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1. Introduction

In the last two years, there has been a huge amount of work done to understand tachyon con-
densation by using Witten’s cubic open bosonic string field theory []. The fate of a space-filling
D25-brane in the open bosonic string theory is described by Sen’s three conjectures ([B], [B]). The
first proposes that the difference in energy of the tachyon between the perturbative vacuum and
the perturbatively stable vacuum exactly cancels the tension of the D-brane. The second asserts
that after the tachyon condenses, all open string degrees of freedom disappear, leaving us with the
closed string vacuum. The last conjecture states that non-trivial field configurations correspond to
lower-dimensional D-branes.

The first and third conjectures have been shown to be true to a very high level of accuracy
([A - [B7)); they have also been proven analytically in Boundary String Field Theory ([BJ] - BY)).
The second conjecture however, is by now the most puzzling. Roughly, it can be regarded at three
different levels of stringency. A weak statement is that all perturbative conventional open string
excitations disappear from the perturbatively stable vacuum. There has been several works testing
this statement from various approaches: one could show that some flat directions are removed, as
was done in [B5, Bg), or that the kinetic terms of the string field fluctuations are absent as in [B7],
or by the usage of toy models in field theory ([R9], [BQ], [B1], B, B3], [B4]) as well as the boundary
state formalism ([Bg, [{]).

A slightly stronger statement is that not only the conventional perturbative open string exci-
tations disappear, but more precisely the full cohomology of the new BRST operator around the
tachyon vacuum vanishes. As usual, the cohomology could include discrete states in addition to
conventional excitations. In [[], [], Rastelli, Sen and Zwiebach have proposed that after a field
redefinition, the new BRST operator may be taken to be simply ¢, or more generally a linear com-
bination of operators of the form (¢, + (—)"c_,). The cohomology of such operators is manifestly
trivial, and thus these authors are proposing this more stringent form of the second conjecture.
Using this simple BRST operator on the vacuum, they were able to find solutions corresponding to
the D-25 brane and lower dimensional D-branes.

Finally, a third level of understanding the second conjecture is that the perturbatively stable
vacuum should correspond precisely to the closed string vacuum. A possible interpretation of this
statement is that we should be able to isolate closed string excitations. Indeed, it is well-known
that closed string perturbative amplitudes can be in principle isolated from cubic open string field

theory diagrams. Thus closed string physics is there, though in a rather unmanageable form. It



may be that closed string states appear more manifestly around the tachyon vacuum. If this is the
case, perhaps one could obtain a description which differs from the explicit one provided by closed
string field theory [[[J]. For recent discussions of closed strings in the tachyon vacuum see [[[4, Bg].

A full understanding of Sen’s conjectures, especially the second, would probably require the
knowledge of the analytic solution for the perturbatively stable vacuum in cubic Open String Field
Theory (OSFT), which is not yet known. However, we can still make progress by using various
methods; in particular we will use the level truncation scheme to show that certain deformations
from the perturbatively stable vacuum belong to the trivial cohomology of the BRST operator
(Qw, governing the spectrum of the string field theory around the tachyon vacuum. This provides
evidence for the second level of the second conjecture, viz., the disappearance of discrete excitations.

Our idea is the following. It is well known that the cubic OSFT has a reparameterization

symmetry generated by operators ([[3], [EG], [E1, [E])):
Ky = Ly — (—)"L_.

Hence if VU is a solution of the equation of motion, i.e., Q¥ + ¥ x ¥ = 0, so is e“®»¥; this follows
immediately from properties (B.2-2.3) of K, which we will list in the next section. In other words, we
can generate new solutions by acting e®* on a known solution, and in particular, the perturbatively
stable vacuum Wy of OSFT (which we will always assume to lie in the Feynman-Siegel gauge).

A problem subsequently arises. From the physics point of view, we expect the tachyon vacuum
solution to be unique, i.e., there should be no moduli space of the tachyon vacuum solution. On
the other hand we seem to be able to deform U, by e with arbitrary parameters € and n.

In order that this seeming paradox may be consistent with physical intuition, there are two
possibilities. Firstly it may be that K, ¥, = 0 for all n, which would imply that e**»W¥, = ¥, and
that no new tachyon vacuum solutions are generated. At face value, this possibility is very unlikely
to be true because the action of K,, takes a solution in the Siegel gauge out of it, and a miraculous
cancellation would be needed. In fact, we have verified that the K,,’s do not annihilate the tachyon
condensate. This leaves us with another choice, i.e., though €K, ¥y may not vanish, it could be a
pure gauge transformation for any n and e.

The purpose of this note is to show that it is indeed the case that K,¥, is a pure gauge
transformation. Our result can be summarized as follows. First by using a recursive relation
obtained from the algebra of the K,’s, we show that it is enough to demonstrate that if the action
of Ky and K5 on the tachyon vacuum W, are pure gauge transformations, so too are K, for all

n. Then we use the level truncation scheme to calculate K1¥, and KyW, up to levels 5 and



4 respectively. We then show that they are indeed pure gauge transformations to an excellent
accuracy of 1.5% for K (resp. 1.6% for Kj).

