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1. Introduction

It is by now a well-known fact that a stack of n parallel coincident D3-branes has on its world-

volume, an N = 4, four-dimensional supersymmetric U(n) gauge theory. Placing such a stack at

an orbifold singularity of the form Ck/{Γ ⊂ SU(k)} reduces the supersymmetry to N = 2, 1 and 0,

respectively for k = 2, 3 and 4, and the gauge group is broken down to a product of U(ni)’s [1, 2, 5].

Alternatively, one could realize the gauge theory living on D-branes by the so-called Brane

Setups [3, 4] (or “Comic Strips” as dubbed by Rabinovici [6]) where D-branes are stretched between

NS5-branes and orientifold planes. Since these two methods of orbifold projections and brane setups

provide the same gauge theory living on D-branes, there should exist some kind of duality to explain

the connection between them.

Indeed, we know now that by T-duality one can map D-branes probing certain classes of orb-

ifolds to brane configurations. For example, the two-dimensional orbifold C2/{ZZk ⊂ SU(2)}, also

known as an ALE singularity of type Ak−1, is mapped into a circle of k NS-branes (the so-called

elliptic model) after proper T-duality transformations. Such a mapping is easily generalized to some

other cases, such as the three-dimensional orbifold C3/{ZZk × ZZl ⊂ SU(3)} being mapped to the

so-named Brane Box Model [15, 16] or the four-dimensional case of C4/{ZZk × ZZl × ZZm ⊂ SU(4)}
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being mapped to the brane cube model [17]. With the help of orientifold planes, we can T-dualise

C2/{Dk ⊂ SU(2)} to a brane configuration with ON -planes [18, 19], or C3/{ZZk × Dl ⊂ SU(3)} to

brane-box-like models with ON -planes [9].

A further step was undertaken by Muto [10, 11, 12] where an attempt was made to establish

the brane setup which corresponds to the three-dimensional non-Abelian orbifolds C3/{Γ ⊂ SU(3)}
with Γ = ∆(3n2) and ∆(6n2). The key idea was to arrive at these theories by judiciously quotienting

the well-known orbifold C3/{ZZk × ZZl ⊂ SU(3)} whose brane configuration is the Brane Box Model.

In the process of this quotienting, a non-trivial ZZ3 action on the brane box is required. Though

mathematically obtaining the quivers of the former from those of the latter seems perfectly sound,

such a ZZ3 action appears to be an unfamiliar symmetry in string theory. We shall briefly address

this point later.

Now, with the exception of the above list of examples, there have been no other successful

brane setups for the myriad of orbifolds in dimension two, three and four. Since we believe that

the methods of orbifold projection and brane configurations are equivalent to each other in giving

D-brane world-volume gauge theories, finding the T-duality mappings for arbitrary orbifolds is of

great interest.

The present work is a small step toward such an aim. In particular, we will present a so-called

stepwise projection algorithm which attempts to systematize the quotienting idea of Muto, and,

as we hope, to give hints on the brane construction of generic orbifolds.

We shall chiefly focus on the orbifold projections by the SU(2) discrete subgroups Dk and

E6 in relation to ZZn. Thereafter, we shall evoke some theorems on induced representations which

justify why our algorithm of stepwise projection should at least work in general mathematically.

In particular, we will first demonstrate how the algorithm gives the quiver of Dk from that of Z2k.

We then interpret this mathematical projection physically as precisely the orientifold projection,

whereby arriving at the brane setup of Dk from that of ZZ2k, both of which are well-known and

hence giving us a consistency check.

Next we apply the same idea to E6. We find that one can construct its quiver from that of ZZ6

or D2 by an appropriate ZZ3 action. This is slightly mysterious to us physically as it requires a ZZ3

symmetry in string theory which we could use to quotient out the ZZ6 brane setup; such a symmetry

we do not know at this moment. However, in comparison with Muto’s work, our ZZ3 action and the

ZZ3 investigated by Muto in light of the ∆ series of SU(3), hint that there might be some objects

in string theory which provide a ZZ3 action, analogous to the orientifold giving a ZZ2, and which we

could use on the known brane setups to establish those yet unknown, such as those corresponding

to the orbifolds of the exceptional series.

The organisation of the paper is as follows. In §2 we review the technique of orbifold projections

in an explicit matrix language before moving on to §3 to present our stepwise projection algorithm.

In particular, §3.1 will demonstrate how to obtain the Dk quiver from the ZZ2k quiver, §3.2 and §3.3
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will show how to get that of E6 from those of D2 and ZZ6 respectively. We finish with comments

on the algorithm in §4. We will use induced representation theory in §4.1 to prove the validity of

our methods and in §4.2 we will address how the present work may be used as a step toward the

illustrious goal of obtaining brane setups for the generic orbifold singularity.

During the preparation of the manuscript, it has come to our attention that independent and

variant forms of the method have been in germination [20, 21]; we sincerely hope that our systematic

treatment of the procedure may be of some utility thereto.

Nomenclature

Unless otherwise stated we shall adhere to the convention that Γ refers to a discrete subgroup of

SU(n) (i.e., a finite collineation group), that 〈x1, .., xn〉 is a finite group generated by {x1, .., xn},
that |Γ| is the order of the group Γ, that Dk is the binary dihedral group of order 4k, that E6,7,8

are the binary exceptional subgroups of SU(2), and that R•
G(n)(x) is a representation of the element

x ∈ G of dimension n with • denoting properties such as regularity, irreducibility, etc., and/or

simply a label. Moreover, ST shall denote the transpose of the matrix S and A ⊗ B is the tensor

product of matrices A and B with block matrix elements AijB. Finally we frequently use the Pauli

matrices {σi, i = 1, 2, 3} as well as 11N for the N × N identity matrix. We emphasise here that

the notation for the binary groups differs from our other works in the exclusion of ̂ and in the

convention for the sub-index of the binary dihedral group.

