strategy It is established in the thesis assuming that the
process of underlying assets 1s Gaussian

(2) Are the most accurate forecasters the most profitable ?

This point 1s investigated by studying n depth the theoretical relationships between mean
squared error and profits criteria

(3) How similar and different are trading rules ?

Thus research formulates the linear correlation coefficient between trading rules returns to
deal with this 1ssue

(4) What models are compatible with observed trading rule returns ?

The ability of a few Gaussian processes to explain technical profits 1s checked for a set of
exchange rates series

14



1.3 LAYOUT OF THE THESIS

Chapter 2 presents dynamic strategies including portfolio msurance, market timing
strategies, fundamental and techmcal approaches The similanties and differences between
the various price-based strategies are exarmuned and the statistical attributes of the returns
specified A forecasting techmque 1s considered as useful in the financial market if it
generates profitable transactions Therefore a better understanding of these techmques
might be achieved by studying their returns distnbution However, a hterature review
shows that very little 1s known about the theoretical distnibution of returns generated by
trading rules In particular there are no analytical results assuming that prnices exhibit
dependencies Since dependency i prices 1s a necessary condition to the usefulness of
financial forecasting, that 1s a senious hmutation that this thesis attempts to solve To do
so, a techmcal description of plausible models of financial prices 1s provided 1n the last
section of the chapter

Chapter 3 1s the key chapter of the thesis The statistical distnbution of rule returns 1s
established using stochastic modelling Stochastic modelling has the advantage to
encompass a far broader set of possible market conditions than any single empincal
financial time senies The expected return which 1s the most important statistic 1s given
analytically for linear forecasters and price models An extension to nonlinear models 1§
provided by considering heteroskedastic volatility and fractional processes Then it 1s
shown that many technical indicators are 1n fact imphicit hinear statistical forecasters

Chapter 4 deals with the relationships between error measures and profits The sufficient
and necessary conditions to maximise expected returns are formulated Mimmusing the
mean squared error 1s a sufficient but not a necessary condition In practice, the true
model 1s not known and a musspectfied forecaster has to be used Therefore we assess to
what extent various misspecifications affect the profitability and error measures of a
forecaster That 1s done 1n the thesis by measuring the relative loss of retums and increase
of mean squared errors Finally, it 1s shown that market timing ability tests based on
directional accuracy have very low power i the presence of low positive
autocorrelations Under such circumstances, 1t 1s possible for no market timing ability to
be detected even though there exists one

Chapter 5 proposes new tests of random walk based on the joint profitability of trading
rules A prelimnary result, the theoretical correlation between trading rules, is first

15



established. Then tests of non-zero profits are proposed. A power study exhibits that a
test based on the profitability of an equally weighted portfolio of trading rules can have
higher power than the most profitable rule in the portfolio, which is of course unknown
ex-ante. Finally, diagnostic tests are proposed which allow to check the ability of any
Gaussian price models to replicate trading rule returns.

Chapter 6 tests the random walk hypothesis for a set of exchange rates. Conventional
tests of normality and temporal dependence\are first performed. The empirical results
show that the variance of rule returns and correlations between systems are not
significantly different from what would randomly be expected. However, the new tests of
random walk established in Chapter 5 show that mean returns are significantly positive.
Since these tests are based on the assumption of normality, a non parametric distribution-
free test, based on the bootstrap approach is also performed. Critical thresholds of T-
Student and bootstrap based tests are remarkably very similar. Both tests suggest the
existence of dependencies in exchange rates. Therefore when testing for non-zero profits,
the independence assumption is critical but the normality assumption not crucial.

Chapter 7 tests the ability of a few autocorrelated Gaussian processes to replicate the rule
returns observed in the foreign exchange market. To this end, the price-trend model
seems to be the best alternative among well-known statistical models. Some technical
model's first explicited in Chapter 3, appear to reproduce equally well trading rule
returns. That might explain why statistical forecasters, including the fractional Gaussian
forecaster, do not beat their technical counterparts. Subsequently two sources of profits
are exhibited in accordance with linear models: volatility and autocorrelations. There
appears to be a premium in a risk-adjusted sense to invest in volatile currencies. In
addition, technical returns generated by an unique rule can be enhanced by considering a
portfolio approach. Diversification between trading rules or currencies pays, but neither
one or the other is more profitable. Finally, the efficient market hypothesis is discussed
taking into account transaction costs. The latter reduce profits from technical trading to
zero for small investors. Nevertheless, opportunities remain for institutional investors.

Chapter 8 presents the conclusions of this thesis. The purpose of this research has not
been to test market efficiency which is in itself a difficult task, but rather simply to
provide an understanding of the superior performance of some models relative to the
random walk model. It is argued that investors facing low transaction costs might have to
act on the basis that exchange rates exhibit positive dependencies.

16



Chapter 2

RECLASSIFICATION OF DYNAMIC STRATEGIES

\

Investors who mvest in financial markets are exposed to uncertamn price changes As a
nsky asset fluctuates in value, the value of the mvestment containing it may change One
must decide how to redefine the mvestment in response to such changes Dynamic
strategies are exphcit rules for domg so

Dynamic strategies differ from static strategies, such as a buy-and-hold rule, in that
trading 1n the asset occurs throughout the imestment horizon, at times and in amounts
that depend upon a fixed set of rules and future price changes Dynamic strategies are
developed following the expectations investors have formed about the statistical nature of
the price process

In random markets, price changes can not be predicted Current prices fully and correctly
reflect all currently available information Dynamic strategies are then employed to reduce
the price nsk exposure of an investor The probability distrtbution of returns from a nsky
investment 1s tailored to suit a particular set of preferences For instance, the most
popular application of these techmques, portfolio insurance, has the objective of placing a
lower limit on the rate of return to be earned on an investment over a specified time
pertod

In non-random markets, price change can be predicted There are market imperfections,
such as the existence of price trends and cycles The goal of dynamic strategies i this
case 1s to exploit these imperfections and to outperform the market To this end, market
timing or forecasting strategies are used

Section 2 1 presents dynamic strategies, namely portfolio msurance and market
timing, and defines their statistical attnibutes Section 2 2 describes forecasting techmques
used to predict financial prices Section 2 3 carnies out a literature review of forecasting
strategies The key issues not yet solved by academics and considered in the research are
emphasised Section 2 4 shows how stochastic modelling can be employed to assess the
ability of forecasting strategies to meet their goal under a broad set of market conditions
A number of plausible models of financial prices are then considered Finally, Section 2 5
summarises and concludes our results

17



2.1 DYNAMIC STRATEGIES

2.1.1 Portfolio insurance

Portfolio insurance strategies are "hedging" rules. They assume that markets are random
and therefore that price changes can not be predicted. Portfolio insurance strategies are
then employed to reduce the price risk exposure of an investor.

Portfolio insurance is.a dynamic hedging strategy whereby we gradually shift a
fund's exposure between a risky asset and a riskless asset so as to ensure a minimum
return while preserving the potential to participate in plausible gains from the risky asset.
It is especially the case of pension funds which do not want the value of their assets to fall
below the floor defined by the present value of their liabilities. The cost of the insurance
to the investors is a premium reflected by lower realised return on the insured portfolio
when the return on the uninsured portfolio is positive. Portfolio insurance enables an
investor to avoid losses and capture gains at the cost of a fixed premium.

A number of techniques have been developed which enable tailoring the
probability distribution of returns from a risky investment to suit a particular set of
preferences. The most common approach consists of approximating the results that
would be obtained by purchasing a put option on the portfolio (Rubinstein and Leland,
1981). Buying and selling is triggered only by changes in the value of the reference
portfolio according to the informationless hedging rules that recreate option return. An
other rule is the Constant Proportion Portfolio Insurance (CPPI) strategy (Black and
Jones 1987, 1988, Perold and Sharpe, 1988; Black and Perold, 1992). This invests a
constant multiple of the cushion in risky assets up to the borrowing limits, where the
cushion is the difference between wealth and a specified floor. As the multiple goes to
infinity, CPPI becomes a stop-loss strategy (Black and Perold, 1992). This is investing
the maximum, up to the borrowing limit, in the risky asset while wealth is above the floor,
then switching completely into the riskless asset if and when wealth reaches the floor.

Portfolio insurance strategies assume that markets are random. The bond price is
assumed to grow deterministically at a constant interest rate and the stock price to follow
a multiplicative random walk, such as the geometric Brownian motion! (Black and
Scholes, 1973) or a discrete binomial distribution (Cox, Ross and Rubinstein, 1979).

1 Details about this and other popular models of financial prices can be found in Section 2.4
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212 Maiket uming
Market timing strategies are "speculative rules” They suppose that markets are non-

random and therefore that price changes can be predicted Market timing strategies are
then created to exploit imperfections in the nisky asset

The goal of market timing strategies 1s to profit from price trends and cycles
Market timung strategies are based on the idea that excess returns can be achieved by
buying and selling at the "night" time The corresponding rules can be loosely described as
"run with your winners, cut your losses" and "sell at a new high, buy at a new low"

213 Staustical attributes
Dynamuc strategies can be charactenised by use of four features:of which three are pure

statistical attributes
a) implementation cost of the strategy?
b) convexity
c) path-dependency
d) underlying return preferred stochastic process

Convexity

Strategies that "buy stocks as they fall " give nise to concave payoff curves That 1s they
tend not to have much downside protection This termunology derives from the concave
payoff curve relating the terminal value of a portfolio to an unidirectional move up or
down from 1ts initial value

Strategies that "sell stocks as they fall " give nise to convex payoff curves That 1s they
tend to give good downside protection

It must be emphasised that most of the dynamuc strategies, portfolio insurance and market
timing, employ convex rules Leland(1980) clearly stipulates that general insurance
policies are those that provide strictly convex payoff functions, since convexity mmples
greater protection from loss at lower values of the reference portfolio Like portfolio
insurance techmques, market timing strategies are convex rules because they are designed
on the 1dea that there are trends in financial prices

2 The study of ths financial aspect is postponed to Section 7 4 2
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Path-Dependency

Path-independence means that the terminal portfolio value depends only on the terminal
market price of the assets, and not on the history of price movements prior to the end of
the investment horizon Path-dependency reflects that the rate of return on the nsured
portfolio 1s not only dependent on the rate of return on the uninsured portfolio but also
the path taken in the value of the uninsured portfolio over the msurance period

Let us give some examples of path-dependent\and independent strategies

Most of the portfolio nsurance strategies are path-independent, since under the random
walk assumption path-independence 1s necessary for expected utiity maximsation The
1dea 1s that investors wish to minimise uncertainty and so mmimise path-dependency The
use of a protecttve put or continuously rebalancing strategy, to implement portfolio
insurance 1s truly path-independent (Cox and Leland, 1983, Black and Perold, 1992)
When rebalancing takes place discontmuously, CPPI strategies become path-dependent
(Tripp1 and Harriff, 1990, Black and Perold, 1992) An other rule that 1s clearly path-
dependent 1s the stop-loss strategy (Rubinstemn, 1985, Black and Perold, 1992) In this
case the return of any profitable position will not be a predictable percentage of the rate
of return that would have been earned by investing all funds in stocks

Unlike portfolio insurance techmques, market timing rules are path-dependent strategies
With path-dependent strategy, a portfolio manager can hold positions throughout a flat
market yet still make money because of the particular price fluctuations that happened to
occur along the way That simply reflects the main purpose of a market timer which 1s not
to loose any profit opportunity in the hope of maximsing returns at any level of nisk
(Phulipps and Lee, 1989)

Underlying return preferred stochastic process

Dynamic strategies are developed to exploit the market conditions most hkely to occur
Consequently, the choice of which dynamic strategy to follow, 1s closely related to the
ivestor expectations about the statistical nature of the price process

Under the random walk assumption, Cox and Leland(1983), Rubinstein(1985)
have proved that path-independence 1s necessary for expected utility maximusation Cox
and Leland(1983) add that without a path-independent strategy a portfolio manager could
hold a long position throughout a nsing market yet still lose money because of the
particular price fluctuations that happened to occur along the way Cases in which the
market ends up far from 1ts starting pomnt are likely to favour buy-and-hold strategies A
buy-and-hold strategy tends to be almost optimal 1if there 1s a major move in one
direction
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Under the assumption of serial dependence, Kritzman(1989) sees two ways to
exploit this hypothesis depending on the nature of the senal dependence, positive or
negative If one expects returns to follow trends (positive senal dependence), he can add
value to a buy-and-hold strategy by following a linear investment rule that generates a
convex payoff function Perold and Sharpe(1988) presume that this generally does
relatively poorly 1n flat (but oscillating) markets and very well i up markets If on the
other hand, one believes that returns are c\haractensed by frequent reversals (mean-
reverting process), one can add value to a buy-and-hold strategy by following a linear
investment rule that produces a concave payoff function Perold and Sharpe(1988)
suggest that this generally does relatively poorly in up markets and very well 1n flat (but
oscillating) markets They add that cases in which the market ends up near its starting
pomnt are likely to favour concave strategies because they trade in a way that exploits
reversals Greater volatility (1 e more and/or larger reversals) will accentuate this effect
The question being, following Perold and Sharpe(1988), to know if markets are
characterised more by reversals than by trends

Table 2 1 summanses the preferred stochastic process of strategies following thetr
statistical properties convexity, path-dependency A list of studies having formulated
these classifications 1s given

Table 2.1: Preferred stochastic process

Rule Preferred stochastic process Author

Conicy up markcts Pcrold and Sharpe(1988)
positive senal dependence Kntzman(1989)

Tnpp: and Harnff(1991)

Concave flat but oscillating markets Perold and Sharpe(1988)
frequent reversals (mean reverting process) Krntzman(1989)

transtently cychical markets Trippt and Hammff(1991)

Path-independent random walk with dnft Cox and Leland(1983)
Rubinstein(1985)

Black and Perold(1992)

Path-dependent dependence Tnppt and Hamiff(1990)

Finally, Table 2 2 summarises the principal components of portfolio insurance and market
timing strategies

Table 2.2: Features of dynamic strategies

Rule Feature Deternunants Convexity Path Preferred stochastic process
Portfolro Insurance wmsurance agamst loss spot price convex | Independent random
Market Timing maximising return recent price lustory | convex | Dependent non-random
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2.2 FORECASTING TECHNIQUES

Market timing rules have been sometimes derived from portfohio insurance techmques
That 1s the case for example of path-dependent options (Goldman, Sosin and Gatto,
1979) But most often they have been developed from forecasting techniques The basic
assumption 1s that "everything 1s in the rate" Then if markets move n trends, defining the
prevailing trend and being able to 1dentify early reversals throughout forecasting methods
1s certanly helpful 1n assessing future rate dévelopments Forecasting techmques which
use only past prices to forecast future prices are called techrucal indicators They can be
classified in three categornies chartism, mechanical system and statistical modelling The
technical approach 1s often opposed to the fundamental approach which forecasts future
rates by determining the economucs affecting prices

221 Chartism

Charting 1s the oldest branch of technical analysis Chartism 1s based on the assumption
that trends and patterns m charts reflect not only all available information but the
psychology of the investor as well Analysts who use charts look for graphical cycles and
repetition of patterns to discern trends

The rules derived from the analysis of charts are often subjective and as such
chartism 15 considered more of an art than a science This 1s primanly why 1t has not been
possible to define chart patterns with mathematical ngour Curcio and Goodhart(1991)
do some empirical work to study the effect of chartist analysis They use the predictions
of a chartist based mm London, in a form which enables them to do a controlled
experiment Their study suggests that trading with chartist ines does not obtain better
mean returns than not using charts However they recognise that their research was not
designed to evaluate the profitability of screen trading Curcio and Goodhart(1992)
nvestigate the usefulness of support and resistance levels provided by Chartists and
offered to mvestors by Reuters The rule consists of a range within which the asset 1s
expected to fluctuate 1f the asset moves above the higher end of the range, a buy signal 1s
generated, while a sell signal 1s generated if the asset moves below the lower end of the
range Curcio and Goodhart(1992) show that abnormal returns can be obtamned by
applying chartists decision rules

The problem with such a rule s that the determination of the trading range can be
highly subjective and person-dependent It follows that the predictive power ability of
chartist techniques might be difficult to measure Neftci(1991) demonstrates this point for
at least two popular charts methods He proves that they are ill-conceived and
subsequently that no proper testing of their usefulness can be achieved
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This 1s why chartist techniques wall be ignored in the thesis which concentrates
instead on objective rules only

222 Technical mdicators

This type of techmical analysis tends to convert subjective impressions of patterns or
trends in mechamcal trading rules An example is to replace subjective support and
resistance levels by a well-defined trading rande A trading range may be characterised by
the maximum and mimmum of the series (of vanous lengths) of latest pnces Mechanical
systems are concerved in a way to trnigger indisputable sell and buy signals following a
decision rule based on past data, usually by calculating if the price is above or below a
particular entry point These systems are typically not concerned with how much the pnice
1s above or below the entry point They attempt to predict the direction of the future price
without searching to forecast its level They are used to detect major downturns and
upturns of the market The appropnateness of this indicator is conditional to the fact that
trends 1n prices tend to persist for some time and can be detected

Three mamn features characterise mechanical systems path-dependency,
convexity, and non umqueness

By design, mechanical systems depend on the hstory of price movements prior to the end
of the investment horizon Consequently, they are highly path-dependent strategies The
usual rule 1s to trade with the trend The trader imtiates a position early in the trend and
maintains that position as long as the trend continues

Almost all mechanical systems are trend-following and so exhibit convex payoff The very
few which are not belong to the family of contrary opimon indicators, known as well as
reverse trend-following rules, and so display concave payoff They are very rarely used
on their own and are only applied 1n combmation of trend-following systems

The main difficulty with mechanical trading systems 1s that a rule has to be chosen
from an infinite number of alternatives Since those systems are assumed to reflect
(mechanically) the expectations of the forecaster, there exist almost as many rules as
there are different expectations

There are so many relevant trading rules that 1t is unrealistic to list them all In what
follows we concentrate on the basic definitions of the most popular rules among
practitioners and academics To each mechamical system numerous alterations have been
made and hybnid indicators constructed Details, justifications and uses of these derivative
rules can be found 1n Kaufman(1987)



Moving Averages

Moving averages are certainly the oldest and most widely used methods The simplest
rule of this famuly 1s the single moving average which says when the rate penetrates from
below (above) a moving average of a given length, a buy (sell) signal 1s generated

By using a linear or exponential weighting, greater importance can be given to
more recent observations Despite these more complex systems, a simple moving average
appears to be the most widely used form It must be emphasised (as will be proved n the
thesis) that the decision of what length of moving average system to use 1s held to be
particularly important as short or long term averages can give very different signals
Fibbonacci numbers have been used for this purpose (Pring, 1985)

Two moving averages of different time lengths can be used to generate signals via
the double crossover method A buy (sell) signal occurs when the shorter average
penetrates from below (above) the longer Widely used combinations are 5 and 20 day
averages, 10 and 40 day averages It 1s worth noting that the double cross-over method 1s
a generalisation of single moving average signal generation, as the price line in the latter
can be regarded as a "one-period moving average" Fmnally, the double cross-over method
admits other, although strictly equivalent, representations The usual way the
transformation 1s done 1s to plot the difference between the two averages Buy (sell)
occurs this time when the moving average oscillator moves above (below) the zero line
When a trading rule triggers a signal around a zero line, 1t 1s often called an oscillator

Momentums

A standard momentum line 1s constructed by subtracting the closing price of k days ago
from the last closing price The result positive or negative figure 1s then plotted around a
zero line Then the general trading rule 1s based on the crossing of the zero line Buy (sell)
when the oscillator moves above (below) the zero line

Channels or Breakouts

Breakout systems also known as price channels or trading range say buy (sell) an asset if
the rate penetrates from below (above) the maximum (mimmum) of the past m days m 1s
a gtven number of days which features the length of the channel

Filters

Filter systems are the primary techmque for testing market efficiency, mtroduced by
Alexander(1961) and have since been used widely by other researchers However 1t must
be recognised that compared to the mechanical systems presented above this method 1s
far less popular among practitioners An x percent filter rule leads to the following
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strategy Buy an asset whenever 1t rises by x percent above its most recent trough Sell
the asset whenever 1t falls x percent below 1ts most recent peak

All the systems we have examned so far share two characteristics in common

First, they are always "in" the market, either long or short of one asset unity That
means 1n practice that positions are never neutral or of vanable amounts That will be the
primary assumption of this thesis The many hybnd indicators which have been
constructed allowng neutral positions to avoid whipsaws due to trendless markets, are in
fact, most often, nothing else than the association of basic trading rules, (Kaufman, 1987,
Schwager, 1984, Béchu and Bertrand, 1992, Cahen, 1990) A well known example
comes from the simultaneous use of momentums and moving averages, (Goldberg and
Schulmester, 1988) Then 1t 1s simpler to study first the behaviour of elementary rules,
and second to consider the possibility of combining rules via rules correlations

Second, these four systems are all trend-following systems or convex strategies
They work best in trending markets During period of sideways movement they are
especially prone to generate false signals when trend (trendless) 1s measured by positive
(zero or negative) autocorrelations

223 Statistical techniques

Another forecasting approach 1s to study the properties and power of advanced
time-series techmques models By restricting the field of nvestigation to inear models, 1t
1s possible to develop procedures such as Box-Jenkins(1976) to denve the linear
forecaster which nunimises the mean squared error between forecasted and realised value
Proponents of these techniques are essentially found among academics and statisticians
and are widely used to forecast economuc time series A comprehensive study of such
procedures can be found 1in Granger and Newbold(1986), Gourneroux and
Monfort(1990) An application to forecasting exchange rates is provided by Keller(1990)
Although preferred by academucs, they are not ignored by quantitative investors as
testified by the journal "Stock and Commodities” from Weiss(1982a, 1982b, 1983) and
Parish(1990) It 1s often not easy to beat convincingly these simple linear umvanate
ARIMA So these stmple methods make excellent base-line models

There are two reasons that underpin the populanty of the Box-Jenkins methodology First
it allows to identify the underlying model and so to build efficient if not optimal
predictors Contrary to techmical systems, they are designed to exploit specific
autocorrelations The second one 1s given by Neftci(1991) If the true process 1s linear,
time varying vector autoregressions (VARs) should be optimal forecasters over and
above technical analysis on the conventional basts of mean squared errors (MSE)
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224 [Fundamental models
A detailed review of the economucs affecting prices 1s beyond the scope of this thesis, but

it may be useful to outline the "fundamentalist approach”

Fundamental analysts study the fundamentals of compames (1e earnings,
dividends, risk, assets, management ) industry sectors and the overall economy to
identify investment opporturuties Attention 1s focused on specific items of information
which are unknown to the market or which are considered to be incorrectly valued by the
market In the foreign exchange market, the prnimary focus 1s on monetary policy
Fundamentalists claim that jn the long term what underpin the trends of currency
movements are the balance of payments and relative prices

225 Patterns in financial forecasting and new avenues i

In the last fifieen years, techmical analysis has become increasingly used for financial
forecasting while fundamental analysts has decreased in importance

Recent experience has questioned the out-of sample accuracy of structural models
of price-rate determmnation Empinical studies of monetary/assets models developed n the
early 1980's?, indicate that no structural technique could appreciably outperform the
random walk model for any forecasting horizon less than 12 months In the foreign
exchange market, Frankel and Froot(1990 22) suggest that " It may [indeed] be the case
that shifts over time 1n the weight that 1s given to different forecasting techmques are a
source of changes in the demand for dollars, and that large exchange rates movements
may take place with httle basis in macroeconomcs fundamentals”

DuBo1s(1992) finds that techmcal indicators provide higher returns than
conventional fundamentals models i the equity market In addition techmical and
fundamental models are very little correlated This strongly indicates that technical
methods must be used in addition (if not substitute) of fundamental models It mught
explain why technical analysis has been increasingly used Firstly in the futures market,
and then 1n the foreign exchange market

Irwin and Brorsen(1985) review the trading strategies employed by public futures
funds Eighty-three percent of the funds used technical analysis The remaining seventeen
percent applied a combination of technical analysis and fundamental analysis

In the foreign exchange market, Allen and Taylor(1989) report that 90 percent of
the market participants apply chartists techniques for short term nvesting Frankel and

3 See Table 2 3 for references
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Froot(1990) examine the data of reviews made by Euromoney of between 10 and 27
foreign exchange forecasting services In 1978, 18 forecasting firms described themselves
as relying exclusively on economic fundamentals, and only 2 on techmcal analysis By
1985, the positions had been reversed Only one firm reported relying exclusively on
fundamentals, and 12 on technical analysis Alcabas(1991) observes a similar pattern mn
France He discovered that, among dealers and portfolio managers, the use of techmical
analysis has increased in frequency from thyty-five percent in 1985 to seventy-seven
percent tn 1990

Technical indicators have been preferred by market practitioners to linear
forecasters because as Section 2 4 2 illustrates, the behaviour of financial prices 1s non-
linear However, one of the imitations of technical analysis 1s the difficulty 1n developing
models of financial prices Consequently, new technologies have then been proposed to
take profit of nonlineanties expert system and neural network

Conventional expert systems techruques have been studied by Lee, Trippy, Chu and
Kim(1990), Pau(1991) Those technologies are especially suited for stmulating 1n pattern
detection Pau(1991) uses expert systems to learn usual chartist techmques such that
recogmtion of patterns 1s improved An artificial intelligence approach to analysing the
stock market prediction decision has been presented by Braun and Chandler(1988)
Neural networks can assist directly with nsk assessment, asset selection and timing
decisions They can be purely techmcal and so based only on the history of past prices
(White, 1988, Trnipp1 and DeSieno, 1992) In this case, neural network-based rules,
although more complicated in nature, can behave and exhibit performances close to well-
known mechanical systems Alternatively, neural networks can use external inputs such as
exogenous or fundamental vanables, (Collard, 1991)

The above list 1s not exhaustive There are many other techmques which can be
used to forecast financial prices such as the nonparametric rate prediction performed by
Diebold and Nason(1990), Satchell and Timmermann(1992a, 1992b)

23 AREVIEW OF THE LITERATURE

The weakness of forecasts based on fundamentals emphasises the need for other
forecasting strategies This research aims to contribute to the knowledge of financial
forecasting techmques based on past prices More precisely, 1t attempts to provide
answers to three issues, not yet addressed in the literature Namely

27



(1) the stochastic properties of technical indicators

(2) the relation between error measure and profitability and more specifically between
technical and Vectors Autoregressions (VARs) models.

(3) the similarities and differences between trading rules

2.3.1 Empirical evidence on the performance of forecasting techniques

Many early studies show technical analysis Yo be useless for predicting stock returns
(Fama and Blume, 1966) and exchange rates (Cornell and Dietrich, 1978). These works
base their conclusions on the Jack of profitability of filter rules. Since these early studies,
tests have been carried out on a regular basis and results now tend to favour technical
analysis. The opposing views about technical analysis are well summarised in
Malkiel(1990) and Ithurbide(1992). On the one hand, Malkiel(1990) is "biased against
the chartist" and postulates that the method is "patently false" having not found any
dynamic rule able to outperform a passive buy and hold strategy. On the other hand,
Ithurbide(1992) expresses the opinion that although chartism does not rely on argument
and does not allow to give an explanation to financial rates moves, its performance and
usefulness must not be questioned. Table 2.3 lists some academic studies about technical

and other financial forecasting methods.

Table 2.3: Financial forecasting studies

Assets Technique Usefulness Author
stock, statistical yes Taylor(1986)
commodities, [moving average, filter,channel,others|  yes Lukac, Brorsen and Irwin(1988b)
exchange rates statistical yes Taylor and Tari(1589)
moving average,filter,channel,others|  yes Brorsen and Boyd(1990)
technical adviser no Hartzmark(1991)
stocks filter yes Alexander(1961)
filter no Fama and Blume(1966)
filter yes Jennergren(1975)
filter no Frankfurter and Lamoureux(1988)
neural network(technical) no White(1988)
neural network(technical) yes Trippi and DeSieno(1988)
artificial intelligence yes Braun and Chandler(1988)
filter yes Sweeney(1988, 1990)
moving average, filter,oscillator yes Broquet et al(1990)
moving average, filter yes Brock et al(1992)
moving average, volume yes LeBaron(1992a)
non parametric technique yes Satchell and Timmermann(1992a)
technical yes Bulkley and Tonks(1992)
filter yes Corrado and Lee(1992)
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Table 2.3 (continued) Financial forecasting studies

commodities filter yes Bird(1985)
filter yes Kamdem(1988)
newal petwork(fundamental) yes Collard(1988)
statistical yes Leuthold and Garcia(1992)
exchange rates statisical no Giddy and Dufey(1975)
filter no Commell and Dietrich(1978)
statistical yes Bilson(1981)
filter \ Yes Dooley and Shafer(1983)
moving average yes Bera Debemnex and
Domergue(1983)
monetary/asset model no Meese and Rogoff(1983a, 1983b)
statistical no Nawrocki(1984)
MOVINg average yes Neftcr and Poliano(1984)
moving avcrage, filter maybe | Dc la Brusleric and dc Lattrc(1985)
technical adviser no Murphy(1986)
filter yes Sweeney(1986)
statistical yes Bilson and Hsich(1987)
monetary/asset model yes Boothe and Glassman (1987a)
technical adviser maybe Cumby and Modest(1987)
monetary/assel model no Thomas and Alexauder(1987)
moving average filter, momentums|  yes Schulmerster(1988)
techmcal adviser maybe Allen and Taylor(1989)
moving average yes Dunis(1989)
statistical yes Bulson(1990)
moving average, channel, statistical yes Taylor(1990a, 1990b)
non parametric technique no Diebold and Nason(1990)
moving average, filter no De 1a Bruslene(1990)
moving average yes Neftci(1991)
monetary/asset model yes Gerlow and Trmin(1991)
moving average, filter yes Levich and Thomas(1991)
trend Lines no Curcio and Goodhari(1991)
moving average yes LeBaron(1991)
moving average yes LeBaron(1992b)
support and resistance yes Curcio and Goodhart(1992)
statistical yes Taylor(1992a)
channel, statistical yes Taylor(1992b)
statzstical yes Lai and Pauly(1992)
non parametric techmque yes Satchell and Trmmermann(1992b)
moving average, filter yes Surujaras and Sweeney(1992)

As Table 2 3 shows, there has been a renewed interest in academuc lhiterature about
financial forecasting techniques and 1ts ability to predict future prices However not all
results are comparable for at least three reasons Firstly, the methods employed differ
from chartist techmques and mechanical systems to statistical and monetary models
Secondly, performance has been evaluated in different ways, manly error measure and
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profitabihty Thurdly, the underlying asset and period of mvestigation have considerably
varied although there 1s a net preference for exchange rates studies

An homogenous framework mught be better achieved by studying the statistical
distribution of techmcal investments A better understanding of financial forecasting
methods might result from such researches

232 Stauistical distribution of dynamic stral\egzes

Many of the previous studies of forecasting strategies have used historical returns to
explore the investment trade-offs mvolved These studies serve a very important role in
suggesting the historical behaviour of such rules However they may not constitute an
approprate guide, because their results are highly dependent on the asset and time penod
covered by the research Also a hustorical study mught provide madequate precision in
defining the shape of the return distribution Histonical data allow only a very narrow
interpretation of historical events (1 e that there was only one course history might have
taken and the future could take) We believe this to be an unreasonably restrictive view of
reality For this kind of information, one has to turn to theoretic or stochastic modelling

The use of stochastic modelling to study the statistical distnbution of dynamic strategies
consists 1n three steps
(a) Determiming plausible models of prices (Section 2 4)
(b) Establishing corresponding returns distributions of dynamic strategies (Chapters 3
and 5)
(c) Checking the vahdity of the model by comparing observed and theoretical returns
of dynamuc strategies (Chapters 6 and 7)

The returns distribution of a Buy-and-Hold strategy has the same shape as the distnibution
of price returns used to produce 1t The same sn't true for more complex strategies The
returns distribution of dynamic strategies can be different from that of the underfying
model and subsequently needs specific studies Tables 24 and 2 S list some of these
works for portfolio msurance and techmcal analysis strategies They indicate

- the assumption made about the underlying process

- the rule under study

- the finding, distribution or moments, expected value plus vanance

- the techmque used to establish results exact analytical development, Monte-Carlo
simulation or Bootstrap methodology*

4 See Section 6 3 1 for details about the bootstrap methodology
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Table 2.4: Distnbution of portfolio insurance returns

Assumption rule distnibution {moments Author
Random Walk option cxact | Cox and Rubinstcin(1983)
with Dnft option stmulation Asay and Edelsburg(1986)
constant proportion sumulation Etzion1(1986)
option simulanon Bookstaber and Clarke(1987)
oplion sunulation Clarke and Amott(1987)
constant propartion \ exact | Perold and Sharpe(1988)
constant proportion, option | simulation Zhu and Khavee(1988)
constant proportion exact Perold and Sharpe(1988}
constant proportion, option | stmulation Bird et al{(1990)
constant proportion. stop loss exact Black and Perold(1992)
Sental Correlation constant proportion simulation Tripp apd Harn (1990}

Table 2 4 shows that most often the strong assumption that active and reserve
assets follow geometric Browman motion 1s made Except Black and Perold(1992) who
give some results concermng path-dependent strategies (discrete rebalancing CPPI and
stop-loss strategy), studies have mainly focused on path-independent strategies since
under the random walk assumption only path-independency can maximise expected utility
and be of mterest Exact analytical results of expected value of portfolio insurance
techniques can be found 1n Cox and Rubinstein(1985) for the option strategy, Black and
Perold(1992), Perold and Sharpe(1988) for the constant proportion strategy Simulations
have been necessary to establish the whole shape of option returns Clarke and
Armott(1987), Bookstaber and Clarke(1987), Zbu and Kavee(1988) among others have
shown that options returns are able of reshaping the distribution of underlying returns
The distribution of options returns 1s not any more symmetnc, but left-truncated and the
natural skewness of the log-normal return distnbution increases dramatically Zhu and
Kavee(1988) shows that those features apply as well for the constant proportion
technique The robustness of portfolio insurance strategies to meet their goal under
different market conditions and in particular their ability to protect aganst loss, have been
proved by Trippt and Harnff(1991), Fong and Vasicek(1989), Bird, Cunningham, Denms
and Tippett(1990)

On the one hand, the distributions of portfolio insurance returns have been the object of
numerous researches in the literature On the other hand, the distribution of techmcal
analysis returns has been the subject of very few academics researches as Table 2 5
shows

31



Table 2.5: Distribution of technical analysis returns

Technical Analysis
Assumption rule distribution| moments Author
Random Walk filter exact "Praétz(1976)
with Drift filter exact Bird(1985)
filter exact Sweeney(1986)
moving average. slope simulation Tomek and Querin(1984)
moving average, filter : bootstrap Levich and Thomas(1991)
moving average bocitstrap Brock et al(1992)
moving average bootstrap LeBaron(1991, 1992b)
AR(l) moving average, filter bootstrap Brock et al(1992)
moving average bootstrap LeBaron(1992b)
AR(2) moving average bootstrap LeBaron(1991, 1992b)
ARMA(1. 1) |moving average,channel,statistical simulation Taylor(1990a)
channel,statistical simulation Taylor(1992b)
moving average bootstrap . LeBaron(1992b)
GARCH moving average, filter simulation Brock et al(1992)
moving average bootstrap LeBaron(1991)

Exact theoretical results about technical analysis are extremely limited and concern the
random walk with drift hypothesis only (Praétz, 1976; Bird, 1985; Sweeney, 1986). In
addition, only the expected value and variance of technical rules are provided. Other
models that have been used in the literature include serial autocorrelations and changing
variances’. However corresponding expected values of trading rules have not yet been
formalised. The main reason has been that such results are analytically intractable and too
complicated (Trippi and Harriff, 1991; Brock, Lakonishok and LeBaron, 1992; Black and
Perold, 1992). Instead, expected values of trading rules have been estimated either
through bootstrap approach (Levich and Thomas, 1991; Brock, Lakonishok and
LeBaron, 1992; LeBaron, 1991), or simulation (Tomek and Querin, 1984; Taylor, 1990a,
1992b; Brock, Lakonishok and LeBaron, 1992; LeBaron, 1991, 1992b). Taylor(1986)
argues " the distribution of the return from a filter strategy under the null hypothesis of an
efficient market is not known, so that proper significance tests are impossible ". He adds
that it is unclear how the strong assumption, of identically and normally distributed

returns, can be relaxed.

In any case, the random walk assumption, although acceptable when studying portfolio
insurance strategies, is clearly insufficient to assess the ability of technical analysis to meet
their goal under different market conditions. Most statisticians and probability theorists
would agree that if prices or prices changes are independent, then it would be difficult or
impossible to use the past history of prices to develop a realistic trading strategy.

5 See Section 2.4 for further details
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On the other hand, 1f prices or price changes exhibit time dependence, then the past
history of prices can potentially be used to develop a reasoned and profitable strategy
(Sherry, 1992) As far as market efficiency tests are concerned, the statistical question of
dependencies s not particularly relevant on tts own The question 1s instead can investors
exploit any dependency (be 1t "statistically significant or not") ?

Serial correlation 1s probably the simplest and most easily understood
charactenistic of a price senes capable of justifying path-dependent strategies and so the
use of many mechamical systems Establishing expected value of path-dependent
strategies for any Gaussian process 1s of interest since 1t will ascertain whether such
dynamuc strategies meet their goals Solving this issue will allow to determine 1f non-zero
profit can be expected from such methods and if this 1s the case what the parameters are
that make such a rule profitable The problem of specifying the relationship between
techmical rule returns and standard statistical measures of serial dependency 1s pursed in
previous research using empirical observations (Corrado and Lee, 1992) but not using
stochastic modeling The latter specification 1s useful because techmical rule retumns
provide a measure of economic significance for senial dependencies in financial returns
that otherwise mught not be readily interpretable French and Roll(1986), for example,
note that gauging the economic significance of daily stock return autocorrelations 1s
difficult The reverse question 1s "How large deviations from randomness, as measured
for 1nstance by runs tests and senal correlations, are required 1f there 1s to exist profitable
mechanical trading rules of the filter type 7" (Jennergren, 1975 67)

An informal answer 1s at the present state of knowledge that there exist trends
The reason 1s that convex technical rules require trends to be profitable (Perold and
Sharpe, 1988, Trippt and Harniff, 1991) The main concern of market practitioners 1s to
elaborate statistics allowing to separate random dnfts from trends (Poulos, 1991, 1992a,
1992b) Despite the fact that academics themselves recognise the difficulty they have in
giving a formal definition of trend, attempts have been made nevertheless, and then will
be discussed 1n details in Section 2 4 Formulating trends from a pure statistical point of
view 1§ of importance because 1t permuts to study the profitability of techmcal rules when
there are such trends (Taylor, 1990a, 1992b, Brock, Lakonishok and LeBaron, 1992,
LeBaron, 1991, 1992b) Previous studies have proceed by bootstrap or simulation
approach and so, as Curcio and Goodhart(1992) admut, they have not been able to
examune how trading rule returns are related to the statistical charactenstics of the
underlying sertes Empurcally, the relationship between the magmtude of senal
correlation coefficients and the expected profits of technical trading rule 1s difficult to
extubit (Fama and Blume, 1966) Our goal 1s to show that using stochastic modelling, 1t 1s
possible to establish the parameters of the underlying process which can generate non
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zero expected return from technmical analysis This will be informative for both
practitioners and academics

It could firstly allow practitioners to know under which market conditions what technical
rules perform Chapter 3 and Section 4 1 intend to solve this 1ssue when the underlying
asset follows a Gaussian process Secondly relating rule and underlying returns would
allow academucs to test the adequacy of thewr models by measuring the fitness of observed
with expected rules returns That 1s the purposg of Chapters S, 6 and 7

233 Error measures and profitability

The methods that are proposed as providing useful forecasts of price changes or returns
need to be evaluated The problem is that there does not exist an umque universal
performance criterion In finance there are mainly two, profitability and error measure,
usually depending on the nature of the forecaster technical or statistical It explains why
those two kinds of forecasters have often been considered as unrelated mvestment
strategies For instance Dums(1989) and Keller(1989) treat both financial forecasting
methods 1n different chapters of a same book 1gnoring any possible analogy The same
applies for Herbst(1992) Recently efforts have been made to compare technical and
statistical forecasters 1n a common literature review (Granger, 1992), survey (Allen and
Taylor, 1989) and theoretical work (Neftct, 1991) Allen and Taylor(1989) compare a set
of empincal chartist forecasts in the London foreign exchange and the Box-Jenkins
approach Then they establish ranking of forecasting techniques m terms of mean squared
error and find one chartist able to sigmficantly outperform Box-Jenkins forecasters
Neftc1(1991) stipulates that if the underlying price process {P,} 1s linear 1n the sense he
defines then no sequence of Markov times obtained from a fimite history of {P,} can be
useful in prediction over and above (vector) autoregressions Nevertheless he does not
quantify forecasting accuracy of technical analysis and mmplicitly concludes that in terms
of error measure, techncal forecasters are suboptimal when the process 1s linear

However a puzzling question first asked by Elton and Gruber(1972) has not yet been
answered what are the sets of conditions under which particular mechamcal techniques
are optimum forecasters ? This of course raises the question of how does one define
optimality ? Are the rankings of forecasting methods cnteria dependent ? Is the most
accurate system in term of mean squared error the most profitable ?

In the affirmative, how musspecified are technical analysis indicators relatively to
optimal ARMA forecasters Are technical analysts "in complete darkness" or not too far
from the optimal system ?

In the negative what 1s the most profitable forecaster ? This question 1s still open
at the present time
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Economists are often puzzled as to why profit-maximising firms buy professional
forecasts when statistics such as the root-mean squared error or the mean absolute
percentage error often indicate that simple extrapolative models such as the random walk
forecast almost as well Leitch and Tanner(1991) conclude that a possible reason 1s that
these traditional error measures may not be closely related to a forecast's profitability
Friend and Westerfield(1975) argue that trading rules could test the economic quality and
quantity of information whereas statistical tests can only test for the existence of the
information White(1988) believes on the one hand that the method of least squares 1s
adequate for testing the efficient market hypothesis On the other hand, he strongly points
out that least square 1s not necessarily the method that one should use if interest attaches
to building a rule for market trading purposes Such rules following White(1988) should
be evaluated and estimated using profit and loss in dollar from generated trades, not
squared forecast error Leuthold and Garcia(1992) express a slightly different opinion
They behieve that relattive Mean Squared Errors provide only an idication of the potential
for market mefficiency A sufficient condition for market mefficiency would be whether
the forecasting method can generate risk-adjusted profits which exceed the cost of usage
Mlls(1992 36) states "Financial market are often predictable to some extents, but the
crucial question 1s whether this predictability can be exploited to make excess profits
from trading 1n the markets "

In sum, academics unanimously recognise that error measures and profits are different 1f
not unrelated performance criteria They however disagree on the consequences of these
discrepancies on market efficiency tests Still no theoretical attempts to our knowledge
have been made to relate ex-ante profits and error measures That will be the object of
Chapter 4 which will compare accuracy and profits of quantitative techmques assuming
that the price process 1s Gaussian

234 Swmilarities and differences between trading rules

Theoretical correlations between statistical and technical trading rules are an alternative
way to relate forecasting methods Establishing theoretical correlations between trading
rules has been considered as an extremely difficult task (Brock, Lakomshok and LeBaron,
1992) However mn Section 5 1, 1t 1s shown that exact analytical resuits can be obtamned
under the assumption that the underlying process of price returns follows the random
walk without drift There are three reasons for investigating correlations between trading
rules

Firstly, rules correlations would provide a measure of similanty between trading
systems With the exception of Lukac, Brorsen and Irwin(1988a), rules have been merely
listed than classified on the basis of their properties Rules belong normally to two
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classes (a) trend-following and (b) overbought-oversold indicators (Kaufman, 1987,
Schwager, 1984, Bechu and Bertrand, 1992, Cahen, 1990) Overbought-oversold
indicators differ from trend-following systems in that they are designed to anticipate
rather than simply lag changes in price movements They include among others the
momentum and moving average oscillators They often have been considered and
reported as non-trend-following rules (Allen, 1990) That 1s obviously a musconception
that this thesis will attempt to solve Many systems which are considered to be different
are extremely simular if not completely 1dentical A simple example 1s the stnct 1dentity
between the indicators simple moving average of order 2 and momentum of order 14 So
1t seems to us that distinguishing rules on the basis of their convex-concave properties 1s
far more relevant and less ambiguous than on the basis of trend-following, overbought-
oversold A proper classification of trading rules 1s therefore needed Such a classification
would be of immense help For instance, 1t 1s not unusual to find trading rules based on
more than three parameters So testing the profitability of such a rule, at each
combination of possible parameters, can be time consuming and a demanding task even
for powerful computer Prado(1992) designs to this effect search algorithms He however
recognises that the lack of thoroughness caused by the very imited scope of the step
search can prove to be large drawback in some cases, especially if the step search reveals
that each variable contributes sigmificantly to performance It follows that the knowledge
of trading rule correlations mught allow more efficient search algonthms

Secondly, rules correlations would permut the construction of an efficient
portfolio of rules Until now such portfolios have been build empirically for given
financial time series, (Brorsen and Lukac, 1990) but have never been established
theoretically for given stochastic processes

Thurdly, rules correlations would allow the establishment of the joint profitability
of mechanical systems The resulting tests of non-zero profitability could then be more
powerful than any single test (Brock, Lakomshok and LeBaron, 1992) Thus pomnt will be
considered in Chapter S

24 MODELS IN THIS RESEARCH

Section 23 2 has shown the advantages of establishing the return distmbution of a
techmcal strategy using theoretic or stochastic modelling Stochastic modelling 1s used n
the research to assess the abihity of forecasting strategies to meet their goal under a broad

6 Ttus fact has been 1gnored by Goldberg and Schulmeister(1988)
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set of market conditions Subsequently, this will allow to determine models for prices or
returns which can reproduce all the known properties of recorded prices, and n particular
the trading rules performances

The probabilistic foundations of prices changes have been first established by
Bachelier(1900) The basic hypothesis 1s that the market does not believe, at a given
moment, either to an increase nor to a decrease of level Consequently, the expected
value from speculation 1s zero There are n fact three statistical hypotheses m
Bachelier(1900) model

(a) the process 1s strictly stationary

The multivanate distribution of price changes does not depend on the choice of time

(b) the process 1s without memory

Price changes are independent over time The knowledge of past vanations cannot give
any indication about 1ts future values

(c) the variance of the process exists

More precisely, Bachelier(1900) implies that prices changes have independent and
normal distributions Then Osborne(1959) mnstead of considering the process of price
changes prefers studying the quantity

X, =Ln(P,/P_,) [21]

where P, 1s the asset price recorded once on each trading day t (week, month, year),
always at the same time of day It 1s assumed 1n addition that no dividends are paid during
day t Osborne's(1959) transformation 1s due to the fact that direct statistical study of
financial prices 1s difficult because consecutive prices denote non-stationarnty
Subsequently first differencing 1s necessary to achieve stationarity In addition, the
logarithmic transformation aims 1n particular at dimimishing scale effects Then continuous
time generalisations of discrete time results are then easier and returns over more than
one day are simple functions of single day returns Returns are said to be normally
distributed or alternatively prices lognormally Numerous operational applications have
followed from these results and its continuous version such as option and portfolio
mnsurance theortes For instance, the Black-Scholes(1973) option pricing formulae are still
widely used

However two observations seem to contradict the assumptions of independent
normal returns Firstly, market prices exhibit slow and wuregular cycles which question the
hypothesis of independence Alternative models can still be normal but dependant (linear
models) Secondly, financial time series often present discontinuities or jumps far too big
to be compatible with normal process (nonlinear models)
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It appears in many cases difficult to refute the stationanty hypothesis (a) which might be
the most important 1 Bachelier(1900) assumptions When the stationarity hypothesis 1s
rejected, the statistical framework becomes unoperational if not unclear A notable
exception 1s the ARCH model”

A choice of which models to include in this research had to be made because
financial models are abundant and in growing numbers The reader is referred to
Duffie(1988) and Roger(1991) for good introductions to financial modelling, and for
deeper approaches to Taylor(1986) and Baillie and McMahon(1989) It seems here
unreahstic to consider all the models proposed 1n the hiterature to charactense financial
pnces Our selection has been based on two cntena, populanty and tractability The
models presented below reproduce the broad, popular and plausible features of financral
prices previously mentioned In addition, it will be possible to study ther ability to
duplicate trading rules returns |

241 Linear models

Stock indices have often exhibited trends and cycles implying the presence of senal
correlation over business and election cycles and during penod of economuc instability In
addition serial correlation has been frequently observed n the prices of other types of

assets, such as commodities and currencies

So 1t 1s not unreasonable, at least as a first approximation, to consider Gaussian models of
financial prices That 1s, the jomnt distribution of (X1, X4, Xi4y) 1S multivariate normal
for every possible integer k Gaussian processes will be defined by

p=E(X) o= Va(X),

py, = Corr(X,,X,;) = autocorrelations between X, and X,
Stationary Gaussian processes are always linear
A more general definition of linear process 1s

X, =+ be,, [22]
=0

where {g,} 1s a zer0 mean stnct white noise process and constants b,

There are three important special cases of linear models the moving average MA(q), the
autoregressive AR(p) and the autoregressive-moving average ARMA(p,q) models They
are respectively defined by

7 See Section 2 42
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Moving Average process MA(q)

q
Xt =u+81_.zlbj8t_j ’ [23]
J=
where {g,} is a zero mean strict white noise process and constants b;.

