IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Dufresne, D. (1986). The dynamics of pension funding. (Unpublished Doctoral
thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/8297/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

THE CITY UNIVERSITY
DEPARTMENT OF MATHEMATICS

THE DYNAMICS OF PENSION FUNDING

by

Daniel Dufresne

Thesis submitted for the

degree of Doctor of FPhilosophy

July 1986



CONTENTS

List of Tables
Licst of Illustrations
Acknowledgewents

Abstract

Q. INTRODUCTION

.1 Subject-matter
2 Methodology

3 Outline

.4 HNotation

9 List of Symbols
6

e 9 & &8 & 8

ARbout "Inflation” and "Real Terms"”

1. ACTUARIAL COST METHODS: CLASSICAL THEORY
1.1 Introduction
1.2 Preliwminaries
1.2.1 Promotional Salary Scale
1

.2.2 Model Population and Scheme
2

1.2.3 Terminology
1.2 Description of Traditiocnal Methods
1.3.1 Unit Credit

1.3.1.1 Description
1.3.1.2 Ultimate Values
1.3.2 Entry Age Normal
1.3.2.1 Description
1.3.2.2 Ultimate Values
1.3.3 Individual Level Premium
1.3.3.1 Description
1.3.3.2 Ultimate Values
1.3.4 Aggregate
1.3.9 Attained Age Normal
1.3.6 Frozen Initial Liability

(Yo = » BN S BN

11

1
i

12
14
16
2e

22
22
24
24
23
26
26
26
26
31

o
<

32
34
34
34

-
e

38
39
1%



Contents

1.3.7
1.3.8

1.3.
1.3.
1.3.

Briticsh HMethods

Other Methods

8.1 Initial Funding
8.2 Terminal Funding

8.3 Pay-as-you-go

1.4 Aggregate Methods

1.4.1
1.4.2

1.4.3
1.4.
1.4.

1.4.4
1.4,

1.4.

1.4.

1.5 Compari
1.5.1

1.95.
1.5.2

General Remarks

Aggregate, Attained Age HNHormal
and Frozen Initial Liability

Aggregate with New Entrants
3.1 n ( e

3.2 n == and vy ) @

The Parameter a

3.1 Mo Mew Entrants
1.4.4.1.1 Effect of ¥

1.4.4.1.2 Effect of
Pre-retirement
Decrements

1.4.4.1.3 Asymptotic Values

4,2 Aggregate with New Entrants
1.4.4.2.1 Effect of n

1.4.4.2.2 Effect of ¥

1.4.4.2.3 Effect of
Pre-retirement
Decrementscs

1.4.4.2.4 Asymptotic Values
of a(n)

4.3 Numerical Values of a(n)
son of Methods

In the Limit

1.1 NHumerical Example

Transient Behaviour:
Numerical Example

1.6 More than One Entry fge

Appendix 1.1

Appendix 1.2

Convergence to a Stationary
Population

Details about the Numerical
Examples

40
41
41
41
42
42

-y
ra

44

48
49
51
91
52
52
35

96
36
37
37
58

98

39
61
61
64
67

72

75

77



Contents

2.

VARYING RATES OF RETURN AND OF INFLATION
2.1

2.2
2.3

Introduction
Modelling Assumptions
Discrete Time
2.3.1 Beal-Term Variables
2.3.2 Spread Method
2.3.2.1 Individual Cost Methods
2.3.2.2 Aggregate Cocst Methods
2.3.3 Amortization of Losses Method
2.3.4 Response to a Single Loss
Continuous Time
2.4.1 Real-Term Variables
2.4.2 Spread Method
2.4.2.1 Individual Cost Methods
2.4.2.2 Aggregate Cost Methods
2.4.3 Amortization of Losses Method

2.4.4 Response to a Single Loss

Appendix 2.1 Proof of Eg. (2.35) for UL{t)

RANDOM RATES OF RETUEN: DISCRETE TIIME

3

2

.1
.2
3.

3

Introduction

Assumptions and Notation
Spread Method

3.3.1 First Moments

3.3.1.1  Ei{t) = i,

3.3.1.2  Ei(t) # iy

3.3.2 Second Moments

3.3.3 Non-Stationary Population
3.3.4 Aggregate Cost Methods
Amortization of Losses Methods
3.4.1 First Momentc

3.4.1.1  Ei(t) = iy

.4.1.2 Ei{ i
3.4.1 i{t) # iy

79
79
81
82
82

o
o

84
86
88
20
32
92
94

a
P

24
95
96

298

100
100
101}
103
103
103

104

1035
108
129
109
111
111

112



Contents

3.4

.2

Second Moments

3.5 Comparison of Methods:
Numerical Example

3.9.1 AfAssumptions
3.5.2 The Trade-0ff Between Varfr
and VarC
3.5.3 The Optimal Region 1 < m < m*
Appendix 3.1 Proof of
VarX = EVar(X|H) + VarE(X|H)
Appendix 3.2 Z-Transforwms
Appendix 3.3 Proof= of Propositions
3.4 and 3.95
Appendir 3.4 Reymptotic Relationships for
VarF{e=) and VarC{=)
Appendix 2.5 Proof of Proposition 3.7
Appendix 3.6 AL and NC (Section 3.5.1)
q. RANDOM RATES OF RETURN: CONTINUOUS TIME

q.1 Introduction

4.2 fAssumptions and Notation

4.3 Convergence to a Diffusion

4.3
4.3
4.3
4.3
4.3

.1
. 2
.3
.4
.9

The Problem

General Convergence Result
Subdividing il(')
Subdividing Yl(')

Comments

4.4 Moments of F(t) and C{t)

4.4

DY - I < T =
[{=]

.

First Moments

4,4.1.1 ¥ = ¥

4.4.1.2 L

v

v

Second Moments
Non-Stationary Population
Aggregate Methods

The Optimal Region

114
118

118
119

123

127

130

135

138

142

141
141
142
144
144
145
146
159
151
154
135
156

1356

137
160
161
162



Contents

Appendix 4.1

Appendix 4.2

Appendix 4.3

5. MOMENTS OF ANNUITIES-CERTAIN
9.1 Introduction
9.2 The Interest Rate Process
3.3 Discrete Time
9.3.1 fAccumulated Values
5.3.2 Discounted Values
3.4 Convergence to Diffusions
5.5 Continuous Time
5.5.1 ficcumulated Values
95.59.2 Discounted Values
.6 Accumulating and Discounting Rates
9.7 Higher Maoments

Appendix 5.1

CONCLUSION

REFERENCES

Equations

4.2 and 4.3

Stochastic Differential

Proof of Proposition 4.1

Proofs of Propositions

Proof of Propocition 5.2

164

170

175

181
181
182
186
186
188
189
191
191
192
193
198

209

205

207



Table 1.1
Table 1.2

Table 1.3

Table 3.1

Tahle 3.2

Table 3.3

Table 3.4

Figure 1.1
Figure 1.2

Figure 3.1

LIST OF TABLES

a{n)
Ultimate Costs and Funds.

Transient Behaviour of Costs
and Funds

Relative Standard Deviations of
F(«) and C{«~) Under the Spread
Me thod

Relative Standard Deviations
F(»=) and C{=~) Under the
Amortization of lLosses Method

Relative Standard Dewviations of
F(«) and C{=) Under
the Spread Method

»*

m as a Function of iv and o

TABLE OF ILLUSTRATIONS

Querall Costs Quer Time
Fund Levels QOuer Time

Relative Standard Deviations
of F(e) and C(=)

66

69

121

122

79

71



ACKNOWLEDGEMENTS

The research was conducted under the supervision of
Dr. Steve Haberman. I wish to thank him for the help and
encouragement {both discrete and continuous) he provided
during these four years.

I also wish to thank Prof. fnatole Joffe (Un. of
Montreal) whose help concerning the recondite subject of
the convergence of semimartingales (Proposition 4.1) was
essential.

For their wvaluable advice and comments, I am also
grateful to Mr. Sidney Benjamin, Miss Barbara Cairns (both
of Bacon & Woodrow), Dr. Mark Davis (Imperial College),
Miss Monique Tremblay (Towers, Perrin, Forster & Crosby,
Montreal) and Mr. David Wilkie (Watson & Sons). For her
invaluable skills and patience, I wish to thank Mrs
Francine Houle, who typed the thesis.

I am grateful to the Commonwealth Scholarship
Commission, and to the Natural Sciences and Engineering
Council Canada, wvhose sponsdrship made this research

possible.

DECLARATION - COPYING OF THIS THESIS

Povers of discretion are granted to the University
Librarian to allow the thesis to be copied in whole or in
part without further reference to the author. This
permission covers only simple copies made for study

purposes, subject to normal conditions of acknowledgement.



ABSTRACT

In the context of North American and British
actuarial practice, a mathematical model is used to study
the evolution over time of the fund levels (F) and
contributions (C). First, actuarial cost methods (e.g.

Unit Credit, figgregate) are examined in the traditional

"static” framework. Three points are studied: (1)
comparison of the various methods, (2) inclusion of new
entrants in the wvaluation basis, and (3) the rate at
which F(t) reaches its ultimate level, as t - o, Next,

the model is modified to include wvarying rates of return
and of inflation. Two “"methods of adjusting the normal
cost”™ are considered: (1} the adjustment is equal to the
unfunded 1liability divided by the present value of an
annuity for a term of "m" years (Spread method); (2) each
intervaluation loss is 1liquidated by a fixed number of

payments over the following years (Amortization of Losses

method). The core of the thesis has to do with random
rates of return. In discrete time, these rates are
supposed independent and identically distributed.

Recursive equations are derived for the first and second
moments of F(t) and C(t), under methods (1) and (2). In
the case of the Spread method, an "optimal region”™ 1is
specified for "m": it is shown that for m > m* the
variances of both F and € are increasing functions of m.
The optimal region is thus 1 & m < m*. The Spread method
is also studied 1in continuous time, acsuming rates of
return to be a white noise process. A proof is given of
the convergence of the discrete processes Fn (representing
the fund when "n” valuations are performed every year) to
a diffusion process F, as n 2 =, Using the Itd6 calculus

of diffusion processes, the first two moments of F(t) and

c(t) are then shown to satisfy some particular



differential equations. The final chapter applies similar
ideas to the calculation of the moments of
annuities-certain, when rates of return are a white noise

process.

10



CHAPTER ©
INTRODUCTION

©@.1 SUBJECT-MATTER

This is a study of some aspects of pension funding,

in the context of North American and British actuarial

practice. The central idea 1is to view fund levels and
contributions as "processec” taking place over time. In
other words, the emphasis is put on determining the

characteristics of the whole sequence of fund levels and
contributions, rather than on analyzing them at isoclated
points in time.

Various methods of calculating the contributions are
described, first in the traditional "static"” setting, and,
next, in the case of wvarying rates of return and of
inflation. The major topic studied i< the derivation of
the moments of the fund levels and contributions, when
rates of return are independent identically distributed
(i.i.d.) random variables (discrete-time formulation) or a

vhite noise process {continuous-time formulation).

@.2 METHODOLOGY

The analysis 1is carried out mathematically using a
simplified model for the pension scheme and population. A
few numerical illustrations are included.

Another way of treating the subject would be to use
computer simulations. These can be applied to a wider
range of situations, since they do not require as wmany
simplifying assumptions as mathematical modelling usually
does. Two comments are called for i1in order to explain,
and perhaps justify, the approach adopted in this thesis.
(1) From a purely academic point of view, mathematical

results are preferable to numerical ones. As concerns



Section 0.2

pension funding, it is felt that more theoretical research
is needed, since little has been done so far.
(2) In relation to the concrete problems encountered by
actuaries, however, mathematical modelling cannot claim to
be the final answer. The practical applications of the
results presented here are restricted to {i) problems
which are themselves simple enough to fit into the models
studied, and (ii) obtaining approximate answers, for the
more complex ones, without having to resort to full-scale
simulations.

It is hoped that practitioners, even though they may
find few practical uses for the results of this research,
will at least benefit from the new incsight it brings into

pension funding.

@.3 OUTLINE

Each chapter begins with an introduction which
describes its content and relates it to previously
published work. The second section is about notation and
assumptions (except for Chapter 35). Long proofs and
numerical calculations are contained in the appendices.
Summaries of Z-transform technigques and of the 1Ito
calculus are also provided (Appendices 3.2 and 4.1). The
text 1is fairly self-contained, except as regards weak
convergence and Proposition 4.1 {Chapter 4).

Section 1.3 of Chapter 1 describes the funding

methods traditionally used in North Awerica and Britain
(Aggregate, Unit Credit, etc.). The remainder of the
chapter is devoted to analvzing some of these methods in a
static environwment, using a continuous-time wmodel. The

three major points studied are

(i) comparing the various methods;
(ii) the effects of including new entrants in the
valuation basis; and

12



Section 9.3

(iii) the rate at which the fund reaches its ultimate
level.
The results extend those of Trowbridge (1952).
Chapter | is, to a large extent, necessary background
for Chapters 2,3 and 4. Nevertheless, some of the results
are wmainly related +to the wunderlying population of
members, and so have little to do with the rest of the
thesis (for example Sections 1.4.4 and 1.5.1).

In Chapter 2, the transition is made from the static

model of Chapter 1, to the stochastic wmodel assumed in

Chapters 3 and 4. The major hypotheses are now

(i) varying rates of return and of inflation;
{ii) fixed actuarial assumptions; and

(iii) unindexed benefits.

Since economic assumptions are no longer in agreement
with actuarial assumptions, the methods of Chapter 1 have
to be supplemented with "methods of adjusting the normal
cost”. Two of these are described:

(1) The "Spread™ method. The adjustment is equal to the
unfunded liability (i.e. actuarial liability - actual
fund) divided by the present wvalue of an annuity for
a fixed term.

(2) The “"Amortization  of Losses™ me thod. Each
intervaluation loss 1s liquidated by a fixed number
of payments over the following years. The total
contribution is then the normal cost plus the sum of
those payments which are still in force.

Chapters 3 and 4 constitute the core of the thesis.
They are primarily concerned to calculate the first and
second mowments of the fund and contribution, when rates of
return are random. The model of Chapter 2 is kept largely
unchanged, the only differences being
(i) there is no inflation on salaries (or,

equivalently, benefits are fully indexed), and

(ii) rates of return form a white noise process.

13



Section 0.3

Chapter 3 deals with the discrete-time formulation.

Recursive equations are derived for the moments of the
fund and contributions, under the two methods of ad justing
the normal cost defined in Chapter 2. Asymptotic formulae
and numerical illustrations are also provided.

In the case of the Spread method, an “"optimal region®
is specified for "m", the number of years over which the
unfunded 1liability is spread. It is shown that for m
greater than a particular value m*, the wvariances of both
the fund and the contribution are increasing functions of

m. Thus the "optimal” values of m are | 2z m < m*

Chapter 4 examines the continuous counterpart of the

Spread method. Section 4.3 1identifies which stochastic
process F describes the evolution of the fund, when rates
of return are a continuous-time white noise. First, a
sequence of processes {Fn, nx*1} is defined. Each F°
represents a fund subject to i.i.d. rates of return, as in
Chapter 3, but with "n" valuations being performed every
year. Then, the process F is found by taking the liwmit,
as n + =, of the sequence {Fn}. The convergence proof
relies on recent recsults by Joffe and Metivier (1986)
about the weak convergence of semimartingales.

In Section 4.4, differential equations are derived
for the moments of the fund and contributions, with the
help of the Ito calculus of diffusion processes.

Chapter 5 applies the ideas set forth in Chapters 3

and q to the calculation of the moments of
annuities-certain, when rates of return are a white noise
process. Some of the results of Boyle (1976) are

reproduced, and further extended to continuous annuities.

©.4 NOTATION
Chapters 1| and 2

(i) All symbols corresponding to "actual”™ monetary

amounts have a bar ("-") above them; the same symbols

14



Section 0.4

without a bar refer to “"real-term” values {(viewed at time
@). Example: ﬁ(t) is the actual fund built up at time t,
while F{(t) is the “deflated" counterpart

F(t) = exp{-Bt)F(t),
B being the assumed rate of inflation on salaries.
(ii) The argument "s" or "t" is dropped when a function is
constant over time; e.g. if B{(x,t) is the same for all t,
then it is written as B{x).
(iii) The argument standing for age (x or y usually) is
dropped when a summation over all ages is performed. For
instance

r-1
NC(t) = r NC(x,t).
X=a

{iv) The same symbols are often wused in both the
discrete-time and the continuous-time formulations. Any

difference in meaning should be clear from the context.

Annuities

The symbols éx:ﬁ]’ éﬁ], etc. have the usual meaning,

except that, to simplify the notation

(i) the rate of interest is not shown when it is implicit
from the context;

(ii) in Chapters 1 and 2, the force of interest (and not
the rate of interest) is shown, when needed, as a
superscript. For example,

n-1

Z exp(j*Y)
j=0

¥

is denoted by éér), instead of ééf _1).

In Chapter 5, the random variables a{t), a(t), &(t)
and g(t) are the counterparts of a5 ’;ﬂ’ §ﬂ and g{'] ;

respectively, when rates of return are random.

15



Section ©.5

@.5 LIST OF SYMBOLS

The sections in which the symbols are defined are

indicated in brackets.

a,a{n)

B(t)

v(t)

5(*)
AB{t)
AY(t)
sn(t)
Ai

n{t)
it

=

a a a
m P ml? Tml

Parameters representing the rate of
convergence of F{t) to F{=) wunder the
Aggregate method (1.4.1) or Aggregate with
New Entrants me thod {1.4.3). Note
that a(®@) = a. In Chapters 2 and 4, a refers
to the Spread method in general, with a =

1az -v (2.4.2.1).

AAssumed rate of inflation on earnings
Actual rate of inflation on salaries (2.2)
Assumed net rate of return = n-8

Actual net rate of return (2.2)

Valuation force of interest (4.2)

Dirac delta function
= B(t)-8

= ¥(t)-v¥

= n{t)-n

= Ei{t) - iV
Increase of pensions in payment (1.2.2)
Assumed nowminal rate of return on assets

Actual nominal rate of return (2.2)

Force of mortality. See comment in 1.2.1

= Var i{t) (Chapter 3). In continuous time
(Chapters 4 and §5), 02 is also the wvariance
of the instantaneous rates of return (4.2(v})
End of life table

Entry age into scheme {1.2.2)

Present value of an w-year annuity-certain,

with payments made at the beginning of the
year, resp. the end of the year,

continuously.

16



Section ©.5

5
H:ml

a(t),a(t)

AAL
AAN
ADJ (t)
AL{x,t)

c{n,t)

c(t)

Present value, at age x, of a life annuity

with payments made at the beginning of the
year.

Present value of an annuity payable until age

x+m-1 or the annuitant’s death, whichever
occurs first, with payments wmade at the
beginning of the year.

Present value of an annuity payable for life,

with the first payment deferred wm years. It

is equal to

exp(—nm)(ex+m/8x)ax+m.

The life tables used before and after age x+m
may differ i1f x+m=r.

Equivalents of aﬂ and aq ¢ when

rates of return are random (5.3.2) and
5.5.2).

Active members actuarial liability (2.2)
Attained Age Normal cost method

Ad justment to normal cost

fActuarial liability w.r. to one mewber age x,
at time t

In calculating benefits at retirement,
fraction of salary which constitutes the
pension, per year of service (1.2.2)

Pension paid to one member age x at time t
Benefits paid when B{t) = B for all t (in
real terms) (2.2)

= sb(r-a) in Chapter 2

Contribution, as fraction of payroll
Contribution under Aggregate with New
Entrants method, as a fraction of payroll
(1.4.3). Note that c(@,t) = QGGc(t)

Querall contribution at time t

17



Section ©.5

C{n, t)

d,dv

e(y)

e(J)

*

EAN
ELT 13
F(t)

Fin, t)

FIL

i{t)
ILP
e(t)

Overall contribution under the Aggregate with
New Entrants method

= i/(1+i), resp. iV/(1+iv)

In Chapter 1, rate of entry of new members
age y (1.6)
= aﬁ:TTI]/aﬁ7 in Chapter 3 (3.4)

m -(0
= § e /7€ ds = a ) ({knowvn as “"partial life
@ Xts X X:

expectancy”)

Expectation operator

Entry fige Normal cost method

Englicsh Life Table No. 13 {males)

Fund at time t (before contributions and
benefits are paid, in the discrete case)

Fund at time t under the Aggregate with New
Entrants method (1.4.3). Note that
F(o,t) = #CSCF(¢)

Frozen Initial Liability cost method

o-field of events prior to (inclusive of)

time t (3.2 and 4.2)
= Ei{t) (3.2)

Valuation rate of interest (3.2)

Earned rate of return during (t-1,t) (3.2)
Individual Level Premium cost method
Actuarial loss during {(t-1,t) (at exact time
t in continuous tiwe) (2.3.2.1 and 2.4.2.1)

Survival function (1.2.1)

Boundary of “optimal region” (3.5.3)

Number of years over which new entrants are
assumed to enter the scheme under the
Aggregate with New Entrants method (Chapter
1). In Chapters 4 and 5, the superscript "n”
refers to the situation where n wvaluations

are performed every year.

+t O



Section 0.5

NC{x,t)
o(t)

P(t)
P(t)

PG
PUB(t)

PUB(t,n)

»
PVUB
PUS(t)

PUS{t,n)

RAL{t)

RAL

X :ml

Normal cost for one member age x at time t
Let -= < a ¢ w. Definition: f(t) = o(t")

as t-=a if lim |E(t)/t"] = o.
t-a

Payments made to ligquidate €(t) (2.3.3)
Payment towards amortization of unfunded
liability

Pay-as-you-go

Present wvalue of future benefits of all
current members (1.4.2)

Present value of future benefits of current
members and of new entrants coming into the
scheme over the next n years (1.4.3). Note
that PVB{t,®) = PVB(t)

PVUB(t) when B(t) = B for all t (2.2)

Present value of future salaries of all
active members (1.4.2)

Present wvalue of future salaries of all
currently active members and of new entrants
coming into the scheme over the next n years

(1.4.3). Note that PVUS(t,®) = PUS(t)

¥ . . -
= e (1- lfaﬁ]) (2.3.2.1) or {1+i){1- 1/351)
(3.3)
In Chapter 1, retirement age. In Chapter 3,

r = (1+i)(NC-B+AL/3_ )

= S+PUB/PVS-B (1.4.1)

Actuarial liability w.r. to retired members =
present value of future benefits (2.2)

RAL(t) when B(t) = B for all t (2.2)

Salary of one active member at time O

Value of wm payments starting at age x,

accumulated with interest and survivorship in

service to the end of the m-th year

19



Section 0.5

§{t),s(t) Equivalents of & and s , when rates of
ti t

return are random {5.3.1 and 5.5.1)

§?],s¥] Accumulated value, at time t, of a t-year

annuity-certain with payments made at the

beginning of the year (resp. continuously)

5{(t) Payroll at time t

u = 1+1i

u(t) = 1+i(t)

u{t) Unamortized part of the initial unfunded
liability (1.4.1)

ucC Unit Credit cost method

UL{t) = AL(t)-F(t) = unfunded liability

u

u(t)

W Wiener process. See 4.2 and Appendix 4.1

Ev({t)
17(1+i(t))

Z(t) Sum of forces of interest up to time t {5.6)

9.6 ABOUT "INFLATION" AND "REAL TERMS™”

The only type of inflation considered in this text
will be inflation on salaries.

The analysis of Chapters 1 to 4 refers to
final-salary schemes and, accordingly, all monetary values
relate, directly or 1indirectly, to the rate at which
average salaries grow from year to year. As it 1s the
evolution of these "actual” (or "nominal”) wmonetary values
which is studied, it is mathematically useful to work with
“"de-inflated” wonetary wvalues, which will be called
"real-term” values. As 1is described in Sections 0.4,
2.3.1 and 2.4.1, this is done by dividing actual amounts

at time t by the index number

t t
exp[ Z B(k)] or exp[ | B(s)ds].
k=1 /]
In consequence, “growth 1in real terms” will mean

growth at a rate superior to the rate of increase of

20



Section 0.6

salaries. This explains the importance of the quantity

{t)

n{t) - B(t)
= rate of return on assets
- rate of increase of salaries

= “real rate of return”.
The expressions ‘“real terms” and “real rate of
return” will thus have meanings slightly different from
the ones they have 1in economics. In particular, no

reference is made to price inflation or to the retail

price index.
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CHAPTER 1
ACTUARIAL COST METHODS:
CLASSICAL THEORY

1.1 INTRODUCTION

The main purpose of the first chapter is to give an
account of actuarial cost methods, as background to the
second chapter. This 1is done in Section 1.3. The
description 1is chiefly North American in content and
style, and follows (in decreasing order of importance)
Trowbridge (1952), Winklevoss (1977) and Anderson (1985).
British methods are briefly mentioned, following Colbran
(1982) and, more importantly, Turner et al (1984).

Rather than providing an exhaustive study of
actuarial cost methods, Section 1.3 endeavours to give an
insight 1into the functioning of the most common ones.
Gains and losses are not discussed (see Chapter 2), and
only retirement benefits are considered; in any case,
there 1is no “accepted"” or “standard” way of handling
benefits other than retirement when applying any one of
the cost wmethods (in this respect, see Chapter 11 of
Winklevoss (1%977) and Chapter 4 of Anderson (1985)).
Furthermore, the presentation specifically refers to
defined benefit schemes, where benefits are linked to
final salary.

The remainder of Chapter 1 is devoted to a certain
number of theoretical problems connected with pension
funding. Section 1.4 treats a particular family of cost
methods of the aggregate type. Three points are studied.
The first one is the question of identifying the limiting
fund levels and contribution rates that this family of
methods lead to, when they are repeatedly applied to a
stationary population. The second one concerns the effect
of introducing new entrants into the wvaluation basis;

while almost unheard of in North America, new entrants
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assumptions are indeed a feature of the "Discontinuance”
or “"Control” methods used in Great Britain. The problem
1s treated wmathematically, which of course wmeans that
several simplifying assumptions have to be made. The
third topic studied is the influence of the salary
distribution and of the rate of interest on the “rate of
convergence” of F(t) to its limit F{=).

Section 1.3 is an attempt at comparing the different
actuarial cost wmethods, with the help of mathematics
instead of numerical simulations. There is no shortage of
numerical comparisons in the literature; consider, among
others, Colbran (1982}, McGill (1979), McLeish (1983), and
especially the notable mass of csimulation results
displayed in Winklevoss (1977). On the other hand, truly
mathematical comparisons of actuarial cost wmethods are
scarce: Trowbridge (1952) is probably the best example,
while Winklevoss {(1977) also does indicate some
interesting relationships - yet without proving them.
Section 1.9 contains proofs of generalized wversions of
some of the claims made by these two authors; as regards
me thods, howvwvever, this section 1is closer to what Picot
(1976) and Hickman (1968) have done in related though
slightly different contexts. A numerical 1illustration
follows the mathematical analysis.

Section 1.6 discussec the wvalidity of some of the
results proved in 1.4 and 1.5, when one of the major
assumptions - a single entry age into the scheme - 1s
disposed of.

While in 1.3 the wmethods are described assuming
yearly valuations and a “"discrete” population, the rest of
the chapter supposes continuously performed valuations and
a continuous age distribution. This simplifies some of
the proofs, and in my view makes the theory more elegant.

How salary scales are dealt with 1i1s explained in
1.2.1, and the model population and scheme are set forth

in 1.2.2.
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1.2 PRELIMINARIES

1.2.1 Promotional Salary Scales

In this chapter, noc explicit reference will be made
to salary scales. The reason is simple: as far as the
completely deterministic situation is concerned, the

salary scale and the surwvival function ex can be lumped
together to form a new function ei, without causing any

loss in generality.

Let wme explain the last statement. Consider the
present value of the retirement benefits an individual now
aged a will receive starting at age r. Let s be his

current salary and 5S(+*) the salary scale (excluding

inflation). Also let n and B be the nominal rate of
return and the rate of inflation on salaries,
respectively. If the benefit formula is 100c’ of final
salary,

Present value of retirement benefits

- cos-exp[ﬁ(r'a)](SS(P)/SS(B))r—a|§a
= cOSvexp[(ﬁ‘n)(P‘a)](ss(r)/ss(a))(er/ea)ér
- crseexp[(A-n)(r-a)](ei/e>)a_

where &€ = € +55(x)
X R

.5
= ces+exp[B(r-a)] r-a|*a
In the last expression r—alé: is computed using the

“"salary-survival” function ez {only in deferment, i.e. up

to age r).
This is why one may find, in what follows, phrases

like "if Mo is smaller than zero"”, which usually do not

make much sense, but do have a meaning if SS(x) increases
quickly enough. As an example, Colbran (1982) uses for

his numerical illustration a "flat” salary distribution
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(i.e. total salaries at age x are equal for all «x). If
one believes that this state of affairs is to persist in
the future, then it could equivalently be said that

s
o= o for all =x. One could even envisage a situation

where p; ( @ at all ages, in other words that decrements

are more than offset by salary increases.

The function yz will therefore not be assumed of any

shape whatsoever. The superscript “"s” will be dropped,

for clarity, frow yi and 83.

This kind of simplification wwould evidently not be
possible if random deviations in mortality or withdrawals
were considered.

Thus, to "lower yx" will mean any combination of

(i) decreasing the death rate
(ii) decreasing the withdrawal rate
(iii) making the salary scale steeper at age x.

1.2.2 Model Population and Scheme

The basic wodel population is the same as the one

adopted by Trowbridge ({1952): it is stationary from the
start, and new entrants age a come into the scheme at rate
83 per vyear; however, several comments will be made

concerning the case where the initial population 1is not
stationary.

The benefits are b times years in serwvice times final
salary, in the form of a straight life annuity. At any
time t, all new entrants earn a salary equal to s+exp(Bt),
increasing at rate B8 till they retire. Both n (the
continuous rate of return on the fund's assets) and B are
constants. In the discrete case, salaries are assumed to
be paid in full at the beginning of the year. Benefits 1in

payment increase at rate {, not necessarily equal to B.
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Remark 1.1. In the discrete case there is a minor

technical difficulty with the calculation of the benefit
at retirement. A member having entered at age a = 30 on
January 1, 1432 retired at r = 65 on January 1 1467, if
still in service. fis salaries are assumed to be paid at
the beginning of the year, this member’'s final salary was

paid on January 1466. Hence the pension would have been
b{r-a)+exp[B(r-a-1)]+initial salary.

To make the formulas less cumbersome ({and more
similar to their continuous counterparts) I will suppose
the pension to have been increased with an extra year's

inflation, i.e. that

pension = b{r-a)exp[B(r-a)]+initial salary.

1.2.3 Terminology

Nomenclature 1is a problem in the pension world.
Several different terminologies have been proposed for the
actuarial cost methods, but I will retain the “old"” one
used by Trowbridge (1952), since it apparently still is

the one most widely understood by practitioners.

1.3 DESCRIPTION OF TRADITIONAL METHODS

1.3.1 Unit Credit

1.3.1.1 Description

Trowbridge (1952) writes (p.22):

Unit credit funding is based on the
principle that the pension to be provided at
retirement age will be divided 1into as many
"units"” as there are active memberchip years,
with one unit assigned to each year. The normal
cost as to any individual pension in any year
becomes the cost to fully fund on a single
premium basis the unit assigned to that vyear.
The accrued liability at any time is the present
value of all units of pension assigned to prior
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years. Under this method of funding particularly
the accrued liability is often referred to as the
“past service"” liability.