2. A Review on Orbifold Projections

The general methodology of how the finite group structure of the orbifold projects the gauge theory

has been formulated in [5]. The complete lists of two and three dimensional cases have been treated

respectively in [1, 2] and [7, 10] as well as the four dimensional case in [8]. For the sake of our

forth-coming discussion, we shall not use the nomenclature in [5, 7, 9] where recourse to McKay’s

Theorem and abstractions to representation theory are taken. Instead, we shall adhere to the

notations in [2] and explicitly indicate what physical fields survive the orbifold projection.

Throughout we shall focus on two dimensional orbifolds C2/{Γ ⊂ SU(2)}. The parent theory

has an SU(4) ∼= Spin(6) R-symmetry from the N = 4 SUSY. The U(n) gauge bosons Aµ
IJ with

I, J = 1, ..., n are R-singlets. Furthermore, there are Weyl fermions Ψi=1,2,3,4
IJ in the fundamental 4

of SU(4) and scalars Φi=1,..,6
IJ in the antisymmetric 6.

The orbifold imposes a projection condition upon these fields due to the finite group Γ. Let

Rreg
Γ (g) be the regular representation of g ∈ Γ, by which we mean

Rreg
Γ (g) :=

⊕

i

Γi(g) ⊗ 11dim(Γi)
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where {Γi} are the irreducible representations of Γ. In matrix form, Rreg
Γ (g) is composed of blocks

of irreps, with each of dimension j repeated j times. Therefore it is a matrix of size
∑
i

dim(Γi)
2 =

|Γ|. Let Irreps(Γ) = {Γ(1)
1 , . . . , Γ(1)

m1
; Γ

(2)
1 , . . . , Γ(2)

m2
; . . . . . . ; Γ

(n)
1 , . . . , Γ(n)

mn
}, consisting of mj irreps of

dimension j, then

Rreg
Γ :=





Γ
(1)
1

. .
.

Γ
(1)
m1 (

Γ
(2)
1

Γ
(2)
1

)

.
.
. (

Γ
(2)
m2

Γ
(2)
m2

)

.
.
. 


Γ
(n)
1

.
.
.

Γ
(n)
1





n×n

.
.
. 


Γ
(n)
mn

.
.
.

Γ
(n)
mn





n×n





. (2.1)

Of the parent fields Aµ, Ψ, Φ, only those invariant under the group action will remain in the orb-

ifolded theory; this imposition is what we mean by surviving the projection:

Aµ = Rreg
Γ (g)−1 · Aµ · Rreg

Γ (g)

Ψi = ρ(g)i
j Rreg

Γ (g)−1 · Ψj · Rreg
Γ (g)

Φi = ρ′(g)i
j Rreg

Γ (g)−1 · Φj · Rreg
Γ (g) ∀ g ∈ Γ,

(2.2)

where ρ and ρ′ are induced actions because the matter fields carry R-charge (while the gauge bosons

are R-singlets). Clearly if Γ = 〈x1, ..., xn〉, it suffices to impose (2.2) for the generators {xi} in order

to find the matter content of the orbifold gauge theory; this observation we shall liberally use

henceforth.

Letting n = N |Γ| for some large N and ni = dim(Γi), the subsequent gauge group becomes
∏
i

U(niN) with a4
ij Weyl fermions as bifundamentals

(
niN,njN

)
as well as a6

ij scalar bifundamentals.

These bifundamentals are pictorially summarised in quiver diagrams whose adjacency matrices are

the aij ’s.

Since we shall henceforth be dealing primarily with C2 orbifolds, we have N = 2 gauge theory

in four dimensions [5]. In particular we choose the induced group action on the R-symmetry to be

4 = 12
trivial ⊕ 2 and 6 = 12

trivial ⊕ 22 in order to preserve the supersymmetry. For this reason we

can specify the final fermion and scalar matter matrices by a single quiver characterised by the 2

of SU(2) as the trivial 1’s give diagonal 1’s. These issues are addressed at length in [7].
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3. Stepwise Projection

Equipped with the clarification of notations of the previous section we shall now illustrate a tech-

nique which we shall call stepwise projection, originally inspired by [10, 11, 12], who attempted

brane realisations of certain non-Abelian orbifolds of C3, an issue to which we shall later turn.

The philosophy of the technique is straight-forward2: say we are given a group Γ1 = 〈x1, ..., xn〉
with quiver diagram Q1 and Γ2 = 〈x1, ..., xn+1〉 ⊃ Γ1 with quiver Q2, we wish to determine Q2 from

Q1 by the projection (2.2) by {x1, ..., xn} followed by another projection by xn+1.

We now proceed to analyse the well-known examples of the cyclic and binary dihedral quivers

under this new light.

3.1 Dk Quivers from Ak Quivers

We shall concern ourselves with orbifold theories of C2/ZZk and C2/Dk. Let us first recall that the

cyclic group Ak−1
∼= ZZk has a single generator

βk :=

(
ωk 0

0 ω−1
k

)

, with ωn := e
2πi
n

and that the generators for the binary dihedral group Dk are

β2k =

(
ω2k 0

0 ω−1
2k

)

, γ :=

(
0 i

i 0

)

.

We further recall from [9] that Dk/ZZ2k
∼= ZZ2.

Now all irreps for ZZk are 1-dimensional (the kth roots of unity), and (2.1) for the generator

reads

Rreg
ZZk

(βk) =





1 0 0 0 0

0 ωk 0 0 0

0 0 ω2
k 0 0

0 0 0
. . . 0

0 0 0 0 ωk−1
k





.

2A recent work [21] appeared during the final preparations of this draft; it beautifully addresses issues along a

similar vein. In particular, cases where Γ1 is normal in Γ2 are discussed in detail. However, our stepwise method is

not restricted by normality.
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On the other hand, Dk has 1 and 2-dimensional irreps and (2.1) for the two generators become

Rreg
Dk

(β2k) =





(
1 0

0 −1

)
0 0 0 0 0 0

0

(
1 0

0 −1

)
0 0 0 0 0

0 0

(
ω2k 0

0 ω
−1
2k

)
0 0 0 0

0 0 0

(
ω2k 0

0 ω
−1
2k

)
0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. .

.
.
.
.

.

.

.

