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ABSTRACT 

In the context of North American and British 

actuarial practice, a mathematical model is used to study 

the elJolution Ol.Jer time of the fund levels (F) and 

contributions (C). First, actuarial cost methods (e.g. 

Unit Credit, Aggregate) are examined in the traditional 

" s tat i c " f r a me \'10 r k • Three points are studied: ( 1 ) 

comparison of the various methods, ( 2 ) inc Ius ion 0 f n e '-I 

entrants in the valuation basis, and (3) the rate at 

wh i c h F ( t) rea c he sit suI t i ma tel e \7e I, a s t -+ - Next, 

the model is modified to include varying rates of return 

and 0 fin f I a t ion. T"IO" me tho d s 0 fad jus tin 9 the no r rna 1 

cost" are considered: (1) the adjustment is equal to the 

unfunded liability di\7ided by the present value of an 

annuity for a term of "m" years (Spread method); (2) each 

intervaluat ion loss is 1 iquidated by a fixed number of 

payments over the fol10\'ling years (Amort izat ion of Losses 

method) . The core of the thesis has to do \,lith random 

rates of return. In discrete time, these rates are 

supposed independent and identically distributed. 

Recursive equations are derived for the first and second 

moments of F(t) and C(t), under methods (1) and (2). In 

the cas e 0 f the S pr e a d me t hod, an" 0 p t i rna 1 reg lon i s 

specif ied for "rn" it is sho\·m that for * m !: m the 

variances of both F and C are increasing functions of m. 

* The optimal region is thus 1 $ m ::; m . 

is also studied in continuous time, 

The Spread method 

a5suming rates of 

ret ur n t 0 be a \'1h i ten 0 i s e pro c e s s . Apr 0 0 f i s g i \7 e n 0 f 

the convergence of the discrete processes F
n 

(representing 

the fund when "n" valuations are performed every year) to 

a diffusion process F, as n -+ -. Using the Ito calculus 

of dif fus ion processes, the first two moment s of F( t) and 

C(t) are then shown to satisfy some partIcular 

9 



differential equations. The final chapter applies similar 

ideas to the calculation of the moments of 

annuities-certain, when rates of return are a ~mite noise 

process. 

10 



0.1 SUBJECT-MATTER 

CHAPTER 0 

INTRODUCTION 

This is a study of some aspects of pension funding, 

in the context of North American and British actuarial 

practice. The central idea is to vie", fund le~.Jels and 

contributions as "proce5ses" 

other "1Ords, the 

characteristics of 

emphasis 

the "mo Ie 

taking 

is put 

p lace over time . In 

on 

sequence of 

determining the 

fund leve 1 sand 

contributions, rather than on analyzing them at isolated 

points in time. 

Various methods of calculating the contributions are 

described, 

next, in 

first in the traditional "static" setting, and, 

the case of varying rates of return and of 

inflation. The maJor topic studied is the derivation of 

the moments of the fund lel.Jels and contributions, when 

rates of return are independent ident ically distributed 

(i.i.d.) random variables (discrete-time formulation) or a 

white noise process (continuous-time formulation). 

0.2 METHODOLOGY 

The analysis is carried out mathematically using a 

simp 1 if ied mode I for the pens ion scheme and popula t ion. A 

few numerical illustrations are included. 

Another ''lay of treat Ing 

computer simulations. These 

the subject would be to use 

can be app lied to a wider 

range of situations, since they do not require as many 

simp I i f yin gas 5 u mp t ion s a s ma the rna tic a I roo del lin gus u a 1 I Y 

does. T,·1O comments are called for In order to explain, 

and perhaps justify, 

( 1 ) From a pure I y 

the approach adopted in this thesis. 

academic point of l..Jie\·l, mathematical 

res u 1 t s are pre fer a b let 0 n u me )-. i cal 0 n e s . As concerns 



Section 0.2 

pension funding, it is felt that more theoretical research 

is needed, since little has been done so far. 

(2) In relation to the concrete problems encountered by 

actual" ies, hO\'1e\Jer, ma thema t ica 1 mode 11 i ng cannot cIa i m to 

be the final ans~ .. 1'er. The practical applications of the 

results presented here are restricted to (i) problems 

\'mich are themselves simple enough to fit into the models 

studied, and (ii) obtaining approximate answers, for the 

more complex ones, ~'1ithout ha1Jing to resort to full-scale 

simulations. 

It is hoped that practitioners, even though they may 

find few practical uses for the results of this research, 

will at least benefit from the new insight it brings into 

pension funding. 

0.3 OUTLINE 

Each chapter begins \,li th an introduction \'mich 

describes its content and relates it to pre1Jiously 

pub 1 i shed \·.JOrk. The second sec t ion is about no tat i on and 

assumptions (except for Chapter 5). Long proofs and 

numerical calculations are contained in the appendices. 

Summaries of Z-transform techniques and of the Ito 

calculus are also provided (Appendices 3.2 and 4.1). The 

t e){ tis f air 1 y s elf - con t a i ne d , ex c e pta s reg a r d s \'1e a k 

convergence and Proposition 4.1 (Chapter 4). 

Section 1.3 of Chapter 1 describes the funding 

methods traditionally used 

(Aggregate, Unit Credit, 

in North Amer ica and 

etc. ) . The remainder 

Britain 

of the 

chapter is devoted to analyzing some of these methods in a 

static en"ironment, using a continuous-time model. The 

three major points studied are 

( i ) 

( i i ) 

compar i ng t he ,Jar i ous method s; 

the ef fect s of inc Iud ing ne\'1 entrant s in the 

valuation basis; and 

12 



Section 0.3 

( iii) the rate at which the fund reaches its ultimate 

level. 

The results extend those of Tro~mridge (1952). 

Chapter 1 is, to a large extent, necessary background 

for Chapters 2,3 and 4. Nevertheless, some of the results 

are mainly related to the underlying population of 

members, and so have little to do l:lith the rest of the 

thesis (for example Sections 1.4.4 and 1.5.1). 

In Chapter 2, the transition is made from the static 

model of Chapter 1, to the stochastic model assumed in 

Chapters 3 and 4. The rna jor hypotheses are nO~1 

( i ) 

( i i ) 

( iii) 

varying rates of return and of inflation; 

fixed actuarial assumptions; and 

unindexed benefits. 

Since economic assumptions are no longer in agreement 

with actuarial assumptions, the B1ethods of Chapter 1 have 

to be supplemented '-lith "methods of adjusting the normal 

cost" . T,·1O of these are described: 

( 1 ) 

( 2 ) 

The "Spread" method. The adjustment is equal to the 

unfunded liability (i.e. actuarial liability - actual 

fund) divided by the present value of an annuity for 

a fixed term. 

The "Amortization of Losses" method. Each 

inter\Jaluat ion loss is 1 iquidated by a fixed number 

of payment s 0\7er the fo llowing years. The tota I 

contribution is then the normal cost plus the sum of 

those payments which are still in force. 

Chapters 3 and 4 constitute the core of the thesis. 

They are primari ly concerned to calculate the first and 

second n~ments of the fund and contribution, when rates of 

return are random. The model of Chapter 2 is kept largely 

unchanged, the only differences being 

(i) there IS no inflation on salaries (or, 

( i i ) 

equivalently, benefits are fully indexed). and 

rates of return form a white noise process. 

13 



Section 0.3 

C hap tel' 3 de a lS\,I i t h t he dis c I' e t e - time for mu 1 at ion. 

Recurs i ue equa t ions are der i 'Jed for the moment s of the 

fund and contributions, under the t\~ methods of adjusting 

the normal cost defined in Chapter 2. Asymptotic formulae 

and numerical illustrations are also provided. 

In the case of the Spread method, an "optimal region" 

is specif ied for "m", the number of years over which the 

unfunded liability is spread. 

greater than a particular value 

It is shown that for m 

* m, the variances of both 

the fund and the contribution are increasing functi~ns of 

m. Thus the "optimal" values of mare 1 ~ m * ~ m • 

Chapter 4 examines the continuous counterpart of the 

Spread method. Sec t ion 4. 3 ide n t i fie s \'lh i c h s t 0 c has tic 

proces s F descr i bes the e\70 1 ut ion of the fund, \·,hen ra t es 

of return are a cont inuous-t i me \'lhi te no i se. 

sequence of processes {Fn , n~l} is defined. 

First, a 

Each Fn 

represents a fund subject to i.i.d. rates of return, as in 

Chapter 3, but with "n" valuations being performed e 1.7ery 

year. Then, 

as n -+ -, of 

the process F is found by taking the 

the {Fn}. The sequence convergence 

Ii mi t , 

proof 

relies on recent results by Joffe and Metivier (1986) 

about the \'leak con1..7ergence of semi mart inga I es. 

In Section 4.4, differential equations are derived 

for the moments of the fund and contributions, \,lith the 

help of the Ito calculus of diffusion processes. 

Chapter 5 applies the ideas set forth in Chapters 3 

and 4 to the calculation of the moments of 

annuities-certain~ when rates of return are a white noise 

process. Some of the results of Boyle (1976) are 

reproduced, and further extended to continuous annuities. 

0.4 NOTATION 

Chapters 1 and 2 

( i ) All symbols corresponding to "actual·' monetary 

amounts have a bar ("-") above them; the same symbo Is 

14 



Section 0.4 

\,1 i tho uta bar ref e r to" rea 1 - t e r m" u a I ue s ( u i e \Ole d at time 

0). Example: F(t) is the actual fund built up at time t, 

while F(t) is the "deflated" counterpart 

F(t) = exp(-~t)F(t), 

~ being the assumed rate of inflation on salaries. 

( i i) The argument" s" or .. t" is dropped ,.men a f unc t ion is 

constant ouer time; e.g. if B(x,t) is the same for all t, 

then it is written as B(x). 

(iii) The argument standing for age (x or y usually) is 

dropped "men a summa t ion 01.'er a 11 age sis per formed. For 

instance 

r-l 
t~c ( t ) = E NC(x,t). 

x=a 

( i \J) The same symbols are often used in both the 

d i screte-t i me and the cant inuous-t i me formula t ions. Any 

difference in meanIng should be clear from the context. 

Annuities 

The symbols a. ~, 5:=1n ' etc. ha1..7e the usual meaning, 
x: ml III 

except that, to simplify the notation 

( i ) the rat e 0 fin t ere s tis not s h 0 \Om ,·m en i tis i mp lie i t 

from the context; 

( i i ) 

the 

in Chapters 1 and 2, 

rate of interest) 

the force of interest (and not 

superscript. 

is denoted by 

IS sho\'m, 

For example, 

n-1 
E exp(j*Y) 

j=0 

,·men needed, 

y 
. t d f .. (e -1) Ins ea 0 a@ . 

as a 

In Chapter 5, the random \7ariables aft), a(t), s{t) 

and 5 ( t ) are the counterpart s of and 

respectiuely, when rates of return are random. 

15 



Section 0.5 

0.5 LIST OF SYMBOLS 

The sect ions in \omich the symbols are def ined are 

indicated in brackets. 

a,a(n) 

f3 

J3 ( t ) 

l'(t) 

5 ( • ) 

1lf3 ( t ) 

1l'l(t) 

Ilq(t) 

.c1i 

~(t) 

~I 
H 

2 a 

a 

aIDl ' a IDl ' a ml 

Parameters representing 

con t.1ergence of F (t ) to 

the 

F(cz) 

rate 

under 

of 

the 

Aggrega te method ( 1 • 4. 1) or Aggrega te "Ii th 

Ne\ol Entrants method (1.4.3). Note 

that a(0) = a. In Chapters 2 and 4, a refers 

to the Spread method in general, \Oli th a = 
-

l/a ffil -'1 (2.4.2.1). 

Assumed rate of inflation on earnings 

Actual rate of inflation on salaries (2.2) 

Assumed net rate of return = ~-~ 

Actual net rate of return (2.2) 

Valuation force of interest (4.2) 

Dirac delta function 

= f3(t)-f3 

= y(t)-y 

= q(t)-l1 

= E i (t ) - iV 

Increase of pensions in payment (I.2.2) 

Assumed nominal rate of return on assets 

Actual nominal rate of return (2.2) 

Force of rr~rtality. See comment in 1.2.1 

= Var i(t) (Chapter 

(Chapters 4 and 5), 

3). In cont inuous time 
2 a IS also the variance 

of the instantaneous rates of return (4.2(v» 

End of life table 

Entry age into scheme (1.2.2) 

Present value of an m-year annuity-certain, 

''lith payments made at the beginning of the 

year, resp. the end of the year, 

continuously. 

16 



Section 0.5 

a 
x 

a(t),a(t) 

AAL 

AAN 

AOJ(t) 

AL(x,t) 

b 

8(H,t) 

8* 

c 

c(t) 

c(n,t) 

C(t) 

Present value, at age x, of a life annuity 

'-Ii th payment s made a t the beg inning of the 

year. 

Present value of an annuity payable until age 

x +m-l or the annui t ant's dea th, whichel.7er 

occurs first, \,1 i t h pay me n t s rna d eat the 

beginning of the year. 

Present value of an annuity payable for life, 

\Oli th the first payment deferred m years. It 

is equa I to 

exp(-rym)(~ I~)a . x+m H x+m 

The life tables used before and after age H+m 

may differ if x+m=r. 

Equi '-fa lent s of and 

rates of return are random (5.3.2) 
5.5.2). 

Active members actuarial liability (2.2) 
Attained Age Normal cost method 

Adjustment to normal cost 

when 

and 

Actuarial liability ''l.r. to one member age H, 

at time t 

In calculating benefits at retirement, 

fraction of salary \omich constitutes the 

pension, per year of service (1.2.2) 

Pension paid to one member age x at time t 

Benefits paid "lhen J3(t) = f3 for all t (in 

real terms) (2.2) 

= sb(r-a) in Chapter 2 

Contribution, as fraction of payroll 

Contribution under Aggregate ,·,i t h Ne'.'1 

Entrants method, as a fraction of payroll 

(1.4.3). Note that c(0,t) = AGGc(t) 

o \r era 1 1 con t rib uti 0 nat time t 

17 



Section 0.5 

C(n,t) 

e(y) 

e(j) 

• 
e H:m1 

E 

EAN 

ELT 13 

F ( t ) 

F(n,t) 

FIL 

"t 

i 

i ( t ) 

ILP 

~(t) 

~ 
H 

It 
m 

n 

Overall contribution under the Aggregate with 

New Entrants method 

= i/(1+i), resp. iV/(1+iV} 

In Chapter 1, rate of entry of new members 

age y (1.6) 
= a la 

m-i- J I ID1 in Chapter 3 (3.4) 
m 

_ a-(0) = J ~H+s/~Hds - H:ID1 
o 

(kno\,ffi as "partial life 

eHpectancy") 

EHpectation operator 

Entry Age Normal cost method 

English Life Table No. 13 (males) 

Fund at time t (before contributions and 

benefits are paid, In the discrete case) 

Fund at time t under the Aggregate "lith Ne ... , 

Entrants method 

F(0,t) = AGGF(t) 

(1.4.3). Note 

Frozen Initial Liability cost method 

that 

a-field of events prior to (inclusive of) 

time t (3.2 and 4.2) 
= Ei(t) (3.2) 
Valuation rate of interest (3.2) 

Earned rate of return during (t-1,t) (3.2) 

Indit.ridual Let.rel Premium cost method 

Actuarial loss during (t-l,t) (at eHact time 

t in continuous tin~) (2.3.2.1 and 2.4.2.1) 

Survival function (1.2.1) 

Boundary of "optimal region" (3.5.3) 
Number of years o'ver which ne\., entrant s are 

assumed to enter the scheme under the 

Aggregate with He,', Entrants method (Chapter 

1). In Chapters 4 and 5, the superscript "n" 

refers to the situation where n valuations 

are performed every year. 
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NC(x,t) 

o(t) 

p(t) 

P(t) 

PG 

PVB(t) 

PVB(t,n) 

PVS(t) 

PV5(t,n) 

q 

r 

R 

RAL(t) 

s 

S 
H: mJ 

Normal cost for one member age x at time t 

Let -GO < a ~ -. Definition: n 
f(t) = ott ) 

as t~a if lim If(t)/tnl = 0. 
t~a 

Payments made to liquidate ~(t) (2.3.3) 

Payment tO~'1ards amortization of unfunded 

liability 

Pay-as-you-go 

Present value of future benefits of all 

current members (1.4.2) 

Present ,-'alue of future benefits of current 

members and of ne~'1 entrants coming into the 

scheme over the next n years (1.4.3). 

that PVB(t,0) = PVB(t) 

PVB(t) ~ilien ~(t) = ~ for all t (2.2) 

Note 

Present value of future salaries of all 

act iue n-.embers (1.4.2) 

Present ualue of future salaries of all 

current 1 Y act i ,-'e members and of ne~1 entrant s 

coming into the scheme over the next n years 

(1.4.3). Note that PVS(t,0) = PVS(t) 

= e
Y (1- l/a

ml
) (2.3.2.1) or (1+i)(1- 1/affil ) 

( 3. 3 ) 

In Chapter 1, retirement age. 

r = (1+i) (NC-B+AL/a iiil ) 

= S·PVB/PVS-B (1.4.1) 

In Chapter 3, 

Actuarial liability w.r. to retired members = 

present ualue of future benefits (2.2) 

RAL ( t) \·men ,B ( t) = ~ f or all t (2. 2 ) 

Salary of one actiue member at time 0 

Value of m payments starting at age H, 

accumulated with interest and suruivorship in 

service to the end of the m-th year 
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s(t),s(t) 

S(t) 

u 

u (t ) 

U (t ) 

UC 

UL(t) 

Equi va lent s of and ,·men ra tes of 

return are random (5.3.1 and 5.5.1) 

Accumulated tJalue, at time t, of at-year 

annuity-certain 

beginning of the 

Payroll at time t 

= l+i 

= 1+i(t) 

Unamortized part 

liability (1.4.1) 

"Ii t h 

year 

of 

payments made at the 

(resp. continuously) 

the initial unfunded 

Unit Credit cost method 

= AL(t)-F(t) = unfunded liability 

v = Ev(t) 

v(t) = 1/(1+i(t» 

W Wiener process. See 4.2 and Appendix 4.1 

Z(t) Sum of forces of interest up to time t (5.6) 

0.6 ABOUT "INFLATION" AND "REAL TERMS" 

The only type of inf lat ion considered in this text 

will be inflation on salaries. 

The analysis of Chapters 1 to 4 refers to 

final-salary schemes and, accordingly, all monetary values 

relate, directly Dr indirectly, to the rate at \·1hich 

auerage salaries grow from year to year. .As it is the 

evolution of these "actual" (Dr "nominal") monetary t.ralues 

\'Ih i chi sst u die d , i tis rna the rna tic a I 1 Y use f u 1 t 0 we r k wit h 

"de-inflated" monetary ~.ralues, be called 

"real-term" values. .As is described in Sections 0.4, 

2.3.1 and 2.4.1, this is done by dividing actual amounts 

at time t by the index number 

t 
exp[ E ~(k)] 

k=1 
or 

t 
exp[/ ~(s)ds]. 

o 

Inc 0 n seq u en c e , " g r 0 "It h 1 n rea 1 t e r m s .. ~ .. , ill me a n 

gro,·rth at a rate superior to the rate of increase of 
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salaries. This explains the importance of the quantity 

"t(t) = ry{t) - ~(t) 

= rate of return on assets 
- rate of increase of salaries 

= "real rate of return". 

The expressions "real terms" and "real rate of 

return" \-li 11 thus have meanings sl ight ly different from 

the ones they have in economics. In particular, no 

re f e rene e i s rna d e top r 1 C e in £ 1 a t ion 0 r tot he ret ail 

price index. 
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CHAPTER 1 

ACTUARIAL COST METHODS: 

CLASSICAL THEORY 

1.1 INTRODUCTION 

The main purpose of the first chapter is to give an 

account of actuarial cost methods, as background to the 

second chapter. This is done in Section 1.3. The 

and description 

style, and 

Tro\'mr i dge 

is chiefly North American content 

f 0 1 1 0 \-1S ( i n decreasing order 0 f import ance ) 

and Anderson (1985). (1952), Winklevoss (1977) 

British methods are briefly mentioned, following Colbran 

(1982) and, more importantly, Turner et al (1984). 

Rather than pro1Jiding an exhaustil.Je study of 

actuarial cost methods, Section 1.3 endeauours to give an 

insight into the funct ioning of the most common ones. 

Gains and losses are not discussed (see Chapter 2), and 

only retirement benefits are considered; in any case, 

there is no "accepted" or "standard" way of handling 

benef its other than ret irement when app lying anyone of 

the cost methods (in this respect, see Chapter 11 of 

Winkleuoss (1977) and Chapter 4 of Anderson (1985)). 

Furthermore, the presentation specifically refers to 

defined benefit schemes, ,·mere benefits are linked to 

final salary. 

The remainder of Chapter 1 is delJoted to a certain 

number of theoret i ca I prob lems connected "Ii th pens Ion 

funding. Section 1.4 treats a particular family of cost 

methods of the aggregate type. Three points are studied. 

The first one is the question of identifying the limiting 

fund levels and contribution rates that this family of 

methods lead to, \-men they are repeatedly applied to a 

stationary population. The second one concerns the effect 

of introducing new entrants into the ,'aluation basis; 

,·m i 1 e a I me stu n h ear d 0 fin Nor t h A me ric a , new en t ran t s 
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assumpt ions are indeed a feature of the "Discont inuance" 

or "Control" methods used in Great Britain. The problem 

1 s t rea ted ma the ma tic all y J ,-Th i c h 0 feD u r s e me an s t hat 

sel.lera 1 simp 1 i fy ing a ssumpt ions haue to be made. The 

third topic studied is the influence of the salary 

distribution and of the rate of interest on the "rate of 

conl.1ergence" of F(t) to its limit F( .... ). 

Section 1.5 is an attempt at comparing the different 

actuarial cost methods, \-lith the help of mathematics 

instead of numerical simulations. There is no shortage of 

numerical comparisons in the literature; consider, among 

others, Colbran (1982), McGill (1979), McLeish (1983), and 

the notable mass of simulation results especially 

displayed in 

mathemat ical 

Winkle\loss (1977). On the other hand, truly 

compar i sons of actuar ia I cost methods are 

scarce: Tro~mridge (1952) 

\,lh i leW i nk I e vo s s ( 1 977 ) 

interesting relationships 

is probably the best example, 

also does indicate some 

yet without proving them. 

Section 

some of 

1.5 contains proofs of general ized 

the claims made by these t,·.10 authors; 

is closer to 

uersions of 

as regards 

\'mat Picot methods, hO\-Jle\1er, thi s sect ion 

( 1976) and Hickman (1968) hal.1e done in related though 

slightly different contexts. A numerical i llustrat ion 

follows the mathematical analysis. 

Section 1.6 discusses the l.1alidity of some of the 

results prol,.Jed in 1.4 and 1.5, '-1hen one of the major 

assumptions a single entry age into the scheme IS 

disposed of. 

Wlile in 1.3 the methods are described assumIng 

yearly valuations and a "discrete" population, the rest of 

the chapter supposes continuously performed \laluations and 

a continuous age distribution. This simplifies some of 

t he proof s, and in my \Ji ew makes t he theory more elegant. 

H 0 '-1 sal a r y s c a I e s are de a 1 t wit his e K pIa i ned i n 

1.2.1, and the model population and scheme are set forth 

In 1.2.2. 
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1.2 PRELIMINARIES 

1 . 2. 1 Promotional Salary Scales 

In this chapter, no explicit reference will be made 

to salary scales. The reason is simple: as far as the 

completely deterministic situation is concerned, the 

salary scale and the survival f unct ion.e can be lumped 
x 

together to form a new function e
S 

H' 
without causing any 

loss in generality. 

Let me explain the last statement. Cons ider the 

present value of the retirement benefits an indilJidual now 

aged a \"lill receIve starting at age r. Let 5 be hi s 

current salary and 55(·) the salary scale (eHcluding 

inflation). Also let Y] and f3 be the nominal rate of 

return and the rate of inflation on salaries, 

respect il..'ely. 1ft he ben e fit for mu 1 a i s 100c'l. 0 f fin a I 

salary, 

Present ,-'a I ue of ret irement benef its 

= c.s.exp[~(r-a)](55(r)/55(a))r_alaa 

= c.s.exp[(f3-Y]}(r-a)](5S(r)/S5(a))(er/~a)ar 

= c.s.eHp[(~-Y])(r-a)](es/es)a r a r 

,.mere .e s = e • 55 ( x ) 
H H 

= c·5·eHp[~(r-a)] r-ala: . 

In the last 15 computed using the 

.. sa I ary- s urv i '-fa I " 

expression r-ala: 

function e
S 

(onlY 
H 

in deferment, i.e. up 

to age r). 

This is why one may find, in \"lhat follo,"ls, phrases 

1 ike " if J1 x 
is smaller than zero", which usually do not 

make much sense, but do have a meaning if S5(x) increases 

quickly enough. A san e H a mp 1 e , Col bra n (1 98 2) use s for 

his numerical illustration a "flat" salary distribution 
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(i.e. total salaries at age H are equal for all x). If 

one believes that this state of affairs is to persist in 

the future, then it could equivalently be said that 
s 

11 = 0 x for all H. One could even envisage a situation 

s 
\-,here 11 < 0 at all ages, in other t,'lOrds that decrements x 

are more than offset by salary increases. 

The funct ion 11: \-,i 11 therefore not be assumed of any 

shape \-rna t soever. The superscr i pt .. s" \·,i 11 be dropped, 
5 5 for clarity, from p and t . 
H H 

This kind of simplification t,'lOuld evidently not be 

po s sib lei f rand 0 m de v i a t ion sin me r tal i t Y 0 r ~ .. , i t hd r a wa 1 s 

were considered. 

Thus, to .. lO\-1er Il
x

" .."i 11 mean any comb ina t ion of 

(i) decreasing the death rate 

(ii) decreasing the withdra..,~l rate 

(iii) making the salary scale steeper at age H. 

1.2.2 Model Population and Scheme 

The basic model populat ion is the same as the one 

adop t ed by Tro\·mr i dge (1952): it is stationary from the 

start, and net,'1 entrants age a come into the scheme at rate 

.e per year; 
a 

hO\'J!e\7er, severa 1 comment s \·,i 11 be made 

concerning the case .."here the initial population 1S not 

stationary. 

The benefits are b times years in serl.Jice times final 

sa I ary, in the form of astra ight life annui ty. At any 

time t, all ne.." entrants earn a salary equal to s·exp(tJt), 

increasing at rate f3 till they retire. Both T'J (the 

continuous rate of return on the fund's assets) and pare 

constants. In the discrete case, salaries are assumed to 

be paid in full at the beginning of the year. Benefits In 

payment increase at rate ~, not necessarily equal to /3. 
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Remark 1.1. In the discrete case there is a minor 

technical difficulty with the calculation of the benefit 

at ret irement. A member ha'ving entered at age a = 30 on 

January 1, 1432 retired at r = 65 on January 1 1467, if 

still in service. As salaries are assumed to be paid at 

the beginning of the year, this member's final salary ~ .. 1a.S 

paid on January 1466. Hence the pension would have been 

b(r-a).exp[~(r-a-l)].initial salary. 

To make the formulas less cumbersome (and more 

similar to their continuous counterparts) I \olill suppose 

the pension to ha\Je been increased \'1i th an extra year's 

inflation, I.e. that 

pension = b(r-a)exp[~(r-a)]·initial salary. 

1 .2. 3 Terminology 

Nomenclature is a problem in the pension \O~rld. 

Several different terminologies have been proposed for the 

actuarial cost methods, but I "lill retain the "old" one 

used by Trot,'1bridge (1952), since it apparently still is 

the one most widely understood by practitioners. 

1.3 DESCRIPTION OF TRADITIONAL METHODS 

1.3.1 Unit Credit 

1.3.1.1 Description 

Trowbridge (1952) writes (p.22): 

Unit credit funding is based on the 
principle that the pension to be provided at 
ret ire me n tag e \01 ill bed i \' ide din t 0 a s ma n y 
"units" as there are active membership years, 
"Iith one unit assigned to each year. The normal 
cost as to any individual pension in any year 
becomes the cost to fully fund on a single 
premium basis the unit assigned to that year. 
The accrued liability at any time is the present 
value of all units of pension assigned to prior 
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years. Under this method of funding particularly 
the accrued liability is often referred to as the 
"past ser\Jice" liability. 

Whi Ie there are theoret ically no restrict ions as to 

\'mat these "uni ts" should be, I \,Ii 11 describe the lJersion 

of the method \'mich is most popular in practice. Here one 

unit is defined as the projected benefit at retirement 

divided by the number of actil.7e years before retirement 

(this is the so-called "Projected Unit Credit" method). 

For each of the.e ne\', members entering the scheme at 
a 

time t, one unit is 

s·eKp(~t) • eKp[~(r-a)] • b • 

earnings 
at time t 

inflation on 
earnings till 
age r 

• 

projected benefit 

1 

(r-a) 

di\dde by 
number of active 
membership years 

(r-a) 

years of 
service at 
age r 

• 

Hence the normal cost at time t with respect to each of 

these new entrants IS 

NC(a,t) = 
The follo ... ,ing year~ the normal cost ~",ith respect to each 

menmer aged a+l will be 

NC(a+l,t+l) = sb eKp[13(t+r-a)]·r_(a+l)l aa+l 

= sb.eKp[~«t+l)+r-(a+l))]·r_(a+l) liia + 1 · 
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It can be seen that for any x, a ~ x ~ r-1, 

( 1 • 1 ) NC(x,t) = 

The actuarial liability is the "mathematical reserve" 

(in the life insurance sense) built up by these normal 

cos t s , ira I I ass urnp t ion s are e x act I y rea liz e d . Con sid e r 

the same.e ne\Ol entrants at time t. The accumulated value a 

of the normal costs (taking surl..Jivorship in service into 

account) is, at time t
1 = t+x-a (i.e. \omen the remaining 

members reach age x): 

= 

= 

x-a-1 
I .ea+kNC(a+k, t+k) exp[ry(x-a-k)] 

k=0 

x-a-l 
s·b· I .ea+kexp[~(t+r-a)]. 

k=0 

r-(a+k) laa+kexP [1J(H-a-k)] 

x-a-1 
s·b· I .e r eHp[~(t+r-a)] eHp[-1J(r-x)]i r k=0 

If one lets x=r, the preceding formula says that 

benefits are fully funded by the time of retirement. 

(This also shows that the prospective value of the 

actuarial liability - or "mathematical reserue" - is equal 

to the above calculated retrospective value.) 

In practice one deFines the actuarial liability for a 

member age x as 

( 1 • 2 ) iiL(x,t) = 

since it is quite improbable that the normal costs would 

ha,-Je been paid on the same basis in previous years as the 

one ado pte d a t time t (I ike \0, i t h a rna the rna tic a Ire s e r 'Je i n 

life insurance). 
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Compare AL(x,t) in (1.2) \-lith NC(x,t) in (1.1). One 

notices that the actuarial liability is the amount 

required to fund the number of units allocated to date 

(x-a of them) on a single premium basis. That is to say 

( 1 . 3) 

AL(x,t)/NC(x,t) = x-a, a ~ x ~ r-l. 

1'10reo~.1er, re\'1r i t i ng (1.2) as 

AL(x,t) = Stbtexp[tJ(t+r-x)](r-a) Iii 
r-x x t 

Present value of future 
benefits 

r-a 

shows the actuarial liability at each age before 

retirement to be equal to a pro rata fraction (x-a)/(r-a) 

of the pre sent l.'a I ue of ret irement benef its. 

With regard to retired members, the actuarial 

liability is defined as the present value of benefits, and 

there is no normal cost. 

In practice, the ot"Jerall contribution is found by 

adding 

(i) the sum of the indi\,idual normal costs NC(x,t), and 

(ii) a payment to\'7ards the liquidation of the "unfunded 

liability". 

The unfunded liability is the excess of the actuarial 

liability o\'er the actual fund, i.e. 

UL(t) = AL ( t) - F ( t ) • 

The way in which the unfunded liability is dealt with 

over the years depends on \·1hether it ar i ses from benef it 

i mprot.1emen t s , 

legislation. 

gains or losses, etc. and on relevant 

It is worth emphasizing that the Unit Credit method 

(like the follo\-ling t\·lO, the Entry Age Normal and the 

Individual Leuel Premium) is an individual method. By 

this is meant that normal costs and actuarial liabilities 

are estimated separately for each member and then summed 

up, to yield, finally, an overall cost that is the sum of 
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(i) and (ii) above. Aggregate-type methods do not rely on 

individual costs and liabilities directly but solely on 

aggregate values (see Sections 1.3.4 to 1.3.6). 

I \,lill no \,1 ShO\,l that the Unit Credit method "works" 

in the aggregate, i.e. that if actuarial assumptions are 

exactly realized and normal costs paid ~men due, then each 

member's benefits are funded by the time he reaches 

retirement age. 

Assuming the model population, the derivation of Eq. 

(1.2) clearly implies that 

exp(~)(~ AL(x,t) + ~ NC(K,t)) 
K K 

= ~ l AL (X+l,t+l), a ~ K ~ r-l. K+ 

A similar formula holds for retirees; if x ~ r 

AL(x,t) = present value of future benefits 

= B(r,t+r-x) • exp[\,(x-r)] 

pension 
accrued at 
age r 

post-retirement 
increase 

and then 

= 

= 

= 

eKp(ry)~ [AL(x,t) x 

-benefits paid to a member age x in year t] 

exp(ry)~ {AL(x,t)-S(r,t+r-x)exp[\,(x-r)]} 
x 

t B[r,(t+l)+r-(x+l)]eKP[\'(K+l-r)]+a(ry+-l\') 
x+l K 

~ lAL(K+l,t+l). x+ 

Therefore 
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exp(f1)(AL(t) + He(t) - B ( t ) ) 

"" r-1 "" = ·exp(FJ)( E t AL(x,t) + E ~ NC(x,t) E t B(x,t)) x x x x=a x=a K=r 

"" = E t AL(x,t+1) 
x=a+1 x 

= AL(t+1), since AL(a,t+l) = 0. 

This prot.Jes that when all assumptions work out in 

pract ice, pay ing the norma 1 cos t s ~ .. ,hen due \-li 11 prov ide 

for all retirement benefits and build up a fund that 

remains equal to the actuarial liability. 

1.3.1.2 Ultimate Values 

The model populat ion has a constant rate of ne\'l 

entrants t . 
a 

Benefits, as a fraction of final salary, do 

not change otJer time. It IS then clear from the 

description of the Unit Credit method that as soon as the 

initial unfunded liability has been amortized and the 

population become stationary (after at most (')-a years), 

the following formulae hold: 

C(t) = C(t).exp{-~t) 

r-l 
= 

= 

sb E tx eKp[~(r-x)]·r_xl~K 
x=a 

sb t a • a(Y) 
r r r-al 

F(t) = F(t) exp(-~t) 

= AL(t) exp(-~t) 

= 
r-1 

sb{ E 
K=a 

+ 
K=r 
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and 

= 

= 

1.3.2 Entry Age Normal 

1.3.2.1 Description 

This method, as its title implies, 
v i sua Ii zes the norma I cost for any g 1 ~.Jen emp loyee 
as the level payment (or level percentage of pay) 
necessary to fund the benef it over the \'lOrk ing 
lifetime of such employee (Trowbridge (1952), 
p.23). 

