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1. Introduction

Regarding the fate of the tachyon in various systems such as brane-antibrane pairs in Type II

theories as well as the D25-brane in the bosonic string theory, Sen proposed his famous three

conjectures in [1, 2]. These state that (i) The difference in energy between the perturbative and
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the tachyon vacuum exactly cancels the tension of the corresponding D-brane system; (ii) After the

tachyon condenses, all open string degrees of freedom disappear, leaving us with the closed string

vacuum; and (iii) Non-trivial field configurations correspond to lower-dimensional D-branes.

Because tachyon condensation is an off-shell process2, we must use the formalism of string field

theory. Both Witten’s cubic open string field theory [4] and his background independent open string

field theory [5, 6, 7, 8] seem to be good candidates. Indeed, in the last two years, there has been

a host of works aimed to understand Sen’s three conjectures by using the above two string field

theories as well as the non-linear sigma-model (Born-Infeld action) [9]. Thus far, Sen’s first and

third conjectures have been shown to be true to a very high level of accuracy ([10] - [27]); they have

also been proven analytically in Boundary String Field Theory ([28] - [30]). The second conjecture

however, is still puzzling.

Let us clarify the meaning of this conjecture. From a physical point of view, after the tachyon

condenses to the vacuum, the corresponding D-brane system disappears and there is no place for

open strings to end on. Therefore at least all perturbative conventional open string excitations

(of ghost number 1) should decouple from the theory. There has been a lot of work to check this

statement, for example ([31]-[42]). In particular, using level truncation, [43] verifies that the scalar

excitations at even levels (the Q closed scalar fields) are also Q-exact to very high accuracy.

However, as proposed in [45, 46] there is a little stronger version for the second conjecture.

There, Rastelli, Sen and Zwiebach suggest that after a field redefinition, the new BRST operator

may be taken3 to be simply c0, or more generally a linear combination of operators of the form

(cn + (−)nc−n). For such a new BRST operator, not only should the conventional excitations of

ghost number 1 disappear, but more precisely the full cohomology of any ghost number of the new

BRST operator around the tachyon vacuum vanishes4. Hence these authors propose that Sen’s

second conjecture should hold in such a stronger level. In fact, Sen’s second conjecture suggests

also that around the tachyon vacuum, there should be only closed string dynamics. However, we

will not touch upon the issue of closed strings in our paper and leave the reader to the references

[40, 48, 49, 53].

Considering the standing of the second conjecture, it is the aim of this paper to address to what

degree does it hold, i.e., whether the cohomology of QΨ0 is trivial only for ghost number 1 fields or

2For some early works concerning tachyon condensation please consult [3].
3The first String Field Theory action with pure ghost kinetic operator was written down in [47].
4An evidence for the triviality of a subset of the discrete ghost number one cohomology was presented recently in

[44] which complemented [43].
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for fields of any ghost number. We will give evidence which shows that the second conjecture holds

in the strong sense, and is hence consistent with the proposal in [45, 46].

Our discussion relies heavily upon the existence of a string field I of ghost number 0 which is

the identity of the ⋆-product. It satisfies

I ⋆ ψ = ψ ⋆ I = ψ

for any state5 ψ. The state I was first constructed in the oscillator basis in [55, 56]. Then a

recent work [57] gave a recursive way of constructing the identity in the (background independent)

total-Virasoro basis which shows its universal property in string field theory. As a by-product of

our analysis, we have found a new and elegant analytic expression for I without recourse to the

complicated recursions.

Ignoring anomalies, the fact that QΨ0 is a derivation of the ⋆-algebra implies that I is QΨ0

closed and the problem is to determine whether it is also QΨ0 exact, i.e., if there exists a ghost

number −1 field A, such that I = QΨ0A. If so, then for an arbitrary QΨ0 closed state φ we would

have

QΨ0(A ⋆ φ) = (QΨ0A) ⋆ φ−A ⋆ (QΨ0φ)

= I ⋆ φ
= φ,

where in the second step, we used the fact that φ is QΨ0-closed, and in the last step, that I acts

as the identity on φ. This means that any QΨ0-closed field φ is also QΨ0-exact, in other words, the

entire cohomology of QΨ0 is trivial.

Therefore we have translated the problem of the triviality of the cohomology of QΨ0 into the

issue of the exactness of the identity I. In this paper, we will use the level truncation method to

show that the state A indeed exists for the tachyon vacuum Ψ0 up to an accuracy of 3.2%.