Auto-Regressive process AR(p)

Xy = u+§(a,-Xt_,- —u)+e, [2.4]

=l .
where {g,} is a zero mean strict white noise process and constants a,.

Auto-Regressive moving-average process ARMA(p,q)

p q
X, =u+zaj(Xt—j—U)+8t_Zbiet-i [2.5]
= .

= i=1
where {g,} is a zero mean strict white noise process and constants a, b;.

Financial models usually investigate ARMA(p,q) for p+q<2, Taylor(1986).

Price trend model

Taylor(1980) proposes an original approach to model trends in financial prices. Let us
first recall his price-trend hypothesis and then adopt a simple example consistent with this
hypothesis.

The fundamental trend idea is that several returns are influenced in the same way, either
towards a positive conditional mean or towards a negative conditional mean (Taylor,
1986). Thus trends will cause positive autocorrelations. The impact of that current
information which is not fully reflected in the current price, upon future returns, should
diminish as time goes on. Thus the autocorrelations should decrease as the lag increases.
The simplest parametric autocorrelation filnctions consistent with the observations has
been first investigated in Taylor(1980), and is defined by:

H;: p, = Ap" A, p, h>0 [2.6]

There are two parameters in H; Parameter A measures the proportion of information not
reflected by prices within one day. Parameter p measures the speed at which imperfectly
reflected information is incorporated into prices. As A—0 or p—0, information is used
perfectly. Credible price-trend models have typical parameter values A=0.03 and p=0.95
(Taylor, 1986). Low values for A are inevitable whilst values for p near to 1 indicate
trends lasting for a long time.
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One simple example assumes the return X, 1s the sum of an autoregressive trend
component |, and an unpredictable residual e,

X, =K, +e [27]
u—p=plpe —H)+6 [2 8]
A = Var(p,)/Var(X,) [29]

The returns then have autocorrelations p, = Ap"  [26]

The processes {11,}, and {e,} are supposed to be stochastically independent and Gaussian

s

processes (hence linear)

Equation [2 8] 1s a measure of the proportion of slowly reflected information The first
day, there 1s a probability p that the news 1s slowly reflected and contnibutes to p,-p and a
probabihity 1-p that the news 1s quickly reflected and contnibutes to e, Prices, therefore,
would tend to move in one direction (the trend) for a period of time and that these trends
themselves change m a random and unpredictable fashion Then the total response 1s
equal to m, times the first day’s response and m, will be called the mean trend duration

of such trends It 1s shown to be
my =1/(1-p) (2 10]

The price-trend model 1s 1n fact nothing else than a state representation of an ARMA(1,1)
defined by

Xy ~n-p(Xi — W) =& — Q8 (2 11]
where the vanance reduction A 1s linked to p and q via
A=(p-q)1-pa)/{p(1-2pq+q*)} (212]

Consequently, 1t allows to include this particular price-trend model as a special
case of Gaussian processes?

There are many more statistical models consistent with the price-trend hypothesis, such
as models which include changing conditional vanances and nonlineanities They can be
found 1n Taylor(1986) For the sake of tractability, these models will be 1gnored in this
thesis and other nonlinear models preferred

242 Nonhnear models
One of the first complete studies on daily returns was done by Fama(1965) who found

that returns were negatively skewed and leptokurtic More observations were in the left-
hand (negative skewness) tail than in the nght-hand tail In addition, the tails were fatter,

8 Tius pornt will be of extreme importance 1n Chapter 3
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and the peak around the mean was higher than predicted by the normal distnbution
(Ieptokurtosis)

Since then, many studies have shown that market returns are not normally distributed
(Taylor, 1986, Boothe and Glassman, 1987b, Tucker and Pond, 1988, Hsieh, 1988) but
rather follow a stable paretian distribution, meaming that the vanance 1s infinite,
(Mandelbrot, 1971, Cornew, Town and Crowson, 1984, McFarland, Petit and Sung,
1982) More generally there 1s a growing evidence that prices are nonlinear, (Hinich and
Patterson, 1985, Gooyer, 1989, Brock, Hsieh and LeBaron, 1991) Since the class of
nonlinear stochastic model 1s extremely large, we restrict our attention to two classes,
which encompass all nonlinear stochastic models discussed m the time series literature
(Brock, Hsieh and LeBaron, 1991)

Mean-Nonlinearity X, = A ¢

Vanance-Nonlinearity X,=B{J) e,

where J, =[X,;, ,X. 01> &l Here g 1s an IID random vanable with zero man and
independent of past X's and €'s, and A and B are arbitrary nonlmear functions of J,

In this thesis, attention will be limited, for the sake of tractability, to the ARCH(p) model
for the vartance-nonlineanty case and to the fractional Gaussian process for the mean
nonlinearty case

Autoregressive conditional heteroskedasticity ARCH(p)

The approach to modelling changes in conditional vanances 1s due to Engle(1982)
Engle(1982) defines a zero-mean, autoregressive conditional heteroskedasticity ARCH(p)
process, X,, by

P
Xt :u+{ O‘o+Z°‘1(Xt—1_U)2 }et [2 13]
1=1

there being p+1 non-negative parameters o, with o >0 and g, Gaussian white noise, with
g~N(0,1) This model has very complicated unconditional distribution and 1t 1s difficult to
establish conditions for stationanty and then to find the moments However, it must be
emphasised that an ARCH process constructed from strict white noise will always be
uncorrelated Then extensions have been proposed to introduce small autocorrelations,
(Taylor, 1986) The ARCH model 1s in fact one of the many possibilities to model
changes n conditional vaniances (Taylor, 1987, Curdy and Morgan, 1987, Bailie and
McMahon, 1989) It has nevertheless profound mmplcations on financial theory,
(Goureroux, 1992)
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Fractional Gaussian procéss

The efficient market hypothesis implicitly assumes that all mvestors immediately react to
new information, so that the future 1s unrelated to the past or the present Peters(1991)
assumes on the other hand that most people wait for information and do not react until a
trend s clearly established The amount of confirming information necessary to validate a
trend vares, but the uneven assimilation of information may cause a biased random walk
Biased random walks were first studied by Hutst(1951) They are equally called fractional
brownian motions or fractal time series Since Mandelbrot(1971), fractional noise has
become a quite popular model of financial rates and 1s now considered as a plausible
alternative to the random walk hypothesis (Walter, 1990, 1991, Peters, 1991, Sowell,
1992)

A good mtroduction to long memory time series and fractional differencing can be found
in Granger and Joyeux(1980) A discrete time analogue of continuous-time fractional
noise 1s given mn Hosking(1981) Hosking(1981) discretization has got the advantage
beyond others to be a simple extension of hnear Gaussian processes While still keeping
the stationanty hypothesis, this model has now the potential to explain price jumps
emptrically observed

An ARIMA(0,d,0) process or fractional Gaussian process, 1s formally defined by
Hosking(1981) as

VX, -u)=e, (2 14]

where v¢ = (1-B)* = 3" ($)(-B)* =1-dB-1d(1-0)B* - 1d(1-)2-d)B* - [2 15)

k=0
and B 1s the backward operator defined by B(X)=X,,, 1 the mean return and {e,} the
white noise process In this thesis, the {e,} consists of independent 1dentically distributed
(normal) random variables with mean zero and vanance 62 The following theorem gives

some of the basic properties of the process, assuming for convemence that 62 =1

Theorem |

Let {X} be an ARIMA(0,d,0) process

(a) When d<%, {X,} 1s a stationary process and has the mfimite moving average
representation

S k+d~-1)!
Xi=u+ € W =_(____\_“
¢ =k IZ(:)WK -k Where v, K@D
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(b) When d >—1, {X;} 1s invertible and has the infinite autoregressive representation

= k~d-1)!
Se, (X =e, where 5 =S4
_ _ (=D (=2d)!
(c) the covariance function of {X;} 15 v =E(X X)) = k—d)(-k_d)]
\
and the correlation function of {X,} 18 p, = L& = derd-D (k=0,x1, ) [216]

To (d-D(k-d)!

From the theorem we see that when —4 <d <41, the process {X,} 1s both stationary and
mvertible Both y, and &, decay hyperbolically, rather than showing the exponential
decay charactenstic of an ARIMA(p,0,q) process McLeod and Hipel(1978) define a
stationary process as having a long or short memory according to whether 1ts correlations
have an infinite or a fimte sum Theorem 1 imphes that the ARIMA(0,d,0) process is a

long memory stationary process when 0 <d <3

When 0<d <1, the ARIMA(0,d,0) as such may be expected to be useful mn modeliing

long-term persistence The spectrum as a whole has a shape "typical of an economic
variable” (Granger, 1966) The correlations and partial correlations of {X,} are all
positive as for the price-trend model If the senes has been up (down) in the last period,
then the chances are that it will continue to be positive (negative) i the next period
Walter(1991), Peters(1991) even add that in this case trends are apparent The closer d is
to 0, the nouster the trend-reinforcing behaviour will be, and the less defined 1ts trends will
be

When d=0, the ARIMA(0,d,0) process ts white noise, with zero correlations and constant
spectral density The present does not influence the future

When -1 <d <0, the ARIMA(0,d,0) process has a short memory and 1s an antipersistent
or ergodic sernies It is often referred to as "mean reverting" Except p, =1, the
correlations and partial correlations of the process are all negative If the series has been
up 1n the previous period, 1t 1s more likely to be down 1n the next pennod This kind of
senies would be choppier, or more volatile, than a random series, because 1t would consist
of frequent reversals

The fractional Gaussian process has only three parameters, mean, vanance and
fractional parameter d or alternatively the Hurst exponent H which 1s linked to d by the
relation given by Hosking(1981), Geweke and Porter-Hudak(1983)
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H=d+0 5 : (217]

The Hurst exponent describes the likelhthood that two consecutive events are lhikely to
occur (Peters, 1991) If H=0 6, there 1s, 1n essence, a 60 percent probability that if the last
move was positive, the next move will also be positive

Fmancial fractional Gaussian process usually fall in the range 0<d <31 or

equivalently 1 <H <1 (Walter, 1991, Peters, 1991) They so are characterised by a

tendency to have trends and cycles, as the price-trend model However opposite to this
one, the fractional Gaussian process exhibits abrupt and discontinuous changes because
of an infimte, or undefined vanance Cycles are no longer regular but erratic and
aperiodic

Two important properties of chaotic time series must be highlighted
(a) The generated time series are completely apenodic, 1 e they never repeat themselves
This does not mean that the observed patterns have to be totally disorderly It 1s very
possible as mentioned earher that one can distinguish patterns that look like cycles but
that suddenly disappear after a number of periods Also 1t 1s possible that the vanance of
the observed time senes remams constant for a long period of time and then changes
without reason
(b) In addition to this apenodic behaviour, chaotic systems have a second remarkable
property The generated time series are extremely dependent on iutial conditions In
order to use the model for forecasting purposes, we should be able to obtan infinitely
precise estimates of the parameters of the model

Finally 1t must be satd that the fractional Gaussian process 1s a particular case of a more
general model, the ARIMA(p,d,q) model (Hosking, 1981, 1984)

Benefits can anise from considering nonlinear models Granger(1992) indicates that many
forecasters need to break away from simple linear umivariate ARIMA Following
Granger(1992), 1t is often not easy to beat convincingly these simple methods, so they
make excellent reference models, but he concludes that they often can be beaten Diebold
and Nason(1990) expressed a mixed opinzon about nonlinear models On the one hand,
they recogmse that important nonlineanities may be operative mn exchange rate
determination On the other hand they ask a puzzhing question " Why 1s 1t that while
statistically significant rejections of hneanty in exchange rates routinely occur, no
nonlinear model has been found that can sigmificantly outperform even the simplest linear
model 1n out-of sample forecasting ? " Despite 1ts increasing populanty, the evidence for
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chaotic and infinite variance models 1s not strong (Lo, 1991) Finite-vanance models
often outperform asymmetric stable distribution (Tucker, 1992)

It follows that nonhnear models constitute a sertous alternative to linear models,
although not yet a substitute It has not yet been proved that nonlinear models yield
significant ex-ante forecast improvement (Diebold and Nason, 1990) Finally, there
appear to be weak connections between: techmcal trading rules and nonlineanties in
foreign exchange series (LeBaron, 1992b, Antamewicz, 1992)

This 1s why our choice of models seems a prion rational in terms of both economic and
statistical importance

2.5 SUMMARY

Both portfolio insurance strategies and forecasting methods are similar in that they are
convex However they differ in that the forecasting methods applied 1n trading are path-
dependent, while portfolio nsurance techmiques are generally path-independent Thus
crucial difference 1s the result of opposite views about the statistical nature of the process
which drives prices

If financial prices follow a random walk, path-independence 1s required to maximise the
utility function of an investor Then nvestment strategies are formulated not for purpose
of enhancing returns, which is not possible under the assumption of random walk, but in
order to reshape the onginal return distribution, so as to mmmise the downside nisk

If financial prices do not follow a random walk, path-dependent strategies can be of use
However one needs to establish under what particular market conditions, what particular
forecasting strategy 1s useful The most apparent cnterion for measuring the usefulness of
path-dependent strategies 1s profitability

To assess profitability, one has to turn to stochastic modelling, because 1t 1s the
only tool available which 1s independent of time period or asset Therefore, plausible
models of financial prices are presented Since maximusing returns 1s the primary objective
of market timers, the expected return of a trading rule 1s subsequently the most important
statistic which needs to be established
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Chapter 3

STOCHASTIC PROPERTIES OF TRADING RULES

According to portfolio msurance studies, the best way to estimate the distributional
properties of an investment strategy 1s through stochastic modelling That 1s done 1n this
chapter for forecasting strategies, by assuming that loganthmuc returns follow rather than
a random walk any Gaussian processes That constitutes a considerable improvement of
past studies since 1t covers a wider range of possible market conditions Particular
emphasis 1s given to the expected return of trading rules by providing exact analytical
formulae This chapter contributes to the discussion of economic versus time series
analysis by addressing two fundamental issues of this debate

a) Are the models proposed by academics useful for forecasts ? In other words
can a profitable decision rule be based on them ?

b) Are technical forecasters able to trade profitably ?

Section 3 1 defines the trading rule process Section 3 2 explans the goal of stochastic
modelling and our underlying assumptions Section 3 3 defines VARs models and their
expected rate of return Section 3 4 shows that many techmcal mndicators can be
reformulated as VARs models Consequently, techmcal and VARs predictors used for
trading purposes are seen as "linear rules" and therefore can be examned 1n an umfied
framework Finally, Section 3 5 summanses and concludes our results

31 TRADING RULES

311 Rule signals
Suppose that at each day t, a decision rule 1s applied with the intention of achieving

profitable trades It i1s the price trend which 1s based on market expectations that
determines whether the asset 1s bought or sold When the asset 1s bought, the position
mtiated m the market 1s said to be "long"” When the asset 1s sold, the position imtiated i
the market 1s said to be "short" A forecasting techmque 1s assessed as useful and will
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subsequently be used 1if 1t has economic value In short, the forecast 1s seen as useful if in
dealer terms, 1t can "make money" For achieving this purpose, market participants use
price-based forecasts Therefore the predictor F, 1s completely charactensed by a
mathematical function f of past prices {P,, P, }'

F =f(P, ,P )

>t t-m+1>

The only crucial feature which 1s required from the forecasting technique 1s its abiity to
accurately predict the direction of the trend 1r} order to generate profitable buy and sell
signals Trading signals, buy (+1) and sell (-1), can then be formalised by the binary
stochastic process B,

"Sell " = Bt =-1 Qe Ft = f(P; ) 7P1—m+19 ) <0
"Buy" < B,=41 & F =P, ,P_ . )>0

It must be remarked that the signal of a trading rule is completely defined by one of the
inequahties giving a sell or buy order, because if the position 1s not short, 1t 1s long

Only 1n the trivial case of a Buy and Hold strategy, the signal B, 1s determimstic and 1s +1
wrrespective of the underlying process Otherwise, trading signals B, are stochastic
variables They are time sertes of binary data generated by an underlying time series of
continuous data The famuly of discretization mechanisms 1s broad since 1t is the one of
trading rules But 1n all cases, discretizations arise by a truncation of a continuous-valued
process which 1s a special case of Keenan(1982) By nature, the signal 1s a highly
nonlinear function of the observed price series P, (Neftct and Pohano, 1984, Neftci,
1991), and therefore 1t can be highly dependent through time B, remamns constant for a
certain random pertod, then jumps to a new level as P, behaves 1n a certain way Trading
1n the asset occurs throughout the investment horizon at times that depend upon a fixed
set of rules and future price changes

As an example, consider a moving average of order five (days) defined as

3 P,+P_+P_,+P_3+P_,
5

f(Pta s Py et )=Pl

Figures 3 1[a] and [b] illustrate this behaviour when applied to the moving average
method which says when the rate penetrates from below (above) a moving average of a
given length, a buy (sell) signal 1s generated

1 or loganthmic returns {X;, Xem }, since these ones are simple function of past prices
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.Simple moving average method
5-days moving average
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Figure 3.1: The simple moving average method.
a. price series, b. signal time series, ¢ return oscillator
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312 Rule returns

The study of the binary process of signals 1s of limited interest for trading purposes The
focus should be the economic consequence, 1¢ the returns process implied by the
decision rule, rather than on the generating process of the signal

Let us recall the investment strategy

Assume a position 1s taken 1n the market for a élven period t-1,t] The loganthmic return
dunng this time 1s X, =Ln(P,/P_;) The nature of the position (long or short) 1s given
by the signal tnggered at time t-1, B, following a given techmical rule

Returns at time t made by applying such a decision rule are called "rule returns" and
denoted R, Their value can be expressed as

31]

Rt=—Xt lf Bl—lz_l
R;=B_, X, <

Rt=+Xt 1f Bt—l:+1

Two important remarks should be made

(a) Rule returns are the product of a bimary stochastic signal and a continuous returns
random variable Except 1n the trivial case of a Buy and Hold strategy, the signal B, 1s a
stochastic vanable and so rule returns are conditional on the position taken mn the market
(long B, = +1 or short B, =-1) That 1s the main feature of rule returns Up to this pont,
little attention has been paid to the rule returns process Earlier studies have mainly
focused on the price change process or underlying returns The fact 1s that when
evaluating forecasting ability the mean squared error cnterion has been used to evaluate
their usefulness rather than any economic evaluation So their measures have been
unconditional to the position taken in the market

(b) Our rule return definttion clearly corresponds to an unreahsed return By unrealised
we mean that rule returns are recorded every day even 1if the position 1s neither closed nor
reversed, but simply carries on

313 Realised returns

By reahsed return we mean cumulated daily returns until a posttion 15 closed and
reversed from long (short) to short (long) A position 1s opened at time t if the signal
triggered at t 1s different than at t-1 and then 1s closed at time t+n when an opposite signal
occurs for the first time When opening a position, one cannot say with certainty when it
1s going to be closed and reversed For technical indicator, it depends on the rule itself
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and the stochastic process of prices Indeed reversal of positions occur at random
moments even if signals are triggered on a determimstic (daily) basis For 1instance, they
occur on days 1, 6, 9, 10, 11  on figure 3 1{b] Nevertheless, realised returns are "true
returns" and exhibit the real timing of cash flows generated by technical strategy The
realised return can be expressed mathematically by

R = ZRH'D \ [3 2]
D=1

where D represents the stochastic duration of the position which will last n days if

(D=n} & {B,,#B, B=B.," =Byn1, Bun*Biun } [3 3]
Equations [3 2] and [3 3] show the main difficulty when studying realised returns They
are the sum of a stochastic number D of random variables X, The fact that the duration
D depends on the logreturns X, through a quite complex relationships renders equation
[3 2] of limited practical use

Realised returns are highly heteroskedastic even if the underlying process 1s not
(Cumby and Modest, 1987, Hartzmark, 1991) Moreover, because trading systems are
usually designed to cut losses quickly and let profits nde, realised returns are m addition
positively skewed and leptokurtic (Comnew, Town and Crowson, 1984, Bookstaber,
1985, Goldberg and Schulmeister, 1988, Rechner and Poitras, 1993) In what follows,
heteroskedasticty, skewness and leptokurtosis of realised returns are quantified for the
simple moving average rule using stochastic modelling

It 1s assumed that the process of loganthmic returns i1s a normal random walk
without drift Then the returns distributions of the simple moving average of orders 2, 10
and 50, have been established using Monte-Carlo simulations (Table 3 1) It can be seen
first that summary statistics (average, vanance, kurtosis and skewness) of simulated
returns following the simple moving average of order 2 are very close to their exact
values determined in Appendix 3 4 Realised returns following the simple moving average
of order two extubit 1dentical expected value (zero) than underlying returns but double
variance due to non-normality When the order of the moving average increases, the
average duration of the position increases and consequently the vanance of realised
returns A smular phenomena can be observed for the coefficients of kurtosis and
skewness In fact, realised returns extubit for different rules very different shape of
distributions  (nsk, skewness and kurtosis), under the random walk without dnft
assumption Subsequently, one could wrongly conclude that all rules are not equally nsky
under the random walk assumption, but that the longer term the rule 1s, the niskier it 1s
Thus theoretical feature has unfortunate consequences when testing the sigmificance of
trading rules profits Perfectly good performance records will be downgraded in
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comparison to others which stmply possess a more nearly normal distnbution (Cornew,
Town and Crowson, 1984) Thus, Sharpe ratios from non-normal distributions will on
average underestimate trading performance

Table 3 1: Realised returns statistics under the random walk assumption

Realised returns statistics following a simple moving average rule

Monte-Carlo simulations N(O,Gz) ,0=7E-3 2500 ob\servatxons replicated 250 tumes

Statistic\Order 2 10 50
Average -1408 E-5 (0)% -8 241 E-5 2 1154 E-4
Standard dcviation 9876 E-3 (9 900 E-3) 16 309 E-3 24 792 E-3
Kurtosis 5057 (5320) 13477 21776
Skewness 1663 (1693) 2663 3814

Trading practices when recorded on a realised basis produce asymmetry Then this raises
the 1ssue of whether " the average abnormal return 1s a sufficient and even interesting
statistic when the trading rule generates a skewed distribution of abnormal returns ",
(Ball, 1989 605) It 1s not absolutely certan that the variance of realised returns
adequately describes the risk of a technical indicator Past studies based on realised
returns might be flowed, mainly because they imply different nisks for different rules
applied to a same underlying process (Goldberg and Schulmeister, 1988, Lukac, Brorsen
and Irwin, 1988b, Taylor, 1990b, Balsara, 1992 Table 9 3, Rechner and Portras, 1993)
The T-Student given n these studies and technical analyst reviews (Kmght, 1993) might
say nothing about the usefulness of a technical indicator for reasons given above

In sum, the use of realised returns as a measure of performance should be avoided
whenever possible because 1t may be confusing to compare dynamic strategies that have
different vanances, skewness and kurtosis Sometimes there is no other alternative as
when vestment performance 1s recorded through surveys (Cumby and Modest, 1987,
Hartzmark, 1991) However when studymng mechanical systems, unrealised returns can be
easily evaluated and should indeed be preferred to realised returns for their statistical
properties we now establish

2 In bracket are the theoretical results which can be found m Appendix 3 4
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32 STOCHASTIC MODELLING

321 Goal

An mmportant question not yet answered 1n the literature 1s to know how profitable are
forecasting strategies Can non-zero profit be awaited from such methods and if yes what
are the parameters of the underlying price process making the rule profitable? The goal of
this chapter 1s to specify the theoretical relationship between rule returns and standard
statistical measures of senal dependency Such a specification, although not pursed in
previous research, 1s useful because rule returns provide a measure of economic
significance for sernial dependencies 1n financial returns that otherwise mught not be readily
interpretable As emphasised in Section 23, gauging the economuc sigmficance of
observed daily asset return autocorrelations 1s difficult The relationship between the
magnitude of observed senal correlation coefficients and the pr&ﬁts of technical trading
rule 1s indeed difficult to exhubit This chapter attempts to solve this 1ssue by examining
how trading rule returns are related to the statistical charactenstics of the underlying
series Our goal 1s to show that using stochastic modelling, 1t 1s possible to establish what
are the parameters of the underlying price process which generate if any non zero
expected return from trading rules

322 Assumptions
For the remainder of this chapter, we will assume that the underlying process of

loganthmic return X, 1s stationary and Gaussian® Two reasons can be given for
restricting our study to such processes

(a) The very few studies that have tned to analyse forecasting strategies have all
investigated the case of Gaussian processes (Neftci, 1991, Bird, 1985, Sweeney, 1986,
Praetz, 1976, Taylor, 1990a, 1992b, LeBaron, 1991, 1992b) Indeed as Neftci(1991)
points out very little 1s known about the statistical properties of forecasting strategies So
a Gaussian process may be the prelmmnary step to more complex models Gaussian
processes contain by themselves a wide class of models and therefore momtor a wide
range of possible market conditions

(b) It 18 questionable whether complicated nonlinear models will bnng much additional
support to our argumentation For instance, rule returns are not very sensitive to the
conditional heteroskedasticity effects in companson to the positive autocorrelation
effects That 1s shown via Monte-Carlo simulation, in Taylor(1992b, Table 2) for the

3 There will be one exception the ARCH(P) model
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channel rule under the -assumption of a price-trend model with conditional
heteroskedasticity, and in Antoniewicz(1992, Chapter 4 Section 4) for the simple moving
average rule under the assumption of a GARCH(1,1) and an AR(1) model with nonlinear
moving average structure LeBaron(1992b) shows that trading rule results themselves are
not necessanly indicative of nonlineanties in foreign exchange series He finds in
particular that linear models are capable of replicating the trading rule returns along with
the small autocorrelations observed in these seftes

Since very little 1s known about the properties of forecasting strategies when the
underlying model 1s nonlinear, the cases of ARCH(p) and fractional Gaussian processes
will be studied 1n detail Despite the fact that many other non-hinear processes have been
considered for modelling financial returns (Section 2 4 2), they will not be studied here
since corresponding rule returns are difficult to establish

1

In order to model rule returns, restrictions must be placed not only on the nature of the
underlying process but on the nature of the rule used as well We have already restricted
our choice to well-defined rules in the Neftci(1991) sense and rejected some of the
arbrtrary rules used by chartists such as various patterns, trend crossing methods of which
certamn are 1ill defined (Neftci, 1991) However even when indicators are well defined, it
does not mean their statistical properties can be tracked analytically This 1s why the set
of trading rules investigated 1n this thesis will be restricted to VARs models and linear
technical rules we now define

3.3 VYECTORS AUTOREGRESSIONS (VARs) MODELS
331 Definittion

Instead of considering the process of prices, academics prefer studying the compound
loganthmic returns (logreturns) process* defined by
X, =Ln(P,/P,_;) (2 1]

The return X, 1s the change in prices between time t-1 and t, assuming that no dividends
are paid during day t A linear forecast 1s then used to predict one-step ahead return X, ,
given by

F=8+Yd X, [34]
=0

4 See Section 2 4
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with 5 and the d, being constants
We will note p the expected value of F, and % the vanance of F,

This type of forecasting techmque 1s referred to as a vector autoregression VAR model
The predictor 1s normally defined such that it mininuses the mean squared error between
the forecast value and the one-step ahead return to be estimated If the true process of
returns 1s linear, VARs forecasters must yield the best forecasts of a stochastic process n
the mean squared error sense (MSE) VARs\ models do not generate explicit trading
signals However if we assume zero transactions costs, the intuttive decision rule derved
from VARs models 1s to go short if the [one-ahead] forecast 1s negative and go long if 1t
1s posttive That 1s the forecasting techmque implicitly tnggers a daily signal B, specifying
a long (+1) or short (-1) position following the decision rule

"Sell' & B,=-1 < F=5+y dX, <0

- [3 5]
"Buy" < B,=+1 < E=38+)dX._ >0
=0

3 32 Rule returns process

[Unrealised] rule returns are the product of a bmary stochastic signal B,, and a
continuous return random variable X, Equation [3 1] represents the trading rule return
equation assuming discrete trading i markets where the underlying asset 1s lognormally
distributed Lee, Rao and Auchmuty(1981) make simular assumption concerning option
valuation

If we assume that the underlying process X, 1s Gaussian, and the rule linear, the forecaster
F, 1s equally Gaussian It can be seen from equations [3 1] and {3 5] that mn thus case, the
rule return function 1s a mixture of margmnal density functions of truncated bivanate
normal density Such a distribution has been studied in the literature by Cartinhour(1990)
He has dertved 1t in a form that can be evaluated using an available computer algorithm
developed by Schervish(1984) He showed that the marginal density function 1s a
truncated normal density function multiplied by a "skew function" In general the greater
the degree of truncation, the more severe the skewing effect will be

A truncated distribution 1s a common feature of portfolio insurance strategy As
shown 1n Trippt and Harniff{1991), the termunal return distnibution of dynamuc asset
allocation rules 15 highly asymmetric being either lefi-truncated or positively skewed
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Bookstaber and Clarke(1987) showed that the put option strategy truncates the lower tail
and mantains the upside potential Zhu and Kavee(1988) showed using Monte-Carlo
simulations that two strategies, namely the synthetic put approach and the constant
proportion strategy have the ability to reshape the return distnbution so as to reduce
downward nisk and retain a certain part of upward gains

There 1s however a man difference between option and techmcal rule returns On
the one hand when using a put option, the left\truncation 1s fixed at a determinustic level,
the exercise price for a option On the other hand when applying a mechanical system,
downside nisk reduction still occurs’, but the left or right truncation 1s a random one, due
to the signal effect A trading rule generates by nature random infrequent trading The
signal of a rule remains constant for a certain random period, then jumps to a new level as
the price behaves 1 a certain way (figures 3 1[a] and [b])

This point highlights that rule returns are in fact closely related to the literature of
infrequent trading and in particular with the Lo and Mc Kinlay(1990) approach The
stochastic model of nonsynchronous asset prices they developed is based on sampling
with random censonng They give explicit calculation of the effects of infrequent trading
on the time series properties of asset returnsé Contrary to Lo and Mc Kinlay(1990), we
will have to consider explicitly two situations they only mentioned Firstly, our nontrading
process 1s by its nature dependent, trading tomorrow (reversal of signal) depends on the
signal of today Secondly, we will relax their assumptions of independent and 1dentically
distributed underlying returns

Expected value of rule returns can be established analytically assuming that underlying
returns follow a Gaussian process, although the exact distribution cannot This 1s the
most important statistic for trading purposes In addition, the one-period vanance can be
deduced from the expected value using the relation

Var(R,)=E(R{)-(E(R,))* = E(B{, X)) - (E(R,))?
We know that by defimtion B2, =1, and E(X?) = +p?

where p 1s the expected value or dnft of X, , and c? the vanance of X, Therefore,

Var(R,)=E(X})-(E(R,))* =0” +1” - (E(R,))? 36]

3 The distribution of realised rule returns 1s highly skewed, see Appendix 3 4
6 Further details can be found 1n Section 3 5 1
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333 Expected rule returns in models without diift

We first assume that the underlying process X, 1s without dnft, 1e E(X)=p=0 and that
the forecaster is unbiased, 1e 8=0 n equation [3 4] mmplying that E(F)=p=0
Generahisation to biased forecaster and model with dnft 1s postponed till Section 3 3 4

Random walk

Proposition 3 17

If the underlying process of returns {X;} follosvs an nd normal distribution N(0,52), the
process of rule returns {R,} 1s an nd normal distribution N(0,6%)

That 1mplies more specifically that

E(R)=0 [371
Var(R) = o2 ‘ [3 8]
Cov(R,R;,) = 0 for i>0 [39]

That 1s a very unusual case where the distribution of the rule return 1s 1dentical to the one
of the underlying return and independent on the rule itself All rules exhubit the same
standard deviation which 1s the underlying volatility Consequently the standard deviation
seems 1n this case a good measure of nisk, since under the random walk assumption no
trading rules should be considered as riskier than others Thus decisive feature justifies ex-
post the use of unrealised rather than realised returns

The distribution of the rule return must not be surprising since past and present returns
used to generate the signal and the one-ahead return are here independent That 1s
incidentally the result provided by Broffitt(1986, example 1) An important remark made
by Broffitt(1986) 1s that although functionally dependent, rule and underlying returns are
uncorrelated, the joint distnbution being degenerated This 1s why a study of both
processes could lead to apparent differences in the results

ARCH(p)
Proposition 3 2

If the underlying process of returns {X,} 1s a zero-mean, autoregressive conditional
heteroskedasticity ARCH(p) process, the expected value of linear rule returns R, 1s zero

It has been recognised that models for returns should have etther non-stationary variance
or conditional upon past observations, a vanance dependent on such observations and
additional variable This paragraph has just established rule returns expected value for one
of these alternatives the ARCH(p) still assuming process without drift As long as the X,

7 Proofs of propositions are given 1 Appendi 3 3
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are uncorrelated, no non-zero rule returns can be expected. So mean non-linearities might
be necessary to generate non-zero profits as in the case of the fractional Gaussian

process.

General Gaussian Process
Proposition 3.3
If the underlying process of returns {X,} follows a linear Gaussian process without drift,

the expected value of linear rule returns R, is gi\/en by:

ER) = .| 26Corr(X,,F,_,) [3.10]
T

No known distribution can be worked out for linear rules assuming a such underlying
model as pointed out by Cartinhour(1990). Nevertheless, an expected value can be
derived and implies that rule returns are a positive function of the volatility when the
correlation between forecaster and one-ahead return is positive.

3.3.4 Expected rule returns in models with drift
We assume that the underlying process X, is with drift, i.e. E(X)=u#0 and that the
forecaster can be with constant, i.e. 80 in equation [3.4] implying that E(F)=uz=0.

Random Walk

Proposition 3.4

If the underlying process of returns {X,} follows an iid normal distribution N(u,csz), the
process of rule returns {R,} is a mixture of two normal laws defined by:

R, ~ N(-j1,6%) with probability PS
R, ~ N(p,0?) with probability 1-PS

where PS is the probability of being short at time t, given by:
PS =Pr(F<0) = ®(—pz/0F) [3.11]
and @ is the cumulative function of a N(0,1)

That is a very unusual case where the exact distribution of the rule return can be
established. Subsequently, expected value and variance can be derived using well known
properties of mixture of normal laws.

E(R) = p(1-2PS) [3.12]
Var(R,) = o+ 4u?PS(1-PS) [3.13]
Cov(R;R..) = RE(B, By X)) - n¥(1-2PS) [3.14]
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Praetz(1976), Bird(1985) and Sweeney(1986) (thereafter PBS) have derived
expected value and vanance from filter rules under the assumption of a normal random
walk with drift They are shown to be

E(R) = u(1-2f) [3 15]
Var(R) = c? [3 16]
Cov(R,R,,;) =0 for h>0 [317]

where f1s the frequency of short positions |

Suruyjaras and Sweeney(1992 34) recogmse that their tests treat f as a constant,
although f 1s of course endogenous and stochastic and will differ over samples In
addrtion, Surujaras and Sweeney(1992 35) admut that their tests require constant mean
and constant fimte vanance for the rule returns distnbutions Using the probability of
being short given by equation [3 11] rather than the ex-post frequency of short positions
will change expression [3 15] with the exact formulae [3 12] However formulae [3 16]
and [3 17] are still misspecified and strictly speaking, should be replaced by [3 13] and
[3 14] The latter results share n fact two common properties with the presence of
nonsynchronous trading (Lo and Mc Kinlay, 1990) Firstly, technical trading increases the
vanance of individual secunity returns (with non-zero mean) The smaller the mean (in
absolute value), the smaller 1s the increase n the vanance of observed returns, [3 13]
Secondly, techmcal trading induces non-zero serial correlation 1in individual secunty
returns (with non-zero mean) The smaller the mean (in absolute value), the closer the
autocorrelation 1s to zero, [3 14] Although theoretically different, PBS formulae [3 15],
[3 16], and [3 17] are very close to [3 12], [3 13], and [3 14] for usual values of mean
and standard dewviation of loganthmic returns However PBS strong assumptions must be
underlined especially if further researches mnvestigate other Gaussian processes than the
Random Walk with Dnft It 1s not certain in those cases that returns can still be
decomposed into two almost uncorrelated groups, long and short positions This is why
we prefer carrying on investigations following the basic decomposition [3 1] applicable to
any process

General Gaussian Process

Proposition 3 5

If the underlying process of returns {X,} follows a linear Gaussian process with dnft, the
expected value of linear rule returns R, 18 given by

ER,)= %cCorr(XnFt-l)exp(—u% 1262) + u(1-2@[-p5 /(] [3 18]
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As 1n the case without dnft, no known distributions can be established So we will limit
results to the expected value of rule returns which 1s composed of two components One
comes from the general Gaussian process without dnft and the other from the random
walk with dnft

Equation [3 18] represents the most general case in terms of linear Gaussian process All
the earlier formulae are special cases

To the best of the author's knowledge, the ekpected value of rule return for a general
Gaussian process has not been derived before It 1s not surpnsing that exact analytical
formulae of expected value of linear rule returns can be established for any Gausssian
processes since linear rules are well defined (Neftci, 1991)

A first comment 1s that a biased forecaster might be suboptimal® That can be
simply noted by considening a Gaussian process without dnft (u=0) Assuming that p; =
& # 0 gives an expected return of

2
ER)= ;oCorr(Xt,Ft_l) exp(-u3/203)

That 1s of course below the expected return of a simular but unbiased forecaster given by
equatton [3 10]

34 TECHNICAL INDICATORS

The majonty of traders forecast price changes using techmcal analysis, even though
VARs techmques should yield better forecasts Financial market players often prefer
technical rules to VARs models, mainly because they are not looking for the forecaster
which minimises the mean squared error (VARs) but maximises profits (technical rules ?)
Technical analysts have claimed that opposite to VARs models, technical indicators are
able to capture the complexe nonlinearity observed in financial prices

Although techmical analysis and VARs models might have different objectives, they both
use the same information, that 1s istorical prices As outlined in Section 2 2, techmcal
analysis covers a broad category of forecasting rules However, certain of which are
highly subjective and 1ll defined To be objective, buy and sell signals should be based on
data available up to the current time t and should be independent of future information

8 An in depth discussion can be found 1n Chapter 4
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Using the theory of Markov times, Neftci(1991) shows that the moving average method
constitutes such a well defined methodology The simplest rule of this famuly 1s the single
moving average which says when the rate penetrates from below (above) a moving
average of a given length a buy (sell) signal 1s generated A formal algonthm of this
decision rule 1s given by

Pt +Pt—1+ +Pt—m+t\

"Sell" & P <

m

P +P_+ +P_
m

m+]

n Buy" Q Pt >

where P, 1s the price of the asset recorded once on each trading day t, always at the same
time of day, and m [>1] 1s the length (or order) of the moving average
Since the process of rate 1s assumed to be continuous, the equality case 1s of zero
probabuility and is subsequently ignored 1n the remainder of this research

Rules based on mathematical formulas using past prices {P,, ,P,,, } are well defined
and objective 1n the sense that their performances can be assessed It must be emphasised
however, that there does not exist any theory or "research algonithm" to design technical
rules A current practice among traders 1s to measure the profits and losses generated by
an arbitrary set of trading rules and to select the rule which maximises profits

341 Technical mdicators as VARs models
Technical indicators signals are usually expressed by an mequality 1n terms of past prices

("price” signal) An equivalent formulation 1n terms of (loganthmuc) returns should be
sought whenever possible ("return” signal) There are two reasons for this

(a) ability to model rule returns
It has been shown in the previous section that when the signal 1s expressed by a linear
combination of returns, expected value of rule returns can be easily found for any
underlying Gaussian processes

(b) purposes of comparison with VARs models
VARs models are expressed 1n terms of returns So 1f techmcal indicators signals were to
stay a function of price, direct companson with VARs models would be difficult

For purposes of clanty, the steps allowing to reformulate a "price” signal i "return"
signal relates to the crossing of a simple moving average Next it 1s shown that this
methodology applies to many other popular mechanical systems and more generally to
any system triggering a signal from a linear combination of past prices
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We have seen that the signal generated by a trading rule 1s completely defined by the

inequality giving a sell order For the simple moving average method of order m, the
signal 1s

P +P_+ +P
m

~m+1

sell (go short) if P, < [3 19]
Straightforward rearrangements show that the mequality tniggerning a sell signal can be
reformulated as (1-P/P) + (1-P,/P)*+ \ + (1-P, _,,/P) <O

At this point, we assume that varations of rates can be approximated by their
loganthms® Thatis 1-P, /P~Ln(P/P, ) forj=1,m-1 [3 20]

Therefore, equation [3 19] can be reformulated as
Ln(P/P,)*Ln(P/P, )+ +Ln(P/P,,,,) <0

(m-1)Ln(PyP, ) Hm-2)Ln(P, /P o)+ +1Ln(P /P ,1)<0
Because X, = Ln(P/P, ), 1t follows that

m—1

Z(m—J)Xt—J+l <0 [3 21]
=1

Since 1f the position tnggered by a moving average rule 1s not long(short), it 1s
short(long), the inequality triggering a buy signal 1s given by

m-1
Z(m - J)Xt—J+l >0
=1

The new signal formulated in terms of loganthmic returns can now be considered as a
VARs model It belongs to the oscillator family of trading rules It tniggers signals around
a zero hne If the "return” oscillator 1s negative (posttive), a sell (buy) signal 1s generated

Thus the simple moving average signal admits a return oscillator reformulation given by

- m-1
Bi=-1 P, < PPt P Bi=-1o F = Z(m_l)xt-_m <0
m ~ =1
P,+P_,+ +P__ ., )= m-1
t t—1 t-m+] Bt=+1<:>Ft:Z(m_J)Xt—J+l>O
=1

Bi=+l < P>

m

where B, 1s the ongmal "price" signal and B, 1s the "return" signal

9 The validity of loganthmic approximations {3 20] 1s discussed just after the end of the demonstration
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Figures 3 1{a] and 3 1[c] dlustrate the equivalence price/return signals generated by
equations [3 19] and [3 21] for arbitrary financial prices A study of the equivalences of
the two rules 1s provided 1n the next section

Valdity of logarithmic approximations
First 1t must be remarked that if m=2, there i1s no approximation but strict equivalence,

v

since
\

+ ’
Pt<P—‘—iP—"—1 < P <P, © P/P_ <1 o LnP/P)<0 & X <0

For larger values of m, the validity of return formulation was checked empircally for a
set of exchange rates senes agaimst the Dollar'® and various Gaussian processes, using
Monte-Carlo simulations What 1s tested 1s the equivalence between price signals B, and

return signals B, As can be seen from Table 3 2, signals are different in less than 0 4% of
all cases for exchange rates series The largest deviation comes from the simulated
random walk N(, 62) with u=0 001 and 6=0 03, for m=200 Tlus case represents an
upper bound in terms of both volatility and average returns over ten years for financial
series (Taylor, 1986 Tables 3 3 and 3 4) Even for ths, returns signals differ from price
signals 1n less than 2 6% of all cases

Table 3.2: Return/price signals equivalence for the simple moving average rule

Price signat B, / return signal Bt Case of the stmple moving average rule

Exchange rates series

Orderm | Nb obs Percentage (number) of B, # B,
DEM YEN GBP FRF CHF
25 2601 019 (5) 008(2) 012 (3) 015 (4) 004 (1)
50 2576 023 (6) 019 (5) 012(@3) 008 (2) 027 (M)
100 2526 028(7) 024 (6) 036(9) 028 (7) 0 24 (6)
200 2426 033 (8) 037 (9) 037 (9) 037(9) 008 (2)

Simulated Random Walk N, &2 ) , 100 replica

Orderm | Nb obs Average(maximum) Percentage of B, # l~3t
p=0,0=001 | p=0001,0=001 | p=0,0=003 | p=0001, c=003
25 2500 0 18 (0 44) 015 (0 43) 050(12) 0 50 (0 96)
50 2500 022 (0 56) 022 (044) 072(140) 019 (108)
100 2500 037 (068) 026 (0 60) 108 (196) 105 (184)
200 2500 0 48 (0 84) 0 30 (0 68) 146 (2 44) 1 46 (2 60)

10° A full description of which 1s given 1n Chapter 6
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On the basis of the empirical results presented 1in Table 3 2, one can safely conclude that
return signals lead to the same mvestment strategies as price signals for values of m as
large as 200

342 Technical inear rules

Definition \
A rule 15 said to be "linear" if 1t can be expressed in the form of equation [3 5]

Proposition 3 6
Any mechanical system triggering a sell signal from a finite linear combination of past
prices of the form

m-1

sell B,=-1 & > aP_ <0 [322]
=0

where m being an integer larger than one, and a , constants,

admuts an (almost) equivalent linear return formulation of the form

m-2
sell. By=-1 < &+ dX_ <0 [3 23]
=0
m-1 m-1
where X,=Ln(P/P,,), 8=)a,, | =~Ya,
J=0 1=J+1

Consequently many popular technical systems are mmplicitly linear rules That 1s specially
the case of indicators of the moving-average type as well as the momentum Let us recall
their definition throughout the necessary and sufficient conditions which triggers a short
position (when the position 1s not short, 1t 1s long)

*) Simple moving average, SMAYV, of order m>1

Sell if P, <SM, (m) = P +P_+ +P_py

where SM, (m) denotes the simple moving average over m rates up to P,

*) Weighted moving average, WMAY, of order m>1

(m-1DP, +(m-2)P_+ +1P__ .,
m(m-1)/2

Sellif P, <
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*) Exponential moving average of coefficient 1>a>0
Sellif P, <a(P, +(1-2)P_;+ +(1-2)""'P__ )

*) Momentum of order m>11!1
Sellif P, <P _

*) Double moving average of orders r, m, O<rgm

Sellif SM, (r) <SM; (m)
It must be noted that the simple moving average 1s a particular case of the double moving
average when the short moving average 1s the rates themselves (=1)

Explicit establishment of coefficient d, of equation [3 5] for all the techmcal
indicators mentioned above can be found by applying the results of Proposition 3 6 and
are given 1n Table 3 3

11 m-1 1n Kaufman(1987)
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Table 3 3+ Return/price s1

nals equivalence

Rule Parameter(s) Price Sell Signals Return Sell Signals
m-1 m-2
Sxmple order Pt < Zalp_s stxt—l <0
=0 J=0
Simple MA > &= i \ = (m-j-1)
imple m>2 / - dJ = .
= __m-} = (m-p(m—;-D
Weighted MA m22 — il Sl A Sn N S
& 97 Im(m-12 E 2
- -1 (-2 -(1-a)""'")
Exponential MA {1>a>0,m 2 2 a=a(l-a) d =
a2
Momentum m>2 a= 1 for ;=m-1, a]=0 for #m-1 d) = 1

Double orders

-1 m-1
ZbJPt—J < ZaJP ~3
0 =0

m-2
2dX,. <0
=0

m-)
2.aP_ <0
=0

1 1 =(m-1)(+1) for 0< -
Double MA | m>r>2 b==, a== (mn)g+D) for 0<)<r-1
r m d=(m-j-1) for r<ySsm-2
m~2
8+ Y4 X, <0,
=0
Generalisation s

m-] ~1
with d,=- Ya, and a=':$_;aj
F

1=3+)
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Equivalence price/return signals have been checked for the momentum (Table 3 4) and
weighted moving average rules (Table 3 5) Once agan, deviations are very small and do
not exceed 0 5% 1n all cases for exchange rates series and 3% for simulated volatile

stocks

Table 3.4 Return/price signals equivalence for the momentum rule

Pnce signal B, / return signal Et Cyse of the momentum rule
Exchange rates series
Order m Nb obs Percentage (number) of B, # f3t
DEM YEN GBP FRF CHF
25 2601 004 (1) 004(1) 004 (1) 012(3) 012(3)
50 2576 004 (1) 0 (0) 0 16 (4) 0 (0) 008 (2)
100 2526 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
200 2426 0 (0) 0 (0) 0 (0) 0(0) 004 (1)
Simulated Random Walk N(pt, 6% ) , 100 replica
Order m Nb obs Average(maximum) Percentage of B, # ]~3t
1=0, =0 03 p=0001 =003
200 2500 0 (0) 0 (0)

Table 3 5. Return/price signals equivalence for the weighted moving average rule

Price signal B, / return signal ﬁt Case of the weighted moving average rule
Exchange rates senes
Order m Nb obs Percentage (number) of B, # I~3t
DEM YEN GBP FRF CHF
25 2601 004 (1) 015 0154 019(5) 008 (2)
50 2576 019 (5) 012(3) 012(3) 016 (4 019 (3)
100 2526 016 ($H 040 (10) 020(5) 012(3) 008 (2)
200 2426 025(6) 041 (10) 037(9) 025 (6) 037(9)
Simulated Random Walk N(1, 6% ), 100 rephica
Order m Nb obs Average(maxymum) Percentage of By # ﬁt
p=0, c=0 03 u=0001, =0 03
200 2500 157(252) 155(292)

The nice feature of the linear rules, expressed by a linear combination of returns, 1s that 1t
mncludes 1n an umified framework VARs predictors (by construction) and techmcal
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systems (by reformulation) Finally, it must be emphasised that although rather general,
linear rules do not cover all technical rules used by practitioners

It 1s doubtful that certain rules signal will ever accept an (almost) equivalent
formulation of type equation [3 5] Rules which might be non-linear are in particular rules
based on Intra-day High and Low data or on the maximum and mummum of certain

values ‘

(a) Intra-day High and Low data \

Such trading rules are numerous (Kaufman, 1987, Schwager, 1987) The pertinence of
High and Low data n addition of close and open rates has even been recogmsed by
academics Parkinson(1980) for example demonstrates that High and Low data can be
used to estimate volatility of rates However Wiggins(1991) points out the statistical
problem posed by such estimates true maxima and mimma are.unlikely to be observed
and that the use of recorded ligh and low rates will bias the results

(b) Rules based on the maximum and minimum of certain values

An example of such rule 1s the channel rule studied by Lukac, Brorsen and Irwin(1988b),
Taylor(1990a, 1992b), Brock, Lakomshok and LeBaron(1992), Curcto and
Goodhart(1992) It uses only close prices to determine breakout levels It says " buy (sell)
an asset if the rate penetrates from below (above) the maximum (munimum) of the past m
days " m 1s a grven number of days which features the length of the channel Opposite to
the preceding case they are maximum and mummum of a finite number of rates So the

argument of non-observability of such extrema vamshes

Nevertheless, these rules have not been included in this research because they can not be
easily modelled

343 [Expected rule returns
Expected rule returns given by equation [3 18] are highlighted in what follows for a few

hnear technucal trading rules and underlymng Gaussian processes Our purpose 1s to
quantify the profitability of popular trading rules under plausible market conditions More
precisely, we consider the simple moving averages, weighted moving averages and
momentums rules applied to daily rates We will assume that a year includes 250 days and
that the daily process which drives underlying loganthmic returns 1s successively

a) an Auto-regresstve process of order 1 without dnft, AR(1)

b) a price-trend model without drift, ARMA(1,1)

c) a fractional Gausstan process without dnft

d) a random walk with dnft

Definitions and notations concerning these models are given i Section 2 4
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AR(1) .
Figure 3.2 exhibits that for a given system (moving average type) positive autocorrelation

is required to make profitable the investment and that short order system captures better
the autocorrelation of order 1 than long order ones.