For a member age a at time t , 

Present l.Ja 1 ue of retirement benefits 

= stexp(f3t ) • exp[,B(r-a)] • b(r-a). Iii r-a a 

current increasing 
earnings earnings 

to age r 

projected retirement benefit 

Present value of future earnings 

r-1 
stexp(,Bt) E exp[-~(x-a)] • exp[,B(x-a)] • ~ I~ 

x a 
x=a 

interest 
discount 

increase in 
earnings 

so that the level fraction of earnings required to fund 

the benefits is 

b(r-a).exp[,B(r-a)]·r_alaa/a!~;_al· 

Thus the normal cost for year (t,t+l) is 

Ne(t) = 
r-l 

E ~ .sb(r-a) exp[,B(t+r-a)]· ,a /a(Y~ x r-a a a:r-al 
x=a 

Valued prospectively, the actuarial liability is 
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QL = Present value of future benefits w.r. to 
active and retired members 

In 

-Present value of future normal costs w.r. 
to active members. 

respect of retired members, the actuarial 

liability is the present value of the remaining pension 

payments; for an active member age x at time t, it is 

equal to 

sb(r-a)exp[p(t+r-x)]+r_xlax 

- sb(r-a)exp[~(t+r-a)]+(r_alaa/a!~:_al ) 
-- ( Y ) 

+ a . 
x: r-xl 

This expression can be simplified, (dropping the 

factor sb exp(~t)(r-a) for the time being): 

exp[p(r-x)]r_xlax - exp[~(r-a)](r_alaa/a~~:_al )a~~:_xl 

= eHP[~(r-x)]r_xlax 

X{1-
[eHP[-y(r-a)](tr/~a)ara~~:_xl ] 

} 

[ a(Y) .exp[-Y(r-x)](t Ii! )a ] 
a:r-al r x r 

= 

x[a(Y~ -exp[-y(x-a)](t I€ )a(Y~ ] a:r-al x a x:r-xl 

( 1 . 4 ) = 

Thus we define 

if x 5 r-l. It can be seen that 

AL(x,t)/NC(x,t) 

and that 
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i[(x,t) = (Present value of future benefits) 

x (a(Y) /a(Y) ) 
a: x -al a: r -al ' 

a for mu I a s i mil art a Eq. (1. 3 ) . 

So, under both the Uni t Cred i t and the Entry Age 

Normal methods, AL(x,t) increases from 0 at age a to 

B{r,t).a at age r. 
r 

It is also true, as in the case of the Unit Credit 

method, that when all assumptions are exactly realized 

exp(~)(AL(t) + Ne(t) - B(t) = AL{t+l). 

1.3.2.2 Ultimate Values 

After the initial unfunded liability has been paid 

off and the population become stationary 

and 

( 1 . 5 ) 

F(t) = exp(-~t)F(t) 

~ eHp[n(r-x)](r-a) a a(Y~a{Y) 
H ~ r-xl H a:x-af a:r-al 

r-l 
= E sb 

x=a 

~ 

+ E 
K=r 

C(t) = eKp(-f3 t )NC(t) 

= 

= 

= 

r-l 
E 

K=a 

K=a 

sb(r-a)~ a eKP[-Y(r-a)]a(0~ /a(~~ r r a:r-al a:r-al 

1.3.3 Individual Level Premium 

1.3.3.1 Description 

This n~thod is closely related to the previous one. 

It "funds the benefits as to any individual from date of 
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entry (or date plan IS established, if later) 

retirement date as a le\1el amount (or as a 

per c e n tag e 0 f pay)" ( Tr 0 \-m rid 9 e (1 95 2 ), p. 24 ) . 

to 

Let the scheme be set up at time 0 and cons ider a 

member age H \-me has, under the terms of the arrangement, 

x-a years of credited service. 

Normal methods, one computes 

When us ing the Entry Age 

= sb(r-a)eHp[~(r-a)] ,a /a(Y~ 
r-a a a:r-a, 

and the "initial actuarial liability" 

EANaL (x t 0) = sb(r-a)exp[~(r-a)] la .a(Y) /a(Y) 
r-x x a:x-ai a:r-ai 

these EANAL (x,0) are summed up for all members \-lith 

d . t d t . d t h t EANj:\L- (0) ( .. t· 1 cre 1 e pas serVIce, an e ou come " = In1 la 

unfunded liability) is amortized o\'er a fixed number of 

years. 

The rationale of the Indi\,idual Le,'el Premium method 

is that in order to ensure tha t the fund \-Ii 11 not go 

negative during the first few years (a possibility in the 

case of small schemes), each member's benefits are funded 

ol.Jer his remaining years in serl.Jice. Consequent 1 y, if 

normal costs are a let.Jel fraction of earnings, 

ILPNC(y,t) 

and 

1LPiiL(y,t) = sb(r-a)exp[D(t+r-y)] la .a(Y~ /a(Y~ 
~ r-y y X:y-HI x:r-HI 

t = y-x. y ~ r-l. 

The normal costs fully fund the member's benefits as 

he reaches age r, and no identifiable initial unfunded 

liability arises. 

The Individual Le,'el Premium method also differs from 

the previous two in the way gains and losses due to salary 

increases are dealt with. 
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To keep things simple, say a member j enters at age a 

at time t=0, with a salary 5(j,0) and no credited service. 

Valuations are performed at times 0 and 1 on the same 

basis. Under both the Individual Level Premium and the 

Entry Age Normal methods, the normal cost at time 0 is 

NC(j,0) = S(j,0)b(r-a)eHp[~(r-a)]. la /a(Y~ 
r-a a a:r-al 

At time 1 the t~~ methods differ: 

EAN: EANN-C-(J",l) and EAN AL-(J",l) n are estimated using 

current data, i.e. 

EANNC (j,l) = §(j,l)b(r-a)eHp[~{r-a)]. ,a /a(Y~ 
r-a a a:r-al 

and 

= 

In practice S(j,l) ~ eHp(~)§(j,0), with the result that a 

gain or loss arises from the unexpected increase in salary 

~§ = §(j,1)-eHp(~)§{j,0). These individual gains or 

losses are subsumed in the ot..1erall actuarial gain or 1055, 

"/hich is amortized in the fashion thought appropriate. 

ILP: The difference here is that the method still 

requires the present ,'alue of normal costs (past and 

future) to equal the present ualue of benefits. Defining 

the norma 1 cos t as EANN- C- ( J" , l) (b ) " I It" t a ot..1e ~Il no perml 

this since the projected benefit has changed. Instead, 

ILP NC {j,l) = S{j,0)eHP(~)b(r-a)eHP[~(r-a)]r_alaa/a!~:_al 

+~Sb{r-a)exp[.B(r-a-l)] lla l/a(Y l) 11 r-a- a+ a+ :r-a-

The first term is "/hat the normal cost ~~uld have 

been had a 11 as sumpt ions worked out, and the second one 
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spreads the unexpected change in projected benefits over 

j's remaining years in ser\7ice. 

It fol10\"s that 

just as 

occurred. 

though 

(This 

= Present value of updated projected 
benefits 

= 

no 

- Present value of future updated 
normal costs 

S(j,0)exp(J3)exp[J3(r-a-l)] lla 1 r-a- a+ 
x a(Y) la(Y) 

a:ll a:r-al 

unexpected change in salary 

can be verif ied in the same ... laY 

( 1 . 4 ), Sec t ion 1. 3 • 2 • 1, \'1a S de r i t.J e d. ) 

had 

Eq. 

Updating normal costs in this fashion (eaCh year) 

imp lies 

1LPiiL(j,t+1) = 
ILP-- ILP--

( AL{j,t) + NC(j,t)) eKp(ry)~ I~ 1 
x x+ 

\"hether or not the sa I ary i ncrea se a ssumpt ion is rea I i zed. 

Finally (Anderson (1985), p.24): 

Thus \'~ see that the indit.7idual 
le'Jel-premium method resembles entry-age-normal 
with entry age defined as the age of hire or age 
at the e f f e c t i '.J e d ate ( wh i c h e '-' e r i s 9 rea t e r ) . 
The difference is that under ILP \'~ take a 
normally large component of the actuarial gain -
a component \.mich is normally negative - out of 
the accrued liability and spread it into the 
future normal costs. Under entry-age-normal, 
t his po r t ion 0 f the 9 a in \'la s simp I y a rna r t i zed i n 
the manner of other gains i.e. over a period 
,."hich mayor may not hat.Je been longer than the 
future \'IOrking lifetime of a particular 
indil,.1idual. 

1.3.3.2 Ultimate values 

It is clear that they are the same as with the Entry 

Age Normal method, SInce after r-a years and in the 

absence of de1..riat ions from actuarial assumpt ions the t ... 10 

methods are identical. 
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1.3.4 Aggregate 

The principle behind the aggregate method is 
that of equating present value of unfunded future 
benefits to present value of future 
contribut ions, "mere the contribut ion per act ive 
life (or per dollar of salary) per year is 
assumed constant. It may seem at first thought 
that the resulting contributions should remain 
le~.Jel from year to year for an initially stable 
population, since the very principle implies 
spreading the value of total benefits levelly 
over future life years. 

This supposition regarding the aggregate 
method is absolutely correct prov ided future ne\"1 
entrants are taken into account, both in valuing 
present value of future benefits and ln 
calculating present value of future active life 
years. (Trowbridge (1952), p.26). 

It", i 11 be 5 ho "m i n 1. 4 • 3 . 2 t hat t his I a s tap pro a c h 

leads to partial funding only (or to no funding at all if 

the initial fund is nil). 

In practice, though, the Aggregate method ignores 

future new entrants. The portion of covered payroll c(t) 

representing the cost of funding the benef its for the 

coming year is 

eft) = 

(Present l..Jalue of future benefits of all members) 
- (Fund at time (t)) 

(Present value of future earnlngs of current members) 

For the model popUlation 

e (t) = 

r-l 
E 5b(r-a)exp [p(t+r-x)]r_xl a x+ 

x=a 
~ tx8(x,t)a~ry-\)-F(t)) 

x=r 
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and the overall cost for year (t,t+1) is 

C(t) = c(t)S(t) = 
r-l 

c (t) r 
H=a 

s~ eHp(.Bt) 
H 

Derivation of ultimate fund values and contribution rates 

is deferred till Section 1.4, for all methods of the 

aggregate type. 

\.,here 

1.3.5 Attained Age Normal 

Total benefits are divided into past service 
and future service benefits eHactly as under unit 
credit funding, and [ ... J there IS complete 
freedom as to the manner in "'lhich the past 
service liability shall be paid off. For future 
ser'Jice benefits, hov1e'Jer, the aggregate method 
is adopted. (Tro .. ·mridge (1952), p.28) 

The overall contribution for year (t,t+1) is 

c(t)tS(t) + P(t) 

c(t) = 

(Present 'Ja 1 ue of future benef its of a 11 members) 
- (Unamortized part of past ser\.ice liability 

+ Fund at time t) 

(Present value of future earnings of 
current members) 

P(t) = Payment towards amortizing the initial 
(past serVice) unfunded liability. 

After the unfunded liability has been completely paid 

off, the method is applied eHactly like the Aggregate. 

Remark 1.2. In pract ice, a nevI layer of unfunded 

I i a b iii t Y i s ere ate d e \' e r y time 
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(i) a significant actuarial assumption is modified 

(ii) benefits are updated. 

For this reason it is very likely that the payments 

P (t) wi 11 be present for a period much longer than the 

initial amortization period. 

1.3.6 Frozen Initial Liability 

This method IS applied in the same way as the 

Attained Age Normal, except that the initial unfunded 

liability is computed using the Entry Age Normal method; 

Remark 1.2 holds verbatim. 

1.3.7 British Methods 

According to Colbran (1982), the n~thods used most in 

the United Kingdom are the Aggregate, Attained Age Normal 

and Di scont inuance Target. Only the last one of these 

(",hich is unkno\·m in North AIDer ica) has not been descr ibed 

.>0 far. Turner et ale (1984) make this method a 1Jariat ion 

of the Unit Credit method, in which a control period (5, 

10 or 20 years usually) is employed. 

Where a control period is used, the Standard 
Contribution Rate [normal cost rate], is found by 
di\riding the present value of all benef its \'lhich 
\,li 11 accrue in the cont ro 1 per i od (ra t her than 
simply in the year following the valuation date) 
by the present value of member's earnings in the 
control period. Thus the notional Standard Fund 
[actuarial liability] at the end of the control 
period is the present value of all benefits 
accrued at that date [ ... ]. 

In order to assume a stable age structure, 
in conjunction with the use of a control period 
an assumption is usually n~de that new entrants 
\'li 11 rep 1 ace current members as they 1 eave 
ser\rice, die or retire. (Turner et ale (1984), 
p. 19) 

A control period can also be used to modify the 

Aggrega te method. (The effect of bringing ne'-1 entrants 

i n tot he \r a I u a t ion bas is, un de r t he A 9 9 reg ate me t ho d , i s 

examined in SectiDn~ 1.4.3 and 1.4.4.) 
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1.3.8 Other Methods 

The follo\,ling three "funding methods" are unimportant 

In the context of funded schemes pro\1iding def ined 

benefits; they are presented solely for the sake of 

completeness. 

1.3.8.1 Initial Funding 

Each ne\,1 entrant's benefits are paid up in full at 

time of entry. The model population gives 

C(t) = Cost at time t 

= 

= 

= 

Present value of benefits of the 
~ members entering at time t 

a 

~ .5b(r-a)exp[~(t+r-a)] la a r-a a 

~ 5b(r-a)exp[~t-Y{r-a)]a . 
r r 

One could define 

i[{H,t) = Present value of benefits of a 
member age x at time t 

= 5b(r-a)exp[~(t+r-x)]r_HlaH 

(€ /~ )5b(r-a)eHp(~t)eHp[-Y{r-H)]a r x r = 

= eHp[~(H-a)]E[t-{H-a)]/e 
H 

i . e. the fund on hand \'li th respect to members age x (~ r) 

is merely the contribution made x-a years ago, increased 

with interest. 

1.3.8.2 Terminal Funding 

Benefits are funded in their totality \'men members 

retire. The model population implies 

eft) = ~ 5b(r-a)eHp(~t)a , 
r r 

and, if one insists on defining an actuarial liability, 

AL()(,t) = 0, '1)( ( r, 
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1.3.8.3 Pay-as-you-go 

There is no funding: be ne fit s are simp 1 y P aid whe n 

due; with the model population 
Ca.' 

B{ t) = L ~ 8{H,t) 
K H=r 

Ca.' 

= L ~K sb(r-a)eHp[~{t+r-H)+\(H-r)] 
H=r 

= 

1.4 AGGREGATE METHODS 

1 . 4. 1 General Remarks 

The rest of Chapter 1 is carried out in cont inuous 

time, taking the model population and scheme for granted. 

Furthermore, the analysis \,Ii 11 be performed using 

"real-term" monetary \'alues (see Section 0.6). 

The Aggregate, Attained Age Normal, Frozen Initial 

Liability and Aggregate ",ith Ne", Entrants methods (the 

last one is described in 1.4.3 below) all operate in the 

following fashion: 

( 1 • 6 ) 

( 1 . 7 ) 

where 

F' (t ) = ~1F ( t) + C ( t ) 5 ( t) + P ( t) - B ( t ) 

c(t) = [PV8{t)-{F{t)+U(t»]/PVS(t) 

F(t) = fund at time tj 

c(t) = contribution rate, as a fraction of payroll; 

PV8(t), PVS(t) are positive functions, increasing at 
!:~!e /3, i.e. PVS(t) = eHp(~t).PVB, 
PVS(t) = eHp(~t).pVS; 

S(t) = payroll; 

U(t) = Unamortized part of the initial past service 
liability; 
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pet) = rate at which U(t) is being paid off; 

B(t) = rate at which benefits are paid = B·eKp(~t). 

I will now derive the differential equation satisfied 

by the "de-inf lated" fund 

substitute (1.7) into (1.6) 
F(t) = eKp(-~t)F(t). First 

F'(t) = ryF(t) + S(t)PVB(t)JPVS(t) - S(t)F(t)JPVS(t) 

Then 

-S(t)U(t)JPVS(t) + pet) - B(t) 

= (ry-SJPVS)F(t) + exp(~t).S.PVB/PVS 

- exp(~t)B + (P(t)-S.U(t)JPVS). 

F'(t) = exp(-~t)F'(t) - PF(t) 

= (Y-SJPVS)F(t) + (S·PVBJPVS -B) 

+ exp(-flt)(P(t)-S.U(t)JPVS). 

Uith the notation 

a = SJPVS - "'I, 

R = (S·PVBJPVS - E), 

and 

h (t ) = 

\lie fin all y get 

( 1 .8) F' (t) = -aF(t) + R - h(t), 

which means that 
t t 

F(t) = F(0)exp(-at)+ RJexp[-a(t-s)]ds-Jexp[-a(t-s)]h(s}ds. 
o 0 

If 

( i ) a > 0, and 

t 
(ii) lim J exp[-a(t-s)]h(s)ds exists and is denoted by H, 

t-t- 0 

then F(-) exists and is equal to 
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t 
lim [F(0)exp(-at)+R(1-exp(-at))/a -Jexp[-a(t-s)]h(s)ds] 
t~ 0 

= Ria - H. 

Assume 0: ) 0. Obviously H = 0 if U(0) is completely 

paid off in a finite time, and then 

( 1 • 9 ) F(-) = Ria = (S.PVB/PVS-B)/(S/PVS-y). 

Furthermore, 

(1.10) 

c{-) = lim(PVB-F(t)-exp(-~t)U(t))/PV5 
t~ 

= (PVB-F(-))/PVS 

= [PVB(S/PVS-y)-(S.PVB/PVS-B)]/(S-YPVS) 

= (B-YPVB)/(S-YPVS). 

1.4.2 Aggregate, Attained Age Normal and 

Frozen Initial Liability 

Under these three methods 

PVB = Present '.fa 1 ue of benef its of a 11 current members 
at time 0 

( 1 • 11) 

PVS = 

( 1 . 12) 

r 
= 1 sb~ exp[~(r-x)](r-a) ,a dx x r-x x 

a 

r 

Present value of future earnings of act i\'e members 
at time 0 

= 
r 

f S b a-(Y) dx 
~x x:r-xl . 

a 

I first show that a = SIP VS - y > 0 , wh i chi mp 1 i e 5 

that the three methods lead to the same ultimate 

contribution rate and fund level (from Eq. 

Clearly a) 0 if Y $ 0. If Y > 0, then 
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PVS = present value of future earnings of current 
members 

( present value of future earnings of all current 
and future members -= 1 exp(-ryt)S(t) dt 
o 

= Sly 

consequently a is still strictly greater than 0. 

Next, the ultimate contribution under the three 

method s ment ioned abo\Je \IIi 11 be ShO\lffi to be i dent ica 1 to 

the ultimate contribution under the Entry Age Normal 

method. Recall that the latter is 

( 1 . 13) = 5b(r-a)~ a exp[-y(r-a)]a(0) I;(Y) 
r r a:r-ai a:r-aj 

(this is the continuous-time counterpart of Eq. (l.S), 

Section 1.3.2.2). I \llill nO\l1 prO\7e that the expression in 

~q . ( 1 . 10) bo i Is do\·m to ( 1 . 13), \lmen Eq 5 • ( 1 . 11) and 

1.12) are substitited into it. 

( 1 ) 

(2 ) 

r 
1 ~Kexp[~(r-x)]r_xlaxdx 
a 

r 
lA) 6.' 

= f ~xexp[{\-~){x-r)] f exp[(\-ry)(u-K)(~u/~x)] 
r K 

6.' U 

f J t exp[(\-~)(x-r)+(\-ry)(U-K)] dxdu 
u = 

r r 

(changing the order of integration) 
~ u 
1 ~ eKp[{-(\-~)r+(\-ry)u] Jexp[(ry-~)K]dxdu 
r u r = 
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to) 

= f (tu{eHp[(\-~)(u-r)]-eHp[(\-ry)(u-r)]}/Y)du 
r 

la.' 

( 3 ) 8 = sb(r-a)j eHeHp[(\-~)(H-r)] dH 
r 

sb(r-a)t ~(/3-\) 
r r = 

( 4 ) From (1), (2) and (3) (see Eq. (1. 11 ) ) , 

8-YPV8 = sb{r-a).{t ;(/3-\) 
r r 

-[~ ~(ry-~)(l-eHp[-Y(r-a)])+t ~(~-t)_£ a(ry-t)]} 
r r r r r r 

(1.14) 

( 5 ) 

= 

= 

(1.15) = 

( 6 ) 

( 7 ) From (5 ) 

( 8 ) F i na 1 1 Y , 

= 

= 

r r-

f .e 1 eHp[-Y(U-H)]~ It dudH 
}{ U H a H 

r u 
f .e eHp(-yu) f eHp(YH) dHdu u 
a a 

(changing the order of integration) 

-(0) .e (a 
a a: r-ai 

c 
oJ 

and ( 6 ) , 

S-yPVS 

=:: 

= 

= 

r 
5/ ~ dx 

x 
a 

s.e ta(0) 
a a:r-al 

s.f 'a(Y) 
a a: r-al 

( 4 ), (6) and (7) imp 1 y 

5b(r-a).e a(ry-\) exp[-y(r-a)la(0) ta(t) 
r r j a:r-ai a:r-al 

Appendix 1.1 ShO\'IS that the same result holds when 

the pop U 1 a t ion 1 s jus t a 5 y mp tot i cally 5 tat ion a r y . The 

nonclusions are enunciated as 
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Proposition 1.1. Assume 

there is only one entry age; ( i ) 

( i i ) the population is asymptotically stationary; 

and 

( iii ) 

Then 

and 

the initial unfunded liability, 

liquidated \'lithin a finite time. 

= = = 

AGG ( . F aD) = = = 

if any, 1S 

Remark 1.3. Prop. 1.1 is essentially \,lhat is proved 

In Demonstration II of TrO\"bridge (1952), pp. 41-43, 

I?}{cept t ha t Tro\omr i dge "1Drk sin d i sere t e time, and doe s 

not e K p 1 i cit I y ref e r tot he cas e \'lh ere the rat e i n t ere s t 

is smaller than Dr equal to 0. Moreover, the case of an 

initially immature population is only illustrated "lith a 

nuroer i ca I examp 1 e, no proof of con1.1ergence be i ng pro\J i ded. 

Remark 1.4. Steps (1) to (8) ShO\01 the ident i ty of 

u I t i rna t e con t rib uti 0 n s \'lh ate~.1 e r "f rna y be ( 5 rna I Ie r t han, 

equal to, or greater than 0). 
of equilibrium 

When 'I "# 0, the equat ion 

(1.16) o = "fF(-) + C(-) - B 
pro'.'es that the same identity holds for fund let.1els. 

HO ... ·1ever, \-lhen 'I = 0 Eq. (1.16) only says that C{DD) = B, 

and does not imply the identity of fund let.Jels. This 

minor inconvenience is easily o'.Jerconle using the follo''1ing 

continuity argument. 

On the one hand the limiting fund under the aggregate 

me t hod sis (Sec t ion 1. 4. 1 ) 

= (S.PVB/PVS -B)/(S/PVS -'I). 

Because of the definitions of B, S, PVB and PVS, this 

is a continuous function of 'I. 

= 
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\I,h i chi sag a ina con tin uo us fun c t ion 0 f y. Consequently 

= 
has t 0 hoi d \1m en "-/ = 0 , s i nc e t \'10 con tin u 0 us f un c t ion s , 

i dent ica I e~.1erY\·lhere except a t one po int, have to be equa 1 

a t t hat poi n t a s \lie I I . 

Remark 1.5. Eq. (1.10) (Sec t ion 1 . 4. 1 ) for the 

ultimate contribution has an interesting interpretation 

(1.17) 

( i ) 

( i i ) 

Re\lTrite it as 

C(-) = S.(B/~-PVB)/(S/Y-PVS). 

B/y = Present value of all benefits 
to be paid out of the fund 

Sly = Present value of all salaries 
to be earned by current and 
future members. 

Hence the ultimate contribution is a fraction of payroll 

equal to the ratio of 

(i) the present 1.1alue of benefits of all future members, 

excluding current ones, to 

(ii) the present value of all future members' earnings, 

again excluding current ones. 

1.4.3 Aggregate with New Entrants 

Imagine a modification of the Aggregate method, under 

\'lhich e t.1ery valuation includes ne\'1 entrants coming into 

the scheme at rate ~ per year, ouer the next n years. 
a 

More preoisely, define 

PVS(t,n) 

PVS(t,n) 

= Present value of benefits of (a) current 
members and (b) ne .. ', entrants corning into 
the scheme over the next n years, at time tj 

= Present ualue of earnings of (a) currently 
aotit.Je members, and (b) ne\., entrants corning 
into the scheme over the next n years, 
at time t. 

Then define the ollerall contribution at time t as a 

fraction of couered payroll equal to 

c(n,t) = (PVS(t,n)-F(t»/PVS(t,n). 
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Clearly, the model 

PVB(t,n) and PVS(t,n) that 

PVB(t,n) = 
and 

population produces 

increase at rate ~, 

exp(tJt)PVB(n), 

PVS(t,n) = exp(~t)PVS(n), 

\-mere 
r 

values 

i . e. 

( 1 . 18) PVB(n) = J s~ exp[~(r-x)]b(r-a) ,a dx x r-x x a 
t.) 

+ J ~ 8(x)a(ry-t)dX 
x x 

r 
n 

of 

+J sb eKp(-ys)~ eKp[~(r-a)](r-a) ,a ds o a r-a a 

and 

( 1 . 19) PVS(n) = 
a 

n 
+ J sexp(-ys)t a(Y~ ds. o a a:r-al 

Remark 1.6. The third integral 1n (1.18) represents 

the present value of benefits of new entrants coming into 

the scheme at rate.e per year, over the next n years; 
a 

the second integral In (1.19) is the present l.,alue of 

their earnings. 

1.4.3.1 n ( co 

Eq. (1.10) represents c(n,co) (with PVB(n) and PVS(n) 

replacing PVB and PVS, respectively) if 

a(n) = S/PVS(n) - y } 0. 

This 1S the case 1n general, for (refer to steps (5) to 

(8) of Section 1.4.2) 

( 1.20) S-YPVS(n) = s~ a(Y) -yi(Y) .s~ ti(Y) 
a a:r-al ru a a:r-al 

= exp(-Yn)(S-YPVS(0» } 0. 

Therefore the ultimate contribution is 

C(n,-) = S(B-YPVB(n»/(S-YPVS(n». 
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The numerator of this expression can be simplified (refer 

to steps (1) to (4) of Section 1.4.2): 

B-~PVB(n) = B-yPVB - ~.a~Y) sb(r-a)€rexp[-y(r-a)]a
r 

= exp(-yn)(B-~PVB(0». 

Finally, 

(1.21) C(n,-) = S(B-~PVB(n»/(S-~PVS(n» 

= 

= 

Pro,Eosition 1 .2. 

C(n,aD) 

F(n,-) 

S{B-~PVB(0»/(S-~PVS{0» 

E.ANNe • 

Under the hypotheses of 

= AGGC(CID) = EANNC ; 

= AGGF {_) = EANAL . 

Prop. 1 . 1 , 

Remark 1.7. It is not \Jery diff icult to see that 

Proposition 1.2 also holds when new entrants come into the 

crheme at a (\Jarying) rate n(s) s years into the future, 

ot.Jided that salaries are fully projected to retirement 

and that a(n) } 0. Here PVB{n) and PVS(n) are defined as 

before, except that the third integral in Eq. (1.18) 

becomes 

J exp(-ys)n(s)~asexp[~(r-a)]b(r-a)r_alaa ds 
o 

and the second one in Eq. (1.19) -! 5 exp(-~s)n(s) ~a 

It follows easily that 

a(~) ds. 
a:r-al 

and 

CD 

B-YPVB(n) = (B-~PVB(0»(I- ~Jn(s)eHp(-~s)ds) 
o 

-
S-YPVS(n) = (S-~PVS(0»(1-~J n(s)eHp(-~s)ds) 

o 
EAN 

which imply that C(n,-) = HC as before. 
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Remark 1 . 8. Remark 1.5 (Section 1.4.2) still 

applies: the ultimate contribution C(n,-) is a fraction 

of total payroll equal to the ratio of 

(i) the present 1..'alue of all future benefits, excluding 

members present in the t.1aluation, to 

(ii) the present value of future salaries, excluding 

members present in the valuation. 

1.4.3.2 n = - and y) 0 

811 future new entrants are taken into account, and 

thus 

a(oo) = S/PVS(-) - y 

= S/(S/Y) - y 

= 0 

R(-) = S.PVB(-)/PVS(-) - B 

= 0, 

and Eq. ( 1 .8) of Section 1.4. 1 becomes 

(1.22) F'(t) = 0, t 2 0, 

imp 1 Y i ng t ha t F ( t) :: F ( 0), i . e . F(t) = exp(f3t)F(0). In 

"lOrds including all future ne~ .. , entrants in the valuation 

an~unts to no funding at all (in real terms). In 

particular, if F(0) = 0, the method is equivalent to 

Pay-as-you-go. 

Remark 1.9. Eq. (1.22) took for granted that no 

i nit i a 1 un f un d e d I i a b iIi t Y "Ta S pre sen tat t = 0 ; 

resul t \'lOuld be the same had there been one; 

but the 

after its 

amortization, the fund "1Quld stop gro\-1ing in real terms. 

1.4.4 The Parameter a 

Reca 11 that 

( 1 . 8 ) F' (t ) = -aF(t) + R - h(t). 

Assume u: ) 0. After the initial unfunded liability has 

been taken care of, 
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F' (t ) = a(R/a-F(t)) 

= a(F(-) - F(t)); 

in consequence, a entirely determines the rate 

any difference F(OD)-F(t) is reduced o\'er time. 

the justification for the remainder of Section 

ana 1 ys i s of t he dependence of a upon t he rea 1 

return 'I, function € , 
H 

on the survival and 

inclusion of new entrants in the valuation basis. 

1.4.4.1 :Ho Ne~-I Entrant s 

1 . q • q . 1 . 1 Effect of '" 

at ,-m i ch 

This is 

1 . 4 : an 

rate of 

on the 

Proposition 1.3. a is a decreasing (resp. strictly 

decreasing) function of if g(H) = e 
x: r - xl 

is a 

decreasing (resp. strictly decreasing) function of x. 
+ 

One may intuitively believe that e x: r- xl is a 

decreasing function of x, but this IS not true; In 

particular, the inclusion of \-1 i t h d r a \qa 1 s and of a 

promotional salary scale can make g(x) increase over part 

of the intergal [a,r]. 

The proof of Prop. 1.3 is deferred till af t er Prop. 

1.4 and Lemma 1.1. 

Proposition 1.4 . It is sufficient in order for g(x) 
• 

= e x : r - xl 
to be strictly decreasing that either 

( i ) .:. 0 'V'H E [a, r ] , or 

(ii) I1x be non-decreasing for K E [a,r] . 

( i ) 

( i i ) 

Proof. • 
( d/dxie =----::1 

I x:r-xi 
• = -1+ 11 e "'x x:r-xl 

• 
Obviously, II ~ 0 ~ (d/dx)e ~ {0 "'x x:r-xi 

If 11 is increasing, 
x 

-:: I-t x 

then for any x such that 

r-x u 

J exp(-f 11 d s ) du 
0 0 

x+s 

r-x u 

J eHp(-J I-t ds )du 
0 0 

x 

= 1- exp[-~ (r-x)] 
x 
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• 
(d/dx)e x : r _

xl 
= • -1 + f.1 e 

x x:r-xl 

( -exp[-f.1x (r-x)] < 0. 0 

Lemma 1 . 1 . (Apostol (1974), p.177; 

Assume that m( x) IS increasing, and that 

b b b 
J fdm, f gdm and J fgdm 
a a a 

each exist in the Riemann sense. Then 
b b b b 
1 dm· f fgdm -:: f fdm· J gdm 
a a a a 

if f is increasing and g decreasing. The reverse 

inequality holds if f and g are both increasing (or both 

decreasing). 

Proof. Let f be increasing, g decreasing; the other 

cases are similar. Then 

1 b b 
2 f f (f(y)-f(x»(g(y)-g{x»dm(y)dm(x) 

a a 
b b b 

= 1 fgdm - 1 fdm·f gdm 
a a a 

( s t ra i ght for\'lard expans ion of the 1 ef t hand side of the 

equation). Since 

(f(Y)-f(x»(g(y)-g(x» -:: 0 

for all x,y, the result follows. 0 

Note that if there exist t\'1O subintervals of positive 

m-measure [a,b] such that f is strictly increasing 

in If and g strictly decreasing 

rep I aced \'Ii th .. ( .. in the lemma 

apply for the other cases). 

1 n I , then .. S" can be 
g 

(similar modifications 

Proof of Prop. 1.3. I now show that da/dY -:: 0 (or < 

0) under the conditions stated. 

From step (7) of the proof of Prop. 1.1 (St:!ct ion 

1.4.2), 

(1.23) a = S/PVS-y dx. 
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Transform the denominator as follows: 
r 
J t ;('1) dx 

K K: r-KI a 
r r 

= J ~ f eKp[-Y(U-K)](t It )dudx 
a K K U K 
r-a r-a-K 

= J 
o 

t a+H J exp{-yu)(t I~ )dudx a+u+x a+x o 
r-a r-a-u 

= f f tu+a+xdx exp(-yu)du 
o 0 

(changing the order of integration) 
r 

= J 
a 
r 

= J 
a 

... mere 

g(u) = 

r-u 
f 
0 

g(u) 

-1 
€ 

u 

~ dH exp[-y(u-a)]du u+x 

€ eKp[-y(u-a)]du u 

r-u 
f 
o 

~ dx u+x = 

Consequently, 

(da/d'l) = 

r 
X{-J(H-a)€ exp[-Y(H-a)]dH 

H 
a 

r 

r 

·f g(H) ~ eHp[-Y(H-a)]dH x a 

+J txexp[-y(x-a)]dx 
a 

r 

• 
e 

·f (x-a)€xg(H)exp[-y(x-a)]dH}. 

Let 

a 
x 

m(x) = f € eHp[-Y(u-a)]du. 
u 

a 
m(H) 

u: r-ul 

is strictly 

increasing, which means that the sIgn of da/dy IS the same 

as that of 
r r r r 

{ } = 1 dm f (H-a)g(H)dm - 1 (x-a)dm J g(x)dm. 
a a a a 
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Accord i ng to Lemma 
- (0) • 
a - e 
x:r-xl - x:r-xl 

1.1, { } ~ 0 (resp. < 0) if g(x) = 

is decreasing (resp. strictly 

decreasing). [] 

1.4.4.1.2 Effect of Pre-Retirement Decrements 

For the sake of tractability assume Jl == Ii for all ]( 
}{ 

< r. When ~ t 0, 

As before, 

Hence 

(da/dli) = 

-(Ii) 
d ar=a] 

dll{-(Jt+Y)) = 
ar-al 

[ ] = 

a = 

r 
S = 5 J.e dx 

}{ 
a 

r 
= s ~ f exp(-lix)dx 

a 
a 

s.e -(Ii) = a 
a r-al 
r -(Y) P'JS = 5 1 t a dx x x:r-xl a 

s.e (~(J.l) _ -(J.l+Y) = a 
a r-al r-al 

-/ H eHp(-IiH)dH f exp[-(Ii+Y)H]dH 

+ I H exp[-(Ii+Y)x]dH f eHp(-px)dH 

)/Y. 