The paper is structured as follows. In Section 2, we explain the above idea of the exactness of

I in detail. In Section 3, we use two different methods to find the state A: one without gauge fixing

and the other, in the Feynman-Siegel gauge. They give the results up to an accuracy of 2.4% and

3.2% respectively. In Section 4, we discuss the behaviour of I under level truncation and perform

5There are some mysteries regarding of the identity. For example, in [57] the authors showed that this identity

string field is subject to anomalies, with consequences that I may be the identity of the ⋆-algebra only on a subspace

of the whole Hilbert space. In the following, we will first assume that I behaves well on the whole Hilbert space,

and postpone some discussions thereupon to Section 4.
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a few consistency checks on our approximations. Finally, in Section 5 we make some concluding

remarks and address some further problems and directions.

A few words on nomenclature before we proceed. By |0〉 we mean the SL(2,R)-invariant

vacuum and |Ω〉 := c1 |0〉. We consider |Ω〉 to be level 0 and hence |0〉 is level 1. Furthermore, in

this paper we expand our fields in the universal basis (matter Virasoro and ghost oscillator modes).

2. The Proposal

To reflect the trivial cohomology of the BRST operator at the stable vacuum, Rastelli, Sen and

Zwiebach [46] proposed that after a field redefinition, the new BRST operator Qnew may be taken

to be simply c0, or more generally a linear combination of operators of the form (cn + (−)nc−n).

For such operators, there is an important fact: there is an operator A such that

{A,Qnew} = I,

where I is the identity operator. For example, if Qnew = cn + (−)nc−n, we can choose A =
1
2
(b−n+(−)nbn) because {1

2
(b−n+(−)nbn), Qnew} = {1

2
(b−n+(−)nbn), cn+(−)nc−n} = 1. Therefore,

if the state Φ is closed, i.e., QnewΦ = 0, then we have

Φ = {A,Qnew}Φ = AQnewΦ +QnewAΦ

= Qnew(AΦ)
(2.1)

which means that Φ is also exact. Thus the existence of such an A guarantees that the cohomology

of Qnew is trivial.

In fact the converse is true. Given a Qnew which has vanishing cohomology we can always

construct an A such that {A,Qnew} = I. Suppose that we denote the string Hilbert space at ghost

level g by Vg. Define the subspace V C
g as the set of all closed elements of Vg. We can then pick a

complement, V N
g , to this subspace6 satisfying Vg = V C

g ⊕ V N
g . Note that it consist of vectors which

are not killed by Qnew. This subspace V N
g , is not gauge invariant but any specific choice will do.

The important point is that because we have assumed that Qnew has no cohomology, the restriction

of Qnew to V N
g given by

Qnew

∣
∣
∣
V N

g

: V N
g → V C

g+1,

6More precisely, the space Vg could be split as Vg = V C
g ⊕(Vg/V C

g ) where (Vg/V C
g ) is a vector space of equivalence

classes under the addition of exact states. V N
g should be considered as a space of representative elements in (Vg/V C

g ).
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has no kernel and is surjective7 on V C
g+1. Thus it has an inverse which we denote A

A
∣
∣
∣
V C

g+1

≡ Q−1
new

∣
∣
∣
V C

g+1

: V C
g+1 → V N

g .

This insures that on the space V C
g , {A,Qnew} = I holds since if Φ is Qnew-closed,

{A,Qnew}Φ = AQnewΦ +QnewAΦ = QnewQ
−1
newΦ = Φ.

The above discussion only defines the action of A on V C
g , what remains is to define its action

on the complement V N
g . Here there is quite a bit of freedom since one can choose any map that

takes V N
g into V C

g−1. Assuming this, we have that for Φ ∈ V N
g ,

{A,Qnew}Φ = AQnewΦ +QnewAΦ = Q−1
newQnewΦ +Q2

newχ = Φ,

where by assumption AΦ is Qnew-closed (because it is in V C
g−1) and thus equals Qnewχ for some

χ ∈ V N
g−2. In general one can insist that A satisfies more properties. For example if we set A|V N

g
= 0

we get that A2 = 0. We summarize the above discussion as

PROPOSITION 2.1 The cohomology of Qnew is trivial iff there exists an operator A such that

{A,Qnew} = I.