0 0 0 0 0

(
ω

k−1
2k

0

0 ω
−(k−1)

2k

)
0

0 0 0 0 0 0

(
ω

k−1
2k

0

0 ω
−(k−1)

2k

)





and

Rreg
Dk

(γ) =





(
1 0

0 ik mod 2

)
0 0 0 0 0 0

0

(
−1 0

0 −ik mod 2

)
0 0 0 0 0

0 0

(
0 i

i 0

)
0 0 0 0

0 0 0

(
0 i

i 0

)
0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 0 0 0

(
0 ik−1

ik−1 0

)
0

0 0 0 0 0 0

(
0 ik−1

ik−1 0

)





.

In order to see the structural similarities between the regular representation of β2k in Γ1 = ZZ2k and

Γ2 = Dk, we need to perform a change of basis. We do so such that each pair (say the jth) of the

2-dimensional irreps of D2 becomes as follows:

Γ(2)(β2k) =





(
ωj

2k 0

0 ω−j
2k

)

0

0

(
ωj

2k 0

0 ω−j
2k

)




→





ωj
2k

(
1 0

0 1

)

0

0 ω−j
2k

(
1 0

0 1

)





where j = 1, 2, . . . , k − 1. In this basis, the 2-dimensionals of γ become

Γ(2)(γ) =





(
0 ij

ij 0

)

0

0

(
0 ij

ij 0

)




→





0 ij
(

1 0

0 1

)

ij
(

1 0

0 1

)

0




.

Now for the 1-dimensionals, we also permute the basis:

Γ(1)(β2k) =





1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



→





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



 Γ(1)(γ) =





1 0 0 0

0 ik mod 2 0 0

0 0 −1 0

0 0 0 −ik mod 2



→





1 0 0 0

0 −1 0 0

0 0 ik mod 2 0

0 0 0 −ik mod 2



 .
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Therefore, we have

Rreg

Dk
(β2k) =





1 0 0 0 0 0

0 −1 0 0 0 0

0 0 ω2k 0 0 0

0 0 0 ω−1
2k

0 0

...
...

...
...

. . .
...

...

0 0 0 0 ωk−1
2k

0

0 0 0 0 0 ω
−(k−1)
2k





⊗
(

1 0

0 1

)
,

which by now has a great resemblance to the regular representation of β2k ∈ ZZ2k; indeed, after one

final change of basis, by ordering the powers of ω2k in an ascending fashion while writing ω−j
2k = ω2k−j

2k

to ensure only positive exponents, we arrive at

Rreg
Dk

(β2k) =





1 0 0 0

0 ω2k 0 0

0 0 ω2
2k 0

...
...

...
. . .

...

0 0 0 ω2k−1
2k





⊗
(

1 0

0 1

)

= Rreg
ZZ2k

(β2k) ⊗ 112,

(3.1)

the key relation which we need.
Under this final change of basis,

Rreg

Dk
(γ) =





(
1 0

0 −1

)
0 0 0 0 0 0 0

0 0 0 0 0

(
ik−3 0

0 ik−3

)
0 0

0 0 0 0 0 0

(
ik−2 0

0 ik−2

)
0

0
..
.

..

.
. . .

..

.
..
. 0

(
ik−1 0

0 ik−1

)

..

.

(
ik mod 2 0

0 −ik mod 2

) ..
.

0

(
ik−3 0

0 ik−3

)
0 0 0 0 0 0

0 0

(
ik−2 0

0 ik−2

)
0 0 0 0 0

0 0 0

(
ik−1 0

0 ik−1

)
0 0 0 0





.

(3.2)

Our strategy is now obvious. We shall first project according to (2.2), using (3.1), which is

equivalent to a projection by ZZ2k, except with two identical copies (physically, this simply means

we place twice as many D3-brane probes). Thereafter we shall project once again using (3.2) and

the resulting theory should be that of the Dk orbifold.

An Illustrative Example

Let us turn to a concrete example, namely ZZ4 → D2. The key points to note are that D2 := 〈β4, γ〉
and ZZ4

∼= 〈β4〉. We shall therefore perform stepwise projection by β4 followed by γ.
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Equation (3.1) now reads

Rreg
D2

(β4) = Rreg
ZZ4

(β4) ⊗ 112 =





1 0 0 0

0 i 0 0

0 0 i2 0

0 0 0 i3




⊗ 112. (3.3)

We have the following matter content in the parent (pre-orbifold) theory: gauge field Aµ, fermions

Ψ1,2,3,4 and scalars Φ1,2,3,4,5,6 (suppressing gauge indices IJ). Projection by Rreg
D2

(β4) in (3.3) accord-

ing to (2.2) gives a ZZ4 orbifold theory, which restricts the form of the fields to be as follows:

Aµ, Ψ1,2, Φ1,2 =








; Ψ3, Φ3,5 =








; Ψ4, Φ4,6 =








(3.4)

where are 2×2 blocks. We recall from the previous section that we have chosen the R-symmetry

decomposition as 4 = 12
trivial ⊕ 2 and 6 = 12

trivial ⊕ 22. The fields in (3.4) are defined in accordance

thereto: the fermions Ψ1,2 and scalars Φ1,2 are respectively in the two trivial 1’s of the 4 and 6;

(Ψ3, Ψ4), (Φ3, Φ4) and (Φ5, Φ6) are in the doublet 2 of Γ inherited from SU(2). Indeed, the Rreg
ZZ4

(β4)

projection would force to be numbers and not matrices as we do not have the extra 112 tensored

to the group action, in which case (3.4) would be 4× 4 matrices prescribing the adjacency matrices

of the ZZ4 quiver. For this reason, the quiver diagram for the ZZ4 theory as drawn in part (I) of

Figure 1 has the nodes labelled 2’s instead of the usual Dynkin labels of 1’s for the A-series. In

physical terms we have placed twice as many image D-brane probes. The key point is that because

are now matrices (and (3.4) are 8×8), further projection internal thereto may change the number

and structure of the product gauge groups and matter fields.