= / H eHp(-YH)dm /dm - JHdm jeHp{-YH)dm 

H 

,.,he rem ( H) = f e H p ( -/1 s ) d s . 
o 

ss 
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If y } 0, Lemma 1.1 implies [] {0 and da/d~} 0. 

If "f ( 0, then Lemma 1.1 implies [ ] > 0 and, 5 till, 

da/df.l ) 0. 

Remark 1.10. As to the case "/ = 0, one can on I y 

assert that da/dll } 0. (da/dll ) 0, "1Y ~ 0, and is 

continuous w.r. to Y ~ da/d~ ~ 0 at y = 0.) 

Though the calculat ions ab01Je do not prove that 1n 

general any increase in 11 increases a, 
x 

they make thi s 

claim plausible. It results that of t~m populations, the 

one with the higher f.l 's 
H 

~li 11 produce fund values 

con l.7e r gin g f as t e r tot he u 1 t i rna t e fund val ue, 0 the r t h i n g s 

being equal. 

1.4.4.1.3 Asymptotic values of a 

There rna y be some t heore t i ca 1 in t ere s tin kno\'1i ng the 

limiting behaviour of a as Y ~ ±w. 

of the Prop. 1.1) 

Firstly (from step (7) 

since 

I im a 
")f~-

= 

= 

= 
~ 

;(Y) /(S-5~ ;(Y) ) 
a:r-al a a:r-al 

as Y -+ CD. Secondly 

asymptotically equal to -"f as Y ~ --, because 

lim (S/PVS-"f)/"f = lim S/(Y.PVS) -1 
Y~-- "f~--

= -1. 

1.4.4.2 Aggregate with New Entrants 

a 1S 

As explained at the beginning of Section 1.4.3, 

assume that new entrants coming into the scheme at rate t a 

per year for the neHt n years, n ( CD, are included in the 

... ' a I u a t ion bas is. Recall that a(0), PVB(0) and PVS(0) are 

the same as a, PV8 and PVS respectively, and correspond to 

the usual Aggregate method. 
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1.4.4.2.1 Effect of n 

Obv ious 1 Y PlJS (n) increa ses ~'li th n, and so a (n) = 

S/PVS(n)-y decreases as n increases. I not he r "10 r d s , 

i.ntroducing more ne'\'] entrants into the l.1aluation basis 

SlO"015 do\'m con~.'ergence of F(t) to its limit, ~·1hatever ry, f3 

or Ji
K 

may be. 

1.4.4.2.2 Effect of "f 

PVS(n) = + ~h a-(Y) ta-("f) 
PVS -~a a:r-al ru 

= PVS + aPVS· ~*r ) 
(from step (7) of Section 1.4.2) 

= PVS(l+ aa~Y)) 

a(n) = S/PVS(n)-Y 

= (S-YPVS(n))/PVS{n) 

(l.24) = exp(-Yn)a/{l+aa{~)) 

(from (1.20), Section 1.4.3.1). 

I T his i s a no t he r "Ia Y a f s h a \'1 i ng a ( n ) ) 0 \·me n n ( GO». , 

Proposition 1.5. If dcr/d"f ~ 0, then dcr(n)/dY ( 0. 

do: (n) au(n) oa(n) acr 
Proof. = + t-

dY O"f oa O"f 

( i ) Fix cr. From Eq. (1.24), 

ocr(n) 
= OY 

-/Y) -2 -(Y)) ( ) 2;a-(Y),~ )] 
(l+aa~ ) [-neKp(-Yn)a(1+aa~ -exp -Yn a ~ am luY 

[ ] 
( y ) - { "f \ 

= -aeKP(-Yn)[n+a(n~i1l +(oanJ'lay))J 

( 0, 

since 
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= 

n 
= f (n-K)eKp(-YK)dK 

o 
) 0. 

Accordingly, oa(n)/oy ( 0. 

(ii) oa(n)/oa 

( -(Y) -2 -('I) -('I) = 1+ aanJ ) [eKP(-yn)(l+aa iil )-aexp(-Yn)a
iil 

] 

[] = eKp(-Yn) + aexp(-Yn)~~Y) - aexp(-Yn)~~Y) 

= exp (-'1n) ) 0. 

Therefore oa(n)/oy) 0. 

Finally 

oa(n)/oY = oa(n)/oY + (oa(n)/oa)+(oa/oy) 
( 0 

( 0. 0 

) 0 

Proposition 1.6 . a(n) 1S strictly decreasing w.r to 
• 

y if g (K) = e 
K: r-x\ is a decreasing function of K. 

1.4.4.2.3 Effect of Pre-retirement Decrements 

Let P
K 

~ p, as in 1.4.4.1.2. It is easy to see that 

d a / d P } 0 ( res p . ::- 0 ) i mp lie s d a ( n ) / d P } 0 ( res p . ~ 0) 

(differentiate each side of Eq. (1.24». 

1.4.4.2.4 Asymptotic Values of a(n) 

If y) 0, t hen a (n) ~ 0 as n ~ aD, from Eq. (1. 24) . 

If y ( 0, then PVS(n) ~ .. and a(n) ~ -Yo Consequently 

lim a(n) = maK(-Y,0). 
n--taD 

From 1. 4. 4. 1 . 3, a ha s a fin it eli mi t as Y ~ -. 

Hence (again from Eq. (1.24», a(n) -+ 0 as Y -+ GD, for any 

n ) 0. 

As \-men n = 0, it 15 easy to see that a(n)/Y tends to 

-1 as Y ~ -aD 

58 



Section 1.4 

1.4.4.3 Numerical values of a(n) 

Table 1.1 sho\,1s numer i ca I l..ra I ue s of a (n), comput ed 

on different bases. The real rate of return is varied 

from -.10 to +.10, the column Y = <» being supplied to 

ill us t rat e h 0 \,1 1 itt lea ( n ) t.7 a r i e s \'me n Y bee 0 me s t.J e r y 

large. 

RO\,l (1) tells that if the sur"il..'al 

that of ELT 13, and if y = .01, then 

F' (t) = .0565(F(-)-F(t)); 

function ~ 
x 

is 

in other \-lOrds at any time t the method steers the fund 

1 e t.' e 1 t 0 wa r d s F ( 00 ) a tar ate e qua Ito the d iff ere n c e 

F(oo)-F(t) multiplied by a = .0565. 

It is et.rident that in all cases a(n) decreases as Y 

1 ncr e as e s, ~ .. ,h ate" ern 0 r the pop u 1 at ion rna y be. 

Scenar iDS (1), ( 2) and (3), on t he one hand, and ( 5) and 

( 6 ) Jon the 0 t he r , ill us t rat e ho "1 a de pend son t he age 

distribution. In (3), /1 :: -.004, which yields a surt.Jit.Jal 
}{ 

curt.7e ~ which is "ery similar to the ELT13 ~ curt.Je, but 
K K 

this time slanting up\'1ards. 

Extending the valuation basis to include new entrants 

has a much greater inf luence on a, as scenarios (1), (4) 

and (5) exemplify (see Section 1.5.2 for further comments 

on this.) 
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0\ 
C) 

Population 
lx ' x ( 65 

(1) ELT 13 

(2) "'x = 0 

n 

o 

o 

(3) ,.,x= -.004 0 

(4) ELT 13 10 

(5) ELT 13 20 

(6) "'x = 0 20 

-.10 

.1133 

.1122 

.1118 

.1045 

.1016 

.1015 

y 

-.05 -.02 -.01 o 

.0810 .0669 .0630 .0596 

.0791 .0646 .0607 .0571 

.0782 .0635 .0595 .0558 

.0651 .0469 .0419 .0373 

.0582 .0377 .0321 .0272 

.0578 .0372 .0316 .0267 

TABLE 1.1 a(n) (a = 30, r = 65) 

.01 .02 .05 .10 m 

.0565 .0538 .0475 .0411 .0307 

.0540 .0512 .0447 .0383 .0286 

.0526 .0498 .0431 .0365 .0266 

.0333 .0296 .0210 .0120 o 

.0229 .0191 .0109 .0041 o 

.0223 .0186 .0105 .0039 o 
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1.S COMPARISON OF METHODS 

1 . 5. 1 In the Li mi t 

In Section 1.4 it is pro
'
.1ed that \-lhen there 1S only 

one entry age, the Entry ~ge Normal and all the aggregate 

methods lead to the same ul t i rna te s i tua t ion, except \'men 

all future new entrants are part of the valuation basis. 

(In "'hich case there is no funding at all - in real terms 

- and the method 1 5 tant amount to Pay-as-you-go.) Three 

methods therefore need to be compared: Unit Credit, Entry 

Age Normal, and Pay-as-you-go. 

The Unit Credit method reputedly leads to higher 

contribut ions than the Entry Age Normal, after a scheme 

has matured (see for example TrO\"bridge (1952) and p.96 of 

WinkIe\Joss (1977)). This is indeed the case under the 

.. c I ass i c a I .. ass u mp t ion 5 0 f 'I > 0 and the function t x 

decreasing ",ith x. It \,li II be seen present Iy that more 

g e n era I 1 y t his i s not a 1 "/a Y 5 the cas e , tho ugh ita p pea r s 

unlikely that practitioners \-~uld ever encounter the 

reverse situation. 

Proposition 1.7. ~ssume that there is only one entry 

age into the scheme, and that the population is stationary 

(or only asymptotically 50). 
If "'I > 0 (resp. -, <), then 

and 

Proof. 

(1.25) 

EANC(_) 

(1.26) 

PGC (_) ) EANC(_) (resp. -, <) 

(resp. -, <) 

From 1.3.1.2 and 1.3.2.2, 

= 

= 
-(rJ-t) -('I) sb t a a~ , r r r-a, 

= EAN NC 

= sbt ;(ry-t)(r-a)exp[-y(r-a)];(0) 
r r a:r-al 
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The Pay-as-you-go contribution is 

l,) 

= f sb(r-a)~xexp[(t-~)(x-r)]dx 
r 

(1.27) = 

Diuiding by sb(r-a).f , 
r 

proportional to 

(1.28) UC: a(~-\)a(~) I(r-a) 
r r-al 

(1.29) 

PG: -(~-\) a . 
r 

the ultimate 

The result follows trivially. D 

rates are 

Thi s agrees ~ .. li th intl..li t ion: if the fund earns a 

positi\Je real return on top of salary increases, then 

Pay-as-you-go is more expensive, in the long run, than any 

kind of prefunding. The opposite happens in the case of a 

negative real return. 

Now leave Pay-as-you-go aside, and compare Unit 

Credit with Entry Age Normal. 

Proposition 1.8. The assumptions are the same as for 

Prop. 1.7. Denote 

f(x) = exp(-~x).ex+a/~a' x E [0,r-a]. 

If f(x) is strictly decreasing, then 

( 1 i ) UCF(ao) ( EANF (CD) ; 

( 1 i i ) ~ > 0 =* UCC(CD) > EANC (CD) ; 

( 1 iii ) ~ ( 0 =* UCC(CD) ( EANC (CD) . 

If f(x) is strictly increasing. then 

(2i) UCF(IIO) > EANF(CD) 

(2i1) y ) 0 ~ UCC(CID) ( EANC ( 110) j 

( 2 i 1 1 ) ~ ( 0 ~ UCC(ao) ) EANC (110) • 
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Proof. Multiplying (1.28) and (1.29) by 

exp[Y(r-a)](r-a) ~(Y~ I~(ry-~) 
a:r-al r ' 

one obtains ultimate rates proportional to 

r-a r-a 
= 1 exp(-yx)~ I€ dx x+a a f exp(Yx}dx, 

[EAM] 

Let 

m(x) = x 

o o 

-(0) 
= (r-a) aa:r-al 

r-a 
= / 

r-a 
1dx f 

o 
€ I€ dx. 

o x+a a 

f (x) = exp(-Yx)€x+a/~a' g(x) 

In Lemma 1 . 1 (Section 1.4.4). 

= exp(yx) 

to find 

and 

(lii), 

(liii), (2ii) and (2iii). When y ~ 0, ( 1 i ) and (2 i ) are 

then consequences of the equation of equilibrium 

(1.30) 

When 

UCF ( -) or 

o = YF(-) + C(-) - B. 
y = 0, Eq. (1.30) does not tell anything about 

EAHF (_). HO\'lel..'er, from Sections 1.3.1.2 and 

1 . 3. 2. 2, "'Ie knO\'1 t ha t if Y = 0 ~ 

= 

and 

= 

= 

r 
sb(r-a)~ ~(1J-\) 1 (x-a)/(r-a) dx 

r r 

U,\ 

+ sb(r-a) j ~ x 
r 

a 

r 
5b(r-a)~ ~(ry-~) J a(0) la(0) dx 

r r a:x-al a:r-ai 
a 

r 
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Say f(H) = ~ I~ is strictly decreasing,. H+a a then it 

is not very difficult to see that (0 ( H ( r-a): 

-(0) -(0) a la 
a:H-al a:r-ai = 

H-a 
J 
o 

} 

r-a 
f(u)dul J f(u)du 

o 

H-a 
J dul 
o 

r-a 
J du 
o 

= (H-a)/(r-a) 

( EANF (_) . 

The case of a strictly increasing f(H) is similar; 

f ina 11 y , (1 i) and (2 i) s till ho 1 d ,-men "i = 0. [] 

Remark 1.11. The argument used to prove the case 

"i = 0 i nth e abo l.J e a 1 so "10 r k s \-lhe n "f ~ 0. Hence it is an 

alternative \-Jay of prot.Jing the \'mole of Prop. 1.8. 

1.5.1.1 

Table 1.2 

Numerical EHample 

ShO\,lS numerical \1alues of ultimate costs 

and funds, as percentages of payroll, and illustrates many 

of the claims made in the previous section. The 

assumptions are 

Entry age 

Retirement age 

Bene-fits 

Post-retirement 
mortality 

Return on fund 

a = 30 (only) 

r = 65 

If. of final salary per year 
of service 

ELT 13 

'f1 = .05 

The other assumptions are indicated in the table. 

The rate of increase of earnings (~) is varied from .03 to 

.07 in scenarios (1) to (5), with no increase of benefits 

1n payment. 

Because there is only one entry age, the Entry Age 

Normal columns also correspond to any of the aggregate 

methods (of course eHcluding the variant that takes all 

future new entrants into account). 
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Except for scenarios (3) and (8) the Entry Age Normal 

me tho d pr-o d u c e sal 0 "Ie r con t r- i but ion r" ate t han the Un i t 

Credit. The real rate of return is nil in scenario (3), 
to'lhich means that any method ultimately leads to a 

contribution rate equal to the Pay-as-you-go rate, 

Situation (6) is the same as (2), the only difference 

being that In (6) benefits are fully indexed. Under the 

Entry Age and Unit Credit methods, ultimate costs are 

multiplied by 

k _ -(.01}/-(·05) 
1 - a 65 a 65 = 1.337 

.. ·m i 1 e the Pay - a s - you - 9 0 cos tis mu 1 tip 1 i e d by 
-(0) -( .04) 

k2 = a 65 la 65 = 1.355. 

It may be of interest to note that fund levels do nat 

grow In size by either factor kl or- k
2

, but rather by 

and 

EANk 
~3 

= 

= 

PG,.. UC 
k2t 1.,(00) - kit C(-) 

= 1.424. 

= 

PGC ( .... ) _ EliNC ( .... ) 

1.418. 

these formulae 

are derived from the equation of equilibriun (1.30), 

Sec t ion 1. 5 . 1 . ) 

Scenario (7) is also similar to (2), but this time 

the salary distribution is "flat", i.e. the t curve is 
x 

constant. Finally, scenarIO (8) is an i llustrat ion of 

claim (2ii) of Prop. 1.8. Here the e curve rises steeply 
x 

enough for f(K) = exp(-Yx).t I~ to be strictly 
x+a a 

increasing over the ""hole range (0,35), and as predicted, 

the Entry Age Normal contribution is higher than the one 

produced by Unit Credit funding. 
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1nf1. 
Scene Sal. 

8 

(1) .03 

(2) .04 

(3) .05 

~ (4) .06 

(5) .07 

(6) .04 

(7) .04 

(8) .04 

Net 
Ret. 

y 

.02 

.01 

0 

-.01 

-.02 

.01 

.01 

.01 

Pre­
Ret. 

JJx 

ELT 13 

" 

" 

" 

" 

" 

JJx= 0 

JJx=-.02 

Pens. 
Incr. 

{ 

0 

0 

0 

0 

0 

.04 

0 

0 

Pay-as­
you-go 

CIS 

7.61 

7.09 

6.62 

6.21 

5.83 

9.60 

8.99 

12.50 

Unit 
Credit 

CIS F/S 

4.76 142.2 

5.59 149.9 

6.62 159.7 

7.93 172.2 

9.59 187.8 

7.47 213.4 

7.09 190.1 

9.86 264.4 

Entry Age 
Normal 

CIS F/S 

4.51 154.8 

5.49 159.4 

6.62 164.5 

7.91 170.0 

9.35 175.7 

7.34 226.1 

7.01 197.3 

9.96 254.3 

TABLl~ 1.2 Vl timate Costs Dnd Funds (% of payrol Z) 

f(x) 

J, 

J, 

J, 

t 

i 

J, 

~ 

i 

Prop. 
1.8 

1ii 

1ii 

2iii 

2iii 

1ii 

1ii 

2ii 
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1.5.2 Transient Behaviour: Numerical Example 

Table 1.3 compares how contribution rates and fund 

le"vels t"Jary o~.Jer time, under the Unit Credit, Entry Age 

Normal, Aggregate and Aggregate with New Entrants methods. 

The assumptions are 

Decrements 

Return on fund 

Inflation on salaries 

Net return 

Benefits 

Initial fund 

Amortization period 

New entrants assumption 
(Aggregate with New 
Entrants method) 

ELT 13 (pre- and 
post-ret irement) 

11 = .05 

/3 = .04 

"f = T] - f3 = .01 

Pension equal to 1% of final 
salary per year of service; 
no post-retirement increases 

nil 

20 years (for methods that 
specify an initial unfunded 
liability) 

Full replacement of members 
lea,ring the scheme over the 
next 20 years 

The scheme is assumed mature from the start, i.e. 

both the group of act it.Je members and the group of ret ired 

members are stationary. This implies a very high initial 

unfunded liability; one ~rould probably not meet this 

situation in practice, but it is easier to \·rork out, and 

simp I y exaggera tes the character i st ics of the d iff erent 

methods. 

Figs 1.1 and 1.2 are graphs of overall contribution 

rates (including amortization of unfunded liability, if 

any) and fund levels achieved. 

The Entry Age Normal and Unit Credit I1lethods yield 

t"J e r y s i mil a r res u Its, \'1 i t h t he s epa r tic u 1 a r ass u mp t ion s . 

The aggregate methods spread the initial unfunded 

I i a b iii t Y far i n tot he f u t u re, inc 0 mp a r i son \'1 i t h me tho d s 

that identify a separate past serHlce liability. Here 
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a(0) = .0565 and a(20) = .0229 (see Table 1.1, rO\'IS (1) 

and (5)). Figures 1.1 and 1.2 illustrate what was meant 

by "rate of convergence" of the fund level to its limiting 

value. Both the Aggregate and the Aggregate \'Ii th New 

Entrants methods lead to the same situation in the limit, 

but the inclusion of 

significantly. For 

ultimate level in 

new entrants 

e }{ a mp 1 e , the 

slows do,·m convergence 

fund reaches half its 

log 2/a(0) = 12.3 years 

under the usual Aggregate method, and in 

log 2/a(20) = 30.3 years 

under the Aggregate with Ne\,1 Entrants. Spreading past 

service liabilities over the active years of present and 

future members produces contribut ion rates that are more 

level than under any of the other methods considered, but, 

a s can be see n i nth i s e ]{ a mp 1 e , i t ma y a 1 some a nco s t s 

\'Ih i c h r e ma i n rei a t i \1 ely h i 9 h for a long per i 0 d 0 f time. 

Remark 1.12. In the case of the Entry Age Normal and 

Unit Credit methods, the unfunded liability is paid off 

wit hie 1,.' e I pay me n t s ( not ale 1,.' elf r act ion 0 f p a yr 0 1 1 ) , 

fo 11o\,ling North-Amer ican pract ice. 
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0-
'0 

t 

0 

2 

4 

6 

8 

10 

20 

30 

40 

50 

(I) 

Pay-as­
you-go 

CIS 

7.08 

" 

" 

" 

" 

" 

" 

" 

" 

" 

" 

Unit 
Credit 

CIS F/S 

17.4 0 

16.5 20.0 

15.7 38.6 

14.9 56.0 

14.2 72.2 

13.5 87.3 

]0.9* 149.9 

5.6 " 

" " 

" " 

" " 

*Dropping to the ultimate level at t = 20 

Entry Age 
Normal 

CIS FIS 

18.1 0 

17.1 21.3 

16.2 41.1 

15.4 59.5 

14.6 76.8 

13.9 92.9 

11.2* 159.4 

5.5 " 

" " 

" " 

" " 

Aggregate 
No N.E. 

CIS F/S 

16.1 0 

15.0 17.0 

14.0 32.3 

13.0 45.9 

12.2 58.0 

11.5 6B.B 

8.9 108.0 

7.4 130.2 

6.6 142.8 

6.1 150.0 

5.5 159.4 

TABLE 1.3 Transient Behaviour of Costs and Funds (% of payroll) 

Aggregate 
N.E. 20 Years 

CIS FIS 

10.7 0 

10.5 7.1 

10.3 13.9 

10.1 20.4 

9.9 26.6 

9.7 32.6 

8.8 5B.5 

B.1 79.1 

7.6 95.5 

7.2 108.6 

5.5 159.4 



..., 
C) 

% of Payroll 
Unit Credit 
Entry Age Normal 
Aggregate 

20 

18 .... , .... " 

Aggregate 20 Years N.E. 
Pay-as-you-go 

....... ' ...... ......•• ', ... 
16 t· ....... ~ ... .... '. . ........ ... '. . .... ;: ....... ... 14 

12 

10 

8 

6 

4 

2 

'. . ..... '::, .......... ... 
. ....... ":: ........ -................ 

........ 
.......... 

................ 
..... ....- ....... 

......... ':::::-.: 
............... 

................. --- - -- - - - ---:":-:":"--"".-.-- - --.- .......... -._.- ._-
---1/---

-~""""'·-·---·-·-·-----·-·-H .. 
.......... ,/ ~ ... ~~.!.:~ • .:...~.­............ .:...~ • .:...:..:. ''':''~:'':'':.!'''';''': .:..::..:.. • .:...!..:.:::..:...~!.! . .:... . ..:.::..:. . ..::..:. . .:...~ . ..:. . ..:. . .:. . ..:. . .:.:~ • .:..: - - ---"7 . 

'-'''''' ,"." ."." ----- L- u 1 tl ma t e 

EAN, Agg, 
Agg-20 

~-------------------------------------------------------------------------------------------------I-----------o 5 10 20 30 40 50 CD 

Time 

Figure 1.1 Overa71 Costs over Time (% of payroll) 



...., 

..... 

.................... Unit Credit 
% of Payroll ------- Entry Age Normal 

_._._.- Aggregate 
---- Aggregate 20 Years N.E. 

180 

20 

""""-----
",,/ ......... -----".... ........... -,," ....... ............................. ----- ---,/ .' ......... ---,/ . ........--/~ .... ,.. _. -' -' _:''::':::':.:'::::::::':';':';:':::':'' .. ~---il -- ----

" .. ' _.-'-' -'~'-"I " .' _.--' ........... . 
, .... ...-' ....... 

/ . ,... . .,..., 
".~./ /'/' ul timate /j.. . /' EAN. Agg 

, .. ./ A • 
,.... // 88-

20 

/ .' r 

, .. ' /" ---- ------# 
/ .. ' ..... ---, " --

'.' /' ..--/ .... / . --...- -- -
, .. ' --,..,./ ..--

/..' . ,..............--
,-~.: / .,...,. .,..., 

/";"/ -- ,.,..., 1:." ".. ~ , ,.,...,./ 
rt/ 

5 10 20 30 40 53-----
(1) 

160 

140 

120 

100 

80 

60 

40 

Time 

Figure 1.2 Fund Levels over Time (% of payroll) 



Section 1.6 

1.6 MORE THAN ONE ENTRY AGE 

Here are a f e\,l comment s about the more genera 1 ca se 

of members entering at different ages, instead of at a 

single one. 

Let a now stand for the earliest entry age, and let 

new entrants corne into the scheme at rate e(y)·~ if age 
y 

y, a ~ y < r. Each method is applied in exactly the same 

fashion as before, taking for granted the fact that 

members having entered at age y receIve a pension equal to 

b(r-y) times final salary. Assume that "mate'ver the entry 

age, the members are sub ject to the same decrement sand 

salary scale; in thi s sect ion, the.e funct ion refers 
K 

only to the service table, and not to the actual 

pop u 1 a t ion a s "'Ie 1 1 . 

Prop. 1.B (Section 1.5.1) plainly remains valid in 

the multi-entry age case, since the Unit Credit and Entry 

Age Normal are individual methods: one only has to think 

of the fund as the aggregation of many smaller funds, each 

corresponding to the subpopulation of members entering at 

one particular age "y". 

As to whether aggrega te methods are s till equi \Ja lent 

In the 1 imi t to the Entry Age Normal method, the 

situation is not as clear since it is not additive. The 

deri\1ation of ultimate values is entirely the same as In 

Section 1.4.2; for instance, consider the Aggregate 

method: define the real-term constants S, PVB, PVS, and B 

as previously, i.e. 

S = total earnings 
r 

= 1 S(y)e(y)dY, 
a 

e(y)S(y) = total earnings of members having, 
entered the scheme at age y 
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Sly) = 
r 

sf .e dx x 
y 

= 

PVB = present value of future benefits 
of all members 

r 
= f PVB(y)e(y)dy; 

a 

r 
PVB(y) = sb(r-y)J .e exp[~(r-x)] I~ dx x r-x x 

y 

w 
+sb(r-y)f .exexp[(\-~)(x-r)] ~~ry-\)dX; 

r 

PVS = present value of future salaries 
of current members 

r 
= 1 PVS(y)e(y)dy, 

a 

PVS(y) = 
r 

sf.e ~()f) dx' 
x x:r-xl ' 

y 

B = benefit outgo 

(,,' 
= f B(y)e(y)dY, 

r 

6.' 

B(Y) = sb(r-y)/.e exp[(\-~)(x-r)]dx. x 
r 

(e(y)dY will be shortened to dEfy) below.) 

As before a = S/PVS-)f } 0 and 

= lim exp(-~t)S(t)c(t) 
t-+-

= S·c(-) 

= S{B-)fPVB)/(S-)fPVS) (Section 1.4.1) 
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= 

= 

r r 
J S(y)dE(Y)+J [8(Y)-~PV8(Y)]dE(y) 
a a 

r 

J [S(Y)-~PVS(y)]dE{y) 
a 

r 

J ~ ~(0) dE{) 
Y y:r-yl y 

a 

r 
J(r-y)eHp[-~(r-y)]~ ~ dE(y) 
a r r 

sb--------------------------------____________ _ 
r 

J ~ y 
a 

-("I) 
a 
y: r-yl 

(Section 1.4.2). 

dE(y) 

Comparing this expression with 

r 
= sbJ (r-y)exp[-~{r-y)]~ a a(0~/a('1) dE(Y) 

a r r y:r-YI y:r-yl 

th t . I AGGC {_) ~ EANC (_). \'Ie see a ln genera ~ When ~ = 0, the 

contributions are equal, but the funds built up are not, 

for (see Section 1.4.1) 

r r r 
= J PVB(Y)dE(y)-[J B{y)dE(y) J PVS{y)dE{y) 

a a a 
r 

J S(y)dE(y)] 
a 

and 
r 

= J PVB(y) - B(y)PVS(y)!S(Y)dE(y) 
a 
r r 

= J PVB(y)dE(y) - 1 B(Y)PVS(y)/S(y)dE(y). 
a a 

Not much can be said in general about ultimate costs 

and funds when ne\'1 entrants are taken into account. Rate 

of convergence is evidently reduced, but other\'1ise the 

limiting contribution rates and fund levels are not 

nece 5 sar i I y equa 1 to those sho\'m abOlJe for the Aggrega te 

method. 
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APPENDIX 1.1 

CONVERGENCE TO A STATIONARY POPULATION 

The setting is the same as in Section 1.4.2, except 

that the population is only asymptotically stationary. It 

\-lill be sho\-m that Prop. 1.1 still holds, i.e. that the 

ultimate (real-term) costs and funds under the Aggregate, 

Attained Age Normal, Frozen Initial Liability and Entry 

Age Normal methods are equal to EAN NC and EANAL , 

respectively, provided the initial unfunded liability, if 

any, is liquidated in a finite time. 

Eqs. ( 1 . 6 ) and ( 1 . 7 ) are unchanged, but 

and 

are no 

where 

and 

PVB(t) = exp(-J3t)PVS(t), 

PVS(t) = exp(-J3t)PVS(t), 

S(t) = exp(-J3t)S(t) 

B (t ) = exp(-J3t)(S(t) 

longer constants. Then 

F' (t) = -a(t)F(t) + R(t) - h(t) 

h ( t ) 

a (t ) 

R(t) = 

= S(t)/PVS(t) - y 

S(t)PVB(t)/PVS(t)-B(t) 

= -exp(-pt)(P(t)-S(t)U(t)/PVS(t». 

From the assumptions h(t) = 0 for t larger than some 

t o, a(t) ~ a > 0, and R(t) ~ R as t ~ ~. 

The problem can be formulated as follows: 

the differential equations 

F' (t) :: -a(t)F(t) + R(t), (t > t o ) 

G' ( t) :: -aG ( t) + R, G ( 0) :: F ( 0 ) . 

consider 

C I ear I y G ( .. ) = R / a ; I \,1 i I I s ho ~'I t hat F ( .... ) = R / QC • 

Let D(t) = F(t)-G(t). It is sufficient to show that 

D(t) ~ 0 as t ~ -

75 



Appendix 1.1 

ObsertJe 

E 

a (t ) ) 

o (t ) 

...J ., 

0' (t) = -a(t)F(t) + aG(t) + R{t) - R 

= -a(t)O(t) + (a-a(t»G(t)+R(t)-R 

Z(t) 

= -a(t)D(t) + Z (t ) . 

that Z(t) -J. 0 as t -J. CD 

} 0. Let tl be such that t ) t 1 i mpl ies 

a } 0 and IZ(t)1 ( E. Then for any t ) 
t 1 ' 

t t t 
= D(t 1 )exp(-/ a(s)ds» + 

t1 
j exp(-j a(u)du)Z(s) ds 
tl s 

IO(t) I <: IO(t 1 ) I 

1 i m s up I 0 ( t ) I 
t -+ao 

eHp[-(t-t1)~] 

-
<: Eta. [] 

Remark 1.13. Ob l.' i 0 U sly the s a me a r 9 ume n teo mp 1 e t e s 

the proof of Prop. 1.2 as t'lell; that is, it shows that 

C(n,CD) = 
and 

F(n,-) = 
\'/h en the pop u 1 a tiD n i son 1 y a s ymp tot i cally s tat ion a r y , and 

n { aD 
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DETAILS ABOUT THE NUMERICAL EXAMPLES 

The 1.fa lues of a 30: 351 and a 65 requ ired \'1ere computed 

directly from the English Life Table No. 13; 

clear hO\'l good the approH i rna t ion used, 

-("I) 
a = a -.5 - (~ +'1)/12, H H H 

becomes \'lhen 'I is 1 arge or nega t i ve. 

it is no t 

Tab 1 e 1. 1 . First 0:(0) \'1aS calculated using (steps 

(5) and (7) of Section 1.4.2) 

_ _ _ -(0) -("I) _ 
0:(0) - S/PVS 'I - )f/(a 30 : 351 la 30 : 351 1), 

and then o:(n) resulted from 

o:(n) = eHP(-Yn).0:(0)/(1+0:(0).a~Y») 

(at 'I = 0 interpolation was required). 

Table 1.2. The limiting contribution rates \'1ere 

found from Eq. (1.25), (1.26) and (1.27) (Section 1.5.1), 

di1.Jiding by .01.s·.e30·a~:~351 to obtain percentages of 

payroll. Ultimate fund le1.Jel5 then £0110\,1 from 

o = "I·F(m) + C(m) - B 
(interpolation required at )f = 0). 

Tab 1 e 1. 3 and F i q s. 1 . 1 and 1. 2. Under the Uni t 

Credit and Entry Age Normal methods, the contribution is 

the normal cost plus the amortization payment. Since the 

population is mature from the start, and the initial fund 

nil, the initial unfunded liability is F{-). 

t < 20, 

o'.Jerall contribution rate at time t 

= u 1 t i ma t era t e + { F ( CD ) 1 a ! 0 f 5 
) ) 1 pay r 0 1 I ; 
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as a fraction of payroll, 

The fund reaches its ultimate level at t=20. For t 

< 20, 

F'(t) = 

F(t) = 

= 

= 

-I 05) 
YF(t) + NC - B + eHp(-~t)F(-)/ai~1 

t _ ( .05 h I eKp[Y(t-s)][NC-S + eKp(-~s)F(~)fa~ 1ds 
o 

t 
F(~)f-~ eKP[Y(t-s)]+eKP[-~s+y(t-s)]/a~~~5) ds 

o 
(since HC - B = -YF(-)) 

- ( 0S) - ( . 0S ) 
F(co)(l-eKp(yt)+eKp(Yt)atl /a2il)' 

Aggregate methods (n=0, 20): firstly 

t 

SeGondly 

F(n,t) = R fexp[-a (t-s)]ds 
n0 n 

= (R fa )[l-exp(-a t)] 
n n n 

= F(n,~)(l-exp(-ant)) 

= EANAL(l-eHP(-unt)). 

C(n,t) = S(PV8(n)-F(t))/PVS(n) 

= S{PVB{n)-F(n,~))/PVS(n) 

+S(F(n,~)-F{n,t))/PV5{n) 

= EANNC + (S/PV5(n))teKP(-ant)'F(n,~) 

= 
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CHAPTER 2 

VARYING RATES OF RETURN AND OF INFLATION 

2.1 INTRODUCTION 

In the firs t chapter, actuar ia I a ssumpt ions \'lere 

always borne out by experience. Because they never are in 

the real \'lOrld, actuaries have de1.1ised methods of 

adjusting contributions for de\.iat ions from these 

assumptions. This chapter considers rates of return 

(J?{t)) and of increase on salaries (J3(t)) \'mich differ 

from the assumed rates TJ and /3. All other a ssumpt ions 

(e.g. , mortality, wi t hdra \·1a.ls ) are supposed to be 

consistently realized. 

The chapter has t\'1O purposes. Firstly, it describes 

two methods of taking deviations into account, 

formulas \mich are essential to Chapters 

and der i 1JeS 

3 and 4. 

Secondly, it includes 

methods, in the case of 

a 

a 

brief 

single 

comparison of the t~1O 

deviation from acturial 

assumptions. This comparison IS further translated into 

the language of control theory. 

The "Spread" method is the first one studied. The 

norma I cost is ad justed by an amount equa I to the ot.rera 11 

un fund e d I i a b iIi t Y d i \. ide d by the pre sen t 1..J a I ue 0 fan 

annuity for a fixed term. It is sho\ffl that aggregate cost 

methods have a built-in method of adjusting contributions, 

and that it is mathematically equivalent to the Spread 

method. 