While there are thecoretically no recstrictions as to
what these "units” should be, I will describe the wversion
of the method which is most popular in practice. Here one
unit is defined as the projected benefit at retirement
divided by the number of active years before retirement
(this is the so-called "Projected Unit Credit” method).

For each of the ea new members entering the scheme at

time t, one unit is

s+exp(Bt) ¢+ exp[B(r-za)] + b e (r-a) .

earnings inflation on years of

at time t earnings till service at
age r age r

projected benefit

1
{r-a)

divide by
number of active
membership years

= s+brexp[B(t+r-a)].

Hence the normal cost at time t with respect to each of

these new entrants 1is
ﬁé(a,t) = sb exp[ﬁ(t+r—a)]°r_aléa.

The following year, the normal cost with respect to each

member aged a+l will be

sb exp[B(t+r-a)]:

NCfa+1,t+l) r—(a+1) [*a+1

sb'exp[ﬁ((t+1)+r—(a+1))]°r_(a+1)léa+1.
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It can be seen that for any x, a ¢ x < r-1,

(1.1) NC(x,t) = =sb exp[ﬂ(t+r—x)]'r_x|éx.

The actuarial liability is the "mathematical reserve"”
(in the 1life insurance sense) built up by these normal
costs, if all assumptions are exactly realized. Consider

the same ea new entrants at time t. The accumulated value

of the normal costs (taking survivorship in service into
. ) 1 .

account) is, at time t = t+x-a {i.e. when the remaining

members reach age x):

-1

-a
kf@ £a+kNC(a+k, t+k) exp[n{x-a-k)]

X

a
= s*be I €_,kexplB{ttr-a)}].

r—(a+k)|éa+kexP[n(x_a-k)]
= s+be f €. exp[B(t+r-a)] exp[-n(r-x}]a_

= S°b°£x exp[B(t1+r—x)]'(x—a)Or_xléx.

I1If one lets x=r, the preceding formula says that
benefits are fully funded by the time of retirement.
(This also shows that the prospective value of the
actuarial liability - or "mathematical reserve” - 1s equal
to the above calculated retrospective value.)

In practice one defines the actuarial liability for a

member age X as

(1.2) AL(x,t) = sb exp[ﬁ(t+r-x)]'(x—a)'r_xléx,

since it 1s quite improbable that the normal costs would
have been paid on the same basis in previous years as the
one adopted at time t (like with a mathematical reserve in

life insurance).
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Compare AL{x,t) in (1.2) with RC(x,t) in (1.1). One
notices that the actuarial liability is the amount
required to fund the number of units allocated to date

(k-a of them) on a single premium basis. That is to say
ﬁi(x,t)/ﬁé(x,t) = X-&, a ¢ x < r-1,

Moreover, rewriting (1.2) as

== C eeh. _ N . K-a
(1.3} AL(x,t) = s+brexp[B(t+r-x)]{r a)r—xlax' .

Present wvalue of future
benefits
shows the actuarial liability at each age before
retirement to be equal to a pro rata fraction (x-a)/(r-a)
of the present value of retirement benefits.

With regard to retired wembers, the actuarial
liability is defined as the present value of benefits, and
there is no normal cost.

In practice, the overall contribution is found by
adding
(i) the sum of the individual normal costs NC{x,t), and
(ii) a payment towards the liquidation of the “unfunded
liability"”.

The unfunded liability is the excess of the actuarial
liability over the actual fund, 1.e.

UL{t) = AL(t) - F(t).

The way in which the unfunded liability is dealt with
over the years depends on whether it arises from benefit
improvements, gains or losses, etc. and on relevant
legislation.

It is worth emphasizing that the Unit Credit method
(like the following two, the Entry Age Normal and the
Individual Level Premium) is an individual! wmethod. By
this is meant that normal costs and actuarial liabilities

are estimated separately for each member and then summed

up, to yield, finally, an overall cost that is the sum of
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(i) and (ii) above. Aggregate-type methods do not rely on
individual costs and liabilities directly but solely on
aggregate values {see Sections 1.3.4 to 1.3.6).

I will now show that the Unit Credit method “works”
in the aggregate, i.e. that if actuarial assumptions are
exactly realized and normal costs paid when due, then each
member's benefits are funded by the time he reaches
retirement age.

Assuming the model population, the derivation of Eq.

{(1.2) clearly implies that
exp(n) (€ AL(x,t) + € NC(x,t))

= ex+1QL(x+1,t+1), a ¢ x £ r-1.

A similar formula holds for retirees; if x = r
ﬁi(x,t) = present value of future benefits
= ﬁ(r,t+r—x) + exp[{{x-r)] . éin-c)
pension post-retirement
accrued at increase
age r

and then

exp(n)cx[ﬁi(x,t)

~benefits paid to a member age x in year t]
= exp(n)ex{ﬁi(x,t)~§(r,t+r—x)exp[¢(x—r)]}

- e, Blr, (te1)rr-(x+1) Jenp[t(xe1-r)]-alT)S)

e, AL(x+1,t+1).

Therefore
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exp(n)(AL(t) + NC(t) - B(t))

(A} L r-1 _ (A} 3
= »sexp(n){( Z erL(x,t) + I exHC(x,t) - e B(x,t))
X=a K=a X=r
@ — —
= I ¢ AL(x,t+1)
H=a+l

= AL({t+1), since AL{a,t+l) = 0.

This proves that when all assumptions work out in
practice, paying the normal costs when due will provide
for all retirement benefits and build up a fund that

remains equal to the actuarial liability.

1.3.1.2 Ultimate Values

The wmodel population has a constant rate of new
entrants 83. Benefits, as a fraction of final salary, do
not change over time. It 1is then clear from the

description of the Unit Credit method that as soon as the
initial unfunded 1liability has been amortized and the
population become stationary (after at most w-a years),

the following formulae hold:

C(t)-exp(-Bt)

r-1
= sb I & exp[B{r-x)]-
X=a

c(t)

5
l“){l K

(¥)

= sb 8Par° aF___al :

F(t) F(t) exp(-B8t)

= AL{t) exp(-At)
r-1
= sb{ Z & exp[B(r-x)](x-a)r |8,
v LE exp[ (B-¢) (r-x)](r-a)a{? %)y,
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1.3.2 Entry Rfge Normal

1.3.2.1 Description

This method, as its title implies,
visualizes the normal cost for any given employee
as the level payment (or level percentage of pay)
necessary to fund the benefit over the working

lifetime of such employee (Trowbridge (1952),
p.23).

For a member age a at time t,

Present value of retirement benefits

= s+exp(Bt) + exp[B(r-a)] b(r—a)°r_a|éa
current increasing
earnings earnings

to age r

pro jected retirement benefit
and

Present value of future earnings

r-1
= s+exp(Bpt) I exp[-n{x-a)] ¢+ exp[B(n-2)] ° ex/ea
X=a
interest increase in
discount earnings

s'exp(ﬁt)*égjgrg],

so that the level fraction of earnings required to fund

the benefits is

L (7)

b(r—a)oexp[ﬁ(r—a)]~r_a|§a/ a:7=a

Thus the normal cost for year (t,t+l) is

r-1
Z € +sb(r-a) exp[B(t+r-a)]-
XK=& X

/aiY)

NC(t) g -

3
r-al|a

Valued prospectively, the actuarial liability 1is
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AL = Present value of future benefits w.r. to
active and retired members

-Present value of future normal costs w.r.
to active members.
In respect of retired members, the actuarial
liability is the present value of the remaining pension
payments; for an active member age x at time t, it is

equal to

Sb(r‘a)e“P[ﬁ(t+r-x)]‘P-XIéx

- sb(r—a)exp[ﬁ(t+r—a)]0(r a aa/aifl_a )-aiyg_m .

This expression can be simplified, (dropping the

factor sb exp(Bt)(r-a) for the time being):

- exp[ﬁ(r—a)](r _a a /a(y) )é(y)

=+ x:r—a X:r-xi

exp[A(r-x)]

4
r-x|“x

= exp[A{r-x)]

3
r-x|"x

(1 [exp[—v(r—a)](er/ea)éréij%:m ]

[a ( ) 1__ cexp[-v(r-x)](e /e )& ]
. B 2 ,={7)
= exp[B(r X)](r_xlax/aa:F:a )

x[ai l = —exp[—v(x—a)](exlea)éij)

(v) _,a(7)

(1.4) exp[ﬁ(r—x)]r_xléx'§a=x_a

Thus we def ine

AL(x,t) = sb(r-a)exp[B(t+r-x}] .aif) /é(f)

r-xléx

if X < r—-1. It can be seen that
- = == w{¥
AL(x,t)/NC(x,t) = s(_) ,

and that
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AL(x,t) = (Present value of future benefits)

(a(;)i—a ( ) 2 )

a formula similar to Eq. (1.3).
So, under both the Unit Credit and the Entry Age
Normal wmethods, AL{x,t) increases from ® at age a to

B(r,t)°ér at age r.

It is also true, as in the case of the Unit Credit

method, that when all assumptions are exactly realized

exp(n){AL(t) + NC(t) - B(t)) = AL(t+1).

1.3.2.2 Ultimate Values
After the initial unfunded liability has been paid

of f and the population become stationary

F(t) = exp(-Bt)F(t)
s () ()
- xia sb exexp[ﬁ(r—x)](r—a)r xl xSa: =& Sa:r=a
z (7-%)
+ L sb & (r a) exp[(§-B)(x-r)]a_ -
X=r
and
c{t) = exp{-Bt)NC(t)
r-1 ( )
= L sé exp{B{r-a)] b(r—a)r_ l al.ig
X=a
r-1 . {Y)
= L se& exp[—xf(r-a)]b(x‘--a)({’."/ea)ar/aék:;‘_:a .
K=&
(1.5) - sb(r—a)erérexp[—v(r-a)]éi?l_a (*L !
1.3.3 Individual Level Premium
1.3.3.1 Description

This method is closely related to the previous one.

It “"funds the benefits as to any individual from date of
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entry (or date plan is established, if later) to
retirement date as a level amount (or as a level
percentage of pay)" (Trowbridge (1952), p.24).

Let the scheme be set up at time ©® and consider a
member age x who has, under the terms of the arrangement,
Xx—a years of credited service. When using the Entry Age

Normal methods, one computes

Eﬂnﬁé(x,o) = sb(r—a)exp[ﬁ(r'a)]r—a éa/éijgfgli

and the "initial actuarial liability”

EAN; -~ _ _ _ = ,=(7) (")
AL(x,@}) = sb(r-a)exp[B(r a)]r—xlax 8 .x=m 73%.7=5
EAN- - .
these AL{x,@) are summed up for all members with
credited past service, and the outcome EQNEi(Q) {= initial

unfunded liability) is amortized over a fixed number of
years.

The rationale of the Individual Level Premium method
is that in order to ensure that the fund will not go
negative during the first few years (a possibility in the
case of small schemes), each member’'s benefits are funded
cover his remaining years 1in serwvice. Consequently, if

normal costs are a level fraction of earnings,

ILPﬁé(y,t) = sb(r—a)exp[ﬁ(t+r—x)]r_xléxléirl_x
and
ILPﬁi(y,t) = sb(r—a)exp[ﬁ(t+r-y)]r_y'éy'é£:%:§]/éi:%?m

t = y-x. y £ r-1.

The normal costs fully fund the member's benefits as
he reaches age r, and no identifiable initial unfunded
liability arises.

The Individual Level Premium method also differs from
the previous two in the way gains and losses due to salary

increases are dealt with.
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To keep things simple, say a member j enters at age a
at time t=0, with a salary é(J,O) and no credited service.
Valuations are performed at times © and | on the same
basis. Under both the Individual Level Premium and the

Entry Age Normal methods, the normal cost at time @ is

ﬁé(j,@) = §(J,O)b(r—a)exp[ﬁ(r—a)]'r_aléaléijgts].

At time | the two wmethods differ:

EAN-= . EAN; -, .
EAN: NC(j,1) and NQL(J,l) are estimated using

current data, i.e.

EQHﬁE{ 1) = §(j,l)b(r—a)exp[B(r—a)]'r_alaa/éi:%:a
and
PAL(G, 1) = S(in)b(rea)explA(r-a) ]y 8.,
cagh i

In practice §(j,1) # exp(ﬁ)é(j,@), with the result that a
gain or loss arises from the unexpected increase in salary
AS = §(j,1)-exp(ﬁ)§(j,0). These individual gains or
losses are subsumed in the overall actuarial gain or loss,

which is amortized in the fashion thought appropriate.

ILP: The difference here is that the method still

requires the present wvalue of normal costs (past and
future) to equal the present value of benefits. Defining

the normal cost as EQNﬁé(j,l) (above) will not permit

this since the projected benefit has changed. Instead,
ILP-~ = .
NC(j,1) = S(j,@)exp(B)b(r-a)exp[B{(r-a)] i'L—j

5
r-al|-a

+A§b(r—a)eHP[ﬂ(r‘a_1)]r_a-l|§a+1/éizz:r-a-ﬂ

The first term 1s what the normal cost would have

been had all assumptions worked out, and the second one
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spreads the unexpected change in projected benefits over
J's remaining years in service.

It follows that

ILP

p J

- Present value of future updated
normal costs

= §(j,0)exp(B)exP[ﬁ(r‘a‘1)]p-a-l|éa+1

e s (Y
X BE(Q:%] /ai:r—a

Just as though no unexpected change in salary had
occurred. (This can be verified in the same vay Eq.
(1.4), Section 1.3.2.1, was derived.)

Updating normal costs in this fashion (each year)

implies

ILP-

AL(j,t+1) = (F

real ILP-=, .
AL{j,t) + NC(j,t)) exp(n)ex/£x+1

wvhether or not the salary increase assumption is realized.

Finally (Anderson (1985), p.24):

Thus ve see that the individual
level-premium method resembles entry-age-normal
with entry age defined as the age of hire or age
at the effective date (whichever is greater).
The difference 1is that wunder ILP we take a
normally large component of the actuarial gain -

a component which is normally negative - out of
the accrued liability and spread it into the
future normal costs. Under entry-age-normal,
this portion of the gain was siwmply amortized in
the wmanner of other gains - i.e. over a period
which may or may not have been longer than the
future working lifetime of a particular

individual.

1.3.3.2 Ultimate values

It is clear that they are the same as with the Entry
Age Normal method, since after r-a years and 1in the
absence of deviations from actuarial assumptions the two

methods are identical.
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1.3.4 figgregate

The principle behind the aggregate method is
that of equating present value of unfunded future
benefits to present value of future
contributions, where the contribution per active
life {or per dollar of salary) per vyear is
assumed constant. It may seem at first thought
that the resulting contributions should remain
level from year to year for an initially stable
population, since the wvery principle implies
spreading the value of total benefits levelly
over future life years.

This supposition regarding the aggregate
method is absolutely correct provided future new
entrants are taken into account, both in valuing
present value of future benefits and in
calculating present value of future active life
years. (Trowbridge (1952), p.26)}.

It will be shown in 1.4.3.2 that this last approach
leads to partial funding only (or to no funding at all if
the initial fund is nil).

In practice, though, the Aggregate wmethod ignores
future new entrants. The portion of covered payroll c(t)
representing the cost of funding the benefits for the

coming year is
c{t) =

{Present value of future benefits of all members)
- (Fund at time (t})

(Present value of future earnings of current members)

For the model population

c(t) =
r-1 W - o) -
I sb(r-a)exp[B(t+r-x)],_ |&,+ I e B(x,t)alT ) -F(e))
Xx=a X=r
r-1 {Y)
L sex exp(ﬁt)axz.ﬁ____}?l
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and

the overall cost for year (t,t+1) is

_ _ r-1
C{t) = c{t)s(t) = c(t) s€ exp(Bt)

Derivation of ultimate fund values and contribution rates

is

deferred till Section 1.4, for all methods of

aggregate type.

1.3.5 Attained Age Normal

Total benefits are divided into past service
and future service benefits exactly as under unit

credit funding, and [...] there is complete
freedom as to the manner in which the past
service liability shall be paid off. For future

service benefits, however, the aggregate wmethod
is adopted. (Trowbridge (1952), p.28)

The overall contribution for year (t,t+1) is

c(t)5(t) + P(t)

where

off,

c{t) =

(Present value of future benefits of all mewbersc)

- {Unamortized part of past service liability

+ Fund at time t)

(Present value of future earnings of

current members)

ﬁ(t) = Payment towards amortizing the initial
(past service) unfunded liability.

the

After the unfunded liability has been completely paid

the method is applied exactly like the Aggregate.

Remark 1.2. In practice, a new layer of unfunded

liability is created every time
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(i) a significant actuarial assumption is modified
(ii) benefits are updated.
For this reason it is very likely that the payments

P{(t) will be present for a period wmuch longer than the

initial amortization period.

1.3.6 Frozen Initial Liability

This method 1is applied in the same way as the
Attained fAge Normal, except that the initial unfunded
liability is computed using the Entry fge Normal method;

Remark 1.2 holds verbatim.

1.3.7 British Methods

fAiccording to Colbran (1982), the wethods used most in
the United EKingdom are the fAggregate, Attained Age Normal
and Discontinuance Target. Only the last one of these
{which is unknowvn in North America) has not been described
;0 far. Turner et al. (1984) make this method a variation
of the Unit Credit method, in which a control period (5,

10 or 20 years usually) is employed.

Where a control period is used, the Standard
Contribution Rate [normal cost rate], is found by
dividing the present value of all benefits which
will accrue in the control period (rather than
simply in the year following the valuation date)
by the present value of member's earnings in the
control period. Thus the notional Standard Fund
[actuarial liability] at the end of the control
period 1is the present wvalue of all benefits
accrued at that date [...].

In order to assume a stable age structure,
in conjunction with the use of a control period
an assumption is usually wmade that new entrants
will replace current wmembers as they leave
service, die or retire. (Turner et al. (1984),
p.19)

A control period can also be used to wmodify the
fAggregate method. (The effect of bringing new entrants
into the wvaluation basis, under the fAggregate wmethod, is

examined in Sections 1.4.3 and 1.4.4.)
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1.3.8 Other Methods

The following three "funding methods" are unimportant
in the context of funded schemes providing defined
benefits; they are presented solely for the sake of

completeness.

1.3.8.1 Initial Funding
Each new entrant's benefits are paid up in full at
time of entry. The model population gives
C(t) = Cost at time t

= Present value of benefits of the
ea members entering at time t

eaosb(r—a)EKD[B(t+P‘a)]r_a|aa

Grsb(r—a)exp[ﬁt—v(r—a)]ér.

One could define

Present value of benefits of a
member age x at time t

AL(x,t)
= sb(r-a)exp[B(t+r-x}]

3
r-x| " x

= (e_/e_)sb(r-a)exp(Bt)exp[-¥(r-x)]a_

exp[n(x-a)]é[t—(x—a)}/ex

i.e. the fund on hand with respect to members age x (< r)
is merely the contribution made x-a years ago, 1increased

with interest.

1.3.8.2 Terminal Funding
Benefits are funded in their totality when wmembers
retire. The model population implies
c(t) = ersb(r—a)exp(ﬁt)ar,

and, if one insists on defining an actuarial liability,

ﬁi(x,t) = 0, vk ¢ r,

q1
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AL{x,t) = sb(r—a)exp[ﬁt+(¢-ﬂ)(x-r)]éin-s), X > r.
1.3.8.3 Pay-as-you-go
There is no funding: benefits are simply paid when
due; with the model population
o
B({t) = I ¢ B(x,t)
X=r

= { ex sb{r-a)exp[B{t+r-x)+{(x-r)]

sb(r—a)exp(ﬁt)erélﬁ—c).

1.4 AGGREGATE METHODS

1.4.1 General Remarks

The rest of Chapter {1 1is carried out in continuous
time, taking the model population and scheme for granted.
Furthermore, the analysis will be performed using
“real-term” monetary values (see Section 0.6).

The Aggregate, Attained Age Normal, Frozen Initial
Liability and Aggregate with New Entrants wmethods (the
last one is described in 1.4.3 below) all operate in the

following fashion:

(1.6} F'(t) = nF(t) + c(t)5(t) + P(t) - B(t)
(1.7) c{t) = [PUB(t)-(F(t)+U(t))]/PVUS(t)
where

F(t) = fund at time t;

c(t) contribution rate, as a fraction of payroll;

PVUB(t), PUS(t) are positive functions, increasing at
rate B, i.e. PVB(t) = exp(Bt) PVUB,
PUS(t) = exp(Bt) PUS;

payroll;

S(t)

u(t)

Unamortized part of the initial past serwvice
liability;
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P(t)

rate at which U(t) is being paid off;

ﬁ(t) rate at which benefits are paid = Beexp(At).

I will now derive the differential equation satisfied
by the "de-inflated” fund F(t) = exp{-Bt)F(t). First
substitute (1.7) into (1.6)

F'(t) = nF(t) + S{t)PUB(t)/PUS(t) - S(t)F(t)/PVUS(t)
-5{t)U{t)/PUS(t) + P{(t) - B(t)
= (n-S/PUS)F(t) + exp(Bt)+S+PUB/PVS

- exp(Bt)B + {(P(t)-S5-U{t)/PVS).
Then
F't)

exp(-Bt)F' (t) - BF(t)
= (v-S5/PVS)F({t} + (S+PVB/PVS -B)
+ exp(-Bt)(P{t)-S+U{t)/PVS).

With the notation

R = (S+PVB/PVS - B},
and
h{t) = exp(-Bt)(S:U(t)/PVS - P(t}},
wve finally get
{(1.8) F'{t) = -aF(t}) + R - h{t}),
which means that
t t

F{(t) = F(@)exp(-at)+ RIexp[—a(t—s)]ds—éexp[—a(t—s)]h(s)ds.
%)

If

(i) a > @O, and

t
(ii) lim | exp[-a{t-s)]h(s)ds exists and 1is denoted by H,
tde O

then F(=) exists and is equal to

43



Section 1.4

t

iim [F{@)exp(-at)+R{1-exp(-at}))/a -fexp[-a(t-s)]h{s)ds]
o ]

= R/a - H.

fissume o > @. Obviously H = 0 if U{@) is completely

paid off in a finite time, and then
(1.9) F{e) = R/a = (S+*PVB/PVS-B)/(S/PVS-v¥).
Fur thermore,

c(«)}) = 1im{(PVB-F(t)-exp(-Bt)U(t))/PVS
t oo

= (PVB-F({=))/PVs
= [PVB(S/PVS-v)-{S+PVB/PVS-B)]/{S-¥PVS)

(1.10) = (B-YPVB)/(S-vPVS).

1.4.2 Aggregate, Attained Age Normal and

Frozen Initial Liability

Under these three methods

PVB = Present value of benefits of all current members
at time O

r
(1.11) = i sbexexp[ﬁ(r—x)](r—a)r_xlaxdx
1 Z(n-%)
+ l sb exexp[(()—ﬁ)(x—r)](r—a)ax dx
PUS = Present value of future earnings of active members

at time O
r
_ 2 (7)
(1.12) = ! se a .l dx.
I first show that a = S/PVUS-y ) @, which implies
that the three methods lead to the same ultimate
contribution rate and fund level (from Eq. ({1.10)).

Clearly a > @ if v < 0. If vy ) @, then
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PVUS = opresent value of future earnings of current
members

( present value of future earnings of all current
and future members

= [ exp(-nt)5(t) dt
@
= §8/¥ ;

consequently a is still strictly greater than 0.

Next, the wultimate contribution under the three
methods mentioned above will be shown to be identical to
the ultimate contribution under the Entry fAge Normal

method. Recall that the latter is

EAN

(1.13) C(=) = sb(r-a)e_a enp[-¥(r-a)]al®__/al’]

a:r-al 8:!‘-81

(this is the continuous-time counterpart of Eq. (1.5),

Section 1.3.2.2}. I will now prove that the expression in

7q. {1.10) boils down to (1.13), when Egs. (1l.11) and
1.12) are substitited into it.

(1) exexp[ﬁ(r—x)]r_x gxdx

= ? ergin_c)exp[—f(r—x)]dx
= ¢ 5(’7"')5_("_)]

(2) | e exp[(5-B)(x-r)]a{T ¢ ax

-,‘-Ne

= ? exexp[(c—ﬁ)(x—r)] f exp[(c—n)(u—x)(eu/ex)] dudx

Cad

- | eexp[(§-B)(x-r)+(5-n)(u-x)] dxdu
rr
(changing the order of integration)
? e exp[(-(¢-B)r+($-n)u] [exp[(n-B)x]dxrdu
r r
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(¢, (exp[ (¢-A) (u-r)]-exp[ (t-n) (a-r)])/¥)du
(5(3‘?)_‘(W“C))/Y

It
[\~ 1‘-\&
1

X

sb{r-a)f exexp[{c—ﬁ)(x—r)] dx

(3) B

= sb(r-a)e ;(ﬁ-?)
(4} From (1), (2) and (3) (see Eq. (1.11)),

B-vPVB

sb{r-a)-{e_a{A7%)

—[Qrgin_c)(1—exp[~v(r—a)])+€ B8 g 3(n7%)y)

(1.14) gb(p-a)exp[_y(r_a)]er;£0‘§)

(v)

= O¥

PV

r
(5) e,

€. i exp[-v¥{u- x)] € dudx

i

¢, exp(-vu) f exp(¥xn) dxdu

I e
I
(

changing the order of integration)

e (300 - al)

(1.13) a:r=al a:r=al

wn
f

£ dx
X

- ¢ .:(O)

a
a a:r—al

—
- =2

(6)

W = ™

(?7) From (5) and (6),

- , al?)
S-yPUS = SQ 1
(8) Finally, (4), (6) and (7) imply
AGG -{n-¢ -
UC(*—o) = 5b(r‘—a){Z“‘a)l("r7 ¢) exp[—v(r—a)}ai %_31 i l_j
_ EQNNC

Appendix 1.1 shows that the same result holds when
the population 1is Jjust asymptotically =cstationary. The

conclusions are enunciated as
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Proposition 1.1. Assume
(i) there is only one entry age;
{ii) the population is asymptotically stationary;
and
{iii) the initial wunfunded liability, if any, is
liquidated within a finite time.

Then

QGGC(M) _ QQNC{W) _ FILC(m) _ EQNNC,
and

QGGF(Q) - QQNF(M) _ FILF(M) _ EQNQL

Remark 1.3. Prop. 1.1 is essentially what is proved

in Demonstration II of Trowbridge (1952), pp. 41-43,
except that Trowbridge works in discrete time, and does
not explicitly refer to the case where the rate interest
is smaller than or egual to . Moreover, the case of an
initially immature population is only 1i1llustrated with a

numerical example, no proof of convergence being provided.

Remark 1.4. Steps (1) to (8) show the identity of

ultimate contributions whatever ¥ wmay be (smaller than,
equal to, or greater than ). When Y # @, the equation
of equilibrium
(1.16) @ = ¥F{«) + C{=) - B
proves that the same identity holds for fund levels.
However, when ¥ = @ Eg. (1.16) only says that C(«) = B,
and does nat imply the identity of fund levels. Thic
minor inconvenience is easily overcowe using the following
continuity argument.

On the one hand the limiting fund under the aggregate

methods is (Section 1.4.1)

(1.9) nGGF‘(W) = (S+PVB/PVS -B)/(S/PUS -v¥).
Because of the definitions of B, S, PVB and PVS, this
iz a continuous function of v. On the other hand,
EANF(m) _ EQNAL
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vwhich is again a continuous function of v¥. Consequently
AGG EAN
F{=) = F=)
has to hold when v = ®, since two continuous functions,

identical everywhere except at one point, have to be equal

at that point as well.

Remark 1.5. Eq. (1.10) (Section 1.4.1) for the
ultimate contribution has an interesting interpretation
when v ) O@. Revrite it as
(1.17) C{=) = S'(B/Y—PVB)/(S/Y—PVS).

(i) B/¥y = Present value of all benefits

to be paid out of the fund

{ii) 5/¥ = Present value of all salaries
to be earned by current and
future members.

Hence the ultimate contribution is a fraction of payroll

equal to the ratio of

{i) the present value of benefits of all future members,
excluding current ones, to

(ii) the present value of all future members’ earnings,

again excluding current ones.

1.4.3 Aggregate with New Entrants

Imagine a modification of the Aggregate method, under
which every wvaluation includes new entrants coming into

the scheme at rate ea per year, over the next n years.

More precisely, define

PUB(t,n) = Present value of benefits of (a) current
members and (b) new entrants coming into
the scheme over the next n years, at time t;

PUS(t,n) Present value of earnings of (a) currently

active members, and (b) new entrants coming

into the scheme over the next n years,

at time t.

Then define the overall contribution at time t as a
fraction of covered payroll equal to

c(n,t) = (PUB{t,n)-F(t))/PUS(t,n).

18
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Clearly, the wmodel population produces values of

PUB{t,n) and 5§§(t,n) that increase at rate 8, i.e.

ﬁﬁé(t,n) = exp(Bt)PVB(n}),
and
ﬁﬁg(t,n) = exp(Bt)PVS(n},
wvhere
(1.18) PUB(n) = sexexp[ﬁ(r-x)]b(r—a)r_xlgxdx
+ T exB(x)Si""C)dx
+é sh exp(—vs)eaexp[ﬁ(r—a)](r—a)r_a ;ads
and
(1.19) PUS(n) = ? sexéijl_x dx
+ ? .sexp(—VS)eagij%:E ds.

"/

Remark 1.6. The third integral in {1.18) represents

the present value of benefits of new entrants coming into

the scheme at rate ea per year, over the next n years;

the second integral in (!1.19) is the present wvalue of

their earnings.

1.4.3.1 n ( =«
Eq. (1.19) represents c(n,=) (with PVUB(n) and PVS(n)
replacing PVB and PVS, respectively) if
a{n) = 6/PUS{(n) - v ) 0.

This is the cacse in general, for (refer to steps (5) to

(8) of Section 1.4.2)

~(v) __z(v) , ,z(7)
s€ a Ya sea aa:FTE

(1.20) S-¥PVS(n) Al -val

exp(-¥Yn){S-vyPUS(0@)) » 0.
Therefore the ultimate contribution is

C(n,=) = S(B-vPVB(n))/{S-¥PUS(n)).
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The numerator of this expression can be simplified (refer

to steps (1) to (4) of Section 1.4.2):

B-¥PVB(n) = B-vPVUB - yoéér) sb(r-a)e exp[-v(r-a)]a_
= exp{-vyn)}(B-YPVB(0Q)).
Finally,
(1.21) C{n,=) = S({B-¥PUB(n))/(S-vPVS(n}))

= S{B-¥PUB(@))/(5-YPVUS({0@))

_ EQNNC.

Proposition 1.2. Under the hypotheses of Prop. 1.1,

AGG EAN
C{n,=) = C{=) = NC;
F(n,=) = QGGF(m) _ EQNQL.
Remark 1.7. It 1is not very difficult to see that

Proposition 1.2 also holds when new entrants come into the
<rheme at a (varying) rate n{(s) s years into the future,

ovided that salaries are fully projected to retirement
and that a{n) > @. Here PVB{n) and PVS{n) are defined as
before, except that the third integral in Eq. (1.18)

becomes

é exp(—vs)n(s)easexp[ﬁ(r—a)]b(r—a)

and the second one in Eg. (1.19)

7 s exp(-¥s)n(s} €_ 5(?) ds.
A :

a_ds
r-a|‘a

It follows easily that

B-¥yPUB{n) = (B-YPVB(Q))(1- YTn(s)exp(—vs)ds)
)
and
S-¥yPUS(n) = (S-¥YPVUS(@))(1-vf n(s)exp(-vs)ds)
%)
which imply that C(n,=) = EANNG  as before.
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Remark 1.8. Remark 1.5 (Section 1.4.2) still
applies: the ultimate contribution C{n,~) is a fraction
of total payroll equal to the ratio of
(i) the present value of all future benefits, excluding

members present in the valuation, to
(ii) the present wvalue of future salaries, excluding

members present in the valuation.