Yearly Expected Rule Retumns %
+ Auto-Regressive AR(1) without drift
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Figure 3.2: Technical returns as a function of the autoregressive coefficient

Figure 3.3 shows that for a given order of rules, certain strategies perform better than
others. The quicker the rule responds to a new price, the most profitable it is. For

example, a weighted moving average systematically reflects a new price value better than
a simple moving average.

Yearly Expected Rule Retums %
AR(1) alpha=.1 without drift
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Figure 3.3; Technical returns as a function of the order of the rule,
under the AR(1) assumption.
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Trend-following models require positive autocorrelations to be profitable However 1t 1s
perfectly possible to create rules designed to take profit of negative autocorrelations
(opposite strategies for example) It 1s even possible to build rules which display positive
expected return whatever 1s the sign of the first-order autocorrelation!?

These results are consistent with the findings of LeBaron(1992b) He performed Monte-
Carlo simulations to estimate the expected returns following simple moving averages of
orders 20, 30 and 50 under the assumption\of AR(1) models The AR(1) models he
stmulates are for a=0 to 04 by step 01, where o =Corr(X,,X_;) The standard
deviation he used 1s relative to 1ts DM series and 1s therefore 0 01465 (LeBaron, 1992b

Table 3) It 1s not clear however in the simulations he performs if he holds constant the
standard deviation of underlying returns ¢ =0 01465 or the standard deviation of the

residuals o, =+v1-a? 6 =001465 Consequently, we establish trading rule returns n

both cases (Table 36) It appears that formulae [3 15] exactly reproduce
LeBaron(1992b Table 4) Monte-Carlo simulations, keeping the standard dewiation of
residuals constant

Table 3.6: Expected returns under the AR(1) assumption
Expected return * 10000 following a simple moving average rule under the AR(1) assumption

LeBaron(1992b Table 4) o, =001465 o =0 01465
AR(1)MA(20YMA(30YMA(50) Average{MA(20)MA(30)|MA(50)|Average[MA(20)| MA(30)|MA(50)|Average
0 Q 0 0 0 0 0 0 0 0 0 Q g
01 5 4 3 4 435 37 29 37 45 37 29 37
02 9 8 6 8 93 77 59 76 91 75 58 75
03 15 12 9 12 148 121 94 121 141 116 90 115
04 ( 21 i8 14 18 203 | 175 | 136 | 175 ) 195 ) 160 { 124 | 160

ARMA(1,1), Price trend model

Expected rule returns are from equation [3 10]

(2) a positive function of A for p and o fixed The larger the proportion of the vanance of
the returns that can be explamned by the vanance of the trends, the more profitable the
trading rules are

(b) a positive function of p for A and ¢ fixed More the trend component 1s
autocorrelated, the more profitable are the trading rules

12 An example of such strategy 1s { B =-1 = X, <0 }

B,=+l & X >0
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(c) a proportional (and positive if convex rule and positive autocorrelations) function of
the volatility for A and p fixed

Figure 3 4 gives an example of some rule returns of orders 2 to 50 for {G =
0 0068, A=0 03, my= 20 days} The most profitable simple moving average corresponds
to the order r=29 days It seems logical that given a mean duration of trend a technical
rule finds 1ts optimal parameter around this value In the case of the moving average 1t is
shghtly bigger (order 29 for a mean duration, of 20 days) Ranking between systems 1s
more complex and should be in favour of exponential moving average since Taylor(1986)
has remarked that such representations can be very close to the optimal forecaster Rules
are not any more uniformly ranked that 1s either in systematical favour of short (AR(1))
or long (see Random Walk with Drift) strategies but depend on the mean duration of the
trend

Those properties of hinear trading rules might hold for non—lmea:r strategies such as the
channel rule Taylor(1992b Table 3) finds in particular that channel rule returns are a
posttive function of A for p fixed (property a) and a positive function of p for A fixed
(property b) The distnibution shape of channel rule returns (Taylor, 1992b fig 1) 1s
extremely similar to the one of weighted moving average returns (Figure 3 4) The best
order of channel rule as for the weighted moving average finds its optimal parameter
close to the true mean duration of the trend
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Figure 3.4 Technical returns as a function of the order of the rule,
under the price-trend model assumption
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Fractional ARIMA (0,d,0)

As 1 the financial literature, the fractional Gaussian process is interpreted here as a
function of the Hurst exponent rather than the parameter d It 1s recalled that H 1s related
to d by the relation H=d+0 5 [2 17]

Expected rule returns assuming a fractional Gaussian process, can once again be
established using equation [3 10] Figures 3 5 End 3 6 exhibit that they are quite identical
to the ones corresponding to an Auto-regressive process of order one (Figures 3 2 and
33) That 1s due to the fact that techmcal indicators do not exploit the feature of a
fractional Gaussian process which 1s the long term dependence (for H>0 5) They only
extract the short-term dependence which 1s very much the one of an AR(1)!* There
exists nevertheless a major difference with usual Gaussian process That 1s the maximum
possible gamn 1s not anymore finite but infimte Indeed 1t appears that the optimal
forecaster defined by Hosking(1981) displays both infinite expected return and vanance
because autocorrelations are not summable Therefore, techmcal predictors might
produce returns very far from the maximum achievable gain However, 1t has been
claimed (Mandelbrot, 1966) that the best linear forecaster s useless to predict the time
series because 1t relies on parameter estimation

Consequently, the fractional Gaussian process mught constitute a case where techmcal
trading rules might be preferred to the best linear forecaster That would contradict
Mandelbrot(1963) opiuon that expected gains from "filter method" depends entirely on
the assumption that price i1s continuous Mandelbrot(1966 242) stated "[ ] 1t 1s also
possible to concerve of models where successive price changes are dependent so that
prices do not follow a pure random walk, but where the nature of the dependence is such
that it cannot be used to increase expected profits" This does not apply to the fractional
Gaussian process Indeed in the latter case, techmical rules are quite profitable and does
not rely on parameter estimation which makes the forecaster useless to predict the time
series

13 Distinguishing fractional Gaussian process from AR(1) model 1s known 1n the literature as a difficult
task (Davies and Harte, 1987)
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Figure 3.5: Technical returns as a function of the order of the rule,
under the fractional Gaussian process assumption
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Figure 3.6: Technical returns as a function of the fractional parameter
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Random Walk with drift

Figure 3 7 exhubits returns from a Buy and Hold strategy and from a Simple Moving
Average (SMAYV) rule of orders 5, 20, 100 as a function of the dnft Overall, three
remarks can be made

(a) expected return will be a fixed percentage of the dnft

So 1t will underperform a buy and hold strateg§/ if the dnft 1s positive and outperform 1t if
the dnft 1s negative The expected return of SMAV rule 1s a positive function of the
absolute value of the drift | p| and a negative function of the volatiity ¢ It 1s a positive
function of the order m of the SMAV That can be explained by the fact that the most
profitable strategy 1s buy and hold if the dnft 1s positive

(b) the dnift increases the instantaneous vanance of return

(c) Only 1n the absence of any dnft in the data are rule returns uncorrelated
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Figure 3.7 Technical returns as a function of the dnift

Figure 3 8 illustrates that in decreasing order of profitability, we have 1)Momentum
2)Simple MA 3)Weighted MA It means that ex-ante certain technical rules will capture
systematically better the dnft than others
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Yearly Expected Rule Returns %
Random Walk with drift of 25%

N SR AR St s St E S et S St S e at T T

Momentum

P SMAV

WMAV

H
1
e 85 f— . - - - = —
E’ ' - ‘ - » - ! ' B
& . *
é 72 el ] e .._.,.,__ ____,,_\_ [ S —
- - g
39 f— I T - - e —l
. ks | ! ! }
46 B, - - - - o -
: e i 3 i ¥ I—"
H t §
33 | - - - - e b - e em e
P i B
§
I

L N 2
Q 5 10 15 20 25 3a

Order of Rule
Datly volatity = 0088

Figure 3.8 Technical returns as a function of the order of the rule,
under the random walk with drift assumption

35 SUMMARY

Under the assumption that underlying asset returns follow a Gaussian process, the
linear rule returns distribution 1s a mixture of marginal density function of a truncated
bivariate density function Exact expected values can be obtaned and are of importance
since the objective of a market timer 1s to maximuse return and that nisk 1s merely
considered an opportunity cost

The expected return following a linear trading rule 1s zero if the underlying process is a
random walk without dnft This 15 non-zero if the underlying process exhibits a dnft
or/and autocorrelations If the underlying process 1s a random walk with dnft, the
expected return of a convex trading rule s a positive function of the dnift and a negative
function of the volatiity If the underlying process exhibits positive (negative)
autocorrelations but no dnft, the expected return of a convex (concave) strategy 1s a
positive function of the volatility

Many popular techmical trading rules can be expressed as VARs forecasters Doing so
allows applying both techmcal and statistical predictors mn an umfied framework called
"linear rules"
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APPENDIX 3.1

NOTATIONS AND MULTINORMAL MOMENTS USED IN THE RESEARCH

\
The following notations and multinormal moments are used throughout this research

Univariate normal law
o (x) =—‘l e (VDx —0<X <+ 0 |
N27 ’

CI>(h)=j_hw(p(x)dx , —w<h<+o0
[r]:J:wx’(p(x)dx , TeN

A short notation will be [r]:_)'X>0 X'

Bivariate normal law

1
O(x,y,p) =——=—exp[-+(x* - 2pxy +y*) /(1-p*)] , —0<X,y<+o, —1<p<]
2my1-p? 2 P

[rsl=f " [ %"y o(x,y.p) dxdy , (r,5)eN?

A short notation will be [r,s]= jx>o J 20 X Y*

[r,s](p) will denote the value of [r,s] as a function of p
The mcomplete moments [r,s] have been evaluated by Kamat(1953) We have m

particular

[0,0]= §+5= Arcsin(p) [A1]
[1,0]=:i-\/——,2;(1+p) [A2]
[1,1]= & (p[&-+Arcsin(p) ] +y1-p?) (A3]
[2,01= 3+ (Arcsin(p) +0y/1-p%) (A 4]
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Trivanate normal law

3
Z gx

where —o<x, <+, —1<p, <1, 1513, 1_<.Js3 and

] Mw

-3/2 4-1/2 _1
® (X;,%X5,%;3,P12,P13,P) = (27 AT exp[~7

A=1-p3 =Pl =P +2P12P13P23 » ;

A= (1—p§3)A'1 A,, '—‘(1“Pf3)A“I , Ay = (I‘sz)A—l >
A=Ay =(P13P3—py) AN, A=Ay =Py —913)/yi >
Ap = Ag = (P12 P13~ Py3) A

+00 p+c0 r+o0 3
[r,s,’c]z‘]‘0 J'O jo X] x5 x5 O(%1,%5,X3,P12,P135P23) dxldledx3 , (r,8t)eN

A short notation will be [r, s,t]=j‘< o JY o dxa0 X1 X2 X5

[r,5,t]1( P12>P13-P23) will denote the value of [r,s,t] as a function of ( P13 ,P13,P23)

The incomplete moments [r,s,t] have been evaluated by Kamat(1958) for all r,s,t with
r+s+t <3 However some of these moments are 1ll defined!* It 1s why we prefer to use

the trivaniate moments established by Tallis(1961) which lead to

[110]-‘—"[912{ “‘ZAICSIH(PU)}'*'\” 912 +pi3y1- P23 +ppyl- pl3 ] [AS]

1<y

1
[2,0,0] = ""‘[ 2 +ZATC sn(p, ) +”‘__’2‘(2P12 P13 — P23 Plzz ~P23 9132) ] [A 6]
<) v1-pz

*

In what follows, a star will design standardised normal variates For instance, X:H F,
design unit normal variates

A vaniable Y conditional to the knowledge of a vanable X will be either noted Y/X or
Y{X}

14 See Appendix 3 2
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APPENDIX 3.2

A NOTE ABOUT MULTINORMAL MOMENTS

\
Kamat(1958) has given exact formulae!’ of a few tnnormal truncated moments Simular

work has been performed by Tallis(1961) Tallis(1961) and Kamat(1953) formulae are
identical for the bivanate case They, however, diverge for the trivariate case as 1t will be
shown It appears that Kamat(1958) formulae must be 1ill defined since they do not
satisfy, contrary to Tallis(1961) results, some simple checks This point 1s illustrated

below with the two moments used in the study '

Kamat(1958)

1 T o
[1,1,0]=Z7;[Plz {‘2‘+2Af051n(9g)}+\}1"9122 +st\}1‘9232 +P13V1“P132 ] [K1]

1<)

1 T 3 2
[2,0,0]=ZE['2'+ZAICSIH(P,J)+AP23V1'P§3 +(2pp P13 'Pza)‘/l‘Pgs +Prz ‘jl‘sz +Pi3 JI‘P%J 1 [K2]

1<}

where A=1 —plzz —P132 “Pzzz +2p; P13 P3

Tallis(1961)
It can be shown that using Tallis(1961) and the bivariate normal moments Kamat(1953)'6
that

1 T <
[1,1,0]=4_n‘[912{E'FZAICSIH(PlJ)}*‘\/l_:;lzT*’Plsvl_pz32+Pz3 1—9132] [T1]

1<)

1 n &
-0 2
[2,0,0] [ 2 + E Arcsm(pu)+ [T 2]

1 2 2
—=—=(2P 3 P13 P23P12 —P23P13 )]
<) Vi- 9232

15 recalled in Johnston and Kotz(1972b 93)
16 recalled 1n Johnston and Kotz(1972b 92)
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Those trivanate moments obviously differ between Tallis(1961) and Kamat(1958)
Formulae [K 1] and [K 2] are musspecified since they do not pass, contrary to formulae

[T 1] and [T 2], some simple coherence tests

Coherence Tests
Simple tests of coherence can be applied to those formulations It consists in checking the

compatibility between univanate, bivanate and trivanate moments from two elementary

examples

If p;=pi13=0 , px=p , the following equality must be venfied

[2,0,0] = ¥ [0,0] = L (® 4 Arcsin(p))
4 "2

If p;;=p23=0 , p3= 1, the following equality must be verified
[LL0]=[1111]= -

[K 1], [K 2] formulae do not pass these stmple coherence tests Indeed

when p;,=p,;=0, p;=1, [K 1] =[1,1,0] = ﬁ

when py,=p1y=0, pyy=p, [K 2] = [2,0,0] = -- -+ Aresm(p)—p’V1-p?)

On the other hand, 1t 1s straightforward to extubit that formulae [T 1] and [T 2] pass these
simple checks That can be seen from the fact they are recurrent formulae and that
trivariate moments are established from bivanate ones

In sum, Kamat(1958) results for those two trivariate moments appear dubious and so

Tallis(1961) has been preferred and applied in this research
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APPENDIX 3.3

PROOFS OF PROPOSITIONS

Proposition 3 1 ‘

We show here that the distribution of rule returns 1s the same than the distribution of
independent underlying returns if the latter 1s symmetrical around zero, normal or not If
we note C, the charactenstic function of the underlying return and assume that 1t 1s
symmetrical around zero, we have  C,(z) = E{exp(1zX,)} = E{exp(-1zX,)} = C,(-2)
Rule returns R, admut the charactenstic function

Cr(2) = E{exp(-1zB,,X,)} = E(E®’[exp(-1zB,_,X,)])

with E®+1} means the expected value conditional to the knowledge of past returns

{Xt—l} = {Xt—l’Xt—Za » Xiomo }

-1 with probabiity Pr(F,_, <0)

d only d
+1 with probability Pr(F_, >0) and only depends on {X,}

By defimtion, B_; ={

Therefore

Cg(2) = E( Pr[F,_; < 0]E®+}[exp(—1zX,)] + Pr[F,_, > 0] E™}[exp(+12X,)])
Because X, 1s independent on {X,_; }, we have

Cr(2) = Pr[F, ;<0] E{exp(1zX,)} + Pr[F_,>0] E{exp(-1zX,)}

Pr[F, ,<0]=Pr[F,,>0]=} because the distribution of the linear unbiased forecaster, F, ,, 1s

symmetrical around zero, as for the underlying returns X, Then, 1t follows that
CR(Z) = yZ Cx(-z) +% Cx(z) = Cx(z)

So R, follows the same law than the underlying returns In particular, R, follows a centred
normal law N(0,6%) if X, follows a centred normal law N(0,6%) Then 1t imples
equations [3 7] and [3 8]

Finally, we have

Cov(R,Ryp) =E(RR;.1) =EBr1X By, 1 Xisn) =E(B11 X By )E(X1in) =E(By1 XBy3)0=0
That 1s due to the fact that X, 1s independent on X,, B, B,

=  Cov(R,R,)=0 for h>0 [3 9]
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Proposition 3 2
E(R‘t) = E{E{\“}(Bl_,Xt)}
the knowledge of {X,.}={X,.1, X020 »Xem }

’ P ’ p
E(R) =E(B, 0, * Zanxtz—a g,) =EBy[a, +ZOL1X12\1E{Y‘ (&)
1=1 \ =1

Since the stochastic process g, 1s independent of {X,,} EfJ(g)=0 Then
£ 2
E(R,) = E(B,,,(ot, + Zl:oc,XH 0)=0

Proposition 3 3
See Proposition 3 5 which includes Proposition 3 3 as a special case

with E® means the expected value of X, conditional to

Proposition 3 4
Let us note C, the characteristic function of the underlying return

C,(z) = exp(1 z 1) exp(-c? z?/2)
Rule returns R, admut the charactenstic function Cg(z) = E{exp(-1zB,_,X,)}

Replicating the steps of Proposition 3 1, we have

Cg(2) = Pr[F, ,<0] E{exp(1zX,)} + Pr[F, ,>0] E{exp(-1zX,)}

Cr(@) =PSexp(-1zp) exp(-cs2 Z2/2)+(1-PS) exp(1 z 1) exp(-c2 z:12)
where PS 1s the probability of being short grven by Pr[F, ;<0]

So R, follows a muxture of normal laws

R, ~N(-1,6?)  with probability PS = Pr{F,_, < 0]}
R, ~N(it,02) with probability 1-PS = Pr[F,_; > 0]

That imples equations [3 11], [3 12] and [3 13] In addition

Cov(R,R,.;) = E(RR;,,) - E(RRJE(R, ;)

ERR,.p) = E®B.; X By Xern) = BBy X Brap )E(Xeen) = EB X, Byipy) 1
That 1s due to the fact that X, 1s independent on X, By, By,

=  Cov(R,Rup)"E(B. XiByyu-u’ (1-2P5)* fork>0 3 14]
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Proposition 3 5

E(R,)=E(B,, X,)=E(B, (cX; +1))= GE(B,;X;) + LE(B.,)
where X; designs an umt normal vaniate, p = E(X,) and o’ = Var(X,)
E(B.;)=P1(F,_, > 0)-Pr(F_, <0)=1-2Pr(F,_, <0)=1-2®(-ng/ o)

\
EB.XD=] [ x - | X
Xy F>-pgp/op X{ Fa<-pe/op
where F,_, designs an umt normal varate, uy = E(F,_;) and o7 = Var(F,_,)

Then using the truncated bivanate moments given by Johnston and Kotz(1972b 116), 1t
follows that
|

o |2
E(B,,X;)= \E pexp(-p2/262) with  p=Corr(X,,F_;)

Therefore equation [3 23] results from the weighted summation of the two previous
terms as follows

E(Rt)=cE(Bt-1XI)+uE(BH):c\E p exp(~H2/ 203) +i(1-20[- e /o5]) [3 18]

Proposition 3 6
m-1
sell B=-1¢ Y aP_ <0 [322]
=0

m-—1
< R-YDbP_<0, withby=1-a, and b,=-a, for =1, m-1
=0

m-1 m-1 m-1
& P-3bP_+>bP->bP<0
=0 =0 =0
m-1 m-1
< 2b(R-P_)<(Xb,-DP,
=1 =0
m-1 m-~1
b (1-P_ /P)<Y b ~1
=1 =0
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Let us assume that 1-P, /P, ~ Ln(P/P,,) for j=1,m-1 and noting that X, =Ln(P,/P,,), we

-1

can so approximate 1-P, /P, ~ Ln(P/P,) =) X, It follows that
1=0
m-1 -l m~1
ZbJZXH<ZbJ—1
=1 =0 =0
"2")
« (I_Zb) + Z ( me-—l—!)Xn<0
=0 1=0
m-2
& 3+ ) dX,., <0 (3 23]
=0
w-1 m-2~) m—~2~§ ml
with  §=I- 3'b, =¥, and d= me_l,, Y o= 2.8,
=0 =0 1=1 1=3+1
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APPENDIX 3.4

DISTRIBUTION OF REALISED RETURNS
FOLLOWING THE SIMPLE MOVING AVERAGE OF ORDER 2 RULE

Realised returns following the simple mov1n§ average rule of order 2 are not normal
under the assumption of normal independent underlying returns Firstly, the conditional
distribution of realised returns knowing the duration of the position 1s established Exact
formulations are given for expected value and variance Secondly, the unconditional
distribution of realised returns 1s established Exact values of the four first moments are
provided It 1s shown that the distribution s non normal, positively skewed, and
leptokurtic

Simple moving average of order 2 rule
The strategy consists here of being long if the price 1s above the moving average of order
2 and being short otherwise That 1s more explicitly

+
B=+1 <P, > E‘—% <P >P_ o X, =Ln(P,/P_)>0

B=t1 & X, >0 (3 24]

Let us note D the stochastic duration of a position If we assume that a new position
starts at ttme t, that 1s we know that {B#B,,}, the stochastic duration D will last n days if
and only 1f {D=n}<= { B~B..;= =Biipn.1> Bun1#Bun / B#B,, } [3 3]
That 1s for the stmple moving average of order 2 rule, applying equation [3 24]
{D=n} < {X,>0,X,,;>0, ,X.,1>0,X,,<0/X,_ <0}

or {X,<0,X,,<0, ,X,,.1<0X,,>0/X_, >0}

The corresponding realised return 1s so

t+n

n n
R= ZRt+D = ZBHD—IXHD [32]
D=1 D=1

Subsequently, we assume that loganthmic returns X, follow a normal random walk
without dnft Therefore due to the symmetry of both the underlying stochastic process
and trading rule, the expected realised return mtiated by a long position 1s equal to the
one mitiated by a short position Let us assume to simplify that a long position starts at

time t=0 and 1s reversed at time t=n The duration of the position 1s equal to n days if and
onlyif {(D=n}={X,>0, X,>0,X,,,<0}
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Conditional distribution
Let us note Cy,p., the charactenstic distribution of realised returns knowing that the

duration of the position D is equal to n days Then

Crip=n(2)= [CH(Z)]n—l Cy(-2) [3 25]
where Cy; 1s the charactenstic function of the absolute value of a normal vanable
N(O,cz), known 1n the literature as half-normgl vanate (Johnson and Kotz, 1972a 81)

4

Proof
Crip(2) = E(expliz(X;+ +X,_,+X,)]/D)
=E(exp(1zX,)/D) E(exp(1zX,_,)/D)E(exp(1zX,)/ D)
= E(exp(1zX,)/ X, >0) E(exp(1zX,,)/ X, >0)E(exp(1zX, )/ X, <0)

=[Cx(DI"'Cy(-2) ‘

Using the relationships between characteristic function and non centred moments, it
follows after straightforward arrangements that

E(R/D=n)= %c(n—l)—\/%oz\/%c(n—Z) (3 26]

n—2
s
Equation [3 26] says that the expected return, knowing the duration of the position,

Var(R/D =n) =n( )o? [327]

depends on the duration and more precisely 1s proportional to its If the duration of the
position 1s equal to one day, 1t generates a loss which 1s natural since the simple moving
average method by construction reverses its position on an unrealised contrary move
Then the longer the position 1s, the more profitable 1t 1s 1n average

Equation [3 27] indicates that even when rule returns have constant variance per unit of
time which 1s equal to the underlying volatility, equation [3 8], the vanance of holding-
period returns will not be constant but depends linearly on the duration of the position

Then a correction for heteroskedasticity 1s necessary The Hartzmark(1991) procedure
can be applied for this purpose It consists in using the squared root of the number of
days between each transaction as a weight n the adjustment procedure
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Unconditional distribution
Let us note Cy the charactenstic distribution of realised returns Then

Cu(-2)
2-Cy(2)
where Cy 1s the charactenstic function of the absolute value of a normal vanable
N(0,6?) \

Co(2) = [3 28]

\
Proof

The unconditional charactenstic function of realised returns 1s established by taking the
expected value of the conditional characteristic function

Cr(2)= E(Cg/p(2)) =E([Cu(2)]" " Cy(-2)) = iPr(D =) [Cy(2)]"" Cu(-2)

n=1
It 1s strarghtforward to show that under the random walk assumption, the duration D of a
position follows the distribution

Pr(Xt > 0’ Xt+1 > O, aXt+n-l > O’Xt+n < 0/ Xt—l < 0)

P D:n =
=)= pr(X, <0,Xy <0, Xy <0,X,,. >0/ X, >0)

=(1)" Therefore
t+n

S (1)° n- S o 3Cu(- C (-
Cal2)= nz=l(%) [Cu@) 1CH(_Z)z%CH(_Z)nZ=l [%CH(Z)] ‘= 12— %}gﬂ(zz)) B 2—H(§H2)

Using the relationships between characteristic function and non centred moments, it
follows after lengthy arrangements that

E(R)=0 (3 29]

E(R?) = Var(R) = 2 62 [3 30]
N_g |2 3 __E®) 3 _

E(R)—6\[;c = yl_———-———(m)rﬁ = 1693 [331]

4
ERY)=200+2)0* = y,=—t®) 33,12
T

 ({Var(R))* 2w

Under the random walk without dnft assumption, realised returns following a moving

= 5320 [3 32]

average of order 2 are not any more normal, contrary to unrealised returns but follow a
complicated truncated law defined by equation [3 28] The expected value of realised
returns 1s still equal to zero as for the unrealised case, equation [3 29] The vanance 1s
however double than the vanance of unrealised or underlying returns, equation [3 30]
The distribution 1s at present positively skewed and leptokurtic, equations [3 31] and
[332]
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Chapter 4

ERROR MEASURES AND PROFITABILITY

\

In Chapter 3, the expected returns of a linear rule appled to price movements that are
assumed to be Gaussian are derived However, the most profitable forecaster has not
been determuned Whether or not maximising profits and mimimising squared errors leads
to the same forecaster 1s an important 1ssue If not, certain existing statistical procedures,
algorthms and cnitenia mught be of little value n an investment purpose This chapter
examines the reality and complexaty of thus problem

Section 4 1 defines the forecaster which maximuses expected rule returns Section
4 2 shows that the relationsthups between error measures and profitabihty must be highly
nonlinear and possibly degenerated when the true model is a random walk Section 4 3
assesses i terms of profitability and error measures the implications of using a
musspecified forecaster when the true underlymng process 1s Gaussian Section 4 4
evaluates the implications of previous findings on market timing ability tests Section 4 5
summarises and concludes our results

41 MAXIMISING EXPECTED RETURNS

Recent studies on forecast evaluations are concentrated on quantitattive measures of
prediction errors They have not focused on the value of the forecasts for the user
Economic evaluation of price forecasts consistent with the underlying decision problem 1s
an alternative preferred by practitioners to accurate forecasting models which mimimuse
squared errors

The mean squared error criterton measures how closely the model fits a time
series by averaging the sum of the squared deviations of the two senes It does not
differentiate between dewviations resulting from a faiture to predict a change in the trend of
the senes or the cyclical component Despite 1ts wide acceptance by academucs, market
participants who try to forecast financial time senes have found this cntenon inadequate
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The reason for this 1s that traders, for instance are interested only in forecasting changes
in the underlying trend of the financial prices rather than forecasting the level of the price
series A trader will take long position in the market n anticipation of a price rise,
without attempting to forecast level The forecasting problem of traders has given nse to
a particular measure reflecting the profitability of the strategy rather than the accuracy of
predicting the price level Empirical studies (Boothe and Glassman, 1987a, Leitch and
Tanner, 1991, Satchell and Timmermann, 1992b) have found that squared errors (SE)
and profits based forecasters can differ sxgmﬁcantly One explanation mught be that the
SE criterion 1s of poor use to build efficient forecasters of turning points (Wecker, 1979,
Kling, 1987), which 1s a necessary condition for profitability Therefore, what 1s needed 1s
to determune which forecaster maximises expected returns

Proposition 4 1 '
If the underlying process of returns {X,} 1s assumed to be Gaussian, a hnear forecaster F,
maximises expected rule returns if and only if

(@ 1t maximses p=Corr(X,,,,F)
(b) we/op =1/ (po)

Where u, ¢ are the mean and standard deviation of X, and pp, o are the mean and
standard dewviation of F,

First let us compare the forecaster which maxinuses expected returns with the forecaster
which mimimuses expected squared forecast error Following Granger and Newbold(1986,
p283), expected squared forecast error can be written as

E((Xy4; - F)*) = (up -0)* +(o5 —po)* +(1-p?)c’

Taking p and o to be fixed numbers, 1t 1s clear that expected squared error 1s mmimsed

by
(¢)  maximsing p=Corr(X,,;,F,)
(d pp=p

(e) op=po
The forecaster which minimises squared errors F™° 1s defined by conditions (c), (d) and
(e) and therefore satisfies conditions (a) and (b) Then F™° maximuses expected returns,

but 1t 1s not any longer umque since any forecaster proportional with 2>0 to ™, aF,™*

still maximuses profits

1 Proofs of propositions are given in Appendix 4 1
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Hence, 1f the X, process 1s Gaussian, no linear trading rules obtained from a fimite history
of X, can generate expected returns over and above vector autoregressions It has been
shown here that although trading rules display non-zero expected value when the process
1s Gaussian with autocorrelations or drift, they cannot be more profitable than the optimal
linear forecaster Neftci(1991) shows that under the hypothesis price time series are
linear, even well-defined rules are shown to be useless in prediction So technical
forecasters, although exhbiting some forecasting value, should be considered

musspecified models \

In reality, the above conclusion must be refined The techmical trading rules that are
implicitly hinear can be optimal forecasters Let us give a simple but meamngful example
m-1

by assuming that the true underlying model 1s X, =a Z(m -NX
=1 '

t-, €. with g, white

noise, a>0 and m 1s an nteger greater than one It follows from Section 341 and
Proposition 4 1 that the simple moving average of order m will then maximise profits
There are cases for which technical indicators are hinear models (Section 3 4 2) and
therefore generate optimal forecasters

Proposition 4 1 marnly defines the necessary and sufficient conditions to maximise
expected returns The forecaster which maximses profits 1s the predictor which
maximises the correlation between the one-step ahead forecaster and the future
underlying return, condition (a), and satisfies condition (b) It 1s not limited to the one
which minimises squared errors Divergences between the two predictors mught be
significant Baczkowski and Mardia(1990) have studied the prediction procedure based
upon maximising the squared correlation between the predictor and the value to be
estimated, which 1s condition (a) only On the one hand, they find that the maximum
squared correlation 1s similar to the mummum squared error as an interpolator As
interpolators both methods capture the general "structure" of the data, such as non-
stationartity On the other hand, they differ considerably as extrapolators

Consequently the criterion most often used to determine optimal vector autoregressions,
minimusing squared errors, mught be urelevant to maximuse returns The next sections
investigate in more details the relationships between error measures and profits

88



42 ERROR MEASURES AND PROFITABILITY

421 Performance Criteria

A forecasting method 1s used to predict the one-ahead underlying return At time t-1, 1t
generates forecast F,, to predict the one-ahead loganthmic return X, The one-period
forecasting performances of the model can be( evaluated by vanous techniques (Stekler,
1991) such as

the squared error SE, = (X, -F_,) [41]

the absolute error AE, =|F_, - X|| [4 2]
_[+1 of X F_>0

the directional accuracy DA, = { 0 if X,F,_ <0 [4 3]

Academics widely regard error measures as reliable critena of performance, mamly due to
the existing theory which surrounds them The muumum squared error in particular
possesses attractive properties which have contributed to its widespread use among
researchers (Box and Jenkins, 1976) The directional accuracy or percentage of correct
forecasts has been widely used to test the usefulness of market timng strategies and
advisory services (Levich, 1980, Hennksson and Merton, 1981, Pesaran and
Timmermann, 1992)

However, for trading purposes, a more appropriate forecasting performance measure 1s
obviously profitability Then according to Chapter 3, the rate of return following a
trading rule (rule returns) can be defined by

R =B X, (B 1]

Where B, 1s a signal tniggered by the trading rule at the start of the period and which
takes the values 1 and -1 depending on whether an up or down price movement is
expected 1e

"Sell" < B,,=-1 & F_ <0
"Buy" < B =+1 o F_ >0

Figures 4 1 to 4 4 graphically represent the profit (equation 3 1]), and error measures
functions, squared error (equation [4 1]), absolute error (equation [4 2]) and directional
accuracy (equation [4 3])
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Profit function of realised and forecasted values

Forecasted value F

Realised vaiue X

Figure 4.1: Profit function

Squared Error function of realised and forecasted values

Realised value X

Figure 4.2: Squared Error Cost Function

Absolute Error function of realised and forecasted values

Realised Value X

Figure 4.3: Absolute Error Cost Function
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Directional Accuracy function of realised and forecasted values

/N\

N
N

N = i
W = /is.w.

)
z N 2
° 3

Rasiisad value X }

Figure 4.4 Directional Accuracy Function

The specificity of the profit criteria clearly appears by comparning figure 4 1 to figures 4 2
to 4 4 Differences with error measures are now put forward by establishing theoretical
linear correlation between one-pertod error measures and rule returns

422 Linear correlation between error measures and profits under the random walk
without drift assumption

Relating expected squared errors and expected rule returns as a function of the statistical
characterstics of the underlying Gaussian series 1s usually possible and will be done n
Section 4 3 by use of Proposition 3 5 However when the true process 1s a random walk
without dnft, the expected rule returns 1s zero whichever rule 1s applied and so no
relationships can be worked out between error measures and expected profits
Nevertheless, the linear correlation coefficient can be used to analyse the relationships
between those varied performance critena This section establishes the one-period
correlation between profits and error measures as previously defined

We assume that the underlying returns X, are without dnft, independent normally
distributed with volatility o, then that the forecaster F, 1s linear without constant, that 1s
it can be expressed by erther a linear combination of past loganthmic underlying returns

X,
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Proposition 4 2

If the underlying process of returns {X,} 1s assumed to be a normal random walk without
dnft, the linear correlation between rule returns (equation 3 1]) and squared error
(equation [4 1]) 1s

2./v(f)
Corr(R,,SE,)) = ———— 44
RSB vy | .
where v(f) = 62 /c? and o2 1s the vanance of \the forecaster F, [4 5]
Proposition 4 3

If the underlying process of returns {X,} 1s assumed to be a normal random walk without
drift, the linear correlation between rule returns (equation [3 1]) and absolute error
(equation [4 2]) 1s |

—=2Arcsim(Jv(f)/[1+v(F)])
VrAr =21+ v()

where v({) 1s given by equation [4 5]

Corr(R,AE,) = [4 6]

Proposttion 4 4

If the underlying process of returns {X,} 1s assumed to be a normal random walk without
dnft, the linear correlation between rule returns (equation [3 1]) and directional accuracy
(equation [4 3]) 15

Corr(R,DA) = \E (47]

The correlation between rule returns and squared error (equation [4 4]) and correlation
between rule returns and absolute error (equation [4 6]) are both negative That 1s not
surprising since munimusing the squared errors maxmmuses profits Both correlations
depend heawvily on the rule which 1s being used throughout the vanance of the forecaster

v(H

Table 4 1 gives some numerncal values obtained from one of the most popular
technical trading rule, the simple moving average method? (Brock, Lakomshok, and
LeBaron, 1992, Levich and Thomas, 1991, LeBaron, 1991, 1992b) Table 4 1 indicates
that the correlations 1n absolute value terms are a strong negative function of the order of
the rule These results suggest there are rules displaying errors very few correlated, in

2 Section 3 4 1 has shown that the simple moving average method can be considered a linear forecaster
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absolute value, with profits They are n accordance with Leitch and Tanner(1991) who
empirically find no systematic relationship between the widely used ex-post error critena
and ex-post profits All their conventional error-magnitude cniteria are only marginally
related to profitability They find 1n particular that the criterion absolute average error 1s
only weakly correlated to profitability and conclude that profits may not be related to the
size of the error

Table 4 1 Correlations between error measurgs and profits

Moving Average of order 2 5 20 100
Corr(R,,SEy) -0 564 -0 199 -0 023 -0 002
Cort(R,,AE,) 0587 | 0264 | -0033 | -0003

The correlation between error measures and profits 1s maximal, in absolute terms, 1If the
variance of the forecaster 1s constramned to be equal to the variance of the underlying
returns Therefore we homogemse varnances by constraming the varance of the
forecaster to be equal to the vanance of the underlying returns (v(f)=1 1n equation [4 57)
Then 1t follows that correlations between error measures and profits do not depend any
more on the rule being used and are equal to

-1 —
——=-0564 Corr(R,,AE, )= —————
N (Re, AE,) 2v2n -2

In contrast, the correlation between directional accuracy and rule returns 1s high and

Corr(R,,SE, ) = =-0587

constant at 0 80, and independent of the rule itself as equation [4 7] proves Irrespective
of the rule, directional accuracy and profitability will appear very dependent criteria
Leitch and Tanner(1991) display similar results In particular, they find that directional
accuracy consistently demonstrates a hugh degree of statistical association (measured by
the linear coefficient of correlation) Their results suggest that if profits are not
observable, directional accuracy of the forecasts might be used as the evaluation criterion

The theoretical formulae exhibited in this section might explain the empincal
findings of Leitch and Tanner(1991) which are that directional accuracy 1s a lot more
linearly correlated to rule returns than error measures, Root Mean Squared Error and
Average Absolute Error Nevertheless the conclusion they give that profits may not be
related to the size of the error, should be understood profits may not be linearly related to
the size of the error Section 4 1 has proved that for Gaussian processes, expected
squared errors and expected rule returns are functionally dependent and that mummusing
squared errors maximises profits However, the stochastic vaniables squared errors and
rule returns display very few linear relationships, as shown in this section under the
random walk assumption
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It must be recognised that there exist other error measures such as the root squared error
and the Theil U coefficient. However, it does not seem straightforward to determine their
exact linear correlation with rule returns as in the case of AE, SE and DA. Furthermore,
it is not certain that including them would bring much additional support to our
arguments.

43 MEAN SQUARED ERROR AND PROFITABILITY
UNDER THE GAUSSIAN PROCESS ASSUMPTION

Once again the relationships between error measures and profitability could be
investigated via the linear correlation for any Gaussian processes| without drift. However
such steps are not reproduced here for two reasons. The first one is that analytical results,
although still possible, become quite difficult to calculate. For insfance, it can be shown
that the presence of low autocorrelations affects very few the linear correlation between
directional accuracy and profits3, but strictly speaking the correlation coefficient depends
now on the rule being used. The second reason not to give too much importance to the
linear coefficient correlation is that there exists another way, far more appealing to study
the relationships between error measures, namely mean squared error, and profitability
we are now describing.

43.1 Misspecification criteria

For the general linear Gaussian process, Section 4.1 has shown that minimisation of the
SE leads to maximisation of expected rule returns. However, in practice, the true
underlying process may be difficult to estimate and a misspecified model may be used
instead. Such misspecification can arise:

(a) because of misspecification of the parameter values

(b) because of the choice of the wrong model i.e. employing an Moving Average MA
process instead of an Autoregressive AR model or

(c) through the use of a technical indicator (Nefici, 1991), which is a special case of (b).

Following Davies and Newbold(1980), we can measure misspecification by:

V*(h)-V(h)

V) [4.8]

P (h)=

3 See Appendix 4.2
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Where V(h) and V*(h) are the variances of the h-step prediction errors using the correct
and misspecified models respectively That is

V(h) = E((X,,, ~F,,)?) and V' (h) = E((X,,, ~F5)")

where F,}, and F;h are the optimal and musspecified h-step forecasts
Py (h) measures the relative mcrease of squared errors It shows the excess volatility

resulting from the use of the musspecified model

For a trading rule though the cost of u\smg a musspecified model should be better
measured by its monetary consequences in terms of foregone profits and therefore a
suitable measure is the relative loss of returns

E(R(h))-ER"(h))

S )

(4 9]

[}
Where E(R(h)) and E(R'(h)) are the expected h-period returns of the true and
musspecified models respectively

We shall restrict here our study to the one period ahead forecasts, h=1, since many
trading rules are not designed to forecast longer than a single period Chapter 3 has
shown that n this case the expected return of a linear trading rule 1s given by equation
[3 18] Then 1t must be remarked that the relative loss of returns, P (1) 1s a positive
number which takes values between 0 and 2 That 1s due to the fact that the expected
return of the nusspecified forecaster can not be above the expected return of the true
model which 1s the maximum achievable return Consequently the expected return of the
musspecified forecaster can not be erther below minus the expected return of the true
model If this were the case, that would mean that the contrarian strategy of the
musspecified forecaster would outperform the expected return of the true model, which 1s
not possible

A first obvious difference between the two musspecification criteria 1s that criterion (4 8]
1s scale dependent when criterton [4 9] 1s not Let us explain what we understand by scale
dependent What 1s argued 1s that equation [4 9] 1s unaffected by a change of positive
scale in the forecasts It can be seen from equation [3 18] that replacing F, by a F, (a>0),
will not affect E(R,)) and so criterion [4 9] does not change On the other hand, criterion

[4 8] 1s changed since E((X,,, ~F,)?) # E((X,,, —aF,)?)

In what follows, we shall evaluate the effect of musspecification on the mean squared
error and the expected return for a general time series models that has been widely
employed 1n finance, the ARMA(1,1) model with dnft defined by

Xy =U+pX | +8 — Q€1 [410]

95



1, p and q are constant and €, 1s a normal white noise without dnft ¢, ~ N(O,cz)

We will study more specifically three cases due to their populanty in Finance
the Random walk with drift where (1 # 0 and p = q =0 1n equation [4 10]
That1s X, =p+e,
the AR(1) model without dnft where p=o # 0 and p = q =0 in equation [4 10]
That1s X, =a X, +¢,
the ARMA(1,1) model without drift where p :t\O, g #0 and n =0 in equation [4 10]
Thatis X, = PXi+8 —Q8
In the next sections, we examine the behaviour of the two measures, relative increase of
mean squared error, Pgp (1), and relative loss of returns, Pg(1), for each of the three
sources of misspecification (a), (b) and (c) mentioned above

432 Optimal trading strategies

Before examuning the effects of using a musspecified forecaster, it 1s important to
determme the performances of the correct model noted thereafter H, , both 1n terms of
error measures and profits The reason 1s that H,, represents "the" optimal forecaster It 1s
the only one to display both the mimmal variance of the prediction error and the maximal
profit

Random Walk with Drift; RW(Q)

The true underlying process is assumed to be a random walk with dnft Returns X, are
independent 1dentically distributed following a normal law with drift N( u,6%) That1s

X, =u +¢,, with g~N(0,67)

The most accurate forecaster 1s the drift itself F™=pn [411]
The mimimal vanance of the prediction error 18 V(1) = ¢* [412]
The maximal profit 1s generated by the passive strategy and equals E(R(1))=|u| [4 13]

Autoregressive of order 1, AR(1)
The true model 1s an autoregressive of order one AR(1) without dnft having a first order
autocorrelation o X, = aX,, +¢,, with ~N(0,0%)

The optimal forecaster 1s the quantity ™ =aX, [4 14]
The mimumal variance of the prediction error 1s V()= a’(d -a?) [4 15]
The maximal profit 1s E(R()= \E clof [416]
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Autoregressive Moving -Average of order 1; ARMA(1,1)
The true model 1s an autoregressive-moving average process of order one AR(1) without
dnft X, -pX,_, =€, —qgg., , with g normal white noise, p and q constants

The optimal forecaster 1s the quantity (Taylor, 1986 186) F™ =(p-q)>.q'X,., [4 17]

1=0

\ 2y 2
The vanance of the prediction error 1s (Taylor, 1986 187) V(1) = _(1—9‘)02 [4 18]
(1-2pq+q°)

The maximal profit 1s (equation [3 10]) E(R(1))= \EocOrr(xt ST [419]

with Corr(X,,i, F™) = (p~q)?/(1-2pq +q?) (Taylor, 1986 193)

433 Parameter misspectfication

Random Walk with Drift; RW(jL)

Parameter musspecification on this model means that the estimated dnft parameter p'
differs from the true parameter 1 assumed to be non-zero The resulting increase n term
of vanance 1s so

* 2 2 : —V = J
V(1) =(u-u)* +o° and PSE(I)ZV (1\3(1) -t 0?)