The other method considered I ha\'e 

"Amortization of Losses" . At each \Jaluat ion 

"actuarial loss" is estimated, corresponding to 

elapsed since the last valuation only. 

termed 

date, an 

the time 

Each 

interualuation loss is liquidated in full by a series of 

level payments, over a fixed number of years. At any one 

val u a t ion d ate, the ad jus t me n t tot he no r rna I cos tis the 

5 U m 0 f those pay me n t 5 \."h i c h are s til 1 i n for c e . 
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The Amortization of Losses method, or variations of 

it, ha s been \-'ide 1 y used in Canada. The Spread method 

appears to be more popular In the United Kingdom. 

Several simplifying assumptions are necessary to keep 

the for mu 1 a eat abe a r a b 1 e 1 e 've I 0 f co mp 1 e x i t Y • Perhaps 

the most significant of these is that surpluses and 

deficiencies (or, alternatively, gains and losses) receive 

the same treatment under either of the methods outlined 

abot.re. The other assumptions are set out in 2.2. 

Section 2.3 eHamines the discrete-time situation. 

The same results are formulated in continuous time in 2.4. 

Et..Jen though the concept of "actuarial loss" per t.7ades 

it, t his c hap t e r ha s 1 itt 1 e t 0 do "I i t h the lit era t ur eon 

gaIn and loss analysis. I \'10 U 1 d 9 Q a s far a s t 0 a f fir m 

that the sole idea required from this subject is (Street 

(1977), p. 407): 

( i ) 

( i i ) 

( iii) 

Pension plan gains may be 
excess of the expected over 
accrued liability at the end 
analyzed. 

described as the 
the actual unfunded 
of the period to be 

Three aspects of Chapter 2 are original: 

The explicit formulas of 2.3.1 and 2.4.1 for the 

dependence of the acturial liability on past 

inflation rates; 

Sections 2.3.3 and 2.4.3, dealing with the 

Amortization of Losses method; and 

Remark s 2. 4 and 2.6 \mich interpret the two 

methods of adjusting contributions as "negative 

feedback controls". 

This chapter raises many more questions than are 

an s \'Ie red inC hap t e r s 3 and 4. Af ter all, these are onl y 

concerned with random rates of return. Chapter 2 could be 

the starting point of further research; for e x a mp Ie, a 5 

to the effects of t.Jary ing rates of inflation on 

contributions and fund levels, 

indexed. 

\-,hen bene fit s are no t 
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2.2 MODELLING ASSUMPTIONS 

(i) The population is stationary. 

( i i ) 

( iii ) 

(viii) 

( i H ) 

For aggregate cost methods, it is required that 

there be only one entry age into the scheme. 

Actuarial assumptions (7], ~, t , etc.) 
H 

are 

fixed. Only rates of return (7](t») and of 

inflation (P(t» differ from the assumptions. 

Benefits are not indexed. 

As in Chapter 1, benefits are a fixed fraction 

of final earn1ngs. The constant sb(r-a) will be 

rep I ace d by" c .. , for s i rnp 1 i cit Y • 

In discrete time, 7](t) and ,B(t) are the actual 

rates experienced during (t-l,t). 11 and ,B are 

the rates assumed 1n the valuation. The net 

rate of return during (t-l,t) is y(t) = 

7](t)-,B(t). I will also denote 

tJ7](t) = 7](t) - 7] 

IlP(t) = ,8 ( t ) - f3 

Ily(t) = y(t)-y = A7](t} - A,8(t). 

In continuous time 17(t) and ,B ( t ) are 

instantaneous rates at time t. The other 

symbols hat.Je the same meaning as In (t.1i) abotJe. 

Like in Chapter 1, a bar ("-") above a symbol 

refers to a nominal quantity, ~ .. 1hile the same 

s ymbo I \-li t hout a bar corre s pond s to a rea 1- term 

quantity. 

AAL and RAL will refer to the part of the 

actuarial liability (AL) attributed to active 

and retired members, respectively. 
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(H) 

(H i ) 

( 2. 1 ) 

(2.2) 

(H i i ) 

* B \'1ill mean the level of the benefits paid, if 

there have never been any deviations ~~(.) from 

the assumed rate /3. Same comment for RAL * and 

* PVB . 

An "indil.Jidual cost method" \·,111 be any cost 

method which )roduces an actuarial liability and 

a normal cost, and such that 

1 . AAL = eY(AAL+NC) - ~ AL(r) 
r 

(discrete time) 

o = yAAL + NC - ~ AL(r) 
r 

(continuous time) 

2. RAL(t) is the present l.ralue of benefits of 

retired members. 

The Unit Credit and Entry Age Normal are 

eHamples of individual cost methods. This 

family of methods is characterized in Cooper and 

Hickman (1967). 

By aggregate cost n~thod I will mean any of the 

methods studied In Sect ion 1.4, eHcept ing the 

one \'1hich includes all future new entrants 

(n = -). 
Finally, it should be emphasized that all the 

equations deri\7ed in this chapter relate to "real-term" 

values (see Section 0.6). Sections 2.3.1 and 2.4.1 

deri\'ed basic real-term relationships, In discrete and 

cont i nuous time, respect i \1e 1 y. 

2.3 DISCRETE TIME 

2.3. 1 Real-Term Variables 

Salaries increase by a factor e .B ( t ) during the year 

(t-1,t), and thus the overall payroll at time t 15 

proportional to 
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(2.3) 
t 

exp( E ~(k)). 
k=l 

~ccordingly, (2.3) is the index number used to 

con~.7ert nominal amounts into real-term amounts, i.e. 

(real-term variable at time t) 
t 

= (nominal-term variable at time t) x exp(- I ~(k)). 
k=l 

Because benefits are a fraction of final salary, both 

the normal cost and the actuarial liability \'1ith respect 

to acti\le members (~~L) are constant In real terms. On 

the contrary, the fact that benef its in payment are not 

indexed makes B(t) and R~L(t) functions of .B(k), k < t. 

We find 

B(r,t) = c, 

B(r+l,t) = B(r,t-l)exp(-~(t)) 

= c+exp(-,B(t)), 

B(r+2,t) = B(r+l,t-l)exp(-.B(t)) 

= c+exp(-,B(t-l)-~(t)), 

• • • 

t 

B(x,t) = c+exp(- I ,B(k)). 
k=t-x+r+l 

I will now show that 

(2.4) AL(t+l) = eY(AAL+NC) + exp(ry-.B(t+l))(R~L(t)-B(t)). 

When x ~ r, AL (H , t) = B ( x, t ) a~ 1] ) , and so 

.e AL(x+l,t+l) 
H+l 

= 

t+l 
c·exp(- E 

k=t-x+r+l 
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t 
= c·exp(- E ~(k))eHp(-~(t+l)) 

k=t-x+r+1 

= eKp(ry-~(t+1))(€ AL(x,t)-t B(x,t)). 
K x 

Summing for all x ~ r, 

RAL(t+1) - €rAL(r) = eKp(ry-~(t+1»(RAL(t)-B(t). 

Equation (2.4) is obtained by adding this formula to 

Eq . ( 2 • 1) ( 5 e c t ion 2. 2 ) . 

Finally, as concerns the fund and contributions, from 

dividing both sides of 

F(t+l) = exp(ry(t+1»)(F(t)+C(t)-S(t)) 

by (2.3), ~~ deduce 

(2.5) F(t+l) = exp(Y(t+l»)(F(t)+C(t)-B(t)) 

2.3.2 Spread Method 

2.3.2.1 Individual Cost Methods 

The adjustment to the normal cost is equal to the 

o'Jerall unfunded liability, dit.7ided by the present '.Jalue 

of an annuity for a term of "rn" years: 

(2.6) 

From Eqs. 

UL(t+l) = 

= 

eft) = He + ADJ(t) 

= Me + UL ( t ) / a ffil • 

(2.4), ( 2 . 5 ) and (2.6), 

AL(t+l) - F(t+l) 

eY(AAL+NC) + exp(ry-~(t+l»(RAL(t)-B(t) 

-eHp(Y(t+1»(F(t)+NC-B(t)+UL(t)/a~ ) 
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= 

= 

exp(v(t+l»[(AAL+NC+RAL(t)-B(t» 

-(F{t)+NC-8(t)+UL(t)/a~ )] 

+[exp(v)-exp(v(t+l»]{AAL+HC) 

+[exp{ry-~(t+l»-exp(Y(t+l»](RAL(t)-8(t» 

exp(v{t+l»(1-1/a~ )UL(t) 
y 

+e {[l-exp(~Y(t+l»](AAL+NC) 

+[exp(-~~(t+l»-exp(~Y(t+l»] 

x ( RAL ( t ) - B ( t ) ) } 

( 2 . 7 ) = q·UL{t) + ~(t+l), 

\Olhere 

( 2. B) q = 

and 

(2.9) ~(t+l) = (eHp(~Y(t+l»-l)qUL(t) 
y 

+e {[l-exp(~Y(t+l»](AAL+NC) 

+[eHp(-~~(t+l»)-eHp(~Y(t+l»](RAL(t)-8(t»}. 

~(t+l) represents the (actuarial) loss, \'1ith respect to 

inflation on earnlngs and return on assets, incurred 

during the period (t, t+l). If actuarial assumptions are 

realized during that period, that is to say, if ~(t+l) = ~ 
and ry{t+l) = 11, then .e(t+l) = 0. The loss is measured at 

the end 0 f the ye a r , \Om i c h e K p 1 a ins the f act 0 r e Yon the 

right hand side of (2.9). 

q·UL(t) is \"mat UL(t+l) \'1Ould be, if all actuarial 

assumptions had been correct. The first term, 

(eHp(~Y(t+l»-l)qUL(t), 

therefore represents the loss on the unfunded liability 

itself, caused by the net return discrepancy ~Y(t). The 

second term, 

eY[l-eKp(~Y(t+l»J(AAL+NC), 
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is the loss on the active members' actuarial liability and 

normal cost, again attributed to ~y(t). 

gain arises. The third term, 

If Y(t+l) ) 'I, a 

y 
e [l-exp(~ry(t+l))]exp(-~~{t+l)){RAL(t)-8(t)), 

is the loss on the retired members' actuarial liability 

and benefits; it results from the nominal return 

discrepancy Ary(t). A gain is experienced if ry(t+l) ry. 

Notice the difference bet"leen the second and third 

term of ~(t+1). On the one hand, act i ve members' 

liabilities and normal costs all increase at the same rate 

as the payroll. Hence only the net rate of return 

deviation Ay(t) is of importance. On the other hand, 

benefits are unindeHed, and so the loss on the retired 

members' actuarial liability depends on the variation of 

the nominal rate of return, Ary(t+1). 

2.3.2.2 Aggregate Cost Methods 

Consider the Aggregate method (see 1.3.4 and 1.4.2): 

G(t) = S(t)(PV8(t)-F(t))/PVS(t). 

t 

Mul t iply by exp(- L ,B(k)) to get the rea I-term 
k=l 

contribution 

C(t) = S(PVB(t)-F{t))/PVS. 

PVB{t) and PVS are 

PVB(t) does not turn 

benefits are not indexed. 

The discrete-time 

1.4.2) tells us that 

EANNC = 

defined as 

out to be 

version of 

Furthermore, it is easy to see that 
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PVB(t) - PVB* = R~L(t) - R~L* 

= E~N~L(t) _ E~N~L*. 

In consequence, 

C(t) = S(PVB* - EAN~L*)/PVS 

+S(PVB{t)-PVB*+E~N~L*-F{t))/PVS 

= 

(2.10) = 

E~NNC + S(EANAL(t)-F(t))/PVS 

EANNC + EANUL(t)tS/PUS. 

Thus Eqs. (2.7), ( 2 . 8) and (2. 9) s til 1 hoi d , \II i t h 

replaced by PVS/S. The unfunded liability, estimated on 

the basis of the Entry Age Normal method, is spread over 

"m" years, m being such that 

(2.11) a ffil = PVS/S. 

That is, m is a kind of "salary-\l1eighted" 

rema in i ng year s of ser'J i ce . The numer i ca I 

Section 3.5 further illustrates this point. 

average of 

example in 

Remark 2.1. Aggregate \'lith Ne\,1 Entrants method 

(n ( _). 

Let the valuation basis include new entrants corning 

into the scheme over the next "n" years. In '-'iew of the 

dis c ret e - t i lne '.' e r s ion 0 f Pro p . 1. 2 ( 5 e c t ion 1. 4 . 3 • 1 ), i t 

is c I ear t ha t Eq s . ( 2 . 10) and (2. 11) become 

C(n,t) = EAN NC + EANUL(t).S/PVS(n) 

and 

am'! = PVS(n)/S. 

Consequently, 

E~NUL(t+l) = 

\'lh ere € ( t + 1) i s de fin e d a sin (2. 9 ), but 
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q' '/ = e (1 - 5/PV5(n)) 

= e"(1 - 1/amJ I ). 

2.3.3 Amortization of Losses Method 

Under this method of adjusting the normal cost, each 

interl.Jaluation loss ~(t) is amortized O1.'er m years. I 

first find an expression for .e(t). 

adjustment by ADJ(t), i.e. 

C(t) = HC + ADJ(t). 

From Eqs. (2.4) and (2.5), "'Ie find 

Denote the overall 

(2.12) UL(t+1) = eY(UL(t)-ADJ{t)) + €(t+1) 

\-1here .e(t+l) has a definition very similar to Eq. (2.9): 

(2.13) €(t+1) = (exp(~'/(t+1))-1)e'/(UL(t)-ADJ(t)) 
'/ +e {[l-exp(~'/(t+l))](AAL+NC) 

+(exp(-~~(t+l))-exp(~"(t+l))](RAL(t)-B(t))}. 

The only difference between the t\-1O definitions of 

t(t+l) lies in their first term. It is explained by the 

fact that the expected unfunded liability at time t+l 

(i.e. supposing all actuarial assumptions to have worked 

out during (t,t+1)) is now 

The loss on the unfunded liability differs accordingly. 

Each loss t(s) is liquidated by m payments 

p(s) 

to be paid at times 

adjustment becomes 

= .e(s)/a~) 
ml 

s, s + 1 , ... , s +m-l . Thus the avera 11 

AOJ(t) = sum of p(s)'s in force at time t 

m-l 
= I p(t-k) 

k=0 
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m-l 
(2.14) = E €(t-k)/a~. 

k=0 ml 

I shall nO\,1 deri\Je an expression for UL(t), in terms 

of the t(s)'s only. This expression, together with Eq. 

(2.14), \,lill be fundamental in calculating the moments of 

F(t) and eft) in Section 3.4. 

Imagine the scheme to be set up at time 0. Then 

€(s) = 0, 

(2.14), 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

s ( 0, and t(0) = UL(0). From Eqs. (2.12) and 

UL(1) = e Y(UL(0)-ADJ(0» + ttl) 

= eY(1-1/a~ )t(0) + t(l) 

= (am-II la iill )t(0) + t(l); 

UL(2) = eY(UL(l)-ADJ(l» + t(2) 

UL( t ) 

= e Y [ ( am-II I aIDl ) t (0) + t ( 1 ) 

-t(0)/aIDl -t(1)/aml ) + t(2) 

= (a m- 21 laml )t(0) + (am-II laml )€(1)+t(2)j 

• • • 

m-l 
= E .e(t-k)a=::T.1k la~ 

k=0 m-KI ml 

m-I 
E p(t-k)a=::"-lk . 

k=0 m-KI 
= 

In \'lDrds, UL(t) is the present l.Jalue of those 

payments p(s) \'lhich have yet to be made, in order to 

liquidate each of the losses having arisen over the past m 

years. 

Remark 2.2. It is implicit in the derivation of Eq. 

(2.17) that the rate used to calculate aml is y (this is 

\t/h Y ( 2 • 1 6 ) can bed e d uc e d fro m ( 2 • 1 5 ) ) • In practice, 

hO\'lever, va 1 ua t ions are not done on a "rea 1- term'· ba sis, 

and 
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so is calculated at rate ry. The formulae obtained in 

that case are similar, but more complex. 

2.3.4 Response to a Single Loss 

The t'·l0 methods of adjust ing the normal cost wi 11 be 

compared in Chapter 3, ,·men .6~(t) = 0 and {7J(t)}t~l is 

a sequence of i.i.d. random uariables. In this section, 

the methods are compared in the simp lest poss ib Ie case, 

that of a single 1055 ~(0). 

Remark 2.3. 

section studies 

In the parlance of control theory, this 

the response of the systems to an 

"impulse" input (= unique disturbance). Chapter 3 studies 

the response of the system to a random (uncorrelated) 

input. 

Suppose a unique loss t(0) and ~(s) = 0, vs ~ 0. 

With the Spread method, one obtains (from Eq. 2.7» 

(2.19) 

It follo\'IS that 

(2.20) c (t ) 

UL(l) 

UL(2) 

• • • 

UL(t) 

= 

= q·t(0), 

2 = q ·t(0), 

t 
= q .~(0). 

Therefore, the unfunded liability converges geometrically 

to 0, and the contributions to NC, if q (1. This is the 

case in general if the rate used to calculate a~ is equal 

to the assumed net rate of return Y, for 

= 
.. (Y) j .. (Y) 
a a~ m-11 ml 

( 1 • 

When the Amortization of Losses method is used, Eqs. 

(2.14) and (2.17) tell us that 
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UL(t) = ~(0)am_tl /aml 
t ( m 

C(t) = NC + ~(0)/aIDl 

(2.21) 

UL(t) = 0 
t > m. 

C(t) = NC. 

This merel y confirms that the method actually 

liquidate losses in exactly rn years. Notice that, on 

other hand, the Spread method never gets rid of 

completely. 

Remark 2.4. Eqs. (2.6), (2.7), (2.12) , (2.14) 

(2.17) imply that 

(i) under the Spread method 

UL(t+l) = UL(t) - (l-q)UL(t) + ~(t+l) 

(2.22) 

ADJ(t) = UL(t)/aJnl ; 

(ii) under the Amortization of Losses method, 

UL(t+l) 

(2.23) 

m-l 
= UL(t) - I exp[-~(rn-l-k)]e(t-k)/a~ +€(t+1) 

k=0 ml 

ADJ(t) = 
m-l 

I 
k=0 

.e(t-k)/a mJ 

does 

the 

~(0) 

and 

No \., think of UL( t) as the state of the "system", of 

.e(t) as the disturbance experienced, and of ADJ(t) as the 

control applied to the system. It can be seen that 

(i) the Spread method appl ied a proport: ional negat lve 

feedback control, ~mile 

(ii) the Amortization of Losses method is a kind of 

integral negative feedback control. 

(The feedback is "negative·', for ADJ(t) is subtracted from 

UL(t); for more about the different types of controls, 

see Burghes and Graham (1980), pp. 101-102.) 
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2.4 CONTINUOUS TIME 

Be 1 0'\'1 is the continuous time translation of the 

results of the previous section. Set.1era I de t a i I sand 

interpretations have not been repeated. 

2.4. 1 Real-Term Variables 

Total payroll is proportional to 

t 
exp(I,B(s)ds). 

o 

Thus, in \'mat follo\"S, 

(real-term t.7ariable at time t) 
t 

= (nominal-term variable at time t) exp(- 1,B(s)ds). 
o 

If x ~ r, 

and 

t 
B(x,t) = c+exp(- J ,B(s)ds) 

t-x+r 

AL(x,t) = 

I will now show that 

(2.24) AL'(t) = ~(t)AL(t)-~~(t)AHL-~ry(t)RHL(t)+NC-B(t). 

(i) Say x ~ r. 

a 
-a (~ AL ( x , t ) ) 

X X 
c·~ aery) 

a t 

= ax 
exp(- J J3(s)ds) 

x x t-x+r 

t a 
(~ aery)). +c+exp(- 1 ,B(s)ds) ax x x 

t-x+r 

From 

= ax 

\'Ie ge t 
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= (ry-~(t-H+r))t AL(H,t)-t B(H,t). 
H H 

D 
( i i ) at (.e: HAL (H, t ) ) = (~(t-H+r)-~(t))€ AL(H,t) 

H 

a 
( iii ) a-tRAL(t) 

Adding this to Eq. 

AL' (t ) = 

= (q-~(t))tHAL(x,t) 

a 
- aH(tHAL(x,t)) - tHB{H,t). 

6) a 
= J (t AL(H,t))dx at H r 

6) 

= 1 (1J-,B{t») t AL(H,t) H r 

a 
- ax(~xAL(H,t)) - t B(H,t)dx 

K 

(from (ii)) 

= ( 11 - ~ ( t ) ) RAL ( t ) 

( 2 .2), we find 

d 
dt (AAL + RAL(t) 

+ t AL(r) r - B(t). 

= yAAL + Ne - t AL(r) 
r 

+(ry-~(t»RAL(t) + trAL(r) - B(t), 

~mich proves (2.24). 

Finally, as regards contributions and fund levels, 

F' (t ) 

wh i ch imp 1 i e 5 

d 

dt F(t) 

(2.25) 

= 1J(t)F(t) + eft) - B(t), 

d t 
= dt (F(t) exp(- J ~(S)d5) 

o 
t 

= F'(t) exp(- J ~(S)d5) - ,6(t)F(t) 
o 

= y(t)F(t) + C(t) - B(t). 
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2.4.2 Spread Method 

2.4.2.1 Individual Cost Methods 

Assume 

(2.26) C{t) = HC + UL{t)/affil. 

From Eqs. (2.24) and (2.25) 

UL' (t) = AL' ( t) - F J (t ) 

(2.27) 

\"lhere a = 

= y(t)UL(t) - UL(t)/a~-~y(t)AAL -~ry(t)RAL(t) 

= -aUL(t) +~y(t)UL(t) -~y(t)AAL -~ry(t)RAL{t), 

-l/a
ml

-Y. 

After defining 

(2.28) ~(t) = ~y{t)UL(t) - ~y(t)AAL - ~ry(t)RAL(t), 

Eq. (2.27) becomes 

( 2 . 29) UL' ( t ) = -aUL ( t) + t ( t ) . 

Eq. (2.28) is the continuous-time equivalent of Eq. 

(2.9) (Section 2.3.2.1), and has a similar interpretation . 

.e(t) could be named the "instantaneous loss" at time t. 

(i) ~y(t}UL(t) is the net return loss on UL(t) 

itself; 

(ii) -~y(t)AAL is the net return loss on active 

members' 1 iabi lit ies; and 

( iii ) -~q(t)RAL{t) is the nominal return loss on 

ret ired members' 1 iab iIi ties. 

The difference bet .... l'een (ii) and (iii) can again be 

imputed to the fact that benefits are not indexed. 

2.4.2.2 Aggregate Cost Methods 

Consider the Aggregate method: 

eft) = S(PVB(t)-F{t»/PVS. 

We infer from Prop. 1.1 that 
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(2.30) eft) = 
EAN EAN 

HC + ( AL(t)-F(t».S/PVS. 

The method is equil.Jalent to the Entry Age Normal, 

~",hen the unfunded liability IS spread otJer m years, m 

being such that 

(2.31) a = PVS/S. iiil 

Because of this, Eqs. (2.27), (2.28) and (2.29) remain 

valid, with a = S/PVS-y. 

Remark 2.5. Aggregate with Ne\-l Entrants method 

(n < -). From Prop. 1.2 \-Ie can "!rite 

C(n,t) = 
and 

a~ = PVS(n)/S. 

Thence 

UL'(t) = -a(n)UL(t) + ~(t). 

We see that the size of a (or a(n» determines ho\-, 

close F{t) will stay from AL(t). Thus the resul t s of 

5 e c t ion 1. 4 • 4 are a 1 so r e 1 e 1.1 ant whe n act u a ria I ass u mp t ion s 

ry and ~ are not realized. 

2.4.3 Amortization of Losses Method 

If C(t) = HC+ADJ(t), then Eqs. (2.24) and (2.25) 

yield 

(2.32) UL'(t) = yUL(t)-ADJ(t)+t(t) 

,·,here 

(2.33) t(t) = ~Y(t)UL(t)-~y(t)AAL-~ry(t)RAL(t). 

Let m be the number of years O\Jer ,.mich losses are to be 

amortized. Then 

(2.34) ADJ(t) = ds. 

It is not unreasonable to suspect that the continuous 

counterpart of Eq. (2.17) is 
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t 

J .e ( s) a m- t + s1 / a ffil d s • 
t-m 

(2.35) UL(t) = 

This can be verified by substituting the right hand 

side of Eq. (2.35) into Eq. (2.32). The details are in 

Appendix 2.1. 

2.4.4 Response to a Single Loss 

Suppose a unique loss .e(0) t 0, and .e(s) = 0 ~s t 0. 
In continuous time, this is expressed as 

.e(s) = .e(0)6(s) 
where 6(.) is the Dirac delta function. 

(i) Spread method: 

UL' (t ) = -aUL(t) + .e(0)6(t) 

UL(t) = .e(0)e-at 

C(t) = 
-at -

NC + .e (0) e / a
ml 

. 

t > 0 

Notice the way the effect of the loss dies out 

exponentially, for both the fund and the contribution. Of 

course this assu\nes that a} 0; this is the case if a~ 

iscalculated at rate Y, for in general 

-
l/a

IDI 
- 'I > 0, 'VY E rR. 

See also Sections 1.4.2 and 1.4.3.1 concerning the a's 

produced by aggregate cost methods. 

( i i ) Amortization of Losses method: from Eqs. (2.34) and 

(2.35) 

-
UL(t) = .e (0) a m- t1 

/aml 

t < m 

ADJ(t) = .e(0)/aml 

and 

UL (t ) = ADJ(t) = 0 t )- m. 
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Remark 2.6. From Eqs. (2.26), (2.29), (2.32), (2.34) 

and (2.35), ~~ obtain 

(i) Spread method: 

UL'(t) = -uUL(t) + ~(t) 

ADJ ( t ) = UL ( t ) / a ffil • 

(ii) Amortization of Losses method: 

t 
UL' ( t ) = - J {e Hp [ -"f ( m- t + S ) ] / a m1 } ~ ( S ) d s + € ( t ) 

t-m 

ADJ(t) = 

Again ~~ see that 

t 
J ~(s)/ai1ilds. 

t-m 

(i) the Spread method amounts to a proportional negatil.,e 

feedback, and 

(ii) the Amortization of Losses method is a kind of 

integral negative feedback control. 
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PROOF OF EQ. (2.35) FOR UL(t) 

Define ~(t) as In Eq. (2.33; for 

-e(t) = 0 for t ( 0. Also define 
t 

Z(t) 1 -e(s) 
- -

:: a 
m-t +sl faml ds 

t-m 

for t } 0, Z(0) = UL (0) . I first show that 

Z' (t ) = YZ'(t) - ADJ(t) + € ( t ) . 

Leibniz's rule yields 

Z' (t ) :: 

d t 

dt 1 ~(s) 
t-m 

- -
a fa ds 

m- t + S I ffil 

t d 

t ;- 0, 

+ 1 ~ ( s ) (d t ~m- t + s I ) f ~Tiil d s • 
t-m 

Now 
d 

dt a m- t +51 = 
d 

dt 

m-t+5 
J e-YUdu 
o 

= -exp[-y(m-t+s)], 

\"lh i chi mp lie s 

or 

(2.36) 

t 
Z' (t ) = -e ( t) - J -e ( 5 ) e x p [ - 'I ( m- t + 5 ) ] f a nil d s 

t-m 

t _ _ 
= -e ( t) + "f 1 -e ( 5 ) a m- t + 5 I / aml d s 

t-m 

t 
1 ~(s)faffil ds 

t-m 

Z' (t ) :: -e ( t) + Y Z ( t) - ADJ ( t ) . 

From Eqs. (2.32) and (2.36), ... ~ get 

(UL(t)-Z(t))' :: Y(UL(t) - Z(t». 

98 

and 



AppendiH 2.1 

This means UL(t)-Z(t) = e
Yt

(UL(0)-Z(0) = 0, i.e. 

UL(t) = Z(t) ¥t ~ 0. 
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CHAPTER 3 

RANDOM RATES OF RETURN: 

DISCRETE TIME 

3.1 INTRODUCTION 

In this chapter, the first and second moments of F(t) 

and C (t) are calculated, under the assumpt ion that rates 

of return are independent identically distributed (i.i.d.) 

random uariables. (The i. i.d. hypothesis IS revie"1'ed in 

Section 5.2.) The t"10 methods of adjusting the normal 

cost described in Chapter 2 are examined, in a 

discrete-time frame"rork. 

This is the central chapter of the thesis, because 

(i) both methods of adjust ing the normal cost are 

considered (\-Ihile the continuous-time analysis 

of the next chapter is only concerned with the 

Spread me t hod) ; 

( i i ) 

( iii ) 

it includes the discussion of 

region" (Section 3.5.3); and 

the "optimal 

partly due to (i) and (ii), and also because it 

is set in discrete time, this chapter is the one 

,·m i c h c a me 5 ne are 5 t top rae tic a 1 act u a ria 1 

problems. 

As in Chapter 2, it 

deficiencies (or gains 

treatn-.ent ,men adjust ing 

is supposed 

and losses) 

the norma 1 

that surpluses and 

receive the same 

cost. The other 

assumptions are very similar to those of Chapter 2, except 

that only uarying rates of return are taken into account. 

The-se assumptions are briefly restated in Section 3.2, 

along with some new notation. 

The moments of F and C are derived in 3.3, in the 

case of the Spread method, and in 3.4, in the case of the 

Amortization of Losses method. 
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Section 3.5 is a numerical example. 3.5.2 places the 

two methods side by side, and comments on the l.7ariance of 

F( .... ) and C( .... ) produced by different values of "rn". In 

3.5.3, an ··optimal region'· for m is specified, in the case 

of the Spread method. 

The results of this chapter are original (parts of 

3.3 and 3.5 are included in Dufresne (1986)). 

3.2 ASSUMPTIONS AND NOTATION 

(i) The population is stationary. 

( i i ) All acturial assumptions are consistently borne 

out by experIence, except for investment 

returns. 

( iii ) There is no inflation on salaries. 

Al terna t i '.7e I y, one may imagine that benefits in 

payment increase at the same rate as salaries, and that 

only real-term variables are considered (see Section 

2.3.1). 

( i t.r ) 

( 1.1 ) 

( t.r i ) 

( 3 . 1 ) 

( t.Pi i ) 

Va 1 ua t ion assumpt ions are fixed, inc 1 ud ing the 

rate of interest iV. 

The actually earned rates of return {i(t)}t21 

are i.i.d. random variables, \,li t h i (t ) ) -1 

1 and Var i ( t ) 
2 < i ( t ) is the rate ",I. p. = 0 .... 

earned during (t-1,t). 

An "indit.ridual cost method" will mean the same 

thing as it did in Chapter 2. 

fact that under these methods 

AL = (1+iV) (AL+NC-B). 

This is easily deduced from 

abot.re and (x i ) of Section 2.2. 

Prob(F(0) = F0 ) = 1 for some 

101 

I \,li 11 use the 

assumptions ( iii ) 

F0 E fR. 



Section 3.2 

From these assumptions, 

(3.2) 

Define 

and 

F(t+1) = (1+i(t+1))(F(t)+C(t)-S). 

iV = 

i = 
d = 
d V = 

u(t) 

u = 
2 

a = 

'laluat ion 

Ei(t) 

i/(l+i) 

iu / (1+iV) 

= l+i(t) 

Eu(t) = 
Var i(t) 

rate of interest 

1+i 

= Var u(t) 

= {a-algebra of euents prior to (inclusiue of) 
time t}. 

I t f 0 I I 0 \'IS fro m E q . ( 3 . 2 ) t hat i ( t ), F ( t) and C ( t ) 

are each "t-measurable. 

I will repeatedly use the identity 

EX = EE ( X I H ) , 

which presumes H to be a sub-a-f ield of the a-f ield on 

\'mich X is defined. 

The z - t ran sf orm (see Append i x 3. 2) 0 f any sequence 

{x(t)} will be denoted by x{z). 
Note. The analysis is conducted with real-term 

values, as in Secticn 2.3. The only exceptions are 

Sections 3.3.3 and 3.3.4, \.mere it is ShO\fll that, as far 

as the Spread method is concerned, similar results hold 

for nomi na I rnonet ary ',la lues. 

Remark 3.1. The "exponential" rates ey(t) had their 

purpose in Chapter 2, in sho\.,ing the similarity between 

the discrete and continuous tinle situations. 

chapter, hO\,1ever, I use 

u ( t ) = e 
yet) 

and 

i ( t ) = 

to simplify the formulae and their lnterpretation. 
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3.3 SPREAD METHOD 

Consider any individual cost method (see Section 3.2) 

and suppose that 

(3.3) 

where 

impl ies 

( 3 . q) 

\-lhere 

(3.5) 

and 

(3.6) 

C(t) = NC + UL ( t ) hirnl 

is evaluated at rate 

F{t+1) = 
= 

= 

u(t+1)(F(t)+C(t)-8) 

U(t+1)[F(t)+NC+(AL-F(t)/a~ -8] 

(u(t+l)/u)(qF(t)+r) 

u(t+l) = 1 + i(t+l), 

u = Eu (t + 1 ) , 

q = u(l - l/a
ml

) 

r = u (Ne - B + AL/a
ml 

) . 

This 

Remark 3.2. Because of the i.i.d. assumption imposed 

on {i(t)}, Eq. (3.4) sho,.,s that F(t) is a Markov process. 

This is also true of eft) (Eq. (3.3)). 

3.3.1 First Moments 

Eq. ( 3 • 4) imp 1 i es 

EF ( t + 1 ) = EE (F ( t + 1 ) I Ht ) 

(3.7) = qEF(t) + r, 

,.,hieh in turn means that 

( 3 . 8 ) 

( 3 . 9 ) 

EF(t) 
t t = q F0 + r(l-q )/(l-q), 

3.3.1.1 Ei(t) = iV. 

In this case, 

o ( q = (1 + i v) (1 - 1 I affil ) 

= am- 11 laIDl ( 1. 
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Proposition 3.1. Let m 2: 1. If Ei(t) = iV' then 

under the Spread method 

(3.10) EF(-} = 1 im EF(tj = HL 
t 

(3.11) EC(-) == lim EC(t) = NC. 
t 

Proof. If m;:: 2, then from Eqs. (3_8) and (3.9), 

(3.12) lim EF(t) == r/(l-q). 
t 

Th is 1 i mi tis AL, for Eq s . ( 3 . 1 ), ( 3 _ 5) and ( 3. 6 ) 

yield 

AL == (l+i)(AL+NC-8) 

8-NC = dAL 

AL ( 1 + i ) ( 1 I a:=1 - d ) 
lT11 

r/(l-q) == [l-(I+i)(I- l/aml )] 

= AL. 

Eq. ( 3 _ 11) foIl O\-IS from (3. 3) . 

The case m = 1 is dealt with in Remark 3.3 below. 0 

3.3.1.2 

If iV differs from Ei(t), then Prop_ 3.1 does not 

hold. All that can be said is that if 

then 

and 

q = ( 1 + E i ( t ) ) ( 1-1 I arnl ) ( 1 

EF(-) == r/(l-q) 

EC (-) = HC + (AL-EF (-) ) laml • 

Remark 3.3. When m == 1, 

C(t) = HC + UL(t), 

F{t+l) = u(t+l)(AL+NC-B) 

= 
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which imply 

EF (t + 1 ) [u/(l+i V}]·AL 

EC(t) = HC + AL - EF(t). 