Having done the first step by the β4 projection, next we project with the regular representation

of γ:

Rreg
D2

(γ) =





(
1 0

0 −1

)
0 0 0

0 0 0

(
i 0

0 i

)

0 0

(
1 0

0 −1

)
0

0

(
i 0

0 i

)
0 0





:=





σ3 0 0 0

0 0 0 i112

0 0 σ3 0

0 i112 0 0




. (3.5)

In accordance with (3.4), let the gauge field be

Aµ :=





a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d




,
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Figure 1: From the fact that D2 := 〈β4, γ〉 is generated by ZZ4 = β4 together with γ, our stepwise

projection, first by β4, and then by γ, gives 2 copies of the ZZ4 quiver in Part (I) and then the D2 quiver

in Part (II) by appropriate joining/splitting of the nodes and arrows. The brane configurations for these

theories are given in Parts (III) and (IV).

with a, b, c, d denoting the 2 × 2 blocks , (2.2) for (3.5) now reads

Aµ = Rreg
D2

(γ)−1 · Aµ · Rreg
D2

(γ) ⇒




a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d




=





σ3 0 0 0

0 0 0 −i112

0 0 σ3 0

0 −i112 0 0









a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d









σ3 0 0 0

0 0 0 i112

0 0 σ3 0

0 i112 0 0




,

giving us a set of constraining equations for the blocks:

σ3 · a · σ3 = a; d = b; σ3 · c · σ3 = c. (3.6)
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Similarly, for the fermions in the 2, viz.,

Ψ3 =





0 e3 0 0

0 0 f3 0

0 0 0 g3

h3 0 0 0




, Ψ4 =





0 0 0 e4

f4 0 0 0

0 g4 0 0

0 0 h4 0




,

the projection (2.2) is

γ ·


Ψ3

Ψ4



 = Rreg
D2

(γ)−1 ·


Ψ3

Ψ4



 · Rreg
D2

(γ).

We have used the fact that the induced action ρ(γ), having to act upon a doublet, is simply the

2 × 2 matrix γ herself. Therefore, writing it out explicitly, we have

i





0 0 0 e4

f4 0 0 0

0 g4 0 0

0 0 h4 0




=





σ3 0 0 0

0 0 0 −i112

0 0 σ3 0

0 −i112 0 0









0 e3 0 0

0 0 f3 0

0 0 0 g3

h3 0 0 0









σ3 0 0 0

0 0 0 i112

0 0 σ3 0

0 i112 0 0





and

i





0 e3 0 0

0 0 f3 0

0 0 0 g3

h3 0 0 0




=





σ3 0 0 0

0 0 0 −i112

0 0 σ3 0

0 −i112 0 0









0 0 0 e4

f4 0 0 0

0 g4 0 0

0 0 h4 0









σ3 0 0 0

0 0 0 i112

0 0 σ3 0

0 i112 0 0




,

which gives the constraints

f4 = −h3 · σ3; g4 = σ3 · g3; h4 = −f3 · σ3; e4 = σ3 · e3. (3.7)

The doublet scalars (Φ3,5, Φ4,6) of course give the same results, as should be expected from super-

symmetry.

In summary then, the final fields which survive both β4 and γ projections (and thus the entire

group D2) are

Aµ =





(
a11 0

0 a22

)

b (
c11 0

0 c22

)

b





;






e3 =

(
e11 e12

0 0

)

, f3 =

(
0 f12

0 f22

)

,

g3 =

(
g11 g12

0 0

)

, h3 =

(
0 h12

0 h22

)

,

Ψ3 =





0 e3 0 0

0 0 f3 0

0 0 0 g3

h3 0 0 0




, Ψ4 =





0 0 0 σ3 · e3

−h3 · σ3 0 0 0

0 σ3 · g3 0 0

0 0 −f3 · σ3 0




.

(3.8)
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Figure 2: Obtaining the Dk quiver (II) from the ZZ2k quiver (I) by the stepwise projection algorithm. The

brane setups are given respectively in (IV) and (III).

The key features to be noticed are now apparent in the structure of these matrices in (3.8). We

see that the 4 blocks of Aµ in (3.4), which give the four nodes of the ZZ4 quiver, now undergo

a metamorphosis: we have written out the components of a, c explicitly and have used (3.6) to

restrict both to diagonal matrices, while b and d are identified, but still remain blocks without

internal structure of interest. Thus we have a total of 5 non-trivial constituents a11, a22, c11, c22 and

b, precisely the 5 nodes of the D2 quiver (see parts (I) and (II) of Figure 1). Thus nodes of the

quiver merge and split as we impose further projections, as we mentioned a few paragraphs ago.

As for the bifundamentals, i.e., the arrows of the quiver, (3.4) prescribes the blocks e3,4, f3,4, g3,4

and h3,4 as the 8 arrows of Part (I) of Figure 1. After the projection by γ, and imposing the constraint

(3.7) as well as the fact that all entries of matter matrices must be non-negative, we are left with

the 8 fields e11,12, f12,22, g11,12 and h12,22, precisely the 8 arrows in the D2 quiver (see Part (II) of

Figure 1).

The General Case

The generic situation of obtaining the Dk quiver from that of ZZ2k is completely analogous. We

would always have two end nodes of the ZZ2k quiver each splitting into two while the middle ones

coalesce pair-wise, as is shown in Figure 2.
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3.2 The E6 Quiver from D2

We now move on to tackle the binary tetrahedral group E6 (with the relation that E6/D2
∼= ZZ3),

whose generators are

β4 =

(
i 0

0 −i

)

, γ =

(
0 i

i 0

)

, δ :=
1

2

(
1 − i 1 − i

−1 − i 1 + i

)

.

We observe therefore that it has yet one more generator δ than D2, hence we need to continue our

stepwise projection from the previous subsection, with the exception that we should begin with

more copies of ZZ4. To see this let us first present the irreducible matrix representations of the three

generators of E6:

β4 γ δ

Γ
(1)
1 1 1 1

Γ
(1)
2 1 1 ω3

Γ
(1)
3 1 1 ω2

3

Γ
(2)
4 β4 γ δ

Γ
(2)
5 β4 γ ω3δ

Γ
(2)
6 β4 γ ω2

3δ

Γ
(3)
7





−1 0 0

0 1 0

0 0 −1









0 0 −1

0 −1 0

−1 0 0









− i
2

i√
2

− i
2

− 1√
2

0 1√
2

i
2

− i√
2

i
2





The regular representation for these generators is therefore a matrix of size 3 · 12 + 3 · 22 + 33 = 24,

in accordance with (2.1).