The expected return following the misspecified forecaster 1s

. w if pp'>0
E(R' ) ={-j f pw<0
0 f p'=0

Therefore, the percentage loss of returns 15

_E(R’ {ul—-luB/ = 0% f pu'>0
E(R(ngﬁg D {ul=(<uD}/ ul=200% f pu <O
{ul-0}/lwl=100% +f p'=0

Pr(1)=
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When both dnfis, true and estimated, have the same sign, there are no losses of profits
since the rules deduced by both forecasts are identical Indeed the magmtude of the
forecast 1s not taken mnto account i the decision process, only its sign matters
Consequently both trading rules will still maximuse profits although they display different
mean squared error due to over/under estimation as shows the following example

c =0007 u =0 0002 (5% yearly) u' =0 0008 (20% yearly)

That 1s a case where an obvious overestimation of the true dnft p= 5% (yearly) 1s
being done Forecasting u' = 20% imples thay Py (1)=063 Nevertheless from a profit
point of view, both musspecified and optimal forecasters will generate the same profit,
that1s p=5%

Autoregressive of order 1; AR(1)
Let us assume that an estimate o' 1s used 1nstead of the true first'lag coefficient oo There
1s a loss of accuracy

Vi(D)- V()

V)=@+a?2aa')c? = PBy()= V0

- ((X'—CX.)Z

For nstance if o = 0 05, o' = 0 10, 1t follows that Psr (1)=025

The expected return of the musspecified forecaster 18

Vil ff ao' >0
ER'()={ —2/nle| f aa <0
0 if a=0

Therefore, the percentage loss of returns 1s

. (2/mlod- 2/l 1 2fx o= 0%  of aa'>0
E(R(lé)l-j(R W) _ I ¢ ol - (—N2mlo} / 2Rl = 200% if ool <0
RD) (V2/mlo]-0}/ J2/mle)=100% of o =0

PR(I) =

No loss of profits will occur as long as o' the musspecified parameter has the same sign as
the true parameter a because 1n this case, both predictors will trigger the same rule
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ARMA(1,1) without dnift (Price-trend model)

In practical situations how much can a model be musspecified ? A realistic answer
1s now given when attempting to fit an ARMA(1,1) model Due to its financial
mterpretation, the state representation of an ARMA(1,1), the price-trend model (see
Section 2 4 1), will be adopted 1n what follows Therefore the two parameters of interest
will be the vanance reduction A and the mean duration m, It 1s recalled that the mean

duration 1s defined by equation [2 10] my =\l/ (1-p), and the vanance reduction A 1s
defined by equation [2 12] A'=(p—q)(1- pq)/{p (1-2pq+q*)}

Let us assess the statistical and financial consequences when a poorly defined model 1s
apphed We consider that instead of the true model, a2 musspecified forecaster 1s used and

|

defined by F, =) A, X,_,, where A, are constants

1=0

An example of musspecified forecaster 1s A, =(p ~q)q", where p' and q' are two
constants If (p',q)#(p,q), the forecaster F, 1s nothing else than a price-trend model using

musspecified parameters
The variance of the prediction error 1s then given by

V(D)= Var(Q A X, - X)) = Var(X A X, ) + Var(X,,) - 2Cov(T A X, X,y)

1=0 1=0 1=0
V* (1) - {ZKZl 02 +2 Z Z)\'IKJ Apl-j 02 }+62 “ZZKIAPH-I 0,2
1=0 1=3+1 j=0 1=0

Therefore, using equation [4 18], the relative increase of squared error 1s equal to

a2y > AA AP +1-23 A, Ap™ 3 - (1-p?)/(1-2pq +q%)

P 1 - 1=0 1=J+1 3=0 1=0 420
se (1) (1-p*)/(1-2pq+q?) 1420]

The coefficient correlation between the musspecified forecaster and the one-step ahead
return 1s grven by

Corr(X,,1, F,) = Corr(Xyyy, M X, )= p YA, Ap'/ (\/273, +2Y ik‘lJAp'"’)

1=0 1=0 1=0 1=3+1)=0
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Therefore, using the last result and equation [3 10], the expected return following the
musspecified forecaster 1s gtven by

E'(R(1)) = \E S(pS M AP (S +23 TAAAPT)  [421]
1=0

1=0 1=5+1 =0
Then using equation [4 19], the relative loss of returns 1s equal to

Al

(pZO%‘Ap‘)/( Zolf+22 YAMAPT) - (p-q)*/(1-2pq +q?)
P (1) — 1= 1= 1=)+1 =0 [4 22]
. J(p-q)*/(1-2pq +q?)

Parameters musspecification on the price-trend model 1s common because the
standard dewviation of the estimates 1s large Results for maximum likelthood estimates of
A and m, mught be found in Box and Jenkins(1976) for hinear process, and for Taylor
estimates A and my in Taylor(1980, 1986) Taylor(1986) specially finds that averages
estimates of m, are less than 10 days whereas the true parameters are my = 20 days and
A=002 This downward bias causes estimates A to have an upward bias Taylor(1980
Table 3) shows that estimates of my are not accurate when m>20 Also 1t appears that
increasing the sertes length n does not substantially improve the accuracy For a given m,,
the estimate of A has standard error of approximately {2/m;n}* That 1s for n=1000 and
m,=20, c(A) ~ 0 01

Let us now quantify the financial and statistical consequences when a poorly defined
model 1s applied First assumung an erroneous mean duration (m,' instead of my), second
an incorrect variance reduction (A' instead of A), third both mexact

The application of an erroneous mean duration m,' nstead of m, produces a maximum
relative increase in SE (equation [4 20]) of only 0 49% (Table 4 2) On the other hand,
the relattve loss of profits (equation [4 22]) 1s far lugher, ranging from 2 6% to 26% If a
mean duration 1s estimated equal to five days and 1t 1s actually equal to forty days, the
profit made by following such suboptimal forecasts will be worth 9 63% (equation
[4 21]) when the maximum achievable return 1s worth 13 06% (equation [4 19]), that 1s a
relative loss of 25 5% (equation [4 22])
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Table 4.2 Misspecified (mean duration only) price-trend model

True price-trend model A =003, my, p=0 and 5 =0 007

Yearly returns % using a msspecified mean duration, my’ | Yearly returns % using the optimal forecaster
mg\mgy' 5 10 20 40
5 532 506 450 388 532
10 6 39 6 66 648 684 6 66
20 885 10 04 10 41 10 13 10 41
40 963 1161 1263 13 06 13 06
Relative loss of returns %
mg\mg' 5 10 20 40
5 0 49 154 260
10 43 0 36 120
20 150 36 0 26
40 255 112 26 0
Relative increase in SE % '
mg\my' 5 10 20 40
5 0 004 016 030
10 005 0 005 018
20 021 006 0 005
40 049 025 006 0

When applying an erroneous variance reduction only, both increase in SE and
percentage loss of profits are small That can be seen from the diagonals of Table 4 3
When A'=0 01 and A=0 03, the maximal increase in SE equals to 0 24% and the maximal
relative loss of returns to 1 2%, both for my = m,' = 40 days

Table 4 3 Misspecified price-trend model

True pnce trend model { A =0 03, my }, Misspecified model { A'=001, my' }
Relative loss of returns %
mg\my' 5 10 20 40
S 01 61 208 351
10 36 03 61 192
20 133 20 06 64
40 236 85 06 12
Relative increase in SE %
md\md' 5 10 20 40
5 006 004 005 010
10 018 012 009 011
20 040 028 019 015
40 060 055 036 024
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Under/overestimating the vanance reduction or the mean duration
under/overestimates ex-ante true possible profits Table 4 2 says that if the true model 1s
{o =0007, A=0 03, m;=40} the maximum return 1s equal to 13 06% (equation [4 19])
Assuming instead an erroneous parameter, A'=0 01 or m,=5 would let think that the
highest returns which can be achueved 1n those conditions are respectively equal to 5 26%
and 5 32% These figures are the results of using the musspecified parameter A'=0 01 or
my=5 for both rule and process m equation [4,19] Using a wrong mean duration has ex-
post far more financial consequences than estimating incorrectly the vanance reduction
The true return triggered by such forecasts 1s measured by using the incorrect parameter,
A' or my, for the rule but true A and m, parameters for the process n equation [4 21] A
misspecified mean duration m =40 instead of m=5 when A=0 03 reduces potential
profits by 26 0% (Table 4 2) when an ncorrect vaniance reduction A'=0 01 instead of
A=0 03 when m,~40 decreases 1t only of 1 2% (Table 4 3) Thus 'primary example shows
that a forecaster should not be judged from the discrepancy in terms of ex-ante returns 1t
generates using a msspecified parameter for both rule and process (~5 3% 1n both cases
instead of 13 6%) Instead, 1t should be evaluated in terms of ex-post relative loss of
profits the decision process mmvolves using a musspecified parameter for the rule but true
parameters for the process (1 2% and 26 0%)

Predicting iaccurately future profits (returns expectations) 1s of little importance for an
mvestor pomnt of view 1f the decision making process which results from these forecasts
happen to be an almost optimal strategy ex-post (relative loss of profits) Indeed an
mnvestor would prefer to be inaccurate m his expectation but correct n his decision
process

So 1t does not seem that equal focus on both parameters should be given on a decision
making process It does appear that the mean duration of the trend should indeed require
special attention After all would 1t have been possible to reach such conclusion from a
squared errors cnterion ? Does the mean squared error give a good idea of how
musspecified a rule 1s in terms of profitability ? Without knowing the source of
misspecification can one use the mean squared error to extrapolate the returns of its
forecasting method ?
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Figure 4 5 aggregates the results of tables 4 2 and 4 3 and shows that this 1s unfortunately
not the case

% Lost Profits = F ( % SE Increase)

w0 Price-Trend Model

30 |
% Lost Profits 20 f

10

AWV

0 00 010 0 20 030 0 40 0 50 0 60 070

% SE Increase ;

Figure 4.5 Relative loss of returns as a function of the relative increase in SE

Increase 1n SE 1s ordinarnily extremely low The maximum increase 1s here equal to 0 60%
for {A'=001, m =5} when {A=003, m;=40} On the other hand, the relative loss of
profits can be huge It can reach here 35 1% for {A'=0 01, m/=40} when {A=0 03, m~
5} More significantly, there does not seem to be any link between an increase in SE and
a loss of profits The explanation might be that the relationships between the increase of
SE and the percentage lost of profits 1s highly nonlinear and quite complicated That can
be seen by comparing analytical formulae [4 20] and [4 22] for the price-trend model So
if the true model 1s the price trend model, the mimimum squared errors cniterion might not
be relevant to assess the usefulness (profitability) of a forecaster

43 4 Model misspectfication

H,: Random walk with positive drift (1>0)

Rule returns based on a AR(1) model depend only on the sign of the autoregressive
parameter, ¢, and not on its size (Table 4 4) When the true model 1s a random walk with
dnft, the return of such a rule is positive when o 1s positive but very small* The relative
loss of profit 1s substantial and rather insensitive to the size of the dnft parameter For

4 When a 1s positive, the rule tniggered by an AR(1) forecaster 1s 1dentical to the simple moving
average of order 2 rule The expected rule return 1s consequently extremely low under the random
walk with drift assumption, see Chapter 3
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example assumung ¢ = 0 007 and p = 00002 (5% yearly) produces a relative loss of
96 6% When the dnift parameter increases to 0 0006 (15% yearly), the percentage loss 1s
93 2% In comparison, the value of both the dnft and the autoregressive parameters have
very little effect on the percentage increase in the SE

Table 4.4 AR(1) forecaster when the true model 1s a Random Walk with dnift

Relative loss of returns %
(Standard Deviation 6 =0007)  \

piyearly %)\ o . AR(1),a>0
5 96 6
10 954
15 932

Relative increase 1n SE
(Standard Deviation ¢ =0 007 )

n(yearly %)\ 0025 005 01
5 014 033 108
10 039 056 132
15 080 098 162

H,: AR(1) without drift and o>0
We examne here, the reverse case of using a Random Walk model with positive drift
mnstead of the true AR(1) model The strategy of the RW model with positive dnft 1s a

buy and hold strategy with excepted return equal to zero The relative percentage loss 1s
therefore 100 percent The percentage increase in SE 1s

u?+o?-(1-at)s?  u?+a’s’
(1-a?)o? (1-a?*)c?

When the RW model used has no dnft (u=0) the percentage increase in SE 1s

PSE(l) =

a‘Z

(1-a?)
For example if a=0 1, the percentage increase in SE 1s 101% compared to 100%
relative loss in profit

Pss(l) =

H;: ARMA(1,1) without drift

Employing a RW model with dnft instead of the true model ARMA(1,1) gives results
very similar to the ones in the last section A more mteresting case 1s when the model
employed 1s an AR(1) The net returns 1ssued from the two models, musspecified AR(1)
and correct ARMA(1,1), are given in Table 4 5 The relative loss in profits can still be
denived from equation [4 22] and depends on the mean duration m, of the true model but
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as 1t has been shown before not on the size of the autoregressive parameter of the
musspecified model The relative loss varies from 36% for m =5 to nearly 69% for m,=40

The percentage increase of the SE 1s still dernived from equation [4 20] and depends as
expected on the size of the autoregressive model The relative increase in SE 1s a negative
function of m; When m, increases, that 1s a striking case where the AR(1) model
becomes more accurate but less profitable in relative terms

\
Table 4.5 AR(1) forecaster when the true model s the price-trend model
Yearly returns
True Model ARMA(L,1),{A=003,my,c=0007}

my Yearly returns % using an AR(1) with o>0 | Yearly returns % using the optimal forecaster

5 335 532

10 366 \ 6 66
20 398 10 41
40 408 13 06

Relative loss of returns %

mg AR(1) with o >0

5 36 00

10 5146
20 6168
40 68 63

Relative increase in SE %
mg\o 0025 005 0075 01 0125

5 083 089 109 141 185
10 081 086 104 135 168
20 080 0385 102 132 164
40 0380 084 101 130 162

435 Techmcal Indicator
We now study the effect of using technical forecasters when the true model 1s a Gaussian

process More specifically, we measure the consequences of following simple moving
average techmques of orders 5, 10, 20 and 40 in terms of mean squared error and
profitability for the three models we have considered until now The use of a technical
mndicator 1n those conditions can be seen mn fact as a special case of musspecification
model, because simple moving averages are linear models (Section 3 4 1)

H,: Random walk with positive dnift (1>0)

From Table 4 6, 1t can be seen that the igher the order of the moving average, the lower
the relative loss of returns Thus result 1s a direct consequence of Chapter 3 in which 1t s
shown that with equation [3 12] the higher the order of the moving average, the closer it

105



15 from the optimal strategy, buy and hold In addition as volatility decreases, the relative
loss of returns decreases

Table 4.6 Relative loss of returns following a simple moving average rule,
when the true model 1s the RW with dnft

Relative loss of returns %
(Standard Deviation a = 0 007 )
pyearly) S(5) S(10) v S(20) S(40)
5 958 940 913 866
10 916 869 826 656
15 866 819 643 641
20 835 66 1 662 534

The mean squared error does not seem a relevant crniterion to judge the potential
profitability of a techmcal indicator due to its sensitivity to a change of scale The fact
that technical forecasters display very different vanances 1s a serious drawback which
prevents the use of squared errors in performances measurement Homogenisation for
equal vanances between forecasters 1s required Then mummusing squared errors will be
nothing else than maximising correlation between predicted and actual values That 1s
what achieves our profit criterion, which 1s scale independent

H,: AR(1) without drift and o>0

Since the optimal strategy 1s nothing else than a simple moving average of order 2, 1t 1s
logical that the lower 1s the order of the moving average, the smaller is the relative loss of
returns (Table 4 7)

Table 4.7 Relative loss of returns following a simple moving average rule,
when the true model 1s the AR(1) model

Relative loss of returns %
o S(5) S(10) S(20) S(40)
0025 268 46 6 616 628
005 26 6 46 5 616 626
01 261 462 615 626

H,: ARMA(1,1) without drift
For a given variance reduction, Table 4 8 reflects that the best single moving average
corresponds to an order relatively higher than the mean duration
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Table 4.8 Relative loss of returns following a simple moving average rule,
when the true model 1s the price-trend model

Relative loss of returns %
A=003
my S(5) $(10) S(20) S(40)
5 80 16 113 296
10 21 60 18 124
20 356 16 9 \ 36 26
40 461 269 113 18
A=002
my S(5) S(10) S(20) S(40)
5 86 16 106 286
10 238 61 16 111
20 385 195 51 20
40 499 320 145 28

436 (Conclusions on misspecification

The linear forecaster which mimmises squared errors maximises expected returns
However the mean squared error does not seem a relevant cnterion to judge the
predictive power of forecasting strategies When the true model 1s not known, one has to
use a musspecified forecaster Then loss of profitability in relative terms 1s almost
unrelated to loss of accuracy One cannot conclude that a decrease in mean squared error
will provide a gam in returns The most plausible explanation to this phenomenon 1s the
degenerescence n the multivaniate law of rule and underlying returns Broffitt(1986) has
shown that although functionally dependent those two processes can be uncorrelated and
follow a bivanate degenerated law It 1s why error measures might be 1n practice of poor
use to study the predictive power of a forecasting strategies and that only profitability
criterion should be considered for investment purposes

In theory, if the underlying process ts Gaussian, technical forecasters are misspecified and
cannot outperform vector autoregressions forecasters In fact, techrucal forecasters might
not be musspecified and be optimal forecasters, because many of them are in fact vector
autoregressions forecasters Another argument in favour of technical analysis has been
gtven by Taylor(1992b 16) " The channel rule may be supenior because 1t may require
less information to learn about a satisfactory value of its one parameter than an ARIMA
rule needs to find satisfactory estimates of its AR and MA parameters " We have shown
here that for trading purposes, 1t was far more important to accurately estimate the mean
duration of the trend than the vanance reduction That 1s exactly what attempt technical
rules such as the weighted or simple moving average rules So technical analysts might
argue, with some reasons, that it i1s preferable to use an ill-defined forecaster but
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adequately approximated because of relevant cnterion (profits) than a well-defined
forecaster but wrongly estimated because of inadequate criterion (error measures) In
practice, complicated musspecified models can outperform much worse than simple (also
probably musspecified) models Indeed, attention should be given to models where the
financial implications of interest (rule returns) are not sensitive to the model of the trend
Ideally we would like a forecasting strategy which implies the same expected rule return
whichever trend model 1s used \

,

437 Extension to chaotic time series

If the data are chaotic, one can potentially forecast the time seres perfectly, but one can
practically never succeed in long-run forecasting (Brock, Hsieh and LeBaron, 1991) In
those conditions, forecasting 1s close to impossible (Mandelbrot, 1966, Butler, 1989)

Suppose that we estimate the model of a chaotic time series and that we make an error of
1 percent in the estimation of just one parameter This exceedingly small estimation error
will be sufficient to troduce large errors in predicting the time series In order to use the
model for forecasting purposes, we should be able to obtain infinitely precise estimates of
the parameters of the model Anything less precise makes the use of the model for
predictive purposes useless De Mandelbrot(1966), Butler(1989), Grauwe and
Vansanten(1991) show that 1n the chaotic world they have modelled, time senes models
of the financial asset cannot be used for forecasting purposes In this case, market
participants have no incentive to mvest time and money in acquiring informatton about
the underlying economic model In order to be useful this information must have a degree
of precision which 1s unattamable in the social sciences

The above conclusions relate to forecasting errors and stochastic modelling and
therefore mught not be applicable for profits and technical rules The exact nature of the
underlying chaos needs not to be known to build profitable strategies Under the null
hypothesis of a fractional Gaussian process, the optimal forecaster given by
Hoskings(1981) 1s a very profitable forecaster It exhibits an infimte gain because the
autocorrelations are not summable It 1s however very dependent on the imtial conditions
and 1s not known when the true model 1s not Consequently a more robust rule might be a
simpler forecaster such as techmcal rules Indeed, we have seen in Section 3 4 3 that
techmical rules such as the simple moving average are quite profitable under the fractional
Gaussian process assumption

In sum, chaotic time series might be a case where technical forecasters should be
preferred to time series models

108



44 MARKET TIMING ABILITY TESTS IN PRESENCE OF LOW
AUTOCORRELATIONS

As proved theoretically in Section 422 and empinically by Leitch and Tanner(1991),
directional accuracy 1s certainly the best candidate as a substitute of profits if those ones

are not observable So 1t 1s not surpnsing Rhat tests of market timing ability have been
based on 1t

s

Section 4 4 1 supports the close link between expected profits and directional accuracy
by establishing their formal relationshups for any Gaussian processes without dnft
However, Section 4 4 2 questions the usefulness of market timung ability tests based on
directional accuracy, such as the Henriksson and Merton(1981) test, and 1ts extension the
Cumby and Modest(1987) test, in presence of low autocorrelations

441 Directional Accuracy and Rule returns

Market timing ability can be looked at from several perspectives error measures and
profitabiity We will examine here the required accuracy for profitable market timing
assuming that the underlying asset follows a Gaussian process without drift’

Proposition 4 5
If the underlying process of returns {X;} 1s assumed to be Gaussian without dnift, the
expected value of directional accuracy DA, 1s given by

E(DA,) = %+~—Ams;“(p) [4 23]

where p = Corr(X,,,F)) [4 24]
In addition, the expected value of rule returns is known and again a function of p only
Equation [3 10] says that
2
E(R,) =,/=op (4 25]
T

Expected values of directional accuracy D, and profitability R, can be linked easily using
equations [4 23] and [4 25] The relationships 1s given by

5 That 1s a stmilar study to the required accuracy for successful asset allocation under the bivanate
random walk by Clarke, Fitzgerald, Berent and Statman(1990)
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E(DA)) = %+ %Arc sm(—P%%) [4 26]

When the correlation p between one-ahead return and forecaster 1s quite low, Arcsin(p)~

p, and equation [4 26] can be approximated by

1 1 ‘
E(DAt) = —2- + mE(Rt)

So directional accuracy as expected 1s once again positively and almost linearly related

\ [4 27]

with profitability Table 4 9 provides some numerical examples assuming a given
volatility

Table 4.9 Relationships between directional accuracy and profits,

Drrectional Accuracy, Profit assuming a volatility = Q 007
Corr(F,,X.) E(R,) Yearly % E(DA) %
0 0 50

0025 35 508
005 70 516
0075 105 524

01 140 532
0125 175 540
015 209 548
0175 244 556

02 279 56 4

The most interesting result from this table 1s that 1t 1s enough of very few directional
accuracy (DA~55%) to generate big profits (>21%) Such results have been empinically
noted by Kester(1990) and would contradict the findings of Chua, Woodward and
To(1987) and Sharpe(1975 67) m which he states that "[ Junless a manager can
predict whether the market will be good or bad each year with considerable accuracy
(e g be nght at least seven times out of ten), he should probably avoid attempts to time
the market altogether"

442 Market Timing Ability Tests
The fact that 1t 1s enough of very few directional accuracy to generate big profits has

profound imphlications on testing the market timing ability of forecasters This mught
indeed question the usefulness of market timing ability tests based on the percentage of
correct forecasts These ones might not be powerful enough to detect market timing
abiity This pomnt 1s now mvestigated n more details by considering Henriksson and
Merton(1981)'s non parametric test and its extension by Cumby and Modest(1987)
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Henriksson and Merton(1981)'s test and its extension by Cumby and Modest(1987) are
certainly some of the most popular tests employed to investigate the usefulness of
techmcal advisory services as market timers Schnader and Stekler(1990), Beebower and
Vanikooty(1991), Gerlow and Irwin(1991), Hartzmark(1991) are recent examples The
advantage of these methodologies 1s to measure the value of a forecast (advice) which 1s
independent of an mvestors preference, endowments, or prior assessments of an asset's
return stream \

The Hennksson and Merton(1981) non parametnic test simply studies the percentage of
correct forecasts following a given trading rule They make the additional assumptions
that the conditional probability of a correct forecast does not depend on the magmtude of
subsequent returns Then the test may be implemented mm a sample of N observed
forecasts by classifying the N outcomes as follows |

Actual Returns

X20 X, <0

Predicted X20 (B.=1) n, N,-n,
Returns X<0 (B.;=-1) N, -n, n,
N, N,

where X 1s the excess rate of return of the underlying asset
N, = number of outcomes with X, >0

N, = number of outcomes with X, <0

n, = number of correct forecasts that X, >0,

n, = number of correct forecasts that X, <0,

and n = n,+n,-N number of correct forecasts that X, >0

The test proceeds by using the fact that, under the null hypothesis of no timung ability, n,
1s distributed as an hypergeometric When the probability under the null of observing n,
or more correct forecasts that X, > 0 (given N,, N, and n) 1s unacceptably small, the null
hypothess 1s rejected

The Cumby and Modest(1987) test extends Hennksson and Merton(1981) test by
removing the critical assumption that the conditional probability of a correct forecast
does not depend on the magnitude of subsequent returns The relationship for assessing
market timing ability can be defined, similarly to Gerlow and Irwin(1991), as
X,=a+BB,, +¢, [4 28]
o and B are constant €, 1s a2 white notse X, equals the percentage excess rate of return,
and B, , 1s the signal triggered by the rule
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Market timing ability 1s found under the Cumby and Modest(1987) test if 8 1s signuficantly
different from zero Testing =0 1s therefore a test of forecasting ability or to be more
precise a test of whether the forecaster possesses any information not contained in the

unconditional sample mean

The assumption of the Henriksson and Merton(1981) test that the probability of a correct
forecast 1s independent of the magmtude of subsequent asset returns, 1s likely to be
violated when techmical indicators are used \Cumby and Modest(1987) note that even if
market returns have constant variance per unit of time, the vanance of holding period
returns following a techmical rule will not be constant® Breen, Jagannathan and
Ofer(1986) show that correction for heteroskedasticity can significantly affect the
conclusions The heteroskedasticity corrections suggested by White(1981) seem
particularly effective (Breen, Jagannathan and Ofer, 1986, Cumby and Modest, 1987) A
simpler approach is to consider when available unrealised instead of realised returns as
shown i Chapter 3 Sectton 33 has shown that if the underlyng process is
homoskedastic, so will be unrealised rule returns process Then the use of unrealised
returns will remove the artificial heteroskedasticity induced by realised returns, 1t mught
not however be sufficient 1f the underlying process 1s itself heteroskedastic

So there 1s a theoretical framework, possible linear relationships between directional
accuracy and rule returns, and constant vaniance per unit of time, which may justify the
use of Henniksson and Merton(1981) and Cumby and Modest(1987) tests to assess the
usefulness of technical indicators Yet the power of such tests must be mvestigated under
the most plausible alternative in defence of techmcal analysis, the presence of low
autocorrelations

443 Power Study

A most plausible model which can explain trading rule returns 1s the price-trend model
due to Taylor(1982) The trends p, had normal distbutions and zero dnft Simuilarly to
Taylor(1982), series of 1500 returns were simulated with A=0 034 and p=0 944, and the
model was replicated 1000 times The market return has been assumed to be equal to

zero, therefore the excess rate of return i1s equal to the underlying rate of return
X;=Ln(P,/P,)

Let us study the power of popular market timing ability tests namely, Henriksson
and Merton(1981), Cumby and Modest(1987) what we respectively note HM(x) and
CM(x) for the simple moving average rule of order x=5, 10, 20 and 40 Table 4 10

6  See Appendix 3 4 for a simple proof
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indicates 1n addition for companison purpose the power of two statistics T, U7,
spectfically constructed to test the price-trend hypothesis

Table 4 10 Power of market timing ability tests under the price-trend assumption
Estimated Powers for 1500 observations from a price-trend model
A=0034 , p=0944, p=0 , N=1000

Percentage rejections of RW

Statistic Significarice level
1% 5% 10%

Hennksson-Merton
HM( 5) 21 29 33
HM(10) 28 36 38
HM(20) 36 40 43
HM(40) 4] 45 47
Cumby and Modest !
CM( 5) 23 46 58
CM(10) 36 60 71
CM(20) 44 66 77
CM(40) 40 63 74
Tavlor
T 75 88 93
U 71 84 90

The most powerful statistics are the Taylor(1980) statistics, T and U It must not be
surprising since they have been explicitly elaborated to test the price-trend hypothesis
The HM market timing ability test has very low power, below 50% at a critical level of
10%, whichever rule 1s applied Jagannathan and Korajczyk(1986) exhibit similar results
and show that ;n most reasonable cases there 1s a nonlinear relation between portfolio
returns and the independent vanables i the timing models They prove that 1s
theoretically possible to construct portfolios that show artificial timing ability when no
true timing ability exists We just have shown that 1s theoretically possible to find trading
rules that show no timing ability when true timing ability exists This result theoretically
confirms a finding of Jagannathan and Korajczyk(1986) which 1s that nonlineanty m
market-timing models need not be due solely to violation of the assumed linear return-
generating process

The CM market timing ability test has significantly lugher power than the HM test The
most powerful statistic 1s CM(20) which 1s quite natural since the simple moving average

7 Defintions of statistics T, U are given 1n Section 6 1 4 and Taylor(1982)
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of order 20 1s the most profitable rule in the portfolio under this particular price-trend
assumption

Therefore cntera and tests based on directional accuracy to assess market timing ability
of technical indicators, might be of poor use to detect the usefulness of a trading rule
when the financial underlying time series exhibits low autocorrelations The mamn
difficulty 1s then to find a proper test of market timing ability This 1s the object of
Chapter 5 \

45 SUMMARY

\

If price time series data 1s assumed to follow a Gaussian process, then linear rules were
shown to be useless in maximising returns over and above vector autoregressions This is
also the conclusion of Neftci(1991) However, this finding needs to be refined because as
shown m Chapter 3, there are techmcal rules which are imphcitly linear The most
important result 1s that mimmusing squared errors 1s a sufficient but not necessary
condition to maximse expected profits

Despite a functional dependence, profits and error measures are only weakly
linearly correlated under the random walk assumption In this case directional accuracy
seems the best substitute to profits if those ones are not observable In presence of low
autocorrelations, musspectfication criteria based on error measures and profits behave
quite differently The main finding 1s that 1t 1s difficult to deduce from an increase of mean
squared error a loss of profits and vice-versa In practical terms, a decrease of mean
squared error 1s not linearly and positively related to a gain of profits That would mean
that for trading purposes, optimal vector autoregressions although maximising returns in
theory will have to be determined via other step researches than decreasing the mean
squared error The explanation of thus fundamental 1ssue might be that the functional
dependence between error measures and profits 1s of very few practical use because
highly nonlinear and possibly degenerated Therefore, when the true model 1s not known,
a decrease 1n mean squared error does not necessanly imply a gain in profits

In presence of low autocorrelations, expected directional accuracy and profits
seem linearly related Nevertheless 1n this case, tests of market timung ability based on
directional accuracy exhibit very low power These tests mught say nothing about the
usefulness of trading rules for maximising profits Nonlineanty in market-timing models
need not be due solely to violation of the assumed linear return-generating process
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APPENDIX 4.1

PROOFS OF PROPOSITIONS

Proposition 4 1
Expected returns given by equation [3 18] are function of two vanables
X =g/0 the ratio mean/standard deviation of the forecaster

p = Corr(X,,,F) correlation between forecaster and one-ahead return
Equation [3 18] can so be rewntten as \

E(R) = %Gp exp(—x2/2)+nu(l -2®[-x]) [4 29]

The two variables p and x are independent So the forecaster which maximuses expected
return must first maximse p Then for a given p, the forecaster which maximuses profits 1s
obtamed by denving formula [429] as a function of x It follows that the second

condition 1s given by

dER)/dx =0

= \/—%cp(—x)exp(—xz /2) + ;.1\/%exp(—x2 /12) =0

o opx=p o x=u/(ap) & Wp/oy=p/(ap)

Proposition 4 2

We first know from Chapter 3 that

ER)=0 [37]

Var(R) =c? [38]

Then if we note v(f) = 62 / 6%, and Z, = X, - F,,, we deduce that

Z,~N(0,02) where o? = 6+c% = o’ (1+%(f)) [4 30]
It follows that

E(SE) = E((X, - Fiy)?) = E(Z/) =07

Var(SE)=E(Z}) - (E(z?))? =30}-63 =207 [431]

ERSE)=E(B,;X,Z{)=EB, XX} -2F X +FL))
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E(RSE)=E(B,_,X>)-2E(B, F, X2 *+E(B._F>,X,)
Since X, follows a normal centred random walk, we have
E(B,..X;)=E(B,)E(X;) =E(B,,)0=0
E(Bt—-lth—IXt) = E(Bt—lth—l JE(X;)= E(Bt—1F12—1 )0=0

‘ 2
E(Bt—lFt—IXf) =E(B,,F )E(Xt2 )=( J.Ft—l - _[Ft-l) ¢’ = 0'Zc"F J;

F>0 \ F <0

Therefore E(R,SE)=-2E(B, F, X?)=-20%o; \/z
T

From the last result and equations [3 8] and [4 31], we deduce that

-2¢%cy 2

COI'I'(R1, SEt) = _O'To‘%n

Since by defimition v(f)=02%/c” and ol=a?(1+v(f)) from [4 30], 1t follows that

Proposittion 4 3
Using the auxihiary varable Z, defined by formula [4 30],

E(AE‘)=E(|X1-F1_1|)=E(|Zt|)=\/-gcz

Var(AE) =E(|XF,, | *) - ®(XF,, 1)? =E@%) - B(Z])? =? -2/m) [432]
Cov(R,AE,) = ERAE) =E®B,,X,Z,|)

CovR,AE)= [[XzZ,- [[Xz,- [[xz,+ [[xz2,

F,_;1>0,Z;>0 F_>0,Z,<0 F_1<0,Z;>0 F.1<0,Z,<0

Cov®,AE)=2{ [[XZ,~ [[X.Z}

F>0,Z>0  Fy>0,Z,<0
The last equality results from symmetry argument
In addition, we know from equation [4 30], that X, =Z +F,; Consequently,
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[[x2.=  [[2}+Z.F = 63[2.01(p)+0,0:1.11(p)

F,_;>0,Z,>0 F.1>0,2,>0

[[x2z,= [[2}+ZF. = 2[2.01(-p)+0,06L1](-p)
F;_1>0,Z¢ <0 F1>0,2,<0

where [1,1](p) and [2,0](p) are truncated moments of bivariate normal laws, and
p=Corr(Z,F_)=Corr(X, ~F_,,F,_;) = ~€ov(F,_;,F,_,)/ (65 6;) because X, and F,
are independent Consequently

p=-0p /0y =~VE)/+V(F)] [433]
Subsequently, we deduce that

Cov(R, AE) = 2{c7([2,01(p)-[2,0](-pP))+0,0¢([1,11(P)H{ 1, 11(-p))}

Using the exact formulation of [1,1](p) and [2,0](p) respectwely given by [A 3] and
[A 4] in Appendix 3 1, we have

Cov(R, AE)) = (%)02 (Aresin(p) + py/1 - p* — p{pArcsin(p) +1-p* )

Cov(R,AE,) = (%)0% (1-p*)Arcsin(p)

From equations [4 30] and [4 33], we deduce that ci (1-p?)=c’

Then, Cov(R,AE) = ~(%)c? Arcsin(p) =~ (%) *Arcsin(+/v(f)/ [1+v()])

From the last result and equations [3 8] and [4 32], we deduce that

=2Arcsm(y/v(f) /[1+v()])
VrJr-21+v(f)

Corr(R,,AE,) =

Proposition 4 4
E(DA) =Pr(XF,,>0) = Pr(X>0,F, ,>0)+Pr(X,<0,F,,<0)

= Pr(X>0)Pr(F, ;>0)+Pr(X,<0)Pr(F,,;<0) =025+ 025=05
Var(DA,) = E(DA?)~(E(DA,))? = E(DA){1-E(DA)} = 0 25
Equations [3 7] and [3 8] say respectively that E(R)=0 Var(R) = ¢’
Then

Cov®,DA) =ERDA)=  [[%~ [[X =K( [X- [X) =9/

F1>0.X;>0 F1<0,X;<0 X>0 X<0
7
J ,2
050 T
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Proposition 4 5

E(DA)= H X, - H X, =2 H X,  for symmetry reason

Fo>0X>0 F1<0,X,<0  F;>0,X,>0

E(DA)=2[1,0(p) where p=Corr(X,,F_,)

and [1,0](p) 1s the truncated moments ‘of standardised bivanate normal laws given by
equation [A 2] in Appendix 3 1 Subsequentl\y,

E(DA,) = _;__‘_ Arcsin(p) ,
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APPENDIX 4 2 ‘

CORRELATION BETWEEN DIRECTIONAL ACCURACY AND PROFITS
ASSUMING A GAUSSIAN PROCESS WITHOUT DRIFT

Proposition 4 6 \
Under the Gaussian process assumption without dnift, the linear correlation between rule

returns (equation [3 1]) and directional accuracy (equation [4 3]) 1s

1 2
TE—;--;;pArcsm(p)

C ,DA) = 434
orr(ReDA) \/[T*sz/n]\f%+%Arcsm(p)\f}§—%Arcsm(p) [434]

With p=COI‘I' (XtaFt—l)

Proof
Equations [3 10] and [3 6] respectively say that
2 2 2 2
ER)=,=0cp Var(R) =" {1-—¢]
T

Using the results of Proposition 4 5

E(DA) = Y4+ Y, Arcsin(p)

Since E(DAZ ) =E(DA),

Var(DA,) = E(DA)(1-E(DA) = (14 + ¥, Arcsn(p))(}; — )z Arcsin(p))

ERDA)=  [[X - []X

F>0X,>0 F,_{<0,X,<0
Using the truncated moments [1,0](p) of standardised bivanate normal laws given by

equation [A 4] in Appendix 3 1 It follows that

ERDA) = o' (1)

From these results, we easily deduce Cov(R,,DA)

1 W2
Cov(R,,DA) = N ;—tmpArcsm(p)
and so Corr(R,,DA,) given 1n equation [4 34]
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Chapter 5

TRADING RULES DIAGNOSTIC TESTS

As outlined in Chapter 2, the choice of which dynamic strategy to follow depends on the
expectations one has about the stochastic process which drives prices It 1s consequently
crucial to establish proper tests of the randomness of financial prices Then 1if prices are
not random, statistics must be found which enable to deterrune the most likely
alternatives Thus chapter intends to solve both issues by considering tests based on the
jont profitability of trading rules

The profitability of dynamic strategies might be one of the most powerful statistic to
detect market mefficiencies as state Leuthold and Garcia(1992 53) "Relative Mean
Squared Errors [however] provide only an indication of the potential for market
inefficiency A sufficient condition for market nefficiency 1s whether the forecasting
method can generate risk-adjusted profits which are greater than the cost of usage "
Therefore market timing ability mght constitute a more powerful way to detect market
imperfections than standard statistical test However we have seen in Chapter 4 that the
well known market timing ability tests, by Henriksson and Merton(1981) and Cumby and
Modest(1987), exhibit low power 1n presence of low autocorrelations

This 1s why new tests based on the jomnt profitability of trading rules rather than
directional accuracy or mean squared error should be sought

Section 5 1 establishes the necessary preliminares, trading rules correlattons under the
random walk assumption Then Section S 2 proposes new tests of the random walk
hypothesis based on the joint profitability of trading rules Finally Section 53 extents
previous results such that the adequacy of any Gaussian processes can be checked using
trading rule returns As before, the last section of the chapter summarises and concludes

our results



51 TRADING RULES CORRELATIONS
UNDER THE RANDOM WALK WITHOUT DRIFT ASSUMPTION

Establishing trading rules correlations 1s essential to enable achieving three objectives
Furstly, a proper, objective and quantified classification of trading rules, non-existent at
the time of writing, could be performed using rules correlations Secondly, it mught help
to construct an efficient portfolio Thirdly, and perhaps more important, 1t will allow the
jont profitability of a set of trading rules to be tested Brock, Lakomshok and
LeBaron(1992), Surujaras and Sweeney(1992), Prado(1992) have emphasised that such a
test might have power, specially against nonhinear alternatives

Consequently, correlations between trading rules are worth bemng mvestigated and are
explored under the assumption of a random walk without drift Section 5 1 1 defines our
basic assumptions Section 5 12 gives the main results of this section, the correlations
between two technical rules applied to a bivanate random walk without drift

511 Basic assumptions

We are now assuming that two financial series, with returns X,;, and X,,, follow a

centred bivanate normal law with vanances 67 and 62 and correlation coefficient p,

Then two unbiased hinear trading rules (simular or different) F, and F,, are respectively

applied to the two processes {X,,} and {X,,}

my -2 m,—2

Fl,t = Zdl,xxl,t—x [(51] Fy= Zd2lX2,t—l [52]
1=0

1=0

m, and m, are called the orders or lengths of the trading rules

The linear rule F,,_, generates signal B, ; and return R, from the underlying process
{X.,.}, gven by, R, =B, X,; It must be noted that this chapter assumes that linear
rules are without constant (3 = 0 1n equation [3 4]) Popular technical forecasters such as
momentums, simple mowving average, weighted moving average and double moving
average rules are examples of linear rules without constant as can be seen from Table 3 3,
and so are unbiased if the true model 1s without dnift
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512 Linear rules correlations

To the author's knowledge, the only researchers who have attempted to establish
theoretical trading rules correlations are Praetz(1979) and Sweeney and Lee(1989) In
both studies it is recogmsed that the covanances of trading rules depend on the
covanances of underlying returns and on the positions the speculator had in the two
assets Proposed formulae are expressed as a function of the frequency of short positions
taken by the trading rules However their results are not exact and have to be considered,
at best, as approximations, as it 1s now recogmnsed, that the frequency of short positions 1s
an endogenous varnable (Surujaras and Sweeney, 1992) This section will attempt to
remedy this limitation by giving precise theoretical correlations between trading rules

Precise theoretical correlations are now being established for any linear rules without
constant and highlighted, for the sake of clanty, throughout three popular technical linear
rules which are simple moving average, weighted moving average, and momentum
systems, respectively noted S, W, M

Proposition 5 1'

Assuming that two underlying time senes, X;, and X,,, follow a centred bivanate

normal law with underlying correlation p,, linear rule returns, R, and R, ,, exhibit linear

correlation coefficient pg, given by

2

where p; 1s the correlation between the two different forecasters which would have been

applied to the same underlying process We call 1t systems correlations It 1s given by

Min(my m,)-2
Zdl xd21 54
1=0
Pr = (m]_z ) fmz—z ) [ ]
\/ Z dl,)\} Z d2,1
1=0 1=0
Inaddition,  p(Ry R, )=P(R) (1p,R;,)=0 for h>0 (53]

U Proofs of propositions are given 1n Appendix 5 1
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Proposition 5 2
Assuming that two underlymg time series, X;; and X,,, follow a centred bivanate

normal law with vanances cf, c% and coefficient correlation p,, linear rules signals, B,

and B, , exhibit linear correlation coefficient py, given by

2
Pp=p(By,B2 )= ;Arcsm(ppr) (5 6]

and py. 1s given by equation [5 4]

In addition, p(Bl,t,Bz,uh)*E Arcsin(p, Prgy) [57]
T

Mwin(m; my—h)-2

Zdl,l d2 1+h
1=0 [5 8]

with pF(h) = p(Fl,t’FZJ'Fh) = m, -2 ma—2
\/'Z d?l \/E dgvl

1=0) 1=0

Expressions [5 3] and [3 6] suggest a few comments

(a) correlation between rules signals, pg, 1s higher mn absolute value than correlation

between rule returns, py

(b) rule signals correlation, pg, 15 an odd function of underlying correlation p, and of
systems correlation p That means that rules signals will be negatively correlated if either

the systems correlation or underlying correlation 1s negative

(c) rule returns correlation, py, i1s an even function of the underlying correlation p, and
an odd function of the systems correlation p; That means that rule returns will be
negatively (positively) correlated if, and only if, the systems correlation 1s negative
(positive)

(d) rule returns correlation 1s always lower in absolute values than the underlying
correlation

If one wants to mmmuse the risk of an investment, 1t turns out that diversifying trend-
following systems between positively correlated assets can be beneficial beyond
dwversification of passive strategies, because the correlation between trading systems will
be lower (property d) However, this will be disadvantageous if the underlying assets are
negatively correlated, because trading systems will be positively correlated (property c)?