The basic hypothesis of this paper is that not only does such an operator A exist for QΨ0 ,

but also for special choices of A, the action of A can be expressed as the left multiplication by the

ghost number −1 string field which we denote as A⋆. Thus we are now interested in satisfying the

equation {A⋆,Qnew} = I. Writing this out explicitly we have

{A⋆,Qnew}Φ = A ⋆ (QnewΦ) +Qnew(A ⋆ Φ)

= A ⋆ Qnew(Φ) + (QnewA) ⋆ Φ − A ⋆ (QnewΦ)

= (QnewA) ⋆ Φ.

In order for the last line to equal Φ for all Φ we need that

QnewA = I, (2.2)

where I is the identity of the ⋆-algebra.

7As remarked in the previous footnote, if we use (Vg/V C
g ) instead of V N

g , the mapping is an isomorphism of vector

spaces.
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For the case of interest, we wish to study the physics around the minimum of the tachyon

potential. We recall that for a state Φ, the new BRST operator around the solution ψ of the EOM

is given by

QψΦ = QB(Φ) + ψ ⋆ (Φ) − (−)Φ(Φ) ⋆ ψ. (2.3)

Using this expression for the BRST operator we can rewrite the basic equation (2.2) as QψA =

QB(A) + ψ ⋆ (A) + (A) ⋆ ψ = I. For general vacua ψ, such a string field A will not exist. For

example in the perturbative vacuum, ψ = 0, Qψ is simply QB. It is easy to show here that there

is no solution for A because the QB action preserves levels while I has a component at level one

(namely |0〉), but the minimum level of a ghost number −1 state A is 3. Indeed, for a more general

solution ψ 6= 0 (such as the tachyon vacuum), the star product will not preserve the level and so it

may be possible to find A. Our endeavor will be to use the level truncation scheme to find A for

the tachyon vacuum Ψ0, i.e., to find a solution A to the equation

QΨ0A = I. (2.4)

Note that this equation is invariant under

A→ A +QΨ0B

for some B of ghost number −2, thereby giving A a gauge freedom. This is an important property

to which we shall turn in the next section.

Having expounded upon the properties of A, our next task is clear. In the following section, we

show that for the tachyon vacuum Ψ0, we can find the state A satisfying (2.4) in the approximation

of the level truncation scheme.

3. Finding The State A

Let us now solve (2.4) by level truncation. To do so, let us proceed in two ways. We recall from

the previous section that A is well-defined up to the gauge transformation A → A + QΨ0B where

B is a state of ghost number −2. Because in the level truncation scheme, this gauge invariance is

broken, we first try to find the best fit results without fixing the gauge of A. The fitting procedure

is analogous to that used in [44] and we shall not delve too much into the details. We shall see

below that at level 9, the result is accurate to 2.4%. However, when we check the behaviour of the

numerical coefficients of A as we increase the accuracy from level 3 to 9, we found that they do not
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seem to converge. We shall explain this phenomenon as the consequence of the gauge freedom in

the definition of A; we shall then redo the fitting in the Feynman-Siegel gauge. With this second

method, we shall find that the coefficients do converge and the best fit at level 9 is to 3.2% accuracy.

These results support strongly the existence of a state A in (2.4) and hence the statement that the

cohomology around the tachyon vacuum is indeed trivial. In the following subsections let us present

our methods and results in detail.

3.1 The Fitting without Gauge Fixing A

To solve the condition (2.4), we first need an explicit expression of the identity I. Such an expression

has been presented in [55] and [57], differing by a mere normalization factor −4i. In this paper, we

will follow the conventions of [57] which has8

|I〉 = eL−2−
1
2
L−4+

1
2
L−6−

7
12
L−8+

2
3
L−10+... |0〉 (3.1)

= |0〉 + L−2 |0〉 +
1

2
(L2

−2 − L−4) |0〉

+
(

1

6
L3
−2 −

1

4
L−2L−4 −

1

4
L−4L−2 +

1

2
L−6

)

|0〉

+
(

1

24
L4
−2 +

1

4
(L−2L−6 + L−6L−2) +

1

8
L2
−4 −

7

12
L−8

− 1

12
(L2

−2L−4 + L−2L−4L−2 + L−4L
2
−2)

)

|0〉 (3.2)

where Ln = Lmn + Lgn, the sum of the ghost (Lgn) and matter (Lmn ) parts, is the total Virasoro

operator. For later usage we have expanded the exponential up to level 9. Furthermore, we split

Ln into matter and ghost parts and expand the latter into bn, cn operators as

Lgm :=
∞∑

n=−∞
(2m−n) : bncm−n : −δm,0. In other words, we write the states in the so-called “Universal

Basis” [57].