The statement that K,V is a pure gauge transformation for any n is equivalent to the assertion
that the discrete zero momentum state K, VU, is Qy, exact. That is, these discrete BRST-closed
states are actually BRST-trivial. In a very nice recent work, Ellwood and Taylor [5(] have addressed
the triviality of the cohomology classes associated to continuous non-zero momentum deformations
of the tachyon vacuum. More precisely, they discuss the scalar excitations at even levels and show
that if they are QQy, closed, they are )y, exact also to very high accuracy, thus giving the first
convincing evidence for the disappearance of (a subset) of the conventional open string excitations.
Our results, by focusing on discrete cohomology, complement their work. Therefore, our works
jointly support, from different view-points, the triviality of the cohomology and hence the validity
of Sen’s second conjecture.

The outline of the paper is as follows. In Section 2 we review the key properties of the K,
operators and show that it suffices to consider only K ». Level truncation was subsequently applied
in Section 3 for KyWq up to level 4, and in Section 4 for KV, up to level 5 while most of the details
of the involved computations are left to the Appendix. Finally we end with concluding remarks

and open questions in Section 5.

2. The K, Symmetry of Cubic String Field Theory

It is a well known fact that the subalgebra? of the Virasoro algebra generated by the following

operators

Ky, =L, —(=)"L_,, (2.1)

is a symmetry of Witten’s Cubic String Field Theory ([, ]). Because K_,, = (—1)""'K,, we

need only consider the cases of n > 1. These operators have the following properties:

(K, @B] = 0 (2.2)
K,(AxB) = (K,A)* B+ Ax (K,B) (2.3)
<KnA7 B> = _<A7 KnB> ’ (24)

2Tt is in fact the maximal subalgebra that leaves the mid-point of the string invariant.



where A and B are arbitrary string fields, and @) is the conventional BRST operator. Incidentally,
comparing (2.3) and (B.4) with similar properties for Qp, we notice that there is no sign factor
(—1)# here because K, is a ghost number zero Grassman even operator.

Using (R.3) it is easy to show that e» (A% B) = (ef» A)x (e B). Therefore if Q¥ + ¥ x¥ = 0,
s0 too is Qp(efn W) + (efnW) x (e£» W) = 0, where we have used (2.3). In other words, using the
symmetry generators K,, we can obtain new solutions of the equation of motion by acting on a
known solution. As we have argued in the introduction, this poses a question about the uniqueness
of the tachyon vacuum. On the one hand, from the physics point of view, we expect that the
tachyon vacuum should be unique. On the other hand, we can seemingly generate new solutions by
acting ef* on the vacuum. For these two ideas to be consistent, we must propose that the action

of K,, on the tachyon vacuum Wy should be a pure gauge transformation, i.e.,
KWy =00y = Qu,A = QpA + Vg + A — A x . (2.5)

It is the checking of the conjecture (B-5) with which this present paper is concerned. We remark
in passing that there seems to be the possibility that K, |¥y) = 0. However this is highly unlikely
because though Wy is in the Feynman-Siegel gauge, the K, action does not preserve this gauge.
Indeed we have verified at low levels that this triviality does not seem to be the case so that we
need to return to address (B.5).

First we check the consistency of the conjecture. Because we have Qy,Qw, = 0 on the right
hand side of (B.5) due to nilpotency, so too must we get zero when we act Qy, on the left. This is

indeed so:

Q\IloKn\IIO = QB(Kn\II(]) + \Ilo * (Kn\lfo) + (Kn\Ifo) * \Ifo
= Kn(QB\IIO) + Kn(\ll() * \Ifo)
= Kn{QB\IIO —+ \I’() * \IIQ}

=0,

where in the second step we have used [K,,@p] = 0 (B.2) and in the last step, the equation of
motion (the expression in the braces) of W,. Notice that this check requires no usage of any special
properties of the tachyon vacuum, so for any solution of the equation of motion QpV¥ + ¥ x ¥ = 0,
we always have K,V being (Qy closed. Our conjecture is the statement that when ¥ = U, is the
tachyon vacuum, K, ¥, is not only closed, but also exact, whence BRST-cohomology trivial. To

show this is true is our work.



Naively it seems to be difficult to check that all the K,, actions are mere pure gauge transfor-
mations because there are an infinite number of them. However, we can show that it suffices to
check for K; and K, then by iteration n > 3 follows. This can be done in two steps. Firstly we

recall that the K,,’s form an algebra:
[Kn, K] = (n—m)Kppm — (1) (n 4+ m) K. (2.6)
Secondly we can show that if for some n and m,
K Vo = QuoAn,  KpWo = QuoAm,
then
Koy K% = QpAnm + Vo % A — A * Wo = Quig Ay, (2.7)

and hence pure gauge, where

A = Koy — KAy + Ay % Ay — Ay % Ay, (2.8)

Combining (PG), (E-7) and (B-§), we see instantly that if the conjecture is true for Ky and Ks, then

by iteration, we would have the result for all K, >3.

3. The Exactness of K,V

In this section, we check that KyWq is a pure gauge transformation, which would imply that K,W¥,
is BRST-exact. First we do the calculation at level two, which is very simple. We use this example
to demonstrate our method, then we go further to level four. For the details, the reader is referred
to the Appendix.

Before proceeding, let us make some general remarks which is explained further in the Appendix.
The tachyon solution ¥, of [ has only even level components. So if the gauge parameter A is in
an even (resp. odd) level, ¥y x A — A x ¥ will contain only even (resp. odd) levels as well; this is
shown in ([A.]). Furthermore, since Qg does not change the level and K5 increases or decreases the
level by two, to see whether K5 on W, is a pure gauge, we can restrict the gauge parameters to be
in even levels only. Likewise, for K7, because it increases or decreases the level by one, KW, must
have only odd levels. Therefore, in this case we can restrict all gauge parameters to be in odd levels

only. In particular we will focus on levels 2,4 for Ky and 3,5 for Kj.