Our first step is as with the case of D2, namely to change to a convenient basis wherein β4

becomes diagonal:

Rreg
E6

(β4) = Rreg
ZZ4

(β4) ⊗ 116. (3.9)

The only difference between the above and (3.3) is that we have the tensor product with 116 instead

of 112, therefore at this stage we have a ZZ4 quiver with the nodes labeled 6 as opposed to 2 as in

Part (I) of Figure 1. In other words we have 6 times the usual number of D-brane probes.

Under the basis of (3.9),

Rreg
E6

(γ) =





Σ3 0 0 0

0 0 0 i116

0 0 Σ3 0

0 i116 0 0




where Σ3 := σ3 ⊗ 113 =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




. (3.10)

Subsequent projection gives a D2 quiver as in part (II) of Figure 1, but with the nodes labeled as

3, 3, 6, 3, 3, three times the usual. Note incidentally that (3.9) and (3.10) can be re-written in terms

12



of regular representations of D2 directly: Rreg
E6

(β4) = Rreg
D2

(β4)⊗ 113 and Rreg
E6

(γ) = Rreg
D2

(γ)⊗ 113. To

this fact we shall later turn.

To arrive at E6, we proceed with one more projection, by the last generator δ, the regular

representation of which, observing the table above, has the form (in the basis of (3.9))

Rreg
E6

(δ) =





S1 0 S2 0

0 ω−1
8 P 0 ω−1

8 P

S3 0 S4 0

0 −ω8P 0 ω8P




(3.11)

where

S1 :=

(
1 0

0 0

)

⊗ Rreg
ZZ3

(β3), S2 :=

(
0 0

1 0

)

⊗





0 0 1

0 1 0

1 0 0



 ,

S3 := −i

(
0 0

0 1

)

⊗





0 0 1

0 1 0

1 0 0



 , S4 := i

(
0 1

0 0

)

⊗ 113

and

P := Rreg
ZZ3

(β3) ⊗
1√
2
112; recalling that Rreg

ZZ3
(β3) :=





1 0 0

0 ω3 0

0 0 ω2
3



 .

The inverse of (3.11) is readily determined to be

Rreg
E6

(δ)−1 =





S̃1 0 −S3 0

0 1
2
ω8P

−1 0 −1
2
ω−1

8 P−1

ST
2 0 −ST

4 0

0 1
2
ω8P

−1 0 1
2
ω−1

8 P−1




, S̃1 :=

(
1 0

0 0

)

⊗ Rreg
ZZ3

(β3)
−1.

Thus equipped, we must use (2.2) with (3.11) on the matrix forms obtained in (3.8) (other fields

can of course be checked to have the same projection), with of course each number therein now

being 3 × 3 matrices. The final matrix for Aµ is as in (3.8), but with

a11 =





a11(1) 0 0

0 a11(2) 0

0 0 a11(3)





3×3

; c11 = c22 = a22; b =





b11 0 0

0 b22 0

0 0 b33





6×6

where a22, cii are 3 × 3 while bii are 2 × 2 blocks. We observe therefore, that there are 7 distinct

gauge group factors of interest, namely a11(1), a11(2), a11(3), a22, b11, b22 and b33, with Dynkin labels

1, 1, 1, 3, 2, 2, 2 respectively. What we have now is the E6 quiver and the bifundamentals split and

join accordingly; the reader is referred to Part (I) of Figure 3.
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3.3 The E6 Quiver from ZZ6

Let us make use of an interesting fact, that actually E6 = 〈β4, γ, δ〉 = 〈β4, δ〉 = 〈γ, δ〉. Therefore,

alternative to the previous subsection wherein we exploited the sequence ZZ4 = 〈β4〉 +γ−→ D2
+δ−→ E6,

we could equivalently apply our stepwise projection on ZZ6 = 〈δ〉 +β4−→ E6.

Let us first project with δ, an element of order 6 and the regular representation of which, after

appropriate rotation is

Rreg
E6

(δ) = Rreg
ZZ6

(δ) ⊗ 114. (3.12)

Therefore at this stage we have a ZZ6 quiver with labels of six 4’s due to the 114; this is drawn in Part

(II) of Figure 3. The gauge group we shall denote as Aµ := Diag(a, b, c, d, e, f)24×24, with a, b, · · · , f
being 4 × 4 blocks.

Next we perform projection by Rreg
E6

(β4) in the rotated basis, splitting and joining the gauge

groups (nodes) as follows

Aµ =





(
a11 0

0 ã

)
0 0 0 0 0

0

(
b1 0

0 b2

)
0 0 0 0

0 0

(
c11 0

0 c̃

)
0 0 0

0 0 0

(
d1 0

0 d2

)
0 0

0 0 0 0

(
e11 0

0 ẽ

)
0

0 0 0 0 0

(
f1 0

0 f2

)





; s. t.

ã = c̃ = ẽ,

b2 = d1,

d2 = f1,

f2 = b1,

which upon substitution of the relations, gives us 7 independent factors: a11, c11 and e11 are numbers,

giving 1 as Dynkin labels in the quiver; b1, b2 and d2 are 2× 2 blocks, giving the 2 labels; while ã is

3×3, giving the 3. We refer the reader to Part (II) of Figure 3 for the diagrammatical representation.