As a by-product, we have found an elegant expression for I which avoids the recursions9 needed

to generate the coefficients in the exponent. In fact, one can show that only L−m for m being a power

of 2 survive in the final expression, thus significantly reducing the complexity of the computation

8With the normalization 〈c1, c1, c1〉 = 3 that we are using, we should scale this expression by a factor of K3/3,

where K = 3
√

3/4. However, as the normalization of the identity will not change our analysis, we will use this right

normalization only in Section 4, where we are dealing with expressions like I ⋆ Φ.
9Indeed the expression given in [56] has no recursion either, however their oscillator expansion is not normal-

ordered due to ghost insertions at the string mid-point.
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of level-truncation for I:

|I〉 =

(
∞∏

n=2

exp
{

− 2

2n
L−2n

})

eL−2 |0〉

= . . . exp(− 2

23
L−23) exp(− 2

22
L−22) exp(L−2) |0〉 , (3.3)

where we emphasize that the Virasoro’s of higher index stack to the left ad infinitum. We leave the

proof of this fact to the Appendix.

It is worth noticing that in the expansion of I only odd levels have nonzero coefficients. This

means that we can constrain the solution A of (2.4), if it exists, to have only odd levels in its

expansion. The reason for this is as follows. Equation (2.4) states that QBA+Ψ0 ⋆A+A⋆Ψ0 = I,

moreover we recall that (cf. e.g. Appendix A.4 of [44]) the coefficient kℓ,i in the expansion of the

star product x ⋆ y =
∑

ℓ,i
kℓ,iψℓ,i is kℓ,i = 〈ψ̃ℓ,i, x, y〉 for the orthogonal basis ψ̃ to ψ. Now the triple

correlator has the symmetry 〈x, y, z〉 = (−)1+g(x)g(y)+ℓ(x)+ℓ(y)+ℓ(z)〈x, z, y〉, where g(x) and ℓ(x) are

the ghost number and level of the field x respectively. Whence, one can see that the even levels of

Ψ0⋆A+A⋆Ψ0 will be zero because the tachyon vacuum Ψ0 has only even levels and A is constrained

to odd levels. Furthermore, QB =
∑

n
cnL

m
−n+ 1

2
(m−n) : cmcnb−m−n : −c0 preserves level. Therefore,

in order that both the left and right hand sides of (2.4) have only odd levels, A must also have only

odd level fields.

Now the procedure is clear. We expand A into odd levels of ghost number −1 with coefficients

as parameters and calculate QΨ0A. Indeed as with [44], all the states will be written as Euclidean

vectors whose basis is prescribed by the fields at a given level; the components of the vectors are

thus the expansion coefficients in each level. Then we compare QΨ0A with I up to the same level

and determine the coefficients of A by minimizing the quantity

ǫ =
|QΨ0A− I|

|I| ,

which we of course wish to be as close to zero as possible. We refer to this as the “fitting of the

coefficients”. The norm |.| is the Euclidean norm (for our basis, see the Appendix) . As observed in

[43], different normalizations do not significantly change the values from the fitting procedure, so

for simplicity we use the Euclidean norm to define the above measure of proximity ǫ. The minimum

level of the ghost number −1 field A is 3, so we start our fitting from this level and continue to up

to level 9 (higher levels will become computationally prohibitive).
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First we list the number of components of odd levels for the fields A and I up to given levels:

level 3 level 5 level 7 level 9

Number of Components of A 1 4 14 43

Number of Components of I 4 14 43 118

From this table, we see that at level 3, we have only one parameter to fit 4 components. At level 5,

we have 4 parameters to fit 14 components. As the level is increased the number of components to

be fitted increases faster that the number of free parameters. Therefore it is not a trivial fitting at

all.

3.1.1 A up to level 3

At level 3 the identity is:

I3 = |0〉 + L−2 |0〉
= |0〉 − b−3c1 |0〉 − 2b−2c0 |0〉 + Lm−2 |0〉

and we find the best fit of A (recall that at level 3 we have only 1 degree of freedom) to be

A3 = 1.12237 b−2 |0〉 ,

with an ǫ of 17.1%.