3.1 Fitting at Level 2

Up to level two, there are four components for the string field:
(W) = n0,1 |2) + m2,10-10-1 [€2) + mo2b_2c0 [2) + M3 LT, () (3.1)

where the n’s are numerical coefficients and L™ are matter Virasoro operators. Furthermore,

—n

|2) = ¢ |0) and |0) is the SL(2, R) invariant vacuum?®. For simplicity, we denote the basis of the

fields as a row vector with four components so that

(Mo.1s M21s M2.2y M23) = Noa |2) + Meab_1c-1|2) + N2ab_ocy |Q) + 123 L™ |$2) .

To this convention of notation of fields we shall adhere.

The numerical values for these coefficients have been computed to great precision in the
Feynman-Siegel gauge[[]. At level (2,6) (here we use their convention that (L, I) refers to truncat-
ing fields up to level L and interactions up to level I; also we shall use their normalization), the
vacuum field (B.1) is

(7’]071, 7’]271, 77272, 77273) = (039765, —013897, O, 0040893) (32)

Up to level two, for the gauge parameter |A) of ghost number 0, there is only one numerical
parameter fisq:
|A) = p21b_2 (), (3.3)
and the gauge transformation of (B-]) up to level two is already given in [[[J] as

16 464 128 1040

0no,1 = /~L2,1(—§770,1 - %772,1 + gﬂzz + Eﬂz?))
Sy = pion(—3 — 1767701 B 112487721 60167722 114407723)
’ ’ 243 6561 6561 6561
Siia = tin1(—1 — 224770 492 992 . 1792772 - 14560172 )
’ ’ 81 6561 729 7 2187 7
S = 1+ o+ G %m ) (34

which we have confirmed term by term.
On the other hand, we remind the reader that

K2 = L2 —L_2 :L;n_‘_Lg —LTQ —Lg_Q,

30ur notation is different from that in ﬂj] We use here, for the matter part, the universal basis instead of the

oscillator basis.



where LY := ioj (2m —n) : buCm—n : —0mo is the ghost Virasoro operator with : : being the

n=—oo

creation-annihilation normal ordering. Recalling (B.1]), we have
Ko |U) = (3,1 + 4n22 + 1312,3) [€2) + 3m0.b-1¢-1 [€2) + 20,1020 [€2) — 10,1 LT, [€2) . (3.5)

We are now ready to check our proposal () up to level 2 accuracy, i.e., can one tune the

parameter jis 1, so that
K5 [Wo) =6 |Wo) (3.6)

would hold?
The left hand side of (B.G) is obtained by substituting the numerical results of (B.2)) into (B.5):

Ko [Wo) = (0.11469, 1.1930, 0.79531, —0.39765).
The right hand side of (B.0) is obtained via substitution of (B.) into (B.4):
5| W) = 101 (—0.26656, —2.9785, —1.8485, 1.0238).

Now we have 2 (Euclidean) vectors (K3 |Wy)); and (J |¥)); of equal length which we wish to be
as close as possible if (P.5) were to hold. We subsequently choose the parameter 5 ; by performing

a least-squares fit on these two vectors by minimizing the Euclidean distance between the two.

7

1
|2 [Wo) — & |Wo) | = <Z (K2 [Yo)); — (6 |‘1’0>)z’]2> 2 :
To this procedure we shall refer as “best fit.” At the present level we arrive at
po1 = —0.40732.
Putting this value into 0 |Wy) we get § |[¥o) = (0.10857, 1.2132, 0.75290, —0.41702) and whence
Ky |Uy) —d|¥) = (0.0061153, —0.020207, 0.042406, 0.019368).

A good estimator for our results is the normalized quantity,

K [Wo) — 6| Fy) |
| Ko [Wo) | ’

which we wish to be as close to 0 as possible. Using the above values, we have ¢ = 0.034294.

Therefore we conclude that up to level 2, our conjecture is accurate to 3.4%.



3.2 Fitting at Level 4

And thus we continue and to higher levels we shall go. Now we keep the string field solution up to
level four and compare the two sides of Ky |¥o) and Qg,A also up to level 4.
As we mentioned before, we can restrict the gauge parameters to be of even levels as well, thus

we can write A as:

|A) = 2102 [) + praib_a |) + pa2b_9b_1c1[€2)

(3.7)
+ pra3b_3b_1c0|) + paab_1 L7 |Q) + pra 502 L7 |S2)

which has six numerical parameters.
Due to the overwhelming length of the gauge transformation and K, action on ¥ to this level,
we leave their presentation to the Appendix. Again in accordance with our convention, we can

write the field into a vector with 14 components in the order

(Mo,15m2,i5mag) — (6=1,2,3;5=1,2,..,10).
In this notation, the tachyon vacuum at level (4,12) is given by

|Wo) = (0.40072, —0.15029, 0, 0.041595, 0.041073, 0.024192, 0.013691,

3.8
0, 0, —0.0037419, 0, 0.0050132, 0, —0.00043064) (3.8)

We need now check (B.G) to level 4. The K5 action on the left hand side is given by
Ky |[Wg) = (0.089868, 1.2947, 0.75306, —0.42277, 0.75143, 0, —0.15029, (3.9)

0, —0.30057, 0, 0, 0.27507, 0.083189, —0.041595)

and J |¥o) on the right hand side is a numerical function of the 6 p parameters obtainable by
substitution of (B.§) into the appropriate expressions in the Appendix.