2 See for a graphical representation of this fact Figure 5 1
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For the remainder of this section we shall pnmanly focus our nterest on returns
rather than signals correlation since 1t has more implications vis-a-vis a portfolio context
We shall detail and interpret previous results by considening three cases from the simplest
to the most general different rules applied to the same underlying process, the same rule
applied to different underlying processes, different rules applied to different underlying
processes

Different rules applied to the same underlying process
When two different unbiased hinear trading systems are apphed to the same underlying
process, X;,=X,,=X, and p,=1 In this case, correlations between rule returns, equation

[5 3], and correlations between rules signals, equation [5 6], become 1dentical and equal
to

2
Pr = Pp = —Arcsin(pg) [59]

Table 5 1 gives examples of correlations between two successive orders of a given rule
For instance, the correlation between simple moving averages of orders 2 and 3 is equal
to 0 705 That tells us that for all three rules successive orders are less correlated for low
than ligh orders Thus 1s not surpnising and has been noted by Prado(1992) Prado(1992)
recommends testing wider ntervals as the moving average days increases He adds that
on the one hand, a three day moving average 1s very different from a four day moving
average, but on the other hand a ninety day moving-average 1s very simlar to a ninety-
one day moving-average Table 5 1 illustrates in addition that two successive orders of
weighted moving averages are more correlated than simple mowving averages and
momentums

Table 5 1 stresses a common misunderstanding raised by practitioners, we now describe
Smuith(1992) studies the moving average rule apphed to the Standard&Poor index and
finds that the profitabihty 1s erratic except for parameter values 48 through 65, where a
broad area of profitability 1s detected He then concludes that areas of erratic profitability
should not be considered significant It does not seem that such results indicate at all
presence of profitable trading rules or mefficiencies, since under the random walk
assumption 1t 1s expected that low order rules will be less correlated than high order ones

Table 5.1 Correlations between rules of successive orders

Rule\Order 23) 3.4 45) (10,11 (20 21) (40,41) | (100,101)
M 500 608 667 795 856 899 936
S 705 811 860 945 972 986 994
W 795 870 903 960 980 990 996
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Table S2 shows correlations between various systems and orders For instance
P[S(5), W (10)] means the rule returns (or signals) correlation between the simple moving

average of order 5 and the weighted moving average of order 10 It 1s equal to 0 799

Table 5.2 Rules correlations

p S(5) | S(10y | S(20) | S(40) | W(5) | W(10)| W(20) | W(40) | M(5) | M(10) | M(20) | M(40)
S(5) 1 | 666 | 460 | 322 | 880 | 799 | 574 | 409 | 732 | 417 | 275 | 189
$(10) 1| 680 | 472 | 600 | 859 | 823 | 593 | 697 | 697 | 419 | 281
S(20) 1| 685 | 416 | 596 | 849 | 834 | 497 | 721 | 681 | 419
S(40) 1 | 291 | 416 | 593 | 844 | 351 | 523 | 732 | 674
W(5) 1| 728 | 521§ 371 | 621 | 372 | 248 | 171
W(10) 1| 732 | 524 | 755 | 574 | 363 | 246
W(20) 1| 733 | 606 | 755 | 554 | 358
W(40) 1 | #41| 635 752 | 545
M(5) 1 | 465 | 303 | 208
M(10) 1 | 483 | 319
M(20) 1| 492
M(40) 1

Rather than listing differences between systems and orders which could happen to be
endless due to the infinite number of linear rules, it 1s worth emphasising two points
Firstly, trend-following systems are positively correlated Zero or negative correlation
obviously requires the combination of trading rules of different nature such as convex
(trend-following) and concave (overbought-oversold) strategies Secondly, buy and sell
signals and then returns of techmical systems are not independent over time under the
random walk assumption Related findings are attnibutable to Working(1960) This
established that if in a time senes constructed from independent increments, the
individuals items are replaced-let say-by monthly averages, spurious correlation 1s
introduced between successive first differences of the averages Correlation between
trading signals would contradict, however, the hypothesis of Lukac, Brorsen and
Irwin(1988a) who considered, as an approximation, that buy and sell signals of systems
are independent over time They then concluded that all the systems are on the same side
of the market significantly more than mught randomly be expected and that monthly
returns are positively correlated Our results show that it 1s not absolutely certain that the
similarities between systems Lukac, Brorsen and Irwin(1988a) found are nothing more
than would randomly be expected
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Same rule applied to different underlying processes
When the same linear rule (non-deterministic, and so excluding Buy and Hold, or Sell and
Hold strategies) 1s applied simultaneously to two assets, pp =1 and equations [5 2] and

[5 6] become

2
pR = ;prfCSln(px) [5 10]

Pg = %Arcsm(p‘) [511]
T

We can see two additional properties, when the same rule 1s applied to two different
assets

(2) rule returns correlations become independent of the rule itself and the sole function of

the underlying correlation

(b) rule returns correlations are now an even function of the underlying correlation and

thus are always positive

Table 53 and Figure 51 highlight formulae [510] and [5 11] for some values of

correlations of the underlying process

Table 5.3 Rules correlations as a function of the underlying correlation

Underlymng Correlation Signals correlation Py Returns correlation Pp
P«

1 i 1
099 091 090
098 087 086
095 030 076

09 071 064
085 065 055
08 059 047
07 049 035
05 033 017
03 019 006
02 013 003
01 006 001
005 003 ~0
0 0 0
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Figure 5.1 Rules correlations as a function of the underlying correlation

Different rules apphed to different underlying processes

Let us now examine the most general case where different rules are applied to different
underlymng processes We use for this purpose different orders of simple moving
averages

Having just proved that correlations between rule returns (when the same rule 1s applied
to two different processes) do not depend on the rule itself, Table 5 4 exhibits constant

diagonals

Table 5.4 Rule returns correlations py for different underlying correlations

Underlving correlation p, =095
p S(2) S(5) S(10) $(20) S(40)
S(2) 0758 0 464 0321 0225 0138
S(3) 0758 0583 0411 0289
S(10) 0758 0595 0422
S(20) 0758 0599
S(40) 0758

Underlying correlation 0, =090
p S(2) S(5) S(10) | S0y | S@0)
S(2) 0642 0411 0287 0201 0142
5(5) 0642 0511 0365 0258
S(1) 0642 052 0375
S(20) 0642 0524
S(40) 0642

Underlying correlation o, =0 85
p S(2) S(5) S(10) S(20) S(40)
S(2) 055 0362 0254 0179 0 126
S(5) 055 0 447 0323 0229
S(10) 055 0455 0331
S(20) 0355 0457
S(40) 035
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Our results are consistent with Praetz(1979) but disagree with Sweeney(1986) and
Surujuras and Sweeney(1992)

On the one hand, Praetz(1979) noted that the results from both different secunties and
trading rules are likely to be positively correlated due to the presence of the market factor
among security returns and due to the presence of many common rates in the returns
from short selling of similar trading rules

On the other hand, Sweeney(1986 177) concluded that "even if [exchange] rates are
correlated, excess rates of return on trading strategies should be virtually uncorrelated
because the signals are only randomly synchronised across currencies” Surujuras and
Sweeney(1992) then expressed the assumption that on the one hand, under efficiency
rules signals would be completely out of synchromism and, on the other hand,
inefficiencies would create positive cross correlations This sectton comes to a different
conclusion, 1e, even when underlying processes are correlated white noises, rules
correlations- although lower in absolute value- cannot be zero The presence of
inefficiencies, more specifically positive autocorrelations, would even increase rules
correlations Our results clearly indicate that correlations between trading rules are
strongly dependent on underlying correlations That could explain why the correlations
between trading rules can be low for equities (Sweeney, 1988) and high for currencies
(Suryjaras and Sweeney, 1992) Accordingly t-statistics can be highly sensitive to
whether the covanance terms are included or not

Overall, these results suggest that correlations between the same system applied to
various assets can be much lower than correlations between various trend-following
systems applied to the same asset It seems that these results might hold empirically® since
diversification between assets has been found more beneficial than diversification between
systems (Taylor 1990b, Brorsen and Boyd, 1990)

3 Empincal trading rule correlations for a set of exchange rates can be found in Section 6 2 3 They
happcn to be quite closc to their expected value under the random walk assumption
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52 A TEST OF NON-ZERO PROFITS

521 Previous tests of profits from technical analysis

Testing the usefulness of trading rules 1s not an easy task in the presence of a strong non-
zero dnft If market timng ability, as m the Cumby and Modest(1987) test, 1s a test of
whether the forecaster possesses any information not contaned in the unconditional
sample mean, non-zero profits are not a relevant cnterion Praetz(1976) and Section
3 3 4 have shown that if prices follow a random walk with dnft, trading rules can be
profitable but below the absolute value of the dnft and so do not display any market
timing abulity

Praetz(1976) showed that expected rule returns are approximately E(R,)=p(1-2f)
where f'1s the frequency of short positions The expected return on buy and hold is simply
the dnft itself, & The expected rule return suggests that comparison between the rule
return, R,, and the return on buy and hold, X,, leads to a bias, in favour of buy-and-hold if
u>0 and in favour of the filter rule if u<0 To avoid this problem, Sweeney(1986)
proposes the statistic

N N
Y ;‘J—th—(1—2f)%§‘;xt
t=

t=1
where N 1s the total number of days i the period and f the frequency of short positions
A formal definition of f1s given by

N
f=34> B, with B, =

{—1 < “short position"
=

+1 < "long position”

-

Subsequently, Sweeney(1986) shows that E(Y) =0 and V(Y)= o’ /N

The underlying assumptions of Praetz(1976), Bird(1985) and Sweeney(1986) are that
E(R,) = p(1-2f) 3 15]

V(R,) = 07 (3 16]

Cov(R,R,,p) = 0 for h>0 [317]

We know from Section 3 3 4 that these formulations are mexact and that they should be
replaced by

E(R)) = 1(1-2PS) 3 12]
V(R,) = 6% 42PS(1-PS) [3 13]
CoV(RyRyyp) = UE(B, Byuy.1X,) - n¥(1-2PS) [3 14]

where PS 1s the probability of being short at time t PS =Pr(F,<0) = ®(—ug/cg) [3 11]
and @ 1s the cumulative function of a N(0,1)
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Although theoretically different, PBS formulae [3 15], [3 16], and [3 17] are very close to
[3 12], [3 13], and [3 14] for usual values of mean and standard deviation of pnce
returns Therefore, the validity of PBS test should not be questioned The main hmitation
of thus test lies rather in the fact that 1t can not be extended to assess the joint profitability
of trading rules The presence of a dnft complicates to the extreme trading rules
stochastic properties Rule returns are not any more normally distnbuted but follow a
mixture of normal laws (Proposition 3 4) Then correlations between trading rules are
extremely difficult to establish and mught be of poor use anyhow, because rule returns
would follow a muxture of normal distributions

522 Removing the drift
It seems to us easter to remove the dnft in the onginal series Doing so will allow us to

use the numerous exact results of trading rules stochastic properties In particular
Proposition 3 1 permits us to consider random walk tests from the joint profitability of
trading rules

Removing the loganithmic drift in the ongmnal price senes {P,,t=0, ,N} can be done

by
R N
(a) Estmating [i=3> X, , where X, =Ln(P,/P_;)
1=1

(b) Detrending the oniginal price series by applying the transformation P, =P, exp(—[it)

This process requires the sample mean {1 to be equal to the true mean p of the financial
series It seems to us difficult to prevent such hypothesis Indeed, without ths
assumption, no comparison can be done with Buy and Hold strategy since the sample
mean return will not reflect the true reference value Subsequently, we will assume that
the sample mean 1s an accurate estimate of the true mean Therefore in what follows, we
will consider that the series can be detrended Techmical mdicators will then be applied to

detrended sertes P;

523 Random walk tests from the joint profitability of trading rules

Trading rules have been widely used as a tool to detect abnormal profits and so market
mmefficiencies (Brock, Lakomshok and LeBaron, 1992, Levich and Thomas, 1991,
LeBaron, 1991, 1992b)

There are however pros and cons to the use of trading rule retuns to test market
efficiency One of the possible benefits 1s that such approach might have power against
non-linear alternatives (Brock, Lakomshok and LeBaron, 1992) Second, even if the true
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model 1s hinear, standard statistical test are often denved by mimmusing the mean squared
error which 1s a sufficient but not a necessary condition to maximise profits (Section 4 1)
Although exhibiting some possible decisive advantages, tests based on trading rules
profits have nevertheless several severe drawbacks In particular, a trading rule can be
profitable without exhibiting any market timing ability for at least three reasons Firstly,
Praetz(1976) and Section 3 3 4 have proved that, if the financial series follows a random
walk with dnft, certain trading rules can be profitable but below the unconditional mean
and by consequence do not display any market tmng ability Nevertheless, this
inconvenience can be removed using the steps described in Section 522 Secondly,
among one hundred rules, five can appear profitable by pure chance only, when a test 1s
performed at a critical level of 5% (Taylor, 1900b) In other words stated, the application
of filter analysis to financial market 1s deficient because possible vanations in models
designs are infimte (Stevenson and Bear, 1976) Finally, filter models require
development independent on the sample upon which they are apphed (Stevenson and
Bear, 1976, Lukac and Brorsen, 1989)

Previous shortcomings can be remedied by considering instead of any single rule, a broad
and arbitrary set of trading rules Studying the jownt profitability of a large basket of
trading rules constitutes therefore a better way to test the random walk hypothesis We
are gomg to show that a generalisation of the umvanate T-Student test can achieve this

purpose

T-Student
The univanate T-Student 1s widely popular among academucs (Lukac, Brorsen and Irwin,
1988b, Taylor, 1990) and practitioners (Kaufman, 1987) to test the hypothesis that
returns to technical analysis are zero Its attractiveness 1s due to its simplicity It can be
defined as

T=VN- [512]
COr

with N number of (daily) observations
R the average (daily) rule returns,
G the standard deviation of (daily) rule returns

The T-statistic 1s an one-tail test of the hypothesis of zero profit against positive profits
Its use assumes that the distnibution of rule returns, R, 1s normal and independent, which
18 the case 1f the rules signal 15 defined by a linear forecaster, and the distnbution of
underlying returns, X, , 1s without dnift, normal and independent (Proposition 3 1)
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The expected value R 1s typically estimated from the seres of observed portfolio rule
returns as

— 1
R=EZRL

1=

—

Usually, the standard deviation 1s equally estimated empirically from the seres of
observed portfolio rule returns We will however prefer to estimate portfolio rule returns
standard deviation under the random walk assumption via the underlying volatility, using
the results of Section 5 1

Proposition 3 1 says that when the underlying time series, X, follows a normal law
without drift with vaniance o2, different linear rule returns, R,;and R,,, follow univanate
normal laws with vaniance o* Proposition 5 1 adds that the linear correlation coefficient
between rules returns py 1s known and given by equation [5 9]* In addition, rule returns
taken at different epochs are uncorrelated It results that under the random walk
assumption without dnft, the vanance of a portfolio equally weighted of p linear rules 1s
equal to

2

© forp=1

P P
02(p+22 ZP(RI,RJ))/P2 forp>1

1= j=1+1
and p(R,,R ) 1s the correlation between trading rules 1 and j given by equation [5 9]

Let us define the constant K by

- pl forp=1
K= 513
\/p+22 Zp(Rl’RJ)/p forp>1 BBl

1=] j=1+1

It then follows that under the random walk assumption without dnft oy =Ko

We will subsequently estimate standard dewviation of rule returns via the only underlying
volatility using the estimate

5g =K& [5 14]

4 Tt must be remarked that R, ; and R, do not follow a centred bivariate normal law, although R, and
R, are umvariate normal laws That can be shown by extending the demonstration given in
Appendix 3 1 to the multivanate case Nevertheless, we will consider here that the bivanate normal
law 1s a good approximation because the central ltmit theorem applies In particular, we will assume
that weighted portfolio of trading rules follow a normal law, although 1t 1s not true strictly speaking
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where G 1s the usual standard deviation estimate of the underlying returns series

There are two major advantages to such an estimate First, it only requires the estimation
of underlying volatility urespective of the portfolio of rules under consideration
Secondly, estimates of standard deviation via the observed series of portfolio rule returns
can be quite different from the true standard deviation under the random walk
assumption® Consequently, theirr use may lead to incorrect rejection/acceptance of the
hypothesis of non-zero profits

It follows that comparing performances from single systems (p=1) will simply be
comparing mean percent return since techmical indicators display tdentical standard
deviation, equal to the volatility of the underlying asset (K=1)

There mught be another limitation to the use of the univanate T-Student If several
systems are evaluated, by chance some will look better than they deserve Reporting
results for only the best rule would be very misleading Taylor(1990b) advises that results
should be given for all the systems considered in the research study However when all
the systems are tested separately, results are highly dependent on each other because
trading rules can be hghly correlated (Proposiion 51) So a test from the joint
profitability of trading rules should be preferred It has been seen that testing the joint
non-zero profitability of technical rules 1s possible and requires the only estimation of
portfolio returns and underlying volatility Now, portfolio of indicators can exhibit quite
different standard dewviations (K<1) depending on the theoretical correlations between
indicators and so the T-test applied to varned portfolios 1s not anymore a simple
comparison of mean returns

Such test might allow to distinguish luck (only one rule performing by chance)
from forecasting ability (profitability of a broad set of trading rules) At last considering
portfolio of technical indicators has got an additional advantage which 1s that portfolio
rule returns exhibit a distribution more normal than single rule returns (Lukac and
Brorsen, 1990)

524 Power Study

The multivaniate T-test presented above proposes in fact an almost infimte number of
tests, as many as there are possible different portfolios of linear rules Determining what
rules to incorporate into the portfolio 1s an extremely delicate task which will be
discussed further in Section 6 2 4 Let us first investigate the power of a simple, although
rather arbitrary portfolio of trading rules It includes four simple moving averages of

3 Chapter 6 will discuss further the adequacy of empirical rules returns stochastic properties with the
random walk without drift assumption
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orders 5, 10, 20, 40 Orders of the rules have been chosen such that they are almost
equicorrelated under the random walk assumption Applying equation [59], the
correlation 1s approximately equal to 0 67

The statistics investigated 1n this study are the single T-Student applied to the simple
moving average of orders x=5, 10, 20, 40, which we denote as S(x) and the multivanate
T, which we denote as S(5,10,20,40) The alternative models considered here are all
plausible representations of financial rates The price-trend model has been studied by
Taylor(1982) and all the other processes, excluding the random walk with dnft, have
been investigated by Brock, Hsieh and LeBaron(1991)

H, : Linear hypothesis

Table S 5 indicates the power of the T-test against linear alternatives Let us first
assume that the underlying time senes follow the price trend-model defined by Section
5 4 3 consistent with Taylor(1982) First of all, it must be noted by comparing Tables 5 5
and 4 10 that the T-Statistics have systematically hgher power than Henriksson and
Merton(1981), 1dentical power than Cumby and Modest(1987) tests, but lower power
than Taylor(1980) statistics, which have been spectfically constructed to test the pnce-
trend hypothesis Secondly, the most powerful single T-Statistic 1s the one corresponding
to the simple moving average of order 20 It can be explained by the fact that the simple
moving average of order 20 1s the most profitable rule in the portfolio when the true
mean duration 1s equal to my = 1/(1-p) = 1/1- 944 ~ 18 days This can be shown by use of
equation [3 10] Thurdly, the portfolio test turns to be more powerful than any single T-
Student The multivaniate T-test would rank high in the power competition performed by
Taylor(1982), fourth over 13 statistics, just behind Taylor(1980) statistics

Returns were then simulated following a second popular alternative, the auto-
regressive model of order one with =0 15 The most powerful single T-Statistic happens
to be the simple moving average of order 5 The power of the test 1s a quite sharp
negative function of the order of the rule This fact 1s simply the consequence that one
optimal linear forecaster (maximsing profits) 1s nothing else than a moving average of
order two under the AR(1) assumption It can be noted than the multivanate T-test
performs quite acceptably It ranks just below the single T-Statistic of order 5 but above
order 10, 20, 40

If the underlying returns follow a moving-average model of order one
model, the multivanate T-Statistic 1s more powerful than any of its component

We now measure the consequences of not removing the dnft in a test of non-zero profits
If the underlying returns follow a random walk model with dnft u=25%, the multivariate
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T-Statistic rejects the zero-profits hypothesis in 76% of the cases at a cntical level of 5%

That 1s due to the fact that under the random walk with positive dnft assumption, the
strategy which maximuses profits 1s "Buy and Hold" and that bigger 1s the order of the
rule closer 1t 1s from the "Buy and Hold" strategy and so higher 1s the rate of rejection of
zero-profits It follows that the multivanate T-Statistic might not be able to distinguish a
random walk with drift from autocorrelated alternatives since under both assumptions,

trading rules profits can be sigmficant

H, : Non Linear hypothesis

Table 5 6 indicates the power of the T-Statistic test against non-linear alternatives

The multivaniate T-test has very low power against purely vanance-nonlinear alternative
When price rates follow an ARCH(1) model, they are not forecastable in the mean and so
zero rule returns are expected (Proposition 3 2)

T-Statistics have high power against the tent map model sigmficantly less agamnst the
threshold auto-regressive model (TAR), and almost none agamst the nonlinear moving-
average model (NMA) Antoniewicz(1992) finds as well that the moving average rule has
little power against some simple nonlinear models There exists many other mean non-
linear model which could have been considered, among which the Garch-M model The
problem with the Garch-M model 1s that processes can substantially deviates from the
mean of the onigmal senes (Weiss, 1986) That 1s a serious specification problem when
interpreting techmical indicators performances It might be that the rejection of the
random walk hypothesis 1s not due to the hypothesis we want to test (such as Garch-M
model) but 1s the result of strong unpredictable non-zero drift



Table 55 Power of T-Student test under linear assumptions

Estimated Powers for 1500 observations

1000 replica

Price-trend

model

Xy =m +erand W= pus.y +& with Var (u)=A Var(e)

A=0034  p=0 94

4

N=1000

Percentage rcjections of RW

Statistic Significance level
1% 5% 10%

Univanate T-Statistic

S(5) 25 46 39
S(10) 39 62 72
$(20) 45 70 20
S(HO) 42 67 77
Multivanate T-Statistic S(5 10 20 40) 55 73 83

AR(1) model
Xi=oX,y+e o=15

Percentage rejections of RW

Statistic Significance level
1% 5% 10%

Umvanate T-Statistic

S(5) 86 96 98
S(10) 54 78 89
S(20) 26 53 66
S(40) 12 30 16
Multivanate T-Statistic S(5 10 20 40) 64 85 92

MA(1) model
X; =e; + 0ey g 6=0 5

Percentage rejections of RW

Statistic Significance level
1% 5% 10%
Univanate T-Statistic
S(5) 89 9 95
S(10) 34 92 94
S(20) 70 85 89
S(40) 14 69 82
Multivanate T-Statistic S(3 10 20 40) 89 95 97
Random Walk with dnift model
Xi=p+e p=0001(25% vearly) o =007 (15 8% vearly)
Percentage rejections of RW
Statistic Significance level
1% 5% 10%
Univanate T-Statstic
S(5) 14 31 44
S(10) 26 50 62
S(20) 49 72 80
S(40) 72 88 93
Multivanate T-Statistic S(5 10 20 40) 56 76 85
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Table 5 6. Power of T-Student test under non-linear assumptions

Estimated Powers for 1300 observations 300 replica

ARCH(1) model

= - 2 -
X=he, and h=1+¢XT , $=05

Pecrcentage rejections of RW

Statistic Significance level
1% 5% 10%
Univanate T-Statistic
S(5) 1 5 8
S(10) 1 5 9
S(20) 1 5 8
S(40) 1 3 8
Multivariate T-Statistic S(3 10 20 40) 1 4 8
Tent Map model X[0] € [0,1]
Xe=2X, 1 of X1 <05
22X,y If X;.1205
Percentage rejections of RW
Statistic Significance level
1% 5% 10%
Univanate T-Staustic
S(5) 7 30 97
S(10) 7 30 97
S(20) 7 80 97
S(40) 7 80 97
Multivanate T-Statistic S(5 10 20 40) 52 96 99
NMA model
X Zetyerie) 1=08
Percentage rcjections of RW
Statistic Significance level
1% 5% 10%
Unmivanate T-Statistic
S(5) 2 10 17
S(10) 2 10 18
S(20) 1 6 12
S(40) 1 6 11
Multivanate T-Statistic S(5 10 20 40) 1 6 14
TAR Map model
Xe=03Xe1+e fXi 151
X’ =90 4XJ;1 + Ct lel’-l__>_ 1
Percentage rejections of RW
Statistic Significance level
1% 5% 10%
Umvanate T-Statistic
S(5) 0 0 1
S(10) 2 5 8
S(20) 18 37 51
S(40) 68 81 88
Multivanate T-Statistic S(5 10 20 40) 10 25 38
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525 Features of the multivariate T-Student

The multivanate T-Statistic 1s a test of non-zero profit It 1s why results might be biased
by the presence of a dnft This disadvantage however can be removed by choosing either
a period without dnft or by detrending the ongmnal price senes as described in Section
522 Once the dnft 1s removed, the multivariate T-Statistic has power against linear and
nonlinear means alternatives for which E[X/X,, X, ] # 0 However, the multivanate T-
Statistic cannot detect or distinguish nonlinear vanances models® So it mught be used as a
tool to distinguish mean from vanance non-linearity

The multivanate T-Statistic test seems to display a decisive advantage over any single T-
Statistic test, it seems to be robust for a broader range of alternatives Unequivocally 1t
can perform well under the price-trend model hypothesis whatever 1s the duration of the
trend, under the autoregressive of order one or the moving average of order one
hypothesis It appears to have the mce property of exhibiting a power almost equal when
not above the best of its components (which 1s unknown when the true model 1s
unknown)’

53  ABILITY OF A DRIFTLESS GAUSSIAN PROCESS
TO REPLICATE RULE RETURNS

The random walk assumption can be madequate to explain trading rule returns which are
often sigmificantly positive (See Table 23 for references) It means that plausible
alternatives of returns models might have to include dependencies

This section prowvides tests of adequacy of Gausssian processes which are assumed
without dnft If a process includes a dnift, it must be removed using the method described
in Section 52 2

531 Methodology
LeBaron(1991, 1992b) has proposed an original way to incorporate the trading rule
diagnostic tests nto the estimation procedure The goal 1s to see whether a simple hinear

6 Distinguishing nonlinear alternauves for which E{X¢/X¢.; X{.m+1] =0 1s known 1n the literature as

a dufficult task For 1nstance 1t 1s often impossible to distinguish between Garch and stable processes
(De Vries, 1991, Elie et al 1992)

An application of the multivanate T-Student to exchange rates series 1s provided 1n Section 6 2
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model does a good job of replicating some simple linear properties of the data
(autocovariances) as well as the trading rule results. The goal does not intend to get the
tightest estimates of the parameters on the model. The actual data are aligned to
simulated data using the mean, variance, the first three lagged autocovariances and one
trading rule moment. For the trading rule moment condition the 20, 30 and 50 weeks
moving average are used (LeBaron, 1992b). Finding difficult to derive analytic results for
trading rule measures, LeBaron(1991, 1992b) estimates parameters via the simulated
method of moments (Lee and Ingram, 1991) which is a derivation of the generalised
method of moments (Hansen, 1982). LeBaron(1991, 1992b) first guess for trading rule
related moment is E(R,)=E(B,_,X,). He fears that this will not do for simulated
method of moments since the first derivatives of this moment will not necessarily be
continuous in the parameters of the process X,. Then the condition is replaced with a
smooth substitute, we now know from equation [3.18] is unnecessary.

Our approach will be however different. We will not try to estimate the parameters of the
model via rule returns, but will assume them known and instead check their ability to
replicate observed rule returns.

There are two reasons for doing so. Firstly, if the underlying time series is linear,
the forecaster which minimises the mean squared error will maximise profits and so Box
and Jenkins procedure must give the best estimates of the parameters of the model.
Secondly, in presence of nonlinearities the superiority of the generalised method of
moments estimates beyond Box-Jenkins estimates has not been proved. So it is not sure
that the use of simulated method of moments will provide tightest estimates of the
parameters on the model.

Subsequently, the parameters of the linear model are supposed to be known, and
their ability to explain a set of trading rule returns tested. Checking the adequacy of a
model via rule returns is crucial since a model can appear very little misspecified in terms
of error. measures and be in fact badly misspecified in terms of profitability (Chapter 4). _
We now describe our trading rule diagnostic tests®.

5.3.2 Chi-square test
We will consider here a set of s linear trading rules, exhibiting returns {R;, j=1,5}. We

will note R;,, t=1,...,N a finite realisation of {R; }. R, designs the sx1 vector stochastic

8 An application of the diagnostic tests to exchange rates series is provided in Section 7.2.
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process, E(R) its expected value and Q its sxs covariance matrix As shown
Hansen(1982), if the moment condition framework 1s satisfied

N(R, -E(R)) Wy (R, ~E(R,)) ——1"(s)
where Wy, 1s a consistent estimate of W= Q™
When the underlying process 1s Gaussian without dnft, E(R,) 1s analytically known and

given by equation [3 10] It can be noted that it satisfies the moment conditions
However, W = Q™" 1s not known, but can be replaced by a consistent estimate for Q such

as
= N Z UpipU t+p-t
1=—p+1 N t=1+1

N
where u,,, =Rt+p—T\I—ZRt+p and p 1s the number of population autocovanances
t=1

determuned by the order of non-zero autocorrelations of R, Instead using empirical or
simulated estimates of Q, and so being dependent on the estimate covariance, we prefer
using the exact one-perniod covariance matrix defined in Appendix 52 It results that
under the null hypothesis of low positive autocorrelations, the multi-period covariance of
rule returns mught be slightly underestimated and therefore the test might have a shight
tendency to reject the null hypothesis of positive dependences more often than necessary

532 I-Student test

Autocorrelated stochastic models have a tendency to underestimate trading rule returns
(LeBaron, 1992b) Therefore 1t 1s natural to use a one-tail statistic to test if observed
trading rule returns are equal to theirs expected value or still above them The
multivanate T-Student previously established can be used to this effect The major feature
of the T-Student test opposite to the previous approach is that, 1t 1s an one-tail test and
by consequence 1s more powerful for given alternative such as low positive
autocorrelations As before, the covanance of rule returns will be approximated via the
exact one-period covanance matrix defined in Appendix 5 2 Once again, this test might
have a shight tendency to reject the null hypothesis of positive low autocorrelations more
often than necessary Let us recall the T-Student, 1t 15 given by

N
%2R, —ER)
t=1

JVar(R)
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where R 1s the observed portfolio rule return at time 1, E(R) 1s deduced from equation
[3 10], and Var(R) from equation [3 6]

5.4 SUMMARY

Correlations between trading rules applied to a same asset are non-zero, and even highly
positive for trend-following systems Correlations between a same trading rule apphed to
multiassets are positive but lower in absolute value than underlying correlations In
addition, one-period correlations between rule returns do not change drastically assuming
the presence of low dependencies’

The knowledge of trading rule correlations has then allowed to build a new test of
random walk from the jomnt profitability of techmcal trading rules The test 1s a
generalisation of the umvanate T-Student which appears to be extremely powerful
against linear autocorrelated alternatives, efficient against mean non-linear alternatives
and not at all against variance non-linear models It has been shown that non-zero profits
tests can be seen as tests of market timing ability if and only 1f the financial time series to
which they are applied are without dnft

Finally, 1t has been seen that trading rule returns can be used 1n a similar way to check the
ability of any Gaussian processes without dnft to replicate observed rule returns

2 See Appendix 5 2
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APPENDIX 5.1

PROQFS OF PROPOSITIONS

Proposition 5 1
By assumption, X, , and X, ; are normally distnibuted with

E(X;)=0 E(X;)=0 Var(X,)=of Var(X;)=0;
That imples that F, , and F,, are normally distributed with

m,~2

m,—2
E(F,;)=0 E(F,,)=0 Var(F,)=o; Y di, Var(F,)=o0; 2. di,

1=0 1=0

Min(m; m,)-2
Cov(F,;,F,¢) =E(F, F, t) = 0,0,P, Zdudm
=0

Mmn(m; m;)-2

Zdlld2|
= Com(F;.F3.) = Py, =Py pr where py = ——= \/m,_z [5 4]

-2
\/ v 3

1=0 1=0

E@B,;) = Pr(F,,>0)-Pr(F, ;<0) = 1-2 Pr(F,,<0) =0
That 1s due to the fact that the distribution of the linear unbiased forecaster, F,,, 15
symmetrical around zero, as for the underlying returns X, Then, it follows that
Similarly, E(B;,) =0
E(B},) =E(B},) =1
= Var(B,,) = Var(B,,) =1
= P(B,1,B3,) = Cov(By;,B;,;) =E(By; By,)

= Pr(F>0,F , >0)+Pr(F, ;<0,F, ;<0)-Pr(F, ;>0,F, ;<0)-Pr(F, ,<0,F; >0)

=2 {Pr(F,,>0,F,,;>0)-Pr(F,,>0,F,,<0)} by symmetry reason

= 2{[0,01(ps,, )-[0,01(-p5,, )}

where Pr, has just be defined, and [0,0] 1s the bivanate truncated probability given by
[A 1] in Appendix 3 1 It follows that
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2
Ps =P(By1.B;,) = —Arcsin(p,p;) [56]

The demonstration which gives Corr(B;;,B;144) 1s totally sumular to the preceding one

and won't be provided for length purpose

Proposttion 5 2

Proposition 3 1 has shown that if the underlying time senes X, are ndependent 1dentically
distributed following a normal law without drift and vanance o2, linear rule returns R, are
independent 1dentically distributed following a normal law without drift and vanance o*
Applying this result, 1t follows that rule returns R;; and R,, are normally distributed

with
E(Rl,t) =0 E(Rzyt) =0 and COV(RnaRl,H-h) =0
Var(R,,) = o} Var(R,,)=c3 and Cov(R,,,R;,,) =0

Covanances between trading rules are deduced from
Cov(R;;,Ry) = E(Rl,t R31) = EBy1-1B2 1 X1 X, )= E(By t—lBZ,t—l)E(Xl 1X21)
Applying equation [S 6]

2
E(B;1B211) = p(B, -1:B21) = ;Arc sin(p,pr)

Since by assumption E(X,;X,,) = 6,0, p, , 1t follows that

Cov(R,,Ry;) = 0,0,p, %Arc sin{p.pr), and then

2
E(R,,R,,) Gxozp‘;Arcsm(pxpy)
\/VM(th)vaf(RZt) G162

PRy Ry )=

2
= P = PR Ry = Zp Arcsn(ppp) (531

In addition, p(Ry¢,R; 114)=P(R; 114,R21)=0 for h>0 [55]

That can be shown considening that

Cov(R;4,Ry14n) = BBy 1Barin-1X1t Xy ) = EBy 1By 1 X1 ) EK40n) =0
Cov(R, 1Ry ¢) = E(B1n1Br X110 X; ) = BBy pan-1B ot Xo, JEXpen) =0
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APPENDIX 52

ONE-PERIOD RULES CORRELATIONS
ASSUMING A DRIFTLESS GAUSSIAN PROCESS

Formula [5 6] giving signal correlation under the umivanate random walk assumption

applies 1n fact for any umvanate Gaussian processes without dnft However the
correlation between forecasters, pp, 1s not any longer given by equation [5 4] but 1s easily

established since F;;F,, stll follow a centred bmnormal law Noting p(h) the

autocorrelations of order h of underlying returns X,, p 1s now given by

m—-2my-2
1
Z Zdlle,xp('J—'ll)
1=0 =0
pF = .m,—Z ml—Z m2—2 m-_:—2

\i‘ ZO Zodlldljp(b_li) \/ ZO Zod21d2 Jp(h'—l)
1=0 = =0 =

The one-period rule returns correlations satisfy
E(Rl,lRZ t )- E(Rl t)E(RZ 1)
JVar(Ry)Var(R,,)
where E(R,,), E(R;,) are given by equation [3 10], and Var(R,,), Var(R,,) by equation

[3 6]
Then E(R Ry,) = E(By 1 XB, 1 X) =E(B, t—lBZ,t—1X2 )

We can use here symmetry argument between X, from one hand and {F,,_,,F,, ;} on the

COIT(R“ ’R2 t) =

other hand, then 1t follows that

E{Rl,tRz,t} = 252{[2,0,0](912,913,923) - [2’0,0](912:‘913,"923)
-[2,0,01(-P12,P13,—P23) + [2,0,01(=p15,~P13.P23)}

where Py = Corr(Fl,t—bF 1121) » P13 = Corr(Fy(1,X) , py3 = COlT(Fz,t—hX\)
and [2,0,0](P12,P13,P23) 15 the moment of order two of a truncated trivanate standardised
normal law given by equation [A 6] 1n Appendix 3 1
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Let us give a numerical example of previous formulations In the presence of a pnce-
trend model and low positive autocorrelations, one-period rule returns correlations (Table
57) become systematically superior to rule signals correlations (Table 58) and, as
expected, both are shghtly bigger than they would be under the random walk assumption
(Table 5 2)

Table 5.7 Rule returns correlations assuming a price-trend model A=0 03, m=40

o | S5) | S(10) [ 520) | s40) | w¢5) | wr0) [ W(20) | W(40)| M(3) | M(10) | M(20) { M(40)
S(5) 1 | 678 | 482 | 351 | 883 | 803 | 586 | 428 | 745 [ 451 | 322 | 238
S(10) 1 | 700 | 506 | 613 | 867 | 831 { 613 | 712 | 724 | 476 | 346
S(20) 1 | 715 | 437 | 618 | 863 | 845 | 522 | 748 | 728 | 495
S(40) 1 | 319 | 449 | 626 | 864 | 382 | 562 | 774 | 736
W(5) 1 | 734 | 533 { 389 | 637 | 405 | 291 | 216
W(10) 1| 742 | 545 | 769 | 608 | 417 | 306
W(20) 1] 749 | 621 | 782 | 610 | 431
W(40) 1| 463 | 662 | 798 | 620
M(5) 1 | 500 | 354} 261
M(10) 1| 543 39
M(20) 1 | 573
M(40) 1

Table 5.8 Rules signals correlations assuming a price-trend model A=0 03, m,=40

p S(5) | S(10) | S(20) | S(40) | W(5) | W(10) | W(20) | W(40){ M(5) [ M(10) | M(20) | M(40)
S(5) 1 678 | 481 | 350 | 883 | 803 | 586 | 428 | 745 § 450 { 321 | 237
5(10) 1 700 | 505 | 612 | 867 | 831 | 612 | 711 | 724 | 475 | 344
S(20) 1 714 { 437 | 618 | 863 | 845 | 521 | 748 | 727 | 494
S(40) 1 318 | 448 | 625 | 864 | 382 | 561 | 773 { 736
W(5) 1 734 | 533 | 389 | 637 | 404 | 290 { 215
W(10) 1 742 | 544 | 768 | 607 | 416 | 304
W(20) 1 749 | 621 | 782 § 609 | 430
W(40) 1 463 | 662 1 797 | 618
M(5) 1 499 | 352 1 260
M(10) 1 542 | 388
M(20) 1 372
M(40) 1

Then we have proceed to some simulations to assess the multi-peniod correlation between
trading rule returns (Table 5 9) Over 10 years (2500 rates), the trading rules correlations
increase significantly and show that the one-period correlation must be considered as a
lower bound
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Table 5.9 Rule returns correlations assuming a price-trend model A=0 03, m =40
Monte-Carlo simulations 2500 rates, 250 replica

b | S | s10) | S(20) | S40)

S(5) 1 0742 | 0604 | 0509

S(10) 1 0790 | 0 669
S(20) 1 0817
S(40) 1
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Chapter 6

TESTING THE RANDCOM WALK HYPOTHESIS:
AN APPLICATION TO EXCHANGE RATES SERIES

If markets follow a random walk, price changes can not be predicted Current prices fully
and correctly reflect all currently available information Consequently, no profitable
dynamuc strategy can be found If markets do not follow a random walk, price changes
can be predicted There are market imperfections such as the existence of price trends and
cycles, which can be profitably exploited by dynamic strategies Therefore, testing the
random walk hypothesis 1s of crucial importance from an investor point of view This 1s
done n this chapter for a set of exchange rates

Exchange rates are known 1n the hterature to be one of the assets extubiting the strongest
trends Empinical evidence of this point are given by the profitability of path dependent
strategies! Therefore the random walk hypothesis might not be adequate for exchange
rates This chapter nvestigates this 1ssue by applying in addition of standard statistical
tests, the powerful and robust test based on the jont profitability of trading rules
developed in Chapter S

Section 6 1 describes the elementary properties of exchange rates returns Section 6 2
tests the non-zero profitability of trading rule returns applying the multivanate T-Student
test estabhished in Chapter 5 Normality and dependence of rule returns are basic
assumptions of this parametric test They are consequently first tested When using the
multivaniate T-Student, the zero-profit hypothesis can be rejected because of departures
from the random walk model due to unequal vanance, intercorrelation or/and average
rule returns Therefore, these stochastic properties of rule returns are compared with their
theoretical values under the normal random walk without dnift to detect the onigin of
departures, if any Finally, Section 6 3 assesses the validity of the normality assumption to
test the non-zero profitability of trading rule returns A non-parametric test based on the
bootstrap methodology 1s applied such that it does not depend any longer on the arguable
assumption of normality Non parametnic and parametric cntical thresholds are
subsequently compared Once agan, the last section summarnises and concludes our
findings

1 See table 2 3 for references
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6.1 BASIC STATISTICS

In this thesis, we have collected daily spot prices for five currencies against the Dollar
German Mark [DEM], Japanese Yen [YEN], French Franc [FRF], Swiss Franc [CHF]
and Bntish Pound {GBP] for the period January 1982 through March 1992, or in total
2625 daily observations Our data source 1s Reuters Close rates are bid prices taken each
day of the week (except on Saturday and Sunday) at 21h15 GMT (approximately Close
of New-York market) A single time series 1s formed by considering the logarnthmic
return X, = Ln(P/P,_,), where P, denotes the foreign currency price (DEM, YEN, FRF or
CHF) of a umt of US dollar, but the US dollar price of a umt of GBP By default, the
main results of thus chapter are given for the full sample, from January 1982 to March
1992 Results are also provided for the five subperiods shown in Table 6 1

Table 6 1 Samples periods

Penod 1 2 3 4 5 Full
Date 01/82-02/84 | 02/84-02/86 | 02/86-03/88 | 03/88-03/90 | 03/90-03/92 | 01/82-03/92
Observations 525 525 325 525 525 2625

611 Summary statistics

Table 6 2 contains descriptive statistics on the ongmal time senes of spot returns It must
be emphasised that exchange rates against the dollar exhibit quite stmular standard
deviations The CHF displays the highest volatiity and the YEN the lowest The
difference 1s however less than 15% of the average volatiity between currencies
Exchange rates are approximately symmetric as the skewness statistics show There are
more observations several standard deviations from the mean than predicted by normai
distributions That can be seen from the high values of standard kurtosis which would
have been equal to zero if the distributions were normal

Table 6.2 Summary statistics for the penod 01/82-03/92

Vanable DEMLOG | YENLOG | GBPLOG FRF LOG CHF LOG
Sample s1ze 2625 2625 2625 2625 2625
Average -1 18414E~4 | -1 90271E-4 | -3 95664E-5 | -7 T496E-6 | -6 79575E-§
Variance SO07372E-5 | 4 72147E-5 | 5 16746E-5 4 977E-5 5 89678E-5
Standard deviation 7 123E-3 6 8713E-3 | 7 18851E-3 | 7 05478E-3 | 7 67905E-3
Minimum -0 0414075 | -00640262 | -0 0347257 -0 03876 -0 0440831
Maximum 00348967 | 00415372 | 00458853 | 00587457 | 00354505
Skewness -0 144114 -0 572466 0 139542 0 163043 -0 149454
Standard Kurtosis 2 12304 65769 2 74848 429448 149801
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Table 6 3 gives mean and standard deviation for the five subperniods The mean daily dnft
for all currencies and subperiods 1s small and rather constant It averages near zero for the
full pertod and 1n any cases 1s very low n comparison with the daily standard deviation or
volatility This pomt will be of extreme importance in testing rule returns significance

On the other hand, the volatility 1s rather variable between currencies It 1s for the
full sample equal to 0 687% for the YEN and to 0 768% for the CHF Volatility finds 1its
peak i the second sub-period for DEM, GBP and FRF, and in the third sub-period for
YEN and CHF

Table 6 3 Means and standard deviations

Currency Penod |01/82-02/84102/84-02/86102/86-03/88{03/88-03/90({03/90-03/92}01/82-03/92
DEM Dnft U 00044 - 00045 - 00053 00003 - 00VL7 -00012
Volatility S 0056 0079 0074 0067 0077 00712
YEN Dnft U 00013 - 00050 - 00064 00029 - 00026 -00019
Volatilitv S 0064 00557 0083 0068 0071 00687
GBP Dnft U] -00061 00007 00038 -00013 00010 - 00064
Volatility S 0056 0090 00651 0071 0073 00719
FRF Dnft U 00080 - 00045 - 00033 00002 - 00006 - 00001
Volatility S 0065 00768 0072 0063 0074 00703
CHF Dnft U 00044 - 00034 - 00057 00014 00000 - 00007
Volatility S 0068 0080 0083 0074 0080 00768
612 Normality

Table 6 4 gives the results of the Kolmogorov-Smurnov test of normality (Siegel, 1956)
It appears that the YEN 1s clearly non-normal at the 5% level, urespective of the
subpertod considered For the other exchange rates, normality 1s a more acceptable
assumption for a short period of time but not any longer valid for the full sample, what
has far more statistical sigmificance In the latter case, departures from normality, namely

leptokurtosis, are too big

Table 6.4 Normahty tests

Kolmogorov-Smurnov Approximate significance level %

Penod DEM YEN GBP FRF CHF
01/82-02/84 27 4* I 2% 16
02/84-02/86 20 S5E-3* 4E-1* 41 3*
02/86-03/88 3* 9E-3* 13 3* 6
03/88-03/90 10 2% 6 7 16
03/90-03/92 6 5 11 11 59
01/82-03/92 0* 0* 0* 0* 0*

K-S) (2227) (3373) (2 460) (2422) (2 059)

* sigmficantly not normal at the cntical level of 5%
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613 Nonlineartty

The rejection of normality might be explaned by the presence of nonhneanty in exchange
rates Returns are leptokurtic Non-hneanty tests have been applied in an attempt to
determine the validity of such an assumption

A stationary time series Y, can be wrnitten, in its very general form, as

+c0 o0 0
Yo=u+ D be ,+ D be e+ Dbie e e+ .