1.4.3.2 n = o and Y )y @

ali future new entrants are taken into account, and

thus
a{=) = S/PUS(e=) - v
= S/{S/¥) - «
= @
R{=) = S:'PVB(=)/PUS{=) - B
= 0,

and Egq. (1.8) of Section 1.4.! becomes

(1.22) F'(t) =0, t : @,

implying that F(t) F(0), i.e. F(t) = exp(Bt)F(@). In
words including all future new entrants in the waluation
amounts to no funding at all (in real terms). In
particular, if F{@) = @, the method is equivalent to

Pay-as-you-go.

Remark 1.2. Eq. (1.22) took for granted that no
initial unfunded liability was present at t=0; but the
result would be the same had there been one; after 1ts

amortization, the fund would stop growing in real terms.

1.4.4 The Parameter o

Recall that
(1.8) Fr{t) = -aF(t) + R - h(t).

Assume a ) . After the initial unfunded 1liability has

been taken care of,
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Frt)

a{R/a-F(t})

a(F(=) - F(t)});
in consequence, a entirely determines the rate at which

any difference F(=)-F{(t) is reduced over time. This 1is
the Jjustification for the remainder of Section 1.4: an
analysis of the dependence of a upon the real rate of

return ¥, on the surwvival function ex, and on the
inclusion of new entrants in the valuation basis.

1.4.4.1 Mo New Entrants
1.4.4.1.1 Ef fect of v

Propositicn 1.3. a 1s a decreasing {(resp. strictly

*

dec i £ i £ v i = i
ecreasing) unction o if g{x) e . T is a

decreasing (resp. strictly decreasing ) function of x.

L
One ma intuitivel believe that e alvays is a
Y y K:r-H| y

decreasing function of x, but this 1s not true; in
particular, the inclusion of withdrawals and of a
promotional salary scale can wmake g(x) increase over part
of the interval [a,r].

The proof of Prop. 1.3 1s deferred till after Prop.

1.4 and Lemma 1.1.

Proposition 1.4. It is sufficient in order for g(x)
= éx:F:§1 to be strictly decreacsing that either
(i) M, = @ vk € [a,r}], or

(ii) #  be non-decreasing for x € [a,r].

Proof. (d/dxje .—— = -ltp e ———

{i} Obwviously, Mo X Q@ 2 (d/dx)ex:r—x ( @

{i1) If Mo is increasing, then for any x such that Mo > O

r-x u

M /

7R - — = u [ exp(-}

X X:r-x| X 5 A

r-x u

T, | exp(-] p ds)du
@ Q@

yx+sds)du

(e

I
[VN
|

exp[—px(r—x)]
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3 (d/dx)ex: = -1 + u e

r=xi Kir—-x

1

-exp[~px(r—x)] ( @. o

Lemma 1.1. (Apostol (1974), p.177}

Assume that m{x} is increasing, and that

b b b
j fdm, f gdm and | fgdm
a a a
each exist in the Riemann sense. Then
b b b b
j dm+{ fgdm < [ fdm:[ gdm
a a a a
if f is increasing and g decreasing. The reverse

inequality holds if f and g are both increasing (or both

decreasing).

Proof. Let £ be increasing, g decreasing; the other
cases are similar. Then
i bbb
s [ (£(y)-£(x)){g(y)-g(x)}dm{y)dm{x)
a a
b b b b
= [ dm+ | fgdm - [ fdme [ gdm
a a a a

{straightforward expansion of the left hand side of the
equation). Since
(E(y)-f({x})}{g(y)-g(x}) < @
for all x,y, the result follows. O
Note that if there exist two subintervals of positive

m-measure I

f’Ig [a;b] such that f is strictly increasing
in If and g strictly decreasing 1in Ig’ then ":<" can be
replaced with "(" in the lemma (similar wmodifications

apply for the other cases).

Proof of Prop. 1.3. I now show that da/dy ¢ @ (or (

@) under the conditions stated.

From step (7) of the proof of Prop. 1.1 (Section
1.4.2),

r
- —y = ¢ alY) 2
(1.23) a = S/PVS-v = £ _a’, /a[ e a i dx.
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Transform the denominator as follows:

~(¥)
! k% e 9
r r
= i e, i exp[—v(u-x)](eulex)dudx
r-a r-a-x
= é L é exp{-vu){e_, . gy dudx
r-a r-a-u
= é é € eq+yd% exp(-vu)du
(changing the order of integration)
r r-u
= i é € 4y 9% exp[-¥(u-a)]du
r
= J g{u) ¢, exp[-¥(u-a)]du
a
where
r-u
-1 . (o) :
g{u) = tu é Caey I = fu:r=u fu:r=u
Consequently,
r
(v -2
(daszdv) = (f exai=%:§]dx)
r
X{—f(x-a)exexp[—v(x—a)]dx
a
r
+f g{x) € exp[-v(x-a)]dx
a
r
+ exexp[—v(x—a)]dx
&
r
. f (x-a)exg(x)exp[—v(x—a)]dx}.
a
x . -
Let m{x) = | ¢ exp[-v(u-a)]du. m{x) is strictly
a

increasing, which means that the sign of da/dy is the same

as that of

{ )=

r
dm

TR |
U ~— ™3

a

o4

r

(x-a)g(x)dm - [ {x-a)dm | g{x)dm.
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ficcording to Lemma 1.4, {} ¢ @ (resp. < Q) if g(x) =
-(e) . | ‘ .
A ir=w] S € FoR is decreasing (resp. strictly

decreasing). ©

1.4.4,.1.2 Effect of Pre-Retirement Decrements

For the sake of tractability assume H., = g4 for all x

¢ r. When v ¥ 0,
r
S = S’-e dx
X
a
r

s €, J exp{-px)dx

= Sea ;l{f_;l ;
PUS = s ? ex'ijl_x dx
e Gl 52 1
As before,
« = ea —ifl—a /? ex 5&:%:?1d”
Ll el e
-G el
Hence
(dasdu}) = _Y(giflllaifar)—l) O(d/dp)(a(ﬂ;] if;f))
d ;Lﬁ% d d
r-a - {u+ - - —{u+vy) “(u+ty ) = (x)
T ) - G gtk ale ) - e halel )
*r=al
[ 1 = -J x exp(-px)dx [ exp[-{p+v¥)x]ldx

+ [ x exp[-(u+v)x]dx [ exp{-pux)dx

[ x exp{-¥x)dm [dm - [xdm [exp{-¥x)dm

X
where m(x) = [ exp(-us)ds.
)
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If v > &, Lemma 1.1 implies [ ] ( @ and da/du ) 0.
If Yy ¢( @, then lLemma 1.1 implies [ ] > @ and, still,
da/dyg > 0.

Remark 1.10. fis to the case ¥ = 9, one can only

assert that da/dug > 0. {(dasdg > @, vy # @, and is

continuous w.r. to ¥ 2 da/dy * @ at v = Q.)

Though the calculations abowve do not prove that in

general any increase in M increases a, they wmake this

claim plausible. It results that of two populations, the

one with +the higher px’s will produce fund wvalues

converging faster to the ultimate fund value, other things

being equal.

1.4.4.1.3 Asymptotic values of a

There may be some theoretical interest in knowing the

limiting behaviour of a as ¥ + t=. Firstly (from step (7)
of the Prop. 1.1)
: . -{7) -{¥)
lima = 1lim v+sé a(_ __ /{S-s¢_a! )
- ¥ -3 a a:r-al & a:r-a
= s€ /S
a
-
= l/a‘e)
a:r-a
since Y& 5(y) + £ as ¥ 3 =, Secondly a 1is
a a:r-al a :
asymptotically equal to -¥ as ¥ =+ -=, because
lim (S/PVUS-¥)/¥y = liwm S/{v¥+PUS) -1
¥3- Y-
= -1.
1.4.4.2 Aggregate with New Entrants

As explained at the beginning of Section 1.4.3,

assume that new entrants coming into the scheme at rate ea

per year for the next n years, n ( =, are included in the
valuation basis. Recall that a(@), PVB(@) and PVUS(Q) are

the same as a, PVB and PVS respectively, and correspond to

the usual Aggregate method.
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1.4.4.2.1 Effect of n

Obviously PVS(n) increases with n, and so a{n) =
S/PUS{n}-v¥ decreases as n increases. In other words,
introducing wmore new entrants into the wvaluation basis
slows dowvn convergence of F(t) to its limit, whatever np, B

or u wmay be.

1.4.4.2.2 Effect of ¥

businl . e 2(Y) s
US({n)} PUS + eaaa:Ffa a2

- JofY)

= PVS + aPVs§ eFy

(from step (7) of Section 1.4.2)
—{Y

= PUs(1+ aai’l)

> a{n) = S8/PVYS(n)-v¥

= {5-vPVUS{n))/PVS(n)
)

4
{L.24) exp(—Vn)a/(1+aa(H])
‘(from (1.20), Section 1.4.3.1).
{This is another way of showing a(n) > @ when n ( =),

Proposition 1.5. 1If dasdy < ©, then da{n)/dv ¢ O.

da{n) da{n) daf{n) da
dv_ - Tav ' Taa oy

(i) Fix a. From Eq. (1.24},

Proof.

da(n})
oy
(1+a§%{))‘2[—nexp(—vn)a(1+a5%{))-exp(-vn)az(agér)/av)]
[ 1 = -aexp(-vn)[n+a(nal’) +(eai¥}/av))]

( o,

since
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_ _ _ n
naé;) + aaéf)/av = na%r) - é xexp(-¥x)dx
n
= f (n-x)exp(-v¥x)dx

7/
> 0.

Accordingly, da(n)/avy ( ©.
(ii) da{n)/da

))—aexp(—vn)g(y)]

nl

= {1+ ag(y))—z[exp(—vn)(l+a£%r

nl

exp{-¥n) + aexp(—fn)gér) - aexp(—Yn);ér)

[ ]

exp(¥n) ) 0.

Therefore da{n)/0vy » 0.

Finally
da{n)/8vy = Jda(n)/8y + (Ba(n)/da)+(das/dv)
( @ > 92 2 9
( ©@. o

Proposition 1.6. a{n) is strictly decreasing w.r to

¥ if g(x) = e v % @ decreasing function of x.
1.4.4.2.3 Effect of Pre-retirement Decrements
Let Mo = 4, as in 1.4.4.1.2. It is easy to see that

I~/

da/du > @ (resp. : @) implies da{n}/dy > @ ({resp. Q)

(differentiate each side of Eg. (1.24)).

1.4.4.2.4 Asymptotic Values of a(n)
If v ) @, then a(n) +» ©® as n - =, from Eq. (1.24).
If v < @, then PVS{n) =+ = and a(n} 2 -¥. Consequently

lim a(n) = wmax(-v¥,0).
n-e
From 1.4.4.1.3, a has a finite limit as ¥ 3 e,

Hence (again from Egq. (1.24)), a(n) 2 @ as v 23 =, for any

n ) 9.
fs when n = @, it is easy to see that a(n)/v tends to

_1 as Y -+ -~
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1.4.4.3 Numerical values of a(n)

Table 1.1 shows numerical wvalues of a(n), computed
on different bases. The real rate of return is varied
from -.10 to +.10, the column ¥ = = being supplied to
illustrate how little a(n) wvaries when v becomes very

large.

Row (1) tells that if the survival function €. is
that of ELT 13, and if Yy = .01, then
F'(t) = .0565(F{=)-F(t}));

in other wvords at any time t the method steers the fund
level towards F(«) at a rate equal to the difference
F{(=)-F(t) multiplied by a = .0565.

It is evident that in all cases a{n) decreases as ¥
increases, whatever n or the population may be.
Scenarios (1), (2) and {3), on the one hand, and (5) and
(6), on the other, illustrate how a depends on the age

distribution. In (3), H, = -.904, which yields a surwvival
curve ex which is very similar to the ELTI13 ex curve, but

this time slanting upwards.

Extending the valuation basis to include new entrants
has a much greater influence on a, as scenarios (1), (4)

and (5) exemplify (see Section 1.5.2 for further comments

on this.)

09
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Population .

1, , x (65 n -.10 -.05 -.02 -.01 0 .01 .02 .05 .10 ®
(1) ELT 13 0 .1133 .0810 .0669 .0630 .0596 0565 .0538 L0475 .0411 .0307
(2) uy =0 0 .1122 .0791 .0646 .0607 .0571 .0540 .0512 .0447 .0383 .0286
(3) u,=-.004 A0 .1118 .0782 .0635 .0595 .0558 .0526 .0498 .0431 .0365 .0266
(4) ELT 13 10 .1045 .0651 .0469 L0419 .0373 .0333 .0296 .0210 .0120 0
(5) ELT 13 20 .1016 .0582 .0377 .0321 .0272 .0229 L0191 .0109 .0041 0
(6) uy = 0 20 .1015 .0578 .0372 .0316 .0267 .0223 .0186 .0105 .0039 0

TABLE 1.1 a(n) (a = 30, r = 65)
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1.3 COMPARISON OF METHODS
1.5.1 In the Liwmit

In Section 1.4 it is proved that when there is only
one entry age, the Entry Age Normal and all the aggregate
methods lead to the same ultimate situation, except when
all future new entrants are part of the valuation basis.
(In which case there is no funding at all - in real terms
- and the method is tantamount to Pay-as-you-go. ) Three
methods therefore need to be compared: Unit Credit, Entry
Age Normal, and Pay-as-you-go.

The Unit Credit wmethod reputedly 1leads to higher
contributions than the Entry Age Normal, after a scheme
has matured {see for example Trowbridge (1952) and p.96 of
Winklevoss (1977)). This is indeed the case under the

"classical” assumptions of v > @ and the function 8x

decreasing with «x. It will be seen presently that wmore
generally this 1s not always the case, though it appears
unlikely that practitioners would ever encounter the

reverse situation.

Proposition 1.7. Assume that there is only one entry

age into the scheme, and that the population is stationary

(or only asymptotically so).

If v > @ (resp. =, (), then
PGC(W) ) EANC(") {resp. =, ()
and
PGC(w) ) UCC(m) {resp. =, ()
Proof. From 1.3.1.2 and 1.3.2.2,
UCeim) - Ync
-{n-¢) ={~
oo Y
ERNC(“) - EQNNC
-{n- -(o - (v
(1.26) = Sberain C)(r—a)exp[—v(r—a)]ag:%tg]/ai:l_a
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The Pay-as-you-go contribution is

©

f sb(r—a)exexp[(t—ﬁ)(x-r)]dx

r

C(=)

(1.27)

sb(r—a)ergiﬁ—C).}

Dividing by sb(r—a)er, the wultimate rates are

proportional to

(1.28) uc: (” )3 ( ) /{r-a)
1.29 EAQN: ~{n-¢) - - = (o) Z(v)
( ) AN a’ exp[-v(r a)]aa:r—a /aa:F:§]
pG:  alP7%),
r
The result follows trivially. O
This agrees with intuition: if the fund earns a

positive real return on top of salary increases, then
Pay-as-you-go is more expensive, in the long run, than any
kind of prefunding. The opposite happens in the case of a
negative real return.

Now 1leave Pay-as-you-go aside, and compare Unit

Credit with Entry Age Normal.

Proposition 1.8. The assumptions are the same as for

Prop. 1.7. Denote

£(x) = exp(—fx)€x+a/€a, x € [0,r-a].

If £f(x) is strictly decreasing, then

(1i) UCr(=) « FWp(=);
(1ii) vy > o = Uci=)» ERNc(ay;
(Liii) vy (o = Yc(=) ¢ EANG ().

If f(x) is strictly increasing, then

(2i) UCh(=) > FMp(«)
(2i1) v e s (=) < "BNc(=);
(2i11) vy ¢ o = YCc(=) » EANc(a),
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Proof. Multiplying (1.28) and (1.29) by
_Y -— —
exp[v{r-a)](r-a) ai:%:swlain C),

one obtains ultimate rates proportional to

[uc] = ;(Y) .g(y)

a:r-al r-al
r-a r-a
= | exp(-vx)e /e dx f exp{vx)dx,
%) ?

[EAN] = (r-a) S(?)

Let £(x) = exp(—vx)€x+a/ea, g{x) = exp(rx) and

m{x) = x in Lemma !.! (Section 1.4.4), to find (1ii},
(1iii), (2ii) and (2iii). Whenm ¥ # @, (1li) and (2i) are
then consequences of the equation of equilibrium
{1.30) ® = vF{«) + C(=) - B.

When v = @, Eg. {(1.30) does not tell anything about
UCF(N) or EQNF(N). Hovever, from Sections 1.3.1.2 and
1.3.2.2, ve know that if ¥ = @,

UChia) - UCqy

(n-¢)

. (x-a)/(r-a) dx

= sb(r—a)era

L TEESS e |

+ sh{r-a} | €, exp[(C—B)(x—r)]gin—q) dx

and

EANF(N) _ EQNQL

/5(0) dx

_ -(n-¢) 7 z(0)
= sb{r a)erai ) i qa:x-al "a:ir-a

+sb(r-a) | exexp[(c-ﬁ)(x-r)]gin_c) dx.
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Say f({x) = ex+a/ea is strictly decreasing; then 1t

is not very difficult to see that (2 ¢ x ( r-a):

;.g?;)(——a /52‘:2’1;__6I = x}a f(u)du/r}a f(u)du
2 @
> "}3 du/ r}a du
@ @
= (x-a)/(r-a)
3 Cr(=) « EBNgp(o),

The case of a strictly increasing f{(x) is similar;

finally, (1i) and (2i) still hold when ¥ = @. 0O

Remark 1.11. The argument used to prove the case

Y = @ in the above also works when ¥ # 0. Hence it is an

alternative way of proving the whole of Prop. 1.8.

1.5.1.1 Numerical Example

Table 1.2 shows numerical wvalues of ultimate costs
and funds, as percentages of payroll, and illustrates many
of the «claims wmade in the previous section. The

assumptions are

Entry age a = 30 (only)

Retirement age r = 63

Renefits 17 of final salary per year
of serwvice

Post-retirement ELT 13

mortality
Return on fund n = .03
The other assumptions are 1indicated in the table.
The rate of increase of earnings (B) is varied from .03 to
.®7 in scenarios (1) to {5), with no increase of benefits
in payment.
Because there 1is only one entry age, the Entry Age
Normal columns also correspond to any of the aggregate
methods (of course excluding the variant that takes all

future new entrants into account).
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Except for scenarios (3) and (8) the Entry fge Normal
method produces a lower contribution rate than the Unit
Credit. The real rate of return is nil in scenario {3),
which weans that any wmethod ultimately 1leads to a
contribution rate equal to the Pay-as-you-go rate,

Situation (6) is the same as (2), the only difference
being that in (6) benefits are fully indexed. Under the
Entry Age and Unit Credit methods, ultimate costs are

multiplied by

_ -{.01) -{.05) _
kl = acs /365 = 1.337
while the Pay-as-you-go cost is wultiplied by
- zl@),z(.0a) _
k2 = ace /a65 = 1.3955.

It may be of interest to note that fund levels do not

grow in size by either factor k, or k but rather by

1 2’
Ky Oe(=) - kYo
uc, !
3 7 PG EAN
C(=) - C(=)
= 1.424.
and
k2»PGC(w) _ kloEQNC(m)
EAN,  _
3T PG EAN
C(=) - C(=)
= 1.418.
(UCC(N) and EQNC(N) refer to scenario (2); these formulae

are derived from the equation of equilibriun (1.30),

Section 1.5.1.)

Scenario (7) is also similar to (2), but this time

the salary distribution is "flat", 1i.e. the ex curve 1is
constant. Finally, scenario (8) is an 1illustration of
claim (2ii) of Prop. 1.8. Here the ex curuve rises steeply
enough for f(x) = exp(—ix)°8x+a/£a to be strictly

increasing over the whole range (©,35), and as predicted,
the Entry RAge Normal contribution is higher than the one

produced by Unit Credit funding.
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Infl. Net Pre-

Scen. Sal. Ret. Ret.
B Y My

(1) .03 .02 ELT 13
(2) .04 .01 "
(3) .05 0 !
(4) .06 -.01 "
(5) .07 -.02 !
(6) .04 .01 "
(7) .04 .01 M= 0

(8) .04 .01 Uy=—.02

Pens.
Incr.

Pay-as-
you-go

C/S

7.61

7.09

6.62

6.21

5.83

9.60

8.99

12.50

Unit
Credit
C/S F/S
4,76 142.2
5.59 149.9
6.62 159.7
7.93 172.2
9.59 187.8
7.47 213.4
7.09 190.1
9.86 264.4

Entry Age
Normal
C/S F/S
4.51 154.8
5.49 159.4
6.62 164.5
7.91 170.0
9.35 175.7
7.34 226.1
7.01 197.3
9.96 254.3

TABLE 1.2 Ultimate Costs and Funds (% of payroll)

Prop.

f(x) 1.8
J lii
lii
i -

0 2iii

T 2iii
J lii
i) lii
0 211
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1.5.2 Transient Behaviour: Numerical Example

Table 1.3 compares how contribution rates and fund
levels vary over time, under the Unit Credit, Entry Age
Normal, Aggregate and Aggregate with New Entrants methods.

The assumptions are

Decrements ELT 13 (pre- and
post-retirement)

Return on fund n = .05

Inflation on salar:ies B = .04

Net return Yy =n - B = .01

Benefits Pencion equal to 17 of final

salary per year of service;
no post-retirement increases

Initial fund nil

Amortization period 20 years (for methods that
specify an initial unfunded
liability)

New entrants assumption Full replacement of members
{Aggregate with New leaving the scheme over the
Entrants method) next 20 years

The schewme 1is assumed wmature from the start, 1i.e.

both the group of active members and the group of retired
members are stationary. This implies a very high initial
unfunded liability; one vwould probably not meet this
situation in practice, but it is easier to work out, and
simply exaggerates the characteristics of the different
me thods.

Figs 1.1 and 1.2 are graphs of overall contribution
rates (including amortization of unfunded liability, if
any)} and fund levels achieved.

The Entry RAge Normal and Unit Credit methods yield
very similar results, with these particular assumptions.
The aggregate methods spread the initial unfunded
liability far into the future, in comparison with methods

that identify a separate past service liability. Here
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a{@) = .0565 and a(20) = .0229 (see Table 1.1, rows (1)
and (5)). Figures 1.1 and 1.2 illustrate what was meant
by "rate of convergence"” of the fund level to its limiting
value. Both the Aggregate and the Aggregate with New
Entrants methods lead to the same situation in the limit,
but the inclusion of new entrants slows down convergence

significantly. For example, the fund reaches half its

ultimate level in

log 2/a{@®) = 12.3 years
under the usual Aggregate method, and in
log 2/a(20) = 30.3 years
under the Aggregate with New Entrants. Spreading past

service liabilitiec over the active yearc of present and
future members produces contribution rates that are more
level than under any of the other methods considered, but,
as can be seen in this example, it wmay also mean costs

which remain relatively high for a long period of time.

Remark 1.12. In the case of the Entry Age Normal and

Unit Credit wethods, the unfunded 1liability is paid off
with level payments (not a level fraction of payroll),

following North-Aimerican practice.
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Pay-as-~ Unit Entry Age Aggregate Aggregate

t you-go Credit Normal No N.E. N.E. 20 Years
C/S C/S F/s C/S F/S c/S F/S C/S F/S
0 7.08 17 .4 0 18.1 0 16.1 0 10.7 0
2 i 16.5 20.0 17.1 21.3 15.0 17.0 10.5 7.1
4 " 15.7 38.6 16.2 41.1 14,0 32.3 10.3 13.9
6 " 14.9 56.0 15.4 59.5 13.0 45.9 10.1 20.4
8 " 14,2 72,2 14.6 76.8 12,2 58.0 9.9 26.6
10 " 13.5 87.3 13.9 92.9 11.5 68.8 9.7 32.6
20 " 10.9*  149.9 11.2*  159.4 8.9 108.0 8.8 58.5
30 " 5.6 " 5.5 " 7.4 130.2 8.1 79.1
40 " " " " " 6.6 142.8 7.6 95.5
50 " " " " " 6.1 150.0 7.2 108.6
@ " " " " " 5.5 159.4 5.5 159.4

*Dropping to the ultimate level at t = 20

TABLE 1.3 Transient Behaviour of Costs and Funds (% of payroll)
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1.6 MORE THAN ONE ENTRY AGE

Here are a few comments about the more general case
of wmembers entering at different ages, instead of at a
single one.

Let a2 now stand for the earliest entry age, and let

new entrants come into the scheme at rate e(y)°8y if age

vy, & £ v (r. Each method is applied in exactly the same
fashion as before, taking for granted the fact that
members having entered at age y receive a pencsion equal to
b(r-y) times final salary. Assume that whatever the entry
age, the members are subject to the same decrements and

salary scale; in this section, the ex function refers

only to the service table, and not to the actual
population as well.

Prop. 1.8 (Section 1.5.1) plainly remains valid in
the multi-entry age case, since the Unit Credit and Entry
Age Normal are individual methods: one only has to think
of the fund as the aggregation of many smaller funds, each
corresponding to the subpopulation of wmembers entering at
one particular age "y"

As to whether aggregate methods are still equivalent
- in the limit - to the Entry Age HNormal wmethod, the
situation is not as clear since it is not additive. The
derivation of ultimate values is entirely the same as 1n
Section 1.4.2; for instance, consider the Aggregate
method: define the real-term constants S, PVB, PVS5, and B
as previously, i.e.

S = total earnings

= ? S{yl)e(y)dy,

e{y)S(y) = total earnings of members having,
entered the scheme at age y
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r

_ _ -(2) .
S{y) = s£ exdx = sey ay:F:§1 ;

PVB = present value of future benefits
of all members

= I PUB{y)e{y)dy;

r

sb(r-y){ 8xexp[ﬁ(r—x)]r_x gxdx
b4

PUB{y)

+sb{r-y){ exexp[(c—ﬁ)(x—r)] ;in—c)dx;

PUS = opresent value of future salaries
of current members

r

= [ PUS(y)e(y)dy,

a°]
<
0]
_—
~g
Il
1]
— "1
3]
W
p—,
L4
~
=B
<

B = benefit ocutgo

(]

= | B{y)e(y)dy,

B{y) sb(r—y)[ exexp[(c—ﬁ)(x—r)]dx.

(e{(y)dy will be shortened to dE(y) below.)

As before a = S/PVS-¥ ) @ and

AGGc(m) - 1im exp(-,Bt)é(t)C(t)
t Soo
Sec(=)

S{(B-vYPVB)/(S-YPVS) (Section 1.4.1)
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r r
| S(y)4aE(y)+[ [B(y)-vPVB(y)]dE(y)
| [8(y)-¥PUS(y)]aE(y)
12,3, =5 9E(y) [(e-y)exp[v(r-y)]e, 3, du(y)
= sb -
e, ;£j%:§1 dE(y)

(Section 1.4.2).

Comparing this expression with

r
EAN. v _ - (- ; ;(9) ={v)
C{=) = sbi (r-y)exp[-v(r y)]eraray:F:§1/ay:F:§7dE(y)
wve see that in general QGGC(w) # EQNC(-'). When v = @, the

contributions are equal, but the funds built up are not,

for {csee Section 1.4.1)

QGGF(w) = PVB - B:PUS/S
r r r
= | PVUB(y)dE(y)-[f B(y)dE(y) [ PVS({y)dE(y)
& a &
r
+ [ s{y}dE{y)]
a
and
EAN r
F{(=) = | PUB(y) - B(y)PVUS(y)/S(y)dE(y)
a
r r
= [ PUB(y)dE(y) - [ B(y)PVS{y)/S(y)dE(y).
a a
Not much can be said in general about ultimate costs
and funds when new entrants are taken into account. Rate

of conuvergence is evidently reduced, but otherwise the
limiting contribution rates and fund levels are not

necec<sarily equal to those shown above for the Aggregate

me thod.
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APPENDIX 1.1
CONRVERGENCE TO A STATIONARY POPULATION

The setting is the same as in Section 1.4.2, except
that the population is only asymptotically stationary. It
will be showvn that Prop. 1.1 still holds, i.e. that the
ultimate (real-term) costs and funds under the Aggregate,
Attained Age Normal, Frozen Initial Liability and Entry
Age Normal methods are equal to EQNNC and EQNQL,
respectively, provided the initial unfunded liability, if

any, is liquidated in a finite time.

Eqs. (1.6) and (1.7) are unchanged, but

PUB{t) = exp{-Bt)PUB(t),
PUS(t) = exp(-Bt)PUS(t),
S{(t) = exp(-Bt)S(t)
and
B{t) = exp(-Bt)(B(t)
are no longer constants. Then
F'{t) = -a(t)F(t) + R({t) - h{t)
where
a{t) = S(t)/PVUs{t) - ¥
R{t) = S{t)PVB(t)/PVS{t)-B(t)
and
h(t) = -exp{-Bt)(P{t)-5(t)U(t)/PUS(t)).
From the assumptions h{(t) = @ for t larger than some
tor a{t) = «a > @, and R(t) » R as t = .

The problem can be formulated as follows: consider
the differential equations

F’(t) = —d(t)F(t) + R(t), (t ) to)

G'(t) = -aG(t) + R, G(0@) = F(0).

Clearly G(=) = R/a; I will show that F(=) = R/e.
Let D(t) = F(t)-G(t). It is sufficient to show that

D(t) + @ as t - =.
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D*'(t) = -a(t)F(t) + aG(t) + R(t) - R
= —a(t)D(t) + (a-a{t))G(t)+R(t)-R

Z(t)
= —a(t)D(t) + 2(t).
Observe that Z(t) + @ as t 3 =,
£ ) 0. Let t1 be such that t t1 implies
a(t) > a » @ and |Z(t)]| ¢ £. Then for any t ) t
t t t
D(t) = D{t,)exp(-f a(s)ds)) + | exp(-f a(u)du)Z{s) ds
t t s
1 1
. ID(ty] ¢ [D(t )| exp[-(t-t )a]
+ s(l—exp[—&(t—tl)])/&
=) lim sup |[D(t})| ¢ e/a. @
t
Rewark 1.13. Obviously the same argument completes

the proof of Prop. 1.2 as well; that is, it shows that

EAN

C(n, =) NC

and
F(n,») = ANy
when the population is only asymptotically stationary, and

n {( oo,
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DETAILS ABOUT THE NUMERICAL EXAMPLES

The values of 530:531 and a required were computed

63
directly from the English Life Table No. 13; it is not
clear how good the approximation used,

vy o4 _

al = & .9 (yx+v)/12,

becomes when ¥ is large or negative.

Table 1.1. First a(®) was calculated using (steps

(5) and {?7) of Section 1.4.2)

a(@) = S/PVUS-y = y/(éggzﬁ /5§;3ﬁ -1},

and then a(n) resulted from

a{n) = exp(—vn)-a(e)/(1+a(0)';éf))

(at v = @ interpolation was required).

Table 1.2. The 1limiting contribution rates were

found from Eq. (1.25), (1.26) and (1.27) (Section 1.5.1),

R () .
dividing by .01l:s 23@ 3:0:35] to obtain percentages of

payroll. Ultimate fund levels then follow from

@ = ¥+F{=) + C(=) - B
(interpolation required at v = Q).
Table 1.3 and Figs. 1.1 and 1.2. Under the Unit

Credit and Entry Age Normal methods, the contribution is
the normal cost plus the amortization payment. Since the
population is mature from the start, and the initial fund

nil, the initial unfunded liability is F(=). Thus, for
t ¢ 20,

overall contribution rate at time t

= ultimate rate + (F(w)/géégs))/payroll;

?7?



fAppendix 1.2

as a fraction of payroll,

C{t)/S = C(=)/5 + exp(—Bt)(F(N)/S);%é$5).