Again we minimize |K5|Uy) — 0 |Up) | and find the parameters as

M1 = —054013, Ha1 = 018957, Ha2 = —037946,

fas = —0.37645,  pgy = —0.12019, g5 = —0.022464

Subsequently, we obtain
K| W) — 8] s) |

| Ko [Wo) |

In conclusion then, the accuracy increases from 3.4% at level 2 to 1.6% at level 4.

= 0.016078.




4. The Exactness of KV,

Having checked the validity of our conjecture (B.§) for K, to within 1.6%, in this section we check
if the K action is a pure gauge transformation. As we have mentioned in the beginning of the last
section, we can restrict the gauge parameters to odd levels only. Naively the first nontrivial test is
to expand |A) to only level 1 which has 1 free parameter. However, because to level 1 K;W, has
only 1 component, we would be lead to the trivial fitting of 1 parameter to 1 constraint. Therefore
we must start with level 3, by which we mean that we expand A to level 3 and ¥y to level 2 and
thus K 1P, to level 3.

4.1 Fitting at Level 3
Up to level 3, we have four free parameters p;; and p3,,¢ = 1,2, 3 in the gauge parameter:

|A) = p11b-1 |2) + 131035 [Q) + p32b_ob_1¢o |2) + p330_1 L™, |2)

Once again the data of Wy to level 2 was given in (B.3). The K action and gauge transformation
are subsequently presented in the Appendix. Since KV, is at level 3, we have 6 fields in the basis
and a general field may be represented as (111,73,) with (¢ = 1,..,5). Upon substitution of the

numerical values in (B.g), we have, to level 3,
Ky |¥g) = (—0.25868, —0.41692, 0, 0, 0.040893, —0.040893).

We perform the same procedure as in the previous section and minimize |K; [Wg) — § |[¥q) | to

obtain the least-square fitting parameters:
p11 = 0.88605, p3 1 = —0.15821, ps o = 0.42491, pg 5 = 0.23200.

Consequently, the measure of our fit is given by

_ K [Wo) — 61 %) |

= (.036030
| K1 |Wo) |

Thus accuracy is achieved to within 3.6%, not so bad for this level.

4.2 Fitting at Level 5

To achieve greater accuracy, let us keep the string field up to level 5 and check (B.5). Its two sides
K |¥o) and Qg,A are both up to level 5, which in our notation is a vector of length 22, with 16

10



components at level 5 in addition to those in the previous subsection (indeed as remarked before,

we need not include the even levels):

(7]171, 7]371', 7]57j) (Z = 1, ceey 5,] = 1, 16)
In the same vein, we can restrict the gauge parameters to odd levels only:

|A) = p1,10-1[92)
+ 13103 |Q) + p1320_0b_1¢0 |2) + p330_1 L™, |2)
+ 15,105 [Q) + p15,2b_2b_10_2 |2) + p15,3b_3b_1c_1 [2)
+ p5.4b_3b_2c0 |) + p55b_4b_1c0 |) + w5601 L™, |S2)
+ ps7b_o L™ |2) + pi5.8b_s L™, |) + pi5 9b_ob_1co L™, |€2)

+ ps,100-1 L7 L™, 1),

which has 14 parameters p.
Once again, the gauge transformation and K action on ¥y can be found in the Appendix. And
thus equipped, the left hand side of (B.G) gives

K |¥y) = (—0.25043, —0.33721, 0.054765, —0.013691, 0.021593,
—0.046608, 0.20537, 0.096767, 0.065265, 0.027382, 0,
0.024192, 0.013691, —0.011656, 0.0037419, 0.0050132,
0, 0.015040, 0, 0, —0.00086128, 0.00043064).

Finally we minimize |K; |Wo) — § |Wq) | and find the best-fit gauge parameters as:

p11 = 0.96221, p31 = —0.16665,  pzo = 0.42762,
w33 = 0.19259, ps1 = —0.027057, 5o = —1.2515,
is 3 = 0.31370, psa = 1.0733, ps5 = —0.30612,
tse = —0.091788, ps7 = 0.21383, tsg = —0.30555,
5,9 = 0.19208, 5,10 = 0.050724,
with an error estimate of:
K[ W) — 5] ) |
| K1 [Wo) |

So the accuracy increases from 3.6% at level 3 to 1.5% at level 5.

= 0.015128.

11



5. Concluding Remarks and Open questions

Sen’s second conjecture remains to be fully understood. A strong version of the conjecture states
that the entire spectrum of the open string should disappear from the perturbatively stable vacuum
U, and hence the cohomology of Q)y, should be trivial. A reparameterization symmetry generated
by K, in bosonic OSFT seems to be able to deform the tachyon vacuum whereby violating its
uniqueness. In this paper we have given a strong evidence in favor of the second conjecture by
explicitly showing that K, ¥, is merely a pure gauge transformation and thus gives no new moduli
to the tachyon vacuum. Using a level truncation scheme, we have demonstrated that K » are pure
gauge up to level 5 (resp. level 4) to within an excellent accuracy of 1.5% (resp. 1.6%), and that
all other K,, are so by iteration.