4. Comments and Discussions

Our procedure outlined above is originally inspired by a series of papers [10, 11, 12], where the

quivers for the ∆ series of Γ ⊂ SU(3) were observed to be obtainable from the ZZn × ZZn series after

an appropriate identification. In particular, it was noted that

∆(3n2) = 〈



ZZn × ZZn :=

(
ωi

n 0 0

0 ωj
n 0

0 0 ω−i−j
n

)

i,j=0,···,n−1




 ,

(
0 0 1

1 0 0

0 1 0

)

,

(
0 1 0

0 0 1

1 0 0

)

〉 and subsequently

the quiver for ∆(3n2) is that of ZZn ×ZZn modded out by a certain ZZ3 quotient. Similarly, the quiver

for

∆(6n2) = 〈ZZn × ZZn,

(
0 0 1

1 0 0

0 1 0

)

,

(
0 1 0

0 0 1

1 0 0

)

,

(−1 0 0

0 0 −1

0 −1 0

)

,

(
0 −1 0

−1 0 0

0 0 −1

)

,

(
0 0 −1

0 −1 0

−1 0 0

)

〉

is that of ZZn × ZZn modded out by a certain S3 quotient. In [12], it was further commented that the

Σ series could be likewise treated.
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Figure 3: Obtaining the quiver diagram for the binary tetrahedral group E6. We compare the two

alternative stepwise projections: (I) ZZ4 = 〈β4〉 → D2 = 〈β4, γ〉 → E6 = 〈β4, γ, δ〉 and (II) ZZ6 = 〈δ〉 →
E6 = 〈δ, β4〉.

The motivation for those studies was to realise a brane-setup for the non-Abelian SU(3) orbifolds

as geometrical quotients of the well-known Abelian case of ZZm × ZZn, viz., the Brane Box Models.

The key idea was to recognise that the irreducible representations of these groups could be labelled

by a double index (l1, l2) ∈ ZZn × ZZn up to identifications.

Our purpose here is to establish an algorithmic treatment along similar lines, which would

be generalisable to arbitrary finite groups. Indeed, since any finite group Γ is finitely generated,

starting from the cyclic subgroup (with one single generator), our stepwise projection would give

the quiver for Γ as appropriate splitting and joining of nodes, i.e., as a certain geometrical action,

of the ZZn quiver.

15



4.1 A Mathematical Viewpoint

To see why our stepwise projection works on a more axiomatic level, we need to turn to a brief

review of the Theory of Induced Representations.

It was a fundamental observation of Frøbenius that the representations of a group could be

constructed from an arbitrary subgroup. The aforementioned chain of groups, where we tried to

relate the regular representations, is precisely in this vein. Though we shall largely follow the

nomenclature of [13], we shall now briefly review this theory in the spirit of the above discussions.

Let Γ1 = 〈x1, ..., xn〉 and Γ2 = 〈x1, ..., xn+1〉. We see thus that Γ1 ⊂ Γ2. Now let RΓ1(x) be a

representation (not necessarily irreducible) of the element x ∈ Γ1. Extending it to Γ2 gives

RΓ2(y) =





RΓ1(x) if y = x ∈ Γ1

0 if y 6∈ Γ1

It follows then that if we decompose Γ2 as (right) cosets of Γ1,

Γ2 = Γ1t1 ∪ Γ1t2 ∪ · · · ∪ Γ1tm

we have an Induced Representation of Γ2 as

RΓ2(y) = RΓ1(tiyt−1
j ) =





RΓ1(t1yt−1
1 ) RΓ1(t1yt−1

2 ) · · · RΓ1(t1yt−1
m )

RΓ1(t2yt−1
1 ) RΓ1(t2yt−1

2 ) · · · RΓ1(t2yt−1
m )

...
...

...

RΓ1(tmyt−1
1 ) RΓ1(tmyt−1

2 ) · · · RΓ1(tmyt−1
m )




. (4.1)

A beautiful property of (4.1) is that it has only one member of each row or column non-zero

and whereby it is essentially a generalised permutation (see e.g., 3.1 of [13]) matrix acting on the

Γ1-stable submodules of the Γ2-module.

Now, for the case at hand the coset decomposition is simple due to the addition of a single new

generator: the (right) transversals t1, · · · , tm are simply powers of the extra generator xn+1 and m

is simply the index of Γ1 ⊂ Γ2, namely |Γ2|/|Γ1|, i.e.,

ti = xi−1
n+1 i = 1, 2, · · · , m; m =

|Γ2|
|Γ1|

. (4.2)

Now let us define an important concept for an element x ∈ Γ2

DEFINITION 4.1 We call a representation RΓ2(x) factorisable if it can be written, up to possible

change of bases, as a tensor product RΓ2(x) = RΓ1(x) ⊗ 11k for some integer k.

Factorisability of the element, in the physical sense, corresponds to the ability to initialise our

stepwise projection algorithm, by which we mean that the orbifold projection by this element is

performed on k copies as in the usual sense, i.e., a stack of k copies of the quiver. Subsequently we
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could continue with the stepwise algorithm to demonstrate how the nodes of these copies merge or

split. In the corresponding D-brane picture this simply means that we should consider k copies of

each image D-brane probe in the covering space.

The natural question to ask is of course why our examples in the previous section permitted

factorisable generators so as to in turn permit the performance of the stepwise projection. The

following claim shall be of great assurance to us:

PROPOSITION 4.1 Let H be a subgroup of G, then the representation RG(x) for an element x ∈
H ⊂ G induced from RH(x) according to (4.1) is factorisable and k is equal to |G|/|H|, the index

of H in G.

Proof: Take RH(x ∈ H), and tensor it with 11k=|G|/|H|; this remains of course a representation

for x ∈ H . It then remains to find the representations of x 6∈ H , which we supplement by the

permutation actions of these elements on the H-cosets. At the end of the day we arrive at a

representation R′
G(x) of dimension k, such that it is factorisable for x ∈ H and a general permutation

for x 6∈ H . However by the uniqueness theorem of induced representations (q.v. e.g. [14] Thm

11) such a linear representation R′
G(x) must in fact be isomorphic to RG(x). Thus by explicit

construction we have shown that RG(x ∈ H) = RH(x) ⊗ 11k.

We can be more specific and apply Proposition 4.1 to our case of the two groups the second of

which is generated by the first with one additional generator. Using the elegant property that the

induction of a regular representation remains regular (q.v. e.g., 3.3 of [14]), we have:

COROLLARY 4.1 Let Γ1 and Γ2 be as defined above, then

Rreg
Γ2

(xi) = Rreg
Γ1

(xi) ⊗ 11|Γ2|/|Γ1| for common generators i = 1, 2, . . . , n.

In particular, since any G = 〈x1, . . . , xn〉 contains a cyclic subgroup generated by, say x1 of order

m, i.e., ZZm = 〈x1〉, we conclude that

COROLLARY 4.2 Rreg
G (x1) = Rreg

ZZm
(x1) ⊗ 11|G|/m, and hence the quiver for G can always be obtained

by starting with the ZZm quiver using the stepwise projection.