The fund reachecs itc ultimate level at t=20. For t

« 20,
F'(t) = v¥F{t) + NC - B + exp(—ﬁt)F(w)/S%éfs)
t
3 F(t) = % exp[¥(t-s)][NC-B + exp(—ﬁs)F(w)/ggégshds

t -
F(m)é—v exp[f(t—:)]+exp[—Bs+Y(t—s)]/a%é?s) ds

(since NC - B = -yF(=))
= F(w)(l—exp(vt)+exp(vt)5%i@5)/£%6?55.

Aggregate methods (n=0,20): firstly

t
Rnéexp[—dn(t-s)]ds

(Rn/an)[l—exp(—ant)]

F(n,t)

F(n,M)(l—exp(-ant))

EAN

QL(l—exp(—ant)).

Secondly

C(n,t) S(PVB{n)-F(t))/P¥S{n)

- S(PVB{(n)-F(n,=))/PYS(n)
+S(F{n,=)-F(n,t}))/PYS(n)
- ERNpc « (S/PVS(n))°exp(°dnt)'F(ns“)

EAN _ ,EAN
= NC + (an+v)exp( ant) AL



CHAPTER 2
VARYING RATES OF RETURN AND OF INFLATION

2.1 INTRODUCTION

In the first chapter, actuarial assumptions were
alvays borne out by experience. Because they never are in
the real vorld, actuaries have devised wmethods of
ad justing contributions for deviations from these
assumptions. This chapter considers rates of return
(n{t)) and of increase on salaries (B(t)) which differ
from the assumed rates n and B. All other assumptions
(e.g., mortality, withdrawals) are supposed to be
consistently realized.

The chapter has two purposes. Firstly, it describes
two methods of taking deviations into account, and derives
formulas which are essential to Chapters 3 and 4.
Secondly, it includes a brief comparison of the two
methods, in the case of a single deviation from acturial
assumptions. This comparison is further translated into
the language of control theory.

The "Spread” wmethod 1is the firct one studied. The
normal cost is adjusted by an amount equal to the owverall
unfunded 1liability divided by the present wvalue of an
annuity for a fixed term. It is shown that aggregate cost
methods have a built-in method of adjusting contributions,

and that it is wmathematically equivalent to the Spread

me thod.
The other me thod considered I have termed
"Amortization of Losses™. At each valuation date, an

“*actuarial loss” is estimated, corresponding to the time
elapsed since the last valuation only. Each
intervaluation loss is liquidated in full by a series of
level payments, over a fixed number of years. At any one
valuation date, the adjustment to the normal cost is the

sum of those payments which are still i1n force.
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Section 2.1

The Amortization of Losses method, or wvariations of
it, has been widely used in Canada. The Spread wmethod
appears to be more popular in the United Kingdom.

Several simplifying assumptions are necessary to keep
the formulae at a bearable level of complexity. Perhaps
the most significant of thece 1is that surpluses and
deficiencies {(or, alternatively, gains and losses) receive
the same treatment under either of the methods outlined
above. The other assumptions are set out in 2.2.

Section 2.3 examines the discrete-time situation.
The same results are formulated in continuous time in 2.4.

Even though the concept of "actuarial loss"” perwuvades
it, this chapter has little to do with the literature on
gain and loss analysis,. I would go as far as to affirm
that the sole idea required from this subject is (Street

(1977), p. 407):

Pension plan gains may be described as the
excecs of the expected over the actual unfunded
accrued liability at the end of the period to be
analyzed.

Three aspects of Chapter 2 are original:

(i) The explicit formulas of 2.3.1 and 2.4.1 for the
dependence of the acturial liability on past
inflation rates;

{ii) Sections 2.3.3 and 2.4.3, dealing with the
Amortization of Losses method; and

(iii) Remarks 2.4 and 2.6 which interpret the two
methods of adjusting contributions as "negative
feedback controls™.

This chapter raises many wmore gquestions than are
answered in Chapters 3 and 4. After all, these are only
concerned with random ratec of return. Chapter 2 could be
the starting point of further research; for example, as
to the effects of varying rates of inflation on

contributions and fund levels, when benefits are not

indexed.
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2.2 MODELLING ASSUMPTIONS

(1)
(ii)

(iii)

(iv)
(v)

(vi)

{vii)

(viii)

(ix)

The population is stationary.

For aggregate cost methods, it is required that

there be only one entry age into the scheme.
Actuarial assumptions (n, B, ex, etc.) are

fixed. Only rates of return (p(t)) and of

inflation (B{t)) differ from the assumptions.
Benefits are not indexed.

s in Chapter 1, benefits are a fixed fraction
of final earnings. The constant sb{r-a) will be

replaced by “"c”, for simplicity.

In discrete time, np{t) and B{t) are the actual
rates experienced during (t-1,t). n and B are
the rates assumed 1n the wvaluation. The net
rate of return during (t-1,t) is ¥{t) =

n{t)-B8(t). I will also denote

Mn(t) = n(t) -n

AB{t) = B(t) - B
Av(t) = v(t)-v = An(t) - AB(t).
In continuous time n{t) and B(t) are
instantaneous rates at time t. The other

symbols have the same meaning as in (vi)} above.

Like in Chapter 1, a bar (" ") above a sywmbol
refers to a nominal gquantity, while the same

symbol without a bar corresponds to a real-term

quantity.

AAL and RAL will refer to the part of the
actuarial 1liability (AL) attributed to active

and retired members, respectively.

81



Section 2.2

» .

(x) B will mean the level of the benefits paid, if
there have never been any deviations A8{+) from
the assumed rate B. Same comment for RQL* and
pyB”

(xi) An "individual cost method"” will be any cost

method which jroduces an actuarial liability and

a normal cost, and such that

(2.1) 1. AAL = e”(RAL#NC) - £ AL(r)
{discrete time)
(2.2) @ = vAAL + NC - £ AL(r)

{continuous time)
2. BRAL(t) is the present value of benefits of
retired members.
The Unit Credit and Entry Age Normal are
examples of individual cost methods. This
family of methods is characterized in Cooper and

Hickman (1967).

(xii) By aggregate cost method I will mean any of the
methods studied in Section 1.4, excepting the
one which includes all future new entrants
(n = =}.

Finally, it should be emphasirzed that all the
equations derived in this chapter relate to "real-term”
values (see Section ©.6). Sections 2.3.1 and 2.4.1
derived basic real-term relationships, 1in discrete and

continuous time, respectively.

2.3 DISCRETE TIME

2.3.1 Real-Term Variables

Salaries increase by a factor eﬁ(t) during the year

(t-t,t), and thus the overall payroll at time t 1is

proportional to
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t
{(2.3) exp( L (k)).
k=1

ficcordingly, (2.3) is the index number used to

convert nominal amounts into real-term amounts, i.e.

(real-term variable at time t)
t

= (nominal-term variable at time t} x exp(- Z B(k)).
k=1

Because benefits are a fraction of final salary, both
the normal cost and the actuarial liability with respect
to active members (RAL) are constant in real terms. On
the contrary, the fact that benefits in payment are not
indexed wmakes B{(t) and RAL(t) functions of A(k), k < t.
We find

B{r,t) = C,
B{r+1,t) = B(r,t-1)exp{-8(t))
= crexp{-8(t)),
B{r+2,t) = B(r+i,t-1)exp{-8(t))
= crexp(-B(t-1)-B(t)),
t
B(x,t) = crexp(- b2 B{k)).

k=t-x+r+l
I will now show that
(2.4) AL(t+1) = e’ (AAL+NC) + exp(n-B{t+1))(RAL(t)-B(t)).
When x > r, AL(x,t) = B(x,t)éin), and so

t+l
2 (n)
' AL(x+1,t+1 = ce+exp{- L B(k))e a
n+1 ( ! ) Ketostrtl X+l n+l
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t

= ceenp{- I B{k))exp(-B(t+1))
k=t-x+r+}

x e”(exain)—ex)

exp(n—ﬁ(t+1))(erL(x,t)—exB(x,t)).

Summing for all x z r,
RAL{t+1) - erQL(r) = exp(n-B{t+1))(RAL{t)-B(t)).

Equation {(2.4) is obtained by adding this formula to
Eq. {(2.1) (Section 2.2).
Finally, as concerns the fund and contributions, from
dividing both sides of
F{t+1) = exp(n{t+1))(F(t)+C(t)-B(t))
by (2.3), we deduce

(2.5)  F(t+1) = exp(v(t+1))(F(t)+C(t)-B(t))

2.3.2 Spread Method

2.3.2.1 Individual Cost Methods

The adjustment to the normal cost is equal to the
overall unfunded liability, divided by the present wvalue

of an annuity for a term of "m" years:

c{t) NC + ADJ(t)

NC + UL(t)/aﬁ1.

(2.6)

From Eqs. (2.4), (2.5) and (2.6),

UL{t+1) AL(t+1) - F(t+1)
- e'(AAL+NC) + exp(n-B(t+1))(RAL(t)-B(t))

—exp(v(t+1))(F(t)+NC—B(t)+UL(t)/éﬁ])
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= exp(¥(t+1))[ (RAL+NC+RAL(t)-B(t))
~(F{t)+NC-B(¢t)+UL(t)/a_ )]
+[exp(¥)-exp(¥(t+1))](AAL+NC)
+[exp(n-B{t+1))-exp(v(t+1))](RAL(t)-B(t))
= exp({¥(t+1))(1-1/a_ JUL(t)
+e’{[1-exp(A¥(t+1))](AAL+NC)
+[exp(-AB{t+1))-exp(Av(t+1})]

x (RAL({t)-B(t)))

(2.7) = qouL(t) + e(t+1),
where

¥ .
(2.8) q = e (l-llaﬁ])
and

(2.9) ¢€(t+1) = (exp{Av(t+1))-1)qUL(t)

+e'{[1-exp({A¥({t+1))](ARL+NC)
+[exp(-AB(t+1))-exp(Av(t+1))]{RAL{t)-B(t))}.

£{t+1) represents the (actuarial) loss, with respect to
inflation on earnings and return on assets, incurred
during the period (t, t+1). If actuarial assumptions are
realized during that period, that is to say, if B(t+l) = 8
and np(t+l) = n, then £€(t+1) = @. The loss is measured at
the end of the year, which explains the factor ey on the

right hand side of (2.9).
g+UL{(t) is what UL{t+!) would be, if all actuarial

assumptions had been correct. The first term,
(exp(av(t+1))-1)quUL(t),

therefore represents the loss on the unfunded liability

itself, caused by the net return discrepancy Av¥(t). The

second term,

e¥[1-exp(Av(t+1))](RAL+NC),
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is the loss on the active members' actuarial liability and
normal cost, again attributed to Av(t). If v(t+1) > v, a

gain arises. The third term,

e’[1-exp(An(t+1))]exp(-48{t+1))(RAL{t)-B(t)),

is the loss on the retired wembers' actuarial liability
and benefits; it results from the nominal return
discrepancy 4n(t). A gain is experienced if n{t+l) ) n.
Notice the difference betveen the second and third
term of £(t+1). On the one hand, active members'
liabilities and normal costs all increase at the same rate
as the payroll. Hence only the net rate of return
deviation Av¥(t) is of importance. On the other hand,
benefits are unindexed, and so the loss on the retired
members' actuarial liability depends on the wvariation of

the nominal rate of return, 4n(t+l).

2.3.2.2 Aggregate Cost Methods

Consider the Aggregate method (see 1.3.4 and 1.4.2):

C(t) = S(t){PUB(t)-F(t))/PVUS(t).
t
Multiply by exp(- £ B{(k)) to get the real-term
k=1

contribution
C(t) = S(PVB{t)-F(t))/PVS.
PVB(t) and PVS are defined as in 1.4.2, except that

PVB(t) does not turn out to be a constant, because

benefits are not indexed.

The discrete-time version of Prop. 1.1 (Section

1.4.2) tells us that

EANye - sqpuB*-F*NaL)/pus.

Furthermore, it is easy to see that
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PUB(t}) - pPyvB" RAL{t) - RAL"

I

_ BNy () - EANy <
In consequence,
c(t) = s(pvB® - FBNpy ™y pys
+5(PVB(t})-PuB*+ENa 1 * F(t))/Pys
= EBNyc « s(BPNaL(t)-F(t))/Pys
(2.10) - EBRyc + BBy (t).s/pUS.

Thus Egs. (2.7), (2.8) and (2.9) still hold, with A

replaced by PVS/S. The unfunded liability, estimated on
the basis of the Entry Age Normal method, is <spread over
"m" years, m being such that

(2.11) Qe = PUS/S.

That is, m is a kind of “salary-weighted"” average of
remalining years of serwvice. The numerical example in

Section 3.9 further illustrates this point.

Remark 2.1. flggregate with New Entrants wmethod

(n ¢ =).

Let the wvaluation basis include new entrants coming
into the scheme over the next "n"” years. In view of the
discrete-time version of Prop. 1.2 (Section 1.4.3.1), it

is clear that Egs. (2.102) and {2.11) become

C(n,t) = EfNyc + EBNy(4y.5/PUS ()
and
d—y = PVS(n)/s.
Consequently,
EANUL(t+1) = q’EANUL(t) + e(t+1)

where £€{t+l) is defined as in (2.9), but
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e¥(1 - s/PVS(n))

Ne
]

eV (1 - 1/ ).

2.3.3 fAmortization of Lossecs Method

Under this method of adjusting the normal cost, each

intervaluation loss £(t) is amortized over m years. I
first find an expression for £(t). Denote the overall
ad justment by ADJ(t}, i.e.

C{t) = NC + ADJ(t).

From Eqs. (2.4) and (2.5), we find

(2.12) UL(t+1) = e (UL{t)-ADJ(t)) + e{t+1)

where £(t+l) has a definition very similar to Eq. (2.9):

(2.13) e(t+1) = (exp{Av(t+1)}-1)e  (UL{t)-ADI(t))
ve’{[1-exp(A¥{t+1))](RAL+NC)

+[exp(-8B(t+1))-exp(Av(t+1))]({RAL(t)-B(t))}.

The only difference between the two definitions of
2{t+1) lies in their first term. It is explained by the
fact that the expected unfunded liability at time t+l

(i.e. supposing all actuarial assumptions to have worked

out during (t,t+1)) is now
e’ (UL(t)-ADI(t)).

The loss on the unfunded liability differs accordingly.

Each loss €(s) is liquidated by m payments

p(s) = ¢(s)sal’)

to be paid at times s,5+1l,...,5tm-1. Thus the overall

ad justment becomes

ADJ(t) = sum of p(s)’'s in force at time t
m-1
= L‘ p(t-k)
k=0
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( ) m-1
2.14 = L e(t-k)sa
k=0 m]

I shall now derive an expression for UL{t), in terms
of the £(s)’'s only. This expression, together with Eq.
(2.14), will be fundamental in calculating the moments of
F{t) and C{(t) in Section 3.4.

Imagine the scheme to be set up at time 0. Then
2{s) = ©, s ¢ @, and €¢{©) = UL{(®). From Egs. (2.12) and
(2.14),

UL(1) = e"(UL(@)-ADJ(0)} + €(1)
(2.15) = e*(1—1/§ﬁ])e(0) + e(1)
(2.16) = (8-—q 78 )€e(@) + e(1);
UL(2) = e {UL{1)-8DJ(1)) + €(2)

= e[ (&g 78 )e(0) + €(1)

—e(o)/é ~e(1)/581 + €(2)

(a /3—1)8(0) + (a /a—j)€(1)+e(2

m-1

(2.17) UL(t) = kE@ £(t k) ——-—-]/a-—-l
m-1

(2.18) = z p(t—k)é — .
k-0 m-Kk|

In words, UL(t) is the present value of those
payments p(s) which have yet to be wade, in order to

liquidate each of the losses having arisen over the past m

years.

Remark 2.2. It is implicit in the derivation of Eq.

(2.17) that the rate used to calculate éﬁ1 is ¥ (this is

why (2.16) can be deduced from (2.15)). In practice,

however, valuations are not done on a “"real-term"” basis,

and
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SO éﬁ] is calculated at rate n. The formulae obtained in

that case are similar, but more complex.

2.3.4 Response to a Single Loss

The two methods of adjusting the normal cost will be

compared in Chapter 3, when A4A(t) = @ and (n(t)}t>1 is

a sequence of i.i.d. random variables. In this section,
the wmethods are compared in the simplest possible case,

that of a single loss €¢(0).

Remark 2.3. In the parlance of control theory, this

section studies the response of the systems to an
“impulse"” input (= unique disturbance). Chapter 3 studies
the response of the system to a random (uncorrelated)

input.

Suppose a unique loss £€{@) and 4£(s) = @, Vs # O.
With the Spread method, one obtains (from Eq. 2.7))

UL{1) = gq-€(9),
uL(2) = q’-¢{0),
(2.19) UL{t) = q -€(0).
It follows that
t .
(2.20) C(t) = NC + q €(0)/a_ .

Therefore, the unfunded liability converges geometrically
to ©, and the contributions to NC, if g ¢ 1!. This is the

case in general if the rate used to calculate éﬁ] is equal

to the assumed net rate of return v, for

e’ (1- 1/&%{’) = a%%%]/a%r) ¢« 1.

When the Amortization of Losses method is used, Egs.

(2.14) and (2.17) tell wus that
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UL(t) = e(o)éﬁ:Tlléﬁl
t {(m
C(t) = NC + 8(0)/§m
(2.21)
UL(‘t) = O
t > m
C(t) = NC.

This wmerely confirms that the method actually does
liquidate losses in exactly m years. Notice that, on the
other hand, the Spread wmethod never gets rid of ¢€(@)
completely.

Remark 2.4. Egs. (2.6), (2.7), (2.12), (2.14) and
(2.17) imply that

(i) under the Spread wmethod

UL{t+1) = UL{t) - (l-qg)UL{t) + €(t+1)
(2.22)
ADJ(t) = UL{t)/&_;

(ii) under the Amortization of Losses method,

m-1
UL(t+1) = UL{t) - Z exp[-v(m-1-k)]e(t-k)/a_ +e(t+1)
k=0 ml
(2.23)
m-1
aDJ{t) = I e{t-k)/a— .
k=9 ml
Now think of UL{t) as the state of the "system”, of

€¢(t) as the disturbance experienced, and of ADJ(t) as the

control applied to the system. It can be seen that

(i) the Spread method applied a proportional negative
feedback control, while

(ii) the Awortization of Losses wmethod is a kind of

integral negative feedback control.

(The feedback is "negative", for ADJ(t) is subtracted from
UL(t); for more about the different types of controls,

see Burghes and Graham (1980), pp. 101-102.)
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2.4 CONTINUOUS TIME

Below is the continuous time translation of the
results of the previous section. Several details and
interpretations have not been repeated.

2.4.1 Real-Term Variables

Total payroll is proportional to

t
exp{f B(<)ds).
@
Thus, in what follows,
(real-term variable at time t)
t
= (nominal-term variable at time t) exp(- [ B(s)ds).
%)
If x > r,
t
B{x,t) = crexp(- [ B{s)ds)
t-x+r
and
-\n
AL(x,t) = B(x,t)-al").
I will now show that
(2.24) AL’ {t) = v(t)QL(t)-Av(t)QﬁL—An(t)RﬁL(t)+NC-B(t).
(i) Say x :z r.

d '(O) d t o

_— = . = - s =3

e ALlnt)) = orea ! soexp(- [ A(s)ds)

t o
-n
t+crexp{- | B(s)ds) z— (exai )).
t-x+r

From

° (e almy = e+ one z(m)

ax X X X x x !
we get
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2
o€, AL{x,t)) = (n-B(t-x+r))e AL(x,t)-€ B(x,t).
2
(i1) ar{€,AL(x,t)) = (B(t-w+r)-p(t))e AL(x,t)
= (n-B(t))e,AL(x,t)
8
- Fa(e,AL(x,t)) - € B(x,t).
a ©w 0
(11i) geRAL{t) = [ 3¢ (€ AL{x,t))dx
= | (1-B(t)) € AL(x,t)
a

- aal€,AL{x,t)) - € B(x,t)dx

(from (ii))

(n-B(t))RAL(t) + € AL(r) - B(t).

Adding this to Egq. (2.2), we find
d

AL’ (t) 57 (RAL + RAL{t))

H

= YAAL + NC - & AL{r)

+(n-B(t))RAL(t) + € AL(r) - B(t),

which proves ({2.24).

Finally, as regards contributions and fund levels,
F'{t) = n(t)F(t) + C(t) - B(t),

which implies

d d _ t
gt Flt) = g¢ (F(t) exp(- é B(s)ds))
t
= F:(t) exp(- é B(s)ds) - B(t)F(t)
(2.25) = v(t)F(t) + C(t) - B(t).
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2.4.2 Spread Method

2.4,2.1 Individual Cost Methods

Assume

(2.26) C{t) = NC + UL(t)/ga].

From Egs. (2.24) and {2.25)

UL’ (t) = AL'(t) - F'({t)
= ¥{t)uL({t) - UL(t)/gﬁ]—Av(t)QAL -An(t)RAL(t)
(2.27) = -aUL(t) +Av(t)UL(t) -Av(t)RAL -An{t)RAL(t),
vhere a = 1/a_ -v.

ml
Af ter defining

(2.28) e(t) A¥(t)UL(t) - Av(t)RAAL - Ap(t)RAL(t),
Eq. (2.27) becomes
(2.29) UL’ {t) = -aUL({t) + €(t).

Eq. (2.28) is the continuous-time equivalent of Eg.
(2.9) (Section 2.3.2.1), and has a similar interpretation.

e(t) could be named the "instantaneous loss™ at time t.

(i) A¥{t)UL{t) is the net return loss on UL(t)
itself;
(ii) -AY(t)RAL is the net return loss on active

members’ liabilities; and

(iii) -An(t)RAL{t) is the nominal return loss on

retired members?' liabilities.

The difference between (ii) and (iii) can again be

imputed to the fact that benefits are not indexed.

2.4.2.2 Aggregate Cost Methods

Consider the Aggregate method:
C{(t) = S(PVB(t)-F(t))/PVS.

We infer from Prop. 1.1 that
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(2.30) c(t) = EBNyc o (BN vy F(¢)) .s/PUS.

The method is equivalent to the Entry Age Normal,
when the unfunded liability is spread ocver m years, m

being such that

(2.31) a = PVS/S.

m]

Because of this, Eqs. (2.27), (2.28) and (2.29) remain

valid, with a S/PVUS-v.

Remark 2.35. Aggregate with New Entrants methoed

(n ¢ =}). From Prop. 1.2 we can write

Cin,t) = EfMNyc + B8Ny (4).5/PVUS(n)

and

a— PUS(n}/S.

Thence
UL'(t) = -a(n)UL{t) + &(t).
We see that the size of a (or a{n)) determines how

close F({t) will stay from AL(t). Thus the results of

Section 1.4.4 are also relevant when actuarial assumptions

n and B are not realized.

2.4.3 Amortization of Losses Method

If C(t) = NC+ADJ{t), then Egs. (2.24) and (2.25)

vield
(2.32) UL’ (t) = YUL({t)-ADJ{t)+e(t)

where
(2.33) e(t) = Av(t)UL(t)—AY(t)QQL-An(t)RQL(t).

Let m be the number of years over which losses are to be

amortized. Then
t

(2.34) ADI(t) = 8(5)/;%{) ds.
t-m

It is not unreasonable to suspect that the continuous

counterpart of Eq. (2.17) is
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(2.35) UL(t) = }

t-m

£(s) aﬁ:TTE]/aﬁ}ds'

This can be verified by substituting the right hand

side of Egqg. (2.35) into Eq. (2.32). The details are in
Appendix 2.1.

2.4.4 Response to a Single Loss

Suppose a unique loss £€(@) # @, and {(s) = @ vs £ 0.

In continuous time, this is expressed as

€{s) = ¢(92)6(s)

where 6(+) is the Dirac delta function.

(i) Spread method:

UL'(t) = -aUL{t) + €(0)&6(t)
UL{t) = e(o)e **

3 t > @
C(t) = NC + Z(O)E_at/gm.

Notice the way the effect of the 1loss dies out
exponentially, for both the fund and the contribution. Of
course this assumes that a ) @; this is the case if a

iscalculated at rate ¥, for in general

1/551’ Y )Y @, vy € R.

See also Sections 1.4.2 and 1.4.3.1 concerning the a’'s

produced by aggregate cost methods.

(ii) Amortization of Losses method: from Eqgs. (2.34) and
(2.35)
t(m
ADJ(t) = e(O)/aa-|
and
UL{t) = ADJ(t) = © t > m.
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Remark 2.6. From Eqs. (2.26), (2.29), {2.32), (2.34)
and {2.35), we obtain

(i) Spread method:

UL'{t) = -aUL{t) + e(t)
ADJ(t) = UL(t}/a_ .
(ii) Amortization of Losses method:
t
UL'{t) = —t{ {exp[—v(m—t+s)]/gﬁ]}e(s)ds + e(t)
t
ADJ(t) = €(s)/a_ds.
(1) = | e(s)ag

Again we see that

(i) the Spread method amounts to a proportionai negative
feedback, and

(ii) the Amortization of Losses wmwethod is a kind of

integral negative feedback control.
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APPENDIX 2.1
PROOF OF EQ. {2.35) FOR UL(t)

Define <£{t) as in Eq. (2.33) for t : 0, and
€{(t) = @ for t ¢( @. Also define
t
Z(t) = t{m e(s) am—gsg 7aq ds

for t ) @, Z(@) = UL{(®). I first show that

Z'{t) = ¥Z'(t) - ADJ(t) + £(t).
Leibniz?’s rule yields
d t B _
Z'{t) = vy { €(s) aﬁ:TT§1/EE1d5
t-m
= e(t)aﬁ]/aﬁﬂ - e(t—m)aa]/aﬁn
t d _
Now
d d m-t+s .
at *mtes - @ )&
= -exp[-¥{(m-t+s})],
which implies
t —
z'(t) = e(t) - e(s)exp[-v{m-t+s)]/a_ds
t-m
t -_— -—
= e{t) + v | e(s)aﬁ:TTE]/aﬁﬂds
t-m
t —
- | e{s)/ads
t-m
or
(2.36) Z'(t) = e(t) + vZ{t) - ADJ(t).

From Eqs. (2.32) and (2.36), we get

(UL{t)-Z(t))' = y{UL{t) - Z(t)).
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This means UL{t)-Z(t) = e’ (UL(@)-Z(®}) = O,
UL{t) = Z({t) vt » O.
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CHAPTER 3
RANDOM RATES OF RETURN:
DISCRETE TIME

3.1 INTRODUCTION

In this chapter, the first and second moments of F(t)
and C(t) are calculated, under the assumption that rates

of return are independent identically distributed (i.i.d.)

random wariables. (The i.i.d. hypothesis is reviewed in
Section 5.2.) The two methods of adjusting the normal
cost described in Chapter 2 are examined, in a

discrete-time framework.

This is the central chapter of the thesis, because

(i) both wmethods of adjusting the normal cost are
considered (while the continuous-time analysis
of the next chapter is only concerned with the
Spread method);

(ii) it includes the discussion of the “optimal
region” (Section 3.5.3); and

(iii) partly due to (i) and (ii), and also because it
is set in discrete time, this chapter is the one
which comes nearest to practical actuarial
problems.

As in Chapter 2, it 1s supposed that surpluses and
deficiencies (or gains and losses}) receive the same
treatment when adjusting the normal cost. The other
assumptions are very similar to those of Chapter 2, except
that only varying rates of return are taken into account.
These assumptions are briefly restated in Section 3.2,
along with some new notation.

The moments of F and C are derived in 3.3, 1in the
case of the Spread method, and in 3.4, in the case of the

Amortization of Losses method.
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Section 3.5 is a numerical example. 3.5.2 places the
two methods side by side, and comments on the variance of
F{(=) and C{=) produced by different values of "m". In
3.5.3, an “optimal region” for m is specified, in the case
of the Spread method.

The results of this chapter are original {parts of

3.3 and 3.5 are included in Dufresne (1986)).

3.2 ASSUMPTIONS AND NOTATION

(1) The population is stationary.

(ii) All acturial assumptions are consistently borne
out by experience, except for investment
returns.

(iii) There is no inflation on salaries.

Alternatively, one may 1imagine that benefits 1in
payment increase at the same rate as salaries, and that
only real-term variables are considered (see Section

2.3.1).

(iv) Valuation assumptions are fixed, including the
rate of interest iv.

{(v) The actually earned rates of return {i(t)}t>l
are i.i.d. random variables, with i(t) » -1

w.p. 1 and Var i(t) = 02 ¢ w, i{t) is the rate

earned during {t-1,t}).

(vi) An "“individual cost method” will mean the same
thing as it did in Chapter 2. I will use the
fact that under these methods

(3.1) AL = (1+iy)(AL+NC-B).

This is easily deduced from assumptions (iii)
above and (xi) of Section 2.2.

(vii) Prob(F({Q) = FO) = 1 for some F, € R.
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From these assumptions,

(3.2} F(t+1) = (1+i(t+1))(F(t)+C(t)—B).
Def ine
iV = wvaluation rate of interest
i = Ei(t)
d = i/(1+i)
dy = i /{1+iy)
u{t) = 1+i(t)
u = Eu(t) = 1+
2
c = Var i{t) = Var u(t)
and
Ht = {o-algebra of events prior to {inclusive of)
time t}.

It follows from Eg. (3.2) that i(t), F(t) and C{t)

are each Ht—measurable.

I will repeatedly use the identity
EX = EE(X|H),
which presumes H to be a sub-o-field of the o-field on
which X is defined.

The z-transform (see Appendix 3.2) of any sequence
{x(t)} will be denoted by x{z).

Note. The amnalysis 1is conducted with real-term
values, as in Secticn 2.3. The only exceptions are
Sections 3.3.3 and 3.3.4, where it is shown that, as far
as the Spread method is concerned, similar results hold

for nominal wonetary wvalues.

Remark 3.1. The "exponential” rates ey(t) had their

purpose in Chapter 2, in showing the similarity between

the discrete and continuous time situations. In this
chapter, however, 1 use
u(t) = ey(t)
and
i(t) = ey(t) -1,

to simplify the formulae and their i1nterpretation.
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3.3 SPREAD METHOD

Consider any individual cost method (see Section 3.2)

and suppose that

(3.3) C{t) = NC + UL(t)/éﬁ]
where 551 is evaluated at rate iV, and 2 i m { =, This
implies

F{t+1) = u{t+1){(F(t)+C(t)-B)

u(t+1)[F(t)+NC+(AL-F(t})/a_ -B]

(3.4) = (u{t+1})/u)(gF(t)+r)
where
u{t+1) = 1 + i(t+1),
u = Eu(t+i},
(3-5) a = u{l - t/a_)
and
(3.6) r = u{NC - B + QL/éﬁ1).

Remark 3.2. Because of the i,i.d. assumption iwmposed
on {i{t)}, Eq. (3.4) shows that F(t) is a Markouv process.
This is also true of C(t) (Eq. (3.3)}.