= 
t ~ 0 

If Ei(t) = iV' then EF(t) = AL, and EC(t) = HC for all 

t ;:: 1. 

3.3.2 Second Moments 

I \,lill use Eq. (3.4) and the identity (proved In 

Appendix 3.1) 

(3.13) VarF (t + 1) = EVar (F (t + 1 ) I Ht ) + VarE (F (t + 1 ) I Ht ) 

t 0 s ho \'1 t hat 

(3.14) 

... 1here 

VarF(t+l) = k.VarF(t) + s(EF(t+l))2 

2 2-2 
k = q (l+a u ) 

Var(F(t+l) 1Ht> 

and 2 -2 
s = a u Firstly, 

2 = Var(u(t+l)/u)·(qF(t)+r) 

= 
2 

s(qF(t)+r) 

EVar(F( t+l) 1Ht) = sE(qF(t)+r) 
2 

= sE[q(F(t)-EF(t»+qEF{t)+r]2 

(3.15) = sq2VarF (t)+s(EF(t+l»2 

from Eq. ( 3 • 7) • 

VarE(F( t+1) 1Ht) = Var(qF(t)+r) 

2 
(3.16) = q VarF(t). 

F i na 11 y , Eq . ( 3. 14 ) is the 5 urn 0 f Eq s . ( 3. 15 ) and 

(3.16). 

Denote M ( t) = EF ( t ), and V(t) = VarF(t). Eq. 

(3.14) becomes 

(3.17) V(t+1) = kV(t) + sM(t+l)2. 

Ass u mp t ion ( vii) ( Sec t ion 3. 2) say s t hat Va r F ( 0 ) = 

0, and 50 
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v ( 1 ) 
2 

= sl1(l) J 

V(2) = ksl1(I)2 + sl1(2)2 

• • • 
t 

k t - j M(j)2, (3.18) V(t) = s E t > 1 . 
j=l 

Prop. 3.2 identifies the limits of VarF(t) and 

VarC(t), as t ~ -, and Prop. 3.3 is about covariances. 

Proposition 3.2. 

{ 1, then 

Let 2 <: m <:- If 
2 2-2 

k = q (1 +0 u ) 

(3.19) 

(3.20) 

If k ... 
.~ 1 , 

VarF(-) = 02u -2(EF(_))2 / (1-k), 

VarC(-) = [VarF(-)]/(a~ )2. 

then both VarF(<II» and VarC( ..... ) are infinite . 

Proof. First note the foIl o\,li ng properties of 1 i mi t s 

inferior and superior. 

1 im inf (f+g)(t) 
t 

and 

1 im sup (f +g ) ( t ) 
t 

k < 1 i mpl ies q 

from Eq (3. 18 ) , 

v (t ) < 

... . ~ 

<: 

( 

Say 

1 im 

lim 

1 , 

t 
E 

j=1 

f ( t ) , g(t) > 0. 

inf f ( t ) + 1 i m inf 
t t 

sup f ( t ) + lim sup 
t t 

and thereby M(ao)2 

t-" 2 
k J(sup l1(t) ) 

t 

-1 2 
< ( 1 - k ) sup 11 ( t ) < -, 

\'lhich means that sup V{t) ( -. 
t 

t 

Then 

g(t) 

g ( t ) . 

( (!:t Then, 

Hence we may take limits inferior on both sides of 

Eq. (3.17) to obtain 

lim inf V(t) ) sM(_)2 / {l-k). 
t 

Taking limits superIor, \'Ie also find 
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lim sup Vet) 
t 

<: 
2 sM(-) l(l-k). 

These prove (3.19). 

( 3 . 3 ) . 

Eq. (3.20) is a consequence of Eq. 

k ) 1: M(-) can never be 0. This is because 

r 

(cf. Eqs. ( 3. 7) and 

i mpl ies 1 im inf Vet) 
t 

= 

= 

u (NC-B+AL/a
iTil 

) 

ullL ( l/a
rnl 

-dV) > 0 

(3.8)). If k > 1 , 

= -. c 

Eq. ( 3. 18) then 

Pro;eosition 3.3. Let h > 0. 

(3.21) 

Cov{F(t),F(t+h)) 
h 

= q VarF(t) 

Cov(C(t),C(t+h)) = qhVarC(t) 

Cou(F(t) ,C(t+h)) = -qh[VarF{t) ]/iimJ . 

If k < 1, then, as t ~ -, 

(3.22) 

Correlation (F(t),F(t+h)) ~ 

Correlation (C(t),C(t+h)) ~ 

h 
q 

h 
q 

Correlation (F(t),C(t+h)) 
h 

~ -q 

Proof. Define F*(t) = F(t)-EF(t). Then (Eqs. (3.4) 

and (3.?)), 

F*(t+l) = (u(t+l)/u)(qF(t)+r)-qEF(t)-r 

* * E(F (t+l) IU t ) = qF (t) 

Cou(F(t+l),F(t)) = EqF*(t)2 

= qVarF(t). 

Hence, if j ~ 0, 

* . = qF (t+J) 

=> Cov(F(t+j+l),F(t)) = EF*(t+j+l)F*(t) 

* * = EE (F (t + j + 1 ) F (t) I H t + j ) 
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* * = EqF (t+j)F (t) 

= qCou(F(t+j),F(t)). 
Th i simp 1 i e s 

Cou(F(t+h),F(t)) h = q VarF{t), h > 0. 

The other couariances easily follow. 

As to correlation coefficients, for example, 

Correlation (F(t+h),F(t)) 

= COU(F(t+h),F(t))/[VarF(t+h)+VarF(t)]1/2 

-i qh , if k ( 1. D 

Remark 3.4. The case m=l ( c f. Re rna r k 3. 3 ) . From 

F(t+l) = u(t+l)AL/(l+iV)' \-Ie get 

VarF(t) = VarC(t) = a 2AL2/(1+i v)2 

and 

Cou(F(t),F(t+h)) = Cou(C(t),C(t+h)) 

= 0 , for all h ~ 0. 

3.3.3 Non-Stationary Population 

RecursitJe relationships similar" to Eqs. (3.7) and 

(3.14) also apply when some of the assumptions are 

discarded. Suppose now that the population is no longer 

s tat ion a r y , t ha t s a I a r i e s 9 r 0 "to'l wit h i n f 1 at ion - con s tan t 

or not, but not random - and that the t.7aluation interest 

rate iV is not necessarily equal to i = Ei(t). From 

F(t+l) = U(t+l)[F(t)+NC(t)-B(t)+(AL(t)-F(t))/a~] 

"'Ie eas i 1 Y get 

and 

EF(t+l) = qEF(t)+r(t) 

2 
VarF(t+l) = kVarF(t) + s(EF(t+1)) , 

\,lh ere q, k and s are de fin e d a s be for e, and 

r(t) = u(NC(t)-B(t)+AL(t)/a~ ). 
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3.3.4 Aggregate Cost Methods 

Given the same setting as in 3.3.3, if 

C(t) = S(t)(PVB(t)-F(t)/PVS(t), 

then 

EF(t+1) = q(t)EF(t) + r(t) 

and 

VarF(t+l) = k(t)VarF(t) + S(EF(t+1))2, 

where 

q(t) = u(1-S(t)/PVS(t», 

r(t) = u(S(t)PVB(t)/PVS(t)-8(t)), 

2 2-2 
k(t) = q(t) (1+0 U ). 

Now suppose a single entry age, and reinstate the 

assumptions of Section 3.2. From Eq. (2.10), 

\-,here affil = PVS/S. We see that Propositions 3.1 and 3.2 

once more apply: 

if iV 

if k = 

Note: 

= Ei (t), then 

lim EF( t ) = EAN~L, 
t 

lim EC(t) = EANNC ; 

t 
2 t 2-2 u(l-S/PVS (1+0 U ) ( 1 , then 

'") 

lim VarF(t) = sEF(-)'/(l-k). 
t 

lim VarC(t) = [VarF(-)]S2 /PVs 2. 
t 

The results of this section hold for either 

the Aggregate or Aggregate \'lith Ne\'1 Entrants methods; see 

Section 2.3.2.2. 

3.4 AMORTIZATION OF LOSSES METHOD 

Recall that in this case (see Eqs. (2.14) and (2.17) 

of Section 2.3.3) 
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(3.23) C(t) 

(3.24) ADJ(t) 

(3.25) UL(t) = 

Now turn to Eq. 

= 

= 

rn-I 

HC + ADJ(t) 

m-l 
L .e(t-j)/a 

. 0 ml 
J= 

L .e ( t - j ) a~ I a~ . 
rn-JI m, 

j=0 

(2.13) of the same section. Taking 

into account the assumptions and different notation of 

Sec t ion 3. 2, t his e qua t ion i s fir s t r e '.If' itt en as 

€(t+l) = (i(t+l)-iV)(UL(t)-ADJ(t» 

+(iV-i(t+l»(AAL+NC+RAL-B) 

= (i(t+l)-i V)[UL(t)-ADJ(t)-(I+i V)-lAL], 

since 

AAL+NC+RAL-B = AL+NC-B 
-1 

= (l+iV) AL. 

Next, subtract (3.24) from (3.25) to derive 

m-2 
UL(t)-AOJ(t) = L e(j)€(t-j) 

j=0 

\'lhere 

e(j) = (a -1)/a 
m- j I ml 

(3.26) = a 1 . 1 laffil 0 , 
m- -J m 

Finally, Eq. (2.13) is restated as 

m-2 

.( j " - rn-2. 

(3.27) €(t+l) = (i(t+l)-iV)( L e(j)€(t-j)-A) 
j=0 

in which 
-1 

A = (1 + i V ) AL . Also define 

Throughout the rest of Section 3.4, the following strategy 

will be adopted: 

(i) calculate the moments of the €(t)'s first, using Eq. 

(3.27); and then 
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(ii) use Eqs.(3.24) and (3.25), together \"ith the results 

of (i), to calculate the moments of C(t) and F(t). 

The last comment is about "initial conditions": Eq. 

(3.27) shows that t(l) depends on t(0), t(-l), ... , 

t(-rn+2). These are the initial conditions. 

they are presumed kno\·m and non-random. 

Remark 3. 5 . It\', ill be ass u me d t hat 

In the sequel 

2 ~ m < -. 

When m = 1, the Amortization of Losses and Spread methods 

are indistinguishable; see Remarks 3.3 and 3.4. 

R e rna r k 3 . 6 . E q. (3. 27 ) e 1 ear 1 y s h 0 \'IS t hat n e i the r 

F ( t) no r C ( t ) i s a Ma r k 0 \1 pro c e s s , for i ( t) e K p 1 i cit 1 y 

depends on "the past", i.e. on t(t-l),t(t-2), ... ,~(t-m+l). 

3.4.1 First Moments 

3.4.1.1 Ei(t) = iV' 

Let t )- 0. From Eq. (3.27), 

Et(t+l) = EE { t ( t + 1 ) I H t ) 

m-2 
= E(i(t+l)-iV)E( L e(j).e(t-j)-A) 

j=0 

(3.2B) = 0. 

This makes sense: if the valuation rate of interest 

is correct "on at..1erage", then on at..1erage .e (t) is 0. 

Consequently, 
m-2 

HC + L t(t-j)/a 
j=t 

m1 
t < m-2 

EC (t ) = 

m-2 
EF (t ) = AL - L t(t-j)am_jl la ml 

j=t 

EC(t) = HC 
t > m-2 

EF(t) = AL. 

The ini t ia 1 eondi t ions hat.1e an ef feet on the first 

moments of C{t) and F(t) ,·,hen t ::: m- 2, and none 

aft er\"ard s . 
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Matters are slightly more convoluted 

3.4.1.2 

From Eq. (3.27). 

E-€(t+l) 

(3.29) 

= 

m-2 
= ~i( E e(j)~(t-j) -A) 

j=0 

EE ( .e ( t + 1 ) I H t ) 

m-2 
= ~ i ( E e ( j ) E.e ( t - j) - A ) • 

j=0 

Define M(t) = E.e(t), and 

M(z) = E 
t;::0 

-t 
z M( t ) . 

(z-transforms are briefly explained 1n Appendix 3.2.) 

Eq . ( 3 . 29) imp 1 i e s 

(3.30) 

= ~i E z-t 
t~0 

E z-t M(t+l) 
t~0 

Z; e(j)l1(t-j) -
j~0 

-t 
~i·A· E z 

t20 

"men 

The left hand side of this equation is zM(z)-zM(0), 

\."h i 1 eon t he rig h t hand sid e \'Ie h a '-' e 

(3.31) = 

E e(j)z-j 
j~0 

E z-t+ j
l1(t-j) 

t20 

E e(j)z-j 
j ~0 

-s 
E z M( 5) + E e(j)z-J 

j ~0 s~0 

= e(z)M(z) + Q(z), say. 

Q(z) reflects the initial conditions. 
-t -1 

E z = 1/(I-z ) Eq. (3.30) becomes 
t~0 

-1 
E 

s=-j 

-s 
z .e(s) 

Since 

zM(z) - z.e(0) - - - -1 = ~ie(z)M(z) + ~iQ(z) - ~iA/(l-z ) 

(3.32) M( z) = (.e(0)+~iz-lQ(Z))/(1-~iz-le(z)) 
-1 -1 -1 -1-

-~iA~ (l-z ) /(l-~iz e(z)). 
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From M(z), I shall no,', find an expression for rt(t), 

taking for granted that initial conditions are nil (t(s) = 
0, -m+2 ~ s ~ 0). First, 

-1- -1 , -1- ,2 -2- 2 
(1-~iz e(z) = 1+~lZ e(z)+~l z e(z) + ... 

corresponds to 

1{t=0} + ~ie(t-l) + ~i2e(2)(t-2) + 

"mere e(n) is the n-th convolution of e(.), i.e. 

e(n+l)(t) = L e(j)e(n)(t-j), 
j 20 

= eft). 

The first term on the right hand side of (3.32) 

vanishes and thus (using basic properties of z-transforms, 

see Appendix 3.2) 

Et (t ) = rt( t ) 

(3.33) 
t-2 t-3 

= '''''[I ' ,.. (') Al,2 ,.. e(2)(J') -~ln {t~I}+ ~l ~ e J + ~ ~ 

,t-l 
+ ••• + ~l 

j=0 j=0 

Once E~(s), 0 S s ~ t, have been calculated - either 

from Eq. (3.29) or from Eq. (3.33) - the expectations of 

F(t) and C(t) are found from Eqs. (3.24) and (3.25): 

EF(t) = AL - EUL(t) 

rn-l 
(3.34) = AL - E E€(t-j) am-TI /aml ' 

j=0 
m-J 

EC(t) = He + EADJ(t) 

m-l 
= HC + L Et(t-j)/a 

j=0 
iiil (3.35) 

Propo sit ion 3. 4 tell s ,·rna t EF ( t) and EC ( t) become 1 n 

the limit (the proof is in Appendix 3.3). 
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Proposition 3.4. I f I ~ i I ( (Ee ( j ) ) -1 , the n E.e ( t ) , 

EC(t) and EF(t) have finite limits as t 4 -, and 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

3.4.2 

Only 

E.e(-) = -~i(l+iv)-lAL/(l-~iEe(j» 

EC(-) = HC + ma~IE.e{_) 

m-l 
EF(QO) = AL - (E am_

j
\ laffil )E€(IID) 

j=0 

= AL[l + ~i(l+iv)-I]/(l-niEe(j»). 

Second Moments 

the case ...1i = 0 ( i . e • 

considered. T~ro facts are essential: 

(i) E.e(t) = 0 ~t 2 1 (Section 3.4.1.1). 

is 

(ii) {.e(t)}t~l is an uncorrelated sequence, for, if 

1 ~ s ~ t, 

Cov(t(s),t(t+l» = E.e(s).e{t+l) 

= EE(.e{s).e(t+l) 1Ht) 

rn-2 
= E(i{t+l)-iV)E€(s)( E e(j)€(t-j)-A) 

j=0 

(see Eq. (3.27» 

= 0. 

(Note: though the t(t)'s are uncorrelated, they are 

certainly not independent.) 

Remark 3.7. It may now be explained why the 

con d i tiD n ~ i = 0 i simp 0 sed her e, \.ffl i lei twas n ' t ne e de d 

in the case of the Spread method (Section 3.3.2). 

When ~i ~ 0, propert ies (i) and (i i) above hold no 

more. Therefore, all the simplifications brought about by 

the fact that the ~(t)'s are uncorrelated (see below) are 

not permitted. 
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Accordingly, calculating '.Jariances becomes a much 

more arduous task - or so it seems at this point in time. 

The partial results so far obtained do not merit inclusion 

here. 

From Eq. (3.27), 

Var-€(t+l) := 

:= 

:= 

EE(.e(t+l)2 IHt ) 

2 m-l 2 
o E{ L e(j).e(t-j)-A) 

j=0 

m-2/\t-l 
02E[ E e(j).e(t-j) 

j=0 

m-2 
+( L e(j).e(t-j)-A)]2 

j:=t 

2 m-2I\t-l '"l 

:= 0 L e(j)LVar.e(t-j) 
j=0 

'"l 2 m-2 
+0 ( L 

j=t 
e(j)t(t-j)-A)L. 

I used the fact that 
m-2 

A(t) := L e(j)~{t-j) - A 
j:=t 

is not random (it only depends on the initial conditions 

.e(s), 5 ~ 0). Thus 
2 m-2 2 2 2 

(3.40) Var.e(t+l) = 0 E e(j) Var.e(t-j) + a A(t) . 
j=0 

Define V(t):= Var.e(t), and take z-transforms on both 

5 ide 5 0 f Eq. (3. 40) to ge t 

zV(z) 

or 

(3.41) V(z) = 

where 

= 

115 

2 _. 
e(j) :: J 



Section 3.4 

and 

= _I. 1\( i\2 z -j nUl • 

j~0 

Using Eq. (3.41) it IS possible to write down a 

somewhat explicit expression for Var ~(t): 

~( 2 -1~ 2 -l~ 4 -2- 2 
V z) = a z A2 (z)(1+a z e 2 (z)+a z e

2
(z) + ... ) 

2 -1- 4 -2- - 6 -3- - 2 = a z A2(z)+a z A2 (z)e2 (z)+a Z H2 (z)e 2 (=) + ... 

which means that 

(3.42) V (t ) 2 2 4 t-2 
= a A(t-l) + a E e(j)2A (t-2-j)2 

j=0 

2t 
+ a 

is the n-th convolution of 2 e(+) .) 

VarF(t) and VarC(t) can be expressed in terms of 

Var~(s), t-m+1 0( s ~ t. From Eqs. (3.23), (3.24) and 

(3.25), keeping in mind that the ~(s)'s are uncorrelated. 

m-l 
= a;2 E Var~(t-j) (3.43) 

(3.44) 

VarC(t) 
\111 . 0 

J= 

VarF(t) 
m-l 

= iiffil-2 E a~ Var~ ( t - j ) . 
. 0 m-JI 
J= 

The next proposition is concerned with the limits of 

VarC(t) and VarF(t), when 

Appendix 3.3. 

Its proof IS In 

Proposition 3.5. Assume Ei(t) = iV. If 

then Var~(t), VarC(t) and VarF(t) have the following 

limits as t ~ 110: 
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(3.45) = 2 . -2 2 2 2 
o (1+1V) AL 1(1-0 Le(j) ) 

(3.46) 

(3.47) 

If 

then all those limits are equal to ~. 

Covariances can also be calculated: 

Proposition 3.6. Assume Ei(t) = iV' 

o <: h ( rn 

Cou(F(t),F(t+h» = Cov(UL(t), UL(t+h) 

m-h-l 

and let 

a~2 L 
j=0 

= Var-€ ( t - j ) a=-::-!j a h 'j m-JI rn- -J 

and 

and 

m-h-l 
CO'-' (C ( t ) , C ( t + h) ) = a~2 L Var.e ( t - j ) . 

lim Correlation (F(t),F(t+h)) = 
t 

j=0 

m-h-l 
L 

j=0 

m-l 
L a~ 

rn-JI 
j=0 

lim Correlation (C(t),C(t+h» = I-hIm. 
t 

All co\'ariances and correlations vanish when h ~ rn. 

The contrast with the Spread method is striking (see 

Prop. 3.3). On the one hand, under the Spread method, 

(F(t),C(t» and (F(t+h),C(t+h» are correlated for any h. 

In the 1 i rn it, the cor reI a t ion i s q h, and q rna y be qui t e 

high (e.g. if Ei(t) = iV' then q = am-II laIDl)· 
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On the other hand, under the Amortization of Losses 

method, the correlation between (F(t),C(t)) and 

(F(t+h) ,C(t+h)) diminishes rapidly as h increases, and 

vanishes for any h} m. 

3.5 COMPARISON OF METHODS: NUMERICAL EXAMPLE 

The purpose of this section is to illustrate and 

complement the results of 3.3 and 3.4. In 3. 5 . 2 the t \'10 

methods of adjusting the normal cost are compared, uSIng 

as criteria the variances of F and C. The "trade-off" 

obserl.Jed bet"1een VarF and VarC is further analyzed in 

3.5.3. 

3.5. 1 Assumptions 

The illustrations of Sections 3.5.2 and 3.5.3 are 

ba sed on the fo llo\."i ng as sumpt ions. 

Population 

Entry Age 

Retirement Age 

English Life Table No. 13 
(males), stat ionary 

30 (onlY) 

65 

No salary scale, no inflation on salaries 

Benefits 

Funding methods 

Valuation interest 
rate 

Actuarial liability 

Normal cost 

Actual rates of 
return 

Straight life annuity 
(2/3 of salary) 

Entry Age Normal and 
Aggregate 

1 = 451% of payroll 

1 = 14.5% of payroll 

{i(t)}t~1' i.i.d., 

Ei(t) = iV = .01. 

\."i th 

1 The calculations are in QppendiK 3.6. 
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Because Ei(t) = i , 
v 

lim EF(t) = EANAL 
t 

lim EC(t) = EANNC 
t 

in all cases. (Including the Aggregate method see 

Section 3.3.4. Given this particular population and 

interest rate, the value of m satisfying 

am] = PVS/S 

is slightly less than 17.) 

The tables and figure show the "relati\Je standard 

deviations" 

and 

lim [VarF(t)]1/2/EF(t) 
t-t-

lim [Varc(t)]1/2 /EC (t). 
t-+-

That is to say, the standard de\7iations of F(-) and 

C(-) are expressed as percentages of their respective 

eHpected \'a lues. 

3.5.2 The Trade-of f Bet"J'een VarF and VarC 

Table 3.1 contains the results produced by the Spread 

method, and Table 3.2 those produced by the Amortization 

of Losses method. The standard de\Jiation of the earned 

rates of return, a, takes the values 2.5%, 5% and 10%. 

Comments: 

1. Comparing the figures resulting from identical values 

of m, we see that 

(i) under the Amortization of Losses method, greater 

emphasis is laid on security of benefits (i.e. 

VarF is smaller) than under the Spread method. 

( i i) howe \Je r , con t rib uti 0 n s h a ve a s rna 1 1 e r '.J a ria n c e 

under the Spread method and are thus more 

"stable" than with the other method. 
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2. It is seen that, for a ~ 10'l., the standard 

deviations of F{-) and C(-) are nearly linear in a. 

This linearity gradually disappears, though, as a and 

m become larger. 

3. Within the range of a and m chosen, no single value 

of m is "bet tel''' than the others. As m is \Jaried, 

there is a trade-off bet~ .. 1een VarF and VarC, e.g. 

increasing m reduces VarC, but increases VarF. 

4. This trade-off is a direct outcome of Eqs. (3.19}, 

(3.20), (3.46) and (3.47) - see Props. 3.2 and 3.S. 

HO\,le\7er, the following asyrnptot ic formulas 9 l\'e a 

more i ntui t i '.Fe unders t and ing of the ~ .. 1ay VarF and VarC 

t.1ary wi th m. They are l.1al id "men i=0 and 02m -+ 0 as 

m -+ GO. See AppendiK 3.4 for their derivation. 

Spread method: 

(3.48) 

(3.49) 

2 m 2 
VarF(~) ~ a 2 AL , 

1 
VarC(~) .~ 0

2 
2m AL2 

Amortization of Losses method: 

(3.50) 
2 

m .... 
VarF(-) .~ a AL L , 

3 

2 
1 

AL2. VarC{e») ..... a 
m (3.51) 

In "lOrd 5: when i is close to 0, the standard 

deviation of F (resp. of C) is roughly proportional to Jrn 
(resp. to 1/v"rn). For instance, in Tables 3.1 and 3.2, 

moving from m=5 to m=20 approKimately doubles the standard 

de1.Jiation of F(DD), and halves the standard deviation of 

C (-) • 

120 



..... 
N ..... 

m a = .025 a = .05 a = .10 

1 

5 

10 

20 

40 

AggregBte 
(m !: 17) 

1 
[Var F(m )]2 

AL 

2.5 % 

4.2 

5.8 

8.3 

12.4 

7.6 

1 

[Var C(m)]2 
NC 

77.0 % 

26.4 

18.9 

14.2 

11.6 

15.2 

1 
[Var F(m))2 

1 
(Var C(m))2 

1 

[Var F(m)]2 
AL NC AL 

5.0 % 154.0 % 9.9 % 

8.3 52.9 16.8 

11.7 37.9 23.7 

16.8 28.7 35.0 

25.3 23.8 56.2 

15.3 30.6 31.6 

TABLE 3.1 Relative Standard Deviations of F(m) and c(m) under the Spread Method 
1 

(Ei(t) = .01, a = [Var i(t)]2) 

1. 
[Var C( m ) ]2 

NC 

307.8 % 

106.5 

77.1 

59.8 , 

52.6 

63.2 



.... 
~ 
~ 

m 

1 

5 

10 

20 

40 

o = .025 o = .05 o = .10 
1 I J I 1 

[Var F(m)J2 [Var C ( m ) ]2 [Var F( m ) ]2 [Var C( m ) ]2 [Var F(m )]2 

AL NC AL NC AL 

2.5 % 77.0 % 5.0 % 154.0 % 9.9 % 

3.7 35.1 7.4 70.3 14.8 

4.9 25.5 9.9 51.1 19.9 

6.8 18.9 13.7 38.1 28.0 

9.7 14.7 19.6 29.9 41.6 

TABLE 3.2 Relative Standard Deviations of F(m) and C(m) under the Amortization 
1 

of Losses Method (Ei(t) = .01, 0 = [Var i(t)]2) 

.1 
[Var C(m )]2 

NC 

307.8 % 

141.3 

103.2 

78.1 

63.3 
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3.5.3 The Optimal Region 1 ~ m 

The object of this section 1S 

obser1.7ations made in the last section. 

follo\'ls is taken from Dufresne (1986); 

* <: m 

to refine the 

Most of what 

onl y the Spread 

method is considered. The assumptions are unchanged 

(Section 3.5.1). 

Table 3.3 and Figures 3.1 

deviations of F(-) and C(ao) when i = 
show the 

.01 and a = 
standard 

.05. But 

this time a wider range of m's is taken into account. 

m 

1 

5 

10 

20 

40 

* 60 (=m ) 

80 

100 

5.0% 

8.3 

11.7 

16.8 

25.3 

33.4 

41.9 

51.4 

TABLE 3.3 

JvarC(CD) 

HC 

154.0% 

52.9 

37.9 

28.7 

23.8 

22.9 

23.5 

25.1 

Relative standard deviations of F(-) and C(-) 
under the Spread method 

(i = .01, a = .05). 

The trade-off alluded to previously does take place, 

* but only up to m = 60; beyond this point, augmenting m 

causes both VarV and VarC to increase. With a \1iew to 

minimizing variances, any m > 60 should therefore be 

rejected, for clearly some m ( 60 \oJQuld reduce both VarF 

and VarC. For this reason, I will call the range 

* 1 < m ~ m the "optimal region". 
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8 

8 

1.6 

1.2 

.8 

.4 

o 

• m = 1 
I 
I , 
I 
I 
I 
t 
I 
I 
t 
t 
I 
I 
I , , 
I 
I 
t , 
\ 
\ , 
\ 
\ 
, m = 15 .. , --

" ... ' .... 
---~----------------.. ------- --- m = 150 

m*'= 60 

.2 .4 .6 .8 

1 

[Variance F( CD ) J2/ EF( CD ) 

FIGURE 3.1 

---

1.0 

_ ... -­--

Relative standard deviation of F(-) and C{-) 

(i = .01, a = .05, cf. Table 3.3) 

1.2 

Proposition 3.7 ascertains under l .. 1hich conditions 
fit 

m 

ex i s t sand, \.,he nit doe s , g i ',,1 e san e K P 1 i cit for mu 1 a for 

it. The proof is in Appendix 3.5. 

Proposition 3.7. Assume Ei(t) = i = iV' and define 

Y = (1+i)2 + 2 
a . 

(i) If y > 1, then both VarF(-) and 'JarC(-) become 
fit 

infinite for some finite m, and there exists m such 

that 

( 1 ) 

( 2 ) 

for * m <: m 'JarF(-) increases and VarC(-) 

decreases with m increasing; 

* for m ~ m both 'JarF (-) and VarC (-) i ncrea se 

with m increasing. 
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Moreover, 

\omen i ~ 0, 

* m = -log[(vy-l)/(y-l)]/log(1+i); 

when i = 0, 

* 2 m = 1+ 1/0 • 

(ii) If Y = 1, VarC(-} ~ 0 and VarF(-) ~ - as m ~ _, 

although VarF(-} stays finite for all m. 

(iii) If Y ( 1, VarC(-) ~ 0 and VarF(-) has a finite limit 

as m ~ aD. 

In (ii) and (iii), VarF(aD) lncreases and VarC(ao) 

decreases as m increases, for 2 < m { -

o 

.05 

.10 

. 15 

.20 

.25 

i -.01 

158 

41 

22 

o 

401 

101 

45 

26 

17 

TABLE 3.4 

.01 

60 

42 

28 

19 

14 

.03 

23 

20 

16 

13 

10 

.05 

14 

13 

11 

10 

8 

* m as a function of iV and 0 (nearest integer) 

Table 3 . 4 con t a ins n ume ric a 1 \' a 1 u e s 0 f * m , as a 

function of land o. It should be borne in mind that "i" 

is an auerage real rate of return, \·,hen interpreting the 

figures. 

Remark 3.8. The example in Table 3.3 and Figure 3.1 

* found m to be 60, \'lhich ha s no prac t i ca 1 consequence, 

since deficiencies or surpluses are not currently spread 

over periods of 50 years or more. 
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Howe 1Jer, Prop. 3.7 may have some practical 

importance, 

Table 3.4 

* if m turns Dut to be smaller. For instance, 

tells us that if i = . 03 and a = . 20, the 

optimal region shrinks to 1 ~ m ~ 13. 
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PROOF OF VarX = EVar(XIH)+VarE(XIH) 

Let H G be t\,1'0 a-fields, and K a random variable 

defined on G. Then 

VarX = EX2 - (EX)2 

= EE(X2IH) - [ EE ( X I H ) ] 2 

= EE(X2IH) - E(E(XIH»2 

+ E(E(XIH»2 - [EE(xIH)]2 

= EVar(XIH) + VarE(X IH), 

since 

Var{XIH) = E(X2IH) - [E(X!H)]2. 
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Z-TRANSFORMS 

Z-transforms are the discrete time counterpart of 

Laplace transforms. 

Definition. x(z) = Z[x(t)] = 
-t 

z x(t). 

Properties. 

1. Translation (h > 0) 

(a) Z[H(t+h)] 
h = z Z[x(t)] -

In particular, 

h-1 
L 

j=0 

h-" 
x(j)z J. 

Z[H(t+1)] = zZ[x{t)] - z·x(0). 

(b) If H(t) = 0 for all t ( 0 then 
-h 

Z[x(t-h)] = z Z[x(t)]. 

2. Convolutions 

Assume x(t) = y(t) = 0 for all t (0. Define the 

convolution of x(.) and y(.) as 

t 

(x*y)(t) = L x(t-j)y(j). 
j=0 

Then 

Z[(x*y)(t)] = Z[x(t)].Z[y(t)]. 

3. Summation 

This is a special case of Property 2. If 

t 
x(t) = E y(t), 

j=0 

then 

Z[K(t)] = Z[l]·Z[y(t)] 

= (1-z- 1 )-l Z[y(t)]. 

z-transforms are explained in greater detail in 

Bishop (1975). Gupta (1966) and Lifermann (1975). 
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Note. Here 1S an alternative definition of the 

Z-transforrn, in terms of the backward operator B from time 

series analysis. If Bx(t) = x(t-l), then B-
1

, the 
-1 

inverse of B, is the for\<1ard operator B x(t) = x(t+l). 

Thus 

Z[x(t)) = 

= 

Upon defining the operator 

'feB) = 

we get 

E z-t B-t x (0) 
t~0 

(1-z-l B-l)-l x (0). 

'feB) as 

(1_Z- 1B- 1 )-1 

Z[x(t)] = 'f(B)x(0). 
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PROOFS OF PROPOSITIONS 3.4 AND 3.5 

Lemma 3.1. Let 

(3.52) x(t) = 

where 

further that there exists k E ~ such that 

Then 

y(j) = 0, j} k. 

x(t) = (E y(j)n, t ~ n-k. 
j ~0 

Assume 

Proof. Taking z-transforms on both sides of (3.52), 

\ole obtain 

(3.53) 

No \'1 

y(1)(j) = 0 J ) k 

y2(j) 
j 

= E Y(i)y(j-i) = 0, j ) 2k 
i=0 

etc., i mp 1 y i ng t ha t x ( t) i s con s tan t for t ~ n k, \om i chi n 

turn means that the coefficients of x(z) are identical for 

t~ n·k. 

Note that in general 

E (x(j+1)-x(j»)z-j = (z-1)x(z) - zx(0), 
j~0 

which in the case at hand can be re\~itten as 

(z-1)x(z) = 
nk-1 . 

E z-J(x(j+1)-x(j» + ZX(0). 
j=0 

First take the limit as z ~ 1 on the left hand side 

to get ( from Eq. 3.53) 
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lim (z-l)x(z) 
z-ti 

JV' n = lim z [y(z)] 
z~1 

= [y(l)]n 

= (E y(j))n. 
j~0 

On the right hand side the limit is 

nk-l 
E (x(j+l)-x(j))+x(0) = x(nk). D 

j=0 

Proof of Proposition 3.4. 

(i) First assume zero initial conditions and refer to Eq. 

(3.33). 

(I) Say 0 { ~i ({Ee(j))-I. Define 

y(j) = fli·e(j). 

Then 0 ( Y(l) = Ey(j) ( 1. 

To ShO\,1 that E.e{t) has a finite limit, it is 

sufficient to show that 

get) = 1 + 
t-l 

E 
j=0 

t-2 (2) 
y(j) + E Y (j) + ••. 

j=0 

has a finite limit. From Lemma 3.1, 

o ~ 
...... ..... 2 

g{t) ~ l+y(l)+y(l) + ... = 
.... -1 

( 1 -y ( 1 ) ) ( -. 
Furthermore, g (t) increases \-li th t. 

does converge in m. 
Thus g (t ) 

(2) Say -(Ee(j))-l < fli < 0. Define 

y(j) = -J.He(j). 