3.1.2 A up to level 5

Continuing to level 5, we have

I5 = |0〉 + L−2 |0〉 + 1
2
(L2

−2 − L−4) |0〉
= |0〉 − b−3c1 |0〉 − 2b−2c0 |0〉 + Lm−2 |0〉 + b−5c1 |0〉 − b−2c−2 |0〉

+b−3c−1 |0〉 + 2b−3b−2c0c1 |0〉 + 2b−4c0 |0〉 − 1
2
Lm−4 |0〉

−b−3c1L
m
−2 |0〉 − 2b−2c0L

m
−2 |0〉 + 1

2
Lm−2L

m
−2 |0〉 .

To this level we have determined the best-fit A to be

A5 = 1.01893 b−2 |0〉 + 0.50921 b−3b−2c1 |0〉 − 0.518516 b−4 |0〉 + 0.504193 b−2L
m
−2 |0〉 ,

with an ǫ of 11.8%.
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The detailed data of the field A to levels 7 and 9 are given in table B.1 of the Appendix. Here

we just summarize the results of the best-fit measure ǫ:

level 3 level 5 level 7 level 9

ǫ =
|QΨ0

A−I|

|I|
0.171484 0.117676 0.0453748 0.0243515

This indicates that up to an accuracy of 2.4% at level 9, there exists an A that satisfies (2.4);

moreover the accuracy clearly gets better with increasing levels. This is truly an encouraging

result.

3.2 The Stability of Fitting

There is a problem however. Looking carefully at the coefficients of A given in the table B.1,

especially the fitting coefficients between levels 7 and 9, we see that these two groups of data have

a large difference. Naively it means that our solution for A does not converge as we increase level.

How do we solve this puzzle?

We recall that A is well-defined only up to the gauge freedom

A −→ A +QΨ0B.

It means that the solutions of (2.4) should consist of a family of gauge equivalent A. However,

because Q2
Ψ0

6= 0 under the level truncation approximation, the family (or the moduli space) is

broken into isolated pieces. Similar phenomena were found in [43] where the momentum-dependent

closed states were given by points instead of a continuous family. Using this fact, our explanation

is that the fitting of levels 7 and 9 are related by QΨ0B for some field B of ghost number −2. To

show this, we solve a new Ã up to level 9 that minimizes

|(Ã)7 −A7|
|A7|

+
|QΨ0Ã− I9|

|I9|
where A7 is the known fitting data at level seven, I9 is the identity up to level nine and (Ã)7 refers

to the first 14 components (i.e., the components up to level seven) of the level 9 expansion of Ã.

By minimizing this above quantity, we balance the stability of fitting from level 7 to 9. The data

is given in the last column of B.1. Though having gained stability, the fitting for level 9 is a little

worse, with ǫ increasing from 2.44% to 3.56%.

The next thing is to check whether Ã−A9 is an exact state QΨ0B. We find that this is indeed

true and we find a state B such that

|(Ã− A9) −QΨ0B|
|Ã− A9|

= 0.28%.
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3.3 Fitting A in the Feynman-Siegel Gauge

Alternatively, by gauge-fixing, we can also avoid the instability of the fit. If we require the state

A to be in the Feynman-Siegel gauge, A will not have the gauge freedom anymore and the fitting

result should converge as we do not have isolated points in the gauge moduli space to jump to. We

have done so and do find much greater stability of the coefficients.

Notice that in the Feynman-Siegel gauge, A has the same field bases in levels 3 and 5, so the

fitting at these two levels is the same as in Subsections 3.1.1 and 3.1.2. However, in this gauge it

has one parameter less at level 7 and 5 less in level 9. Performing the fit with these parameters we

have reached an accuracy of ǫ = 4.8% at level 7 and ǫ = 3.2% at level 9, which is still a good result.

The details are presented in Table B.2 in the Appendix.

4. Some Subtleties of the Identity

As pointed out in the Introduction, there are some mysterious and anomalous features of the identity

I. For example, I is not a normalizable state [50], moreover, c0, contrary to expectation, does not

annihilate I even though it is a derivation [57]. We shall show in the following that with a slight

modification of the level truncation scheme, this unnormalizability does not effect the results and

furthermore that in our approximation QΨ0I indeed vanishes as it must for consistency.