1==c0 1 J=—0 1) k=~
where i 1s the mean level of Y, , and {e,,—x <t <} 1s a strctly stationary process of
mndependent and identically distnibuted random vanables Y, i1s nonlinear if any of the

higher order coefficients, {b,},{b,}, 15 nonzero Therefore a test of lnearty 1s

equivalent to a test on no multiplicative terms (b ! {b .} To mnvestigate non-
q P Wy WYk S g

lineanties m a partial realisation {Y;, ,Y,},

Tsay(1986) has proposed a statistic based on

the following steps
(1) Regress Y, on {LY,_;, ,Y,_\} by least squares and obtamn the residuals {€,}, for

t+M+1, ,n The regression model will be denoted by

Y, =W, D +e, {6 1]
where W, =(1,Y,_;, .Y,_y) and ®=(D,,®,, D )T with M being a prespecified
integer, n the sample size, and the superscript T denoting the matrix transpose
(2) Regress the vector Z, on {1,Y,;, ,Y,_,} and obtan the residual vector {)2:}, for
t=M+1, ,n Here the multivanate regression model 1s

Z, =WH+X,

where Z, 15 an m = { M(M +1) dimensional vector defined by ZT = vech(U} U,), with
U, =(Y,_;, ,Y,_y) and vech denoting the half stacking vector In other words, ZtT 18
obtaned from the symmetnic matrix UTU, by the usual column stacking operator but
using only those elements on or below the main diagonal of each column
(3) Regress {€,} on }A{t and let F be the F ratio of the mean square of regression to the
mean square error That 1s, fit

&, =XB+e, (t=M+1, ,n) [6 2]

and define F={( S X3 ) SKTK)'( KT8/ mp/{ T2/ (a-M-m-1)} [63]

t=M+1 t=M+1 t=M+i t=M+1
where €, 1s the least squares residual in equation [6 2]
Tsay(1986) shows that if Y, 1s a stationary autoregresstve process of order M and n 1s
large, the statistic F defined m equation [6 3] follows approximately a F distribution with

degrees of frcedom ;M(M+1), n—-IM(M+3)-1



This procedure reduces to Keenan's(1986) if one replaces Z, by {{‘2’ where {?‘} are the
fitted values of equation [6 1]

An alternattve approach to see whether linear time sertes models can be fitted to the data
Y, 1s attributable to McLeod-L1(1983) They consider the stationary ARMA(p,q) model

p 4
which takes the form Y, =p+Y a (Y, —p)+&,—D be,,
=1 1=1

where 15 the mean level of Y, , {€} 1s a zero mean strict white noise process and
constants a, b, Then to investigate non-lineartties 1n time series data, they have proposed
the statistic

Q=n(n +2)ip2(k)/(n -k)
k=1

n n
where p*(k)= Y 822,73 & (k=0,1, ,n-1) are the lag k autocorrelations of the
t=1

t=k+1

squared residuals €2 obtained after fitting an ARMA model to the data If the €,'s are

11d then Q is asymptotically distributed as x? with m df
The application of Keenan(1985), Tsay(1986) and McLeod-Li(1983) nonlineantty tests to
our exchange rates seres is given 1n Table 6 5

Table 6 S Nonlineanty tests

Citical Threshold of Nonlinearity Tests %
Peniod Test DEM YEN GBP FRF CHF
01/82-02/84 Keenan M=4 96 12 62 94 32
Tsay M=4 37 15 5 48 17
McLeod-L1 m=20 0* 0* 0* O* 0*
02/84-02/86 Keenan M=4 87 0* 52 91 75
Tsav M=} 71 3% 33 59 15
McLeod-L1 m=20 0* 0* 0¥ 0* 0*
02/86-03/88 Keenan M=4 86 1* 87 78 60
Tsay M=4 59 0* 10 3* 33
McLeod-L1 m=20 0* 0* o* 0* 0*
03/88-03/90 Keenan M=} 73 0* 36 41 4*
Tsay M=4 23 0* 33 28 17
McLeod-L1 m=20 0* 0* 0* 0* 0*
03/90-03/92 Keenan M=4 55 73 95 66 12
Tsay M=4 70 41 63 8Y 53
McLeod-L1 m=20 0* 0* 0* 0* 0*
01/82-03/92 Keenan M=2 22 29 0* 15 22
McLeod-L1 m=20 0* 0* 0* 0* 0*

* sigmificantly not linear at the cnitical level of 5%
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The Keenan(1985) and Tsay(1986) tests do not provide strong evidence of nonlinearities
n exchange rates, except perhaps for the YEN On the other hand, the McLeod-L1(1983)
test strongly rejects the linearity assumption wrespective of the currency and penod under
consideration The problem with non-lineanty tests 1s that they are always built to be
powerful for a given alternative Since nonlinear alternatives are not umique and cannot be
precisely described, 1t 1s not surpnsing that they often yield contradictory conclusions
There 1s some evidence of nonlinearities 1n exchange rates (Hsieh, 1989) but they are not
strong (Diebold and Nason, 1990) Nonlinear models are plausible alternatives although
there does not exist a consensus in favour of any particular one

614 Temporal dependence

Thus section deals with the testing of correlation between daily returns As mentioned in
mntroduction of this chapter, the presence or absence of correlation between data 1s of
importance to build adequate modelization and tests of financial rates We will test the
existence of senal correlations between returns using five different tests Correlogram,
Portmanteau, Taylor, Runs and Spearman tests

Historically the two most commonly used techmques to investigate the presence
of temporal dependence are the runs test and the examnation of a correlogram, 1€ a set
of senal correlation coefficients A relatively new approach due to Taylor(1980) has been
established and seems more powerful to detect dependencies in returns Finally,
Spearman's non parametric test will complete our set of tests It 1s known to be more
powerful than the runs test

Senal correlation coefficients
It ts usual in the study of time sernes to plot and examne the correlogram or

autocorrelogram The correlogram 1s a plot of the sample senal correlation coefficients,
Py, at various lags, k, against k Each p, 1s computed using the expression

n—-k _ _
Z(Xt = XXk — X)/(n ~-k)
t=i

Px = {6 4]

(X, -X)/n
t=1

In the analysis we computed p,, for k up to and including 50 for each pertod If the

returns constitute a sequence of senally independent identically normally distributed
random variables (the null hypothests), the p, values are each normaily distributed with a
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mean of zero and a standard deviation of approximately 1/ vn Furthermore, under the
null hypothess, the p, are mutually independent A test of senal independence thus

involves the computation of

Py =

Z, = fork=1,2, ,20
" 1n

values of z, outside the bounds delineated by the normal (eg 196 for 5% test) are

regarded as significant

If a vanable follows a random walk, Granger and Newbold(1986) have shown
that absolute and squared values should follow too a random walk So mn addition to tests
on oniginal values, tests on absolute values, and on squared values, have been carnied and
can be found m Appendix 61 The first order autocorrelation 1s positive for every
currency It 1s significant for GBP, DEM, FREF, at the critical level of 5%, for CHF at the
critical level of 10%, but not at all for YEN Overall there appear to be very few other
consistent positive or negative correlation Table 6 6 gives a count of the number of
sigmificant p, values over the entire pertod for each set of returns

Table 6.6 Number of significant autocorrelations

Number of significant Autocorrelations 1n 50 lags at the 3% level
DEM JPY GBP FRF CHF
Orniginal 4 3 2 4 2
Absolute 22 37 36 21 21
Square 15 11 29 7 15

For the onginal series we see that the number of significant p, values are almost exactly
equal what one would expect (1e 5%) under the null hypothesis of no temporal
dependence In sum there seems to be no clear evidence of any temporal dependence n
any of the series The absolute and square value of the loganthmic senes tell us another
story The number of sigmficant autocorrelations 1s sigmficantly higher that one would
expect under the random walk hypothesis It suggests that there must be a kind of
dependence between returns although 1t may not be linear

Portmanteau and Taylor tests

In this section, we bniefly review Portmanteau and Taylor's statistical tests

The majonty of researchers have used the Portmanteau test to detect the presence of
serial autocorrelations
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|8
Qi - "ZP:
1=

where the p, are the sample autocorrelation coefficients of n daily returns and k 1s chosen
subjectively (here 20) Under the null hypothesis, Q, 1s asymptotically distnbuted as a

Xk
Taylor(1980) proposed many models of financial prices we have briefly described 1n

Section 2 4 1 In order to test the null hypothes:s of a random walk against the alternative
hypothesis of a trend model, Taylor(1980) considered the test statistics T and U

K k . k
Zd’ Pk Zd’ Pk

T=2l—— U= I'=2=/" with 0<¢<1

k
2k / | 2k
\/Zd’ e

If the null hypothests 1s true, each p, 1s independently normally distnibuted with
mean zero and vanance 1/n The T and U statistics would be asymptotically distributed
with mean zero and vanance umty Taylor points out that previous researchers have used
Q 1n testing for temporal dependence but notes that the techmique has low power Under
Taylor's alternative hypothests the p, are expected to be a sequence of monotonically
decreasing positive values and has proposed test statistics T and U designed to be

sensttive to the possibihty of such an alternative hypothesis If errors are present in a time
series they will have most influence on p, and thus Taylor decides to test series with U

Expenence suggests that surtable values of k and ¢ are 30 and 0 92 respectively

Taylor points out that the high vanances of conventional autocorrelation coefficients are
almost certainly caused by the non-constant conditional vanance of the returns Therefore
he suggests that returns are rescaled to possess a reasonably homogeneous vanance To
get rehable results, he advises to use the rescaled returns y,=x/a to calculate the
coefficients T and U, now noted T*and U*, with 7=0 1 and a, defined by

a; =(1-1)ay + X,y

The first twenty returns are commonly used to calculate the initial value of a,

1 22"]
A== X
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Then for a series of n, returns, the coefficients are calculated from

-1 n-t
Z(Yt ~ Y)YV —Y) N ZYt
b, = =2l where y = =2
Sy -y n =20
t=21

The term n i U® and elsewhere now denotes the effective number of returns
n=n,-20 Inthis way the senies y, should have an approximately constant vanance very

near the expected value 1/n It 1s therefore recommended that returns are rescaled before
calculating the autocorrelation coefficients

Results of the portmanteau and Taylor tests are given in Table 6 7

Table 6.7 Portmanteau and Taylor tests

Portmanteau and Taylor tests
(Cnucal Threshold %)

Currency DEM YEN GBP FRF CHF
Chi-square Q(20) 23 56 16 97 3220 2505 23 74
2D (59 3)* (16) 2D

T 117 202 235 153 163

(12) (2)* (h* ) (3)

8) 011 131 241 091 088
(46) (10) ®) (18) (19)

T* 326 361 456 300 386
(0)* (0)* o)~ (0)* (0)*

U* 218 306 443 231 311
(2)* (0)* (0)* (H* (0)*

* signuficantly not random at the cnitical level of 3%

As can be seen from Table 6 7, only one adjusted Box-Pierce Q statistics 1s significant at
the 5% level (GBP) All the U* statistics from the rescaled returns are positive That
means there is an excess of posittve senal correlation coefficients Each one of these
statistics are sigmificant at the 10% level and similar to previous literature findings
Taylor(1980) found for the spot senies GBP/USD U*=2 78 dunng the period 1974-1978,
and Taylor(1986) T=0 91, T*=6 56, U™=5 29 duning the period 1974-1982 In this study,
therefore, all five senes examined, and specially GBP, showed evidence of price trends
consistent with the model proposed by Taylor(1980)
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615 Randomness Tests

Parametric tests as Portmanteau and Taylor statistics have the advantage to be powerful
under spectfied alternatives Their drawback 1s however to rely on the assumption made
about the distnbution of the returns and to be sensitive to the presence of outlying
observations and errors in the data An alternative 1s consequently to use non-parametric
tests which remove previous limitations but also are less powerful

The tests for randomness procedure we now study are all non-parametric and have been
described 1n full details in Siegel(1956) The first two examine the number of runs in the
data, and the third one establishes the rank correlation coefficient

Runs test

A runs test above and below the median counts the number of runs that are completely
above or completely below the median The system ignores values equal to the median
This procedure s particularly sensitive to trends in the data The classical runs test
examines the sequence of returns Each return 1s classified mnto one of two categones
chosen 1 & above the median and below or equal to the median

Let us note

n, = number of outcomes 1n the first category

n, = number of outcomes 1n the second category

n=n,+n,

It can be shown that if n 1s large (greater than 20) the number of runs r 1s approximately
normally distributed with mean p, and standard deviation o, given by

2mn,

+1 s, = anlnz(znﬂlz - ;)

1. =
He n, +n, V(n, +1n,)*(n; +n, 1)

A test of temporal dependence 1s then to compute z_ where

(r—p,)

z, =—L-

r
(0)

r

which under the null hypothesis of randomness follows the standard normal distribution,
z, ~N(0,1)

Up and Down Test

A runs test up and down counts the number of times the sequence nses or falls The
number of nsing and falling runs equals one more the turming ponts This procedure 1s
most sensitive to sequences with relatively long-term cycles, 1n which the number of
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turning pomts s less than those in a random sequence It can be shown that if n 1s large
(greater than 20) the number of up and downs r 1s approximately normally distnibuted
with mean K, and standard deviation o, given by

(2n-1) (lén—29
L'll' = - Gl’ = V ~
3 30

Spearman test

This non parametric test 1s commonly used to detect correlation between vanables
However 1t can serve to test the presence of trend if one vanable 1s taken as the time
index The Spearman rank correlation coefficient ts equivalent to ranking each vanable
separately and calculating the usual (Pearson) correlation coefficient on the ranks

Results of the randomness tests as applied to our exchange rates seres are
provided in Table 6 8

Table 6 8 Randomness tests

Tests for Randomuness
Currency DEM YEN GBP FRF CHF
Median =0 runs 7 44E-6 047 -0 90 7 44E-6 -0 37
(10V) (64) 37 (100) (71)
Up and down -112 098 -189 =772 -158
(26) (33) (6) (99) (1D
Spearman Rank Correlation -026 003 038 -038 -018
(19) (86) )] 5) (39)

Nones of the randomness statistics are sigmficant at the cntical level of 5% Following
the up and down and Spearman tests, GBP 1s not random at the critical level of 10%

FRF does not follow a random walk following the Spearman test at the cnitical level of
5%

616 Summary of results

Table 6 9 attempts to summanse temporal dependence results It says that only the GBP
exhibits strong departures from the random walk hypothesis irrespective of the test at the
10% level For the other currencies, rejection of sertal independence only occurs under
Taylor's tests at the 5% critical level No one of the randomness statistics 1s sigmificant at
the 5% level, and only three are significant at the 10% level (two for GBP, and one for

FRF)
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Table 6.9 Summary of randomness tests

Rejection of Random Walk at the level alpha %
Alpha DEM IPY GBP FRF CHF
Portmanteau 10%
Taylor T 3% 10% 10% 10%
U 10%
T* 5% 3% 5% 5% 5%
U 3% 3% 3% 5% 3%
Runs
Up and Downs 10%
Spearman 10% 10%

62  T-STUDENT TEST

The random walk 1s now being tested using the multivariate T-Student test
denived m Chapter 5 This statistic 1s an alternative way to test the existence of seral
correlation in exchange rates of returns Its pnmary advantage beyond standard statistical
tests 1s 1ts power and robustness (See Section S 2

It must be known when applying the parametric T-Student test what are the possible
causes of departures with the random walk hypothesis To do so, Section 6 2 1 discusses
the normality and senial independence of rule returns which are two basic assumptions
Then Sections 622 to 6 2 4 test the equality of vanance, intercorrelation and average
rule returns with their theoretical values

Proposition 5 1 assumes that financial prices are without drift That does not seem
unrealistic for our exchange rates time series 1n regards of the sample means given in
Table 6 2 Such hypothesis has been commonly assumed 1n the literature (Taylor, 1986,
Engel and Hamulton, 1992, Lai and Pauly, 1992) and will be adopted here

The rules we are investigating are once again the simple, weighted moving averages and
momentums Successive orders of rules, {5, 10, 20 and 40} have been chosen such that
trading returns are almost equicorrelated under the random walk assumption (Table 5 2)
In fact, there appears to be little need for concern about how parameters are selected n
academuics studies as long as they are not based on in-sample returns (Lukac and Brorsen,
1989)
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621 Prelimnary results

Distribution

Table 6 10 proves that for the full sample none of the trading rules follow a normal
distribution, although for shorter periods (2 years) rejection of normality occur far less
often In addition, 1t can be seen that rejection (acceptance) of the normality of rule
returns occur stmultaneously to the rejection (acceptance) of the normality of underlying
returns Taylor(1986) argues that rule returns may have positive relative kurtosts due to
the positive relative kurtosis of price changes We have checked as well that amounts of
skewness and kurtosis of unrealised returns are identical and close to the ones of the
underlying process Subsequently, it seems that the shapes of the distnbutions of
unrealised rule returns and underlying returns are identical but not normal (Lukac and
Brorsen, 1990)
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Table 6 10 Normality tests of rule returns

Cnitical threshold % Kolmgoroy-Smirnoy test

DEM
Penod |Underlving| S(5) {S(10) | S(20) { S(40) | W(5) |[W(10)|W(20){W(40)| M(5) [MI0}M(20){M(40)
i 27 49 42 36 10 47 52 36 35 34 36 37 44
2 20 25 | 36 | 35 15 31 | 41 30} 30 ) 41 { 38 { 18 | 25
‘; 3* 1* 2* 3* ()* ]* 1* 3* l* l* 2* 3* l*
4 10 9 8 19 18 6 10 10 | 19 10 7 10 11
5 6 29 9 12 4* 120 17 10 ] 11 20 14} 16 14
full O* o | o* | O* Uk 0* | U¥ O | ox | 0¥ | 0| O0*{ U*
YEN
Period [Underlying| S(5) | S(10) | S(20) | S(40) | W(S) [W(LO)W(20)|W(40)| M(5) [M(10)IM20)M(40)
1 4* 11 0* | 11 10 13 9 13 13 14 4] 12 13
2 0* 0% 1 0%} 0% | O | 0% | O [ 0% [ 0% [ 0% | 0% ( O0* ( O*
3 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
4 2%* 2% | 0% 1* 3¥ [ 3% | 3% | 2% | 2% | 4 1* | 3% | 2*
5 5 I* 3* 3k 8 2% 3* 3I* 3* 3* 6 R 6
fult 0* 0% | 0% | 0¥ | 0* | O0* | O* 0% | O* | 0| 0% | 0% | 0*
GBP
Pertod |Underlving] S(3) § S(10)) S(20) | S(40) | W(3) [W(10)[W(20){W(40)| M(5) [M(10){M20){M(40)
1 11 19 42 36 40 12 4* 10 4* 10 22 11 4*
2 0* 25 | 36 | 35 15 1* 1* 4% 0 x| 2% 1* | 0% 1*
3 13 I ) 2% 3| 0*| 16 15 20} 32 135 8 13 7
4 6 9 8 19 18 2* 2% {0 17 15 15 14 9
5 11 29 12 12 4* 7 13 16 16 9 5 14 14
fuil 0* 0* 0* 0* 0* 0* 0* 0* (= O* 0* (O* 0*
FRF
Period{Underiving| S(3) | S(10) ) S(20) | S(40) { W(3) |[W(10}{W(20){W(10)] M(3) IM(10)|M(20)|M(40)
1 2% 1* 1* 2% 1* 1* 2% 3k [ 2% 2% 1* 2% 2%
2 41 34 42 28 24 35 27 31 32 28 32 23 23
3 3* 2% 3* ¥ | 0% | 2% 1* ¥ 0% | 3% | x| 2% | (*
4 7 3* 3* | 4F 8 3* 5 3*{ 9 2* | 4* ] 12 9
5 11 13 13 21 26 | 38 | 20 16 | 22 ) 35 18 ) 35 ¢ 137
full o* o* o* o* 1 o* 0* 0* 0* O* o* 0* o*
CHF
Penod {Underlying| S(5) | S(10){S(20) | S(40) | W(5) [W(10){W(20)(W(H0) M(5) IM(10){M(20){M(40)
1 16 28 [ 25 | 31 9 30 1 25| 25 12 13 | 25 6 4%
2 3* 12 8 15 6 13 12 15 14 12 12 6 6
3 6 12 11 5 2% 5 8 11 4* 5 4% 1 4= 6
4 16 33 7 11 17 | 32 | 20 15 13 13 14 | 39 | 41
5 59 54 } 33 ) 38 ) 68 § 61 | 43 | 32 | 57 ) 48 } 70 | 52 | 51
full 0* 0* 0* 0* 0¥ 0* 0* 0* 0* 0* 0* 0* 0*

* significantly not normal at the cntical threshold of 5%
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Temporal dependence

Table 6 11 shows that rule returns display on average similar randomness to underlying
returns for the runs, up and down and chi-square tests, and significantly less dependencies
for the Taylor tests Except in a few isolated cases, rule returns exhibit very low
autocorrelations and can be considered as independent An advantage of profits-based
tests might be that although daily prices may be dependent, rule returns might still be

independent, and so the T-Student mught still be applied

Table 6.11 Tests for randomness of rule returns

Tests for Randomness (Cnitical threshold %)

Tests\DEM | Underlving | S(5) | S(10){S(20) ] S(40) { W(5) [WIO}W20)W(40)] M(3) [M(10)|M(20)[M(30)
Runs 0 21121 014] 148] 037|-055] 069} 053] 069}-006) 077| 108{-026
(100) (26) | (89) | (14) | (5T) | (58) | (49) [ (60) | (49) | (95) ] (44) | (28) | (80)

Up and down -112 038]|-043]-024}-113| 107}-010|-1359|-052| 074 018]-080] -1 87
(26) (O | (6 | B [ (26) | 2N (92) | (A1) | (60) | (46) ] (86) | (42) | (6)

QM 2336 1221413016123 74|19 09)25 20§26 04]{ 25 81{2540]20 89]17 33|18 75 24 3R
2n 2 G D] EN [ @O a3 | A [ (I GH [ (5 | N | 18

T 117 060 200)-175} 015 -78|-094{-175!-077] -34|-074] 043 13
(12)  [(725) (98) | (96) | (44) (T8 1 BN 9 | T | (T () [ (6T) | ()

U 11 0741285 -93 | -065]| ~87 {-154]-211} 061} -86 | 088} -016{ 086
(46) (7 {Q100)] (82) | (74) [ (81) { (94) 1 (98) | (7T3) | B1) { (B1) | (56) | (19)

T 326 041)-174]-80 | 151 -45(-115{-170| 49 [ -14 {050]002] 216
(0)* (66) | (96) | (79) | (7) | (67) [ (8R) | (96) | (31) | (56) | (69) | (49) | (2)*

u* 218 -080{-250(-381073})-751-131]|-208) 23 { -0l {-09%]|-013{ 1306
2)* 79|99 | (72) [ (23) | (T7) { (94) | (98) ) (41) | (73) | (83) | (33) | (9)

Tests\YEN | Underlving | S(5) | S(10)|S(20)| S(40)| W(5) [W(10)[W(20){W(40) M(5) [M(10)[M(20)]Mf40)
Runs 047 0901-061]-0431-038|-6F-3]-136(-069|037(-100{077)-040] 081
(64) GNDIGH [T DAY D 1 @D | (T1) | 32) | (48 | (69) | (42)

Up and down 098 0437071 (12210571 127108311081 113/005{130{103{103
(33) (671 @8) | 22) | (5T | (20) { (41} | (28) | (26) | (96) | (13) | (30) | (30)

Q0 1697 |2077{3539]2860(23 82113 65(2733{31 13|26 38]2724{36 59{22 64|12 60
(39) GHTM* | (D [ (20) | (B0)  (10) | (4)* ) (12) | (10) | (1)* | (25) | (86)

T 202 741 92 |18 {157 -11) 59 {108} 177]1397170|187}-77
@ @) [A [ @D*] 6) |G [AH (™} (&) (| (3)*](78)

U 131 70 § 39 199114 0 |-18[126{168] 79 211 ({171}-32
(10) () [ GBS {131 (50) | (SN {(10) | (3) { 2D | ) | 4)* | (T0)

1* 361 65 [ 14911841273 -28) 69 86 |236) 76 27112981192
0)* (20) [ (7) | (3)* J10)* { (61) F23) [ (19) [ (1)* [ (22) | (0)* | (G)* | (3)*

u* 306 551 78 13612181 -27]-14] 351 1209 24 {259{271 (212
(0)* (29 | 22) | (9) | @)* | (61) ) (56) | LY { (2)* | @) ] (1) | (@)* { (2)*
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Table 6.11 (continued) Tests for randomness of rule returns

[ests for Randomness (Critical threshold %o)

Tests\GBP | Underlying | S(5) | S(10)[S(20){ S{30Y| W(3) [W(10)|W(20)W(<0){ M(3) [M(1O)M(20)}M(40)
Runs 090 |-178[-163)116}-120{-099[-200(-096|041|-080}043]-151]-065
(37 @ [aoytenienr| oy o) [eHles)| @) ] 6] an] (G2

Upanddown| -189 |-097|-191]074(-074[-060]-135[-256|-097}-200{-107|-149]|-205
(6) (33) ] (6) | (46) ) (46) ) (55) 1 (18) | (1)* | (33) ) (3) { (29) | (1) { ()*

QQ20) 220 [3367|2832(23 74{19 09{25 8642 33[28 31]37 3922 75(22 56{30 94|31 93
3)* 2|y || Enhan o | & [ ]| 25| ee | ] G

T 235 {-120]-152|-116| 46 |-102(-149]|-201|-236]-143]|-167]-269] -99
(1)* (89) | (94) | (88) [ (32) | (85) | (93) | (98) | (99) | (92) | (95) | (4)* | (84)

U 241 |-236|-275|-173|-29 [-(34]|-314]-280|-241]-258{-244{-218({-220
)* (99) 1(100) | (96) | (61) | (91) |(100)[(100)| (99) [(100)] (99) | (99) | (99)

T 456 |-100|-63|-34 [141{-155|-91]-112]-72-69{-25{195] 34
(0)* (84) [ (T4) | (63) | (B) [ (9 [ (B { BT | (TT) | (75) 1 (60) | 3)* | 3T)

u* 443 |-192]-193|-120{ 61 [-206|-221|-235|-115(-181]-1G7{ 117|-100
(O (97) | (97) | (88) { (27) | (98) | (99) | (99) | (88) | (97) | (86)| (12)| (84)

Tests\FRF | Underlying [ S(5) |S(10){S(20)|S(40)| W(5) [W(10)[W(20)w(40) M(3) [M(10)M(20)M(40)
Runs 000 n2{006|116]065{ 002171 006|085 {171|104]124(076
(100) | (83)1(95) | 25y | (52) | (98) | (9) | (95) | 40y | (9) | (30) [ (22) | (45)

Upanddown| -772 |-038{037{074|-024|004|[027]-061}111{018)111]07-076
99) (70) 1 (T1) | (46) | R L (97) | (79) | (54) | Q7) | (86) | 2T) | (45) | (43)

Q(20) 2505 1292]3916]27312584]1807|315113362{2593|2748]1763|12 69|16 98
(16) 6) | O* (0 (A3 |G H* [ @*|A3)] 9 | (35183 (Y

T 153 12 {-1871-1861-101]-94 {-119]-197]-119] 23 |-22|-74]|126
(6) (55| 97y | (97) | (84) | (83) | (88) | (98) | (8%) | (41) | (59) | (77 { (11)

U 91 22 |-235(-131|-181[-358 |-143{-237[-98]-23|-dd|-92| 98
(18) @1y (99§ 190) { (96) | (72) | (92) | (99) | (84) | (59) | (67) { (82) | (84)

1* 300 S11§-162]-87] 15 | -42 |-164|-169[ 07 | 25{ 17 |-83|193
(0)* (34) | (95) | (B1) | (44) | (60) [ (95) | (96) | (47) | (60) | (43) | (80) [ (3)*

u* 231 -05 (218] -57|-37|-27|-167]-213| 03 [-48|-25{-92|173
(1)* (52| (99) | (72) | (64) | (61) | (95) | (98) | (49) | (68) | (60) | (82) | (4)*

Tests\CHF | Underiving | S(5) |S(10)S(20)|S(40) | W(5) [W( 10)}W(20)(W(40) M(5) [M(10)[M(20){M(40)
Runs 037 (-037(006{045]014]-064] 061]030|002]041]|136{010}-045
n (T1) ] (95) | (65)] (B9)| (52) | (54) | (T7) | (98)] (68) | (1T7) | (92){ (65)

Upanddown| -158 |-038|-1871-103{-215]-131]-057{-103{-131{055|-038}-192]-159
(11} (70) { (6) { (30) 1 (3)* | (19) | (57) | (30) | (19)} (58) | (70) | (3) | (11)

Q(20) 2374 |14 35(2328(3569{3190(1331{1247{24 65|28 60{23 81{1765[16 391570
2n (76) | 23)[ (1)* | (3)* | (82) [ (86) | (17) | (7) | (20) | (35) | (62) | (68)

T 163 -61 |[-187]-17{-04]-431-115|-23]-94]|-57|-28]|-07] 36
)] (73) 1 9T) | (37) | (32) | (67) | (88) | (39) | (83) | (72) { (61} {(33) | (30}

U 88 -1054-235] 19 |-641-68|-150]-55]-80]-55}-42] 05]-16
(19) (85) ] (93) { (42) { (74) | (75) | (93) | (T1) | (79) { (T1) | (66) | (48) | (56)

T 386 [-103{-162]| 14| 29 |-76]-179|-47]-23|-47]-24} 20| 55
(0)* (85) 1 (95) | (45) | (38) | (78) [ (96) | (68) | (59) | (68) | (59) | (42) | (29)

u* 311 |-1471218] 21 |-12|-105{215|-83|-35)-47}-17} 07 { 04
(0)* (93) ] (99) | (42) | (55) 1 (85) ] (98) | (80) | (64) | (68) | (57) | (47) | (49)

* significantly not random at the cnitical level ot 5%



622 Jurunce

Table 6 12 mdicates that the vanance of rule returns 1s not significantly different from the
vanance of underlying returns That means that, on an unrealised rate of return basts,
there 1s no rule niskier than others Every rule brings the same nisk being equal to the
underlying volatility Corrado and Lee(1992, Table 6) studying the time senes properties
of the S&P 500 simularly find that the standard deviation of the 0 5 percent filter rule
returns 15 equal to the underlying volatility Such a result confirms the random walk
assumption, or at least 1s not incompatible with As far as vanances are concerned, 1t can
be concluded that the random walk hypothesis 1s strongly accepted and can be considered
as an excellent proxy of real trading rule vanances?

Table 6.12 Tests of equality of vanances between rules and underlying returns
\ anance (E-5) of daily stochastic processes
(Crticnl threshold %4 tests of equalitv of vanances between rules and underlving retumns)

Underlving | S(3) | S(10) [ S(20) | S(40) | M(5) | M(10) | M(20) { M(4G) [ W(3) | W(10) | W(20) | W<}

DEM | 50912 |50809{50784]50669|50878(50858 5085850799 |50877 50827 (50821507505 0793
O | 0H | @) | 0N | OB) | 98) | 96) | 99) | O | 0N | 93) | 199)

YEN 47162 lansslanulanm|annl4nm 41137141176 {47181 [ 47181 [ $ 7136 [ 4 7118 | 47157
100y | (99) | 100y | (100) | 200y | 99) | (100) | (100) | (100) | (39) | (9%) | (100)

GBP 51924 S1837)51827(51784 (51859518825 1808)51899|51846|51801|51864|51725|5 1746
(96) (95) (90 99 99) (96) | (100) | (97) (95) 98) { (92) (92)

FRF 50062 | 49906 |49911149788|49923|49939 (49964149890 14998249918 49883 | 49861 | 49864
O | OD | BN [ 0N | (O5) ] 96) | 93) | O7) | 94 | 92) | (92) | (9D)

CHF 59226 |59172)59098]59063( 5918 | 59147 ]59145]59147[59127|59137}59137| 59132 5909
(98) | (96) | (94) | (98) | (98) | (98) | O8) | O7) | 98) | 907 | 97 } M

We have seen in Section 5 2 3 that the standard deviation of a portfolio of systems, 6 15
given under the normal independent assumption without dnft by o =Ko, where K1s a
constant gtven by equation [3 13] and o 1s the underlying volatility Subsequently, Table
6 13 tests the hypothesis (o /K)* =c® It shows that the vanance of a portfolio of
systems is still close to its expected value That would mmply that the theoretical
correlation between systems ts quite a good substitute for empincal correlations, an 1ssue
that the next section investigates i more details

2 That confirms that if not the mean, the shape of the distribution (vanance kurtosis skewness) of
unrealised returns 1s very much the same than the one of the underlying process That would not have
been the case for realised returns (See Chapter 3)
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Table 6.13 Tcsts of cquality of variances between portfolio rules and underlying returns

Vanance (E-3) / K2of dathy stochasuic processes
{cotical thresold % tests of cquality of variances between portfolio rules and underlying returns)
Underlving | S(5 10 20 40) | W(5,10 20 40) | M(5 10 20 40) | SWM(5 10 20 40)
Constant K 0 81275 083724 0 73053 0 76226
DEM 50912 49714 52270 52204 52003
(54) &)} 3% (539
YEN 47162 4 7184 4 7509 4 8168 4 7933
(99 (85) (39) (68)
GBP 51924 51788 52270 522037 52003
(95) (46) (90) (64)
FRF 5 0062 51331 53310 529651 53262
(52) an (15) (12)
CHF 59226 57751 57834 58628 58344
(52) (53) (80) (70)

623 Rules correlations

We now check the adequacy of the random walk without drift in terms of trading rules
correlations We consider as in Section 512, first the case where different rules are
applied to the same financial time sertes, and second the case where the same rule 1s
appled to different financial time sertes Then a comment ts made about the general case
where different rules are applied to different time senies

Different rules apphed to a same underlying process
Firstly, we shall test the adequacy of rule returns correlations with their expected values
for a set of techmcal trading rules applied to the same underlying process

Table 6 14 shows that 1rrespective of the currency, trading rules correlations are relatively
close to therr expected values under the random walk without dnft hypothesis, H, given
by Table 52 They are in fact shightly lugher, which would let give the impression that
there are some low positive autocorrelations Then we have applied a test of equality of
correlations (Johnson and Wichern, 1982) to measure how close are the observed trading
rules correlations to thewr expected value under H; For the twelve trading rules,
rejections of adequacy occur 1n less than 40% of cases for DEM, GBP, CHF, YEN but
above 60% for FRF (Table 6 14) Therefore, 1t seems that the umvanate random walk
hypothess 1s a farrly good assumption as far as rule returns correlations are concerned
Overall, mechanical systems are highly positively correlated (Lukac, Brorsen and Irwin,

1988a, Brorsen and Boyd, 1990, Taylor, 1990b), but not more than would randomly be
expected
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Table 6 14 Correlations between rules applied to a same currenc

SDFM)]_S(5) | S(10) | S(20) | S(40) | W) | W(10) | W(20) W0y | M) | M(10) | M20) | M(40)
S(5) 1 685 463 315 | 903* | 780* | 616* | 428 | R04* | 4Si* | 296 177
S(10) 1 658* | 393% | 652¢ | 898+ | 817 | S547% | T46* | 716 | 418 | 216*
S(20) 1 658% b 44g* | so7 | 835¢+ | 824 | 516 | 740 | 736* | 430
$(40) 1 300 | 386 | >43* | 833 338 | 488% | T76* | 690
W(5) ] 749+ | 603* | 108* | 722% | 447 | 278 185
W(10) 1 756% | 537 | 796* | 636* | 383 224
W(20) 1 709% | 662* | 771 576 | 327
W(40) 1 476* | 638 | 801* | 596*
M(5) 1 510* | 341¢ | 195
M(10) 1 542¢ | 294
M(20) 1 507
M(40) 1

et EN) 5(3) 5(10) 5(20) 5(40) W(S) W(10) | W(20) | W(40) \M(S) \M(10) | M20) { M(40)
5(5) 1 720* | 488 314 | 893* | 809 [ o591 304 | 791* | 481* | 257 [ 1lio*
S(10) 1 665 445 | 653* | 882* | 810 | seox | 772* | 736* | 399 | 173*
$(20) 1 654¢ | 49a* | 625* | 853 | 795* | ss54* | 769* [ 656* | 363*
$(40) 1 325 415 597 | 852 | 358 | 496 | 788* | 653
w(s) 1 737 | 593*% | 4vyx | e85% | 493% | 278 | 121*
Ww(10) 1 742 | 529 | 8w+ | 622+ | 377 | 176*
W(20) 1 718 | 656* | 796* | 560 | 290*
W(40) 1 461 | eosx | so1* | 517*
M(5) 1 559* [ 338 | 147*
M(10) 1 516% | 251*
\(20) 1 489
M(40) 1
o(GBP)|_S(3) | 8(10) | 5(20) | 8(30) | W(5) | W(10) | W20) | W(40) | M(5) | \M(10) \(20) | \(40)
S(5) 1 674 448 355 894 | 751 579 | 408 | 803* | 448 | 278 198
$(10) 1 694 | 434* | 619 | 876* | 843* | 608 | 731* [ 730+ | 4I8 249
$(20) 1 674 402 | 604 850 | 843 | s36¢ | 730 | 682 440
5(40) 1 312 | 403 s69 | 813% | 392* | 477% | 772% | T726*
w(s) 1 730 525 | 368 | 699* | 414* | 244 193
W(10) 1 741 534 | 799* | 610* | 356 227
W(20) 1 750 | 668* | 795* | 540 341
W(40) 1 4Ra* | 652 757 549
M(5) 1 535¢ | 335 224
V(10) 1 462 287
\{(20) 1 358%
\(40) 1
o(FRF) | S(3) | S(10Y | S(20) | S(40) | Wr5) | W(10) ] W(20)) W40)} M) | M(10) M20) | M(40)
S(5) 1 T19% | 520* | 364* | 894* | 810 | 627* | 475% | 804* | 483* | 336* | 233°
5(10) 1 695 452 | 683* | 903* | 828 595 | 761* | 734* | 462*¢ | 271
5(20) 1 687 | S07* | e39% | 858 | 855% | S40* | 728 | 753* | 4o8*
S(40) 1 356* | 443 s83 | 831% | 395% | 496 | 793¢ | 706*
W(5) 1 773% | 613% | 467 } 725% ) 455+ ) 331% | 224*
W(10) 1 765% | S584% | 794% | 651% | 426% | 273
w(20) ] 749 66* | 758 | 616% | 374
W(40) 1 513* | 641 | 800 | 599*
M(5) 1 538+ | 376* | 233
\[(10) 1 543* | 315
M(20) 1 552%
M(40) ]
o(CHF)[_S(5) | 5(10) | S@0) | SH0) | W() | W(10) | W(20) | W(40) | M(5) \M(10) | M(20) | \M(40)
S(5) I 6d42* | 469 311 | ovo* | 781% | 573 388 ) 767* | 457 | 250 | 129*
S(10) 1 688 | 422% | 583 852 811 599 711 | 727* | 440 | 194*
S(20) 1 628* | 426 592 | 877+ | 838 | 498 | 731 675 | 342*
5(40) 1 267 | 398 | S60% | 789* | 352 | 474* [ 786* { 673
W(5) 1 722 527 | 343 670 | 409 | 213 121
W(10) 1 713* | s04 | 786* | 594 | 366 | 195*
Ww(20) 1 749 599 | 776* | 575 | 304*
W(40) 1 428 ) 636 | 789+ | 467°
M(5) 1 487 | 296 | 140%
M(10) 1 494 | 250*
M(20) 1 506
M(40) 1

* sigmificantly different to the expected correlation p = pg at the cnitical level of 5%
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Same rules apphed to different underlying processes

Secondly, we have tested the adequacy of rule returns correlations with their expected
values for the same mechanical system applied to two different underlying processes It 1s
clear from Table 6 15 that observed correlations between trading rules are far hugher than
that would randomly be expected Theoretical correlations are however better than ex-
ante substitutes and closer to true results than underlying correlations In addition, they
confirm two major properties of rules correlations established in Section 5 1 2, namely

(a) rules correlations are a positive function of the absolute value of underlying
correlations and lower 1n absolute value than underlying correlations Let us take the
example of GBP/USD and USD/CHF The two processes are negatively correlated, -
0 76, however when the same moving average (10 or 20 days) 1s applied to each of the
two currencies, rule correlations decrease substantially in absolute value to reach 0 53

(b) rules correlations are almost 1dentical as long as the same system 1s applied to both
assets That can be seen from Table 6 15, multicurrencies correlations between S(5),
S(10), S(20), S(40) are quite close one from each other There 1s perhaps a very slight
positive function of the order of the moving average The correlation between two rules
of a given order applied to two assets does not depend on the order

These results imply on the one hand, that the bivanate random walk without dnft 1s a
practical assumption allowing properties of rules correlations, (a) and (b), to be given
which are empinically confirmed but on the other hand, underestimating excesstvely
observed correlations to be an acceptable substitute We have checked that 1s still more
the case when different systems are apphed to different currencies

Table 6.15 Correlations between rules applied to different currencies

Correlation  |[YEN-CIITTYEN-TRIGBP-CIT|GBP IR CIIT URT|DEM-YIN|DEM-GBPIDEM-CHI|DEM TRITY LN-GDP
Px 068 066 076 077 089 067 079 092 095 058
po:%p,Amsm(p‘) 032 031 042 044 061 0131 046 069 07s 023
5(5) 0 44* 038* 0 50* 0 56* 069* 043* 052> 0 76* 0 86* 030*
5(10) 044> 043* 053* 0 60* 074* 041* 0 60% 077+ 090+ 034*
5(20) 041* 0 39* 053* 057+ 074 041* 057* 079* 089* 035*
S(40) 0 50% 0 46* 057* 059* 0 76* 047* () 59% 078* 090* 039*

* significantly different to the expected correlation p = p at the critical level of 5%

166



624 [xpecred value
Tables 6 16 and 6 17 show that rule returns and so single T-Student are heawvily
dependent on the rule being used, although interrelated It results that no clear conclusion

about the currency randomness can be deduced from them

An alternative 1s to apply the multivariate T-Student developed in Chapter 5 We
have just seen 1n Sections 6 2 3 and 6 2 2 that trading rule correlations and vanances are
close from their expected values under the random walk hypothesis So rejection of non-
zero profits from the multivanate T-Student should not be due to wurelevant variances and
correlations, but significant positive returns, what we want to test

The multivanate T-Student provided by Table 6 17 seems far more informative
than any single T-Student since 1t exhibits a critical threshold close from the best of its
component, unknown ex-ante It seems from the reduced portfolio S(5,10,20,40) that
DEM, GBP and FRF do not follow a random walk without dnft at the cntical level of
1%

In addition of this elementary portfolio, we have tested the profitability of larger
portfolios It 1s hoped that by enlarging the field of rules the most profitable ones
(unknown ex-ante) will be included and that their presence 1n the portfolio will make the
test more powerful despite the number of unprofitable rules Qur biggest portfolio,
SWM(2 to 100) includes three different popular technical rules, simple moving averages,
weighted moving averages, momentums of orders 2 to 100 For large portfolios, all
currencies (except Yen) do not follow a random walk without dnft at the cnitical level of
1% The ranking of currencies in terms of decreasing profitability for the largest portfolio
SWM(2 to 100) 1s FRF, DEM, GBP, CHF and YEN The YEN appears far less
profitable than the other currencies

There 1s no clear ranking of trading rules A slight dominance of weighted moving
averages over simple ones and momentums can be noted However results are too close

to be really meaningful
Table 6 16 Yearly rule returns
Yearlv Returns % of trading rules
Yearly Returns % DEM YEN GBP FRF CHF
S(5) 797 526 744 909 471
S(10) 895 614 744 927 853
S(20) 12 30 396 904 12 47 957
S(40) 453 420 616 83338 482
S(5 10 20 40) 844 489 752 980 691
Underiying Volatihty 1126 10 86 11137 1115 12 14
Portfolio Volatility 7 44 718 751 737 802
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Table 6.17 Cntical threshold of T-Student test

Critical Threshold % of T-Student test

Test DEM YEN GBP FRF CHF

S(5) 13 62 19 05 11
S(10) 06 36 19 04 13
S20) 00 124 06 00 06
S(40) 103 110 44 09 105

S(5 10,20 40) 02 40 05 00 13
W(2 to 50) 01 33 01 00 05
W(2 to 100) 01 17 02 0o 03
S(2 to 50) 03 29 02 01 09
S(2 1o 100) 03 06 04 01 03
M(2 to 50) 02 15 02 00 05
M(2 to 100) 02 02 09 01 02
SWM(2 to 30) 02 13 02 00 05
SWM(2 to 100) 01 05 03 00 02

63 BOQOTSTRAP TEST

6 3 1 Bootstrap methodology

It could be argued the results reported in the preceding sections are of little value because
the T-Student test assumes a normal, stationary and time independent rule returns
distnibution For our set of trading rules the time independence assumption seems very
reasonable, but not that of normality The results indicate that there are several deviations
from the normal distribution such as leptokurtosis, conditional heteroskedasticity and
changing conditional means So 1t may be argued that the results based on single and
multivaniate T-Student tests may be biased An alternative 1s the bootstrap approach
which assumes nothing about the distribution generating function Testing procedures
based on bootstrap methodology to assess the significance of technical trading rules in
financial market are not new and have been implemented by Brock, Lakomshok and
LeBaron(1992), Levich and Thomas(1991), LeBaron(1991, 1992b) The simulation
technique 1s now described and applied to the full sample of exchange rates similarly to
Levich and Thomas(1991)

For each currency, we generate a new companson series (a shuffled senes), by making a
random rearrangement of loganthmic returns in the ongnal series By operating on the

sequence of price returns, the starting and ending price levels of the new senes are
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constrained to be exactly as their values in the onginal data And by randomly rearranging
the onginal data, the new senes 1s constrained to have 1dentical distrnibutional properties
as the original seres, but the time senies properties have been scrambled with each path,
by construction, drawn independently of the other notional paths The process of
randomly shuffling the senes of returns 1s repeated 2,500 times for each currency Each
technical rule 1s then applied to each of the 2,500 and the profits measured The moving
average rules will be used as in Levich and Thomas(1991), LeBaron(1991, 1992b),
Brock, Lakomshok and LeBaron(1992) 5, 10, 20 and 40 days are fairly common lengths
used by traders and have been previously considered in this thesis The bootstrap
methodology should provide a good approximation of the rule return distnibution under
the null model of random walk with a dnft The profits of the origmnal series can then be
compared to the profits from the randomly generated, shuffled senes Comparnsons will
be done once again throughout vanance, correlation and expected value of rule returns?

632 Variance

Vanances of rule returns have been very little affected by the bootstrap methodology
(Table 6 18) They are still not statistically different from their theoretical values under
the normal random walk without dnft The ratio standard deviation of rule
returns/underlying volatility 1s constant and very close to its expected value which 1s 1 for
an unique system and K=0 81275 for the portfolio of systems S(5,10,20,40) Levich and
Thomas(1991 Tables 4A, 4B) testing the assumption of a random walk without dnft,

similarly exhibit rule returns vanances extremely close to the volatilities of the undertying
assets

Table 6.18 Rules vanances from bootstrapped currencies

Vanance (E-3) ot dailv stochastic processes, 1ssued from 2 500 Bootstrapped simulations
Underlving S(5) S(10) S(20) S5(40) S(5 10 20 40) | K(5 10 20 40)
DEM 50912 4 9567 19359 18036 49421 32258 0 808
YEN 47162 4 4570 4 5759 46011 45732 29412 0 803
GBP 51924 52775 51446 50658 51792 34345 0816
FRF 50062 48958 51446 4 3380 51129 32871 0812
CHF 59226 5 5509 56991 58661 54248* 36588 0 805

* gigmificantly dufferent from expected value (K 6)? asswiung a random walk, at the cnitcal level of 5%

3 We do not have attempted multicurrencies bootstrap That 1s each one of the simulations have been

performed independently for each currency That has the advantage of giving independent results
between currencies but prevents the studv of trading rule correlations between currencies
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633 Rules Correlations
Correlations of different systems appled to bootstrapped currencies remain close to their

onigmal values, and almost 1dentical to therr theoretical value under the normal random
walk without dnift (Table 6 19)

Table 6.19 Rules correlations from bootstrapped currencies
P(DEM) | S(5) | S(10) | S(20) | S@0) | P(YEN) | S(5) | S(10) | S(20) | S(40)
5(5) I 691*% | 496 | 291 S(5) 1 652 | 443 | 295

S(10) 1 | 689 | 441 | S(10) 1 | 661 | 439*
S(20) 1 | 652%| S(20) 1 | 675
S(40) 1 | Sw@0) 1

p(GBP) | S(5) | S(10) | S(20) | S(40) | P(FRF) | S(5) { S(10) | S(20) | S(40)
S(5) 1 667 | 452 | 351 | S(5) 1 659 | 467 | 319

S(10) 1 | 674 | 487 | S(10) 1 | 687 465
S(20) ] 691 | S(20) 1 | 676
S(40) 1 S(40) 1

p(CHF) | s(5) | S(10) | S(20) | S(40)
S(5) 1 644 | 147 | 295

S(10) 1 | 674 47
S(20) 1 | 679
S(40) 1

* sigmificantly different to the expected correlation p = p, at the critical level of 5%

634 Expected value
Summary statistics for the simulated rules returns are shown i Table 6 20 Five statistics

are computed 1n these tables The first column refers to the conditional mean, the second
to the median, and the three next ones to the quantiles of 1%, 5% and 10% In all cases,
wrrespective of the rule and currency, the average profit 1s not sigmficantly different from
zero as 1 Levich and Thomas(1991 Tables 4A and 4B) So this 1s very close to what
would have been expected from a parametric random walk without dnft (equation [3 7))
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Table 6.20 Distribution of rule returns from bootstrapped currencies

DEM 2 500 Bootstrap replica Yearly returns %

Test average median quantile 1% quanule 3% | quantile 10%
S(5) 0118 0157 3496 8989 | 6280 6891 | -3518 5689
5(10) 0175 -0 110 <9125 8707 | -7169 6930 | -5941 5492
S(20) -0 089 -0 057 8484 8352 | 6978 6531 | 6034 5703
S0 0118 -0 095 -9051 8506 | -7154 6663 | -6038 5429
S(5,10 20 40) -0 066 0019 -7068 73518 } -5412 5386 | 4701 43552
YEN 2,500 Bootstrap rcplica, Ycarly rcturns %
Test average median quantile 1% quantite 3% | quantile 10%
S(5) 0057 -0 001 -8543 8777 | 6381 6494 | 5420 5412
S(10) 0148 0115 -8722 8733 | 6428 6595 | -5289 5624
S20) 0127 0119 8471 8700 | 6407 6709 | -5195 5645
S(40) 0167 0116 -8728 8891 | -6478 6854 | -5186 3740
S(3 10 20 40) 0125 0123 7016 7115 ) -5223 5245 | ~+246 4534
GBP 2 500 Bootstrap rephca, Yearly returns %
Test average median quantile 1% quantile 3% | quanule 10%
S(5) -0 133 -0 205 -83535 8690 | 6848 T211 | -5958 5987
S(10) -0292 -0 260 9423 8387 | -7335 6475 ) 6200 5439
S(20) -0 336 -0 374 8555 8341 | 6950 6329 | -5985 5435
S(40) -0 356 -0 300 <9125 8202 | -7042 6577 | 6247 5336
S(5 10,20 40) 0279 -0 331 7431 6842 1 -5911 5407 | -5070 4591
FRF 2,500 Bootstrap replica Yearly returns %
Test average median quantile 1% quantile 3% | quantile 10%
S5 -0 083 -0 066 3512 83845 | 6799 6591 | -5967 5421
S(10) -0 140 0074 8970 9410 | -7194 6601 | -5949 53571
S(20) -0 218 -0 240 9630 8441 | 6955 6615 | -5560 5531
S(40) 0316 <317 8847 8305 | 6887 6503 | 6117 5443
S(5,10 20,40) -0 189 -0 236 -7132 7435 | -5519 5552 | 4835 4320
CHF 2 500 Bootstrap replica, Yearly returns %
Test average median guantile 1% quantile 5% | quantule 10%
S(5) 0107 0071 -8830 9276 | -T195 7202 | -5964 6182
S(10) -0 208 0179 <9538 8715 | -76646 6632| 6195 5661
3(20) -0 196 -0 104 -10499 9386 -7779 7286 | 6378 5907
S(4n) -0 326 0338 | -9597 9752 | 7220 6955 [ 6220 5739
S(5,10 20 40) -0 156 <01 38 -7216 7454 | -5829 5602 | -5062 4645
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Average profits are normally distnibuted without skewness or kurtosis (Table 6 21)

Table 6.21 Normality test of bootstrapped returns

Cntical threshold % Kolmogorov-Smirnov test of normalitv of bootstrapped returns
Test DEM YEN GBP FRF CHF
S(5) 692 940 245 993 238
S(10) 819 898 909 852 541
S(20) 989 620 244 93 4 98 7
S(40) 952 96 0 306 943 69 4
S(5 10,20 40) 68 3 94 4 306 913 69 4

Table 6 22 presents the results companng the actual series for the DEM, YEN, GBP,
FRF, CHF with the 2,500 corresponding simulated random walks It indicates the rank of
the rule returns for the actual series in companson to the 2,500 randomly generated

Series

Table 6.22 Ranks of onginal returns in bootstrapped returns

Onginal returns rank (2 500 Bootstrap replica)
Test DEM YEN GBP FRF CHF
S(5) 2470 2355 2454 2490 2219
S(10) 2488 2414 2461 2487 2486
S(20) 2500 2183 2497 2500 2490
S(40) 2298 2227 2415 2490 2301
S(3,10 20,40) 2496 2413 24935 2500 2482

Table 6 23 gives the cntical threshold of the bootstrap test The null hypothesis of a
random walk with a dnft 1s rejected at the o percent level if returns obtamned from the
actual currency data are greater than the percent cutoff of the simulated returns under the
null model For instance, the cntical threshold of the DEM simple moving average of
order 5 1s worth 1 2%, since over 2,500 simulations 30 generated a mean return greater
than that from the actual senies and 2470 lower (Table 6 22