Many open questions are of immediate interest for investigation; we list a few here.

e An immediate check one could perform, as a test to the validity of the level truncation proce-
dure, is to see to what accuracy is K, ¥y closed, i.e., though Qg K, ¥, should be identically

zero, level truncation spoils this and it would be interesting to check the numerics.

e As we mentioned before, we can generate new solutions by acting e**» on a known solution.
We can apply this method to, for example, lump solutions ([f]-[[4]) and see what will happen.
Indeed as is with Wy, it is unlikely that K, will annihilate the lump solution for all n, so we
probably will obtain deformations of lumps. The question is then to see if these new solutions
are gauge equivalent to known lump solutions or if they do generate inequivalent new physical
states. If the answer is the latter, we would generate a part of the moduli space to which
the lumps belong. One particularly interesting example would be the solution generated by

eKq

e“*1. Because K; changes the level by one unit, by acting on the lumps we may obtain new

solutions which correspond to marginal deformations.

e In this paper and in [B(] only part of the cohomology of Qy, is proven to be trivial. It will
be very interesting to see if the entire cohomology is trivial. In other words, if we have an
arbitrary deformation 0V, around the tachyon vacuum W, which is closed Qg,0¥o = 0, it
must be exact, i.e., there exists a gauge parameter A such that Qg,A = d¥y. One particular
set of interesting deformations is those without momentum dependence because they are
related to the possible moduli space of translationally invariant solutions. When the solution

is unique, from a physical point of view, we should expect those deformations to be in the

12



trivial cohomology. Proving the triviality of zero-momentum cohomology should be readily

tractable by level truncation.

It is known that at the perturbative vacuum, K, is a good symmetry of the theory. Indeed,

[K,,Qp| = 0. However, in the tachyon vacuum ¥, we have
[Km Q\I/()]A = (Kn\IIO) *A— (_)AA * (Kn\IIO) = [KnlllOa A]a

which is not zero in general. This is in accord with [, [J], where the candidate BRST
operators of the tachyon vacuum do not generally commute with the K, operators®*. There
may be a gauge in which the tachyon vacuum U, satisfies K, ¥, = 0 for all n, but we think
this is unlikely. However, a subalgebra of K, might be a symmetry of the tachyon vacuum.
Any conclusions on these questions would have implications for the SFT around the tachyon

vVacuulll.

Note added

After the first version of this preprint was released, H. Hata sent us a formal proof that the K, ¥,

are pure gauge. We thank him for pointing this out to us and, with his permission, we reproduce

his proof here: The proof uses the following three points:

(1) The K, can be expressed as an anticommutator: K, = {Q@p, B,}, with B,, = b, — (=1)"b_,.

(2) The B, obey a Leibnitz rule for the star-product: B, (AxC) = (B,A)xC + (—1)*Ax (B,0).

(3) The equation of motion: QpW¥y + Wo* ¥y = 0.

Using the above, we can express K,V in the following way:

K,V = {Qp, Ba} Yo
= Qp(B.%0) + B (Qp¥o)
= Qp(B,Tg) — B, (Vo * V)
= Qp(BaTg) + Vo % (B, Vo) — (B, Vo) * Wy,

showing that (R.5) holds, by taking A = B, V.

4We thank B. Zwiebach for a discussion of this point.
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The work presented in this paper therefore reduces to a new check of the consistency of the
level truncation method. The above proof also immediately answers our open question concerning
deformations of lumps. Indeed, it can be seen from the proof, that for K,V to be pure gauge, ¥
only needs to be a solution of the equation of motion. The proof thus applies to a lump solution as
well as to the vacuum.

Checking to what accuracy is K, ¥y closed, namely to see how well the property Q% , = 0 holds
in the level truncation, would still be a good check of the level truncation. And of course, studying
other parts of the cohomology, as well as looking for a subalgebra of the K, leaving the vacuum

invariant, are still important open questions.
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A. Appendix

In this Appendix we shall tabulate the details used in our calculations. In subsections A.1 and A.2
we present the basis of the fields for ghost numbers 0 and 1, In A.3, we present the action of K,
and Ky on the string field theory vacuum to level 4. Finally in subsections A.4 and A.5 we present

the gauge transformations of the vacuum to level 5.
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A.1 The Basis of Ghost Number 1 Fields

As Wq is ghost number 1, we here tabulate the basis of the ghost number 1 fields up to level 5,
consisting of a total of 14 in even levels and 22 in odd levels. The numerical parameters 7, denote
the expansion coefficient of the field ¥ at the i-th field at level £. For the vacuum these parameters

have been computed to great precision in [[f]; we use their results at level (4, 12).

Level Field Coefficient | vev at level (4,12)

0 1) = ¢, |0) Mo,1 0.40072

1 b_1c0|£2) Ma 0

2 (3 fields) | b_1c_1|2) M2 -0.15029
b_aco |©2) 12,2 0
Lm, Q) 2,3 0.041595

3 (5 fields) | b_1c_2|Q2) 3.1 0
b_sc_1|2) 3.2 0
b_3co |Q> 13,3 0
L™, Q) 3.4 0
b_1coL™y |€2) 3.5 0

4 (10 fields) | b_yc_3|Q) - 0.041073
b_sc_s |Q) Mo 0.024192
b_sc_1 Q) s 0.013691
b_sco |2) Ma4 0
b_ob_1c_1¢0|2) | Nas 0
Lm, ) M6 -0.0037419
b_1coL™5|€2) a7 0
bote L™ Q) | nus 0.0050132
b_aco L™, |S2) 4.9 0
Lm, L™, |$2) 14,10 -0.00043064
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Level Field Coefficient | vev at level (4,12)