Let us first show how problems may arise in a naive attempt at level truncation. Consider the

quantity Iℓ ⋆ |Ω〉 − |Ω〉, where Iℓ denotes the identity truncated to level ℓ and |Ω〉 := c1 |0〉. We of

course expect this to approach 0 as we increase ℓ. Using the methods of the previous section, we

shall define the measure of proximity

η ≡ |Iℓ ⋆ |Ω〉 − |Ω〉 |
| |Ω〉 | = |Iℓ ⋆ |Ω〉 − |Ω〉 |,

where |.| is our usual norm. We list η to levels 3, 5, 7, and 9 in the following Table:

level ℓ 3 5 7 9

η = |Iℓ ⋆ |Ω〉 − |Ω〉 | 2.06852 2.87917 3.56054 3.9452

Our η obviously does not converge to zero, hence star products involving I do not converge in the

usual sense of level truncation. It is however not yet necessary to despair, as weak convergence will

come to our rescue10.

10We thank B. Zwiebach for this suggestion.
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Indeed, instead of truncating the result to level ℓ, let us use a slightly different scheme. We

truncate Iℓ ⋆ |Ω〉 to a fixed level m < ℓ and observe how the coefficients of the fields up to level m

converge as we increase ℓ. In the following table we list the values of the coefficients coeff(x) of the

basis for m = 2 (i.e., fields x of level 0, 1 and 2) for the expression Iℓ ⋆ |Ω〉.

Iℓ ⋆ |Ω〉 coeff(|Ω〉) coeff(b−1c0 |Ω〉) coeff(b−1c−1 |Ω〉) coeff(b−2c0 |Ω〉) coeff(Lm−2 |Ω〉)
ℓ = 3 0.6875 0.505181 -0.905093 -0.930556 0.465278

ℓ = 5 1.16898 -0.278874 0.38846 0.520748 -0.260374

ℓ = 7 0.911094 0.16252 -0.197833 -0.296607 0.148304

ℓ = 9 1.05767 -0.0971502 0.0902728 0.163579 -0.0817895

We see that the |Ω〉 component converges to 1 while the others converge to 0, as was hoped. We note

however that this (oscillating) convergence is rather slow and we thus expect slow weak convergence

for other calculations involving the identity.

Having shown that as ℓ → ∞ we get a weak convergence Iℓ ⋆ |Ω〉 → |Ω〉, we now consider

QΨ0Iℓ as ℓ → ∞, which should tend to zero. Since QB preserves level and QBI = 0, we have that

QBI = 0 in the level expansion; thus QΨ0I = Ψ0 ⋆ I − I ⋆Ψ0, which should converge to zero.

3 5 7 9 11 13 15 17
0

2

4

6

8

Figure 1: A plot of q0,1(ℓ) (solid curve), q2,1(ℓ) (dotted curve) and q2,3(ℓ) (dashed curve) as functions of

the level ℓ of the identity. ℓ goes from 3 to 17.

As the expression QΨ0I is linear in every component of Ψ0, that I is QΨ0-closed will be estab-

lished if we can show that for each component φ in Ψ0, φ ⋆ I − I ⋆ φ ≡ [φ⋆, I] converges to zero

12



as the level of I is increased. We plot in Fig.1, the absolute values of the coefficient of c0 |0〉 in the

expressions [(c1 |0〉)⋆, Iℓ], [(c−1 |0〉)⋆, Iℓ] and
[

(Lm−2c1) |0〉 ⋆, Iℓ
]

, which we denote by q0,1(ℓ), q2,1(ℓ)

and q2,3(ℓ) respectively. It seems clear that the coefficients do converge to zero.

The weak convergence we have shown above can be interpreted in a more abstract setting. Let

us examine the quantity |Iℓ ⋆ Φ − Φ|. It was shown in [51] that the ⋆-algebra of the open bosonic

string field theory is a C∗-algebra. A well-known theorem dictates that any C∗-algebra M (with or

without unit) has a so-called approximate identity which is a set of operators {Ii} in M indexed by

i satisfying (i) ‖Ii‖ ≤ 1 for every i and (ii) ‖Iix − x‖ → 0 and ‖xIi − x‖ → 0 for all x ∈ M with

respect to the (Banach) norm ‖.‖ of M (cf. e.g. [52]).