Table 6.23 Cntical threshold of Bootstrap test

Cntical Threshold % of Bootstrap test
Test DEM YEN GBP FRF CHF
S(5) 12 58 18 03 112
S(10) 05 34 16 04 06
5(20) 0 127 01 0 04
S(40) 81 109 34 04 80
S(5 10 20 40) 02 35 02 0 07




The bootstrap approach has added two important findings from previous results in
this chapter Firstly, this nonparametric test confirms that exchange rates are not random
Trading rule returns are significantly different from the ones issued from bootstrapped
random walk Holding unchanged the exchange rates distribution and so avoiding
parametric assumptions such as the normal law, does not allow to explain any better rule
returns Independent driftless variations, even if nonlinear are not able to produce
signuficantly positive rule returns Indeed average returns are very close to zero and so to
the results of a parametric dnftless random walk Secondly, critical thresholds from the
nonparametric bootstrap test (Table 6 23), are close to the ones issued from the
parametric T-Student test (Table 6 17) The average difference 1s equal to 0 4% and the
biggest difference to 1 7% Brock, Lakomshok and LeBaron(1992) criticise parametric
tests as exhibiting dubious cntical thresholds It seems that as far as rule returns are
concerned, normal assumption 1s more than an acceptable proxy and that T-Student based
tests are as powerful and robust as bootstrap based tests Such findings would confirm
the Diebold and Nason(1990), LeBaron(1992b) view that nonlineartties of financial prices
can be of little economic consequence This underlines that when attempting to explain
rule returns, 1t 1s far more important to correctly model dependencies even if linear, than
varniance-nonlinearities The latter haven't got, on their own, the potential to generate
non-zero profits

These results strongly suggest that the actual exchange rate series contained sigmificant
departures from serial independence that allowed technical trading rules to be profitable
If the actual sertes had been generated randomly, our simulations suggest that average
profits would be close to zero Gauged against these simulations, the actual path of
exchange rates 1s seen to embody a sigmficant degree of senal dependence

64 SUMMARY

Exchange rates are not derived from an identically distributed normal law They cannot
reasonably be considered as linear as proved by various tests However, a purely
nonlinear variance model 1s unlikely since there are some signs of significant positive
senial correlations as shown by Taylor(1980) statistics
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Table 6 24 summanses our findings about the adequacy of the normal random walk
assumption with the statistical properties of trading rule returns The results present
conflicting evidences

On the one hand, the distnibution of rule returns 1s not normal That might be due
to the fact that the underlying return distribution itself 1s not normal

On the other hand, the univaniate random walk assumption 1s quite acceptable and
provides a fairly good proxy of rules vanance and correlations between different trading
rules apphed to a same financial time series The bivanate random walk 1s strongly
rejected when considering correlations between rules applied to different time series

Finally, and perhaps more important from an investor's point of view, trading rule
returns are not denved from a random walk time senes because they are non-zero and
even significantly positive The profitability of trend following rules strongly suggests
some form of senal dependency in the data

Both parametric and nonparametnc tests bring the same conclusion which happens to be
that exchange rates are not random Nonlinearity in the distribution only, that 1s still
assuming independent vanations, cannot generate nonzero profits Assuming normal
rather than exact currency distnbution has very few economic consequences in terms of
average rule profit and risk as proved by the bootstrap approach Therefore the
hypothesis of normality 1s very weak in comparison with the independency assumption

Table 6 24 Summary of random walk tests

Adequacy of rule returns statistical properties
with the driftiess normal random walk
Distnibution No
Variance Yes
Umivanate correlations Yes
Bivarnate correlations No
Expected value J No
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APPENDIX 6.1

SERIAL AUTOCORRELATIONS OF EXCHANGE RATES SERIES

Table 6.25 DEM Autocorrelations

DEM LOG ABS(DF\M LOG) SQUARE(DEM LOG)Y

Estimate | Lag | Estimate Estimate | Lag { Estimate Estimate | Lag | Estmate

Lag Lag
1 [ 04076 | 2 | -01277 05073* | 2 | o7943* | t | 05957 | 2 [ 09235*
3 01278 4 | -00938 09784* | 4 | 079s4* | 3 | 07277* | 4 | 06549*
5 02503 6 | -00319 07403* | 6 | o08701* | 5 | 04296* | 6 | 10728+
7 00917 8 03234 06120* | 8 { 10758+ | 7 | 02150 g | 10311+
9 02447 | 10 | -00257 05635* | 10 | 10831* | 9 | 02423 | 10 | 08176*
11 | -00574 | 12 | -00907 07115* | 12 | 05195* | 11 | o6é866* | 12 | 02508
13 01515 | 14 | 00545 08899* | 14 | 07152* | 13 | 07742% | 14 | 06884+
15 | 04092% | 16 | -00667 06620% | 16 | 01126 | 15 | o04219% | 16 | 00626
17 | -02675 | 18 | -03573 04895* | 18 | 06697+ | 17 | 04310* | 18 | 04743*
19 03330 | 20 | o08262* | 19
21 21
23 23
25 25
27 27
29

-00918 20 01888 02252 20 05969*

00406 22 02675 04333* | 22 02901 02224 22 02116

Lag
1
3
5
7
9
11
13
15
17
19
21

-00572 | 24 | 03759 | 23 | 05085* | 24 | 00611 02818 | 24 | 00489

-04042* | 26 | -04106* | 25 | 05720* | 26 | 03534 03425 | 26 | 03507

-00896 | 28 | 02345 ] 27 | 03324 | 28 | 03867 | 2 01845 | 28 | 03589

29 | 03130 | 30 | 01721 § 29 | 02045 | 30 | o1108

31 03768 | 32 | -00387 | 31 | 03844 | 32 | -00291

33 | -01795 | 34 | oo112 | 33 02021 | 34 | o047

35 01829 | 36 | 02018 | 35 | -00004 | 36 | 02829

37 | 04137 | 38 | 02961 | 37 | 01089 | 38 { -00595

39 01341 | 40 | 02634 | 39 | 01045 | 40 | o01788

a1 02957 | 42 | 01714 | 41 | 01409 | 42 | 00792

43 00670 | 44 | 01599 | 43 | 00730 | 44 | 00203

45 03699 | 46 | 01226 | 45 | 01393 | 46 | -00411

47 | 02863 | 48 | -00984 | 47 | o02116 | 48 | 02313

49 05899* S0 03975 49 04050 SO 0273%s

01598 30 - 03230
31 -00714 | 32 -01041
33 -01010 34 00045
35 01495 36 00512
37 00547 38 01691
39 00723 40 00585
41 02057 42 - 00424
43 03367 44 02086
45 -01874 | 46 -01436
47 -02403 48 01076
49 01411 50 02219

* significantly different from zero at the criucal level of 5%
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Table 6.26 YEN Autocorrelations

YN TOG ABSOYVEN T OG) SQU ARL(Y FN LX)

lag | Fsumue | lag | Fstmate § Lag | Estumate | Lag | Estmate | Lag | Lsumate Lag | Estumate
1 00646 2 00355 1 13227* 2 14400% 1 07661* 2 18640*
3 01272 4 01158 3 12947* 4 07399+ 3 06413* 4 03417
5 02706 6 00714 5 10879* 6 09235* 5 04897* 6 03581
7 00416 8 02236 7 06561* 8 07774 7 02964 8 05230*
9 02763 10 04337+ 9 07689* 10 07937* 9 01652 10 04335*
11 -00327 12 01844 11 03641 12 05367* | 11 01307 12 00945

13 01556 14 00980 13 05220% 14 07792+ 13 01038 14 02774

15 03453 16 - 00945 15 05729+ 16 05971 { 15 01796 16 02058

17 - 01279 18 00557 17 05937* 18 06499* § 17 02954 I8 02290

19 - 00059 20 00151 19 06574* 20 05876* 19 02114 20 01882

21 00042 22 01056 21 04581* 22 04123 21 01879 22 00231

23 -01405 24 03328 23 04530* 24 05863* | 23 00725 24 02579

25 01574 26 01282 25 05742* | 26 05702* § 25 02640 26 07018*

27 02186 28 01636 27 06776* | 28 06673* |} 27 03954 28 02503

29 00095 | 30 | -01610 f 29 05984* | 30 04925* | 29 03541 | 30 01611

31 02631 32 - 00043 31 06503* | 32 05963* | 31 04922* | 32 02178

33 -01111 34 02452 33 04046 34 05542* | 33 01624 34 03692

35 - 02278 36 -()5833* ] 35 01302 36 04133 35 00047 36 02334

37 02000 38 01474 37 03311 38 01781 37 00059 38 - 00007

39 -01722 40 00762 39 02968 40 03555 39 40403 40 00966

41 - 00784 42 01521 41 02834 42 05411 § 41 00130 42 01362

43 02281 44 - 01240 43 02851 44 04649* | 43 00009 + 02506

45 - 00768 46 | -04682* § 45 09776* | 16 06860* | 45 15038* | 46 05564*

47 - 00485 48 02254 47 07469* 48 00736 47 15257 | 48 -00658

49 01077 50 01160 49 06060* 50 03912 49 01974 50 01091

* significantly different from zero at the critical level of 5%

Table 6.27 GBP Autocorrelations

GBP LOG ABS(GBP LOG) SQUARE(GBP LOG)

Lag | Estunate | Lag | Esumate { Lag | Esumate | Lag | Esumate | Lag | Esumate Lag | Fstimate
1 05312* 2 - 00061 1 09633* 2 06513* 1 07721* 2 06376*
3 -01828 4 -01534 3 08619* 4 10859* 3 06902* 4 14574*
5 02804 6 00639 5 11983* 6 10179* 5 08614* 6 11854*
7 00534 8 00845 7 05923* 8 10049* 7 04677* 8 08825*
9 01461 10 -03637 9 08747* 10 13327* 9 04425* 10 10975*
11 | -01242 | 12 | -01922 | 11 08067* | 12 06410* | 11 11263* | 12 05707*
13 01567 14 01129 13 07983* 14 07682* 13 05337* | 14 06158*
15 06393* 16 00238 15 09705* 16 06548* 1 15 09276* | 16 06373*
17 -01593 18 -01385 17 06546* 18 09515* 17 04204 18 08286*
19 00215 20 03121 19 04952* 20 08659* 19 04078 20 11332*

21 00274 22 02537 21 05018* 22 0o061* { 21 03512 22 07551*%

23 -01929 24 03947 23 07418* | 24 02536 23 06820* | 24 01270

25 -03768 26 - 03262 25 08280* | 26 06661* | 25 06394* | 26 05325+

27 01620 28 03683 27 04739* | 28 07302* { 27 02763 28 04838*

29 -01025 30 -01030 29 05373* | 30 02705 29 07901* | 30 00078

31 -01085 32 00252 31 06724* | 32 03196 31 08787* | 32 02702

33 -01647 34 01224 33 03915 34 03410 33 05838+ 34 02071

35 - 0008Ss 36 - 01282 35 06292* 36 05753* | 35 04531* 36 08006*

37 03467 38 03852 37 05857* | 38 04984* | 37 03080 38 02879

39 00064 40 01979 39 02180 40 01862 39 02354 40 01667

41 - 00513 42 - 01266 41 04313 42 00431 41 03337 42 00452

43 00958 44 - 00302 43 03910 44 06440* 1 43 02948 44 03671

45 - 02367 46 00082 45 05434* | 46 00249 45 03155 46 -00137

47 -01082 48 01497 47 03233 48 01360 47 02036 48 02346

49 01499 50 02449 49 08727* 50 04160 49 08177* 50 04442

* significantly different from zero at the critical level of 5%
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Table 6 28 FRF Autocorrelations

IRITOG \BS(FRI LOG) SQUARE(FRF LO()
Lag | Fstimate | Lag | Fstunate | Lag | Fstmate | Lag { bstumate [ Lag [ Fsumate | Lag | Estimate
1 04029* 2 00003 1 04391* 2 08127¢ 1 02361 2 04751*
3 01992 4 01196 3 11117* 4 0R360* 3 05916* 4 04420+
5 02016 6 00618 5 09163* 6 06849* 5 05759* 6 04858+
7 02196 g 03444 7 03885* 3 09277+ 7 01927 38 06326*
9 02887 10 00602 9 0-783* | 10 07700* 9 01935 10 03376
i1 | -01801 12 00074 11 07589* | 12 03395 11 05696* | 12 00303
13 01536 14 00359 13 06375% | 14 06034* | 13 03458 14 03024
15 04000*% | 16 | -00682 | 15 03981* | 16 01205 Is 01948 16 00508
17 | -01458 18 | -03730 17 03751 18 05906* § 17 01725 18 02382
19 -00512 20 02339 19 04975* 20 07508* 19 01323 20 03158
21 01509 22 02063 21 03213 22 04156 21 00591 22 01744
23 -00710 24 02272 23 03996 24 01166 23 00997 24 - 00086
25 | -04017* | 26 | -05014* | 25 05138* | 26 02944 | 25 01270 | 26 01239
27 | -00543 | 28 01642 27 02636 28 04342* | 27 00177 | 28 01696
29 00062 30 01454 ¥ 29 02410 30 00279 § 29 00622 } 30 { -00770
31 | -00948 | 32 | -00946 | 31 04662* | 32 01075 | 31 02746 | 32 00383
33 -01199 34 00353 33 - 00889 34 03159 33 -01250 34 02049
35 01041 36 00029 35 01233 36 03469 35 00939 36 02857
37 01302 38 00928 37 01397 38 04158 37 01190 38 00485
39 01316 40 01305 39 02866 | 4@ 00887 { 39 00801 40 00663
+ 02918 42 | -00406 | 41 01772 | 2 01959 | 41 | -00636 | 42 00720
43 03238 44 02138 43 | -00210 | 44 00444 | 43 00058 | 44 | -01035
45 | -02552 | 46 01238 | 45 02624 | 46 | -00591 ] 45 | -00301 | 46 | -01479
47 -01118 48 01613 47 02046 48 -00216 47 00211 438 00535
49 00763 50 01818 49 04634* 50 02798 49 01574 50 02429
* significantly different from zero at the cnitical level of 5%
Table 6.29 CHF Autocorrelations
CHF LOG ABS(CHF LOG) SQUARE(CHF LOG)

Lag | Esimdate { Lag | Esumate | Lag | Estmate | Lag | Esimate | Lag | Estimate Lag |} Estimate
1 03428 2 -01101 1 02471 2 05320~ 1 03059 2 06183*
3 01849 4 - 01577 3 08604* 4 04955* 3 07611* 4 05800*
5 02332 6 00672 5 05756* 6 06708* 5 03788 6 09572*
7 -00975 8 00710 7 07179* | 8 09424* | 7 03767 8 10332*
9 01688 10 00180 9 03566 10 08650* | 9 01706 10 06453
11 | -00825 12 | -00903 11 05330* |12 03775 11 07272* | 12 01495
13 03049 14 01724 13 08244* 14 07456* 13 05873* 14 06706*
15 05747* | 16 | -00256 15 04846* | 16 01114 15 03784 16 00647
17 | -02693 18 01695 17 04543* |18 07222 §17 04560* | 18 05190*
19 }-02089 |20 00048 19 01558 20 07059* |19 00925 20 04779*

21 01658 22 03696 21 04038* | 22 03644 21 00855 22 03063

23 [ -00860 |24 03931* {23 04734* (24 01550 23 02391 24 o077

25 | -03850 |26 |-02018 J25 07072* | 26 00795 25 04439* |26 |-00740
27 [-00537 |28 03039 27 01613 28 05463* |27 00231 28 04674*

29 02092 30 [-02718 129 02930 30 02234 29 02421 30 00421

31 | -01351 32 01563 | 31 04672 32 00405 31 04108 32 101011

33 -01371 34 - 00987 33 00692 34 00452 33 01756 34 -00163

35 01185 36 - 02999 35 02009 36 00066 35 00262 36 01265

37 02524 38 03218 37 02347 38 02554 37 { 00724 38 |-00123

39 01761 40 00147 39 02609 40 00737 39 02117 40 00273

41 00538 42 | -00210 {41 01546 42 00533 41 01439 42 | -00604

43 03508 44 00897 43 {-01116 |44 01288 43 | -00827 |44 00359

45 [-02989 |46 |-01260 ] 45 04262* | 46 01177 45 01898 46 | -00367

47 -00037 48 - 00635 47 02531 48 01493 47 03945 48 - 00355

49 - 00013 50 - 00839 49 06213* 50 01061 49 04334* | 50 02069

* signmificantly different from zero at the critical level of 5%
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Chapter 7

ABILITY OF EXCHANGE RATES MODELS
TO REPLICATE RULE RETURNS

Chapter 6 has shown that the random walk hypothesis 1s clearly inadequate to model
exchange rates So alternative models have to be found The main concern of this chapter
1s to find models compatible with the observed trading rule returns, and relate trading rule
returns with the statistical properties of the underlying series Our goal is to show that
using stochastic modelling, 1t 1s possible to establish what are the parameters of the
underlying process which generate 1f any non zero return from technical analysis

Section 7 1 proposes models of exchange rates widely used in Finance and supported by
the evidence of Chapter 6 It has been shown that the assumption of normal distribution
of underlying returns was weak when the assumption of independence was strong when
attempting to explain observed rule returns Subsequently in what follows, the
assumption of normality will be maintained but 1n any case the assumption of independent
underlying returns removed More specifically, we will study the Box-Jenkins, price-trend
models and fractional Gaussian process The ongmality of this chapter is to consider as
well technical models Section 7 2 assesses and compares the m-sample ability of some
linear autocorrelated alternatives to replicate observed trading rule returns This 1s a
cructal pomt because the mamn objective of a financial model 1s trading Then the
performances of the fractional Gaussian process are compared with those of linear
models Thereafter, the relationships between volatility, magnitude of senal correlation
coefficients and profits of technical trading rules are exhibited Section 7 3 establishes the
performances of some strategies used to enhance returns from techmical models Section
74 discusses the efficient market hypothesis Fmnally, Section 75 summanses and
concludes our results
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71 MODELS OF THE UNDERLYING PROCESS

Chapter 6 has proved that the random walk assumption is clearly inadequate to explain
trading rule returns which are significantly positive It results that plausible alternatives of
exchange rates models must include low positive dependencies The models presented in
this section meet all this requirement

711 Boxand Jenkins
Building empirical linear models 1s feasible through an iterative stages procedure for the

model selection This procedure was proposed by Box and Jenkins(1976) Firstly, 1t 1s
necessary to determine the degree of differencing (d) necessary to achieve stationarity
Osborne(1959) shows that the first difference of the loganthmic price 1s an appropriate
choice Then the vanable under study is the loganthmic return X, =Ln(P,/P_,)
Thereafter 1t 1s necessary to determine the order of the autoregressive process (p), and
the order of the mowving average process (q) Most models fitted to the data senes of
loganthmic returns have p+q < 2 (Taylor, 1986 23), that s the convention which has
been adopted here In addition, exchange rates models will be assumed to have no dnft,
an assumption supported by the results of Table 6 2 Secondly, the estimation of the
parameters of the model 1s performed by solving the Yule-Walker equations Models
results can be found in Appendix 7 1

712 Price-Trend

The price-trend process is another plausible alternative to model loganthmic returns,
X,=Ln(P,/P_;) That can be seen from the large values of the Taylor statistics
reported 1n Table 6 7 Estimates of the two trend parameters, A and p have been obtained
using Taylor(1986, Section 7 3) estimates More precisely, estimates have been obtained
by matching theoretical and observed autocorrelations of the underlying time senies The
following function defined for K autocorrelations has been considered

K
F(A.p)=n) (p, - Ap')’

1=1

with p, the autocorrelations defined by equation [6 4] and n the number of returns used
to calculate the p, Simularly to Taylor(1986), we have used K=50 for spot sertes
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To mimmuse F, mean trend durations my =1,(1-p)=2,3,4, 40 are considered and for
given my the best unconstrained A can be obtamed using calculus For a fixed m, and

hence p, the function F 1s mimmised by

* S 1 /K 21
AL=>Dp P >p
1=1 1=1

*
Sometimes A 1s negative, so it 1s necessary to consider

A

~ (AL f AL>0
" 0 otherwise

Let S, = F(Am,l—l/md) for my =2, ,40 Mimmusing S, over my gives the estimates

~

A, p mmnmusing F, and hence my =1/(1-p)

As can be seen from Table 7 1, vanance reduction 1s usually quite low (<0 026) except
for the GBP Mean duration of trend vanes between 2 days and 15 days More
meaningful 1s the total sum of autocorrelations, Ap/(1-p) From biggest to lowest, the
ranking 1s for the full sample FRF, YEN, CHF, DEM, GBP

Mean duration and vanance reduction vary considerably from one period to the other and
from one currency to the other There are two possible explanations for this fact Firstly,
exchange rates might be non-stationary Secondly, the standard dewiation of the
parameter estimates 1s huge (Taylor, 1986)
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Table 7 1 Price-trend models

DEM
Paramctcrs\Peniod | 01/82-02/84 | 02/84-012/86 | 02/86-03/88 | 03/88-03/90 | 03/90-03/92 | 01/82-03/92
Dnift U 0 00044 -0 00045 <) 00053 0 00003 -0 00007 -0 00012
Volauhty S 0 0056 00079 00074 00067 0 0077 000712
Var-reduction A 00572 0 0882 0 00000 00117 00574 0 02067
Duration  my 3 4 2 25 2 7
Trend AR(1) p 0667 075 030 0960 050 0 857
Ap/(1-p) 011 026 0 028 006 013
YEN
Parameters\Period | 01/82-02/84{02/84-02/86 | 02/86-03/88 | 03/88-03/90 | 03/90-03/92 | 01/82-03/92
Dnft U 000013 -0 00050 -0 00064 0 00029 -0 00026 -0 00019
Volatitity S 0 0064 0 00557 0 0083 0 0068 00071 0 00687
Var-reduction A 00599 0 15150 0 00000 0 00000 0 00000 001759
Duration  my 8 5 2 2 2 15
Trend AR(1) p 0875 080 050 050 050 0933
Ap/(1-p) 042 06l 0 0 0 024
GBP
Parameters\Period | 01/82-02/84 | 02/34-02/86 } 02/86-03/88 | 03/88-03/90 | 03/90-03/92 } 01/82-03/92
Druft U -0 00061 0 00007 0 00038 -0 00013 000010 -0 00004
Volaulity S 0 0056 0 0090 0 00651 00071 ¢ 0073 000719
Var-reduction A 0 0350 0 1499 0 0023 0 0054 01137 007237
Duration  my 2 2 10 14 2 2
Trend AR(1) p 050 050 0975 0929 030 030
Ap/(1-p) 0036 015 009 0607 011 0072
FRF
Parameters\Period | 01/82-02/84 | 02/84-02/86 | 02/86-03/88 | 03/88-03/90 | 03/90-03/92 | 01/82-03/92
Dnft 8] 0 00080 -0 00045 -0 00033 0 00002 -0 00006 -0 00001
Volatulity S 0 0065 000768 00072 0 0065 00074 0 00705
Var-reduction A 00621 0 0964 0 00000 00104 00717 002567
Duration  my 4 4 2 25 2 7
Trend AR(1) p 075 075 0350 0 960 050 03837
Ap/(1-p) 019 029 0 025 007 043
CHF
Parameters\Period { 01/82-02/84 | 02/84-02/86 | 02/86-03/88 | 03/88-03/90 | 03/90-03/92 1 01/82-03/92
Dnft U 0 00044 -0 00034 -0 00057 000014 0 00000 - 00007
Volatithity S 0 0068 0 0080 0 0083 0 0074 0 0080 000768
Var-reduction A 00186 01173 0 0026 0 0051 0 0080 001281
Duration my 2 4 2 38 40 12
Trend AR(1) p 050 075 050 0974 0975 0917
Ap/(1-p) 002 035 003 019 031 014

713  Fractional Gaussian Process

As outlined n Section 2 4 2, the fractional Gaussian process is another popular model of
loganthmic returns This 1s supported by the data if the estimates of the parameter d 1s
different from zero Many procedures have been proposed in the literature to estimate the
parameter d (Geweke and Potter-Hudak, 1983, Kashyap and Eom, 1988) or H=d +05,
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the most well known bemg the range scale estimate provided by Mandelbrot and
Walhis(1969)

Geweke and Potter-Hudak(1983)! considers the problem of estimating the parameter d in
the general integrated time series model Results are collected m their theorem 2 which

suppose that {X, } 1s a general integrated linear process, with d<0 Let I(A ,1) denote the
pertodogram of {X,} at the harmonic frequencies A ,7="7J/ T nasample of size T Let

b, denote the ordinary least square estimate of [, m the regression
Lo{I(A 1)} =B, +B, Ln{4sm2(7»ﬂ/2)}+eﬂ , 71, ,n Then there exists a function
g(T) such that if n=g(T) then plmb,=-d If Im . (Ln(T))z/ g(T)=0, then

(b, +d)/ {var(b,)}"? —2—5 N(0,1), where var(b, ) 1s the usual least squares estimate of
var(b;) We have estimated the parameter d i what follows using the function

g(M=T*, witha=06

Kashyap and Eom(1988)? considers the long memory time series model {X, } defined by
X, =(1- B) o W,, where {W, } 1s a white Gaussian noise sequence with zero mean and

unit variance, G a positive constant and B 1s a umt delay operator Then the estimates
proposed 1n the paper are based on the following vanables

f (k / N) pertodograms of sequence of {X,} mn a sample of size N
oa=y- Ln(c?), where v 1s the Euler constant y =0 5772157

0=[d,a]", and Z(k)= [-2 Ln[2s n(nk/N)[]

-1

The linear least-squares estimate 6 of parameter O 15 obtained by the following formula

a

N T M2 T “Ir\e
6=[d.é] =L§Z(k)z (k)} [ZZ(k)Ln(f‘(k/N))]

k=1

Mandelbrot and Wallis(1969) have suggested to detect long-range or "strong"
dependence, the range over standard deviation or R/S statistic, also called the range scale,
which was first developed by Hurst(1951) in hus studies of river discharges The R/S
statistic 1s the range of partial sums of deviations of a time series from 1ts mean, rescaled
by 1its standard deviation Specifically, consider a sample of returns X;, X,, , X and let

1 thercafter noted GPH
2 thereafier noted KE
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n
X, denote the sample mean (1 n)> X, Then the classical rescaled range statistic,
=1

denoted by Q,,, 1s defined as

k k
= [ Max 2(X, - %)~ Min (X, - X, [71]

n
Sy igksn g1 1sk<n j=l

where S 1s the usual (maximum likelihood) standard deviation estimate

1 n .
S, = \/_Z(x, -X,)
n J':l
The first term 1n brackets in equation [7 1] 1s the maximum (over k) of the partial sums of

the first k deviations of X, from the sample mean The second term m [7 1] 1s the

minimum (over k) of this same sequence of partial sums The difference of the two
quantities 1s called the range for obvious reasons and s therefore always non negative In
order to compare different types of time series, this range 1s divided by the standard
deviation of the origmnal observations Then Hurst(1951) formulated the following
relationship Q, =(a* n)™ where a 1s a constant and H the Hurst exponent

By taking the log of the range scale, we obtain

Ln(Q,)=HLn(n)+ Ln(a) [72]
Finding the slope of the log/log graph of Q, versus n will therefore give us an estimate of
H This estimate of H makes no assumptions about the shape of the underlying
distribution

In sum, the first step has been in the thesis to convert the prices seres into
logarithmic returns Our time senes covers about 10 years of data which are converted
into N = 2620 loganthmic returns Then we divide the series into N/n independent n-day
increments Because these are non-overlapping n-days periods, they should be
independent observations We can now calculate the rescaled range Q, of each n-days
Subsequently we obtain N/n separate Q, observations By averaging the N/n
observations, we obtain the Q, estimate for the series with n days
We repeat this process for n=6,7, ,N/2 The stability of the esumate can be
expected to decrease as N increases, because we have fewer observations to average At
this point we run a regression of Ln(Q,,) versus Ln(n) for the full range of n, taking the

slope as the estimate of H, according to equation [7 2]

Estimation results from the three previous statistics are provided in Table 72 It must be
remarked that the GPH estimate 1s rather inconsistent for small samples and consequently
there are subperiods for which 1t exhibits strong departures with the other estimates KE
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and range scale For the full sample, all three procedures give an estimation of d shightly
above 0 5 That would argue 1 favour of long term trends and positive autocorrelations
The range scale estimate n particular clearly refutes the random walk hypothesis (H=0 5)

for each one of the currencies (H>0 59)

Table 7.2 Fractional Gausstan processes

DEM
Parameters\Period 01/82-02/84{02/84-02/86|02/86-03/8803/88-03/90/03/90-03/92|01/82-03/92
D Fractional Exponent KE| 0038 0098 0029 0048 0018 0028
GPH 0185 0136 0013 0075 0185 0088
H Hurst Exponent KE 0538 03598 0529 0548 0518 0528
GPH 0 685 0636 0515 0575 0685 0 588
Range Scale 0595 0609 0567 0636 03561 0603
Vanance KE 2962E-5 | 6 427E-5 | 5691E-5 | 4515E-5 | 6 013E-5 | 4 863E-5
YEN
Parameters\Period 01/82-02/84]02/84-02/86(02/86-03/88103/88-03/90{03/90-03/92|01/82-03/92
D Fractional Exponent KE| 0051 0159 -0 002 0002 -0 037 0029
GPH 0391 0212 01 0019 0045 0083
H Hurst Exponent KE 0551 0659 0498 0502 0 463 0529
GPH 0891 0712 04 0519 0545 0383
Range Scale 0630 0645 0579 0616 0605 0618
Variance KE 3 884E-5 | 2990E-5 | 6 983E-5 | 4572E-5 | 4895E-3 | 4 782E-5
GBP
Parameters\Period 01/82-02/84{02/84-02/86|02/86-03/88]03/88-03/90|03/90-03/92|01/82-03/92
D Fractional Exponent KE| -0 001 0 138 0005 0029 0074 0037
GPH -0 005 0073 0019 0043 0168 0053
H Hurst Exponent  KE 0499 0638 0 506 0529 0574 0537
GPH 0495 0573 0519 0543 0668 0553
Range Scale 0558 0593 0 606 0641 0616 0595
Vanance KE 3165E-5 | 7744E-5 | 4363E-5 | 4466E-5 | 5329E-5 | 5097E-5
FRF
Parameters\Penod 01/82-02/84102/84-02/86|02/86-03/88|03/88-03/90(03/90-03/92|01/82-03/92
D Fractional Exponent KE 0076 0123 -0 001 0 046 0022 0034
GPH 0073 0132 -0 004 0085 - 089 0072
H Hurst Exponent  KE 0576 0623 0499 0 546 0522 0534
GPH 0573 0632 0 496 0585 0411 0572
Range Scale 0619 0613 0595 0647 03574 0607
Vanance KE 3 948E-5 | 5768E-5 | 5470E-5 | 4028E-5 | 5 525E-5 | 4938E-5
CHF
Parameters\Perniod 01/82-02/84{02/84-02/86]02/86-03/88)03/88-03/90{03/90-03/92{01/82-03/92
D Fractional Exponent KE| 0026 0122 0027 0026 0041 0037
GPH 0023 0058 -0 052 0017 017 0026
H Hurst Exponent  KE 0526 0622 0527 0526 0541 0537
GPH 0523 0558 0448 0517 067 0526
Range Scale 0 561 0608 0561 0678 0585 0 589
Vanance KE 4 580E-5 | 6 207E-5 | 6 617E-5 | S5019E-5 | 6 311E-5 | 5 82SE-5
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714 [echmcal models
The ongmality of this chapter 1s to consider technical models as possible alternatives to
the random walk hypothesis That 1s we assume here that the true model 1s without dnft

and such that the forecaster F, which maximuses profits 1s a linear techmcal rule as defined
in Section 3 4 2

m-2

F,=8+ Z{:)d ,X,., whered, mand d, are given constants
=

We restrict in what follows our study to techmcal rules based on an umque parameter m
We constder more specifically the simple moving average, weighted moving average and
momentum rules For all these rules,  1s equal to zero and the coefficients d, only depend
on the parameter m as indicated 1n Table 3 3

Following the results of Section 4 1, the true model 1s defined by

m—2
X, =AF_ +g, =02 d,X, ) +g,

=0

where A 15 a positive constant and €, white noise

Therefore the underlying model s a special case of AR(m-1) model If we assume that the
order m-1 of the autoregressive model 1s given simularly to Box-Jenkins(1976) models,
the autoregressive parameters, d, , are known and linked one to each other The
rmportant feature of technical models 1s that for given m, the coefficients d, need not to
be estimated In sum, hnear technical models are long range autoregressive models with
imposed autoregressive parameters The only parameter to be estimated s the
proportionality coefficient A It can be estimated using simple regression

where p(X;,F,_;) 1s the common estimate of the correlation coefficient between the one-
step ahead return and the predictor
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It must be remarked that 1f the rule is the simple moving average of order 2, the model 1s
nothing else than an AR(1) model and therefore estimates will be those given mn Appendix
71 Table 7 3 provides estimates of the proportionality coefficient A for a few techmical
models of exchange rates relatively to the full sample It must be emphasised that all the
coefficients A are positive which would argue in favour of low positive autocorrelations
1n exchange rates

Table 7.3 Technical models

Techmical models with u=0 o3
Estimates p(X,,F,_;)
Rule DEM YEN GBP FRF CHF
S(2) or AR(1) 0041 0007 0053 0040 0034
S(5) 0 026 0013 0028 0034 0022
S(10) 0029 0028 0024 0037 0022
S(20) 0032 0 040 0018 0039 0027
S(40) 0022 0039 0019 0027 0024
W) 0030 0011 0037 0037 0026
W10y 0028 0022 0027 0035 0023
WQ20) 0033 0035 0021 0040 0026
W(40) 0028 0 040 0020 0034 0027
M) 0016 0017 0009 0023 0012
M(10) 0037 0039 0022 0046 0022
M(20) 0017 0037 0014 0024 0 020
M(40) 0014 0027 0021 0016 0021
10E5* )
Rule DEM YEN GBP FRF CHF
S(2) or AR(1) 4094 27 698 41 5314 36 4029 23 3434 15
S(5) 466 87 243 48 518 12 61808 404 08
S(10) 173 98 164 33 144 10 22025 130 14
S(20) 64 59 79 77 3719 7749 54 48
S(40) 15 55 2709 13 27 18 56 1707
W(5) 24579 92 79 307 82 30500 21111
W(10) 39 66 3128 3911 50 46 3276
W(20) 827 8 88 523 997 644
W(40) 124 177 089 150 120
M(5) 775 16 848 72 46573 1174 19 621 00
M(10) 1244 69 1291 11 747 41 1528 34 727 38
M(20) 400 17 842 01 327 84 55543 449 78
M(40) 230 36 427 85 339 19 25170 330 86

3 The standard deviations of underlying returns have been constrained to be equal to those given in

Table 6 2
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72  ABILITY OF LINEAR MIODELS TO REPLICATE RULE RETURNS

721 Linear models

The in-sample ability of the linear models just described in Section 71 to rephcate
observed rule returns 1s first assessed More precisely, the parametric Chi-square and T-
Student tests developed 1in Chapter 5 are used to assess the ability of the

(a) Box-Jenkins  (b) price-trend  (c) techmcal

models to replicate the rule returns dertved from an equally weighted portfolio of

(1) simple moving averages of order 5, 10, 20 and 40 S(5,10,20,40)

(2) weighted moving averages of order 5, 10, 20 and 40 W(5,10,20,40)

(3) momentums of order 5, 10, 20 and 40 M(5,10,20,40)

(4) all twelve rules just mentioned SWM(5,10,20,40)

The tests applied here have been described 1n full details in Chapter 5 They proceed n
four steps

-) measuring the average observed returns R following a portfolio of trading rules (1),
2), (3) or (4)

-) estimating the linear process (), (b) or (c) of the underlying loganthmic returns

-) establishing the expected return E(R) and variance Var(R) of the portfolio of trading
rules under the assumption of the hinear process

-) companing observed and expected rule returns, and concluding on the ability of the
linear process to replicate observed rule returns

The parametric Chi-square and T-Student tests are based on the one-penod rule
correlations instead of the multi-period rule correlations Therefore they are exact only
for the random walk hypothesis and must be considered otherwise as approximations To
measure the accuracy of these approximations, we have performed for the simple moving
average rules and autocorrelated alternatives some Monte-Carlo simulations Samples of
more than 2,525 rates corresponding to the number of observations of currencies rates
were replicated 100 times

The ability of the Box and Jenkins and prnice-trend models to replicate rule returns s
investigated in Tables 74 and 75 The case of technical models 1s then considered in
Table 76 and 77 All linear models are finally compared in Table 78 In following
discussions, when not explicit rejection or acceptance of a model occurs at the critical
level of 5%

Fnally, 1t must be said that another techmque has been used in the literature to measure
the ability of statistical models to replicate rule returns, the bootstrap methodology
Examples of which are the autoregressive processes AR(1) (Brock, Lakonishok and
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LeBaron, 1992, LeBaron, 1992b), AR(2) (LeBaron, 1991, 1992b) and autoregressive
moving-average process ARMA(1,1) (LeBaron, 1992b) Having exhibited in Chapter 6
the similanties between the bootstrap and T-Student tests under the random walk
assumption, 1t 1s not believed that the presence of low autocorrelations 1n exchange rates
will cause now significant departures between the two tests Parametrnc tests being a lot
more simpler to apply than the bootstrap methodology, they have been preferred in what
follows*

Box and Jenkins and Price trend models

A first remark 1s that the use of the exact one-period rule correlations mnstead of the
multi-period rule correlations affects very httle the critical thresholds of the Chi-square
test (Table 7 4) Cntical thresholds from Monte-Carlo simulations are given in bracket for
the simple moving average rules For instance, the adequacy of the AR(1) model for FRF
imphes cntical thresholds equal to 6 6% for the parametric test and 6 0% for Monte-
Carlo simulations Overall the two tests bring the same conclusions about the rejection or
acceptance of the model on 18 cases of 20 at the cntical level of 5%, and 1n all cases at
the cnitical level of 10%

Table 7 4 clearly shows that the adequacy of a model can be rule-dependent using
the Chi-square test For instance, the use of weighted or simple moving averages to check
the adequacy of the RW for the GBP model brings opposite conclusions, namely rejection
and acceptance of the RW So no clear conclusion can be deduced from such results It
mught be that bigger portfolios of rules should be used For the biggest portfolios of 12
rules, the random walk assumption 1s rejected only for the GBP It can be seen from the
cntical thresholds, that Box-Jenkins modelling of AR(1), AR(2), MA(1), MA(2),
ARMA(1,1) are almost equivalent models, n any case better than the RW but worse than
the price-trend model The problem with the Chi-square test 1s that it 1s a two-tail test
which 1s unfortunately not powerful enough to detect the low positive autocorrelations
we observed in Chapter 6 So one has to turn to the T-Student test

As for the Chi-square test, the use of the exact one-period rule correlations instead of the
multi-period rule correlations affects very few the cntical thresholds of the T-Student test
(Table 7 5) For instance, the adequacy of the AR(1) model for FRF implies critical
thresholds equal to 0 6% for the parametric test and 0 8% for Monte-Carlo simulations
Overall the two tests bring the same conclusions about the rejection or acceptance of the

4 It must be underiined that tesung the adequacy of four rule returns for seven models and five
currencies 1s an extremely demanding task using the bootstrap methodlogy, but strarghtforward using
parametric tests (Section 5 2 3)
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model on 18 cases of 20 at the critical level of 3%, and in all cases at the cnitical level of
10% Table 7 5 strongly rejects the random walk assumption for all currencies as Table
617 did for even bigger portfolio of systems Table 75 extbits that Box-Jenkins
modehizations of AR(1), AR(2), MA(1), MA(2) and ARMA(1,1) are shghtly better than
the random walk model but still not very satisfactory representations of exchange rates
Only the price-trend model (Table 7 5) 1s not rejected trrespective of the rule or currency
at the critical level of 5% (except when simple moving averages are applied to the FRF )
It must be kept in mind that the vanance used m the T-Student 1s slightly underestimated
under low positive autocorrelations alternatives It 1s why exact cntical thresholds should
be shightly ligher and so acceptances of the null hypothesis still more frequent

It can be concluded that autocorrelated alternatives explain better trading rule returns
than the random walk Taylor and Tari(1989), Taylor(1986, 1990a, 1990b, 1992a)
similarly demonstrate for exchange rates the superionty of the price-trend model beyond
the random walk They exhibit in particular signuficant profits from statistical and
technical forecasters Lai and Pauly(1992) find as well that bandwagon forecasting
scheme can improve the forecasting accuracy in terms of both mean squared errors and
market timing upon the random walk The bandwagon expectations hypothesis involve
significant positive correlations between successive exchange rate changes Lai and
Pauly(1992) illustrate that bandwagon expectations can be rational and more precisely
that the AR(1) model describes the exchange rate dynamucs better than a random walk
Aczel and Josephy(1992) present a new method of identifying ARIMA time-senes
models They use the bootstrap techmque in estimating the distnbution of sample
autocorrelations They find that the AR(1) model outperfomed the random walk model in
the production of the one-step ahead forecasts for the Singapore dollar exchange rate
LeBaron(1992d) does question the result that there 1s no nonlinear mean predictability
He then proposes as a possible explanation consistent with his results that the exchange
rate 1s following a slow moving average trend process

Among autocorrelated alternatives, the price trend-model appears to be the best
both across currencies and trading rules LeBaron(1992b) equally finds that the price-
trend model explains better moving average rule returns than AR(1) and AR(2) models
Once again, our result emphasises the specificity of the profit cniternia since the rejection
of the random walk hypothesis was not strong using standard statistical tests (Section
6 1 4) Even if rule returns cannot provide tightest estimates of parameters, they certainly
are useful to check the adequacy of a model because they are unrelated to most of the
existing tests and specially the ones based on error measures
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Table 7 4 Chi-square test of adequacy of statistical models

Chi-square test of adequacy of linear model p=0 o Cntical Threshold %

(Critical Threshold % from Monte-Carlo simulations 100 replica)

Random Walk

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 05 436 113 08 120
W(5,10,20 40) 67 276 04 22 172
M(5,10,20 40) 129 417 82 48 115

SWM(5 10 20 40) 97 726 24 223 127
AR(1)

Rule DEM YEN GBP FRF CHF
S(5,10,20 40) 32(18) [325(524) | 548(544)| 66(60) |[243(265)
W(5 10,20,40) 301 331 51 176 475
M(5,10,20,40) 347 47 1 23 4 199 491

SMW(5 10 20 40) 304 769 131 597 393
AR(2)

Rule DEM YEN GBP FRF CHF
S(5 10,20,40) 2009 |578(390) | 524314 | 63(57 2000211
W(5,10 20 40) 220 370 47 167 389
M(5,10 20 40) 26 4 508 224 190 389

SMW(5 10 20 40) 203 793 125 585 350
MA(1)

Rule DEM YEN GBP FRF CHF
S(5 10 20,40) 3I1(L5) {524(521)|528(336)| 63(54) |240Q21)
W(5,10,20,40) 295 330 48 16 8 470
M(5,10,20,40) 341 471 226 191 485

SWM(5 10 20 40) 249 76 9 127 58 6 39}
MA(2)

Rule DEM YEN GBP FRF CHF
S(5 10,20 40) 2011 (5750564 1531(529)| 60(42) | 198Q12)
W(5 10 20 40) 220 368 18 16 1 385
M(5 10,20 40) 264 506 227 134 386

SMW(5 10 20 40) 203 7912 126 577 348
ARMA(1 1) Model p=0, Box and Jenkins Estimates

Rule DEM YEN GBP FRF CHF
S(5,10 20,40) 3227 | 3420357 | 547(535)) 6769 |243(192)
W(5 10 20,40) 304 341 51 176 479
M(5,10,20 40) 350 48 1 23 4 199 495

SWM(5 10 20 40) 254 776 131 598 395
Price-trend Model p=0, Taylor Esumates

Rule DEM YEN GBP FRF CHF
S(§,10,20,40) 77(33) | 80@884)[ 711(641)|300(293)[479(H94)
W(5,10,20,40) 608 834 142 605 696
M(5 10,20,40) 718 94 7 196 66 1 819

SMW(5 10 20 40) 394 93 8 127 873 509
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Table 7 5§ T-Student test of adequacy of statistical models

T-Student test of adequacy of lincar model p=0 o, Cntical Threshold %

(Cntical Threshold % from Monte-Carlo simulations 100 replica)

Random Walk

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 02 40 05 00 13
W(5,10 20,40) 03 21 01 00 12
M(5 10 20,40) 06 39 11 01 10

SWM(5 10 20 40) 02 26 03 Q0 09
AR(1)

Rule DEM YEN GBP FRF CHF
S(5 10 20,40) 25Q26) 5448) 92 (84) 06(08) 79(75)
W(5,10 20,40) 46 32 62 13 93
M(5,10 20,40) 34 45 83 11 39

SMW(S5 10 20 40) 29 37 70 07 61
AR(2)

Rule DEM YEN GBP FRF CHF
S(5 10,20 40) 1206) 635(64) 81(82) 06(05) +8(46)
W(5 10 20 40) 24 40 53 12 57
M(5 10 20 40) 20 52 74 10 24

SMW(5 10 20 40) 14 15 61 07 36
MA(1)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 2432 | 534637 | 8383 | 0603 | 77(73)
W(5,10 20 40) 45 32 55 12 91
M(5 10 20,40) 33 45 76 10 38

SWM(S 10 20 40) 28 37 127 07 59
MA(2)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 121D 63(66) 84(80) 06(04) 47D
W( 10 20 40) 24 40 56 12 56
M(5 10 20 40) 19 52 717 09 24

SMW(5 10 20 40) 14 453 63 06 35
ARMA(1 1) Model u=0 Box and Jenkins Estimates

Rule DEM YEN GBP FRF CHF
$(5,10,20,40) 26(23) 5700) 9299 07(6) 8187
W(5 10,20,40) 49 35 63 13 96
M(5,10,20,40) 35 47 83 I1 40

SWM(5 10 20 40) 30 39 70 05 63
Price-trend Model p=0, Taylor Estimates

Rule DEM YEN GBP EFRF CHF
S(5,10 20,40) 6868 |[500183)]121(126)| 48(51) | 153(166)
W(5,10 20,40) 84 357 73 56 131
M(5 10,20,40) 130 516 124 10 135

SMW(5 10 20 40) 82 452 94 57 130
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Techmcal models
The adequacy of the technical models descnibed 1in Section 7 1 3 1s now tested using the
parametric Chi-square and T-Student tests

Table 7 6 Chi-square test of adequacy of technical models

Chi-square test of adequacy of technical model p=0 o Cntical Threshold %
S(5)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 36 713 526 122 301
W(5 10 20 40) 333 489 35 308 489
M(5,10 20 40) 386 611 234 579 544

SWM(5 10 20 40) 26 6 843 91 711 405
S(10)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 67 936 535 234 427
W(5 10,20 40) 511 830 35 518 537
M(5 10 20 40) 586 897 303 521 634

SMW(5 10 20 40) 339 93 8 83 807 450
S(20)

Rule DEM YEN GBP FRF CHF
S(5,10 20,40) 78 869 417 322 5317
W(5 10 20 40) 628 330 29 590 681
M(S 10 20 40) 810 946 239 734 788

SMW(5 10 20 40) 419 93 4 62 88 4 504
S(40)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 20 763 349 91 345
W(5 10,20,40) 328 707 27 235 630
M(5 10 20 40) 532 878 257 421 776

SWM(5 10 20 40) 247 90 6 60 67 4 457
W(3)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 39 659 613 123 296
W(5,10 20,40) 359 436 50 309 516
M(5 10,20 40) 399 56 8 254 325 557

SWM(5 10 20 40) 282 824 117 721 415
W(10)

Rule DEM YEN GBP FRF CHF
S(5,10 20,40) 54 880 582 186 393
W(5,10,20,40) 45 700 40 437 545
M(5.10,20 40) 505 790 293 46 623

SMW(S5 10 20 40) 316 90 9 93 78 1 44 8
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Table 7 6 (continued) Chi-square test of adequacy of technical models

W(20)