5 (16 fields) | b_1c_4]82) M5.1 0
b_sc_3(Q) 15,2 0
b_sc_2|Q) 5,3 0
b_yc_1|2) 5.4 0
b_sco |S2) N5,5 0
b_ob_1c_2c0 |Q2) | M5 0
b_sb_1c_1c0 Q) | M5 0
L™ 1) 15,8 0
b_1coL™, |€2) 75,9 0
b_ic_1 L7 ) 75,10 0
b_sco L™ |€2) 5,11 0
b_ic_o L™y |$2) 15,12 0
b_sc_1 L™y |2) 15,13 0
b_scoL™, |Q) 75,14 0
L7 L™, [€2) 15,15 0

0

b_1co L™y L™, |Q) | 15,16

A.2 The Basis of Ghost Number 0 Fields

The gauge transformation parameter |A) is of ghost number 0, thus we here present the basis for
ghost number 0 fields. Analogous to the previous subsection, we use p; for ¢ = 1,..,5, and i
indexing within each level to denote the coefficient of the expansion of |A) into the basis. A least-
squares fit was then performed in order to minimize the difference between the K action on the
vacuum and the gauge transformation therefrom. Below, the columns Fit n refer to the solution of

the parameters u at the best-fit at level n.
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Level | Field Coefficient | Fit 2 | Fit 3 | Fit 4 Fit 5
1 b_1|Q) f11 0.886 0.962
2 b2 [€2) f2,1 -0.407 -0.540
3 b_3|Q) 13,1 -0.158 -0.167
b_sb_1co |€2) 3.2 0.425 0.428
b_1 L™, Q) 1433 0.232 0.193
4 b_4|Q) a1 0.190
b_sb_1c_1|Q0) [a,2 -0.379
b_3b_1c |€2) a3 -0.376
b_ L™ ) fiaa -0.120
b_o L™, |C2) a5 -0.0225
5 b_s|Q) 15,1 -0.0271
boob_rc_o|Q) | s -1.25
b_sb_1c_1 Q) 5.3 0.314
b_3b_scq |€2) 5.4 1.07
b_4b_1c0|82) 5.5 -0.306
b_1L™, |2) 5.6 -0.0918
b_o L™, |2) .7 0.214
b_sL™, |2) 5.8 -0.306
b_ab_1coL™y |) | ps9 0.192
b L7 L™ ) | ps10 0.0507

A.3 K; and K, Actions on |¥)

We act K; and K5 on the vacuum W, (only the action on nonzero components of ¥y is kept):

K1Wo = [(=n01 — n2.1)b-1co [0)] + [(3n2,1 + may1 + 3na2)b_1c2 |2)
Anaz)b_sc_1 Q) + (—nu3)b-3c0 [€)

M23 + 5a6 + 3na,10) L5 [€2) + (=123 — mug)b-1co LT Q)]
[(5n4,1)b-10-4 [Q2) + (414,2)b—20_3 ) + (1,2 + 3na,3)b—3¢_2 |2)
+ (2n1,3)b-1c-1 Q) + (N4,2)b—2b_10-2¢0 [2) + (N1,3)b_3b_1c_1¢0 [2)
+ (3146 + 14,10) L5 [2) — (a,6)b—1c0 L7y [2) + (Ma,8)b-1c-1 L5 |2)

(
(

_|_
_|_
+
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+ (3ma,8)0_1c_o L™ |0) + (2n4,10) LT3 L™, [Q2) — (N4,10)0-1¢c0 L5 L™, [2)]

KyWo = [(3m2,1 + 13m23) [2)]
+ [(310,0 = M1 + 5nMaz 4 1304,8)b_10-1 [Q) 4 (210,10 — 21m4,2)b—2¢0 |€2)
+ (=10,1 + 64,6 + 3,8 + 3414,10) LT [)] + [(—=572,1)b-10-3 [$2)
+ 2031 ) + (2m2,1)b_2b_1c_1¢0 [Q) + (=21 + 3n2,3)b_1c1 L7 [Q)
+ (2nm2,3)b—2c0 L [Q) — 1,3 L7, LT |€2)]

A.4 Gauge Transformation of the Even Level String Field

Let us present the heuristics of the computation required in the gauge transformation 0¥ := QA +
U x A — A*xW. The only non-trivial part is the computation of the x-product. Since we are working
under a level-truncation scheme, to compute B x C for string fields B and C, it suffices to find,

level-by-level, the coefficients of the expansion of the star-product into the basis of each level, i.e.,
BxC=> g,
i

with 1)y, the i-th field basis at level ¢ and x,; the coefficients we wish to determine. Defining the

orthonormal basis sz, so that
(i, o) = Sor b

where (-,-) is the BPZ inner product, we arrive at z,; = (@gﬂ-,B * C), which simplifies by the
definition (A, Bx C) := (A, B,C), to

Ty = @e,z‘, B, C>-
For an example, let us determine the coefficient = in
[ *xb_5|Q) =z|Q) +...

The orthogonal state to |2) is ¢o|€2), therefore z = (¢ [Q),]Q) ,b_2[2)) = —3 in a normalization

where (|2),]Q),]2)) = 3 in accordance with [[]]. The computation of the 3-correlator we leave the
reader to a vast literature [B, [, £6, £§]. As another example, let us compute

b_lc_l ‘Q) * b_2 ‘Q) = l’b_gCo ‘Q> + ...
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The orthogonal state to b_sco [2) is c_5[2), whence x = (c_ [2) ,b_1c_1 [Q) ,b_2 Q) = 2.