The level ℓ in our level truncation scheme is suggestive of an index for I. Furthermore the weak

convergence we have found in this section is analogous to property (ii) of the theorem (being of

course a little cavalier about the distinction of the Banach norm of the C∗-algebra with the Euclidean

norm used here). Barring this subtlety, it is highly suggestive that our Iℓ is an approximate identity

of the ⋆-algebra indexed by level ℓ.

5. Conclusion and Discussions

According to a strong version of Sen’s Second Conjecture, there should be an absence of any open

string states around the perturbatively stable tachyon vacuum Ψ0. This disappearance of all states,

not merely the physical ones of ghost number 1, means that the cohomology of the new BRST

operator QΨ0 should be completely trivial near the vacuum. It is the key observation of this paper

that this statement of triviality is implied by the existence of a ghost number −1 field A satisfying

QΨ0A = QBA + Ψ0 ⋆ A+ A ⋆Ψ0 = I.

That is to say that if the identity of the ⋆-algebra I is a QΨ0 exact state, then the cohomology of

QΨ0 would be trivial.

The level truncation scheme was subsequently applied to check our proposal. We have found

that such a state A exists up to an accuracy of 3.2% at level 9. Although these numerical results give

a strong support to the proposal for the existence of A and hence the triviality of QΨ0-cohomology

near the vacuum, an analytic expression for A would be most welcome. However, to obtain such

an analytic form of A, it seems that we would require the analytic expression for the vacuum Ψ0,

bringing us back to an old problem. It is perhaps possible that by choosing different gauges other

than the Feynman-Siegel gauge we may find such a solution.
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Our solution A satifies {A,Q} = I. It would be nice to see whether we can choose A cleverly to

make A⋆A = 0 (our Feynman-Siegel gauge fitting may not satisfy this equation). We are interested

with this case because for the proposal of QB = cn + (−)nc−n made in [45, 46], one could find that

A = 1
2
(b−n + (−)nbn) which does satisfy A2 = 0. It would be interesting to mimic this nilpotency

within the ⋆-algebra. Furthermore, it would be fascinating to see if we can make a field redefinition

to reduce A to a simple operator such as b0, and at the same time reduce QΨ0 to a new BRST

operator as suggested in [46], for example, c0.

Last but not least, an interesting question is about the identity I. In this paper we have given

an elegant analytic expression for I which avoids the usage of complicated recursion relations.

Furthermore, we have suggested that though the ⋆-algebra of OSFT may be a non-unital C∗-

algebra, I still may serve as a so-called approximate identity. However, as we discussed before,

anomalies related to the identity in the String Field Theory make the calculation in level truncation

converge very slowly. It will be useful to understand more about I.
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A. The Perturbatively Stable Vacuum Solution at Level (M, 3M)

We tabulate the coefficient of the expansion of the stable vacuum solution Ψ0 at various levels and
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interaction [13].

gh = 1 field basis level (2, 6) level (4, 12) level (6, 18) level (8, 24)