Then 0 ( ~(1) = Ey(j) (I. I will show that 

h(t) = 

t-1 
1 - E y(j) + 

j=0 

has a finite limit as t ~ -

If n ) 0, 
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t+n-1 t+n-2 
Ih(t+n)-h(t) I = I E y(j) - E y(2)(j) 

j=t j=t-l 

t+n-3 
+ £ y(3)(j) - ... I 

j=t-2 

t+n-1 
£ 

j=t 

t+n-2 
y(j) + E y(2)(j) 

j=t-l 

t+n-3 
+ E y(3)(j) + ... 

j=t-2 

= I g ( t +n) -g ( t ) I . 

is a Cauchy sequence (from Step (1». 

Hence (h(t)}t~0 is also a Cauchy sequence, and converges 

in IR. 

(3) Steps (1) and (2) abol.Je permit the taking of 

limits on each side of Eq. (3.29), which yields 

E~(-), Eq. (3.36). Eq. (3.37) then results from 

Eq s. ( 3 . 23) and (3. 24) . 

As to EF ( .... ), Eq. ( 3 . 25) imp 1 i e s 
m-l 

EF(-) = AL-EUL(-) = AL - Et(-) E arn-Jl la--:-1 
. 0 m J ml 
J= 

= AL[1-~i£e(j)+~i(1+iV)-1£a~ la~ ]/(1-~.£e(jj) 
m- J I ml 1 

from \'lhich Eq. (3.39) follows, since 

m-1 m-2 

(1+iV) -1 £0 am_ jl laml - .£0 am-l-jl/aIDl 
j= J= 

m-l 
= a~m-1 £ (a~ - a ) 

1111 • 0 m- J I m- 1 - j I 
J= 

m-1 . 
= a~ E (l+iv)-m+ J 

j=0 

-1 
= (1+iV) . 
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(ii) Now assume arbitrary initial conditions. 

term of Eq. (3. 32) 

R(z) = (~(0)+~iz-1Q(z»/(1-~iz-1e(z» 
..... -1· ... · = P(z)/(1-~iz e(z» 

The first 

corresponds to the effects of the initial conditions 

on Et(t). I will ShO\,1 that if I~i I ( (Ee( j» -1, then 

R(t) ~ 0 as t ~ -. 

F(z) 

Now 

R(z) 

is a polynomial of finite order 

F(z) = 
n 
E z-jP(j). 

j=0 

-1 
in z 

..., .,.,. . -1-" ..... .2 -2..,. 2 
= P(z)+P(Z)~lZ e(z)+P(z)nl z e(z) + ... 

\,lh i chi mp lie s 

(3.54) 

,-me r e (d e fin e II P II = s up I P ( t ) I ) 
t 

I(P*e(n»(t) I = IEP(j)e(n)(t-j)1 
j 

-:: liP" Ee(n)(j) 
j 

= IIPI! (Ee(j»n 

(from Lemma 3.1). 

Reasoning as in the proof of Lemma 3.1, it can be 

seen that 

(p*e(n»(t) = 0, for all t > (n+l)(rn-2). 

In view of expression (3.54), \'Ie infer the existence of 

{ t} such that 
n n!: 1 

t 2 t ~ 
n 

IR(t) I -( E IIPIII~i Ij(Ee(j»j 
j~n 

= IIPIII~iEe( j) In/( 1-I~i Ire{ j» 
~ 0 as n ~ -. 0 
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Proof of Proposition 3.5. 

The situation is simpler than with Prop. 3.4, because 

Var.e(t) is always non-negative. 

First assume 0
2 {(Ee{j)2)-1 and consider Eq. 

(3.42). Denote IIAII = supIA(t)l. 
t 

Lemma 3.1 implies that for any n ~ 1, 

Thus, 

t-n 
E e(n-l){j)A(t-n_j)2 ~ 

. 0 2 J= 

sup V(t) 
t 

-'. 02J1A1I2 + 04e2 (1)IIAII 2 + 06e2 (1)2I1AII2 

2 2 2·~ 
a IIAII 1(1-0 e 2 (l» = ( -

+ ••• 

Hence 't.'1e may take limits inferior and superior on each 

side of Eq. (3.40), to obtain 

and 

lim inf V(t) 
t 

lim sup V (t ) 
t 

<: 
2 2 2· .... 

a A 1(1-0 e 2 (l». 

These t't.'10 inequalities account for Eq. (3.45). Eqs. 

(3.46) and (3.47) then follow from Eqs. (3.24) and (3.25). 
2 2 -1 

Now suppose 0 0 ~ (Ee(j» . 

Eq. (3.40) clearly ShO\'lS that, 

is a strictly increasing function of 

for fixed 
2 o. Thus 

t, Vart (t ) 

lim inf Var~(t) I 2 2 ) lim Var.e(~). 

t 0 =00 a 2 t(Ee(j)2)-1 

From Eq. (3.45), the right hand side is infinite. 
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ASYMPTOTIC RELATIONSHIPS FOR 

VarF(-) AND VarC(-) 

Suppose iV = i = 0 and 

(3.55) 

(i) Spread method 

From Prop (3.2) (Section 3.3.2) 

(3.56) 

(3.57) 

Notice that 

Since 

2 2 
VarF(-) = a AL l(l-k) 

VarC(-) = [VarF(-)]/m2
• 

-2 2 
m(q -I) = m[(l-l/m)- -I] 

= m(m2 /(m-l)2-1) 

2 2 = ( 2 m - rn ) I ( m- 1 ) 

4 2 as m 4 -, 

condition (3.55) ensures that k ( 1 holds for all m) N, 

for sonle N ( -

To prove Eq. (3.48), I need to show that 

2 2 VarF(-)/[a mAL 12] 4 1 

as m 4 DO. From Eq. (3.56), this is equi\Jalent to showing 

that m(l-k) ~ 2. We have 

from (3.55) 

222 
m(l-k) = m[l-(1-1/m) ] - a mq 

= 2 -11m - a 2
mq2 

4 2 as m 4 -

Formula (3.49) is a consequence of (3.57). 

(ii) Amortization of Losses method 
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Set iV = 0 in Prop. 3.5 (Section 3.4.2) to obtain 

(3.58) 

(3.59) 

(3.60) 

First, 

rn-2 
Vart(~) = a

2
AL2/{1 - a

2 
E [(rn-l-j)/m]2) 

j=0 

m-l 
VarF(oo) = E [(m-j}/m]2Var €(_) 

j=0 

VarC(-) = Var€(-)/m. 

-2 m-2 
m E (m-l-j)2 = 

j=0 

-2 
m 

m-l 
E j2 

j=1 

-2 
= m (m-l)m(2m-1}/6 

- m/3 as m ~ -. 

(See Spiegel (1971), p. 98, for the summation formula used 

abo\Je. ) 

This, together with Eq. (3.58), proves that 

(3.61) as m -+ -. 

No,-, turn to VarF(-) (Eq. (3.59». 

summation formula shows that 

.., m-l 
E [(m-j)/m]~ ~ m/3 

j=0 

,·,hieh takes eare of (3.50). 

The same 

Fin a I I Y , Eq s. ( 3 • 60) and (3. 6 1) c I ear I y imp I y (3. 5 1 ) . 

Remark 3.9. As approximations for VarF(-} and 

Va r C ( -) J for rnu I a s (3. 48) t 0 (3. 5 1 ) 

e\'en when iV ~ 0. For example, 

and m = 10, 

are somet imes ',aluable, 

if i V = . 01, a = .05 

(i) Spread method: formula (3.48) yields 

[VarF(_)]1/2 /AL . 11.2'l. 

while the exact number is 11.7'l. (Table 3.1)i 
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(ii) Amortization of Losses: formula (3.50) yields 

[VarF(-)]1/2/AL ~ 9.1'l. 

~mile the exact number is 9.91. (Table 3.2). 
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APPENDIX 3.5 

PROOF OF PROPOSITION 3.7 

Define -1 
~,= (l+iV) . From Prop. 3.2, we need to 

look at the behaviour of 

for VarF(-): 1/(1-k) 

and for VarC(-): 1/[a~ (1-k)], 

over the range 2 ~ rn (-. Recall that 

"lh ere a ml 1 S e \7 a 1 ua ted at rat e i = 1 V . 

( i ) If Y = (1 + i ) 2 +0
2 

} 1, then 

k = (a
m

-
11 

larnl ) 2 ( 1 +0
2 \12 ) 

con~.Jerge S to 2 2 1 +0 \7 } 1 i f i ~ 0, and t 0 

if i < 0. Thus both VarF(-) and VarC(-) reach infinity 

for SOlne finite m. 

(ii) If y=1, then l-k l 0+ as m -+ -, and thus Var F(-) 

tends to infinity, without ever reaching it. 

VarC{-), note that in this case iV ( 0 and 

1+02v2 = v 2 [{1+i)2+02] = v 2 . 

Thus 
.. 2 2 .. 2 

= a IDl - ~.' a m- 11 

As to 

which tends to inf ini ty as In -+ OD 

converges to 0. 

VarC( .... ) therefore 

( iii) If Y { 1, it is ea 5 y to see t ha t 

lim k = Y ( 1, 
m 

which means that VarF(-) has a finite limit. 

it 
Formula for m 

Let y) 1, and define 

F(m) = 1/(1-k) 

C(m) = 1/[a~ (l-k)]. 
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Think of these as functions of a continuous variable 

m. 

Geometrically, * m i s the rn for \om i c h Va r C ( aD) i 5 a 

minimum, as a function of VarF(ao). But VarF(-) is a 

strictly increasing function of m, and thus dF/dm } 0 for 

any m!: I . 

Because of this, the points ,·mere dC/dF = 0 are the 

same as those where dC/dm = 0, since 

dC/dF = (dC/dm)/(dF/dm). 

dC 
(3.62) dm = 

d 
_[a 2 (l-k)]-2 [ .. 2 .. 2 (l+s)] ffil dm aml -am-II 

where 2 2 
s = 0 1.' • 

(i) i ~ 0: dC/dm vanishes if and only if 

( log ( 1 + i ) / d) 2l.' 
m .. (log(1+i)/d)2v 

m-l .. 
(l+s) affll = a m-II 

m m-l 
~ 1-1.' = (l+i)(I-v )(I+s) 

m ( l.'y - 1 ) / ( y - 1 ) ~ 11 = 

t=} m = -log[(uy-l)/(y-l)]/log(l+i). 

(ii) i = 0: 

if 

From Eq. (3.62), dC/dm 1.Janishes if and only 

d 2 2 
--[m -(m-l) y] = 0 
dm 

2 m = 1+1/0 . 
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APPENDIX 3.6 

AL AND NC (SECTION 3.5.1) 

The following values are needed (based on ELT13): 

.e
30 

= 95993 .e
65 

= 70426 

.. (0) 
a 30 : 35 1 

.. (0) _ 
a 65 -

Recall that 

1.3.8.3, 

NCIS 

815 

~ AL/S 

= 

= 

= 

= 

= 

= 

= 32.707 

12.686 

.1451 or 14.5% 

.. (.01) = 27.942 
a 30 :3Sl 
.. (.01) a

65 
= 11.739. 

From Sections 1.3.2.2 

( 3 ) ( 0 Ii!,) .. (0 ) r· (0 l 
21 ~65 30 a 65 a 30 ;3SI 

.1897 

(B/S - Ne/S)/d 

4.509 or 451%. 
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CHAPTER 4 

RANDOM RATES OF RETURN: 

CONTINUOUS TIME 

4.1 INTRODUCTION 

Like the preceding one, this chapter is concerned to 

calculate the moments of F{t) and C(t), but now in a 

continuous-time setting. Only the Spread method IS 

considered. The Amortization of Losses lTtethod is 

n~ntioned briefly in Paragraph 4 of Section 4.3.5. 

In 4.2, some comment s are made about nota t ion and 

assumptions. 

Chapter 3. 

The latter are much the same as those of 

Actual rates of return are represented as 

continuous-time white noise; this IS analogous to the 

i.i.d. assumption of the last chapter. (The merits of the 

white noise model are discussed in 5.2.) 
Consequently, F(t) nor,'l satisfies 

stochastic differential equation (SDE) . 

a particular 

As regards 

s p e c i f Y i ng t his S DE, t \-10 lin e s 0 f act ion are po s sib 1 e . 

The first one is directly to write do\-m the equation, 

using intuitive arguments only. In the case at hand, it 

appears that this approach lacks rlgour. Therefore, the 

other possibility has been chosen, namely first to imagine 

,J a I u a t ion s t 0 be per for me d .. n" time s per yea r, wit hi. i . d . 

returns 1 ike in Chapter 3; and, next, to ident ify the 

limiting stochastic process, ,·men n -+ aD The outcome of 

this analysis is contained in Section 4.3, and Appendices 

4.2 and 4.3. 

The first and second moments of F(t) and C(t) are 

calculated in 4.4. Their derivation rests on elementary 

properties of Ito stochastic differential equations, ~mich 

are outlined in Appendix 4.1. 
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Section 4.1 

This Section 4.4 is a continuous-time version of 

Section 3.3. Propositions 4.4 to 4.7 correspond to 

Propositions 3.1, 3.2, 3.3 and 3.7. 

The results of Chapter 4 are original. Proposition 

4.1 is essentially based on the paper by Joffe and 

Metivier (1986). 

The model presented in this chapter does require a 

higher degree of mathematical sophistication than the one 

used in Chapter 3. HO~Je'ver, it is believed that the 

follo,"'ing problems may be studied more easi ly wi thin a 

continuous-time framework than with a discrete one: 

higher moments of F(t) and C(t); 

other methods of adjusting the normal cost; 

probability densities of F(t) and eft); 

hitting times, e.g. the time it takes the fund to 

move from one level F 0 to some other let . .Jel Fl' 

This judgment is based on the extensiveness of the 

theory of SDE's and on the great number of applications it 

has found in engineering, economics, finance, etc. 

As concerns actuarial science, diffusion processes 

have been applied to ruin theory (cf. Beekman and Fuelling 

(1977), Emmanuel et ale (1975), Iglehart (1969), Ruohonen 

(1980»). 

Note: "Diffusion processes and "solutions of 

stochastic differential equations" are \Jirtually the same 

class of processes. See Chapter 9 of Arnold (1974). 

4.2 ASSUMPTIONS AND NOTATION 

For Section 4.3, the assumptions are identical to 

those described in 3.2. The only difference lies in the 

notation: the superscr i pt n added to a symho 1 makes 

reference to the situation n valuations are 

per for me d e \. e r y ye a r ( a t time s 0 , 1 / n , 2/ n , etc . ) . The 

absence of a superscript alludes to the limit as 

(e.g. Fn ~ F as n ~ -). 
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Section 4.2 

For example, B
n 

is the amount of the benefits paid at 

time kIn, k=0,1,2,... This means that Bn is of the order 
1 

of B In. Thus it is natural to require the limiting 

"instantaneous" rate of benefit outgo to be 

B = lim nan 
n 

(see Props. 4.2 and 4.3). The same comment applies for 
NC n and Sn. 

On the contrary, AL n is of the same order a s ilL 1 . 

Accordingly, Props. 4.2 and 4.3 suppose that 

AL = lim ALn. 
n 

(Same comment for PVBn and PVS n .) 

In Section 4.4, hypotheses (i), (ii) and (iii) of 3.2 

remain unchanged. The other ones become: 

(it.1) Valuation assumptions are fixed, including the 

valuation force of interest ~V. 

(v) First define W(t) as the Wiener process (see Appendix 

( 4 . 1 ) 

4.1). Then the actual (instantaneous) rates of 

return are 

~(t) = ~ + odW(t)/dt. 

dW(t)/dt 1S \-lhat is kno~'m as "".,hite noise". I tIS 

not a stochastic process in the usual sense, since 

W( t) is nO\'lhere d i f ferent iab Ie \'1. p. 1. But expressIon 

(4.1) is a convenient abuse of notation. It i5 also 

convenient (though not strictly accurate) to say that 

Y is the mean (instantaneous) rate of return 

and that 

0
2 is the variance of the rates of return. 

( ~l i) .. I nd i v i dua I 

Chapter 2. 

cost methods" have been defined 1n 

Fr 0 mas sump t ion (K i) 0 f 5 e c t ion 2. 2, \'Ie de d uc e 

( 4. 2) o = ~V·AL + NC - B. 

(v i i ) Prob(F(0):F0) : 1 for some F0 E m. 
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Let 

H
t 

= a-field of el.1ents prior to time t 

(i.e. generated by {U(s), s~t}) 

In all the cases considered in 4.4, it will turn out 

that F(t) and C(t) are "t-measurable, for every t ~ 0. 

Note. The analysis is conducted with real-term 

values, as in Section 2.4. The only eHceptions are 

Sec t ion 5 4. 4 • 3 and 4. 4 . 4, \'/h i c h s h 0 \-1 t hat s i mil a r res u Its 

hold for nominal monetary values. 

4.3 CONVERGENCE TO A DIFFUSION 

4.3.1 The Problem 

Imagine that contributions and benefits are paid n 

times a year. Changing the time-scale, Eq. (3.2) of Section 

3.2 is re\'~itten as 

( 4 . 3) = 

k = 0,1,2, ... 

Each sequence is still 

i.i.d •• (A small inconsistency should be noted: 

k k+l 

is the rate earned during the period (-, --). ) n n 

supposed 

in(k+l) 

In order to prove cont.Jergence, it is essential to 

k I l·n(.) no\'1 10 \,1 is defined. T\'1O d iff ere n t \-!a Y s 0 f do i ng so 

wi 11 be described, In Sections 4.3.3 and 4.3.4, 

respect it.'ely. 

Sect ion 4.3.2 says a fe\-I \.;IOrds about the part icular 

t y p e 0 f con t.J erg e nee wh i c h \'1 ill cone ern us, and a Iso 5 tat e 5 

the genera I resul t from \-lhich Propos i t ions 4.2 and 4.3 

will follow. 
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4.3.2 General Convergence Result 

Propos i t ion 4. 1 is about the "'-leak" convergence of a 

sequence of stochastic processes of a certain type. Weak 

convergence can be said to be a generalization of 

convergence in distribution. The latter concept does not 

suit the present situation, since an infinite number of 

random variables are involved at once. The monograph by 

Billinsley (1968) is by now a classical reference on \~ak 

convergence. Its introduction and first chapter explain 

the preceding ideas in great detail. 

The proof of Prop. 4.1 is very technical. 

found in Appendix 4.2. 

It can be 

Proposition 4.1. For each n ~ 1, let 

k , I} be an i.i.d. sequence of random variables, 

Ehn(k) 
n 

1 • Further = 0 and Varh (k) = assume 

{hn(1)2, n > I} is uniformly integrable. Also, let 

n dnx n n fn x 
n 

u (x) = + e l.1 (x) = + g , , 
(4.4) 

U(H) = dx + e, t.1 ( X ) = fx + g, 

d
n n fn and 

n 
\'li t h -+ d, e -+ e, -+ f g -+ 9 as n 

Define the processes Xn by 
k+l 

( 4. 5 ) Kn (_) 
n 

k k 1 k 1 

= Xn( _) + - un(Xn {_)) + t.,n {Xn ( -) ) h n (k + 1 ) 
n 7rl n n n 

k=0,i,2, ... 

( 4.6 ) Xn(t) = Xn([nt]/n), t !: 0. 

( 4 . 7 ) = 

Then {Xn , n21} cont.rerges \'1eakly to the process X, 

is the unique solution of the It6 SDE 
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( 4 . 8) dZ(t) = u(Z(t))dt + v(Z(t))dW(t) 

Z(0) = K0 w.p.i. 

The obsert.Jations belo\'1 should clarify the meaning of 

this proposition. 

Definition. A family {Xi' i E I} of random '.Jar 1-

abIes is said to be uniformly integrable if 

sup J 
I IX.I>a 

1 

IX. IdP 
1 

-+ o 

as a -+ - (Billingsley (1968), p.32). 

Eq. (4.6) is a technical requirement, which turns the 

rea liz at ion 0 f K n ( a s de fin e d by Eq . ( 4 . 5 ) ) i n t 0 

right-continuous functions (note: [z] i~ the greatest 

integer 5 z). 
(4.7) indicates that the initial values Xn(0) are not 

random, and COn\1erge to some finite X
0

• 

That the processes n K , as defined by (4.5), should 

converge to the solution of SDE (4.8) is on the \'mole not 

very surprising. Prop.4.1 has only one distinctive 

feature: it asks for very little in connection with 

{h
n
(.), n2:1}. There 

than the second; it 

is no condition on moments higher 
n 2 

is only supposed that {h (1) , n~l} 

is uniformly integrable. 

4.3.3 

Let us now return to the question of defining {in(k), 

k~l} for every n. 

Required here is a distribution for in(.), such that 

"n" independent random 'lariables having this distribution, 

say (i n (l), ..• ,i n (n)), \'1ill in some \-.Jay be equivalent to 

i 1 (1). This is not immediately obvious, for the "noise 

(or "randomness") introduced into the system IS not 

additive, but multiplicative. 
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In \'mat follows the distribution of i 1 (.) the 

"initial" distribution - \,lill be left unspecified. From 

it, the distribution of in(.) "lill be defined, using a 

linear transformation. T'·l0 ways of accomplishing this 

will be considered. The first one is directly concerned 
with the "discrete" rate i

1
(.), 

intJol1.1es the "instantaneous" rate 

whereas the other 

y1(.) = log(1+i 1 (.)). 

and 

( 4. 9) 

and 

The first possibility is to ask for both 
n 

E n (1+in(k)) 
k=1 

n 
Var n 

k=l 

= 

= Var (1+i
1(1)). 

The i.i.d. assumption then implies 

.n 
1 = = 

(4.10) Var in(.) = 

one 

Therefore, in order to let in(.) have a distribution 

of the same form as that of i 1 (.), it is defined as 

(4.11) 

Finally, define the normalized variables 

(4.12) = 

The definition of in(.) can now be used to transform 

Eq. (4.3), in a way which will allo,., the application of 

Prop. 4.1. 

(a) In the case of indit.,idual cost methods 

(4.13) = 
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Obser~Je that 

(i) the unfunded liability is spread over m·n periods of 

lIn year = m years; 

(ii) the annuity is evaluated at rate in = Ei n (.). 

In vie\', of Eq. (4. 13), Eq. (4. 3) becomes 

(4.14) 

\"mere 

and 
n 

r 

q n = 1 - 1/a 
m·nl 

= 

This expression is in turn transformed as follows 

(4.15) 

I n Eq. ( 4 • 1 5 ) , 

= 

= 

k 
+(i n (k+1)-i n )(qnFn(n)+ rn) 

k k 
Fn {_) + [(I+in)qn_l]Fn(-) + (l+in)rn 

n n 

k 
.n .n n n) n} + (1 (k+1)-1 )(q F (n + r 

k k 
n -1 . n n ] n () ( n) n} = F (n)+ n {n[(1+1 )q -1 F n + n l+i r 

k 
-1i2 n 1/2 n n( ) n)} n( ~ ) + n {(nVari (+)) (q F n +r h k.1 

= 
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n 
u (K) = [( On) n n n n 1+1 q -11K + n(l+i )r , 

n 11 (K) = ( 
.n 1/2 n n nVarl (t» (q x+r ). 

(b) In the case of aggregate cost methods, 

Eq. (4.14) 

redefined as 

results once more, 

n 
r 

n 
q = 

= 

if n n 
q and rare 

Eq. (4.15) is thus unchanged, as ~ .. 1ell as the 

definitions of un and v n above. 

Before Prop. 4.1 can be applied, it remains to 

( i ) sho\'1 that 

and 

is uniformly integrable, 

(ii) determine the limits u(x) and v(x). 

The details are in Appendix 4.3. 

Proposition 4.2. For e 1.'e r y n ~ 1, 1 e t { i n ( k ) , 

k 2: I} be an i. i . d. sequence, with in(.) gi1.Jen by Eq. 

(4.11). 

( a ) I n d i 1.7 i d u ale 0 s t me tho d s • 

Suppose that AL
n ~ AL and 

n n 
n(NC -B ) ~ NC-B as 

n ~ - If 

= 

then the processes Fn con 1.Jerge \'1eakly to the process F 

satisfying the Ito SDE 

(4.16) dF(t) = (YF(t)+C(t)-B)dt + aF(t)dW(t), 

F(0) = lim F
n 

(0) , 
n 

eft) = NC + (AL-F(t) )/a~) J 
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(4.17) 

(4.18) 2 a 

= 

= 

10g(1 + Ei 1 (+)) 

log{[E(1+il(+))2]/[E(1+il(+))]2}. 

(b) Aggregate cost method 

Suppose that nsn S PVBn 
-+, -+ PVB, PVS

n 
-+ PVS and 

as n -+ GO. If 

then the processes F
n converge ~/Jeakly to the process F 

satisfying (4.16), with 

(4.19) eft) = S{PVB-F{t))/P. 

2 
~ and a are still given by (4.17) and (4.18). 

4.3.4 Subdividing ~1(1) 

Another possible .,-laY of def ining in( +) consists 1n 
1 

fractioning the instantaneous rate Y (+). Denote 

= 

We now require 

= 

and 

1 
= Var Y (1). 

The appropriate linear 

distribution of ~1(+) is 
dist 1 1 

( 4 . 20) ~n ( + ) = n Ey (+) + 

transformation 

111 
Tn( ~ (+) - EY (+)). 

of 

We may then revert to discrete rates and define 

(4.21) = 

the 

1 {l·n(k), Propos i t ion 4. 3. For e\7ery n ~ , let 

k ;:: 1} be ani. i . d • seq u en c e , \-1 i t h i n ( +) 9 i 1.7 e n byE q . 

(4.21). Assume furthermore that Varyl(+) ( CD 
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The conclusions of Prop. 4.2 remain unchanged, except 

t ha t Eq s. (4. 17) and (4. 18) are rep 1 aced \Oli t h 

1 1 1 
E~ (+) + 2 VarY (.) (4.22) = 

(Q.23) 2 1 
a = VarY (+). 

(Proof in Appendix 4.3). 

4.3.5 Comments 

1. Comparison of Props 4.2 and 4.3 

An e x ami nat ion 0 f Eq 5 • ( 4. 1 7) and (4. 1 8 ), 0 n the 0 n e 

hand, and Eqs.(4.22) and (4.23), on the other, shows that 

to a certain extent the 1 imi t ing pcess F does depend on 

the wa yin ( • ) i s 

distribution i 1 (.)). 

defined (g i '-Ten the same 

For the purpose of assessing ho"," different 
2 

pairs ( Y ,a ) may be, it is helpful to make use 

"cumulant generating function", defined as 

k(t) = 
for a random variable 

neighbourhood of t = 0, 

(4.24) k(t) 

where 

kl = 

k2 = 

k3 = 

kq = 

log E exp(tX) 

X. When 

k(t) has the 

. k J 

E t J 
-·-t 

j21 J. 
= 

EX, 

E(X-EX
2

) 

E(X-EX)3 

E(X-EX)4 -

= 

it exists 

expansion 

VarX, 

2 
3(VarX) , 

initial 

the t ... 1'0 

of the 

in a 

etc. For more about cumulants, the reader is referred to 

Cramer (1946), pp. 185-187. 

Denote the two ... .rays of defining in{.), i.e. 

subdividing il{.) and subdividing yl(+), by the subscripts 

"a" and "b", respectively. Also, consider the cumulant 

generating function of y
1
(.). 
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Props. 4.2 and 4.3 mean that, firstly, 

Ya = log E(i 1 (.)+1} 

log E 1 
= exp(y )) 

= k(l) 

Eyl( . } 
1 

1 = + Var- y (+) 
2 

\·,hi 1 e 
1 

Yb = Eyl{+) + 2 Var yl(+). 

Secondly, 

+ 

a; = log{[E(I+il(.))2]/[E(I+il(+))]2} 

= k ( 2) - 2k ( 1 ) . 

Expression (4.24) tells us that 

and so 

k(2t)-2k(t) 212 = t 'Jar Y (.) + 0 (t ) 

2 1 
a = 'Jar Y (+) + ••• a 

may not be very different from 

= 'Jar Y 1 ( • ) . 

. . . 

In conclusion, if the cumulants of '1
1 (.) of third and 
2 2 

higher order are negligible, then (ya,aa) and (yb,ab ) 

are likely to be very close. 

One particular initial distribution is of special 

interest. Suppose 

Then 

k{t) 

2 
and so (y , a ) = a a 

2. Eq. (4.16) can 

dF(t) = 
,·,i t h 

is a norma I random ~.1ar i ab 1 e. 

1 = log E exp(ty (.)) 

= 
1 

t • Ey (+) 

2 
(yb,ab )· 

'") 

to£. 
+ -

2 
1 

'Jar y (.), 

be re\'lritten as 

(-aF(t)+r)dt + aF(t)dW(t) 
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a = - "I, r = 

for i n d i 1.7 i d ua leo s t me tho d s, 0 r 

a = S/PVS -"I, r = S·PV8/PVS - 8 

for aggregate cost rrethods. 

The parameters a and r are defined here in the same 

\"la y t he y \lIe rei n 5 e c t ion s 1 • 4 • 1 , 2 • 4 • 2 • 1 and 2 . 4 • 2 . 2 . 

This shows that the SDE (4.16) is a simple modification of 

the ordinary differential equations ,·1hich hold in the 

deterministic case. The added term of(t)dW(t) reflects 

the randomness introduced into the system. 

3. 
n 

Like each of the F 's, F is a Markov process. F ( t ) 

is also continuous w.p.l. 

4. AnIDrtization of Losses method 

Here are the partial results 50 far obtained in 

connect ion \IIi th thi s method. 

I f \1 a 1 t.1 a t ion s are per for me d n time say ear, and i f 

inter\1aluation losses are amortized O1.Per m years (= m·n 

periods of lin year), then Eqs. (3.23) and (3.24) of 

Section 3.4 become 

= 
m·n-l 

nCn 
+ E 

k=0 

k ( . n) 
€n(t_ -)/a 1 

n m·nl 

At present, it is surmised that the "leak limit of the 

sequence {Fn} thus produced sat isf ies the Ito stochast ic 

differential equation 

(4.25) 
-("I) -1 

dF(t) = [yF(t)+NC-B-(aml ) 

+ aF(t)dW{t), 

t 
I aF(u)dU(u)]clt 

t-m 

2 "lhere y and a are the same as In Props. 4.2 or 4.3 

depending on how in(.) is defined. 

Eq. (4.25) can be formally obtained from Eqs. (2.32) 

to (2.34) (Section 2.4.3), upon letting ~f3(t):: 0 and 

L\"I(t) = adW(t)/dt. Attempts to provide a rigorous proof 

have so far been inconclusive. 
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5 • One poi n t t hat \'Ia s I eft i nth e dar k "m end e fin i ng the 

seq u e n c e s {i n ( k ), k ~ I} i s "m e the r i n ( .) > 1 w. P . 1 . 

This is not required in the proofs of Props. 4.2 and 4.3, 

but is needed if F
n 

1S to make sense as an accumulating 

fund. 

The resul t is Ob1.1ious wi th the second \-lay of def ining 

in(o) (Section 4.3.4). So assume into) to be given by Eq. 

( 4 • 11) 0 f Sec t ion 4 . 3 . 3 , '" i t h i 1 ( .) ) - 1 ''1. P . 1 and 

Var il(o) } 0. Let 

a = 
b = 

[E( l+i (0) )2] lin 

[E ( 1 + i 1 ( 0 ) ) ] 1 In 

Observe that a > b
2 

and 

= 
n-1 n-2 2 2n-2 

a + a b + ••• + b 

> 

Then, from Eqs. (4.9), (4.10) and (4.11), 

1+in(0) = b + (1+il(0)_bn)[(a_b2)/(an_b2n)]1/2 

> b - bn[(a_b2)/(an_b2n)]1/2 

) 

= 

b - bn/(nob2n-2)1/2 

b(1-n
1/2

) > 0 for all n ~ 2. 

4.4 MOt1ENTS OF F(t) AND C{t) 

From nO\,1 on it is assumed that F(t) satisfies the Ito 

SDE 

(4.26) dF(t) = (~F(t)+C(t)-B)dt + aF(t)dW(t) 

"li t h 

(4.27) C(t) = NC + (AL-F(t) )/a~), 

in the case of indi\Jidual cost me"t:hods, or 

(4.28) C(t) = 5(PVB-F(t))/PVS 
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in the case of aggregate cost methods. 

supposed that 

It is also 

F(0) = F0 E fR w.p. 1. 

It can be sho~m that F(t) has finite moments of any 

order (see Paragraph 6 of Append i x 4. 1 ) . The se mamen t s 

are continuous functions of t. It is thus permissible to 

change the order of E( • ) and f , i . e . it IS a l"'1aYs true 

that 

t 
k 

t 
EF{s)kds, EI F(s) ds = f t ( CD k .' 0. , 

0 0 

4.4. 1 First Moments 

In the case of individual cost methods, Eq. (4.26) 

becomes 

(4.29) dF(t) = (-aF(t)+r}dt + aF(t)dW(t) 

"'lhere 
--

a = 1/aiDl 
- "I, r = He + ALI a ilil 

- B. 

-
Assume that a~ is calculated at rate YV' and that 

o ( m ( CID. 

Re"'1rite (4.29) as an integral equation: 

t t 
F ( 0) + 1 (-aF ( s ) +r ) d 5 + f of ( s ) dW ( s ) . 

o 0 
( 4 . 30) F ( t ) = 

Since 
t 

E 1 F(s)dU(s) 
o 

= o 

(see Paragraphs 3 and 6 of Appendix 4.1), we obtain 

t 
EF{t) = F(0) + f (-aEF(s)+r)ds, 

o 
which is equivalent to the ordinary differential equation 

d 
(4.31) dt EF(t) = -aEF(t) + r. 

Define M(t) = EF(t): 
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11'(~) = -aM( t ) + r, 11(0) = F(0) 
d 

( at at 
dt M(t)e ) = re 

at t 
l1(t)e F(0) J as - = re ds 

0 

t 
M(t) = F(0)e-at + J re-a(t-s)ds 

o 

(4.32) = F(0)e-at + (l-e-at)r/a. 

4.4.1.1 

We get 

a = 

"f = "f 
V 

Proposition 4. 4. 

(4.33) EF(ao) 

(4.34) EC(ao) 

Proof. Since a 

EF(ao) 

= 

= 

) 

= 
= 

= 

) 0. 

If "f = 'IV and 0 { m ( 

lim EF(t) = AiL 
t 

lim EC(t) = NC. 
t 

0, Eq. (4.32) i mpl ies 

ria 
-

(NC - B + AL/a
ml )ia 

AL ( 1 I a ml - 'I ) I a 

CD , 

from Eq. ( 4 . 2 ) (Section 

= AiL. 

Clearly EC (DO) = HC + (.AL-EF(-) )/a:=1 = NC. 0 
In, 

4.4.1.2 

then 

4.2) 

If 'IV differs from the mean rate of return 'I , 

Prop. 4.4 does not hold. We can only say that if a 

then 

1 im EF (t ) = ria 
t 
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and 

4.4.2 

lim EC (t ) 
t 

= HC + (AL-EF(CIE» )/a
IDl 

• 

Second Moments 

I will first use Ito's formula (Paragraph 5 of 

Appendix 4.1) ·to show that V(t) = Var F(t) satisfies the 

following differential equation: 

(4.35) V' (t ) = (-2a+a
2

)V{t) + a 2 (EF(t)2 

V(0) = 0. 

Le t 9 ( t , x) = (x - M ( t ) ) 2 , M ( t) = EF ( t ) . We ha t.'e 

gt{t,x) = -2(x-M(t) )M' (t) 

= -2(x-M(t»(-aM(t)+r) 

g'(t,x) = x 2(x-M(t» 

g" (t,x) = xx 2. 