3.3.1 First Moments

Eq. (3.4) implies
EF(t+1) = EE(F(t+1)|Ht)
(3.7) \ = qEF{t) + r,
which in turn means that

(3.8) EF(t)

q'Fy + r{t-q)/(1-q), t : o,

3.3.1.1 Ei{t) = iv.
In this case,

@ ( q

(L+ig) (1 ~1/84)

(3.9)
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Proposition 3.1. Let m : 1. 1If Ei(t) = i

under the Spread method

(3.16) EF (=)

N
[
[N
3
X1
1]
o~
"
b o]
r

(3.11) EC (=)

N
s
[
3
™
(@]
—
rt
vt
H

NC.

Proof. If wmw : 2, then from Eqs. (3.8) and (3.9),

(3.12) lim EF(t) = r/(1-q).
t

This limit is AL, for Egs. (3.1), (3.5) and (3.6)

yield
AL = (1+i)({AL+NC-B)
3 B-NC = dAL
QL(1+1)(1/aﬁ]—d)
=2 r/ l—q = - =
(1-q) [I-(1+i)(1- 17371
= AL.
Egq. (3.11) follows from (3.3).
The case m = 1 is dealt with in Remark 3.3 below. D
3.3.1.2  Ei(t) # iy.
If iv differs from Ei{t), then Prop. 3.1 does not
hold. All that can be said 1s that if
q = (l+Ei(t))(1—1/éﬁ1) ¢ 1
then
EF(e=) = r/(1-q)
and

EC(=) = NC + {AL-EF(=))/d_ .

Remark 3.3. When m = 1,

C(t) = NC + UL(t)}),

F(t+1) u(tgl)(RL+NC-B)

i}

u(t+1)6nL/(1+iV),
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which imply

EF(t+1) = [u/(1+iv)]'QL
t > 0
EC(t) = NC + AL - EF(t).
If Ei(t) = iv, then EF(t) = AL, and EC(t) = NC for all
t >+ 1
3.3.2 Second Moments

I will use Eq. (3.4) and the identity ({proved in
Appendix 3.1}

(3.13) VarF(t+1) = EUar(F(t+1)‘Ht) + VarE(F(t+1)|Ht)

to show that

(3.14) VarF{t+1) = keVarF{t) + s(EF(t+1))2

2 2 -2

vhere k = q2(1+02u_ ) and s = o"u 7. Firstly,

Var(F(t+1)|Ht) Uar(u(t+1)/u)'(qF(t)+r)2

= s(gF{t)+r)?

5 EVar(F(t+1)|H,) = sE(qF(t)+r)?
= sE[q(F(t)-EF(t))+qEF(t)+r]°
(3.19) = quVarF(t)+s(EF(t+l))2

from Eq. (3.7}.

VarE(F(t+1)|Ht) Var(gF(t)+r)

(3.16) QZVaPF(t).

Finally, Eg. (3.14) is the sum of Eqs. (3.15) and
(3.16).
Denote M{t) = EF(t), and V{t) = VarF(t}). Eq.
(3.14) becomes
2
(3.17) V{t+1) = KkV(t) + sM(t+1)".
Assumption (vii) (Section 3.2) says that VarF(0) =

@, and so
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V(1) = sM(1)2,
v(2) = ksM{1}? + sM{2}?
oo t |
(3.18) vit) = s = kUIn()?, ot » 1.
j=1

Prop. 3.2 identifies the limits of VarF(t) and

VarC(t), as t 2 =, and Prop. 3.3 is about covariances.

Proposition 3.2. Let 2 < m <=, If k = q2(1+02u 2)
( 1, then

(3.19) VarF(=) = o2u 2(EF(=))%/(1-k),

- 2
(3.20) VarC{=) = [UarF(w)]/(aﬁ1) .
If k ¥ 1, then both VarF{=) and VarC(«) are infinite.

Proof. First note the following properties of limits

inferior and superior. S8Say f({t), g(t) * ©. Then

lim inf {(f+g)(t) lim inf f£(t) + lim inf g(t)
t t t

1

and

lim sup (f+g)(t) lim sup £(t) + lim sup g(t).
t t t

1A

2
k 1 implies g ( 1, and thereby M{=) {( =, Then,

from Eq (3.18),

t
vit) < £ k' I(sup n(t)?)
i=1 t
¢ (1-k) teup M(t)? ¢ =,
t

which means that sup V(t) ( =.
t

Hence we may take limits inferior on both sides of

Eq. (3.17) to obtain

lim inf VU(t) 2 sM(=)?/{1-k).
t

Taking limits superior, we also find
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lim sup U(t) < sM{=)}?/({1-k).
t

These prove (3.19). Eq. (3.20) is a consequence of Eq.
(3.3).

k » 1: M(=) can never be @. This is because
r = u(NC-B+AL/&_ )
= uAL(1/8_ -d,) > @

(cf. Eqs. (3.7) and (3.8)). If k

1™

1, Eq. (3.18) then
implies lim inf V(t) = «=. O
t

Proposition 3.3. Let h > O.

Cou{F(t),F(t+h)) = g"VarF(t)
(3.21) Cou{C{t),C{t+h)) = g'VarcC(t)
Cou(F(t),C(t+h)) = -g"[VarF(t)]/a_ .
If k ¢ 1, then, as t - =,
Correlation (F{t),F(t+h)) » q"
(3.22) Correlation (C(t),C{t+h)) -» q"

h
Correlation (F(t),C(t+h)) =2 -q

Proof. Define F (t) = F(t)-EF(t). Then (Egs. (3.4)
and (3.7)),

F¥(t+1) = (u{t+1)/u)(gF(t)+r)-gEF(t)-r

s E(F'(t+1)|H.) = qF (t)
3 Cou{F(t+1),F(t)) = EqF (t)?
= qgVarF(t).

Hence, if §j 2> O,

» .
E(F (t+j+1)|H qQF (t+j)

o)
3 Cov(F(t+j+1),F(t))

EF" (t+j+1)F (t)

EE(F (t+j+1)F (t)[H, )
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EqF (t+§)F (t)

qCov(F(t+j),F{t)).

This implies

tharF(t), h > O.

Couv(F(t+h),F(t))

The other covariances easily follow.

As to correlation coefficients, for example,

Correlation (F(t+h),F(t}))

= Cou(F(t+h),F(t))/[VarF(t+h) VarF(t)]'’?
- @, if k ¢ 1. o
Remark 3.4. The case m=1 (cf. Remark 3.3). From
F{(t+1) = u(t+1)QL/(1+iv), wve get
VarF(t) = VarC(t) = o°AL?/(1+i,)?

and
Couv(F({t),F{t+h)) Cov(C(t),C{t+h))

= 9, for all h ¥ Q.

3.3.3 Non-Stationary Population

Recursive relationships similar to Egs. (3.7) and
(3.14) also apply when some of the assumptions are
discarded. Suppose now that the population is no longer
stationary, that salaries grow with inflation - constant
or not, but noet random - and that the wvaluation interest

rate iv is not necessarily equal to i = Ei(t). From

F{(t+l) = u(t+1)[F(t)+NC(t)—B(t)+(QL(t)—F(t))/éﬁ]]

we easily get
EF(t+1) = qEF{t)+r(t)
and
VarF(t+1) = kVarF(t) + s(EF(t+1))2,

where q,k and s are defined as before, and

r(t) = u(NC(t)-B(t)+AL(t)/a_ ).
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3.3.4 Aggregate Cost Methods

Given the same setting as in 3.3.3, if

C(t) = S{t)(PVB(t)-F(t))/PUS(t),
then
EF(t+1) = gq(t)EF(t) + r{t)
and
VarF{t+1) = Kk(t)VarF(t) + s(EF(t+1))2,
where
q(t) = u(l-S(t)/PVS(t)),
r{t) = u{S{t)PVB{t)/PVS(t)-B(t}),
k{t) = q(t)2(1+elu?).

Now suppose a single entry age, and reinstate the

assumptions of Section 3.2. From Eq. (2.10),

c(t) = “ANnc + PWNuL(eysa_

vhere éﬁ] = PVUS5/5. We see that Propositions 3.1 and 3.2

once wore apply:

- if iV = Ei(t), then
lim EF(t) = CRNgp,
t
lim EC{t) = FANxc;
t

- if k = dﬁl-S/vaf(1+ozu'2) ( 1, then

"
lim VarF{t) = sEF{=)“/(1-k).
t
) 2 2
lim VarC(t) = [VarF(=)]S"/PVUS".
t
Note: The results of this section hold for either

the Aggregate or Aggregate with New Entrants methods; see
Section 2.3.2.2.

3.4 AMORTIZATION OF LOSSES METHOD

Recall that in this case (see Eqs. (2.14) and (2.17)
of Section 2.3.3)
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(3.23) C(t) = NC + ADJ(t)
m-1
3.24 ADJ{ t = L £(t-j)/a
(3.24) () = e(ei)iag
m—1 o )
(3.25) UL{t) = Jio e(t—J)aa:j]/aﬁ].

Now turn to Eq. {2.13) of the same section. Taking
into account the assumptions and different notation of

Section 3.2, this equation is first revwvritten as

e(t+1) = (i(t+1)-i_ ){UL{t)-ADJ(t))

v)
+{iy-i(t+1))(RAL+NC+RAL-B)

) ) ) -1
= (1(t+1)—1v)[UL(t)—QDJ(t)—(1+1V) QL],
since
AAL+NC+RAL-B = AL+NC-B
) -1
= (1+1U) AL.

Next, subtract (3.24) from (3.235) to derive

m—2
Z e(j)e(t-j)
Jj=90

UL{t)-ADJ(t)

where

e{J)
(3.26) = A= /8m 0 @

(8= ~1)/35

< J &£ m-2.

Finally, Eq. (2.13) is restated as

m-2
(3.27) e(t+1) = (i(t+1)-iv)(_z@ e{j)le(t-j)-A)
J:

U) 1QL. Also define

in which A = {(1+i
Ai = Ei(t)-iv.

Throughout the rest of Section 3.4, the following strategy

will be adopted:

(i} calculate the moments of the €(t)'s first, using Eq.

(3.27); and then
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(ii) use Eqs.(3.24) and (3.25), together with the results
of {i), to calculate the moments of C(t) and F(t).

The last comment is about “initial conditions™: Eqg.
(3.27?) shows that <£(1) depends on <£{@), €{(-1),...,
2(-m+2). These are the initial conditions. In the sequel

they are presumed known and non-random.

Remark 3.95. It will be assumed that 2 <& m ( =,
When wm = 1, the Amortization of Losses and Spread methods
are indistinguishable; see Remarks 3.3 and 3.4.

Bemark 3.6. Eq.(3.27) clearly shows that neither

F{(t) nor C(t) is a Markov process, for ¢€{t) explicitly
depends on “the past”, i.e. on €{t-1),€(t-2),...,&(t-m+1).
3.4.1 First Moments
3.4.1.1 Ei(t) = i

v

Let t : @. From Eq. (3.27},

Ee(t+l) = EE{e(t+1)|H )
m-2
- E(i{t+1)-iy)E( Z e(j)e(t-i)-A)
=0
(3.28) = 0.
This makes sense: if the wvaluation rate of interest
is correct "on average”, then on average e(t) is @.
Consequently,
m-2
EC{(t) = NC + L B(t—,j)/ém
i=t t ¢ wm-2
m-2
J:
EC(t) = NC
t > m-2
EF{t) = AL.

The initial conditions have an effect on the firct

moments of C{t) and F(t) when t ¢ m-2, and none

afterwards.
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Matters are slightly more convoluted wvhen

Ei S
i{t) # iy

3.4.1.2  Ei(t) # ig.
From Eq. (3.27).
m-2
E(e{t+1}|H )} = Ai(-EQe(j)e(t—j) -A)
J=

3 E¢(t+1)

EE(e(t+1)|H )

m-2 .
Ai( L e{j)E€(t-j) -A).
Jj=0

(3.29)

Define M({(t) = E&(t), and

M(z) - z z tn(t).
t>

(z-transforms are briefly explained in Appendix 3.2.)

Eq. {(3.28) implies

(3.30) oz tn(t+1)
t:o
- -t . . . -t
= AL I =z Ze(j)M{t-g) - 4i-Aa« L z .
t:0 j:o t:0

The left hand side of this equation is zﬁ(z)—zﬂ(o),

while on the right hand side we have

v~ -t+ .
’E e{j)z L Jn(t—J)

AR t:0
. . =1

(3.31) = L e(jlz? Iz "Ms)+ Ze(jlz? L =z %¢(s)

J>@ 5:0 Jj:@ s=-]

= e(z)M(=z) + §(=), say.
Q(=) reflects the initial conditions. Since
rz ' - 1/(1—2_1) Eq. (3.30) becomes
t:0
zM{z) - ze(@) = Aie(z)M(z) + 4iQ(z) - Aia/(x-z"l)
. -1 =1~

(3.32) 2 M(z) = (e(9)+siz "Q(=z))/(1-8iz "e(z))

-1

—aiaz" -z 1-ai2TE (2))
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From ﬁ(z), I shall now find an expression for M(t),
taking for granted that initial conditions are nil (€(s)
@, -m+2 < s ¢ @). First,

R - ~f~ -2~
(1-4iz "e(z)) Voo 1+aiz 1e(z)+Ai22 2e(z)2+...

corresponds to
2
{t 2) + Aie{t-1) + Ai 2.0 )(t -2) +

wvhere e(n) is the n-th convolution of e(*), i.e.

n+l . n . 1

el™ 1ty =z oeryrel™ie-j), M) = eqe).
j:@
The first term on the right hand side of (3.32)

vanishes and thus (using basic properties of z-transforms,

see Appendix 3.2)

E€{t) = M{t)
t-2 - (2)
(3.33) = —-Aiﬁ[l{t 1}+ Ai E e(j)+ ai? L e {(J)
=0 Jj=0
@
soor ait oz (TN gy,

j=o

Once E&(s), ©® ¢ s ¢ t, have been calculated - either

from Eq. (3.29) or from Eg. (3.33) - the expectations of
F{(t) and C(t) are found from Eqs. (3.24) and (3.25):

EF{(t) = AL - EUL(t)
m—1
(3.34) = AL - Jfo E€(t-j) éﬁjjl/éﬁ]'
EC(t) = NC + EADJ(t)
m-1
(3.35) = NC + Jfo Ee(t—j)/éﬁ]

Proposition 3.4 tells what EF(t) and EC(t) become in
the limit {the proof is in Appendix 3.3}).
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1

Proposition 3.4. If |ail ¢ (re(j)) °, then E£(t),
EC(t) and EF(t) have finite limits as t 2 =, and
(3.36)  Ee(=) = -4i{1+iy) 'AL/(1-4iZe())
.1
(3.37) EC(=) = NC + ma_'Ee(=)
m-1
3.38 EF{=) = AL - L & ~ /& oo
( ) (=) (J=0 So=31 78m JEE(=)
(3.39) = AL[L + Ai{1+iy) ']/(1-aize(§)).
3.4.2 Second Moments
Only the case Ai = @ (i.e. Ei(t) = iy) is
considered. Two facts are essential:
(i) Ee(t) =@ vt : L (Section 3.4.1.1).
{ii) {e(t)}t>1 is an uncorrelated sequence, for, if
1 ¢ 5 2 ¢,
Couv(€(s),€(t+1)) = E€(s)e(t+1)
= EE(B(S)Z(t+1)|Ht)
m-2
= E(i(t+1)—iv)E8(s)( Z e(j)e(t-j)-Rn)
J=0
(see Eq. {3.27))
= 0.
(Note: though the £{t)’'s are uncorrelated, they are
certainly not independent.)
Remark 3.7. It wmay now be explained why the
condition Ai = ©@® 1is imposed here, while it wasn't needed

in the case of the Spread method (Section 3.3.2).
When Ai # ©, properties (i) and (ii) above hold no
more. Therefore, all the simplifications brought about by

the fact that the €(t)’s are uncorrelated (see below) are

not permitted.
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ficcordingly, calculating variances becomes a much
more arduous task - or so it seems at this point in time.
The partial results so far obtained do not merit inclusion

here.

From Eq. (3.27),

Vareg(t+1) = EE(e(t+1)2|Ht)
m—-1
2 ] ) 2
= 0o E( r e(J)e(t—J)—Q)
i=2
2 m—-2At-1
= o E[ z e{j)e(t-J)
ji=0
m—2 5
+{Z e(i)e(t-j)-A)]
j=t
5 m-2At-1 "
= o z e{j)“Vare(t-j)
i=2
2, ™2 . . 2
o ( Z e(j)e(t-j)-A)".
=t
I used the fact that
m—2
a(t) = I e(j)e(t-i) - A
i=t

is not random (it only depends on the initial conditions

€{(s), s ¢ ®). Thus

m-2

£ e(j)vare(t-j) + o2a(t)?.
j=0

(3.40) Varg(t+l) = o°

Define V(t) = Vare(t), and take z-transforms on both

sides of Eq. (3.40Q) to get

zﬁ(z) = 0252(2)6(2) + 0252(2)
or
(3.41) U(z) -= 022-152(2)/(1-022-152(2))
where |
s (z) = ¢ e(j)z""
i@
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and

Using Eq. (3.41) it 1is possible to write down a
somewvhat explicit expression for Var e{t):

2 -1

U(z) oz 52(2)(1+022—1g2(z)+oqz-252(z)2+...)

4 -2> .~ 6

]
Q
N
=)
N
———
b
+
Q
s
=]
&
[0
4!
M
b
+
Q

-3« ~ 2
z AZ(Z)EZ(Z) +...

which means that

t-2
(3.42) vit) = o?a(t-1)% + 0% I e(j)2a(t-2-j)2
J=0
t-3
¢ o® z egz)(j)n(t—B—J) + ...+
J=9
)
v o?t roel{tHj)a(-4)2
i=0
2

(egn) is the n-th convolution of e{:+)

-)
VarF{t) and VarC(t) can be expressed in terms of
Varg(s), t-m+1l < s 2 t. From Eqs. (3.23), ({3.24) and

(3.29), keeping in mind that the £€{(s)’'s are uncorrelated.

- m-1
(3.43) VarC(t) = éﬁ] I Vare(t-j)
j=0
2 ™ o
(3.44) VarF(t) = i~y Z éE:j]Vare(t—J).
=0

The next proposition is concerned with the limits of
VarC(t) and VarF(t), when t @ =, Its proof 1is in
Appendix 3.3.

Proposition 3.5. Assume Ei(t) = iy. If

o2 ¢« (T e(i)H)7t,

then Varé(t), VarC(t) and VarF(t) have the following

limits as t — oot
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(3.45)  vare(=) = o (1+iy) 2aL?/(1-0%ze(})?)
(3.46) VarC{=) = a%f mVaré (=)
(3.47) VarF(e) = 52 m;l (a 2 Vare(=

. = = o a:-31) aré(=).
1f

o : (re(i)}t,

then all those limits are equal to =,

Covariances can also be calculated:

Proposition 3.6. Assume Ei{t) = iy, and let
@ < h {(m

Cou(F(t),F(t+h)) = Couv(UL(t), UL{t+h)})

m-h-1
- a? I Varg(t-j)a a i
m m-jl “m-h-j]
J=9
and
i m-h-1
Cov(C(t),C(t+h)) = éﬁ] z Vare{t-j).
J=9
1f o2 ¢ (Z e(j)?)" !, then
m-h-1
z ém—rlém-h—j
j=@ J J
lim Correlation (F({t),F(t+h}) = p——
t 5 52
j=o ™l
and
lim Correlation {(C{(t),C{(t+h)) = 1-h/m.
t

All covariances and correlations vanish when h : m.

The contrast with the Spread method is striking (see
Prop. 3.3). On the one hand, under the Spread wmwethod,

(F(t),C(t)) and {F{(t+h),C({(t+h)) are correlated for any h.

. . h :
In the limit, the correlation is q , and q may be quite

high {e.g. if Ei(t) = i,, then gq = éE?T]/éE])‘
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On the other hand, under the Amortization of Losses
method, the correlation between (F{t),C{t)) and
(F{t+h),C(t+h)) diminishes rapidly as h increases, and

vanishes for any h > m.

3.3 COMPARISON OF METHODS: NUMERICAL EXAMPLE

The purpose of this section is to illustrate and
complement the results of 3.2 and 3.4. In 3.5.2 the two
methods of adjusting the normal cost are compared, using
as criteria the wvariances of F and C. The "trade-off”
observed betwveen VarF and VarC 1is further analyzed in

3.5.3.

3.95.1 Assumptions

The illustrations of Sections 3.59.2 and 3.5.3 are

based on the following assumptions.

Population English Life Table No. 13
(malec), cstationary

Entry Age 30 (only)

Retirement Age 695

No salary scale, no inflation on salaries

Benefits Straight life annuity
(2/3 of salary)

Funding methods Entry Age Normal and
Aggregate

Valuation interest iv = .01
rate

1
Actuarial liability EQNQL = 49517 of payroll

1
Normal cost EQNNC = 14.57. of payroll
Actual rates of (i(t))t}l’ i.i.d., with
return Ei(t) = i, = .ol.

1 The calculations are in Appendix 3.6.
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Because Ei{t) = i
lim EF(t) = EANg
t
1im Ec(t) = EPNye
t
in all cases. (Including the Aggregate method - see
Section 3.3.4. Given this particular population and

interest rate, the value of m satisfying

aﬁ] = PUS/S

is slightly less than 17.)
The tables and figure show the "relative standard
deviations™

lim [VarF‘(t)]l"2

t e

JEF(t)

and

1im [varc(t)] '/ ?/Ec(t).
t oo

That is to say, the standard dewviations of F(=) and
C{~) are expressed as percentages of their recpective

expected values.

3.95.2 The Trade-off Betveen VarF and VarC

Table 3.1 contains the results produced by the Spread
method, and Table 3.2 those produced by the Amortization
of Losses wmethod. The standard deviation of the earned

rates of return, o, takes the wvalues 2.37%, 3/ and 10@%.

Comments:

1. Comparing the figurec resulting from identical values
of m, we see that
(i) under the Amortization of Losses method, greater
emphasis is laid on security of benefits (i.e.
VarF is smaller) than under the Spread method.
(ii) however, contributions have a smaller wvariance
under the Spread wmethod and are thus more

“gtable” than with the other method.
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2. It is seen that, for o ¢ 107, the standard
deviations of F(=) and C{=} are nearly linear in o.
This linearity gradually disappears, though, as o and

m become larger.

3. Within the range of ¢ and m chosen, no single wvalue
of wm is "better” than the others. As m 1s wvaried,
there is a trade-off between VarF and VarC, e.g.

increasing wm reduces VarC, but increases VarF.

4. This trade-off is a direct outcome of Eqs. (3.19)},
(3.20), (3.46) and (3.47) - see Props. 3.2 and 3.5.
However, the following asymptotic formulas give a
more intuitive understanding of the way VarF and Var(C
vary with m. They are valid when 1=0 and 02m + @ as
m + =, See Appendix 3.4 for their derivation.

Spread method:

m

(3.48) VarF (=) ~ o? 5 QL2,
1

2 2

(3.49) VarC{=) ~ o ™ AL".

Amortization of Losses wmethod:

2 ™ 2
(3.50) VarF(=) ~ o 3 AL,
1
2 2
(3.51) VarC(=} ~ ¢° — AL".
In words: when i is close to ©, the standard

deviation of F (resp. of C) is roughly proportional to /m
(resp. to 1//m). For instance, in Tables 3.1 and 3.2,
moving from m=5 to m=20 approximately doubles the standard

deviation of F({=), and halves the standard deviation of

C=).
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m o= .025 o= .05 o= .10

[Var F(w )] [Var C(w)]? [Var F(w )] [Var C(w ) ]2 [Var F(w )]? [Var C(@ )]?

aL NC AL NC AL NC

1 2.5 % 77.0 3 5.0 % 154.0 % 9.9 % 307.8 2
5 4.2 26. 4 8.3 52.9 16.8 106.5
10 5.8 18.9 11.7 37.9 23.7 77.1

20 8.3 14.2 16.8 28.7 35.0 59.8 .
40 12.4 11.6 25.3 23.8 56. 2 52.6
Aggregate 7.6 15.2 15.3 30.6 31.6 63.2

(m 2 17)

TABLE 3.1 Relative Standard Deviationslof F(® ) and C(®@ ) under the Spread Method
(Ei(t) = .01, o = [Var i(t)]?)



o= .025 o= .05 ' o= .10

[Var F(m)]% [Var C(a))]% [Var F(cn)]'-’l [Var C(m)]fl [Var F(cn)]"i [Var C(m)]%

(44§

10

20

40

AL NC AL NC AL NC
2.5 % 77.0 % 5.0 % 154.0 % 9.9 % 307.8 %
3.7 35.1 7.4 70.3 14.8 141.3
4.9 25.5 9.9 51.1 19.9 103.2
6.8 18.9 13.7 38.1 28.0 78.1
9.7 14.7 19.6 29.9 41.6 63.3

of Losses Method (Ei(t) = .01, o = [Var i(t)]?)

TABLE 3.2 Relative Standard Deviations of F(wm ) and C(a%) under the Amortization
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3.5.3 The Optimal Region 1 < m < m

The object of this section is to ref ine the

observations made in the last section. Most of what
follows is taken from Dufresne (1986); only the Spread
method 1is considered. The assumptions are unchanged

(Section 3.5.1).
Table 3.3 and Figures 3.1 show the standard
deviations of F{«) and C{«=) when i = .01 and ¢ = .05. But

this time a wider range of m's is taken into account.

JVarF (=) JVarC (=)

m AL - NC

1 5. 0% 154. @Y.
5 8.3 52.9
10 11.7 37.9
20 16.8 28.7
40 25.3 23.8
60 (=m" ) 33.4 22.9
80 41.9 23.5
100 51.4 25.1

TABLE 3.3

Relative standard deviations of F{=) and C{=)
under the Spread method
(i = .01, o = .05).

The trade-off alluded to previously does take place,
but only up to m* = 60; beyond this point, augmenting m
causes both VarV and VarC to increase. With a view to
minimizing wvariances, any m > 60 should therefore be
re jected, for clearly some wm ( 6@ would reduce both VarF
and VarcC. For this reason, 1 will call the range

1 ¢ m % m* the “"optimal region”.
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Proposition 3.7 ascertains under

Proposition 3.7. Assume Ei(t) = i

[Variance F(a))]%/EF(aJ)

FIGURE 3.1

standard deviation of F(=) and C{(=)

(i = .01, 0 = .05, cf. Table 3.3)

i L. »*
which conditions m

gives an explicit formula for

The proof is in Appendix 3.35.

If

that

(1)

(2)

y > 1, then both VarF(«) and VarC(w«)

infinite for some finite wm,

= iv, and def ine
2

y = (1+i)2 + O

become

) »*
and there exists m such

for m o< om VarF(«) increases and VarC(=)
decreases with wm increasing;

for m » m  both VarF(=) and VarC(=«)

with m increasing.

increase
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. . -1
Moreover, if v = (1+1v) ;

- when i # @,

m -log[{vy-1)/(y-1)]/1og(1+i);

- when i = 0,
* 2
m = 1+ 1/0
(ii) If y = 1, VarC(=) + @ and VarF(=) 9 » as m + =,
although VarF(«) stays finite for all m.
(iii) If y ¢ 1, VarC{=) 4+ @ and VarF(«) has a finite limit

as m 3 o,

In (ii) and (iii), VarF(«) increases and VarC(w)

decreases as m increases, for 2 < m ( =,

i -.01 @ .01 23 @5
c
. @3 - 401 60 23 14
.10 - 101 42 20 13
.15 158 435 28 16 11
.20 41 26 19 13 10
.25 2 17 14 10 8
TABLE 3.4
m* as a function of iv and o {nearest integer)
*
Table 3.4 contains numerical wvalues of m , as a
function of 1 and o. It should be borne in mind that "i"

is an average real rate of return, when interpreting the

figures.

Remark 3.8. The example in Table 3.3 and Figure 3.1

* ) .
found m to be 60, which has no practical consequence,
csince deficiencies or surpluses are not currently spread

over periods of 5@ years or more.
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However, Prop. 3.7 may have some practical
importance, if m* turns out toc be smaller. For instance,
Table 3.4 tells wus that if 1 = ,03 and o = .20, the
optimal region shrinks to 1 < m < 13,
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APPENDIX 3.1
FROOF OF VarX = EVar(X|H)+VarE(X|H)

Let H G be two o-fields, and X a random variable
defined on G. Then
vark = EX? - (EX)?

= EE(X2|H) - [EE(X]H)]2
- EE(X?|H) - E(E(X|H))?

+ E(E(x|H))? - [EE(X|H)]?
= EVar{X|H) + VarE(X|H),

Var(X|H) = E(X%[H) - [E(X|H)]".
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APPENDIX 3.2
Z-TRANSFORMS

Z-transforms are the discrete time counterpart
Laplace transforms.

Definition. x{z) = Z[x(t)] = Z =z “x(t).
t:0

Properties.

1. Translation (h ) @)

(a) Z[x(t+h)] = =PZ[x(t)] - ézl x(j)z""Y.
J=@
In particular,
Z[x(t+1)] = =zZ[x(t)] - z+x(0Q).
(b) If x{(t) = @ for all t ( @ then
Z[x{t-h)] = =z Pz[x(t)].
2. Convolutions

of

Assume x(t) = y(t) = © for all t ( @. Define the

convolution of x{+) and y(*) as

(rxy)(t) = ; x(t-j)y(J).
j=0
Then
Z[(xxy)(t)1 = Z[x(t)]-Z[y(t}].
3. Summation

This is a special case of Property 2. 1f

t
L y(t),
Jj=9

x(t)

then

z[1]-2[y(t}]

(1-z Y lzry(t)].

Z[x(t)]

7Z-transforms are explained in greater detail

Bishop (1975), Gupta (1966) and Lifermann (1975).
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Note. Here is an alternative definition of the

Z-transform, in terms of the backward operator B from time

series analysis. If Bx{t) = =x(t-1}, then B_l, the
inverse of B, is the forward operator B_lx(t) = x(t+1).
Thus
-t -t
Zfx{t)] = Z z B x(0)
t:0

= (1—2—18-1)_1x(0).

Upon defining the operator ¢¥(B) as
¥{B) = (1—2'15'1)'1

we get

Zz[x(t)] = +*(B)x(0).
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PROOFS OF PROPOSITIONS 3.4 AND 3.5

Lemma 3.1. Let

(3.52) x(t) = r y(™j)
j=0

where y(n)(') 1s the n-th convolution of y(+). Assume

further that there exists k € N such that
y(i) =@, > k.
Then

) = (2 y{(i))% t » nek.
Jz

Proof. Taking z-transforms on both sides of (3.52),

we obtain

(3.53) x(z) = [¥(=)1"(1-2"1) 7

Now
y ) = o i K

yz(d) =

n Mo

y(i)y(j-i) =@, j ) 2k
i=0

etc., implying that x(t) is constant for t * nk, which in

turn means that the coefficients of x{(z} are identical for

t> nek.

Note that in general

t™M

(x{i+1)-x{j))z ¥ = (=-1)x{z) - zx(0),
j:o

which in the case at hand can be rewritten as

nk-1
I oz Y(x(j+1)-x(j)) + zx(0).
i=0

(z-1)x(z)

First take the limit as z =2 | on the left hand

to get { from Eq. 3.53)
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(1)

lim (z-1)%(z) lim z [y(z}]"
z31 z-31

= [y(1)]"

N ¢
( Z vy{ij)) -
j:@

On the right hand side the limit is

nk-1
.E (x{j+1)-x(j))+x(@) = =x(nk). o
J=0

Proof of Proposition 3.4.

First assume zero initial conditions and refer to Eq.
(3.33).