We point out further that a simplification is at hand due to the relation:
(A, B,C) = (—1) FHANBHD B g € ), (A1)

where ¢g(X) and ¢(X) are the ghost number and level of X respectively (we take ¢g(|2)) = 1).
This simplification ([A-])) is crucial to the observations in the second paragraph at the beginning
of Section 3. We need to compute Px A — AxP, so we expand it into the basis A and the coefficients

are

(A, @, A) — (A, A, ) = (A, @, A)(1 + (—)/WBHD TN

In our case, we have always that g(A) = 2, so we must have
0(A) + £(P) + L(A) = even;

otherwise the coefficient would be zero.

For example, when |®) = |2) and |A) = b_5|Q2), only even levels of A have non zero coefficients,
while when |®) = |Q) and |A) = b_;|Q2), only the odd levels of A have non zero coefficients. Of
such a simplification we have taken great advantage in the computations of Sections 3 and 4.

We present below the gauge transformation on a string field. Here we consider the case that
the string field has only even levels, so for the gauge transformation of even levels we have only
even level gauge parameters while for the gauge transformation of odd levels we have only odd level
gauge parameters. We divide the gauge transformation into two parts. The first part (6Mn,;) is
@B/, which is exact at every level. The second part (07;) is Uo* A — A * Uy; it is approximate in

the level truncation.

QA part:
6Mipy = —3pa,
5(1)772,2 = —MH21
W5 = Lpas
6Wngy = —Tpay + Sptan + 6tas — 524144
Wnye = —6pua1 — 3pia — 1344
5(1)774,3 = —Opan — Lpta2 — 2p43
8Wnug = —3puas — 2413

5(1)774,5 = —3pa2 +4pa3
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6Wnue = pa + 2fta4

5(1)774,7 = 43 — 3paa

5(1)774,8 = a2 — 4taa — 3pas
My = —3pas

5(1)774,10 = H4p

for even level and

6Wns1 = —bugy + 4pze — 13u3

5(1)773,2 = =431 — 2p32

5(1)773,3 = —2u31 — [32

5(1)773,4 = M31 + 433

5(1)77375 = 32 — 233

5(1)77471 = =51 + 652 + Tis s + 8uss — 13056 — 785 10
5(1)774,2 = —8us1 — 4ps 2 + 654 — 5256
5(1)774,3 = —Tusy — s — 353 — 4psa — 1358
5(1)77474 = —0ps,1 — 2053 — 255

5(1)77475 = —4ps1 — psa — 355

6Wnye = —4pus.9 — Spsa + 6piss + 134150
5(1)774,7 = —4p53 + 354 + s 5

6Wnys = pis1 + 3pise + tsr + 10

5(1)774,9 = pis5 — 456

5(1)774,10 = 15,3 — Of5.6 — 357 — 35,10

5(1)774,11 = 54 — 457 — s

5(1)774,12 = s — Ops 6 — Spus g + 4itsg — 345,10
5(1)774,13 = —dps7 —4Apss — 259

5(1)774,14 = —ps4 — 458 — M9

5(1)774,15 = 5,7+ ps8 + 245,10

5(1)774,16 = 59 — 45,10

for odd level (only nonzero contributions are listed).

VUo*x A —Ax ¥, part:
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Here we show only dn9; and 67, ;. For the complete results up to levels 4 and 5 for all ’s, due

to the enormity of the expressions, the reader is referred to the web-page

Inttp://pilerre.mit.edu/ yhe/gaugetranst.dviy.

. —1670,1 12,1 464m2.1 1121 128m2242,1 1040m2 31121
0no,a = - + +

9 243 81 243
_8576774,1M2,1 I 4961424121 4 7040m4 3142,1 _ 281614 4412,1
6561 729 6561 2187
6016m45p21  2080m46pt2,1  30160ms 8121 8320m4 94121
6561 243 6561 2187
 112736m4,10142,1 n 352101 /44,1 n 6112m5 1141 2816722141
6561 243 6561 2187
2288019 304,1 2905607411141 32864m4 00041 94721430041
6561 177147 177147 19683
6195204 aptan 742445041 4576061041 397280m4 84041
59049 19683 6561 177147
183040m4 94141 n 2480192n4, 101441 n 17670,1444,2 n 1124803 14,2
59049 177147 243 6561
60167722002 1144072 3004, n 17536m,1 4,2 217136m4 20142
6561 6561 19683 177147
14720m, 3104 2 B 74240, 414 2 B 8051214 51t4,2 n 22880m4 61442
177147 19683 177147 6561
T31120mspas  391040nu0jtas | 124009600102 8192010
177147 177147 177147 6561
303104041 pua3 1310720404043 1392640430043 53248014 8fta 3
A A v 2 A U VA T SV
212992n 3p0aa  2129920ms 6044 1363148814 7p0aa 404684814 gpia 4
6561 19683 177147 177147
_1703936774,9/~L4,4 _ 208732167}4,10#4,4 X 1040770,1#4,5 4 301607}2,1#4,5
177147 177147 243 6561
8320m2opta5 12084834145 557440my1p0a5  32240m4 20045
2187 6561 177147 19683
457600ns 305 183040msapta s 391040ma 500a5 311792004 6ft4 5
177147 59049 177147 177147
1703936007005 3504592001005 966784nu0mas 503401674 1045
B 177147 B 177147 + 59049 + 59049
Sy = —16m0,1441,1 n 16m2,1 11,1 n 896m2,2101,1 . 1040m2 30411

9 81 243 243
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- 640my,1p011 L 0488ns2p1,1  640n4 30,0 156167440011