H( t ) is continuous, and 

derivatives are also continuous. 

so the above partial 

Ito' 5 for mu I a rna y t h us 

be applied: 

dg(t,F(t» = [gt(t,F(t»+g~(t,F(t»(-aF(t)+r) 

1 
+ 2 g~x(t,F(t»a2F(t)2]dt 

+ g' ( t , F ( t ) ) aF ( t ) dW ( t ) 
x 

= [-2(F(t)-M(t»(-aM(t)+r) 

= 

+ 2(F(t)-M(t»(-aF(t)+r) + a
2
F(t)2]dt 

+ 2(F(t)-M(t»aF(t)dW(t) 

[-2a(F(t)-M(t»2 + a
2
F(t)2]dt 

+ 2a(F(t)-M(t»F(t)dU(t). 

Next, proceed as with EF(t): fir s t r e '-1l' i t e the 

preceding differential equation in integral form. 

noticing that 

IS7 

Then, 
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t 
E I o{F(s)-H(s»F(s)dW(s) = 0, 

o 

revert to the differential formulation to obtain Eq. 

(4.35) 
d 

V'(t) = dt Eg(t,F(t» 

= -2aE(F(t)-M(t»2 + 02EF(t)2 

= (-2a+0 2 )V(t) + 02M(t)2 

since EF(t)2 = VarF(t) + (EF(t»2. 

An explicit expression for VarF(t) can be derived in 

the same )nanner as for EF(t), this time using the 

integrating factor exp[(2a-02 )t]. Since V(0) = 0, \ole 

find 

(4.36) Vet) 
2 t 2 2 

= 0 I exp[(-2a+o )(t-s)](EF(s)) ds. 
o 

ProEosition 4.5. 

Let 0 { m ( CD. If 

(4.37) 

(4.38) 

If a ... .. 

infinite. 

Var 

Var 

1 
2 

2 0 , 

F( .... ) = 

C(-) = 

then both 

1 

1 2 
a > 2 0 , then 

222 
o (EF(-» /(2a-o ) 

- 2 
[Var F(-)]/(a iill ) . 

Var F(oo) and Var C(-) are 

Proof. 
2 

a ) 2 0 EF(-) = M(eD) 1S finite Slnce 

a ) 0. Let U(0) = 0 and 
2 2 2 

U' (t ) = (-2a+o )U(t) + a M(-) . 

U(-) 
2 2 2 Define It is easy to see that = a M(-) /(2a-o ). 

D (t ) = vet) - U (t ) . 

Then 

D' ( t ) 
2 222 2 2 = (-2a+o )V(t) + (2a-o )U(t) + a M(t) - 0 M(-) 

= (-2a+a
2

)D(t) + Z(t) 

where Z(t) = a 2 [M(t)2_H(_)2] ~ 0 as t ~ -
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The proof that D(t) -+ 0 as is contained in 

A p pen d i xl. 1 ( simp 1 y sub s tit ute 
t -+ -

2 2a:-a f or a ( t ) in the 

expression for D'(t». 

This proves Eq. (4.37). Eq. (4.38) follo\'IS from the 

definition of C(t). 

(see 

Eq. 

If 

1 2 
a ~ 2 a . EF(-) cannot be 0. This IS because 

-
r = HC - B + AL/a

iTil 

= AL ( 1 I a
IDl 

- Yv) } 0 

Eqs. (4.31) and ( 4.32) ) . 

So there exists to such that 

(EF(s»2 )- b } 0~ s } to' 

(4.36) implies (t ) t o}· 

a 

2 t 
V(t) , a f b ds -+ 00 as t -+ - 0 

to 

Proposition 4.6. Let u ~ 0. 

1 
} 

2 

-au 
F(t) = e Var 

-au C(t) = e Var 

Cov(F(t),F(t+u» 

Cov(C(t),C(t+u» 

Cot,J(F(f) ,C(t+u» = 
-au -e {Var F(t)}/affil· m 

2 
a then, as t -+ lID, 

(F(t) ,F{t+u» 
-au 

Correlation -+ e 

( C ( t ) , C ( t +u ) ) 
-au 

Correlation -+ e 

(F ( t ) , C ( t +u ) ) 
-au 

Correlation -+ -e 

Proof. Fix t > 0. Let F*(S) = F(s)-EF{s) and 

g(u) = Cov{F(t),F(t+u» 

* * = EF (t) F (t +u) . 

We have 

dF(s) = (-aF(s)+r)ds + aF(s)dW(s) 

and 
dEF(s) = (-aEF(s)+r)ds 
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\"h i chi mp I y 

dF*(s) = * -aF (s)ds + aF(s)dW(s). 
Thus 

t+u 
* F (t+u) = F*{t) + 1 (-aF*(s»)ds + 

t 

t+u 
1 aF(s)dW(s). 
t 

Multiplying by F*(t) and taking eHpectations, we get 

* * EF (t)F (t+u) 
u 

J * * = VarF(t) - aEF (t)F (t+u)du 
o 

since 

E(F*(t) 
t+u 

f 
t 

F(s)d\J(s) IH ) 
t = 0. 

Consequently, 

or 

u 
g(u) = g(0) - aJ g(V)dV 

o 

9 I (u) = -ag ( u ) , g(0) = Var F(t) 

g(u) = Co t.1 ( F ( t ) , F ( t + u) ) -au = e Var F ( t ) . 

The other formulas follow easily. 0 

4.4.3 Non-Stationary Population 

No\-, suppose tha t 

( i ) the population is not stationary; 

(ii) salaries grow with inflation (independent of the 

process W(t»; and 

( iii ) 

Then 

y is not necessarily equal to ~V. 

dF(t) = [YF(t)+NC(t)-B(t)+[AL(t)-F(t)]/a~ ]dt 

+aF(t)dW(t). 

Prot.,ided B( t), NC (t) and AL( t) are cont inuous 

fun c t ion s 0 f t, i t can be s ho ,-m (i nth e s a me f ash ion a sin 

Section 4.4.2) that 

d 

dt EF (t ) = -aEF(t) + r(t) 

and 
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d 
dt VarF(t) = (-2a+a

2
)VarF(t) + a 2 (EF(t))2 

~mere a is defined as before, and 

r(t) = MC ( t) - B ( t) + AL ( t ) I ~ffil . 

4.4.4 Aggregate Cost Methods 

Retain (i), (ii) and (iii) of 4.4.3, and suppose that 

S(t), PVB(t) and PVS(t) are continuous functions of t. 

Then 
d 
dt EF(t) = -a(t)EF(t) + r(t) 

and 

d 

dt Var F(t) = 
222 

(-2a(t)+a )Var F(t) + a (EF(t)) 

\'lhere 

aft) = S(t)/PVS(t) - ~ 

r(t) = S(t)PVB(t)/PVS(t) - B(t). 

If the assumptions of Section 4.2 are reinstated, and 

if, moreover, there is only one entry age into the scheme, 

then 

C(t) = EAMNC + (EANAL - F(t))S/PVS 

(Eq. (2.30) of Section 2.4.2.2). 

4.4 and 4.5 apply once more: 

In consequence, Props 

if ~ 

if a 

= ~V' then 

1 im 
t 

1 im 
t 

= S/PVS-~ ) 

1 i m VarF (t ) 
t 

EF(t) = 

EC (t ) = 

1 
2 

~ then 

lim VarC(t) 
t 

2 2 = [VarF(-)]S IPVS . 
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Note. The same formulas hold if PVS 1S replaced by 

PVS(n), n {-; see Section 2.4.2.2. 

4.4.5 The Optimal Region 

Prop. 3.7 has the follo~,,'ing continuous-time l..1ersion: 

Proposition 4.7. ~ssume 

( i ) If 'I} 
1 2 
2 a , then both VarF(~) and VarC{-) become 

infinite for some finite m, and there exists * m such that 

( 1 ) for 
IE 

m 5 m , increases and 

(2 ) 

MoreOller, 

decreases with m; 

for * m ~ m , 

''lith m. 

both VarF(cz» 

when Y ~ 0, 

and 

* 2 m = -log[l-Y/(2Y+a )]/'1; 

"1hen Y = 0 

* 2 m = l/a . 

1 
2 ( i i ) If '1- = - a VarC(-) ~ 0 and 'i , 

L 

VarC(-) 

VarF(oo) 

increase 

~ GO as 

m ~ -, although VarF(CD) stays finite for all m < -. 
1 'i 

( iii ) If ( 
L 

VarC(O!» ~ 0 and VarF(oo) has y - a a 2 
, 

finite limit as m ~ -. 

In (ii) and (iii), VarF(-) increases and VarC(CID) 

decreases as m increases, for 0 { rn { -. 

The proof uses the same arguments as for Prop. 3.7 

and the a 1 9 e bra i SIn f act simp 1 e r . 

omitted. 

It is therefore 

Comments 

1. Notice that the determining factor is now 

\,lh i 1 e i t \'/a S ( 1 + i ) 2 + a 
2 

1 n Pro p . 3 • 7 . T his 

surprising, for letting i 'I = e -1, 
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and thus (l+i)2+a2 ~ 1 

conditions as 2't+a
2 ~ 0. 

2'1 2 = e +a 

are essentially 

* ~ 

the same 

2. The formulae for m can also be sho~m to be 

approximately equivalent. 

i~0) 

In discrete time, 

-log[(vy-l)/(y-l)]/log(l+i). 
'I Letting l+i = e oroce more, giues, firstly, 

and secondly, 

and thus 

uy-l = (l+i)+va 2 -1 
2 

~ '1+a, 

y-l 2 
~ 2'1+a 

* 

* m is (if 

3. The continuous-time expressions for m make it easier 

to show that it is continuous at " = 0. Since 

log(l-x) 

\-Ie ge t 
2 

-log[I-'1/(2'1+a )]/'/ 

= 

= 1/(2'1+a
2 ) + (terms 

l/a
2 as y ~ 0. 

in 
2 

y ,'I ,...) 

This ensures that * rn does not have any odd behaviour 

at y = 0. The sa lTIe can be sa i d concern i ng i=0 in 

discrete time. 
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APPENDIX 4.1 

STOCHASTIC DIFFERENTIAL EQUATIONS 

1. The Wiener Process 

2 • Wh it e No is e 

3. Ito Stochastic Integrals 

4. Definition of SDE 

5. Ito' 5 Formula 

6 • E His t e nc e 0 f Mo nie n t 5 • 

Thi s short account of SDE's is intended for people 

with no background in the subject. It supplies the 

minimum amount of kno"11edge needed to understand Section 

4 • 4 • 

For a thorough treatment of the theory of SDE's, the 

reader is referred to Arnold (1974), and Gihman and 

Skorohod (1972). Kallianpur (1980) gives a more 

up-to-date presentation, using martingale theory. 

1. THE WIENER PROCESS 

W( t ) is a Wiener proces s if it is a homogeneous 

Gaus sian proces s, \'1i th (i) independent increment s, ( i i ) 

101(0) = 0 w.p. 1 and (iii) EW{t) = 0 and VarW(t) = t. It 

follo\"IS that W(t+h)-W(t) is a normal random tJariable~ of 

mean 0 and '.Jar i ance h. 

It is possible to choose a l.1ersion of W(t) \·mich 15 

continuous w.p. 1. 

The Wiener process is one instance of "diffusion 

processes . These processes have the disconcerting 

property of being both continuous and no\'mere 

Their paths are also of unbounded differentiable. 

variation (w.p.1). This eHplains ,my stochastic integrals 

(= integrals with respect to diffusion processes) have to 

be defined differently from the traditional Stieltjes 

integrals. 
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Note: The Wiener process I.S also kno\'m as "Standard 

Bro\'m i an Mot ion" . 

2. WHITE NOISE 

Having just asserted that W(t) is not differentiable 

any\,mere, I no \,1 introduce the derit.Jat ive of w ( t ) , 

d W ( t ) / d t, ali as" \-,h i ten 0 i s e . 

White nOIse does ha1..Je a (mathematical) existence, 

\-,hen seen as a generalized function (or "distribution"). 

I tis, ina c e r t a ins ens e , the con tin uo u s - time e qui ,J ale n t 

of a sequence of i.i.d. normal random llariables. Though 

it is convenient in giuing an intuitive idea of the 

behatJ iour of d i f fus ion processes, it should be remembered 

that dW(t)/dt does not in general obey the usual rules of 

the calculus. 

3. STOCHASTIC INTEGRALS 

Say T ( - and H2 [0,T] 

T 

= {suitably measurable random 

functions such that f 2 
f(t) dt < - w.p.I}. The Ito 

o 
integral is def ined in t\-10 steps. 

1 . Con sid e I' apr 0 c e ssG ( t ), s uc h t ha t e 1.1 e r y rea 1 i z a t ion 

G ( t , w) 0 f G ( t) i 5 \-1. P • 1 a 5 t e p f un c tiD n . I not her \-10 r d s , 

G(t) is constant ot.ler the inter t.1als 

etc., 0 < tl ( t2 { ... < tn = T. 

The Ito integral of G (with respect to W) is defined 

as 

(4.39) 
T 
J G ( t ) dU ( t) = 
o 

n 
L G(ti_1)[U(ti)-W(ti_l)]' 

k=1 

2. I tea n be s ho .. -m t ha t for any 

exists a sequence {G , n ;: I} 
n 

of step functions in 

H
2

[ 0, T], such that G
n 

con1..7erges to G in the follo\'ling 

sense: 
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T 
lim 1 IG{s)-G (s)1 2 ds = 0 \l/.p.l. 
n-t- 0 n 

The Ito integral of G is defined as the quadratic 

n~an limit of the integrals of G , i.e. 
n 

T 
f GdW = A 
o 

\'lhere A IS the random l.Jariable such that 

T 
lim E[A- f G dW]2 = 0 

n 0 n 

Her ear e t "10 bas i cpr 0 per tie s 0 fIt 0 i n t e g r a 1 s . 

(a) Linearity: if a,b E rR then 

(b) Say is the filtration attached to W. 

( I n t u i t i \1 ely, t he a - fie I d H t rep res en t s the i n for rna t ion 

k no ,·m at time t.) 

Then 

and 

Suppose G E H2[0,T], and also 

T 
f EG(t)2 ( .... 
o 

T 
EJGdW ;;: 0 
o 

T 
E(JGdU)2 

o 

T 2 
= JEG (s) ds. 

o 

These rema in l.1alid conditioning 

information kno\'m at time a ( T, that is, 

b 
E (J Gd W I H) = 0 a 

and 

a 

b 
E[(f GdW)2IH ] 

a 
a 

for any 0 < a ( b < T. 

= 
b 
f E[G(s)2IH ]ds, 

a 
a 
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Note: The stochastic integral described above is 

t e r me d .. Ito" be c a use i tis n Q t the 0 n 1 y po s sib 1 e Via. y 0 f 

constructing a stochastic integral. For e x a mp 1 e , the 

integral in (4.39) has different properties if 
1 

2[G(t i-I )+G(t i)] replaces G(t i-I) on the right hand side 

of the equat ion. This difference carries over to the 

1 imi t IG = lim JG (step 2). The integral so obtained is n 
n 

kno\·m as the "Stratonovich" stochastic integral. 

Stochastic differential equations of the Stratonovich type 

have also been studied, yielding a theory slightly 

different from the theory of Ito SDE' s. The interested 

reader is referred to Chapter 10 of Arnold (1974), or to 

Schuss (1980). 

4. ITO STOCHASTIC DIFFERENTIAL EQUATIONS 

A stochastic differential equation is an expression 

of the form 

(4.40) dV(t) = b(t,V(t»dt + o(t,V(t»dW(t), 

V (0) = c w. p. 1 , 0 '. t < T ( DO 

Re\,1r i t e (4. 40) as 
t t 

(4.41) V(t) = c + J b(s,V(s»ds + J o(s,V(s))dW(s). 
o 0 

X(t) is said to be a solution of the Ito SDE (4.40) 

if X(t) satisfies (4.41) for every t, assuming that 
t 
J o(s,V(s»dW(s) 
o 

is taken in the Ito sense. 

Theorem (Existence and uniqueness of SOlutions). If 

(i) c is independent of W(t) for t : 0; 

(ii) b(t,x) and a(t,x) are suitably measurable; 

(iii) there exists k such that 

I b ( t , x ) - b ( t , y) I + 10 ( t , x) -0 ( t , y) I <: k I x -y I 
and 
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2 222 
b(t,x) +a(t,x) ! k (1+x ) 

for all (x,t) E mX[0,T]; 

then Eq. (4.40) has a unique solution X(t) with X(0) = c, 

and which is continuous w.p. 1. (Arnold (1974), p.105). 

The equations considered in this text are all linear, 

that is b(t,x) and a(t,x) are each of the form Z(t)x+z(t), 

~mere Z and z are continuous functions of t only. 

Therefore they aly,..,ays sat isfy the requirements of the 

theorem above, for any T ( -

5. ITO'S FORffiJLA 

Assume 

dX(t) = b(t)dt + a(t)dW(t), 

and let g(t,x) be a function "lith partial derivatives 

g'{t,x) 
x 

and g" (t,x) that are continuous 
xx 

e'.Jery~1here in [0, T] x m. 
Then Ito's formula says that the process 

yet) = g(t,X(t)) 

satisfies the SDE 
1 

dY(t) = (gt(t,X(t)) +g~(t~X(t))b(t) + ~~x(t,x(t))a(t)2)dt 
+ g~(t,X(t))a(t)dW(t). 

(Arnold (1974), p.92). 

6. EXISTENCE OF MOMENTS 

Consider the linear SDE 

(4.42) dH(t) = (A(t)H(t)+a{t))dt + (8(t)X(t)+b(t))dW(t) 

X(0) = c 

,mere A, a, 8 and b are continuous functions of t. 

Theorem. The solution of (4.42) has for all 

o -:: t -:: T (- a p-th-order moment 

Elcl P (- In particular 
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d 

dt EX(t) = A(t)EX(t} + a(t) 

EX( 0) = Ec. 

(Arnold (1974), pp. 138-139). 

The SDE's studied in this text all satisfy the 

conditions of this theorem, and, moreover, X(0) = c 1S 

al~lays a constant. And so E IF(t) IP and E IC(t) IP are 

finite for all 0 ~ t,p ( -
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PROOF OF PROPOSITION 4.1 

The greater part of the proof consists In verifying 

the definitions and conditions set out on pp. 43-49 of 

Joffe and Metil.Jier (1986) (designated by "J-M" in \·mat 

fOllows). Then Theorem 3.3.1 (p. 49 therein) can be 

applied. 

Define 
+ o = {x:m ; ~I x(t+) = x(t) and x(t-) exists for all t~0}. 

1. THE STOCHASTIC BASES (Qn, An,{H~,t~0},pn} OF Xn. 

I will assume Qn = 0 and ,An = ~(D) for all n. (:8(D) 

is the Borel a-field on D. It rests on the Skorohod 

topology of 0, discussed on pp. 31-32 of J-M; 

Chapter 3 of Billingsley (1968).) 

see also 

The filtration {H~, t;:0} results from letting H~ be 

n 
generated by {X (s), s~t}. Th i simp lie s t hat 

n 
Hn-adapted, and also that hn{k) is "kIn-measurable. 

2. DEFINITION OF L
n 

Let 

C = {;:rR ; rRl ~ .. is uniformly bounded}, 

1 
= -[nt] 

n 

and 
1 1 

L n ( 9, x) = nE {9 [x + n-u
n 

(x) + Tn lin (x) • h] - 9 ( }( )} 
h

n 

is 

where un and t.f
n are the 1 inear funct ions def ined in Prop. 

4.1. The expectation is taken w.r. to the distribution of 

hn(t). 

3. Conditions (0.1) to (0.3) pose no serious problem. 

170 



l\ppendix 4.2 

4. LOCAL COEFFICIENTS. 

Let ~l(H) = H and 2 x . Then 

and 
n n n a (x) = L (;2'x) - 2xb (x) 

1 
n n 2 = n U (x) + V (x) • 

5. TIGHTNESS OF THE SEQUENCE {pn}. 

S · n d n lnce u an v are linear functions \·1hich converge 

to u and u, it is clear that there exists k ( .... such that 

n 2 n 
b (x) +a (x) = 

<: 

1 n 2 
(1+ -)u (x) 

n 

k(1+x 2 ) 

n 2 
+" (x) 

f or all n ~ 1 and x E JR. This takes care of condition 

(HI) (i). (H 1 ) ( i i ), (H2) and (H3) are obl.7i ous . 

6. WEaK CONVERGENCE OF {pn}. 

Let C
0 

= C and define 

1 
L(;,x) = u(x)~' (x) + 2 v(X)2~"(H). 

(H2') and (H5) trivially hold. It remains to verify 

condition (H4), namely that for all t ( -

t 
(4.43) lim J EnILn(;,Xs_)-L(;,Xs_) Idan(s) = 0. 

n-+- 0 

n n 
(Here the expectation operator E corresponds to P .) 

Two important facts: 

( i ) E h = 0, E h 2 
= 1 , E Ih I : 1 . ..: 

h n 
h

n h
n 

( i i ) From Lemma 3.2.2 of J-11 (p.46), for any t { CD 

exists a constant Qt { .... such that 

En sup X
2 

< Qt for all n "- 1 • ~ 

s~t 
s 
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7. PROOF OF (H4) 

De fine II ~ .. II = sup I ~ .. ( x) I . From Taylor's Theorem, 
K 

1 1 
there ex i 5 t S Z (bet~1een K and n n 

x+ n u (x) + Jn U (x)h) 

such that 

Ln(;,x) - L(;,x) 

1 1 
= nE {; [x + - un (x) + -r- v n ( H ) h] - ~ ( x )} 

h n n ~n 

1 
- u ( x ) ;' (x) - 2 1.7 ( X ) 2 ; .. ( x ) 

= E [ un ( x) + h Jii un ( x ) ] ~ , (x) - u ( x ) ;' (x ) 
h

n 

= 

n 
h 1 u (x) 

+ - E [n( + Jn t.r n ( x ) ) 2 ~ " ( z ) ] 2 
h

n n 

1 
- 2 \J ( X ) 2 ~ " ( x ) 

(un ( x ) -u ( x ) ) ~' (x) 

1 u n (x)2 2h 
+ - E [ + ,- un{x)un(x)]_"(z) 

2 hn n ~n 

1 
+ - E { h 2 [ l.J n ( x ) 2 ; .. ( z) - t.J ( X ) 2 " .. ( x ) ] } 

2 hn 

1 1 
= f 1 (n,x) + 2 f 2 (n,x) + 2 f 3 (n,x). 

(i) un and u are linear in x, and 

I;' (x) 1 

Hence there exists a 

C -+ 0 such that 
n 

sequence {C , 
n 

n !: 1} 

lun(x)-u(x) 11_' (x) I = I(d
n

-d)x+e
n
-ell;' (x) 1 

<: C (1+x2) 
n 

and consequently, 
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t 
f En If 1 (n, X s _) I dAn ( s ) 
o 

~ C (t+l)(l+En sup X2 ) 
n s 

s~t 

~ 0 as n ~ QO 

(ii) There exists a constant C such that 
C 

I f 2 ( n , x) I ~ ..II; (1 + H 2 ) II ~ " II 

and so 
t 
J Enlf2(n,Xs_) IdAn{s) ~ 0 as n ~ -
o 

(iii) Fix x E m and let 

R ( n , x , h) = h 2 [ t.1 n ( K ) 2 ~ " ( z) - t.J ( X ) 2 ~ .. ( K ) ] , 

Yn = IR(n,K,hn ) I ~ C't(hn)2, C' a constant. 

S 1· nce ( 1) {( hn) 2} . fl· b 1 are unl arm y Integra e and 

1 

( 2 ) 

.... -
L -

1 
x + -

n 
n - n 

u (x) + v'il \J (x) h -t X as the random 

variables 

rnoreo\Jer, 

{Y } n 
are also uniformly 

Y ~ 0 in probability. 
n 

integrable, 

Therefore 

IE R(n,K,h) I 
h

n 

<: E IR(n,K,h) I 
h

n 

= EY ~ 0 as n ~ -
n 

and, 

from Theorem 9. 4C, p. 165, of Loe\1e (1977) (or else from 

Theorem 21, p.36, of Dellacherie and Meyer (1975)). 

If
3

(n,X ) I ~ C"(1+X
2

) s s 

and 50 (from (iii) above) 

(4.44) 

< C"(1+sup X;) 
s~t 

using the Dominated Convergence Theorem. 
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(t.1) F ina 11 y 

Enlf3(n,Xs) I 5 C"(l+E
n

sup X2) ~ C"(l+Q ) = K < au 

s~t s t 1 

for all nand s, "'hich allo,'1s another application of the 

Dominated Convergence Theorem: 
t 
I En I f 3 ( n , X c. _) I dAn ( s ) 
o -

t 
II Enlf3(n,Xs_) l(dAn(s)-ds) I 
o 

-+ 0 as n -+ aD, from (4.44). 

This completes the proof of condition (H4). 

8. From Theorem 3.3.1 of J-M, the \'1eak limits (if any) 

of {Xn} are solutions of the martingale problem (L,C,P0) 

",here the measure 110 is concentrated at X0 E rR. 

It's a standard resul t of the theory of Ito SDE's 

that 

dX (t ) = u(X(t))dt + u(X(t»dW(t), X(0) = 

has a unique solution (see Paragraph 4 of Appendix 4.1). 

This solution is therefore a solution of the martingale 

problem (L,C,110 ). 

To sho," tha t the mart inga Ie prob lem ha s a unIque 

solution, it is sufficient to check that the moments of 

X(t), under the limit measure P, are unIque. 
k 

Let ~(x) = x, k=1,2,... The equation 

imp 1 ies 

t 
E; (X ( t ) ) = E~ (X

0
) + E J [ ( dX ( 5 ) +e ) ; J (X ( 5 ) ) 

o 
1 2 

+ 2 (f K ( s ) +g) ;" ( K ( 5 ) ) d 5 

that the moment s of K (t ) are recurs i \'e 1 y 

determined, and therefore unique. (This is the argument 

used in the proof of Theorem 4.2.2, pp. 53-55 of J-M.) 
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PROOFS OF PROPOSITIONS 4.2 AND 4.3 

PROOF OF PROP. 4.2 

That {hn(1)2, 

trivially from Eqs. 

n;::1} is uniformly 

( 4 . 11) and (4. 12) : 

i n t e g r a b 1 e f 0 1 1 0 \'IS 

= (i n (1)-i n )/(Var in(+»1/2 

(The all have the same square-integrable 

distribution.) 

(a) Indiuidual cost methods 

We ha l.Te (see Eq. ( 4. 15) ) 

un(x) = n[(1+in)qn-1]x + n(1+in)rn 

and 
n() ( .n( »1/2 r n n) v x. = nVar 1· \q x+r 

where 

n = 1- 1/ii 
q m+nl 

and 

n n 1 I will show that u and v converge respective y to 

(4.45) u(x) = -ax+r and v(x) = ox, 

a = 1/a Cf ) 
iii1 

-"'/ 

r = He + AL/a(Y) - 8~ 
ffil 

'I = 10g(1+i1) 

and 

( i ) 

Let "'/ = log(1+i
1

). Fro m Eq. (4. 9 ) 
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.n n[(1+i1)1/n nl = -1] 

= n[exp(Y/n) -1] 

= n(Y/n + y2/2n 2 
+ ... ) 

-+ 'I as n 
-+ -

Th i simp 1 i e s 

n 
n(q -1) = -n/a ( in) 

m·nl 

= -ni
n

/{(1+i
n

)[1-exp(-y t m)]} 

-+ -Y/[1-exp(-Yrn)] = 

This also implies that n 
q ~ 1, and so 

-
-1/a

ffil 
+ 'I = -0: • 

( i i ) n ( 1 + in) r n . Fr 0 m the ass ump t ion s 0 f Pro p • 4 . 2, and 

the f act t hat n I a:=-t ~ 1 I a 1,'1 ), "Ie get 
mn, ml 

n(l+in)rn = (1+in)(nNCn + ALnn/a - nBn) 
mtnl 

-+ He + AL/a(Y) - B. 
ffil 

( iii ) ( V .n( »1/2( n n) n ar 1· q x+r . From (i) and (ii), qn -+ 1 

and n 
r -+ 0. 

As to the limit of nVar in(t), first note that for 

any positive constants a and b 
1 1 

n(al/n_b1/n) = n[exp(n log a) - exp(n log b)] 

-+ log a - log b as n -+ -

Thence, from Eq. (4.10) 

nVar in(.) -+ 10g[E(1+i 1 (t»2] - 21og(1+i 1
). 

Eqs. (4.45) are established, and Prop. 4.1 can be applied, 

yielding part (a) of Prop. 4.2. 

(b) Aggregate cost methods 

and 

Eq • ( 4 • 1 5) ho 1 d s as 
n 

n 
r 

q = 

= 

"Ie 1 l, but ,., i t h 

1 - Sn/PVSn 
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(i) n(qn-l) = -nSn/PVSn ~ -S/PVS. 

(ii) n(l+in)rn = (l+in)n(SnpVBn/pVSn_Sn) 

~ S·PVS/PVS - S. 

We conclude that n 
u ~ u and n 

v ~ v, "mere 

U(H) = -ax+r, u(x) = OH, 

a = S/PVS-~, r = S·PVS/PVS-B. 0 

The proof of Prop. 4.3 necessitates the two following 

lemmas. 

(a) 

(b) 

or 

Lemma 4.1. Let y E m. 

[(e tY-l)/t]2 < y2+2e 2y , 0 { t ~ 1/2. 

ty 2 1 2 2v I(e -!-ty)/t I ::; 2 Y + e ., 0 ( t ..:: 1. 

Proof (a) If ty 
g(t) = e , then 

g(t) = g(0) + tg'(z{t», 0 ( z(t) { t 

e
ty = 1 + ty exp[z(t)y] 

~ [(e tY -l)/t]2 = y
2
eHp(2z(t)y). 

If y ;:: 0, then 
2 

Y ~ 2 ( 1 + y + y2 I 2 + ••• ) = 
wh i chi mp 1 i e s 

2 Y exp{2z(t)y) 

If < 0, exp(2z(t)y) , 1 , and y ..... 

2 2 
Y exp(2z(t)y) < y . 

(b) The Taylor expansion 

t
2 

2 ty ty exp(z(t)y), e = 1 + + 
2 Y o ( z(t) { 1 

i mp 1 i e s ( dis c ern i n 9 bet we e n the cas e s y !: 0 and y ( 0 a s 

in (a» 

! 
= 2 y

2
exp(z(t)y) .( 
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Lemma 4.2. Let }{ be a rea 1 random val' i ab 1 e, and 

de fine f ( t) = Ee t X , t!: 0. Assume 

( i ) EX = 0 

(ii) EX 2 ( co 

(iii) Ee 2X ( ao 

Then 

(4.46) 
t 2 

f(t) = 1 + 2 EX2 + o(t 2
) as tl0. 

Proof. If 

1 
then (Lemma 4.1) 2 

<: 2 x 
2x 

+ e From assumptions 

( i i) and ( iii). toge ther '-Ti th t he Domina ted Convergence 

Theorem 

lim E9t(X) = E lim g.(K) 
t'0 tl0 ~ 

\'lhich proves (4.46) (s ince 

PROOF OF PROP. 4.3 

Let 

(4.47) = 

= 
1 

X2 , 
2 

EX = 0). 0 

wi t h in ( • ) as in Eq. (4. 21 ) • 

Eq. (4.15) results once more, 
n n expressions for u (x) and v (x). 

Let 

= 

'-Ti th the san-.e 

and 

Val' 

Since 
1 

y (.) ( -, the assumptions of Lemma 4.2 are satisfied, 

and 

(4.48) f ( t ) 
1 2 

Val' Y (.) + oft ). = 
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It is convenient to first calculate the limits of 

and nVar in(.), before prouing that {hn(1)2, n ~ 1} 

uniformly integrable . 

1 . 
. n 

n 1. We ha'Je (Eq. (4. 20) ) 

= Eexp{E~1(1)/n + [~I(l)-E~l(l)]/~n} 

= 1 - 1 1 exp(y In)f(l/~n) (~= E~ (t»). 
Thus 

1 -
n [ ex p (~ 1 n ) f ( 1 1 ",In) - 11 

.n 
n1 = 

.n 
nl 

is 

= 
1 1 

n{exp(y In)[1+ 2n Var y1(t) + 0(n- 1 )] -1} 

= n(exp{yl/n) -1] 

1 1 1 -1 
+ n exp(~ In)[2n Var Y (t) + o(n )] 

1 1 1 
y + 2 Var Y (t) as n ~ ~ 

2. n Var into). 

nVar in(t) = nVar(l+in{.) 

From Eq. (4.46) 

f(2/Jn) = 

f ( 11 J;;) 2 = 
and 50 

= 

= 

= 

n nVar eKp(~ (t» 
n n 2 nEexp(2Y (.» - n[Eexp(i (t»1 

neKp(2~l/n)[f(2/~n) - f(1/~n)2]. 

1 -1 
1+ 2[Var ~ (.)]/n + o(n ) 

1 -1 
1 + [Var Y (.)]/n + o(n ) 

1 
~ Var y (.). 

3. {hn(1)2, n21} is uniformly integrable. 

(i) From the definition of hn(l) (Eq. (4.47), 

hn(1)2 ~ 2nin(I)2/[nVar in(.)] + 2n(in)2/[nVar i n (.)]. 

From steps 1 and 2 abo\Je, the second term on the 

Moreo ',er {l/[nVar l·

n (t)]} right hand side converges to 0. , 

has a finite limit, and is thus uniformly bounded. Hence 

i tis 5 u f f i c i en t t 0 5 ho \-1 t hat { n i n ( 1 ) 2, n 2 1 } i sun i for m 1 y 

integrable. 
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To simplify the equations, define 

~yl(l) = yl(l) _ Ey1(1). 

(ii) We have 

1·n(1)2 ([ n( ] 2 = exp Y 1) -1) 

( [
n 1 2 1 2 

~ 2 exp Y (1)] - exp(Y In» + 2{exp(Y In)-l) 
1 -

n 2 1 [ exp[~y (l)/~n] -1
1
2 

ni (1) <_ ( ) 2exp 2Y In • 1/Jn 

1 

[
eKP(Y In)-112 

+ 2 l/Jn 

~ 2eHP{2y1/n}(~y1(1)2 + 2exp[2~yl(1)]) 
1 

+ (yl)2 + 2e 2Y (n ~ 4) 

from Part (a) of Lemma 4.1 (let t = 1/~n). 
F ina 11 y, the supremum over n of the right hand side 

of the 

t.' a ria b 1 e , 
1 Var Y (1) 

previous inequality is an integrable random 

since Prop. 4.3 assumes that Ei 1 (.)2 and 

are fin i t e . I t f 0 1 lows t hat { n i n ( 1 ) 2, n ~ 1 } 

is uniformly integrable. 

4. Given the limits of ni n and nVar in(+) calculated in 

s t e p 5 1 and 2, t he f unc t ion sun ( .) and '.' n ( .) con '-' erg e t 0 

the same limits as in Props. 4.2, except for the fact that 
2 

Y and a are now 

= 

and 

1 i m ni n 
n 

2 
a 

= 
1 

EY 1 ( .) + 2 

= Var yl(.). 
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CHAPTER 5 

MOMENTS OF ANNUITIES CERTAIN 

5.1 INTRODUCTION 

The techniques developed in Chapters 3 and 4 can also 

be used to calculate the moments of annuities-certain. 