(1) say © ¢ ai ¢ (Le{j)) !. Define

y(J) = ai-e{j).
Then @ ( y(1) = Zy(j) ¢ 1.
To show that E&({(t) has a finite limit, it is
sufficient to show that

t-1 t-2

. 2 .
g(t) = 1+ Z y(j)+ I v {24y«
Jj=0 Jj=0
has a finite limit. From Lemma 3.1,
~ ~ 2 ~ -1
@ < g{t) = 1+y(t)+y{1)"+... = (1-y(1}) ( .,
Furthermore, g(t) increases with t. Thus g({t)

does converge in R.

(2) Say —(ZE(J))_1 ( Ai ( @. Define

y(di) = -die(j).
Then © ¢ y(1) = Zy(j) ¢ 1. I will show that
t-1 -2 )
h(t) = t - E£ y(i)+ Z vy l(§) -...
j=0 j=@

has a finite limit as t 3 =,

If n ) @,
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t+n-1 t+n-2
In(t+n)-n(t)| = | £ v(i) - z y(@(§

j=t J=t-1

t+n-3

+ I Y( )(J) -
j=t-2

t+n-1 t+n 2

< I y(§) + y{2) ()

j=t j= t 1
t+n 3
J= t 2

lg(t+n)-g(t)|.

{g(t)}t}1 is a Cauchy sequence (from Step (1)).

Hence {h(t)}t>0 is also a Cauchy segquence, and converges

in

R.

(3)

Steps (1) and (2) above permit the taking of
limits on each side of Eq. (3.29), which yields
E€{«~}), Eq. (3.36). Eq. (3.37) then results from
Eqs. (3.23) and (3.24).

As to EF{=~), Eq. {3.25) implies

m-1
EF(w) = QL—EUL(N) = AL - Eé(w)eréE:F1/éE1

- QL[l-AiEe(J)+Ai(1+iv)_1zéﬁ:j]/éa]]/(l—Aite(J))

from which Eq. (3.39) follows, since

m-1 m-2
-t . . .
(L+iy) Jfo 1 Jfo qa-1=7 7%m
-1 m-1
=i L T e
m-1 .
.1 . -m+
= A Jf0(1+lv)
= (1+iy)

132



Appendix 3.3

(ii) Now assume arbitrary initial conditions. The first

term of Eq. (3.32)
R(z) (8(0)+Aiz-16(z))/(l—Aiz-lg(z))
P(z)/{1-aiz ta(z))

corresponds to the effects of the initial conditions
on E€(t}. I will show that if |4i] « (Ee(J))—l, then
R{t) = ® as t = oo,

ﬁ(z) is a polynomial of finite order in z-l,

z YP(§).
)

ﬁ(z) =

Wty 3

J
Now
(z) = B(z)+B(=z)aiz ‘a(z)+P(z)ai’z 28(z)%+...

which implies

(3.58)  R(t) = P{t)+ai(Pxe)(t-1)+ai’(pxe(Z))(t-2)+...
where (define WIPIl = sup|P(t)])
t
Lpxe (PN ()] = 1zp(a)ef™)(e-0)
j
z P ;e(“)(J)

i
- npn (Ze{q))"

(from Lemma 3.1).

Reasoning as in the proof of Lemma 3.1, it can be

seen that
(P*e(n))(t) = @, for all t ) (n+1){m-2).

In view of expression (3.54), we infer the existence of

t
{tn}nzl such tha

txt 3 |R(t)]

_ b uPn[.dil‘j(EE(J))‘j

j:n

wpnjaize(j)|"/(1-18i|ze(j))

17

|

2+ @ as n <+ %, 0
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Proof of Proposition 3.9.

The situation is simpler than with Prop. 3.4, because
Var£{t) is always non-negative.
First assume 02 ( (2.‘49(,)')2)-—1 and consider Eq.

(3.42). Denote WAl = sup|A(t)].
t

Lemma 3.1 implies that for any n > 1,

t-n
z egn Diga(t-n-§)2 = ¢ egn Y (iynan?
i=0 jx0
~ n—-1 2
= [e,{1)]17 TnAn.
Thus,
2 ~ ~
sup V(t) ¢ oZnan® + o8 (1)nan® + %8, (1) nan? +...
t

oznau2/(1—0252(1)) ( =,

Hence we may take limits inferior and superior on each

side of Eg. (3.40), to obtain

2.2 2~
lim inf V{t) * oA /(l-o ez(l))
t
and
. 2.2 2~
lim sup V{t) < o A /(1-0 ez(l)).
t
These two inequalities account for Eq. (3.45). Eqgs.

(3.46) and {3.47) then follow from Egs. (3.24) and (3.25).
2 h2,—1
Now suppose 0o, @ (Ze(J)") -

Eq. (3.49) clearly shows that, for fixed t, Varé(t)

. . 2
is a strictly increasing function of o . Thus
lim inf Vare(t)| , , lim Varé(=).
= - 2 - 1
t 7 =% 021(29(3) )

From Eq. {3.45), the right hand side is infinite.
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ASYMPTOTIC RELATIONSHIPS FOR
VarF{=) AND VarC(=)

Suppose i, = i = @ and

N

(3.55) o 'm 2+ O® as m - =™,

(i) Spread wethod
From Prop (3.2) (Section 3.3.2)

(3.56) VarF(=) = o2AL%/(1-k)
(3.57) VarC({=) = [VarF(=)]/m2.
Notice that

k (1 & 02m ( m(q—2

-1).
Since

m(q—z-l) m[(l—l/m)_z—l]

= m(mZ/(m-1)%-1)
= (2m2-—m)/(m—1)2
2+ 2 as m 3 o,

condition (3.53) ensures that k ( ! holds for all m ) N,
for some N ({ e,

To prove Eq. {(3.48), I need to show that
2

VarF(w)/[ozmﬂL /2] =+ 1
as m - oo, From Eq. (3.56), this is equivalent to showing
that m{(1-k) 2 2. UWe have
m{l-k) = m[l—(l—l/m)z] - azqu

= 2 -1/m - ozqu

4+ 2 as m 3} =

from {3.595)

Formula (3.49) is a consequence of (3.57).

(ii) Amortization of Losses method
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Set iy = @ in Prop. 3.5 (Section 3.4.2) to obtain
m-2
(3.58)  vare(=) = o®AL?/{1 - o £ [(m-1-j)/m]?)
J=o
m—1 5
(3.59) VarF(w) = Z [{m-j}/m]“Var &(=)
j=o
(3.60) VarC{=) = Vareg{=)/m.
First,
s, M-2 o m-1
m 2 I (m—l—j)2 -m? Jz
=9 J=1

= m_z(m—l)m(Qm—l)/G

~ m/3 as m 23 o,

(See Spiegel (1971), p. 98, for the summation formula used

above.)
This, together with Eq. (3.58), proves that
(3.61) Varé (=) ~ o?aL? as m o .
Now turn to VarF(=) (Eq. (3.59)). The same

summation formula shows that
m-1 "
r [(m-j)/m]° ~ m/3
j=o
which takes care of (3.50).
Finally, Egs. {(3.60) and (3.61) clearly imply (3.51).

Remark 3.9. As approximations for VarF(=) and

VarC(«), formulas {3.48) to (3.51) are sometimes waluable,

even when iv £ 0. For example, if i‘J = .01, o = .95

and m = 10,
(i) Spread method: formula (3.48) yields
[varF(=)]1/%/aL = 11.2%

while the exact number is 11.7% (Table 3.1);
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(ii) Amortization of Losses: formula (3.50) yields

[varF(=)]1'/%/aL = 9.1%

while the exact number is 9.97 (Table 3.2).
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APPENDIX 3.5
PROOF OF PROPOSITION 3.7

-1
v) From Prop. 3.2, we need to

look at the behaviour of

for VarF{=): 1/(1-k)

Def ine v = {1+i

.2
and for VarC{=): 1/[aﬁ](1—k)],
over the range 2 < m ( =, Recall that
.2 - 2 2 2
k = {(1+i) (l—l/aﬁ]) (1+a”"v™)

is ewva i = i
= luated at rate i xv.

(i) If vy = (1+i)2+a2 > 1, then

where a

202)

" - 2
k = (aﬁfﬂ /= ) {1+o

converges to 1+o2u? 3 1 if i 2 @, and to (1+i)2+o2 > 1

if i1 ( @. Thus both VarF{«) and VarC({(«) reach infinity
for some finite wm.

(ii) If y=1, then 1-k } @+ as m + =, and thus Var F(w«)

tends to infinity, without ever reaching 1it. As to
VarC{=), note that in this case i, ¢ @ and
1+02u2 = vz[(1+i)2+52] = 92_
Thus
.2 .2 2.2
aﬁ](l k) = d vTA——
which tends to infinity as wm 2 =, VarC(=) therefore

converges to Q.
(iii) If y < 1, it is easy to see that

lim k =y ¢ 1,
m

which means that VarF(«) has a finite limit.

»
Formula for m

Let y » 1, and define
F(m) = 1/(1-k)

c(m) = 1/[42 (1-k)].
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Think of these as functions of a continuous variable
m.

Geometrically, m. is the m for which VarC(=) is a
minimum, as a function of VarF(=)}. But VarF(=) is a
strictly increasing function of m, and thus dF/dm ) @ for
any m>1.

Because of this, the points where dC/dF = @ are the

same as those where dC/dm = O, since
dC/dF = (dC/dm)/(dF/dm).
Now
dC d
.. 2 -2 .2 .2
(3.62) Im = _[aﬁ](l—k)] Eg[aﬁ]_aﬁ:ﬂ (1+s)]
where s = ozuz. .

(i) i # @: dC/dm vanishes if and only if

(log(t+i)/d)2va_ (10g(1+i)/d)2vm—lém__-n(1+s)

= 1-u" = (1+i)(1—vm—1)(1+s)
= v" = (vy-1)/(y-1)
= m = -log[{vy-1)/(y-1)]/log{1+i).

(ii) i = @: From Eq. (3.62), dC/dm vaniches if and only
if
d

—m’-(m-1)?y] = o©

= m = 1+1102
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APPENDIX 3.6
AL AND NC (SECTION 3.5.1)

The following values are needed (based on ELT13):

830 = 95993 865 = 70426

"(0) a "(.01) B

330:551 = 32.707 330:35 = 27.942

(@) _ L(-01)

365 = 12.686 365 = 11.739.
"(0) )

Recall that S = 5+£ +a . From Sections 1.3.2.2
a a:r-al

and 1.3.8.3,

) -35 {.01),.(.01
NC/S = (2/3)(1.01) "7(e /e )a i’ Trag
- .1451 or 14.5%
] L(9),5(0)
B/S8 = (2/3)(£,57€534)855 7330: 35
= .1897
5 AL/S = (B/S - NC/S)/d

4.509 or 4517%.
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CHAPTER 4
RANDOM RATES OF RETURN:
CONTINUOUS TIME

4.1 INTRODUCTION

Like the preceding one, this chapter is concerned to
calculate the moments of F(t) and C(t), but now in a
continuous-time setting. Only the Spread wethod is
considered. The Amortization of Losses method is
mentioned briefly in Paragraph 4 of Section 4.3.5.

In 4.2, some comments are made about notation and

assumptions. The latter are much the same as those of
Chapter 3.

Actual rates of return are represented as
continuous-time white noise; this 1s analogous to the

i.i.d. assumption of the last chapter. (The merits of the
white noise model are discussed in 5.2.)

Consequently, F(t) now satisfies a particular
stochastic differential equation (SDE}. As regards
specifying this SDE, two lines of action are possible.
The first one is directly to write down the equation,
using intuitive arguments only. In the case at hand, it
appears that this approach lacks rigour. Therefore, the
other possibility has been chosen, namely first to imagine
valuations to be performed "n” times per year, with i.i.d.
returns like in Chapter 3; and, next, to identify the
limiting stochastic process, when n 3 =, The outcome of
this analysis is contained in Section 4.3, and Appendices
4.2 and 4.3.

The first and second moments of F(t) and C(t) are
calculated in 4.4. Their derivation rests on elementary
properties of Ito stochastic differential equations, which

are outlined in Appendix 4.1.
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This Section 4.4 is a continuous-time version of
Section 3.3. Propositions 4.4 to 4.7 correspond to
Propositions 3.1, 3.2, 3.3 and 3.7.

The results of Chapter 4 are original. Proposition
4.1 1is essentially based on the paper by Joffe and
Métivier (1986).

The model presented in this chapter does require a
higher degree of mathematical sophistication than the one
used in Chapter 3. However, it is believed that the
following problems may be studied more easily within a
continuous-time framework than with a discrete one:

- higher moments of F({t) and C(t);

- other methods of adjusting the normal cost;

- probability densities of F(t) and C{t);

- hitting times, e.g. the time it takes the fund to

move from one level F0 to some other level Fl'

This Jjudgment is based on the extensiveness of the
theory of SDE’s and on the great number of applications it
has found in engineering, economics, finance, etc.

As concerns actuarial science, diffusion processes
have been applied to ruin theory (cf. Beekman and Fuelling
{1977), Emmanuel et al. {1975}, Iglehart (1969), Ruohonen
(1980)).

Note: "Diffusion processes” and ‘“solutions of
stochastic differential equations”™ are wvirtually the same

class of processes. See Chapter 9 of Arnold (1974).

4.2 ASSUMPTIONS AND NOTATION

For GSection 4.3, the assumptions are 1identical to

those described in 3.2. The only difference lies 1in the
notation: the superscript "n” added to a symbol makes
reference to the situation where n wvaluations are
performed every year (at times @, 1/n, 2/n, etc.). The
abcsence of a superscript alludes to the limit as n 4+ -
(e.qg. F®* 9 F as n = =),
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For example, B” is the amount of the benefits paid at
time k/n, k=0,1,2,... This means that B™ is of the order
1
of B /n. Thus it is natural to require the limiting

"instantaneous” rate of benefit outgo to be

B = lim nB"
n
(see Props. 4.2 and 4.3}). The same comment applies for

NC" and s”.
On the contrarvy, AL" i< of the same order as ﬁLl.
Accordingly, Props. 4.2 and 4.3 suppose that

AL = 1im aL™.
n

(Same comment for PVB" and Pus”.)

In Section 4.4, hypotheses (i), (ii) and (iii) of 3.2
remain unchanged. The other onec become:
{iv) Valuation assumptions are fixed, including the

valuation force of interest YV'

(v) First define W(t) as the Wiener process {see fippendix
4.1}). Then the actual (instantaneous) rates of
return are

{(4.1) ¥{t) = ¥ + odW(t)/dt.
dw{t)/dt is what is known as “"white noise™. It 1s
nat a stochastic process in the usual sense, since
W{t) is nowvhere differentiable w.p.1. But exprescsion
(4.1) is a convenient abuse of notation. It is also
convenient (though not strictly accurate) to say that

¥y is the mean (instantaneous) rate of return

and that
02 is the variance of the rates of return.
(vi) "Individual cost methods” have been defined in
Chapter 2.

From assumption (xi) of Section 2.2, we deduce

(4.2) @ = v,°AL + NC - B,

(vii) PPDb(F(0)=FO) = 1| for some F, € R.
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Let

Ht = o-field of events prior to time t

(i.e. generated by {U(s), s<t})
In all the cases considered in 4.4, it will turn out

that F(t) and C{(t) are H, -measurable, for every t : 0.

t

Note. The analysis 1s conducted with real-term

values, as in Section 2.4. The only exceptions are
Sections 4.4.3 and 4.4.4, which show that similar results

hold for nominal monetary values.

4.3 CONVERGENCE TO A DIFFUSION

4.3.1 The Problem

Imagine that contributions and benefits are paid n
times a year. Changing the time-scale, Eq. (3.2) of Section

3.2 is revritten as

n ke n n, X n, X n
(4.3) F°(—) = (1+ i"(ke1)(FP(5)+ €(7)- BP),
k = 0,1,2,
Each sequence {in(k), k : 1} is still supposed
i.i.d.. (A small inconsistency should be noted: in(k+1)
k k+l

—). )

In order to prove convergence, it 1is essential to

is the rate earned during the period (;,

know how in(.) is defined. Two different ways of doing so

will be described, in Sections 4.3.3 and 4.3.4,

respectively.
Section 4.3.2 says a few words about the particular

type of convergence which will concern us, and also states

the general result from which Propositions 4.2 and 4.3

will follow.
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4.3.2 General Convergence Result

Proposition 4.1 is about the "wvwak"”™ convergence of a
sequence of stochastic processes of a certain type. Weak
convergence can be said to be a generalization of
convergence in distribution. The latter concept does not
suit the present situation, since an infinite number of
random variables are involved at once. The monograph by
Billinsley (1968) is by now a classical reference on weak
convergence. Ite introduction and first chapter explain
the preceding ideas in great detail.

The proof of Prop. 4.1 is very technical. It can be

found in Appendix 4.2.

Proposition 4.1. For each n : 1, let {hn(k),
k = 1} be an i.i.d. sequence of random variables, with
Ehn(k) = @ and varh™ (k) = 1. Further assume that
{hn(l)z, n > 1} is uniformly integrable. Also, let

u{x) = d®x + e, v (x) = £ + g7,
(a.4)
u{r) = dx + e, u(r) = fx + g,

with dn 2 d, e’ 4 e, £" o and gn <+ g as n 3} o,

Def ine the processes X" by
k+1

(4.5) X {(—)

k 1 n..n k i n..n k n
- ®Mo) ¢ SN (RD(R)) ¢ o v (B )nT(keL)

k=0,1,2,...

Q.

v

(4.6) x"(t) = X'([nt]/n}, t

n n
(4.7) x"(0) = Xp € R w.p.l. X, X, €R.

Then (Xn, n:l) converges weakly to the process X, which

is the unique solution of the I1to SDE
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(4.8) dZ{t) = wu(Z(t))dt + u(Z{t))dwW(t)

Z(0) = Xo w.p.l.

The observations below should clarify the meaning of

this proposition.

Definition. A family {Xi, i € I} of random vari-

ables is said to be uniformly integrable if

sup | |X. |dP =+ o
1 Jx a7
as a =+ = (Billingsley (1968}, p.32).

Eq. (4.6) is a technical requirement, which turns the
realization of X" (as defined by Eq. (4.3)) into
right-continuous functions (note: [z] i< the greatest
integer ¢ =).

(4.7) indicates that the initial values x“(o) are not
random, and converge to some finite XO'
That the processes Xn, as defined by (4.5), should

converge to the solution of SDE (4.8) is on the whole not

very surprising. Prop.4.1 has only one distinctive

feature: it asks for wvery little 1n connection with

{hn('), nxi}. There is no condition on moments higher
2

than the second; it is only supposed that {hn(l) y n:l}

is uniformly integrable.

4.3.3 Subdividing il{'l

, . .n
Let us now return to the question of defining {i (k),

kx1} for every n.

Required here is a distribution for in(°), such that
"n” independent random variables having this distribution,
say (in(l),...,in(n)), will in some way be equivalent to
11(1). This is not immediately obvious, for the "noise”
(or “randomness”) introduced into the system 1is not

additive, but multiplicative.

146



Section 4.3

In what follows the distribution of 11(0) - the
“initial" distribution - will be left unspecified. From
it, the distribution of in(') will be defined, using a
linear transformation. Two ways of accomplishing this
will be considered. The first one is directly concerned

with the “discrete" rate il(°), wvhereas the other one

involves the "instantaneous" rate 11(') = log(1+il(')).
The first possibility is to ask for both
n
E 1 (1+i"(k)) = E(1+i (1))
k=1
and
n n 1
Var 1 {1+i (k)) = Var (1+i (1)).
k=1
The i.i.d. assumption then implies
. 1/
(4.9) i" = Ei"(+) = (t+Ei‘( )" -y
and
. .1 2,1/n | 2/n
(8.10) var i™(+) = [E(1+i (+))°] - (L+Ei {+))<'".

Therefore, in order to let in(') have a distribution

of the same form as that of 11(0), it is defined as

dist
(4.11) "y = (r+Eif ()t

e[t )-Eit ()] (vari®( )y varit())t7?

Finally, define the normalized wvariables
. . N .n 172
(4.12) h"(k) = (i™(k)-i")s(var i"(+)) 7"
The definition of in(') can now be used to transform
Eq. (4.3), in a way which will allow the application of
Prop. 4.1.

(a) In the case of individual cost methods

(4.13) c™(t) = Nc” + (aL"-F"(t))sall )
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Obcserve that

(i) the unfunded liability i1s <pread over m*'n periods of

1/n year = m years;
(ii) the annuity is evaluated at rate it = Ein(f).

In view of Eq. {4.13), Egq. (4.3) becomes

n k+1 n n_n k n
{4.14) F - )} = (1+i (k+1))}{(q F (;) + r )
vhere
n )
a” = 1 - 1A
and
r® - nNem o+ m_"/aﬁTm - ",

This expression is in turn transformed as follows

k+l n nnk n
F ) = (7@ F(g) ¢ )
n nnk n
+(iT (k1)1 ) (@ F () )
k nk n, n
= FM{o) + [(1+i%)g -1]FT () + (1+i)r
nk n
¢ (iM(ke1) -0 N(@F () )
k nk n, n
- FP (o) n Yn[(1+i")q"-1]F (=) + n(1+i")e")
4 172, n_n k n n
p a2 avari® () 2 (@PFT (D) e ) 3R (k)
k 1 n..n
(4.15) = F{z) + 7 u (F(z))

1 k n
+ = WP{FT () ) (k+1).

In Eq. (4.19),
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un(x) = n[(1+in)qn—1]x + n(1+in)rn,
v(x) = (nvari®(+))} 2(q"x+r).

(b) In the case of aggregate cost methods,

c”(t) = s"(pvB™-F"(t))/Pys”.
Eq. (4.14) results once more, if q" and r" are
redef ined as
qg" = 1 - s"™/pys”,
r" = s™.puB"/pPys” - B,
Egq. (4.15) 1is thus unchanged, as well as the

e n n
definitions of u and v above.

Before Prop. 4.1 can be applied, it remains to

(i) show that {hn(1)2, n:l} is uniformly integrable,
and
{ii) determine the limits u{x) and v{x).

The details are in Appendix 4.3.

Proposition 4.2. For every n 1, let {in(k),

k = 1} be an i.i.d. sequence, with in(') given by Eq.

(4.11).
{a) Individual cost methods.
Suppose that AL™ + AL and n{NC"-B") - NC-B as

n - o, If

c™(t) = Nc" + (QLn—Fn(t))/é%éﬁg ,

then the processes F° converge weakly to the process F

satisfying the Ito SDE

(4.16) dF(t) = (YF(t)+C(t)-B)dt + oF(t)du(t),
F(e) = 1lim F"(0),
c(t) = NC + (QL—F(t))/Q%{),
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log{t + Eil(+))

Log([E(1+i' (+))?J/[E(1+i'(+})]?).

(4.17) L4

(a.18) o

(b) Aggregate cost method

Suppose that nS8" 4 s, PUB" - puB, Pus® o PUS and

nB” 4+ B as n o+ =. If
c™(ty = s"(pvB"-F"(t))vs",

then the procesces F° converge weakly to the process F

satisfying (4.16), with

(4.19) C(t) = S(PVB-F(t))/P.
2 . .
¥ and o are still given by {4.17) and (4.18).
4.3.4 Subdividing vl(l)
Another possible way of defining in(o) consists in
fractioning the instantaneous rate 71(0). Denote
n . n
() = leg(1+ iP(+)).
We now require
n n 1
E Z v (k) = E¥ (1)
k=1
and
n n 1
Var Z v (k) = Var v (1}.
k=1
The appropriate linear transformation of the

distribution of vl(*) is
n dist 1 { 1 L {
(a.20) v (*) = S E¥ () + (v ({")-Ev ("))

We may then revert to discrete rates and define

: n
(4.21) i®(k) = exp[v (k)] - 1.
n
Proposition 4.3. For every n > 1, let {1 (k}),
k ¥ 1} be an i.i.d. sequence, with in(o) given by Eq.
(4.21). Assume furthermore that Varvl(o) ( =,
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N

The conclusions of Prop. 4.2 remain unchanged, except

that Egs. (4.17) and (4.18) are replaced with

(4.22) v = Evl(+) + - vary!
. = {+) 5 Vary (+)
{4.23) o - Uarvl(').

(Proof in Appendix 4.3).

4.3.5 Comments

1. Comparison of Props 4.2 and 4.3

An examination of Eqs. (4.17) and (4.18), on the one
hand, and Eqs.{4.22) and (4.23), on the other, <shows that
to a certain extent the limiting pcess F does depend on
the way in(') is defined (given the sawme initial
distribution il(')).

For the purpose of assessing how different the two

pairs (1,02) may be, it is helpful to make use of the

"cumulant generating function”, defined as
k{t) = 1log E exp(tX)
for a random wvariable X. When it exists in a

neighbourhood of t = @, k{(t) has the expansion

. kY
(4.24) k(t) = £ +t =
jxl
where
kl = EX,
k2 = E(X—EXQ) = VarX,
3
k, = E(R-EX)" ,
4 2
k4 = E(X-EX) - 3(VarX)",
etc. For more about cumulants, the reader is referred to
Cramer (1946), pp. 185-187.
.. .n .
Denote the two ways of defining i (*), i.e.

. 1 .
subdividing il(o) and subdividing v {*), by the subscripts
“a” and "b", respectively. Also, consider the cumulant

. 1
generating function of ¥ ().
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Props. 4.2 and 4.3 mean that, firstly,

v_ = log E(i'(+)+1)

= log E exp(vl))

= k(1)
1

= EY%°) t 35 Var vl(') +

wvhile
1 ! 1
Yy, = EvT(+) + 7 Var ¥ ().
Secondly,
oi = 10g{[E(1+il('))2]/[E(1+il(’))]2}

k{2) - 2k(1).

Expression (4.24) tells us that

k{2t)-2k{t) = t2varvi(+) + o(t?)
and so
02 = Var 71(0) +
a

may not be very different from

2 1
g, = Var ¥ {+).

In conclusion, if the cumulants of vl(') of third and

higher order are negligible, then (Ya,oz) and (vb,oﬁ)

are likely to be very close.

One particular initial distribution is of special

interest. Suppose vl(') is a normal random wvariable.
Then
k(t) = log E exp(ty (+))
2
1 t 1
= teE¥ () + 7~ Var ¥ (*}),
2 2
and so (Ya,aa) = (Yb,ob).
2. Eq. (4.16) can be rewritten as
dF(t) = (-aF(t)+r)dt + oF(t)du(t)

with
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- vy _ - ;(¥)
a = llaﬁ] Y, r = NC + QL/aﬁ] - B

for individual cost wmethods, or

a = 5/PVS - ¥, r = S+«PVB/PVUS - B
for aggregate cost wethods.

The parameters a and r are defined here in the same
way they were in Sections 1.4.1, 2.4.2.1 and 2.4.2.2.
This shows that the SDE (4.16) ic a cimple modification of
the ordinary differential equations which hold in the
deterministic case. The added term oF(t)dW(t) reflects

the randomness introduced into the system.

3. Like each of the F''s, F is a Markov process. F(t)

is also continuous w.p.1.

4. Amortization of Losses method
Here are the partial results so far obtained 1in
connection with this wmethod.
1f valuations are performed n times a year, and if
intervaluation losses are amortized over m years (= m'n
periods of 1/n year), then Egs. (3.23) and (3.24) of
Section 3.4 become
m+n-1 k .n
c™(t) = wc™+ Iz e"(t- H)/é%;m)
k=0
At present, it is surmised that the weak limit of the

sequence {Fn} thus produced satisfies the Itd stochastic

differential equation

(a.25)  ar(t) = [vF(t)eNc-B-(aL))TH [ oF(u)du(u)]at

+ oF{t)du(t),

where ¥ and 02 are the same as in Props. 4.2 or 4.3
depending on how in(') ic defined.

Eq. (4.25) can be formally obtained from Eqs. (2.32)
to (2.34) (Section 2.4.3), upon letting AB(t) = @ and
AY(t) = odW(t)/dt. Attempts to provide a rigorous proof

have so far been inconclusive.
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9. One point that was left in the dark when defining the
sequences {in(k), k ¥ 1} is whether in(°) > 1 w.p. 1.
This is not required in the proofs of Props. 4.2 and 4.3,
but is needed if F° is to make sense as an accumulating
fund.

The result is obvious with the second way of defining
in(.) (Section 4.3.4). So assume in(') to be given by Eqg.
(4.11) of Section 4.3.3, with il(') ) -1 w.p. 1 and
Var il(') > @. Let

= [E(1+i(+)))}"
b o= [E(1+i (+))1'7"
Observe that a ? b2 and
(an—bzn)/(a-bz) = an—1 + an—2b2 +...t b2n—2
; n’bZn—Z

Then, from Egqs. {4.9), (4.1@) and (4.11}),

1+in(0) = b + (1+il(’)‘bn)[(a—bz)/(an—bzn)]llz

b - bn[(a_bQ)/(an_bZn)]1/2

b - bn/(n.an—2)1/2

1/2
n

S 7

"~
N

= b{l- y > @ for all n

4.4 MOMENTS OF F(t) AND C{t}

From now on it is assumed that F(t) satisfies the Itd

SDE

(4.26) dF(t) = (¥F{t)+C{t)-B)dt + oF(t)dW(t)
with i
(4.27) c(t) = NC + (aL-F(t))sal’),

in the case of individual cost methods, or

(4.28) c{t) = S(PVB-F(t))/PVS
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in the case of aggregate cost methods. It is also

supposed that

F{(0) = Fp € R w.p. L.
It can be shown that F(t) has finite mwoments of any
order ({see Paragraph 6 of Appendix 4.1). These moments
are continuous functions of t. It is thus permissible to

change the order of E{+*) and f, i.e. it is always true

that

t k t k
Ef F(s) ds = | EF{s) ds, t ( =, k 2 O.
@ )
4.4.1 First Moments

In the case of individual cost wmethods, Eq. (4.26)

becomes
(4.29) dF{t) = (-aF{t)+r})dt + oF{t)du(t)
vhere
= a - = .+ a - .
a l/am Y, r NC QL/::\_“_ﬂ B
fissume that a is calculated at rate v, and that
mi v
@ ( m ( o,

Rewrite (4.29) as an integral equation:

t t
(4.30) F(t) = F{o) + [ (-aF(s)+r})ds + [ oF(s)du(s).
? ?
Since
t
E [ F{(s)dW(s) = @
)

(see Paragraphs 3 and 6 of Appendix 4.1), we obtain

t
EF(t) = F{0Q) + é (-aEF{s)+r)ds,

which is equivalent to the ordinary differential equation
d
(4.31) It EF(t) = -aEF(t) + r.

Define M(t) = EF(t):
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Mr{) -—aM{t) + r, M(Q) = F(0)

'Q- I

at t
= dt(ﬂ(t)e ) = re”
at t as
3 M(t)e - F{0) = | re"“ds
@
-at t -—af{t-
3 M{t) = F{@)e + f re @{t7s)y,
%
(4.32) = F(O)e—at + (l—e—at)r/a.
4.4. - —
1.1 L4 vv
We get
a = Yv/[l—exp(—¥v°m)] - Yy ) o.
Proposition 4.4. If v = YU and @ ( m ( =, then
(a.33) EF{») = 1lim EF{t) = AL
t
(a.34) EC{=) = 1lim EC(t) = NC.
t

Proof. Since a ) @, Egq. (4.32) implies
EF{=}) = r/a
(NC - B + QL/aE])/a

AL{1/a_ -¥)/a

m]
from Eq. (4.2) (Section 4.2)
= AL.