2187 6561 729 6561
7808nys5p1,1  2080m46pe1,1  1040mu 80011 58240my 94011
6561 243 2187 6561
112736ma0001,1  80moapsn . SOmoapsy 70401204031
6561 I 729 6561
520072 3143,1 15987204131 7600ms2p31  3200m, 3431
2187 177147 6561 6561
947214 41131 4 10816074 5143,1 _ 1040074,6/43,1 _ 52007481431
19683 177147 2187 19683
457600m 9p13,1  563680m410443,1  256m0,1132 947212 11132
177147 59049 243 6561
8192m2 2443 2 n 16640ms,3132 1146881414132 6400n42413,2
6561 6561 177147 177147
819201, 31132 114688n4.4pt32 30310414 54432 33280m4,613,2
177147 177147 177147 B 6561
61568074 84132 _ 532480149413, _ 1803776m4,10443,2 I 1040m0,1/43,3
177147 177147 177147 243
 1040mg,1 133~ 58240mp 0035 12084803 3103,3 N 4160074 1143,3
2187 6561 6561 59049
356720ns2p33 ~ 41600ms 31433~ 1015040m, 4033  507520m4 5033
T riar 19683 amiar L 1mniar
3117920my 633 1703936m4 71033 120848n4 81133 ~ 676748814 91133
177147 B 177147 + 59049 + 177147
503401674 10/43,3 n 5680m0,1 15,1 568072,14151 L 15296072 2445,1
59049 6561 59049 177147
~ 369200m2,3415,1 N 26240m41 15,1 7176807420051 n 227200m4 34151
177147 4782969 1594323 531441
180454404 apis1 803200ms 5051 738400ms 61051 36920014 8451
4782969 1594323 177147 1594323
_9942400774,9%,1 X 40021280m4 10451 I 30410,1 45,2 _ 105136m2,1/45,2
4782969 4782969 2187 177147
103040m2.0152  19760m2 3pu52  730240m4 1050 1423184my o152
© 59049 59049 4782969 1594323
3526401y 3415, n 9190404 4415 2 n 7936640, 5115 2 N 3952014 6115 2
531441 1594323 4782969 59049
683384014 8415 2 n 6697600749415, n 21419840, 10452 n 8010,1 45,3
4782969 1594323 1594323 81
_80772,1M5,3 4 26240m2 24153 _ 520012 34153 4 390272n4 11153
729 177147 2187 1594323

22



_1519120774,2/~L5,3 i 3200m4,3145,3 i 8473614,4415,3 i 18560m4,5145,3

1594323 6561 1594323 59049
1040074 6115,3 n 5200ms8pt53 170560004 9145,3 n 56368074,10145,3
2187 19683 4782969 59049
1280m0,145.4  47360m2 11054 40960m2 2054 8320072 3445 4
2187 59049 177147 59049
906035214 1 4454 _ 9856074 2415,4 _ 4096007 3115,4 I 212992, api5 4
4782969 531441 1594323 4782969
15155200, 5054 16640006154 30784000 spi5.4 26624001 0115 4
1782969 | 59049 1504323 4782969
901888074,10/45,4 n 5632101455 n 158722155 2129921 5415 5
1594323 6561 19683 177147
36608051155 16384004 1/155 1235456040055 229376030155
177147 531441 4782969 1594323
360448n34p155 4096000, 51155  T32160n 655 10316800, 81855
531441 531441 177147 531441
1384448014 945 5 I 3968307214 10/45,5 _ 2080m0,1 45,6 i 2080m2,1 15,6
4782969 4782969 243 2187
116480m 2156  3117920ma 356 ~ 83200m4,1p45,6 ~ 713440m4 21456
6561 177147 59049 177147
8320031156 2030080144056 101504005056 22651616014 61156
19683 177147 177147 1594323
17039360 71156 311792004 s/156 17460352004 01t56 6042225280, 10/15.6
531441 © 1594323 4782969 B 4782969
42598401 31157 42598400 ts7 545259520 75 809369601 s/t5.7
77147+ 531441 © 4782969 4782969
34078720m opts,7  417464320m4 10457~ 5200m0 1158 5200m2,1 4158
4782969 4782969 T To1sr T 19683
457600m2 2158 604240m2 3158~ 1039168014158 49400074 2145 8
177147 59049 4782969 177147
208000754155 615680mm,4it55  T030400n5/155 1558960076115
177147 531441 4782969 1594323
2896691207155 | 604240n5p155 5317312004055 251700804 100158
4782969 531441 4782969 531441
166407011459 =~ 615680mp 14159 5324801204459 19335682 31159
6561 | 1rrar  1mmaT 177147
T7454720m4,1 /45,9 n 41600074 2115 9 B 9324800m4,3145.9 n T7454720m4, 4459
4782969 4782969 4782969 4782969
19701760 5150 4988672004650 1090519041, 71150 7154201614 84150
T 4782069 ¢ 4782060 4782969 4782969
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618741767]479/1579 + 805442567]4710}15,9 . 1127367}071/15710 + 1127367}271/15710

4782969 1594323 6561 59049
631321612005.10 . 5034016030510 45094400, 11510 3866844814 941510
AT 59049 T T 594323 4782969
4509440, 310510 11003033604 40510 550151680 50510 6042225280, 641510
531441 B 4782969 B 4782969 B 4782969
1669857281, 711510 5034016748510 2819048967 011510 27950291214 1042510
4782969 B 531441 B 1594323 B 531441
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