Let us revisit the examples in the previous section equipped with the above knowledge. For the

case of Γ1 = ZZ4 = 〈β4〉 and Γ2 = D2 with the extra generator γ, (4.2) becomes t1 = 11 and t2 = γ

as the index of ZZ4 in D2 is |D2|=8
|ZZ4|=4

= 2. The induced representation of β4 according to (4.1) reads

RD2(β4) =

(
Rreg

ZZ4
(11β411

−1) Rreg
ZZ4

(11β4γ
−1)

Rreg
ZZ4

(γβ411
−1) Rreg

ZZ4
(γβ4γ

−1)

)

=

(
Rreg

ZZ4
(β4) 0

0 Rreg
ZZ4

(β−1
4 )

)

using the fact that γβkγ
−1 = β−1

k in Dk for the last entry. Recalling that Rreg
ZZ4

(β4) =





1 0 0 0

0 i 0 0

0 0 i2 0

0 0 0 i3



,

this is subsequently equal to Rreg
ZZ4

⊗ 112 after appropriate permutation of basis. Thus Corollary 4.1
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manifests her validity as we see that the RD2 obtained by Frøbenius induction of Rreg
ZZ4

is indeed

regular and moreover factorisable, as (3.3) dictates.

Similarly with the case of ZZ6 → E6, we see that Corollary 4.1 demands that for the common

generator δ, Rreg
E6

(δ) should be factorisable, as is indeed indicated by (3.12). So too is it with

ZZ4 → E6, where Rreg
E6

(β4) should factorise, precisely as shown by (3.9).

The above have actually been special cases of Corollary 4.2, where we started with a cyclic

subgroup; in fact we have also presented an example demonstrating the general truism of Proposition

4.1. In the case of D2 → E6, we mentioned earlier that Rreg
E6

(β4) = Rreg
D2

(β4) ⊗ 113 and Rreg
E6

(γ) =

Rreg
D2

(γ)⊗113 for the common generators as was seen from (3.9) and (3.10); this is exactly as expected

by the Proposition.

4.2 A Physical Viewpoint: Brane Setups?

Now mathematically it is clear what is happening to the quiver as we apply stepwise projection.

However this is only half of the story; as we mentioned in the introduction, we expect T-duality

to take D-branes at generic orbifold singularities to brane setups. It is a well-known fact that the

brane setups for the A and D-type orbifolds C2/ZZn and C2/Dn have been realised (see [15, 16] and

[19] respectively). It has been the main intent of a collective of works (e.g [9, 11, 12]) to establish

such setups for the generic singularity.

In particular, the problem of finding a consistent brane-setup for the remaining case of the

exceptional groups E6,7,8 of the ADE orbifold singularities of C2 (and indeed analogues thereof for

SU(3) and SU(4) subgroups) so far has been proven to be stubbornly intractable. An original

motivation for the present work is to attempt to formulate an algorithmic outlook wherein such

a problem, with the insight of the algebraic structure of an appropriate chain of certain relevant

groups, may be addressed systematically.

4.2.1 The ZZ2 Action on the Brane Setup

Let us attempt to recast our discussion in Subsection 3.1 into a physical language. First we try

to interpret the action by Rreg
Dk

(γ) in (3.2) on the ZZ2k quiver as a string-theoretic action on brane

setups to get the corresponding brane setup of Dk from that of ZZ2k.

Now the brane configuration for the ZZ2k orbifold is the well-known elliptic model consisting

of 2k NS5-branes arranged in a circle with D4-branes stretched in between as shown in Part (III)

of Figure 1. After stepwise projection by γ, the quiver in Part (I) becomes that in Part(II) (see

Figure 2 also). There is an obvious ZZ2 quotienting involved, where the nodes i and 2k − i for

i = 1, 2, ..., k− 1 are identified while each of the nodes 0 and k splits into two parts. Of course, this

symmetry is not immediately apparent from the properties of γ, which is a group element of order

4. This phenomenon is true in general: the order of the generator used in the stepwise projection does

not necessarily determine what symmetry the parent quiver undergoes to arrive at the resulting quiver;

instead we must observe a posteriori the shapes of the respective quivers.
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Let us digress a moment to formulate the above results in the language used in [10, 11]. Recalling

from the brief comments in the beginning of Section 4, we adopt their idea of labelling the irreducible

representations of ∆ by ZZn×ZZn up to appropriate identifications, which in our terminology is simply

the by-now familiar stepwise projection of the parent ZZn × ZZn quiver. As a comparison, we apply

this idea to the case of ZZ2k → Dk. Therefore we need to label the irreps of Dk or appropriate tensor

sums thereof, in terms of certain (reducible) 2-dimensional representations of ZZ2k. Motivated by

the factorization property (3.3), we chose these representations to be

Rl
ZZ2k(2) := Rl,irrep

ZZ2k(1) ⊕ Rl,irrep
ZZ2k(1) (4.3)

where l ∈ ZZ2k, and amounts to precisely a ZZ2k-valued index on the representations of Dk (since ZZ2k

is Abelian), which with foresight, we shall later use on Dk. We observe that such a labelling scheme

has a symmetry

Rl
ZZ2k(2)

∼= R−l
ZZ2k(2),

which is obviously a ZZ2 action. Note that l = 0 and l = k are fixed points of this ZZ2.

We can now associate the 2-dimensional irreps of Dk with the non-trivial equivalence classes of

the ZZ2k representations (4.3), i.e., for l = 1, 2, . . . , k − 1 we have

Rl
ZZ2k(2)

∼= R−l
ZZ2k(2) → Rl,irrep

Dk(2) . (4.4)

These identifications correspond to the merging nodes in the associated quiver diagram. As for the

fixed points, we need to map

R0
ZZ2k(2) → R1,irrep

Dk(1) ⊕ R2,irrep
Dk(1)

Rk
ZZ2k(2) → R3,irrep

Dk(1) ⊕ R4,irrep
Dk(1) .