Clearly EC(=) = NC + (m,—xarr(«»))/;,m = NC. o
2
4.4.1.2 Y # YV

If YV differs from the wmean rate of return v, then

Frop. 4.4 does not hold. We can only say that if a ) 0,

then
lim EF{(t) = r/a
t
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and

lim EC{t)

i NC + (AL-EF(=))/a_ .

4.4.2 Second lMoments

I will first wuse Itd’'s formula {Paragraph 5 of
Appendix 4.1) .to show that V({t) = Var F(t) satisfies the
following differential equation:

(4.35) Ui (t) = (-2a+6%)V(t) + o2(EF(t))2
vie) = o.

Let g{t,x) = (x—M(t))z, M{t) = EF{t). We have

gi(tix) = -2(x-M(t))m (t)

- -2(x-M(t))(-aM(t)+r)
aylt,x) = 2(x-M(t))
g;x(t,x) = 2.

M{t) is continuous, and so the above partial
derivatives are also continuocus. Ité’'’s formula may thus
be applied:

dg{t,F(t})

[g](t,F(t))+g! {t,F(t))(-aF(t)+r)

1

+ = go (t,F(t))e F(t)?]dt

+ gl (t,F(t))oF(t)du(t)
_ [-2(F(t)-H(t))(-am{t)+r)
¢ 2(F(t)-M(t))({-aF(t)+r) + o°F(t)?]dt
+ 2(F{t)-M({t))oF(t)du(t)
- [-2a(F(t)-M(t))? + o?F(t)?]d¢
¢ 20(F(t)-M{t))F(t)du(t).

Next, proceed as with EF(t): first rewrite the

preceding differential equation in integral form. Then,

noticing that
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t
Eq{o(F(s)—M(s))F(s)dU(s) = O,

revert +to the differential formulation to obtain Eg.

(4.35)
d

— Eg{t,F(t))

= -2aE(F(t)—N(t))2 + GzEF(t)z

vr(t)

= (—2a+02)V(t) + ozl“l(t)2

since EF(t)? = varF(t) + (EF{t))Z.
fin explicit expression for VarF{t) can be derived in

the same wanner as for EF(t), this time wusing the

integrating factor exp[(2a-o2)t]. Since V(@) = @, we
find
2 t 2 2
(8.36) V(t) = o° [ exp[(-2a+0”)(t-s)](EF(s)) ds.
o

Proposition 4.395.

1

let @ ( m ( o=, 1f a ) 7 02, then
2 2 2
(4.37) Var F{=}) = o (EF(=))"/(2a-0")
= 2
(4.38}) Var C(=) = [Var F{w)]/(aﬁ1) .
1
If a: 3 02, then both Var F{=) and Var C(=) are

infinite.

1
Proof . a)) 3z o, EF (=) = M{=) is finite since
a ) @. Let U(@) = @ and
2 2
U (t) = (-2a+c’)U{t) + o M(=)".

2 2 2 .
It is easy to see that U{=) = 0" M(=}"/(2a-0"). Define

D{t) = VU(t) - U(t).
Then

D’ (t)

(-2a+a?)u(t) + (2a-02)u(t) + o2n(t)? - o*n(=)?
(-2a+02)D(t) + Z(t)

where Z(t) = oz[ﬂ(t)z-n(w)2] 4+ O as t 4 =,
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The proof that D{(t) 2 @ as t 9 = is contained in
Appendix 1.1 (simply substitute 2&-02 for a(t) in the
expression for D' (t)).

This proves Egq. (4.37). Eq. (4.38) follows from the

definition of C(t}).
1

a & o 02. EF{~) cannot be @&. This is because
r = NC - B + QL/aﬁ]
= QL{l/aﬁ]—ﬂ) > @

(see Egs. (4.31) and (4.32)}.

So there exicts to such that
(EF(s)})2 : b Y @, s t,.
- ] 0
Egq. (4.36) implies (t to).
p t
V(t) = o¢° f bds 3 « as t = =. D
t@
Proposition 4.6. Let u z Q.
-au
Cou(F(t),F(t+u)} = e Var F(t)

e Yvar C(t)

Cov(C(t),C{t+u})

Cou{F(f},C{t+u)) e *{var F(t)}/gm].

If a 7 02, then, as t =+ =,

-au
Correlation {F(t),F{(t+u)) 2 e
Correlation (C{t)},C{(t+u)) * e

Correlation (F(t}),C{t+u})) - -e

au

au

*
Proof. Fix t : @. Let F (s) = F(s)-EF{s} and

g(u) = Cou(F(t),F(t+u))
= EF (t) F (t+u).
We have
dF{s) = (-aF(s)+r)ds + oF(s)dHW(s)
and
dEF(s) = (-aEF(s)+r)ds

159



Section 4.4

which iwply

dF '(s) = -aF"(s)ds + oF(s)du(s).
Thus
” x t+u % t+u
F {t+u) = F (t) + { (-aF (s))ds + | oF (s)dW(s).
t

. ) »*
Multiplying by F {(t) and taking expectations, we get

EF  (t}F (t+u) = vVarF(t) - ? aEF” (¢ )F" (t+v)du
]
" t+u
E(F (t) { F(s)dU(s)lHt) = 0.
Consequently,
g{u) = g(@) - af g(v)dv
2
g’{u) = -ag(u), g(@) = Var F(t)
% g(u) = Cou(F(t),F(t+tu)) = e “var F{t).

The other formulas follow easily. O

4.4.3 Non-Stationary Population

Now suppose that
(i) the population is not stationary;
(ii) salaries grow with inflation (independent of the
process W{t})); and

(iii) ¥ is not necessarily equal to Ty

Then
dF(t) = [1F(t)+NC(t)—B(t)+[QL(t)—F(t)]/ga]]dt
+oF(t)du(t).
Provided B(t), NC{(t) and AL{(t) are continuous
functions of t, it can be shown (in the same facshion as in

Section 4.4.2) that

=)

T EF(t) = -aEF(t) + r(t)

and
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d

r varF(t) = (-2avo®)varF(t) + o?(EF(t))?

where a is defined as before, and
r{t) = NC(t) - B(t a
(t) (t) (t) + AL{t)/a_ .

4.4.4 Aggregate Cost Methods

Retain (i), (ii) and (iii) of 4.4.3, and suppose that
S{t), PVB(t) and PV5(t) are continubus functions of t.

Then
d
17 EF(t) = -a{t)EF(t) + r(t)
and
d
57 Var F(t}) = (-2a(t)+o’)Var F(t) + o (EF(t))?
where
a{t) = S(t)/PUS(t) - ¥
r{t) = S(t)PVB(t)/PUS(t) - B(t}).

If the assumptions of Section 4.2 are reinstated, and
if, moreover, there is only one entry age into the scheme,
then

c(t) - EPNpc + (BNap _ F(t))s/pus

(Egy. (2.3@) of Section 2.4.2.2). In conseguence, Props

3.4 and 4.5 apply once wmore:

- if ¥ = YU’ then
1im EF(t) = =oNap,
t
1lim EC{t) = EQNNC;
t
.
- if a = S/PVUS-v ) zo°, then
2
lim VarF(t) = o2(EF(=))?/(2a-0%),
t
. 2, .2
lim VarC{t) = [VarF(=}]S"/PVS".
t
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Note. The same formulas hold if PVS js replaced by

PUS{n), n ( =; see Section 2.4.2.2.

4.4.5 The Optimal Region

Prop. 3.7 has the following continuous-time version:

Proposition 4.7. Assume ¥ = vv.
1 2
(i) If v » - 7 © s then both VarF(=) and VarC{=) become

.. . *
infinite for some finite m, and there exists m such that

(1) for m < m, VarF(=) increases and VarC(=)
decreases with m;
(2) for m : m*, both VarF{=) and VarC{=) increase
with m.
Moreover,

- when ¥ ¥ 0,

m = —10g[1-1/(21+02)]/v;
- vhen ¥ = @
* 2
m = 1/0 .
! 2
(ii) If ¥y = - 57 0, VarC{=) - 0 and VarF({=) =+ « as
m -+ e, although VarF(=) stays finite for all m ( =,
1 ]
(iii) If ¥ ¢ - 5 o”, VarC{=) + @ and VarF{«) has a

finite limit as m 3 =,
In (ii) and (iii), VarF(«~) increases and VarC(«)
decreases as m increases, for @ ( m ( =,

The proof uses the same arguments as for Prop. 3.7

and the algebra 1is in fact simpler. It is therefore

omitted.

Comments

1. Notice that the determining factor is now 2Y+0 ,

while 1t was (1+i)2+o2 in Prop.3.7. This is not
. . Y

surprising, for letting i1 = e -1,
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(1+1)2402 = o27.42
~ 1+21+02
d ¢ V2, 2 > .
an hus (1+i)%+c” 2 1 are essentially the same
conditions as 2*1+c72 2 Q.
x .
2. The formulae for m can also be showvn to be
approximately equivalent. In discrete time, m is (if
i#0)
—log[{vy-1)/({y-1})]/1log{1+i).
. . 2 4 . .
Letting {+i = e omce more, gives, firstly,
vy-1 = (1+i)+u02—1
o Y+02,

and secondly,
y—-1 = 2Y+02
and thus
(vy-1)/(y-1) = 1—Y/(2Y+02).

3. The continuous-time expressions for m* make it easier
to show that it is continuous at ¥ = 0. Since
2 3

log{l-x}) = ~—-(x + u°/2 + x7/3 +...)

wve get
2 2 . 2
-log[1-¥/{2¥+0"}]/vy = 1/{(2¥+c”}) + (terms in ¥,¥ ,...)
2
+ 1/0 as ¥ 2 0.

This ensures that m* does not have any odd behawviour
at vy = @. The same can be said concerning i=0 in

discrete time.
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APPENDIX 4.1
STOCHASTIC DIFFERENTIAL EQUATIONS

The Wiener Process

White Noise

. It6 Stochastic Integrals
Definition of SDE

. Ité's Formula

N B W N

Existence of Mowents.

This short account of SDE’s is intended for people
with no background in the subject. It supplies the
minimum amount of RKnowledge needed to understand Section
4.4.

For a thorough treatment of the theory of SDE's, the
reader is referred to Arnold ({1974), and Gihman and
Skorohod (1972). Kallianpur (1980) gives a more

up-to-date presentation, using martingale theory.

1. THE WIENER PROCESS

W(t) is a Wiener procecss if it is a homogeneous

Gaussian process, with (i) independent increments, (ii)
W(@) = @ w.p. 1 and (iii) EW(t) = @ and VarW(t) = t. It
follows that W(t+h)-W{t) is a normal random variable, of

mean ® and variance h,

It is possible to choose a version of W(t) which is

continuous w.p. 1.

The Wiener process 1s one instance of “diffusion
processes”. These processes have the disconcerting
property of being both continuous and nowhere
differentiable. Their paths are also of unbounded
variation (w.p.1). This explains why stochastic integrals

(= integrals with respect to diffusion processes) have to

be defined differently from the traditional Stieltjes

integrals.
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Note: The Uiener process is alsc known as "Standard

Browvnian Motion".

2. WHITE NOISE

Having just asserted that W(t) is not differentiable
anyvhere, I now introduce the derivative of uit),
dw(t)/dt, alias “"white noise"”.

White noise does have a (mathematical) existence,
when seen as a generalized function (or “distribution”).
It is, in a certain sense, the continuous-time equivalent
of a sequence of i.i.d. normal random variables. Though
it 1is convenient 1in giving an intuitive idea of the
behaviour of diffusion processes, it should be remembered
that dW{t)/dt does not in general obey the usual rules of

the calculus.

3. STOCHASTIC INTEGRALS

Say T ¢ = and HZ[Q,T] = {cuitably wmeasurable random
T 2
functions such that j £{t)dt ( = w.p.1}. The Itd
%)
integral is defined in two steps.
1. Consider a process G{t), such that every realization

G{t,w) of G(t) is w.p.l a step function. In other vwords,

G(t) is constant over the intervals [0,t,), [t ty),
etc., @ ( t, ( t, (...t =T.
The Itd integral of G {with respect to W) is defined

as
T n
(4.39) f G(t)du(t) = [ G(ti_l)[w(ti)—u(ti_l)].
Q k=1
2. It can be shown that for any G € RZ[O’T] there
exists a sequence {Gn, n > 1} of step functions in

32[0,T], such that Gn converges to G in the following

sense.
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T 2
lim f IG(S)—GD(S)l ds = @ w.p.l.
n-ie= @

The Ito integral of G is defined as the quadratic

mean limit of the integrals of Gn’ i.e.

T
f Gaw = a
/2]
where A is the random wvariable such that
T 2
lim E[A- [ G_dW] = @
n
n @

Here are two basic properties of Ito integrals.
{a) Linearity: if a,b € R then

[(aGl+bGz)dU = a]Gldw + b G, dW.

{b) Say {Ht’ t > 0} is the filtration attached to W.

(Intuitively, the o-field H,Z represents the information

t
known at time t.)
Suppose G € Hz[O,T], and also
T

f EG(t)2 { .
0
Then
T
EfGdW = 0
o
and
T 2 T 5
E{ [GdW) = [EG(s)“ds.
) )

These remain valid when conditioning

information known at time a ( T, that is,

b
E(f cdw| H ) = ©
a
and
b 5 b 9
E[{f Gdw)“|H_ ] = f E[G(s)|H_]ds,
a a
for any © ¢ a ¢ b < T.
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Note: The stochastic integral described above is
termed “It0" because it is not the only possible way of
constructing a stochastic 1integral. For example, the

integral in {4.39) has different properties if
1

f[G(ti—l)+G(ti)] replaces G(ti—l) on the right hand side
of the equation. This difference carries over to the

limit IG = lim IGn (step 2). The integral so obtained is
n

known as the “Stratonovich” stochastic integral.
Stochastic differential equations of the Stratonovich type
have also been studied, vielding a theory slightly
different from the theory of 1tdo SDE’s. The interested
reader is referred to Chapter 1@ of Arnold (i974), or to
Schues (198@).

q. ITO STOCHASTIC DIFFERENTIAL EQUATIONS

A stochastic differential eguation is an expression
of the form
(4.40) dy(t) = b(t,¥(t))dt + o{t,Y{t))du(t),
Y{0) = c w.p.1, @ = t T ( =

Rewrite (4.40) as
t t

(a.41) Y(t) = ¢ + [ b(s,¥(s))ds + [ o(s,¥Y(s))dW(s).
@ )

X(t) is said to be a solution of the Itd SDE (4.40)

if X(t) satisfies (4.41) for every t, assuming that
t
J o(s,Y(s))dW(s)
7))

is taken in the 1td sense.

Theorem (Existence and unigueness of solutions). If
(i) c is independent of W{t) for t > ©@;
(ii) b(t,x) and o(t,x) are suitably measurablej
(iii) there exists k such that
Ib(t,x)-b(t,y)[+|o(t,x)-a(t,y)| ¢ k|x-y|

and
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b(t,x)2+o(t,x)2 < k2(1+x2)
for all (x,t) € Rx[0,T];
then Eq. (4.40) has a unique solution X{t) with X(0) = c,
and which is continuous w.p. 1. (Arnold (1974), p.105).

The equations considered in this text are all linear,
that is b{t,x) and o(t,x) are each of the form Z(t)x+z(t),
where Z and 2z are continuous functions of t only.
Therefbre they always satisfy the requirements of the

theorem above, for any T { e,

5. 1TO'S FORMULA
Assume
di(t) = b(t)dt + oft)du(t),
and let g(t,x) be a function with partial derivatives
g%(t,x), g;(t,x) and g;x(t,x) that are continuous

everywhere in [0,T]xR.
Then Ito's formula says that the process
Y(t) = g(t,¥(t))
satisfies the SDE
N 2
av(t) = (gi(t,B(t)) +a,(t,X(t))b(t) + 59 (t,K(t))a{t)")dt
+ g;(t,x(t))c(t)du(t).

(Arnold (1974), p.22).

6. EXISTENCE OF MOMENTS
Consider the linear SDE
(4.42) dX(t) = (Q(t)X(t)+a(t))dt + (B(t)X(t)+b(t))dU(t)
X{0) = ¢

where A, a, B and b are continuous functions of t.

Theorem. The solution of (4.42) has for all
@ =t ¢ T ( = a p-th-order moment 1f and only i f
Elclp ( =, In particular
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2? EX{(t) = A(t)EX(t) + a{t)
EX{®) = Ec.
{(Arnold (1974), pp. 138-139).
The SDE's studied in this text all satisfy the
conditions of this theorem, and, moreover, X(®) = c is
always a constant. and so E|F(t)|P and E|c(t)]|P are

finite for all @ ¢ t,p ( e,
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PROOF OF PROPOSITION 4.1

The greater part of the proof consists in verifying
the definitions and conditions set out on pp. 43-49 of
Joffe and Metivier (1986) (designated by "“J-M" in what
follows). Then Theorem 3.3.1 (p. 49 therein) can be
applied.

Def ine

+
D = {x:R - R| x{(t+) = x(t) and x(t-) exists for all t:0@}.

1. THE STOCHASTIC BASES (q", An,{H:,tzo},Pn} oF x".

I will assume Q" = D and A" = B{D) for all n. {(3B(D)
is the Borel o-field on D. It rests on the Skorohod
topology of D, discussed on pp. 31-32 of J-M; see also
Chapter 3 of Billingsley (1968).)

The filtration {H?, ty@} results from letting H? be
generated by {Xn(s), s<t}. This implies that X" is

H"-adapted, and also that hn(k) is Hg/n-measurable.

2. DEFINITION OF L"
Let

¢ = {#:R » R| " is uniformly bounded},
AT (t) = i[m]
n
and

i 1
Ln(¢,x) = nE n{¢[x + r—lun(x) + 7; Un(){)Oh] ‘¢(H)}
h

where u” and u® are the linear functions defined in Prop.

4.1. The expectation is taken w.r. to the distribution of
n
h" ().

3. Conditions {(D.1) to (D.3} pose no serious problem.
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q. LOCAL COEFFICIENTS.
2

Let ¢1(x) = ¥ and ¢2(x) = x . Then
b7 (x) = L7(#,,x) = u"(x)
and
an(x) = Ln{¢2,x) - 2xbn(x)

un(x) + vn(x)2.

]
S e

5. TIGHTNESS OF THE SEQUENCE {Pn}.
. n n . .
Since u and v are linear functions which converge

to u and v, it is clear that there exists k ( = such that

1
b™ (x)?+a" (x) (1+ —yu”(x)? +« oP(x)?

i

K{1+x2)

for all n 1 and x € R. Thics takes care of condition

(H1) (i). (H1)(ii), (H2) and {H3) are obvious.

6. WEAE CONVERGENCE OF {P"}.
Let Co = ¢ and define
1

2.
L(#,%) = u(x)$’ (x) + 5 v(x)28"(x).
(H2°*) and (H5) trivially hold. It remains to verify
condition {H4), namely that for all t ( =

t
(4.43) lim | E"[L“(¢,xs_)—L(¢,xS_)ida"(s) - 0.
n-te @

n
(Here the expectation operator En corresponds to P .)

Two important facts:

(i) Ehnh = Q, Ehnh =1, Ehnlhl 1.

(ii) From Lemma 3.2.2 of J-H (p.46), for any t ( = there

exists a constant Qt ( = such that

En sup X2 < Q for all n > 1.
: s t
st
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7.  PROOF OF (H4)
Define W#"H = sup |[¢"({x)]. From Taylor's Theorem,
X
t1 t _— :
1ere exists =z b - n
(betwveen x and X+ — u(x) + Te v (x)h)
such that

Ln(¢!x) - L{¢,x)

1 1
nE L(#[xv g a(x) + = v (x)h] - ¢(x)}

1
—u(x)#7 (x) - > vix)Ze"(x)

Ehn[un(x) +h/n v (k) ]87 (x) - u(x)e’ (x)

1 un(x) h n 9
t 3 Ehn[n( n Yo v {x))Ten(=)]
1
2.
-5 u{x) ¢ (x)
= (u"{x)-u(x))$" (x)
1 un(x)2 2h n n
t 3 E /5 7 v ix)v ()]s (=)
h
1

+ 3 Ehn(hztv“(x)2¢"(z) - w(x) %8 (x)])

1 i
fl(n,x) t 5 £2(n,x) t 3 f3(n,x).

(i) u and u are linear in x, and
[ (x)] < e (@) + |x|ue n.
Hence there exists a sequence {Cn, n > 1} with

Cn <+ @ such that

fu (%) -u(x) ] |8 (x) |

| (a"-d)x+e"-e| |8’ (x)|

2
C (1+x )

[VaN

and consequently,

172




fAippendix 4.2

t
n n n 2
é E |£1(n,XS_)|dQ (s} < C_(t+1)(1+E sup X_)

(ii) There exricsts a constant

|£2(n,x)l s s (1+x2)H¢"H

and so

t a

| E ]fz(n,X )IdQn(s) + @ as n 3 =,

) ="
(iii) Fix x € R and let

2 2 . “
R(n,x,h) = h?[v"(x)%s"(z) - v(x)?s"(x)],
Y = |R(n,x,h™)] < C"(hn)z, C' a constant.

Since (1) {(hn)2} are uniformly integrable and (2)

1 1
n — n
Z =k + -u (x) + Ja v (x)h -3 x as n 3 =, the random

variables {Yn} are also uniformly integrable, and,
moreover, Yn <+ @ in probability.

Therefore

|£5(n,x)| |E _R(n,x,h}|

h

E an{n,x,h)]

h

= EY -+ 0 as n % o
n

from Theorem 9.4C, p.l165, of Loeve (1977) (or else from
Theorem 2!, p.36, of Dellacherie and Meyer (1975)).

{iv) Next
. 2, ., Au 2
|£3(n,XS)| < C"{1+X]) ¢ C"{1+sup X )
s<t
and so {from (iii) above)
(4.44) E"|e,(n,X_)| 2 @ as n > =,

using the Dominated Convergence Theorem.
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(v) Finally

Fal

n
E . n 2 "
|£3(n,XS)| 2 C"(1+E 2?? K.} s €7(1+Q,) = R, ¢ =

for all n and s, which allows another application of the

Dominated Convergence Theorem:
t

{ En|f3(n,Xq_)|dQn(s)
A .

o,

t
n n
EV|£,(n,X__)|ds + |é EV[E,{n,K__)|(dA"(<)-ds)|

t
En|f3(n,xs_)lds + |é R, (dA"(s)-ds)|

Ovmrt Q=

<+ @ as n 3+ =, from (4.44).
This completes the proof of condition (H4).

8. From Theorem 3.3.1 of J-M, the weak limits (if any)
of {Xn} are solutions of the martingale problem (L,C,po)

where the measure Ko is concentrated at XO € R.

It's a standard result of the theory of 1to SDE's
that

di{t}) = u{X{t))dt + uv(X(t))dw(t), X{(@) = Rop w-p- 1

has a unique solution (see Paragraph 4 of Appendix 4.1).
This solution is therefore a solution of the martingale

problem (L,C,po).

To show that the martingale problem has a unique
solution, it is sufficient to check that the moments of
X{(t), under the limit measure P, are unique.

Let ¢(x) = xk, k=1,2,... The equation

t
E#(X(t)) = E#(X,) + E%[(dX(S)*E)¢’(X(S))

1 2
+ 5 (£R(s)+g) #" (X(s))ds

implies that the moments of X(t) are recursively
determined, and therefore unique. (This is the argument
used in the proof of Theorem 4.2.2, pp. 53-55 of J-M.)
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APPENDIX 4.3
PROOFS OF PROPOSITIONRS 4.2 AND 4.3

PROOF OF PROP. 4.2
That {hn(l)z, nx1} is uniformly integrable follows
trivially from Egs. (4.11) and {(4.12):

n"{1) = (i"{1)-i")/(var i"(+))!?
dist
- (ity-ihysar itent’?, ner.

{ The hn{l)’s all have the <came  square-integrable

distribution. )

{a) Individual cost methods

We have (see Eq. {4.195))

un(x) = n[(1+in)qn—1]x + n(1+in)rn
and
vn(x) = (nVar in('))l/z(qnx+rn)
where
n ..
g = 1- l/aﬁTﬁ
and
n n n,. _on
r® = NC? o+ ALY/a_— - BT
1 will show that un and u converge respectively to
(4.45) u{x) = -axt+tr and v{x) = oOx,
with (v)
-{v
a = llaﬁl ¥
r = NC + QL/E%r) - B,
y = log(l+i')
and , ) 5
1 .
o = log([E(1+i' (+)) I/[E(1+i (+))]17)-
n .n_n
(i) n[(1+i")g"-1] = n[qa -1+iqa]

n(qn—1)+ninqn.

Let ¥ = log(l+il). From Eq. (4.9)
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.n
ni® = nf{1+it)/™
= nf[exp(¥/n) -1]
= n(¥/n + 72/2n2 +...)
+ ¥ as n 4 =,
This implies
.n
n (i)
n -1 = - "(
(a-1) n/3
. n .n
= -ni /{{1+i )[1-exp(-v+m)])
+ -v/[l-exp(-¥ym)] = -1/5(7)
m]
This also implies that qn <+ 1, and so
n[(1+in)qn—1] - —1/551+ Y = -a
(ii) n(1+in)rn. From the assumptions of Prop. 4.2, and

the fact that n/éﬁﬁlﬂ 1/5%:), wve get
.N, n . n n n_,. n
n{l+i )r = (1+i ){(nNC  + AL n/aﬁTm - nB)
() _
-+ NC + [-u_./a,_“_.l B.

(iii) (nVar in(v))1/2(qnx+rn). From (i) and (ii), q" = 1

and rn - @,

As to the limit of nVar i"{+)}, first note that for
any positive constants a and b
1 1
n(aljn—blln) = n[exp(; log a) - exp(; log b})]

<+ log a - log b as n 3 =™,

Thence, from Eq. (4.10)

nVar i"(+) = log[E{1+il(+}}?] - 2log(t+il).
Eqs. (4.45) are established, and Prop. 4.1 can be applied,
yielding part (a) of Prop. 4.2.

(b) Aggregate cost methods
Eq. (4.15) holds as well, but with
g = 1 - s"/pys”
and

r = s".pyp™/pus”™ - B".
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(1) n(q"-l) = -ns"/pvs™ o5 -g/pvus.

(ii) n{1+i™)r"

(1+i")n(s"PvB"/Pys™-B")

<+ §S+PVB/PVS - B.

n

We conclude that u -2 u and AL v, where

u{x) = -an+r, uv({x) = ox,
a = 5/PVS-¥, r = S+PUB/PVUS-B. O
The proof of Prop. 4.3 necessitates the two following

lemmas.

Lemma 4.1. Let y € R.

(a) [(etY-1)/t]2% ¢ y2+2e%Y, 0 ( t < 1/2.
1
(b) e -1-ty)/t?] c =y + e®, 0 ¢t 51

Proof {(a) If gt) = ety, then

g(t) = g{@) + tg'{=(t)}, @ ¢ =(t) < ¢t

et - 1+ ty exp[z(t)y]
3 [(ety—l)/t]2 = y2exp(2z(t)y).

29y,

-+
S—
"

2
If vy » @, then y2 €2 (1+ y + y /2

which implies

2 2y
yzexp(Zz(t)y) ¢ ye¥ ¢ 277,
If vy ¢ @, exp(2z(t)y) ¢ 1, and
2 .2
y exp{2z(t)y) ¢ v .
(b) The Taylor expansion
2
t t 2
e = 14ty + 7 y" exp(z(t)y), @ ¢ ={t) <!

implies (discerning between the cases y @ and y ( @ as

in (a}))
1 1,

2 2 ¢ —
| = g vyTexp(z(t)y) ¢ 7y *e

[(etY-1-ty)/t

177



Appendix 4.3

Lemma 4.2. Let X be a
define f(t) = get®
(i) EX = o
(ii) EX? ¢ =
(iii) Ee?® ¢ =,

real random variable, and

’ t > 0. Assume

Then

t2

(4.46)  £{t} = 1+ —EX’ + o(t?) as ti0.

Proof. If

t

g (x) = [{e®-1-tx)st?]

1

then (Lemma 4.1) Igt(x)l < 35 x2 + 2%, From assumptions

(ii}) and (iii), together with the Dominated Convergence
Theorem

lim Egt(X) = E lim g_(X)
t40 tio
1
2
= 7 X%,

which proves (4.46) (since EX = @). o

PROOF OF PROP. 4.3

Let
(4.47) W™ (k) = (i™(k)-i")svar i"(k))}/?

with i"(+) as in Eg. (4.21).

Eq. (4.15) results once wmore, with the same
expressions for un{x) and un(x).

Let

F(t) = E exp[t(¥ (1)-Ev'{1))].

Since E exp[ZYl(')] = E(1+il(°))2 ( = and
Var Y1(°) ( =, the assumptions of Lemma 4.2 are satisfied,
and

t2 i 2

(4.48) £(t) = 1 + 57— Var v () + o(t").
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It is convenient to first calculate the limits of ni"
.n
and nVar i (+), before proving that {hn(l)z, n > 1} is
uniformly integrable,

1.  ni%. We have (Eq. (4.20))

1+i% = Eexp{Ev'(1)/n + [v!(1)-Evi(1)]/vn)
= exp(v!/n)e(1//m) (v! = evl()).
Thus
ni® = nfexp(v /n) £{(1//a} -1]
1
= n{exp(v /n)[1+ 5= var v'(+) + o(n™!)] -1)
= n[exp(vl/n) -1]
1
+n exp(vl/n)[ig Var Yl(') + o(n—l)]
-+ 11 + i Var Yl ¢
5 {*) as n & =,
2. n Var in(').
nVar in(*) = nVar(1+in(°))
= nVar exp(vn(°))
= nEexp(QYn(')) - D[EEXP(Yn(’))]2
= nexp(2¢'/n)[e(2//n) - £(1//R)?].
From Eq. (4.46)
£(2//n) = 1+ 2[Var v {+)]/n + o(n 1)
£(1//n)2 = 1+ [var v1(*)]/n + o(n"})
and so
nVar in(*) <+ Var 11(').
3. {hn(l)z, n:l} is uniformly integrable.

(i) From the definition of h"{1) (Eq. (4.47)},
h*(1)2 ¢ 2ni®(1)2/[nvar i"(+)] + 2n(i™)?/[nvar i"(+)].
From steps |1 and 2 above, the second term on the
right hand side converges to @. Moreover {1/[nVar in(')]}
has a finite limit, and is thus uniforwmly bounded. Hence
it is sufficient to show that {nin(l)z, n:l} is uniformly

integrable.
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To simplify the equations, define
1
avt (1) = ¥i(1) - Evi(1).
(ii) We have

i"(1)? = (exp[¥"(1)]-1)?
< 2{exp[v"{1)] - exp(v'/n))2 + 2(exp(v'/n)-1)2
1 —
n exp[Ay (1)/v/n] -1,2
= ni (1)2 < 29xp(2v1/n)°[ 77 ] ]

exp(vlln)-1]2

* 2[ 1770

2exp(2vl/n)(Avl(l)2 + 2EHP[2AY1(1)])

1
+ (7 )2 + 2227 {n

1A

from Part (a) of Lemma 4.1 (let t = 1/v/n).

Finally, the supremum over n of the right hand side
of the previous inegquality 1is an integrable random
variable, since Prop. 4,3 assumes that Eil(O)2 and
Var v!(1) are finite. It follows that {ni®(1)%, n > 1)

is uniformly integrable.

q. Given the limits of ni" and nVar in(') calculated in
steps 1 and 2, the functions un(°) and un(') converge to
the same limits as in Props. 4.2, except for the fact that
¥ and 02 are nowv

1
y = lim ni® = Evl(o) + Var ¥ (*)

n

M|

and

02 = Var 11('). 0
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CHAPTER 5
MOMENTS OF ANNUITIES CERTAIN

9.1 INTRODUCTION

The techniques developed in Chapters 3 and 4 can also
be used to calculate the moments of annuities-certain.
This is what Chapter 5 proposes to show.