Rule DEM YEN GBP FRF CHF

S(5,10 20 40) 93 93 8 186 346 524

W(5 10 20 40) 656 90 2 34 650 648

M(5,10 20,40) 76 4 956 274 698 75 1

SMW(5 10 20 40) 117 947 74 38 5 198
W(0)

Rule DEM YEN GBP FRF CHF
$(5,10,20,40) 41 825 423 204 157
W(5 10 20,40) 503 80 4 34 449 708
M(5 10 20 40) 721 922 267 653 830

SWM(5 10 20 40) 338 925 63 824 500
M(S)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 19 781 217 66 233
W(5 10 20,40) 202 581 09 172 334
M(5,10 20 40) 293 67 4 13 4 240 415

SWM(5 10 20 40) 19 1 86 1 39 36 5 330
M(10)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 98 914 453 348 146
W(5 10 20,40) 66 4 920 30 653 499
M(5,10,20,40) 742 98 5 309 603 614

SMW(5 10 20 40) 369 953 70 807 26
M(20)

Rule DEM YEN GBP FRF CHF
S(5 10 20,40) 17 737 273 75 312
W(5 10,20 40) 231 690 17 173 188
M(5 10 20 40) 142 80 8 159 362 592

SMW(5 10 20 30) 231 879 10 637 39 4
M(40)

Rule DEM YEN GBP FRE CHF
S(5 10 20 40) 08 69 8 268 3 212
W(5,10 20,40) 152 519 21 68 451
M(5 10 20 40) 270 76 8 282 149 622

SWM(5 10 20 40) 151 875 60 403 388

193




Table 7.7 T-Student test of adequacy of technical models

T-Student test of adequacy of techmical model p=0 o Cnuical Threshold %

S(5)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 25 104 66 16 82
W(5,10 20 40) 39 68 32 25 85
M(5,10 20 40) 44 82 82 70 50

SWM(5 10 20 40) 30 75 49 18 64
S(10)

Rule DEM YEN GBP FRF CHF
S(5 10 20,40) 50 293 64 37 102
W(5 10 20 40) 67 212 27 47 96
M(5 10 20,40) 94 247 96 74 73

SMW(5 10 20 40) 60 241 18 14 82
S(20)

Rule DEM YEN GBP FRF CHF
S(5,10 20,40) 70 527 38 18 156
W(5 10 20 40) 79 389 13 19 134
M(5 10 20,40) 153 523 73 122 136

SMW(5 10 20 40) 86 476 28 59 132
S(40)

Rule DEM YEN GBP FRF CHF
S(5 10 20 10) 21 163 34 10 110
WG 10 20 40) 24 305 10 09 87
M(5 10 20 40) 68 528 77 41 113

SWM(5 10 20 40) 28 123 26 12 94
W(5)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 31 86 105 17 94
W(5 10 20,40) 50 56 61 29 101
M(5 10 20 40) 48 68 112 27 53

SWM(5 10 20 40) 36 6 I 81 20 74
W(10)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 40 202 78 27 105
W(5 10 20 40) 57 143 37 38 104
M(5 10 20,40) 71 161 105 51 69

SMW(5 10 20 40) 138 158 59 32 84
W(20)

Rule DEM YEN GBP FRF CHF
S(5 10,20,40) 80 453 50 57 146
W(5 10 20,40) 95 339 19 64 132
M(5,10,20,40) 152 416 85 122 115

SMW(5 10 20 40) 96 39 1 38 69 122
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Table 7 7 (continued) T-Student test of adequacv of technical models

W(40)

Rule DEM YEN GBP FRF CHF

S(5,10 20 40) 46 533 44 29 154

W(5 10 20 40) 51 379 15 28 126

M(5 10 20 40) 120 563 89 91 147

SWM(5 10 20 40) 58 188 33 36 132
M(5)

Rule DEM YEN GBP FRF CHF
S(5 10 20 40) 10 132 13 05 40
W(5 10 20 40) 14 87 04 08 37
M(5,10 20 40) 24 110 25 15 28

SWM(5 10 20 40) 12 99 08 07 30
M(10)

Rule DEM YEN GBP FRF CHF
$(5,10,20,40) 83 439 46 66 39
W(5,10 20,40) 95 317 17 69 77
M(5,10 20,40) 172 127 86 153 74

SMW(5 10 20 40) 130 387 35 81 72
M(20)

Rule DEM YEN GBP FRF CHF
S(5,10,20 40) 11 372 19 06 67
W(5,10,20,40) 13 233 06 06 54
M(5,10,20,40) 37 122 15 26 653

SMW(5 10 20 40) 14 329 14 07 54
M(40)

Rule DEM YEN GBP FRF CHF
S(5,10 20 40) 06 178 26 01 55
W(5,10,20 40) 07 96 07 02 42
M(5 10,20,40) 24 22 4 71 08 61

SWM(5 10 20 40) 08 148 20 02 15

Summary models

Table 7 8 provides among all the statistical and techmcal models the ones which exhibit
the lghest cntical thresholds Therefore the following models are the ones which can
reproduce best technucal trading rules
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Table 7 8 Models exhibiting the highest critical threshold

Models exhibiting the haghest cntical threshold %

Chi-square
Ruie DEM YEN GBP FRF CHF
S(5 10 20 40) M(10) W(20) Price-trend M(10) S(20)
W(5,10 20,40) M(10) M(10) Price-trend M(10) W(40)
M(5,10 20,40) S(20) M(10) M(10) S20) W(40)
SWM(5 10 20 40) S(20) M(10) AR(1) W(20) Price-trend
T-Student
Rule DEM YEN GBP FRF CHF
S(5,10 20 40) W(20) W(40) Prnce-trend M(10) W(40)
W(5,10 20,40) W(20) S(20) Price-trend M(10) S(20)
M(5,10 20,40) M(10) W(40) Price-trend M(10) W(40)
SWM(5 10 20 40) M(10) W(40) MA(1) M(10) W(40)

For a given currency, the model exhibiting the tughest critical threshold 1s rather invanant
on the rule being used in the adequacy test Using of portfolio of trading rules, rather than
any single rules to check the adequacy of a model allows to mimmise the reproach of
backward testing’ All the models being proposed are very close from each other They
generate almost 1dentical expected returns (see Chapter 3) and are extremely correlated
one from each other (see for instance the correlation between trading systems under the
random walk assumption in Chapter 5) What must be stressed 1s that for given statistical
models, there exist techmical models able to reproduce closely expected returns and vice-
versa Performances of ARIMA and techmcal rules are very often indistinguishable
(Taylor, 1992b) Therefore, the cructal pont 1s not to choose ex-ante between simple
moving average, weighted moving average, momentums or price-trend models but to
adequately estimate the duration of the trend erther through the mean duration of the
pnice-trend model or the order of the technical rule Taylor(1992b) seems to indicate that
techmcal models might achieve better this purpose

Finally, further research is needed if one wants to check the adequacy of nonlinear
models via rule returns It 1s doubtful that pure vanance nonlinear models will be able to
explain non-zero trading rule returns Nevertheless, mean nonlinear alternatives such as
the fractional Gaussian process are worthy bemng mvestigated Unfortunately,
corresponding tests using rule returns are difficult to establish because the vanance 1s not
any more finite but infinite

5 It could aptly be argued that the performances of a single trading rule 1s best explained by 1ts imphed

modec! For example 1t should not be surprising if the returns following the momentum rule of order
10 are best explained by the momentum model of order 10
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1.2.2 [Fractional Gaussian process
Although it is difficult to test the ability of the fractional Gaussian process to replicate
rule returns, an interesting issue is however to know if this model can be used to enhance

returns above the most plausible linear alternatives: the price-trend or technical models.
Therefore, we are now comparing the profit and loss generated by all these models.

In what follows, we present the ex-post performance of optimal forecasters that
from the theoretical models, the price-trend model and the fractional Gaussian process.
The parameters estimated at the end of each period are used backward and rule returns
recorded. Backward rather than forward performance has been recorded such that the
results are comparable to the in-sample tests performed in Section 7.2.1. Theoretical
forecasters assuming a price trend-model can be found in Taylor(1986) and fractional
Gaussian process in Hosking(1981), Peiris and Perera(1988). Transaction costs are
ignored once again®.

It can be firstly noted from Table 7.9, that ex-post performances are all positive.
However, they suffer of the curve fitting default and data-snooping biases. Secondly there
does not seem to be any preferred models irrespective of the currency. The price-trend
model generates higher returns than the fractional Gaussian process for the CHF, FRF but
lower for DEM, GBP and YEN. For each currency, the standard deviation of these
forecasters has been found, as expected, to be equal to the underlying volatility given in
Table 6.2.

Table 7.9: Backward performances of statistical forecasters

Yearly return % of Statistical Forecaster
Currency Price -trend model Fractional process
DEM 4.7 8.1
GBP 9.2 11.6
FRF 10.9 8.0
CHF 10.4 8.6
YEN 6.7 8.7

Statistical forecasters (Table 7.9) do not outperform significantly simple moving average
rules (Table 6.16). That can be seen by comparing only varied profits since all the basic
rules considered here bring the same risk? which is the underlying volatility of the
currency. A similar finding is attributable to Taylor(1990a, 1990b, 1992a, 1992b). He
shows in particular that the price-trend model does not beat popular trading rules.

6 Expected transaction costs can be found in Section 7.4.2.
7 When measured by the standard deviation.
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7.2.3  Tolatility-autocorrelations

Trend-following systems are profitable when applied to exchange rate series. The
profitability of convex rules would suggest either the presence of a random walk with
strong drift, low positive autocorrelations or a mixture of both. It has been seen that
exchange rates are without drift and that the hypothesis of low autocorrelations as the
price-trend model without drift or technical models describe far better exchange rates
than the random walk. It results that expected rule returns should come from the couple

(volatility, autocorrelations), equation [3.10], what we now test.

Table 6.17 told us that there seems to be overall a similar risk adjusted profit in exchange
rates against Dollar and so a similar overall degree of autocorrelations. Expected
portfolio return E(R,) can be obtained by averaging formula [3.10] over simple moving

average of orders 2 to 100. Then:
E(Rt)_—_cf(pla“"pk) [73]
where f(p,,---,p,) is a linear function of the autocorrelations of order 1 to 99, which

gives decreasing weights as the order of the autocorrelations increases.

Assuming equal overall autocorrelations f(p,,---,p, ) in exchange rates, profits should be
proportional to the underlying volatility. On the other hand, if rates follow a random walk
with drift, profits should be a negative function of the volatility, equation [3.12]. Both
assumptions obviously propose conflicting views which need to be clarified.

Figure 7.1 tells us that the average performance of a portfolio of simple moving
averages (orders 2 to 100) applied to 15 different currency pairs (including cross rates) is
a positive function of the volatility. This confirms that technical trading returns are
positively correlated with price volatility (Edwards and Ma, 1988). Consequently, the
regression line is more in accordance with autocorrelated alternatives than the random
walk hypothesis. Further interpretations are however difficult because currencies are not
independent of each other.

Let us now considered risk adjusted profits. They should provide a better measure of
inefficiency for given currency since they might be a function of the autocorrelations only:
E(R,)/o=1(py, +-,Px) [7.4]

Figure 7.2 exhibits that risk-adjusted returns are still a positive function of the
volatility. Then Lukac and Brorsen(1990: equation(5)) assumption that each commodity
has the same return to rsk does not hold for currencies. The amount of overall
autocorrelations as measured by function f(p,,---,px ), is larger for currencies of higher

volatility and smaller for currencies of lower volatility.
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Figure 7.1: Rule returns as a function of the underlying volatility
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Figure 7.2: Risk adjusted rule returns as a function of the underlying volatility

Until now, the amount of overall autocorrelations has been indirectly measured
using trading rule returns via the function f(p,,---,p, )= E(R,)/c . Alternatively, it can

100
be directly measured by the function Q(100)=) p;, where p; is given by equation

i=1
[6.4].
Figures 7.3 and 7.4 make clear the fact that both trading rule returns and risk adjusted
returns are a strong positive function of the degree of autocorrelations Q(100) in
exchange rate. Corrado and Lee(1992, figure Ia) studying the time series properties of
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the S&P 500, similarly found a positive relationships between autocorrelations and filter
rule returns. Conclusively the positive relationships between rule returns and
autocorrelations might hold as well for nonlinear trading rules.
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Figure 7.3: Rule returns as a function of underlying autocorrelations
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Figure 7.4: Risk adjusted rule returns as a function of underlying autocorrelations

Figure 7.5 reinforces the idea that volatility and autocorrelations are not independent but
display a positive relationship. This cross-sectional study brings opposite results to
univariate temporal time series (LeBaron, 1992c). Q(100) is larger for currencies of
higher volatility and smaller for currencies of lower volatility., Morse(1980) finds a
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positive relation between volume and serial correlations for individual stocks. These

results run accordingly to this section if volume and volatility are positively correlated.
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Figure 7.5: Autocorrelations as a function of the underlying volatility

It follows that "technical" funds managers should seek for financial assets exhibiting high
volatility since autocorrelations and therefore risk adjusted returns are still a positive
function of the volatility. That does not seem at present the case for commodities as
Brorsen and Irwin(1987) report on their survey. It says that eighty-five percent of futures
fund managers hold number of contract according to their volatility. Half of these held
positions based on variances only, by holding more contracts of less volatilities. On the
other hand, market practitioners agree that volatility is a potential source of profits for
technical analysis. Kroll and Paulenoff{1993: 275) point out that the most popular
markets to trade have been the T-bond futures and the S&P stock index futures because
they show the highest volatility. Dublanc(1991: 191) indicates that market not enough
liquid or missing of volatility must be avoided. Bernstein(1992; 56) recommend tracking °
and trading markets, as long as they remain relatively active and volatile, using a variety
of trend-following systems. Goodman(1982: 87) reports that: " the [technical] models
had[...] the weakest performance for the Canadian dollar, which was less volatile relative
to the US dollar during the period and consequently offered less profit potential ".
Prado(1992: 125) indicates that when markets are trending with high volatility, profit
potential can be very high, and that when markets are trending with low volatility, profit
potential can be very low.
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7.3 ENHANCEMENT STRATEGIES

Technical models are among the best models to replicate in-sample rule returns An 1ssue
of interest 15 to establish their out-of-sample performances and to know if ndividual
performances of trading rules can be enhanced by a portfolio approach For doing so, we
consider the simple, weighted moving average, momentum of orders 5, 10, 20 and 40 and
study three kinds of strategies used to select particular subsets of trading rules

(1) Equally weighted portfolio

Thus strategy allocates equal weights between the twelve trading systems

(2) Optimisation method

[t consists 1n choosing the best system m one period and applying 1t during the subsequent
pertod® This 1s called optimising over past data In a survey of public futures fund
advisory groups, Brorsen and Irwin(1987) found that fifteen of mineteen advisory groups
selected parameters by optimusing over past data Such method aims to maximuse returns
(3) Global Vanance Portfolio (GVP)

This strategy allocates weights between systems such that they mummise the nsk of the
portfolio The weights can be found by linear quadratic programmung (Markowitz, 1952)
and depend only on the correlations between trading rules for given currency In what
follows, we assume that the volatility of trading rules are simular® and equal to the
volatility of the underlying asset We equally assume that correlations between rules when
applied to a same asset do not depend on the underlying asset and are equal to their
expected values under the normal assumption These two assumptions are reasonable
following the results of Chapter 6 They have got the tremendous advantage to induce
theoretical systems allocation which will be subsequently the same through time and for
each currency (Table 7 10) Table 7 11 provides expected nisk reduction achieved by
some other portfolios for companson purpose The small gan to diversification across
systems 1s directly related to the high correlations among the returns It must be
emphasised that the nsk reduction potential through systems diversification s not large

8 The peniods being uscd are the ones specified 1n Table 6 1 The out-of-sample performances are
consequently recorded throughout periods 2 to 5 for the 5 currencies

® Lukac and Brorsen(1990) assumes as well cqual vanances to dctermine 1if one technical rule is
statistically different from another



Table 7.10 Minimum risk allocation

Svstems | S(3) | S(10) ] S(20) { S(40) | W(5)

W(10)

W(20)

W) M(5) IM(10)]M(20)|M(40)| Total

Weights(®e)| 0 0 0 0 2433

0

0

0 [1549]11523{1678)28 17| 100

Table 7 11 Theoretical risk reduction

Systems Unique | S(5 10 20 40) (W(5 10 20 40)

M(5 10 20 40){ SWM(5 10 2040)| GVP

Risk reduction(®%) 1 0813

0 837

0731 0762 0697

The optimusation method 1s only margmnally more profitable than the equally weighted
portfolio, but as expected far more than the Global Vanance Portfolio (Table 7 12) By
construction, the mummum standard deviation of returns is achieved for the Global
Vanance Portfolio In terms of Sharpe Ratio (average return/standard dewiation), it
appears that diversification can pay Reduction of nsk can be obtained by simple
diversification of rules Such portfolio outperforms the optimisation method m 4
currencies out of 5 However, extra-reduction of nsk by choosing sophisticated
diversification via Markowitz approach decreases substantially the value of the Sharpe

Ratio

Table 7 12 Forward performances of selection strategies

Performances\Strategies l Equaily Weighted ! GVP ] Optimisation
DEM
Return % 767 494 919
Standard Deviation % 897 819 1177
Sharpe Ratio 0 85 0 60 078
YEN
Return % 491 430 411
Standard Deviation % 843 77 1106
Sharpe Ratio 0 58 056 037
GBP
Return % 798 663 938
Standard Deviation % 906 829 1189
Sharpe Ratio 0 88 0 80 081
FRF
Return % 827 6 65 655
Standard Deviation % 865 791 1135
Sharpe Ratio 096 084 058
CHF
Return % 746 630 {0 54
Standard Dewiation % 950 869 12 41
Sharpe Ratio 079 073 085
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The superionty of the equaily weighted portfolio beyond the optimisation method and
mmmum risk approaches can be explained by two factors Firstly exchange rates seres
are non-stationary and consequently the optimal forecaster 1s rarely the same from one
pertod to the other Then the usefulness of the optimsation method 1s arguable (Lukac,
Irwin and Brorsen, 1989) This strategy 1s of no additional value to a basic equally
weighted portfolio Secondly the differences between rules correlations are sometimes so
small that weights selected throughout the quadratic program are not really significant
The mimmmum vanance cnterion excludes for instance seven systems on twelve (Table
711)

This does not mean that correlations between systems must not be taken mto account
But rather than searching for the mimimum nisk, simple diversification might be preferable
The only problem stays in the determination of the ex-ante universe of rules Here this has
been chosen such that for each family of rules, systems are almost equicorrelated

The Markowitz approach erther maximusing returns, mmnusing risk or a mixture of both
does not seem promusing, as far as systems diversification 1s concerned On the other
hand, simple diversification among equicorrelated systems appears a lot more profitable
due to its robustness through time In sum, diversification between systems pays but 1t
must not be too comphcated Goodman(1982) exhibits for instance than combming two
technical models 1s better than one but three are already two many

Dwversification between currencies mught still be more valuable than diversification
between systems, see Chapter 5 for theoretical evidence and Taylor(1990b), Brorsen and
Boyd(1990) for empirical evidence However optimal diversification 1s condemned to fail
for at least two reasons Firstly, the bivarate random walk 1s not an acceptable
hypothesis, even when restrained to rule correlations (Section 6 2 3) It follows that
finding the currencies allocation which minimise the nisk of the portfolio will now be an
hazardous task Secondly, correlations between underlying currencies vary through time,
opposite to correlation between systems applied to a same currency Then attempts to
build efficient portfolios of exchange rates have been fruitless (Praagmanand and Soenen,
1986) It 1s why Table 7 13 restricts its study to the effect of simple diversification of a
given system between currencies The equally weighted portfolio exhibits higher Sharpe
Ratio irrespective of rule for YEN, GBP and CHF, n 83% of all cases for DEM, and in
58% for FRF Currencies diversification 1s obviously valuable It outperforms systems
diversification for a few rules such as S(20), W(20) and W(40) The differences are
however too small to be really significant
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Table 7 13 Currencies diversification

Rulcs\Currencies | DEM | YEN | GBP | FRF | CHF | Equally Weighted

Yearly returns %

S(5) 797 526 7 44 909 471 690
S(10) 895 614 744 927 8353 8 07
S(20) 12 30 396 905 12 47 957 947
S(40) 453 420 616 838 482 562
W(5) 709 39 8 80 856 669 702
W(10) 745 705 561 979 672 732
W(20) 991 701 10 80 10 54 673 900
W(40) 877 514 10 69 10 37 384 876
M(5) 578 387 500 774 648 578
M(10) 687 628 809 716 630 694
M(20) 865 368 319 937 630 624
M(40) 471 421 761 631 705 598
Sharpe Ratio

S(5) 068 048 063 030 038 076
S(10) 076 056 063 082 069 087
S20) 105 036 076 110 077 103
S(40) 038 038 052 074 039 060
W(5) 060 | 036 | 074 | 075 | 054 077
W(10) 063 064 047 086 054 079
W(20) 084 063 091 093 054 097
W(40) 075 046 090 091 071 096
M(5) 049 035 042 068 0352 063
M(10) 0358 057 068 063 051 076
M(20) 073 033 027 083 051 068
M(40) 040 038 064 056 057 0 65




74  EFFICIENT MARKET HYPOTHESIS

741 Jensen's definition
Jensen(1978) argues that a market should be considered efficient with respect to an

information set if 1t 1s impossible to make economic profits by trading based on the
information set The random walk model requires zero nsk-adjusted returns in speculative
markets on the assumptions of zero transactions costs But transaction costs i financial
markets are not zero, so a market 1s still efficient as long as a technical trading system
does not produce returns greater than transaction costs

742 Transaction costs

We provide here a simple formula giving the expected transaction costs following a linear
trading rule Such result will allow to easily adjust previous findings such that
transactions costs are taken into account

The cost to a speculator of a currency trade depends on many vanables The total cost of
taking a position 1s the sum of brokerage fees and hiquidity costs Liquidity costs arise
because floor traders have different buying and selling prices Trading costs can be
expressed as a percentage of the goods traded (Taylor, 1986) We then assume that
trading costs are equal to ¢, where ¢ 1s a same constant for all times considered A cost
figure of ¢=02% 1s suitably conservative for currencies, because such costs are still
higher than most non-floor traders would pay (Taylor, 1990) Sweeney(1986), Surujaras
and Sweeney(1992) estimate transaction costs to be lower than one eight of one percent
(c<0125%) Further, large transactors or banks operating on their own account can
avoird brokerage fees and only pay liquidity costs Schulmeister(1988) reports average
transaction costs based on bid-ask spreads to be at maximum 0 04% per trade Satchell
and Timmermann(1992b) stipulate that transaction costs are very small in the foreign
exchange market and less than 0 06% The transaction costs used n this study will be
¢=0 2% and ¢=0 05% which appear upper bound for respectively public and institutional

Investors

Over a period of T days, there will be a number N of transactions and consequently a
total trading costs equal to TC=cN The number N of transactions 1s a stochastic
vaniable which depends on the forecaster F, being used Nevertheless its expected value
can be established under the Gaussian process without dnft assumption If we assume
that a position 1s opened at the beginning of the pertod (and not when a new position 1s
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triggered) and that the last position 15 closed at the end day of the period, it follows that
the expected number of transactions 15'0

E(N)=1+(T-2)[3-LArcsin(p)] where p=Corr(F,F_)

T

Subsequently,
E(TC)=c{1+(T-2)[+-L Arcsin(p)]}

2 n

Expected number of transactions under the random walk and pnce-trend model
assumptions, as well as observed values for currencies are given for the simple moving
average rule in Table 7 14 YEN values are almost equal to their expected values under
the random walk assumption For other currencies, numbers of transactions are lower
than expected under the random walk assumption It confirms previous findings which
accepted the random walk assumption for the YEN but rejected 1t for the other currencies
n favour of price trend models Therefore the expected number of transactions under the
random walk assumption 1s an upper bound for currencies This conservative figure will
be used to assess transaction costs It allows to get estimates depending only on the rule
being used, not on the currency being traded

Table 7.14 Number of transactions over a penod of 2586 days

Number of transactions over a period of T=2586 davs

Rule\Process | Random Walk | T ree-trend Currencies
A=003mg=20 | ,\erage | DEM | YEN | GBP | FRF | CHF
S(2) 1293 1269 5 12942 1311 1313 § 1265 ) 1302 | 1280
S(5) 692 3 660 5 638 4 617 662 638 626 649
S(10) 468 9 1298 1214 412 | 448 |} 416 430 401
S(20) 325 1 280 8 2526 220 322 242 228 251
S(40) 2276 [831 1722 161 203 177 43 175

Expected transactions costs over a year (T=250 days) are given in Table 7 15 for a few
linear rules under the random walk and price-trend model It turns out from Table 7 15
that transaction costs cannot be ignored if the purpose of the investor 1s to "make
money", on a net return basts The most active trading generated by the moving average
of order 2 rule, implies for instance yearly transaction costs equal to 25% for small
mvestors! It clearly appears that for equal gross returns, longer term rules must be
preferred This result seems to hold for nonlinear rules, such as the channel rule (Taylor,
1992b fig 1)

10 See Appendix 6 2



Table 7.15 Expected yearly transaction costs

Rules/Process Random Walk Price-trend A=0 03 m4=20
E(N) E(TC)% E(N) E(TC)%
¢=02% | c=005% c=02% | ¢=005%

Nl 125 25 625 122 7 2455 6 14
S(3) 67 4 13 48 337 64 3 12 87 322
S(10) 46 0 919 230 422 844 211
S(20) 322 6 43 161 279 559 140
S(40) 228 456 114 186 371 093
W(5) 78 6 1571 393 755 1510 378
W(10) 562 1125 281 524 10 48 262
W(20) 40 2 805 201 358 715 179
W(40) 288 577 144 241 482 121
M(3) 381 1161 290 550 1101 275
M(10) 386 771 193 3485 697 174
M(20) 267 534 134 22 65 433 113
M(40) 189 378 095 150 299 075

743 T-Student adjusted for transaction costs

Onginal T-Student statistics (Table 6 17) have to be adjusted to take mto account
transaction costs That 1s done in Table 7 16 for ¢=0 2%, and ¢=0 05% It results that
technical trading 1n foreign exchange 1s likely to be a challenging if not fruitless activity

for small investors who face big transaction costs!? (c=0 2%) That 1s another story for
mstitutional investors or floor traders The cntical threshold of the T-Student test
adjusted for transaction costs (c=005%) are overall still well below 5% Techmcal
analysis has information content that will allow floor traders to increase nsk-adjusted
profits Financial compames might have to act on strategies that assumes the foreign
exchange markets are autocorrelated if not nefficient!* Some desequilibrium beyond that
caused by transaction costs and nisk appear to be present in exchange rates

Our findings are similar to Murphy(1986) which are that the potential for abnormal
techmcal trading profits does exist, if expenses are reduced Our results demonstrate that

11 The three rules S(2), M(2) W(2) are the same

12 Nevertheless there seems to ewst stock techmical systems outperforming the market even after
allowing for round-trip transaction costs up to 2% per secunty trade (Pruitt and Whate, 1983)

13 Including transaction costs in the calculations might not yet be sufficient to get a market cfficiency
test The interest rate differential must be taken into account Nevertheless the size of this factor
mught be negligible Previous studies (Schulmeister, 1988, Sweeney, 1986, Surujaras and Sweency
1992 67-68, Satchell and Timmermann, 1992b) have shown that the overall cffcct of the interest rate
diffcrential on rule returns 1s insignificant
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it 15 possible to earn sufficient techmical trading profits to at least cover brokerage and
management fees

Table 7 16 T-Student test adjusted for transaction costs

Criuical Threshold % of T-Student test adjusted for transaction costs'*
c=02%
Test DEM YEN GBP FRF CHF
S(5) 937 991 952 890 98 8
S(10) 514 805 6717 478 557
S20) 435 753 2211 39 196
S(40) 48 7 525 313 129 458
S(5 10 20 40) 480 890 605 298 673
W(2 to 50) 330 863 388 265 528
W(2 to 100) 14 4 531 194 68 22 4
S(2 to 30) 367 723 318 198 H7
S(2 to 100) 154 247 153 84 135
M(2 to 50) 44 3 410 470 340 329
M(2 to 100) 130 140 2141 103 106
SWM(2 to 50) 367 731 4038 275 461
SWM(2 to 100) 150 315 218 86 159
¢=0 05%
Test DEM YEN GBP FRF CHF
S(5) 96 28 8 127 51 360
S(10) 30 129 74 23 51
S(20) 01 243 18 01 18
S(40) 16 7 183 79 19 165
S(5 10 20 40) 14 155 30 03 60
W(2 to 50) 05 136 08 03 10
W(2 to 100) 04 58 07 01 13
S(2 to 30) 17 103 13 04 37
S(2 to 100) 10 20 | 3 10
M(2 to 30) 29 21 35 15 19
M(2 to 100) 08 08 25 05 08
SWM(2 to 50) 11 71 13 04 25
SWM(2 to 100) 06 21 12 02 08

14 Transaction costs for multisystems are established here from the sum of individual transaction costs
Then they are upper limit of real costs since by construction the number of transactions for a
multisvstem 1s ¢qual or below the sum of the number of transactions for cach system
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744 Market efficiency and dependencies

Since a market 1s still efficient as long as a technical trading system does not produce
returns greater than transaction costs, the existence of senal correlation n the changes in
financial rates mught indicate neither market efficiency nor inefficiency (Cramne and
Havenner, 1988, Taylor, 1986) The transactions costs are a cause of desequilibrium and
it 15 difficult to assess the extent to which transaction costs should be taken mnto account
in assessing market efficiency We have just seen that the market could appear
efficient/inefficient for investors facing different trading costs Even if profits adjusted for
high transactions costs were to stay sigmficantly positive, there may be three other
reasons which can rescue the hypothesis of efficiency

Firstly, there 1s a degree of uncertainty in the information received The statistical
tests performed in this research have not reached all the same conclusions Tests applied
to the underlying time series have argued for the random walk hypothesis'® when profits-
based tests have found significant positive dependencies Logue and Sweeney(1977)
provided a similar study where a mechanical trading rule detected dependence using
foreign exchange data while spectral analysis detected no dependence using the same
data If there 1s a perception of uncertainty in information recerved and/or if the
information is diverse across participants, then the past exchange rate may have a
prolonged effect on the current exchange rate If so lagged models need not be
inconsistent with market efficiency Uncertainty 1s one of the two factors proposed by
Irwin and Brorsen(1987) to explan rule returns Their results showed a strong positive
association between uncertainty (as measured by inflation) and techmcal returns,
suggesting traders may expect lower returns during periods of low uncertainty On the
other hand, they did not find any relationship between the second factor, the relative
amount of system trading and technical returns

Secondly, there may exist a time-varying nsk premia, (Fama, 1984, Wolff, 1987)

Surujaras and Sweeney(1992) believe however that explaining trading rule profits as due
to time-varying nisk premia might be a very long and arduous process Their argument 1s
that there 1s a wide vanety of possible models of time-varying risk premia and so there
does not seem to emerge a clear theory of how these premia should behave n a system of
efficient markets Time-varying nsk premia and profitable trading rules are compatible
hypotheses because null hypotheses do not to have to be statistically stable in order to be
exploited profitably (Boothe and Longworth, 1986) If financial prices follow a price-

15" Except Taylor(1980) staustics
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trend model, varance reduction and mean duration need not to be statistically stable If
the overall amount of autocorrelations Ap/(1-p) 1s nearly always positive, it 1s quite likely
that trend-following rules can be used to make profits

Thirdly, if price 1s discontinuous, prices will go up and down very
steeply'6 Mandelbrot(1963) advances that technical rules assume that one could buy or
sell during these periods of steep varation, but that this possibility 1s not open to ordinary
buyers and sellers Then trading rules profits might not be in contradiction with market
efficiency

To conclude, the purpose of this research has not been to test market efficiency which 1s
in 1tself a difficult task, but rather simply to provide an understanding of the superior
performance of some models relative to the random walk model

75 SUMMARY

Among a few linear autocorrelated models, the price-trend model appears to be the most
satisfactory to explain trading rule returns That 1s shown by both the Chi-square test and
more signuficantly by the T-Student test Technical models are as good alternatives The

reason 1s that they produce expected rule returns very close from those generated by a
price-trend model

Profits from trend-following (convex, pathdependent) rules are a positive function of the
volatiity This result corroborates with the existence of low positive autocorrelations

Risk adjusted profits are still a positive function of the volatility It could mean that
volatility and autocorrelations are dependent vanables More specifically, it seems that
the more volatile 1s a currency, the more autocorrelations it exhibits Subsequently, there
appears to be a premium 1n mvesting n nisky currency The selection of assets trading of
which 1s most likely to generate profits 1s a relatively straightforward process that can be
dertved from the statistical properties of the underlying asset

Statistical forecasters mcluding the fractional Gaussian predictor, although profitable, do
not outperform simple technical rules Enhancing returns of techmical rules 1s a difficult
task Maximising returns or mmmusing risk are poor selection criteria The most robust
approach seems to be an equally weighted portfolio of equicorrelated systems

16 The fractional Gaussian process 1s a good examplc of such price behavior
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Diversification between systems pays but this 1s neither less or more beneficial than
diversification between currencies

Finally, transaction costs alter the statistical sigmficance of test results The magnitude of
the changes depend on the levels of transaction costs which are far higher for small
investors than for nstitutional investors On the one hand, nsk-adjusted profits from
technical analysis totally disappear for transaction costs equal to 0 2% per trade On the

other hand, they still remain sigmificant for transaction costs equal to 0 05% per trade
Financial compantes might have to act on strategies that assume the foreign exchange

markets exhibit dependencies, 1f not inefficiencies

We would conclude that for mstitutional investors there could be much to gain from
technical rules 1f dependencies persist and little to loose 1n terms of expectations if they

do not
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APPENDIX 7 1

CURRENCIES BOX AND JENKINS MODELS:
AR(1), AR(2), MA(1), MA(2), ARMAC(1,1)

Table 7.17 AR(1) models

Summary of Fitted Model for DEM LOG

Parameter Estumate Stnd error T-value P-value
AR (1) 04094 01951 209896 03592
Estimated white noise vanance = 5 06658E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) =7 11799E-3
Chi-square test statistic on first 20 residual autocorrelations = 18 7809
with probability of a larger value gn en white noise = 0 470967

Summarv of Fitted Model for YEN LOG

Parameter Estimate Stnd error T-value P-value
AR (D) 00698 01952 35733 72087
Estimated white noise vanance = 4 72485E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) =6 87375E-3
Chi-square test statistic on first 20 residual autocorrelations = 16 6786
with probability of a larger value gn en white notsec =0 611635

Summary of Fitted Model for GBP LOG

Parameter Esumate Stnd error T-value  P-value
AR(D 05314 01949 272570 00646
Estimated white noise vaniance = 5 15303E-5 with 2624 degrees of freedom
Esumated white noise standard deviation (std err) = 7 17846E-3
Chi-square test statistic on first 20 residual autocorrelations = 24 5896
with probability of a larger value ginven white noise = 0 174499

Summarv of Fitted Modcl for FRF LOG

Parameter Esumate Stnd error T-value P-value
AR (1) 04029 01951 206525 0389
Estimated white noise vanance = 4 96892E-5 with 2624 degrees of freedom
Estimated white noisc standard deviation (std crr) = 7 04906E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 2559
with probabihity of a larger value given white noise = 0 37933

Summary of Fitted Model for CHF LOG

Parameter Estimate Stnd error T-value  P-value
AR (D) 03434 01951 175987 07855
Estimated white noise vanance = 5 §9028E-5 with 2624 degrees of freedom
Esumated white noise standard deviation (std err) = 7 67482E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 3992
with probabihity of a larger value given white noise = 0 370927




Table 7.18 AR(2) models

Summary of Fitted Modc! for DEM LOG

Parameter Estimate Stnd error  T-valuc  P-value
AR(D 04133 01952 212708 03351
AR (2) -01428 01952 -73130 46466
Estimated whiate noise variance = 5 06749E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std crr) =7 11863E-3
Chi-square test statistic on first 20 residual autocorrelations = 18 2404
with probability of a larger value given white noise = () 439922

Summary of Fitted Model for YEN LOG

Parameter Estimate Stnd error T-value  P-value
AR (D) 00695 01953 35588 72196
AR (2) 00401 01953 20554 83717
Estimated white noisc variance = 4 72656E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 6 875E-3
Chi-square test statistic on first 20 residual autocorrelations = 16 6235
with probability of a larger value given white noise = 0 549119

Summarv of Fitted Model for GBP LOG

Parameter Estimate Stnd error T-value P-value
AR(D 05332 01953 273067 00636
AR (2) -00342 01953 -17535 86082
Estimated white noise vanance = 5 15493E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) =7 17978E-3
Chi-square test statistic on first 20 residual autocorrclations = 24 5272
with probability of a larger value given white noise = 0 138503

Summarv of Fitted Model for FRF LOG

Paramcter Estmate Stnd crror  T-value  P-value
AR (1) 04036 01953 206687 03884
AR (2) -00160 01953 -08175 93485
Estimated white noise vanance = 4 9708 LE-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 05039E-3
Chi-square tesl statistic on first 20 residual autocorrelations = 20 2489
with probability of a larger value gnen white noise =0 318983

Summarv of Fitted Model for CHF LOG

Parameter Esumate Stnd error T-value P-value
AR (1) 03475 01952 178004 07519
AR (2) -01215 01953 -62214 53390
Estimated white noise varance = 5 89166E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) =7 67572E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 0375
with probability of a larger value given white noise = 0 330713

214




Table 7 19 MA(1) models

Summan of Fitted Modcl for DEM LOG

Parameter Estimate Stnderror T-value  P-value
MA (1) -04162 01951 -213290 03303
Estimatcd white noise vanance = 5 06633E-5 with 2624 degrees of freedom
Estimated white noisc standard deviation (std err) = 7 11782E-3
Cli-square test statistic on first 20 residual autocorrelations = 18 6503
with probability of a larger value given white noise = 0 479466

Summary of Fitted Model for YEN LOG

Parameter Estimate Stnd error T-value P-value
MA(D) -00697 01952 -35692 72118
Estimated white noise variance = 4 72485E-5 with 2624 degrees of freedom
Estimated white noise standard dewviation (std err) = 6 87375E-3
Chi-square test statistic on first 20 residual autocorrelations = 16 6799 9
with probabilitv of a larger value given white notse = 0 611542

Summary of Fitted Model for GBP LOG

Parameter Estimate Stnd error T-value P-value
MA (1) -05319 01950 -272734 00643
Estimated white noise vanance = 5 153E-5 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 17844E-3
Chi-square test statistic on first 20 residual autocorrelations = 24 5529
with probability of a larger value given whiic noise =0 175791

Summary of Fitted Model for FRF LOG

Parameter Estimate Stnd error T-value P-value
MA (D -04039 01951 -206981 03857
Estimated white noise vanance = 4 9689E-5 with 262+ degrees of freedom
Estimated white noise standard deviation (std err) = 7 04904E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 2436
with probability of a larger value grven white noise = () 380053

Summary of Fitted Model for CHF LOG

Parameter Estumate Sind error T-value P-value
MA(D 03482 01952 -178433 07448
Estimated white noise vanance = 5 8901 LE-3 with 2624 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67471E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 3228
with probability of a larger value given white noise = 0 375393




Table 7 20 MA(2) models

Summary of Fitted Modcl for DEM LOG

Parameter Estumate Stnd crror T-valuc  P-value
MA (D) - 04161 01952 -2 13106 03318
MA (2) 01366 01952 69984 48409
Estimated white noise varniance = 5 06729E-5 with 2623 degrees of freedom
Estimated white noisc standard deviation (std err) = 7 11849E-3
Chi-square test statistic on first 20 residual autocorrelations = 18 1722
with probability of a larger value g en white noise = 0 444363

Summary of Fitted Model for YEN LOG

Parameter Estimate Stnd error T-value P-value
MA (1) -00689 01953 -35306 72407
MA (2) -00396 01952 -20302 83913
Estimated white noise vanance = 4 72657E-5 with 2623 degrees of freedom
Estimatced white noise standard deviation (std err) = 6 87501E-3
Chi-square test statistic on first 20 residual autocorrelations = 16 6299
with probabulity of a larger value given white noise = 0 548674

Summary of Fitted Model for GBP LOG

Parameter Estimate Stnd error T-value P-value
MA (D) -05319 01953 -272432 00649
MA (2) -00046 01952 -02365 98113
Estimated white noise vanance = 5 15495E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 1798E-3
Chi-square test statistic on first 20 residual autocorrelations = 24 353
with probability of a larger value gnven white noisec = 0 137731

Summarv of Fitted Model for FRF LOG

Parametcr Esumate Stnd error T-value P-value
MA (1) - 04036 01953 -206724 03881
MA (2) 00119 01952 06090 95144
Estimated white noise vanance = 4 97078E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 05038E-3
Chi-square test statistic on first 20 residual autocorrelations = 20 2406
with probability of a larger value grnven white noise = 0 319436

Summary of Fitted Model for CHF LOG

Parameter Estimate Stnd error T-value P-value
MA (1) -03494 01952 -178938 07367
MA (2) 01225 01952 62781 53019
Estimated white noise vanance = 5 89143E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67556E-3
Chi-square test statistc on first 20 residual autocorrelations = 19 9517
with probability of a larger value given white noise = 0 335546




Table 7.21 ARMA(1,1) models

Summarv of Fitted Model for DEM LOG

Parameter Estimate Stnd crror  T-value  P-value
AR (1) 01913 48779 03921 96873
MA (1) -02350 48770  -04819 96157
Estimated white notse variance = 5 06838E-5 with 2623 degrees of freedom
Estimatcd white noise standard deviation (std err) = 7 11925E-3
Clu-square test staustic on first 20 residual autocorrelations = 18 6969
with probability of a larger value given white noise = 0 410705

Summary of Fitted Model for YEN LOG

Parameter Esumate Stnd error T-value P-value
AR (1) 00418 667021 00063 99950
MA (1) -00416 667020 -00062 99950
Estimated white noise vanance = 4 72666E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 6 87507E-3
Chu-square test statistic on first 20 residual autocorrelations = 16 6538
with probability of a larger value given white noise = 0 547015

Summary of Fitted Model for GBP LOG

Parameter Esumate Sind error T-value P-value
AR(D) 02694 36218 07437 94072
MA (D - 02754 36207 - 07607 93937
Estimated white noise variance = 5 15497E-5 with 2623 degrees of freedom
Estimated whitc noise standard deviation (std err) =7 17981E-3
Chu-square test statistic on first 20 residual autocorrelations = 24 5615
with probability of a larger value given white noise = 0 137479

Summary of Fitted Model for FRF LOG

Parameter Esumate Sind error T-value P-value
AR(1]) 02031 50706 04005 96806
MA (1) -02099 50699 -04139 96699
Estmated white noise variance = 4 97081E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 0504E-3
Chu-square test statistic on first 20 residual autocorrelations = 20 2401
with probability of a larger value gtven white noise = 0 319465

Summary of Fitted Model for CHF LOG

Parameter Esumate Stnd crror T-value P-value
AR (1) 01626 61299 02653 97884
MA (D) -01935 61293 -03158 97481
Estimated white noise vanance = 5 89244E-5 with 2623 degrees of freedom
Estimated white noise standard deviation (std err) = 7 67622E-3
Chi-square test statstic on first 20 residual autocorrelations = 20 3516
with probability of a larger value given white noise = 0 313379

217




APPENDIX 7 2

EXPECTED NUMBER OF TRANSACTIONS

This appendix establishes the expected number of transactions following a hnear rule
under the Gaussian process without dnft assumption

The average duration of a position triggered by a techmcal indicator 1s difficult to
establish because 1t involves truncated multivariate probabilities analytically unknown An
easier step 1s to determine the probability that there occurs a reversal of position a given
day, noted P{reversal]

A reversal of position the day t means that the signal tnggered by the trading rule are of
oppostte signs the days t-1 and t Since the underlying process 1s symmetncal
P[reversal]= P[F,_; <O0,F, >0]+P[F_, >0,F, <0]=2P[F_, <0,F, >0]
P[reversal]=2[0,0](-p)

where p = Corr(F,_;,F,), and [0,0] is the bivariate truncated probability given by equation
[A 1] in Appendix 3 1 It results that

P[reversal]= 1 -+ Arcsin(p)

Then the expected number of transactions over a period of T days 18

E(N) = T[3 -+ Arcsin(p)]

If we assume that a position 1s taken the first day of the period and there cannot be any
new position the last day (close of position), there are in fact T-2 days over which a
stochastic position can be tnggered Then a shght adjustment to the previous formula
must be made

E(N) =1+(T-2)[$~+Arcsin(p)] for T=2
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Chapter 8

CONCLUSIONS

3.1 SUMMARY

The purpose of thuis thesis has been to advance the understanding of price-based
forecasts The main results of this research are summarised in what follows

(1) The economuc value of forecasting methods 1s best measured by the pay-off generated
by the implied investment strategy Many more market conditions and forecasters can be
encompassed using stochastic modelling than any historical studies Therefore, the
expected value and vanance of the rate of return using a linear forecaster have been
denived under the assumption that the process of underlying returns i1s Gaussian
Expected returns are zero if only and only if the underlying process is the random walk
without dnift

(2) It 1s shown that a large class of mechamcal forecasting systems used by market
participants can be transformed as linear forecasters and consequently that expected
profit can be evaluated

(3) Errors based measures are compared with profitability measures Mimmuising the mean
squared error 1s a sufficient but not necessary condition to maximuse profits However, it
appears that error measures including the directional accuracy are of poor use to detect
profitable strategies when the true model 1s not known

(4) A test based on the jomnt the profitability of trading rules i1s denved It has the
attractive feature to be almost as powerful as the best of its component which 1s unknown
when the true model 1s unknown It constitutes therefore an adequate test of market
timing ability if the senes of which 1t 1s apphed 1s without dnft

(5) Profitable strategies based on technical analysis exist n the foreign exchange market
Both the bootstrap methodology and the test based on the joint profitability of trading
rules bring simular results, which are that daily exchange rates 1982-1992 do not follow a
random walk
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(6) Profits from trading rules n the foreign exchange market are well approximated by
linear time-series models Among a few statistical Gaussian processes, the price-trend
model 1s the best alternative to explain rule returns There exist linear technical models
reproducing as well trading rule returns Techmcal models have got the advantage beyond
the price-trend model to rely on fewer parameters Selecting a particular technical rule 1s
a difficult task, because forecasting strategies are numerous and most often extremely
stmlar On the other hand, the selection of instrument trading 1s most likely to be the
crucial choice Ths 1s a relatively straightforward process that can be derived from the
statistical properties of the underlying asset The more volatile a currency, the more
autocorrelated 1t 1s and consequently the more profitable the instrument

(7) When transaction costs are taken into account, then profits are reduced substantially
However, opportunities remain for institutional mvestors which might have to act on

strategies that assume that the foreign exchange markets exubit positive dependencies, if
not efficiencies

8.2 SUGGESTION FOR FURTHER RESEARCH

This research can be extent in several ways The first one consists in establishing exact
analytical multi-peniod vanance and correlations of trading rules based on linear
forecasters, assuming that the underlying returns process 1s Gaussian These results will
allow to precisely test the ability of Gaussian processes to rephcate trading rule returns
An other research 1s to establish the expected return of nonlinear forecasters under the
assumption of both linear and nonlinear models For mstance, 1t might be nformative to
understand the behaviour of rules based on mmmmum and maximum of past data such as
the channel rule (Lukac, Brorsen and Irwin, 1988b), because they are hghly popular
among market participants Then, a cructal finding would be to determine when the true
price model 1s nonlinear, what 1s the forecaster which maximses returns and how
profitable it 1s These researches are ighly dependent on the state of knowledge about
truncated multivanate laws At present, analytical results exist up to the truncated
trivariate normal law Thus 1s why the study of nonlinear price models and forecasters
mght be difficult to achieve
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The random walk and market efficiency hypotheses are of such importance in the
financial market, that they justify attempts to establish statistical tests based on an
economic evaluation of forecasting strategies To be powerful, these tests must take mnto
account the stochastic properties of trading rules

Then, it must be emphasised that the study of rule returns can lead to the discovery of
new models of financial prices The technical models first described in the thesis are a
good example of this point That would let think that more research 1s needed to build

automated selection critenia between lmear models, if the purpose of the forecaster is
trading

Finally, the causes of profits, when any, to the techmical trading strategies, have to be
found
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