Thi sis what Chapter 5 proposes to ShO\-I. 

Section 5.2 examines the literature on the subject, 

especially as regards the interest rate processes the 

different authors have considered. This in turn leads to 

a brief discussion of the i.i.d. assumption of Chapters 3 

and 4. 

The moments of discrete annuities-certain are derived 

in Section 5.3. Their cont inuous-t irne counterparts are 

dealt with in 5.5, after showing convergence to diffusion 

processes in 5.4. 

Boyle (1976) remarks that 

In the case of deterministic rates there is a 
nea t rec i proca I re I at i onsh i p be t "1een accurnu 1-
ating and discounting. With stochastic interest 
rates this relationship no longer holds (p. 695) 

In Sections 5=3 to 5.5, it "'ill indeed be seen that, "men 

calculating first moments, the accumulating and 

discounting rates are different. The discrepancy bet"1een 

the t"ro rates is quantified in Section 5.6, in the case of 

i.i.d. rates of return. 

Section 5.7 is a short comment on moments higher than 

the second. 

The results of Section 5.3 are those of Boyle (1976). 

Their continuous-time l.Jersions could also be deduced from 

the more general formulae of Panjer and Bellhouse (1980). 

The purpose of these sections is to indicate another way 

of obtaining the moments of annuities-certain, based on 

recursiue or differential equations. 
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5.2 THE INTEREST RATE PROCESS 

Let {i (t ), t?:: I} be a sequence of random ra tes of 

interest. Notice the similarity bet~~en 

( 5 . 1 ) F(t+l) = (l+i(t+l))F{t)+C(t)-S(t)) 

and 

(5.2) s(t+l) = (l+i(t+l))(s(t)+l). 

s(t) is the accumulated value, at time t, of payments 

of 1 unit made at times 0,1~ ... ,t-l. In general, B(t) is 

not constant, and, furthermore, C(t) depends on its), 

Sit. In consequence, it 1 S not a 1 "laYs true tha t the 

statistical properties of F(t) can be studied along the 

same lines as those of s(t). 

Ne\Jertheless, Chapter 3 has shol .. m that in some cases 

Eq. ( 5 . 1) can be re"lr itt en as 

F(t+l) = [(l+i(t+l))/{l+i)](q(t)F(t)+r(t)) 

\'1here q and r are independent of {i (t)} . As Section 5.3 

will demonstrate, the moments of s(t) can be calculated in 

exactly the same \'Jay as those of F(t), \'lhen {i(t)} is an 

i.i.d. sequence. 

Thus, \·men asking ourselt..1es \·mether the analysis of 

Chapters 3 and 4 can be broadened to include more general 

processes {i(t)}, it is only natural to investigate \·mat 

is already kno"m about the simpler case of s(t). This is 

why this discussion of the interest rate process is 

included in the chapter on annuities-certain. 

Pollard (1971) assumed that the force of interest is 

a particular autoregressit.Je process of order two: 

\'1here o ~ k ( 1 and {e(t), t )- 1] is an i.i.d. 

sequence of normal random t.'ariables (with Ee(t) = 0). If 

v(t) = l/(l+i(t)) = exp(-~(t)) 
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is the discount factor during (t-l,t), then 

k 
E 1.1 ( j ) 

j=l 

Z(k) = 

= 

k 
E [-t o--t(j)] 

j=1 

is a norma I random l.Jar i ab 1 e. Hence the first tl.·)Q moment s 

of Z(k) determine the distribution of 
k 
E v(j). 

j=1 
By 

summing over k, they a Iso determine the dis tr ibut ion of 

the discounted annuity certain 

t k 
a(t) = E E v(j). 

k=l j=1 

The author provides summation formulae for the 

moments of Z(k), and approximations for the first and 

second moments of aft). 

Wilke (1976) supposes {~,(t), t~l} to be a sequence of 

i. i. d. normal random variables. This amounts to setting 

k=0 in Pollard's model. He points out the 

- h- f E's'(t)n (a+trl-buted recursive relatIons Ip or . 

Beard) : 

n 
(5.3) Es(t+1)n = [Eexp(n·~(t+1)}].[1+ E 

j=l 

f 0 I 1 0 \,1 i n g 

to R.E. 

for 1 < n <: 4. It may be noted that this 15 essentially 

the approach adopted to calculate the first and second 

moments of F(t} in Section 3.3 (Spread method). 

(Using the conditioning technique of Chapter 3, it is 

obl.Jious that the same formulae holds for any n ::: 1. See 

Section 5.7.) 

Boyle (1976) assumes the returns {i(t) to be i.i.d .. 

By summing the cross product moments of 
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k 
E 1.1(j) 

j=l 

k 
and E (1+i(j)), 

j=l 

the first three moment s of a (t) and 5 (t) are der i 'led. 

They are expressed as simple combinat ions of the usual 

annuities-certain functions, evaluated at different rates 

of interest. 

Waters (1978) supposes {-itt), t21} to be an i.i.d. 

normal sequence. He calculates the first four moments of 

a(t) but leaves them in summation form. 

Panjer and Bellhouse (1980) first consider a general 

stationary process {y(t), t ~ I}. After defining 

t 
Z(t) = E Y(k), 

k=1 

they show hO~l the first and second moment s of a (t) can be 

expressed In terms of the moment genera t ing funct ion of 

Z ( t ) . Next~ they specify this mo~nt generating function 

in the case of autoregressive processes of order one and 

t \"10. The same analysis is carried out for a 
+ continuous-time process {y(t), t Em}. 

these 

A second paper J 

results to 

Bellhouse and Panjer (1981), extends 

conditional autoregressive processes 

(i .e. \'1hich depend on current rates of interest). 

These t\·10 papers generalize the results of all the 

ones pre1.1 i GUs! y ment i Dned • The formulae are compact and 

intelligible, 

apparent 1 y no 

price to pay 

though the actual computation of n~ments is 

trivial matter. There is a fairly high 

for the extra "real ism" of autoregressive 

processes, in comparison ~,ith the simplicity of Boyle's 

formula. 

Wescott (1981) closely fo 110\"'5 Pollard (1971), 

ass umi ng t he more genera 1 second order aut oregre s s i ve 

process 
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4b } 2 
a and {eft), t !: I} is again an i.i.d. 

sequence of normal random t.Jariables. The first four 

moments of !itt) are elicited, using the method suggested 

by Pollard, that is expressing Es(t)k as summations of the 

cross product moments 

s 
E E exp[Y(j)-Y] 

. 1 0 J= 

r 
E exp [Y(j)-Y0]. 

j=1 

In the context of ruin theory, Schnieper (1983) 

con 5 ide r 5 apr 0 c e 5 s { X ( t ), t )- 1 } 0 f i . i . d . cas h flo \'IS 

independent of the process of discount factors {v(t), 

t ~ 1}. The latter are supposed to form a Markov chain. 

Since he is mostly concerned with ultimate ruin, the 

author is more interested In the first t~~ moments of 

- k 
1 im aft) = E X(k) n l.J ( j ) . 
t-t- k=1 j=l 

But his formulae also enable one to calculate the 

same moments for finite t. This could be done using the 

"discounted transition matrices" that are specifIed in the 

paper. 

I now leave annuities-certain aside, and briefly turn 

to the "term structure of interest rates". In financial 

e c 0 no mi c s , i t ha s bee nat temp t ed , bas e don the 0 ret i c a I 

considerations, to determine ,,!hich stochastic processes 

should describe interest rates. One example 1S Vasicek 

(1977), who ends up suggesting the Ornstein-Uhlenbeck 

process. Boyle (1978) applied this model to a problem of 

immunization. 

Beekman (1973) and Beekman and Fuell ing (1977) have 

also used the Ornstein-Uhlenbeck process to represent 

"investment del.-Jiations", as part of a general collective 

risk model. 
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Concluding remarks. There is statistical evidence 

that autoregress i tJe processes of order one or t ' . .'10 descr ibe 

historical interest rates better than i. i. d. sequences 

(Wilkie (1978), Panjer and Bellhouse (1980)). Hence the 

model of Chapters 3 and 4 is not as realistic as it could 

be. Furt her re search is needed in order to improve the 

model in this respect. 

HO\-le t.Jer, the parallel \-/ith annuities-certain seems to 

i n d i cat e t hat I" e p I a c i ng \-lh i ten 0 i s e \-1 i t han aut 0 I" e g I" e s s i ve 

or Markov process will make the model much less tractable. 

This suggests that the ~mite noise model should also 

be taken further. As Chapters 3 and 4 have sho\-m, the 

\-lhi te no i se as sumpt ion of ten leads to resul t s \-m ich are 

both general and explicit. This may not be the case \-lith 

more realistic interest rate processes. 

5.3 DISCRETE TIME 

Assume {itt), 

define 

t :> 1} is a. i.i.d. sequence, and 

i = Ei(t), u(t) = 1+i(t), 

t.r ( t ) 

u = Eu(t) 

= 1/(1+i(t)), 

2 
u

2 
= Eu (t) , 

= l+i 

t.f = E t.J ( t ) , 

2 
t.J 2 = Ev ( t) . 

Notice that '.r ~ l!u (see Section 5.6). A.s before 

H
t 

is the a-field generated by {i(l), ... ,i(t)}. 

5.3.1 Accumulated Values 

Let 5(0) = 0 and 

(5.4) s(t+1) = u(t+l)(s{t)+1). 

Clearly 

Es(t+l) = u(Es(t)+l) 

and so 
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(5.5) 

(5.6) 

Es (t) = 
t-I 

X 
j=0 

u 
t-j 

. t . = (u -I}u/(u-l) 

= ,. ( i ) 
sfl . 

I t \'1 ill be s ho \'m t hat 

Var s(t) = 
u -u 

2 
u -u 

2 

.. (i) _ ( .. (i})2 
stl st] . 

(This is Eq. (2.19), p. 698, of Boyle (1976).) 

that 

(5.7) 

and 

In tJie\'l of Eq. (5.5), this is the same as sho\,ling 

= 

= A(t) 

Observe that (5.7) holds for t=l, as 

= 

A(l) = 

= 

Us ing the usua 1 cond it ion ing techn i ques, "'Ie find 

Es{t+l)2 = 

= 

EE{S(t+l)2 IHt ) 

U
2
ES{t)2 + 2u 2Es(t) 

and so 

= 

(U
2

-U)ES(t+l)2 

u 2 [(u
2

-U)ES(t)2] + 2u2(u2-u)s~i) + u 2 (u 2 -u). 

I t r e rna ins to s ho \'1 t ha t A ( t) (i . e . the rig h t han d 

side of (5.7) satisfies 
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From the definition of A(t), 

A(t+l) = 

= 

= 

+2u (u _u)c(i) + u (u -u) 
2 2 ~tl 2 2 

\>lhich proves (5.8), and completes the proof of Eq. (5.6). 

5.3.2 Discounted Values 

When the rate of interest is constant, 

a t + 1 1 
= 

When it is random, .... Ie may def ine 

a(t+l) = v(t+l)(a(t)+l), a(0) = 0. 

Then 

Ea(t+l) = u(Ea(t)+l) 

and 

Ea(t) = 
t ( 1 - 1.J ) t.J / ( 1 - 1.1 ) 

= 
a(j) 
tl 

where 

j = 1/1.7 - 1 

= [ 1 lEv ( t ) ] - 1 . 

l\ . 5 t' 3 5 1 1· t can be proved that nS In ec 10n • • , 

"2+1.7 ( j 2 ) 
2u 2 

a (j ) ( a ~j ) ) 2 (5.9) a(t+l) -Var = atl t1 '.1
2 

-\1 u -v '2 

\ ... here J is as before and 
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= 

= 

1/"2 - 1 

[1/Et}{t)2] -1 

(Eq. (5.9) is equi~Jalent to Eq. (2.22), p. 699, of Boyle 

(1976).) 

5.4 CONVERGENCE TO DIFFUSIONS 

Imagine payments of lin unit made at times, 0, lin, 

lin, etc. and a sequence {in{k), k)- I} of i.i.d. rates 

of return. 
k-l k 

is the return during the period (-0-' n)· 

The accumulating process ~n can be defined recursively as 

fo 11 O\,IS: 

k 1 
(5.10) = (l+i

n
{k+l)(sn(n) + n)~ 

sn(0) = 0. 

Prop. 5.1 specifies 

\'lhen t he sequence {i n (k ) , 

4. 

{ " n the weak limit of s, 

k ~ I} are defined as in 

n ;:: I}, 

Chapter 

P . t . ... 1 L tEl' 1 ( k ) 2 ( GO. Th .. n ropDs 1 lon~. e e processes s 
-

con v erg e \'1e a k 1 y t 0 a d iff us ion s sat i s r yin 9 t he Ito 5 DE 

(5.11) 

and 
2 

y a 

ds(t) = (ys(t)+l)dt + a~(t)dW(t) 

~(0) = 0. 

are as in Prop. 4.2 or Prop. 4.3, 

whether . n, ) 
1 \ + is defined by Eq. (4.11 ) or Eq. 

{The second '-'lay of defining in ( • ) 

further assumption that 

Var log(l+il(+) ( - ) . 

Proof. Rewri te (5.10) as 
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Section 5.4 

= 
k k 1 

·S·n(_) + l· nS··
n{_) n + (1+i ).-n n n 

+ 

= 

"mere 

In Appendix 

nVar 
.n 2 

and 1 -+ a , 

U(x) 

.n n = n1 x + 1 + i 

1 
= '/n Va r i n ( .) (x + - ) 

n 

= 

4.3 it "1a s sho"m that 

so Un and Vn 
have the limits 

= Yx+l, V(x) = ax. 

.n 
nl -+ 

Weak cont.,ergence IS a consequence of Prop. 4. 1 . 

Y and 

0 

The discounting n similarly be defined processes a can 

by 
k+l k 1 

(5.12) n, ) n n -) a ~-- = t} (k+l){a (-) + 
n l n n 

Proposition 5.2. Let 
1 2 

Ev (t) < -. 

( a ) If in ( • ) is given by Eq. (4.11), assume Ei 1 (t)2 ( 

(b ) If in ( • ) is g i '.Fen by Eq. (4.21), assume Eyl(t)2 ( 

n The processes a con~Jerge \-Ieak 1 y to the diffusion 

satisfying 

(5.13) da(t) = [-(Y-a
2

)a(t)+1]dt + aa(t)dU{t) 

a(0) = 0, 
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\,lh ere "'I and 0
2 

are a sin Pro p . 4. 2 (c as e (a)) 0 r Pro p. 4. 3 

(ca se (b)). 

The proof is in AppendiH 5.1. 

5.5 CONTINUOUS TIME 

5.5. 1 Accumulated Values 

In accordance with Prop. 5.1, consider the process s 

satisfying 

(5.14) d~(t) = (v~(t)+l)dt + as(t)dW(t) 

~(0) = 0. 

It is immediately seen that 

and so 

(5.15) 

Let g(H) 

to obtain 

d 
E -s(t) = vEs(t) + 1 

dt 

Es(t) = 

tv = (e -l)/Y 

= 
-("'I) 
stl . 

2 = H and use Ito's formula (Appendix 4.1) 

1 
ds(t)2 = [g~(s(t))(ys(t)+l) + ~~K(s(t))a2s(t)2]dt 

+ ( ••• )dW(t) 

= [2~(t)(ys(t)+1) + a
2s(t)2]dt + ( ... )dW(t) 

= [(2"'1+02)s(t)2 + 2s(t)]dt + ( ... )dW(t). 

2 
Define k = 2"'1+0. We get 

d _ 2 

dt Es(t) = 

\'1h i chi mp lie s, u sin 9 E q . ( 5 . 1 5 ) , 
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t 
= 2/ ek(t-U)ES(U)dU 

o 
t 

ku -= 2/ e Es(t-u)du 

= 

= 

= 

= 

o 

t ku t-u 
2/ e / 

-I ( t -U-l.') 
e dl.' du 

o 0 

t -" 
J (k-Y)u d d e u v 
o 

(changing the order or integration) 

2 t 

k-y J o 

2 

k-'/ 

k(t-lJ) v(t-1.J) 
e -e dv 

Therefore 

5.5.2 Discounted Values 

Consider the process 

(5.17) daft) = (-'Il~(t)+l)dt + aa(t)dW{t) 

a(0) = 0 

where 2 
"I = 'I-a (see Prop. 5.2). 

Eq. (5.17) has the same form as Eq. (5.14), and so 

( from Eq s . ( 5 . 15) and (5. 16 ) ) 

= 

= 
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2 2 _(-2Y 1 +a ) -(-Y I ) 
Var a(t) = -( sf! stl ) 

-Y +a 2 
1 

2 
= 

2a 2 

since Y1 Y-a 2 = , 

The lack of 

moments of s (t ) , 

2 -(2Y-3a ) 
( atJ 

2 -(v-a ) 
-atl ) 

2 
-(Y-a ) 2 

(atJ ) 
-Y 

and, for any r, 

= 
-rt 

(l-e )/r 

= 

symmetry be t \'1een the formulae for 

on the one hand, and those for 

the 

the 

moments of a (t ) , on the other, is explained in Section 

5.6. 

5.6 ACCUMULATING AND DISCOUNTING RATES 

where 

In Section 5.3, we ha\le seen that, in discrete time, 

( i ) 
Es(t) = stl 

i = E i ( • ) and 

and Ea ( t) = a ~j ) 

I first show that 

Var i ( t) } 0). Let 

j { i (of course assuming 

f(x) = 1/(1+x), x} -1. 

Consider the second-order Taylor series for f(x), 

centered at H0: 

1 

l+K = 

Letting K = i ( • ), K0 = E i ( • ) , and using the fact 

t hat f" i s a I \-fa y sst ric t 1 y pas i t i \' e, \<Ie fin d 

193 



Section 5.6 

1 1 
E 

1 + i ( • ) 
= 

1 
+ ~[(i{.)-Ei(.)2 f"(z)] 

1 
} 

1+Ei( t} 

j = 1 -1 
(E 1+i(t)} -1 ( 1+Ei(t) -1 = i . 

N ext, it \,1 ill be 5 h 0 \'m t hat i - j = [Va r i ( t ) ] I ( 1 + i ) . 

First assume Ei (.) = 1 = 0. Then, from Lemma 5.1 

(Appendix 5.1), 

1 

= 1 - E 
1 + i ( t ) 

1 -1 
~ (E ( -1 +-i~(-t-:-) } ] 

~ 1 + Var i ( t ) 

1 

l+Var i(.) 1 - Var i(.). 

If 

i(t)-i, 

Finally, 

i-j = 

i ~ 1, then, letting u = l+i and Ai ( t) = 

1 -1 
( E ( -1 +-i~(~t-:-) ) ] = 

= 

= 

l+i-
I -1 

[ E ( -1 +-1-' (-.-,....) ) ] 

u -1 
U[E(l+i(t»] 

1 -1 
U[E(l+l1i(t)/U)] 

u(l-Var[~i(t)/u]) 

l+i-[Var i(.)]/(I+i). 

[Var i{·)]/(l+i). 

Example. Say i(o) is U[0,a], t ha tis, i ( 0) ha s a 

density function equal to l/a in the interval [0,a] and 

equa I to 0 e 1 se\.mere. Then 

Ei(t) = a/2 

and 
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Var i(.) 

Furthermore 

1 
E 

1 + i ( • ) = 

and 

j 

= 
a 

( 1 la) J 
o 

2 = a 112. 

1 a dx 
J a 
0 

1+x 

a 

2 2 
X dK - a 14 

1 
= 10g(1+a) a 

= log (1+a) -1. 

( i ) I f a = .20, then i = .10, j = .096962989 ... and 

i-j = .0030370104 ... 

\,111 i 1 e 

[Var i(·)]/(l+i) 2 = a 1[12(1+ a/2)] 

= .0030. 

(i i) In the more extreme case ,·mere a = .50, 

i = . 25 , j = .2331517312 ... 

i-j = .0168482688 ... 

The approximation for i-j IS 

a
2

/[12(1+ a/2)] = 
-

.016. 

(The relative error is 1.1 % .) 

The convergence results of Section 5.4 show that in 

the accumulating 
2 

con t i nuous time the d iff erence bet \',JIElen 

and discounting rates is Y-Y
1 

= y_(y_a
2 j = a . This can 

be seen to agree wi th the appro x i rna t ion 9 1 ven above for 

the discrete rates: 

since 

.n .n 
1 -J 

( . n .n) n 1 -J 

.n d nl -+ Y an 

[Var in(+)]/(l+in) 

n[Var in(.)]/(l+in) 

2 
a 

n.) 2 nVar i (. -+ a . 
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A quest ion re lated to the d i f ference bet"1een 'I and 'I 
1 

is the asymmetry of the formulae for the moments of s(t) 

and ~ (t) (Sect ion 5. 5) . Thi s ",i 11 be accounted for by 

sho\-ling that the force of interest "processes" underlying 

the accumulating and discounting processes are 

(5.18) A (t ) = Y0 + adW(t}/dt 

and 

(5.19) D(t) = -'1
0 

+ adW(t)/dt 

1 
re s pee t i l.1e 1 y , \-mere 

2 
a . 

First, the stoehast ie process represent ing "the sum 

of the forces of interest up to time t" will be specified. 

Define (in the setting of Section S.q) 

= 
[nt] 

E yn ( j ) , 

j=l 

The \-leak limit of the processes Zn is determined as 

f 0 1 1 0 "IS • I f 

then 

which amounts to 

= 
k 

yn(_) 
n 

= 

= 

n = exp Z (t) 

k 
[1 + i

n(k+l)]yn(n) 

-+ ax = V(x). 

Pro p . 4 • 1 tells us t hat V nco n lJe r 9 e S "Ie a k I Y tot he 

solution of the SDE 
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dY = ~Ydt + oYdW. 

Thus Zn = log un 
.I converges 

since h(y.) = log x IS continuous 

"leak 1 Y 

(for a 

to Z = log Y, 

justification of 

this assertion, see Billingsley (1968), p.29). 

Therefore, let g(x) = log x and use Ito's formula to 
obtain 

1 122 1 1 
dZ = [~y.- + 2 0 Y .(- 2")]dt + ay·- dW y Y Y 

1 
(

2 )dt = (~ - + odW 2 

Z(t) 
t 1 2 t 

= J (Y- 2 a )dt + of dW(t) 
o 0 

= 

That is, the sum of the forces of interest up to time 

tiS, in the limit, a Bro~'mian Motion \,1ith mean Y0t and 

- 2t '.Jar 1 ance a . Th is jus t if i e 5 ( 5 . 18) ; (5. 19) is hand led 

similarly. 

The equations of Sections 5.4 can be restated as 

1 2 -
ds(t) = [(Y

0 
+ 

2 
a )s(t)+l]dt + a~(t)dW(t) 

1 
(

2
)a(t)+1]dt daft) = [-("f

0
- + oa(t)dt.J{t). 2 

Finally, the formulae for the moment s of s(t) and 

a(t) become entirely symmetrical ""1hen expressed in terms 
1 2 

of ~0 1: 2 a, instead of Y and "fl' 

This exemplifies the observation, previously made in 

Appendix 4.1, that dW(t)/dt does not obey the usual rules 

of the calculus. If \r1e formally substitute A(t) for yet) 

in the ordinary differential equation 

ds(t) = [~(t)s(t)+l]dt 
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\'1e obtain 

(5.20) d~(t) = (Y0~{t)+I)dt + os(t)dW(t), 

which is not the correct Ito equation satisfied by 5. 

HO\,1ever, it can be sho\·m tha t if (5.20) is 

interpreted as a Stratonouich stochastic differential 

equation, then it is equivalent to the correct Ito 

equation (see Section 10.2 of Arnold (1974), especially 

pp. 169-171). 

Not ice that there \olaS no need for the above remarks 

t 0 be rna d e inC hap t e r 4 , SIn c e the dis c u 5 5 ion ~ .. la 5 not 

concerned \'lith discounting, but only with the ccumulated 

values of the fund. 

5.7 HIGHER MOMENTS 

Recursive (or differential) equations can 

written down for Ea(t)k and ES(t)k (or Ei(t)k and 

\,lh e n k ;:: 3 (a s poi n ted 0 uti n 5 e c t ion 5. 2 ) . 

First consider Es(t)k. If Uk = E(l+i(.))k, 

a I so be 
- k 

Es ( t) ), 

Es(t+l)k = 

= 

EE(S(t+l)k IHt ) 

E(1+i(t+1))k. E (s(t)+1)k 

Similarly, if V
k 

(5.21) 
k 

Ea(t+l) 

= 

= 

k 
u

k
[l + E 

j=1 

then 

- k 
The differential equation satisfied by Es(t) results 

k 
from Ito's formula, with g(H) = H : 

k k 1 1 - k-2 2- 2 
d[~(t) ] = [k~(t) - (Y~(t)+ 2k (k-l)s(t) to s(t) ]dt 

+ ( ••• ) dW(t) 
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= 
1 2 - k - k-l 

k[~ + 2(k-l)a ]Es(t) +kEs(t) • 

I nth e cas e 0 f dis C 0 un ted 1.1 a I u e 5, \'1t? 0 b t a i n 

d 
- k 1 2 - k - k-1 

E a ( t ) = k [-~ 1 + 2 ( k - 1 ) a ] E a ( t ) + k E a ( t ) . (5.22) 
dt 

One simple application of these formulae is the 

calculation of the limits of the moment s, 'l1hen t -+ .. 

T a k e Ea ( _ ) k , for eKamp Ie. It is finite if and only if 

1 
~1 ) 2 (k-1)a

2 
(from Eq. (5.22», in which case 

- k 
Ea(-) 

In discrete time, 

k Ea (CD) = 

= 

~ -
1 

1 

1 
2 

2 (k-l)a 

- k-l 
• Ea ( .. ) . 

k-l 
[1 + L (~) Ea(-)J].Uk/(l-Uk ), 

j=l 
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Define 

and restate Eq. 

k+l 
n 

a (-) = 
n 

where 

(5.23) 

APPENDIX 5.1 

PROOF OF PROPOSITION 5.2 

n n 
\' = Ev (.) 

= E[l/(l+in (t»] 

(5.12) as 

k k 
an(n) + (v

n
-l)an (n) n + v In 

v n {k+l)-vn 

+ [./Var 

.lvar \,n ( • ) 

Un (x) (n) n = n v -1 x + v 

= 

It will be shown that 

~ and 

2 U(x) = -(~-a )x+l, 

-t Vex) = ax. 

2 
a are as in Prop. 4.2 or 4.3, depending on 

whether in(.) is defined by Eq. (4.11) or (4.21), 

respectively. Weak convergence will then follow. 

(a) Subdividing i1(.). 

( i ) 

(ii) 

Lemma 5.1. If 

EX = 
EX2 ( 

288 
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( iii) E(1+X)-2 < -
then 

X 
E t-·· 2 . (t) l+tR = - ~~ ~ 0 as t I 0. 

Proof. Let t < 1. From Taylor's Theorem, if f(t) = 
l/(l+tx) 

~ 

Let 

Since 

l/(l+tx) = 1 - tX/(1+z(t)x)2, 0 ~ z(t) < t 

x/(l+tx) = 

gt(X) = [X/(1+tx)-x]t-1 

= -x2/[1+Z(t)x]2. 

2 2 
X 1{X~0} + 2[1+ l/(l+X) ]1{X{0}' 

the Dominated Convergence Theorem implies 

lim E9t(X) = E lim gt(X) 
tl0 tl0 

= -EX2. o 

Refer to Section 4.3.3. We have (Eqs. (4.9) and 

(4.11) 

= 

with 
. 1 

= - 1 , 

The proof of Prop. 4.2 (Appendix 4. 3 ) tells us that 

.n nVar in ( • ) 2 
n1 -+ 'f, -+ a 

(and ( 1 ) nt 2 2 
i

1
(1), ( 2 ) t l 0. ) so -+ a /Var n n 

( i ) nVar n 
\J (t). Notice that 
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Define 

x = n 

= 

in ( 1 ) .I;} 

l+in(l) 

n - - 1 
i .In + t .In ~i (1) 

n 

There exists constants k
l

, k2 and n0 such that 

(5.24) X2 ~ (k 1 
+ k [ili 1 (1)]2)1 n 

2 {~il(1)20} 

kl + k
2

[tti 1 (1)]2 

+ 
1{tti 1 (1) n;:n

0
, 

{ I + i
1 (1))2 

( 0} , 

Hence, 't'le can app 1 y the Domi na t ed Convergence Theorem, to 

conclude that 

n 
(ii) n{v -1). 

. n ) n(\l -1 = 

= 

= 

= 1 i m Var X 
n 

n 

= 
n 

2 = a 

nE([1/(1+i
n

(1))]-I) 

-nE[in(1)/(1+in(1))] 

-ninE[l/{l+in(l))] 

-E[nt ~ii(1)/{I+in+t ~il(l))]. 
n n 

Firstly, in(l) ~ 0 w.p. 1, and so, using the same 

type of argument a S In (1), 't'le get 

lim ni n E[l/(l+in{l))] = i. 
n 
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Secondly, from Lemma 5.1, 

n1\i
1
(1).t 

n 
1 im E 

n 1+i n +t Ail(t) 
= lim nt [-t Var Ai!(1) + oft )] 

n n n 
n n 

= 
n 

2 = -a. 

n 2 Finally, n(u -1) ~ -("I-a ). Th i 5 a I so i mp 1 i e 5 U n ~ 1. 

( iii ) It only remains to sho", th~.t 

uniformly integrable. Since (1) 
n 

v ~ 1 

n~l} is 
n nVar v 

has a strictly positive limit, it is sufficient to sho\'1 

that (nin(1)2/{1+in(1))2, n~l} is uniformly integrable. 

This results from inequality (5.24) of step (i). 

(b) Subdividing "1
1(.) 

Lemma 5.2. Let f ( t ) Ee tX t 0. If = {" , ~ 

( i ) EX = 0 

( i i ) EX 2 
{ CD 

( iii ) Ee 
-2X 

{ .... 

then 
'l 

t" 
EX2 2 

f (t ) = t + + a (t ), as t t 0. 
2 

Proof. Similar to that of Lemma 4.2 (Appendix 4.3).0 

Refer to 
1 1 

Var "I (.) 
2 

1 
Eexp(tAy (1)), t 

( i ) 
n nVar v (.). 

n nVar,-, (.) 

Section 4.3.4. Recall that y = 

2 1 
and a = Var "I (.). Let f ( t ) = 

0. "' ..: 

From Lemma 5. 2, 

= 
n 2 

n{Eexp[- 2yn(.)] - (Eexp[-y (t)]) ) 

= nexp(- 2y l/n)[f(-2/jn)-f(-1/jn)2] 
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1 VarY (+) = 2 
a , 

as In the proof of Prop 4 3 (A d- 4 3) " ppen lH .. 

(ii) n(v
n -l). 

n{vn-l} = nE(eHp[-yn(+)]-l) 

1 = n[eHp(-y In)f{l-IJn)-I] 

= n[eHP(-y
1
/n)-I] 

= 

1 1 1 -1 
+nexp(-y In)[2n Var 'I (t) + o(n )] 

111 
-'I + 2 Var 'I (+) 

2 
-('I-a ). 

(iii) {hn(1)2, n 2 I} is uniformly integrable. 

From Eq. (5.23), 

n 2 n 2 n n2 n 
h (1) ~ n(u (1)-1) l(nVar v (t» + n{l-v ) l(nVar u (t»). 

The second term on the right hand side goes to 0 as 

n ~ .... since n(I-\,n) and ntVar "n(l) have finite limits. 

It is therefore sufficient to show that the sequence 

n 2 n 2 
n(u (1)-1) = n(eHp[-'I (1)]-1) 

15 uniformly lntpnrrihlp_ -----":2- ------ This is done in the sarne fashion 

as in step 3 of the proof of Prop. 4.3 (AppendiH 4.3). 
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CONCLUSION 

There are many other problems to be studied In the 

dynamics of pension funding. Here are a fe\·, ideas for 

further research. 

1. Perhaps the most obvious way of improving the results 

of Chapters 3 and 4 is to consider more realistic interest 

rate processes. As ... 1a S poi n ted 0 uti n Sec t ion 5. 2 , t we 

possibilities are autoregressive and Markov processes. It 

... ,0 u 1 d bee 5 p e cia 1 1 yin t ere s tin 9 t 0 5 e e \·,h a t be come s 0 f the 

"optimal region" under different assumptions. 

2. Nevertheless, the ... mite nOIse model should probably 

not be forgotten totally, since it is the most tractable 

(this was discussed In Sections 4.1 and 5.2). As far as 

the theory of pension funding is concerned, the lack of 

realism of the model is compensated by the explicitness of 

the results obtained. The continuous-time formulation IS 

particularly promIsIng. The cont inuous-t i me formula t ion 

is particularly promising. For eHamp Ie under the Spread 

method, the process F is a diffusion and so its transition 

probab iii tie s can be found from the so-ca lIed back\'la.rd and 

for \'Ja r d par t i a I d iff ere n t i ale q ua t ion s . S h 0 u 1 d t h i 5 

approach fail (as these equations are by no means trivial 

to sol~.1e), the density functions of F(t) and C(t) may be 

est i Ola ted fro m the i r mo me n t s , .. ·m i c h can be c a I cuI ate d 

explicitly (see Section 5.7). 

3. The equations of Chapter 2 could serve to study ho\'l 

fluctuating inflation rates affect the et.1olution of the 

fund levels and contributions. \'lhen bene fit s are no t 

totally indexed. As the equations show, this problem 150 

Ola the rna tic a I 1 Y mo r e CD mp I e H t han the 0 neD f flu c t u a tin 9 

205 



Conclusion 

interest rates. This 1S because 8{t) and AL{t) now depend 

on the inflation rates eHperienced over the last w-r years 

( see for eRa mp let he ex pre s s ion for 8 ( }{ , t ) 1 n Sec t ion 

2.3.1). 

Going still further, another possible development 

\-IOU I d be of considering inflation on salaries and 

inllestment earnings \'1hich are both stochast ic. 

4. Another problem 1S the determination of "security 

loadings" against unfavourable experience. For e H a mp 1 e , 

saY"le are gi'.'en some model for the future behal.1iour of 

assets growth, inflation, mortality, etc. Then, for 

appropriate \falues of k, T and C' - , \"ha t 15 the (minimum) 

increase in contributions needed to ensure that 

Prob{F(t) !: k+AL(t), for all 0 ~ t ~ T} ~ l-E ? 

Thi s type of quest ion may become more important in 

the future, in the current trend t o\',ard s 

"realistic" actuarial assumptions (as opposed to 

.. con ser\1a t i ve" assumptions, "lhi ch 9 1 l.Je an implicit, 

undetermined amount of "safety" to the \Jaluat ion basis). 

5. Finally, there is the hypothesis of fiRed acturial 

ass ump t ion s t hat i s qui t e unr e a lis tic. One \'J'QU I d like 

actuarial 

account. 

t" assump_lons to take recent experience 

The prob 1 ems \"lh i ch ar i se are t ha t 

(1) a dependance on the past is introduced and 

into 

(2) NC, PVB etc. are now functions of these vary1ng 

assumptions. 

One possibility is to linearize for small changes in 

the assumpt ions. This \"laS the approach adopted by S. 

Benjamin (1983), \·mo assumed the \1aluation interest rate 

to be the average of the pre\1 ious "k" earned ra tes of 

return on the assets. 
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