Section 5.2 examines the literature on the sub ject,
especially as regards the interest rate processes the
different authors have considered. This in turn leads to
a brief discussion of the i.i.d. assumption of Chapters 3
and 4.

The moments of discrete annuities-certain are derived
in Section 5.3. Their continuous-time counterparts are
dealt with im 5.5, after showing convergence to diffusion
processes in 2.4.

Boyle {1976) remarks that

In the case of deterministic rates there 1ic a
neat reciprocal relationship between accumul-
ating and discounting. With stochastic interect
rates this relationship no longer holds {(p. 695)

In Sections 5.3 te 5.5, it will indeed be seen that, when
calculating first moments, the accumulating and
discounting rates are different. The discrepancy betveen
the two rates is quantified in Section 5.6, in the case of
i.i.d. rates of return.

Section 5.7 is a short comment on moments higher than
the second.

The results of Section 5.3 are those of Boyle (1976}).
Their continuous-time versions could also be deduced from
the more general formulae of Panjer and Bellhouse (198@).
The purpose of these sections is to indicate another way
of obtaining the wmoments of annuitiec-certain, based on

recursive or differential equations.
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9.2 THE INTEREST RATE PROCESS

Let {i{(t), t=x1} be a sequence of randowm rates of

interest. Notice the similarity between

(5.1) F{t+1) = (1+i(t+1})F(t)+C(t)-B(t))
and
{S.2) s{t+l) = (1+i(t+1}))(8(t)+1}.

8{t) is the accumulated value, at time t, of payments

of | unit made at times @,1,...,t-1. 1In general, B(t) is
not constant, and, furthermore, C(t) depends on i(s),
s = t. In consequence, it 1s not always true that the

statistical properties of F(t} can be studied along the
same lines as those of s(t).
Nevertheless, Chapter 3 has shown that in some cases

Eq. {(5.1) can be rewritten as
F{t+1) = [{(t+i{t+1}})/7{1+1)](a{t)}F(t)+r(t))

where g and r are independent of {i{(t)}. As Section 5.3
will demonstrate, the moments of S(t) can be calculated in
exactly the same way as those of F(t), when {i{t)} is an
i.i.d. sequence.

Thus, when asking ourselves whether the analysis of
Chapters 3 and 4 can be broadened to include more general
processes {i{t)}, it is only natural to investigate what
is already knowvn about the simpler case of &(t). This is
why this discussion of the interest rate process 1is
included in the chapter on annuities-certain.

Pollard (1971) assumed that the force of interest ic

a particular autoregressive process of order two:

v(t)-v, = 2kR(¥(t-1)-v,) *+ K(¥(t-2)-v,) - e(t)

where @ ¢« k (1 and {e{t), t = 1] is an 1i.1i.d.
0). If

sequence of normal random variables (with Ee(t)

v(t) = t/7(1+i(t)) = exp(-v(t))
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is the discount factor during (t-1,t), then

k k
Zow(i) = wvgexp[Z(k)]

where
k

Z(k) = z [YO—Y(J)]
Jj=1

is a normal random wvariable. Hence the first two moments

of Z{k) determine the distribution of L wv{j). By

summing over Kk, they also determine the distribution of
the discounted annuity certain
t k

z Z v(j}.
k=t j=1

a(t)

The author provides summation formulae for the
moments of Z(k), and approximations for the first and
second moments of a(t).

Wilke (1976) supposes {uv(t), tx1} to be a sequence of
i.1i.d. normal random wvariables. This amounts to setting
k=0 in Pollard's wmodel, He points out the following

recursive relationship for E§(t)n (attributed to R.E.

Beard):
n gh n )
(5.3) E&(t+1)" = [Eexp(n+v(t+1))]+[1+ I (J)Eg(t)d]
j=1
for 1 ¢«<n < 4. It may be noted that this i1s essentially

the approach adopted to calculate the first and second
moments of F(t) in Section 3.3 (Spread method).

(Using the conditioning technique of Chapter 3, it is
obvious that the same formulae holds for any n : 1. See
Section 5.7.)

Boyle (1976) assumes the returns {i{t)} to be i.i.d..

By summing the cross product mowents of
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(1+i(j)),

n oty =
[N
n
=
=R
Nty =

1 J

the first three moments of a{t) and ${(t) are derived.
They are expressed as simple combinations of the usual
annuities-certain functions, evaluated at different rates
of interest.

Waters (1978) supposes {¥(t), t:1} to be an i.i.d.
normal sequence. He calculates the first four momentes of
a(t) but leaves them in summation form.

Panjer and Bellhouse (1980) first consider a general
stationary process {¥(t), t > 1}. After defining

Z(t) = v(x),

n ty e~

k=1

they show how the first and second moments of a{t} can be
expressed in terms of the moment generating function of
Z{t}). Next, they specify this moment generating function
in the case of autoregressive processes of order one and
two. The same analysis is carried out for a
continuous-time process {¥{t), t € m+}.

A second paper, Bellhouse and Panjer (1981), extends
these results to conditional autoregressive processes
(i.e. which depend on current rates of interest).

These two papers generalize the results of all the
ones previously mentioned. The formulae are compact and
intelligible, though the actual computation of moments 1is
apparently no trivial wmatter. There 1is a fairly high
price to pay for the extra “"realism”™ of autoregressive
processes, in comparison with the simplicity of Boyle's
formula.

Wescott (1981) closely follows Pollard (1971},

assuming the more general second order autoregressive

process
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v(t)—vo = a(v(t—l)—vo) - b(v(t—2)—yo) + e(t),

where 4b > 32 and {e(t), t : 1} is again an i.i.d.
sequence of normal random variables. The first four
moments of 5{t) are elicited, using the method suggested
by Pollard, that is expressing E§(t)k as summations of the
cross product moments
s r
E .B exp[v(J)—VQ] .Z exp[v(j)—vo].
J=1 J=1
In the context of ruin theory, Schnieper (1983)
considers a process {X(t), t > 1} of-i.i.d. cach flows
independent of the process of discount factors {v(t),
t ¢ 1). The latter are supposed to form a Markov chain.
Since he 1is wmostly concerned with ultimate ruin, the

author is more interecsted in the first two moments of

lim a(t) =
t e k

X(k)
1 J

v(i).

It 8
n o~

1

But his formulae also enable one to calculate the
same moments for finite t. This could be done using the
"discounted transition matrices” that are specified in the
paper.

I now leave annuities-certain aside, and briefly turn
to the "term structure of interest rates”. In financial
economics, it has been attempted, based on theoretical
considerations, to determine which stochastic processes
should describe interest rates. One example 1s Vasicek
(1977), who ends up suggesting the Ornstein-Uhlenbeck
process. Boyle (1978) applied this model to a problem of
immunization.

Beekman (1973) and Beekman and Fuelling (1977) have
also used the Ornstein-Uhlenbeck process to represent
“investment dewviations"”, as part of a general collective

risk wmodel.
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Concluding remarks. There is statistical evidence

that autoregressive procesces of order one or two describe
historical interest rates better than 1i.i.d. sequences
(Wilkie (1978), Panjer and Bellhouse (1980)). Hence the
model of Chapters 3 and 4 is not as realistic as it could
be. Further research is needed in order to improve the
model in this respect.

However, the parallel with annuities-certain seems to
indicate that replacing white noise with an autoregressive
or Markov process will make the model much less tractable.

This suggests that the white noise wodel should also
be taken further. As Chapters 3 and 4 have shown, the
white noise assumption often leads to results which are
both general and explicit. Thic may not be the case with

more realistic interest rate processes.

5.3 DISCRETE TIME

Assume {i{t), t z 1} is a. 1i.i.d. sequence, and
def ine
i = Ei{t), wu{t) = 1+i(t}),
u = Eu{t) = 1+i
v(t) = 1/7{1+i{t}}), v = Eu(t},
2 2
u, = Eu{t)", vy = Ev(t)".
Notice that v # 1/u (see Section 5.6). As before
H is the o-field generated by {i{l),...,i(t)}.
5.3.1 Accumulated Values
Let £(©) = © and
(5.4) §(t+1) = u{t+1)(s(t)+1).
Clearly
Es(t+1) = wu(E8(t)+1)
and soO
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E&(t)

"
([ o B
o

= (ut—l)u/(u—l)

5.5 - g{1)
(5.5) - 5L,
It will be showvn that
2u
u,+u (u,-1) 2
.. 2 L2 i i
5.6 Var s{t) = - (1) (gl1),2
( ) (t) - 51 o -u °% (Sﬂ )
u,-u 2
2
(This is Eq. (2.19), p. 698,0f Boyle (1976).)
In view of Eq. (5.5), this is the same as showing
that
2 (uy-t) (i)
5.7 - = g -2u, g
{ ) (u2 u)ES{t) (u2+u)s¥] 2u s
= A(t)
Observe that (5.7) holds for t=1, as
- 2
ES{1) = u,
and
A1) = (u2+u)u2 - 2u,u
= (uz—u)u2=
Using the usual conditioning techniques, we find

EE(t+1)>

and so

u2[(u2-u)E§(t)2] + 2u2(u2-u)§ﬂ

It remains to

show that A(t)

= EE(é(t+1)2|Ht)

w ES(t)% + 2u EE(t) + u,,

(uy-u)ES(t+1)?

(i)

(i.e.

side of (5.7)) satisfies
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(5.8) A(t+1) = wyA(t) + 2uy(u,-u)ell) 4w (u,-u).
From the definition of Q(t),
A(t+l) = (u2+u)(u2§ér2_l)+u2) - 2u, (sl Vi)
- uz(u2+u)§ér2—l) ~2uuslt) u(u,-u)
= uz[(u2+u)§§r2—l)—2u2§%i)]
+2u (umu) ) 4w (uy-u)

which proves (5.8), and completes the proof of Eq. (5.6).

95.3.2 Dicscounted WValues

When the rate of interest is constant,
a5y < v(aﬂ + 1).

When it is random, we may define

a{t+1) = wu{t+1)(a{t)+1), a(0) = 0.

Then

Ea{t+l) = wvu(Ea(t)+l)
and

Ea{t) = (l—ut)u/(l—v)

L)
t]
where
j = /v -1

[1/Ev{t}]-1.
As in Section 3.5.1, it can be proved that

2v

v,tv (J,) 2 . :
(5.9) Var a(t+l) = —= ag 2’ _ e a%d) i} (a%.l))i’

v_-vu
2

where is as before and
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j2 2
[1/Eu{t)?] -1

(Eq. (5.9) is equivalent to Eq. (2.22), p. 699, of Boyle
(1976).)

9.4 CONVERGENCE TO DIFFUSIONS

Imagine payments of 1/n unit made at times, @, 1/n,
1/n, etc. and a sequence {in(k), k » 1} of i.i.d. rates
k-1 k

. .
of return. i (k) is the return during the period (—;—, ;).

. % . :
The accumulating process s can be defined recursively as

follows:

k+1 n k 1
) (1+i7(k+1)} (7 () + o),

I

(5.10) g {—

s"(e) = o.
Prop. 5.1 specifies the weak limit of {En, n : 1},

when the sequence {in(k), k * 1} are defined as in Chapter

4.

Proposition 5.1. Let Eil(k)2 ( =. The processes &

converge weakly to a diffusion s satisfying the Itd SDE
(5.11) ds{t) = {vs(t)+1)dt + o={t)du(t)
s(@e) = o.

¥ and 02 are as in Prop. 4.2 or Prop. 4.3, depending on
whether i"{+) is defined by Eq. (4.11) or Eq. (4.21).

(The second way of defining in(~) requires the

further assumption that
var log(t+il(+)) ¢ = )

Proof. Rewrite (5.10) as
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k+1i k k 1
wn on _n.n
ST = BN ¢« aTER() ¢ (1)
i"(k+1)-i" k 1
+ + JSVar in(') (§n(—) + =)
o n n
MNar i {+)
k 1 k 1 k
_ omhg R S . n,.n n
= 2N ¢ S UNER(D)) ¢ — VR (ER (o))" (ke
n
where
Un(x) = ni'x + 1 + i"
n n !
v = 1 . —
/nVar i {+}) (x + n)
o i%(k+1)-i"
h {k+1) = .
ar in(')
In Appendix 4.3 it was shoun that ni” 4 v and

nVar i" - 02, and so U™ and V™ have the limits
U{x) = v¥x+i, V(x) = onxn.
Ueak convergence is a consegquence of Prop. 4.!. 0O

The discounting processes a” can similarly be def ined

by
1

k+1 . ok
) = vi(k+l}{a (=} + )

] n,
(5.11_) a l n

where vu"(k}) = 1/(1+i"(k)).

Proposition 5.2. Let Evl(t)2 { o,

.1
(a) If in(') is given by Eq. (4.11}), assume Ei (t)2 ( o=,

1 2
(b} If i"(+) is given by Eq. (4.21), assume Ev (t)° ( =,
The processes a” converge weakly to the diffusion a
satisfying
(5.13) da(t) = [-(¥-0)a(t)+1]dt + oa(t)du(t)
a(e) = o,
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where v and o2 are as in Prop. 4.2 (case (a)) or Prop. 4.3
{case (b}).
The proof is in Appendix 5.1.

9.3 CONTINUOUS TIME

5.53.1 Accumulated Values

In accordance with Prop. 5.1, consider the process s

satisfying
(5.14) ds{t) = (vs{t)+1)dt + os{t)dw(t)
s(0) = O.

It is immediately seen that

d -—
a—{Eg(t) = vEs(t) + 1
and so
t
Es{t) = | ey(t—r)dr
)
= (ety—l)/v
(5.15) = E%f)-
2

Let g{x) = x and use Itd's formula (Appendix 4.1)

to obtain

ds(t)? = [gr(s(t))(vs(t)+1) * ég;x(é(t))ozé(t)zldt
b (... )du(t)
L [25(t)(va(t)+1) + ois(t)’]dt + (...)du(t)
- [(2v+02)s(t)? + 25(t)]dt + (...)dH(t).
Define k = 2v+o-. We get
2; Es(t)? = k+Es(t)? + 2Es(t)

which implies, using Eq. (95.19),
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t A .
Es(t)? = 2f *t gl y)du

S

t ku_ -
= 2f e Es{t-u)du
?

t
- 2; eku ,‘ el(t—u—v)d“ du
%]

t t-v
- 2 Y (t-v) f e (k-7)u du du
@ @

(changing the order or integration)

- } Ev(t—u)(e(k-y)(t—u)_l) .
%

2t
_ f ek(t-v) _ev(t—v) du

Therefore

- - +02 - -
(5.16) Var s{t) = 3 (s%fY ) -s%r)) - (Sty))z_

9.9.2 Discounted Values

Consider the process

(5.17) da(t) = (-v,a(t)+1)dt + oca(t)du(t)
a(o) = o
where v, = v-o2 (see Prop. 5.2).

Eq. (5.17) has the same form as Eq. (5.14), and so

(from Eqs. (5.15) and (5.16))
_(=v

2
z{v-0")
= a?]
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2
_ 2 (-2v, +0 -y -y
Var a(t) = 5 (;ﬂ 1 )- g( 1) g( 1))2
Y, to tl tl
2 2 2
“{2¥-36") -(v-07) -{v-07),2
- (33 RN CL AR
202—Y € tl €
since vl = ¥-¢ , and, for any r,
g%—r) = (l—e—rt)/r
- afm),
The lack of symmetry between the formulae for the
moments of g(t), on the one hand, and those for the

moments of S(t), on the other,

9.6.
9.6 ACCUMULATING AND DISCOUNTING RATES
In Section 5.3, we have seen that,
i
Es{t) = s% ) and Ea(t) = a
where
1
i = Ei(*) and =E(iT1—(_’—T)
I first show that Jg ¢ i {of
Var i(t) > @). Let
£(x) = 1/7(1+x)}, x> -1.
Consider the second-order Taylor

centered at xo:

is explained

in Section

in discrete time,

-1

(J)
tl
-1.
course assuming
series for f(x),

and using the fact

1 1 1 ,
A + (noxg ) £7 (xg) + F(xmmp) (2]
Letting X = 1(0)’ xo-_- El(’),

that £f" is always strictly positive,

193

we find



Section 5.6

1 1
R TITEY T+Ei(+) " EG{)-E(+))er(Ei(+))
1

+ SE[(i(*)-Ei(~})? £ (2)]

from Lemma 5.1

Aif+) =

i{(*) has a

[9,a] and

1
) =
1+Ei{+)
1 -1
= J = (E ‘I-_;_—l—(T-)-) -1 ( 1+Ei{*) -1 = i,
Next, it will be shown that i-j = [Var i(+)]/(1+i).
First assume Ei{(:*) = i = @. Then,
{Appendix 5.1),
E —— = - E ——
t+i{+) 1 E 1+i( )
fa 1 + Var i(’)
1 . 1
=2 [E(‘i—m)] {+Var i(°) ~ 1 - Var i(o).
If i # 1, then, letting u = 1+i and
i{+)-1,
i 1 u 1
LE(Teroy) ] = ulE(gaoy) ]
1 -1
= Byl
~ u{l-Var[Ai{+)/u])
= 1+i-[Var i(¢)]/{(1+i}).
Finally,
1
.. . -1 ) .
i-j = 1+i- [E(m)] ~ [Var i(+)]/7(1+i)}.
Example. Say i{+) is U[@,a], that is,
density function equal to l/a in the interval
equal to @ elsewhere. Then
Ei{*}) = ar2

and
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a
Var i(+*) = (1sa) | x2dx - a?/g
/]
= a2/12.
Furthermore
1 1 a dx i
ST ) Wy é f+x = g log(i+a)
and
a
b= log (1+a) -1
(i) If a = .20, then i = .10, j = .096962989... and
1i-§ = . 0030370104, ..
while
[Var i{+)]/(1+i) = aZ/[12(1+ a/2)]
= .0030.
(ii) In the more extreme case where a = .50,
i = .25, J = .2331517312...
i-3 = .2168482688. ..
The approximation for i-j is
aZ/[12(1+ as2)] = .o18.

(The relative error is 1.1 % .)

The convergence results of Section 5.4 show that in
continuous time the difference between the accumulating

and discounting rates is ¥-v, = Y-(Y-GZ) - 62. This can

be seen to agree with the approximation given above for

the discrete ratec:

i"-§" = [var iT(e)]/(1+i")
> n{i™-j") = n[var i"(+)]/7(1+i")
2

n

) ) .n. 2
since ni 4+ ¥ and nVar i (*) =2 o".
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A question related to the difference between ¥ and L

is the asymmetry of the formulae for the moments of s{t)
and a(t) (Section 5.5). This will be accounted for by
showing that the force of interest “processes"” underlying

the accumulating and discounting processes are

(5.18) a{t) = Yo ¥ odW({t)/dt

and

(5.19) D{(t) = Yo * ocdW(t)/dt
! 2

respectively, where YO =Y - 50

First, the stochastic process representing “the sum
of the forces of interest up to time t" will be specified.
Define (in the setting of Section 5.4)

n nt] n n n
2h(t) = £ ¥"(3), V() = tegl1+it(d)]
J:
I‘Q) = Q.

The weak limit of the processes z™ is determined as
follows. If
Tty = exp z™(t)

then
k+1 n n k
= [1 + 1 (k+1)]Y (;)

which amounts to

k+1 k 1 k 1 n. .n k n
) = YR ¢ g VYR ¢ o VRN ke)

where

v (x) = vmVar i"(+) x = ox = V{(x}.

Prop. 4.1 tells us that v® converges weakly to the
solution of the SDE
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dY = yYdt + oYdu.
n ¢
Thus Z° = log Y converges vweakly to Z = log Y,
since h(x) = log x is continuous (for a justification of

this assertion, see Billingsley (1968), p.29).

Therefore, let g{x) = log ¥ and use Itd'< formula to
obtain
1 1 2 o i 1
dZ = [YY'.? + 7 Yo (- 'Y_z)]dt + OY'? dw
2
=(Y—50)dt+odw
t 1 5 t
2 Z(t) = f {v- 5 @ )dt + of du(t)
/] Q

]

ve't + oUW(t).

That is, the sum of the forces of interest up to time

t i1s, in the limit, a Brownian Motion with mean YQt and

variance o%t. This Justifies (5.18); {5.19) is handled
similarly.
The equationc of Sections 5.4 can be restated as

1

ds{t) = [(v, + 3 0°)s(t)+1]dt + os(t)du(t)
-— 1 2 - -
da(t) = [—(YO— 70 Ja{t)+1]dt + oca(t)du(t).

Finally, the formulae for the moments of g(t) and

;(t) become entirely symmetrical when expressed in terms

|

of ¥, ¢t 5 02, instead of ¥ and Yl'

This exemplifies the observation, previously made 1n
fAppendix 4.1, that dW{t)/dt does not obey the usual rules
of the calculus. If we formally substitute A(t) for v(t)

in the ordinary differential equation

ds(t) = [v(t)s(t)+1]dt
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we obtain

(5.29) ds{t)

(rps{t)+1)dt + os(t)du(t),

which is not the correct Ito6 equation satisfied by s.

However, it can be shown that if (5.20) is
interpreted as a Stratonovich stochastic differential
equation, then it is equivalent to the correct 1Ito
equation (see Section 10.2 of Arnold (1974), especially
pp. 169-171).

Notice that there was no need for the above remarks
to be wmade in Chapter 4, since the discussion was not
concerned with discounting, but only with the ccumulated

values of the fund.

5.7 HIGHER MOMENTS

Recursive {or differential) equations can also be
o = k = k
written down for Ea(t)k and Es(t)k (or Ea(t) and Es{t) '},
when k : 3 (as pointed out in Section 5.2}.

: k
First consider E§(t)k. If u = E{(1+i{*)),

E(t+1)¥ EE(2(t+1)"[H,)

- E(1+i(t+1))E(E () )R
k

Ry gy d
= u ft + I (J)Es(t) ]
J=1
. ...
Similarly, if v = E{t+i{+)) =, then
k .
k J
(5.21)  Ea(t+1)® = w [t + I () Ea(t)'].
k j=1 J
. . = k
The differential equation satisfied by Es(t)  results
k
from Itd's formula, with g{x) = x :

1

afs(t)®y] = [ks()  H(vs(t) Ek(k-l)g(t)k—z

o25(t)?]dt

+ (...) du(t)
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d 1 k-1

5 T Es(6) = K[v + 5(k-1)0”]ES ()" +kEs(t)* 7L

In the case of discounted values, we obtain

d 1
(5.22) — Ea{t)® = k[v, + 5 (k-1)o?]Ea () +kEa(t)*~

dt

1

One simple application of these formulae 1is the
calculation of the limits of the moments, when t 2 =,
Take Eg(w)k, for example. It is finite if and only if

1

7, ) 3 (k—1)02 (from Eq. (5.22)), in which case

1
- k - k-1
Ea{=) = 1 « Ea(=) .
2
’11 -7 (k—l)o'
In discrete time,
k-1 .
k k J
Ea(m) = [1 + '2:1 (J) Ea(=) ].Uk/( —“k)’
J:

1f Uk { 1.
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APPENDIX 5.1
PROOF OF PROPOSITION 5.2

Def ine

n
U

Ev(+)
E[1/(1+i%(+))]

and restate Eq. (5.12) as

n k+i k k
a’(—) a(-) + (v7-1)a"(=) + v"/n

v (k+1)-u" —_— K I
+ [War vi{+) (a7(;) + )]
JVar un(O)

n k 1 n. n k 1 k
a(7) + U)o V(T (2))n" (ke1)

where

Un(x) = n(vn—l)x + "

1
v?(x) = vnVar u{+) (x+ =) s

(5.23) h(k+1) = (v"{r+1)-v")s/Nar V().
It will be shown that
Un(x) + U(x) = —(v—oz)x+l,
Vn(x) + V(x) = ox.
¥ and 02 are as in Prop. 4.2 or 4.3, depending on

whether i"(+) is defined by Eq. (4.11) or (4.21),

respectively. Weak convergence will then follow.
(a) Subdividing i1(.).

Lemma S5.1. If

(i) EX = ©0

(ii) EXR® ( =
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(iii) E(1+%) % ( =
then
R 2
E 1+ty = CtERK + o{t) as t i 0@
Proof. Let t : 1. From Taylor's Theorem, if £(t) =
1/7{1+tx)
1/7{1+tx) = 1 - tx/{1+z(t)x)%, @ s z(t) ¢ ¢
= n/{1l+tx) = x - txz/(1+z(t)x)2.
Let
-1
gt(x) = [x/(1+tx)-x]t
= —x2/[1+z(t)x]2.
Since
. 2 2 2
lg (X)) ¢« x l{x;@} + [K°/(1+X) ]1{x<@}
< %2 + 2[1+ 1/(1+X\2]1
y {X:0} ’ {X<0}’
the Dominated Convergence Theorem implies
lim Egt(X) = E lim g, (X)
ti10 ti40
= —EXQ. o
Refer to Section 4.3.3. We have (Eqs. ({4.9) and
(4.11)
.n .n .1
iT{1) = i o+ Ai(1) t
with
) Y
ail(y = it(r) - it
. 1/2
tn = ({var in(l)/Var 11(1)) .

The proof of Prop. 4.2 (Appendix 4.3) tells us that

n

ni -+ ¥, nVar in(o) + 0

2 2 .1
(and so (1) nt <+ o°/Var i (1), (2) t 4 Q.)

(i) nVar un(O).

Notice that
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Var un(') Var[in(l)/(1+in(i))]_

Def ine
i"(1)v/n

1+i7 (1)

i"h o+t /n oail(1)
n

1+i% t ail{1)
99

There exists constants k k and n such that

1! 2 o
(5-20) Ky o< (kg o+ kLt (1))
1 2 (8i1(1):0)
kl + kz[dil(l)]z
' (1+ 11(1))2 1{611(1) ¢ 0} Pife:

Hence, we can apply the Dominated Convergence Theorem, to

conclude that

lim nVar un(°) lim Var Xn

= (lim nti)'Var Ail(l)
= 02
(ii) n(v'-1).
n{v"-1) = nE([1/{1+i"{1})]-1)

= -nE[i7{1)/(1+i"(1))]
= -ni"E[17(1+i"(1))]
—E[ntnAil(1)/(1+in+tnAil(1))].
Firstly, in(l) 4 @ w.p. 1, and so, using the same
type of argument as in (1), we get

lim ni™ E[1/7(1+i"(1))] = ~.
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Secondly, from Lemma 5.1,

. |
nAi (1)’tn

. 1
lim E = lim nt [-t Var Ai (1) + oft
n 1+i%t_ail(1) n noon o)l
n
= -lim nt2.var 11(0)
n
n
2
= -o .
. n 2 . . . n
Finally, n{v'-1) =+ -(v-0"). This also implies uv -},
{iii) It only remaincs to show that {hn(l)z, n:1} is

uniformly integrable. Since (1) v? 5 1 and (2) nVar o

has a strictly positive limit, it is sufficient to show

that (ni®(1)2/(1+i%(1))?

This results from inequality (5.24) of step (i).
(b) Subdividing Yl(')

Lemma 5.2. Let ¢f{t) = Eetx, t ¢« @. If
(i) EX = O
(ii) EX? ( =
-2X
(iii) Ee ( =
then
2
t 2 2
£F(t) = 1 + 7 EX® + o(t™), as t t Q.
Proof. Similar to that of Lemma 4.2 (Appendix 4.3).
1
Refer to Section 4.3.4. Recall that v = ¥
. 1 2 1
5 Var ¥ () and o” = Var v (). Let £{t)

Eexp(tav (1)), t : @.

(i} nVar vn(o). From Lemma 5.2,

nVar Un(') n{Eexp[—Zvn(')] - (EEHP[“7n(')])2)

nexp(—ZYI/n)[f(-2//5)-f('1//a)2]
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2

=+ Var 11(.) = o,
as 1n the proof of Prop. 4.3 (Appendix 4.3).
(ii) n{v"-1).

n(un—l) nE(exp[—Yn(o)]-l)

= n[exp(-ylln)f(l—/Jh)—I]

= n[exp(—flln)—l]

1

+nexp(—11/n)[§;-Var Yl(°) + c;(n—1

)]

1
2

1

+ ¥+ Var vl(o)

= —(v—oz).
. n 2 . . . L
(iii}) (h' (1), n z 1} 1is uniformly integrable.
From Eq. (5.23),
n 2 n 2 n n,2 n
h{1})" 2 n{v {1})-1)"/(nVar v {+)) + n{t-v })“/(nVar v {+)).

The second term on the right hand side goes to @ as
n + = since n{i-v") and n-Var un(l) have finite limits.

It is therefore sufficient to show that the seguence

n(vn(l)—l)2 = n(exp[—vn(l)]—l)2
ic uniformly integrahbhle. This is done in the same facshion
as in step 3 of the proof of Prop. 4.3 (fAppendix 4.3).
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CONCLUSION

There are many other problems to be studied in the
dynamics of pension funding. Here are a few ideas for

further research.

1. Perhaps the most obvious way of improving the results
of Chapters 3 and 4 is to consider more realistic interest
rate processes. As was pointed out in Section 5.2, two
possibilities are autoregressive and Markov processes. It
would be especially interesting to see what becomes of the

"optimal region” under different ascumptions.

2. Nevertheless, the white noise model should probably
not be forgotten totally, since it is the most tractable
(this was discussed in Sections 4.1 and 5.2). As far as
the theorv of pension funding is concerned, the lack of
realism of the model is compensated by the explicitness of
the results obtained. The continuous-time formulation 1is
particularly promising. The continuous-time formulation
is particularly promising. For exawple under the Spread
method, the process F is a diffusion and so its transition
probabilities can be found from the so-called backward and
forvard partial differential equations. Should this
apprecach fail {as these equations are by no means trivial
to solve), the density functions of F(t) and C(t) may be

estimated from their wmoments, which can be calculated

explicitly (see Section 5.7).

3. The equations of Chapter 2 could serve to study how
fluctuating inflation rates affect the evolution of the
fund levels and contributions, when benefits are not
totally indexed. As the equations cshow, this problem 1is

mathematically more complex than the one of fluctuating
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interest rates. This is because B{(t) and AL(t) now depend
on the inflation rates experienced over the last -r years
(see for example the expression for B{x,t) in Section
2.3.1}).

Going still further, another possible development
would be of considering inflation on salaries and

investmgnt earnings which are both stochastic.

q. Ancther problem is the determination of “security
loadings™” against unfavourable experience. For example,
say we are given some wmodel for the future behaviour of
assets growth, inflation, mortality, etc. Then, for
appropriate values of k, T and €, what is the (miniwmum)

increase in contributions needed to ensure that
Prob{F(t) > k+AL{t), for all @ < t < T} : 1-¢ 7

This type of guestion may become wmore important 1in

the future, in view of the current trend towards
"realistic” actuarial assumptions {as opposed to
"conservative” assumptiones, which give an implicit,

undetermined amount of “"safety” to the valuation basis).

3. Finally, there is the hypothesis of fixed acturial
assumptions that is quite unrealistic. One would like
actuarial assumptions to take recent experience into
account. The problems which arise are that
(1) a dependance on the past is introduced and
{({2) NC, PVB etc. are now functions of these wvarying
assumptions.
One possibility is to linearize for small changes 1in
the assumptions. This was the approach adopted by S.
Benjamin {1983), who assumed the valuation interest rate
to be the average of the previous "k earned rates of

return on the assets.
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