(4.5)

These fixed points are associated precisely with the nodes that split.

This construction shows clearly how, in the labelling scheme of [10, 11], our stepwise algorithm

derives the Dk quiver as a ZZ2 projection of the ZZ2k quiver. The consistency of this description

is verified by substituting the representations Rl
ZZ2k(2) in the ZZ2k quiver relations R ⊗ Rl

ZZ2k(2) =
⊕

l̄

aZZ2k(R)

ll̄
Rl̄

ZZ2k(2) using (4.4) and (4.5), which results exactly in the Dk quiver relations. We can of

course apply the stepwise projection for the case of ZZn × ZZn → ∆, and would arrive at the results

in [10, 11].

In the brane setup picture, the identification of the nodes i and 2k − i for i = 1, 2, ..., k − 1

corresponds to the identification of these intervals of NS5-branes as well as the D4-branes in between

in the X6789 directions (with direction-6 compact). Thus the ZZ2 action on the ZZ2k quiver should

include a space-time action which identifies X6789 = −X6789. Similarly, the splitting of gauge fields

in intervals 0 and k hints the existence of a ZZ2 action on the string world-sheet. Thus the overall

ZZ2 action should include two parts: a space-time symmetry which identifies and a world-sheet

symmetry which splits respective gauge groups.
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What then is this action physically? What object in string theory performs the tasks in the

above paragraph? Fortunately, the space-time parity and string world-sheet (−1)FL actions [18, 19]

are precisely the aforementioned symmetries. In other words, the ON-plane is that which we seek.

This is of great assurance to us, because the brane setup for Dk theories, as given in [19], is indeed

a configuration which uses the ON-plane to project out or identify fields in a manner consistent

with our discussions.

4.2.2 The General Action on the Brane Setup?

It seems therefore, that we could now be boosted with much confidence: since we have proven in

the previous subsection that our stepwise projection algorithm is a constructive method of arriving

at any orbifold quiver by appropriate quotient of the ZZn quiver, could we not simply find the

appropriate object in string theory which would perform such a quotient, much in the spirit of the

orientifold prescribing ZZ2 in the above example, on the well-known ZZn brane setup, in order to solve

our problem?

Such a confidence, as is with most in life, is overly optimistic. Let us pause a moment to consider

the E6 example. The action by δ in the case of D2 → E6 in §3.2 and that of β4 in the case of ZZ6 → E6

in §3.3 can be visualised in Parts (I) and (II) of Figure 3 to be an ZZ3 action on the respective parent

quivers. In particular, the identifications c11 ∼ c22 ∼ a22 and ã ∼ c̃ ∼ ẽ; b1 ∼ f2, b2 ∼ d1, d2 ∼ f1

respectively for Parts (I) and (II) are suggestive of a ZZ3 action on X6789. The tripartite splittings

for b, a11 and a, b, d respectively also hint at a ZZ3 action on the string world-sheet.

Again let us phrase the above results in the scheme of [10, 11], and manifestly show how the

E6 quiver results from a ZZ3 projection of the D2 quiver. We define the following representations of

D2: R0
D2(6)

= Rirrep
D2(2) ⊕ Rirrep

D2(2) ⊕ Rirrep
D2(2)

and Rl
D2(3) = Rl,irrep

D2(1) ⊕ Rl,irrep
D2(1)

⊕ Rl,irrep
D2(1)

where l ∈ ZZ4 labels

the four 1-dimensional irreducible representations of D2. There is an identification

Rl
D2

∼= R
f(l)
D2

where

f(l) =






0, l = 0

2, l = 1

3, l = 2

1, l = 3

Clearly this is a ZZ3 action on the index l. Note that we have two representations labelled with l = 0

which are fixed points of this action. In the quiver diagram of D2 these correspond to the middle

node and another one arbitrarily selected from the remaining four, both of which split into three.

The remaining three nodes are consequently merged into a single one (see Figure 3). To derive the
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E6 quiver we need to map the nodes of the parent D2 quiver as

R0
D2(6) → R1,irrep

E6(2) ⊕ R2,irrep
E6(2) ⊕ R3,irrep

E6(2)

R0
D2(3) → R1,irrep

E6(1) ⊕ R2,irrep
E6(1) ⊕ R3,irrep

E6(1)

Rl
D2(3)

∼= R
f(l)
D2(3) → Rirrep

E6(3), l ∈ ZZ4 − {0}.
Consistency requires that if we replace RD2 in the D2 quiver defining relations and then use the

above mappings, we get the E6 quiver relations for Rirrep
E6

.

The origin of this ZZ3 analogue of the orientifold ZZ2-projection is thus far unknown to us. If an

object with this property is to exist, then the brane setup for the E6 theory could be implemented;

on the other hand if it does not, then we would be suggested at why the attempt for E6 has been

prohibitively difficult.

The ZZ3 action has been noted to arise in [11] in the context of quotienting the ZZn × ZZn quiver

to arrive at the quiver for the ∆-series. Indeed from our comparative study in Section 4.2.1, we see

that in general, labelling the irreps by a multi-index is precisely our stepwise algorithm in disguise,

as applied to a product Abelian group: the ZZn × · · · × ZZn orbifold. Therefore in a sense we have

explained why the labelling scheme of [10, 11] should work.

And the same goes with E7 and E8: we could perform stepwise projection thereupon and

mathematically obtain their quivers as appropriate quotients of the ZZn quiver by the symmetry S

of the identification and splitting of nodes. To find a physical brane setup, we would then need to

find an object in string theory which has an S action on space-time and the string world-sheet. Note

that the above are cases of the C2 orbifolds; for the Ck-orbifold we should initialise our algorithm

with, and perform stepwise projection on the quiver of ZZn × · · · × ZZn (k − 1 times), i.e., the brane

box and cube (k = 2, 3).

Though mathematically we have found a systematic treatment of constructing quivers under a

new light, namely the “stepwise projection” from the Abelian quiver, much work remains. In the

field of brane setups for singularities, our algorithm is intended to be a small step for an old standing

problem. We must now diligently seek a generalisation of the orientifold plane with symmetry S in

string theory, that could perform the physical task which our mathematical methodology demands.
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