|Ω〉 0.3976548947184288 0.4007200390749924 0.4003790755638671 0.39973608190423154

b
−1c

−1 |Ω〉 −0.1389738152295008 −0.1502869559917484 −0.15477497270540513 −0.15712091953765914

Lm

−2
|Ω〉 0.0408931493261807 0.04159452148973691 0.04175525359702033 0.041806849347695574

b
−1c

−3 |Ω〉 0.041073385934010505 0.041936906548529496 0.042358626301118626

b
−2c

−2 |Ω〉 0.02419174563180113 0.02489022878379843 0.025301843897808124

b
−3c

−1 |Ω〉 0.013691128644670262 0.013978968849509828 0.014119542100372846

Lm

−4
|Ω〉 −0.003741923212578628 −0.0037331617302832193 −0.0037279001402683682

b
−1c

−1Lm

−2
|Ω〉 0.005013189182427192 0.005410660944694899 0.005620705137023851

Lm

−2
Lm

−2
|Ω〉 −0.00043064009114185083 −0.0004545462255696699 −0.0004654022166127481

b
−1c

−5 |Ω〉 −0.02193107815206234 −0.022161386573208323

b
−2c

−4 |Ω〉 −0.013702048066242712 −0.01385275004340868

b
−3c

−3 |Ω〉 −0.00834273227278023 −0.008359650003474304

b
−4c

−2 |Ω〉 −0.0068510240331213544 −0.0069263750217043295

b
−5c

−1 |Ω〉 −0.004386215630412471 −0.0044322773146416965

b
−2b

−1c
−2c

−1 |Ω〉 −0.005651485281802872 −0.00580655453652034

Lm

−6
|Ω〉 0.0010658398347450269 0.0010617366766707361

b
−1c

−1Lm

−4
|Ω〉 −0.0008498595740547494 −0.0008732233330861659

b
−1c

−2Lm

−3
|Ω〉 −0.000046769138331183204 −0.000052284121618944255

b
−2c

−1Lm

−3
|Ω〉 −0.000023384569165591568 −0.000026142060809472097

Lm

−3
Lm

−3
|Ω〉 4.479437511126653 × 10−6 5.080488681869039 × 10−6

b
−1c

−3Lm

−2
|Ω〉 −0.002457790374962076 −0.002528657337188949

b
−2c

−2Lm

−2
|Ω〉 −0.0020680241879350277 −0.002125416342663475

b
−3c

−1Lm

−2
|Ω〉 −0.0008192634583206926 −0.0008428857790629816

Lm

−4
Lm

−2
|Ω〉 0.00022330350231085353 0.00022500193649010967

b
−1c

−1Lm

−2
Lm

−2
|Ω〉 −0.00011131535311028013 −0.00012817322136544294

Lm

−2
Lm

−2
Lm

−2
|Ω〉 −7.241008154399294 × 10−6 −6.240064701718801 × 10−6

continued...
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gh = 1 field basis level (2, 6) level (4, 12) level (6, 18) level (8, 24)

b
−1c

−7 |Ω〉 0.014312021693536028

b
−2c

−6 |Ω〉 0.009158200585940239

b
−3c

−5 |Ω〉 0.005674268936470511

b
−4c

−4 |Ω〉 0.004838957768226669

b
−5c

−3 |Ω〉 0.0034045613618823045

b
−6c

−2 |Ω〉 0.0030527335286467446

b
−2b

−1c
−3c

−2 |Ω〉 −0.0035422558218537676

b
−7c

−1 |Ω〉 0.0020445745276480116

b
−2b

−1c
−4c

−1 |Ω〉 0.0037527555019998804

b
−3b

−1c
−3c

−1 |Ω〉 0.0004302428004449616

b
−3b

−2c
−2c

−1 |Ω〉 −0.0011807519406179202

b
−4b

−1c
−2c

−1 |Ω〉 0.0018763777509999383

Lm

−8
|Ω〉 −0.00041801038699211334

b
−1c

−1Lm

−6
|Ω〉 0.00029329813765991303

b
−1c

−2Lm

−5
|Ω〉 6.281489731737461 × 10−6

b
−2c

−1Lm

−5
|Ω〉 3.140744865868727 × 10−6

b
−1c

−3Lm

−4
|Ω〉 0.000500528172313894

b
−2c

−2Lm

−4
|Ω〉 0.00030379159554779373

b
−3c

−1Lm

−4
|Ω〉 0.00016684272410463048

Lm

−4
Lm

−4
|Ω〉 −0.000021999720024591806

b
−1c

−4Lm

−3
|Ω〉 0.00003496149452657495

b
−2c

−3Lm

−3
|Ω〉 −3.2753561169368668 × 10−6

b
−3c

−2Lm

−3
|Ω〉 −2.1835707446245427 × 10−6

b
−4c

−1Lm

−3
|Ω〉 8.74037363164371 × 10−6

Lm

−5
Lm

−3
|Ω〉 −1.3196771313891132 × 10−6

b
−1c

−1Lm

−3
Lm

−3
|Ω〉 1.2594432286572633 × 10−6

b
−1c

−5Lm

−2
|Ω〉 0.001534533432927412

b
−2c

−4Lm

−2
|Ω〉 0.0013556709245221895

b
−3c

−3Lm

−2
|Ω〉 0.0006166063072874846

b
−4c

−2Lm

−2
|Ω〉 0.0006778354622610939

b
−5c

−1Lm

−2
|Ω〉 0.00030690668658548353

b
−2b

−1c
−2c

−1Lm

−2
|Ω〉 0.0005782814358972997

Lm

−6
Lm

−2
|Ω〉 −0.00007624602726052426

b
−1c

−1Lm

−4
Lm

−2
|Ω〉 0.00006375616369006518

b
−1c

−2Lm

−3
Lm

−2
|Ω〉 5.9626436110722614 × 10−6

b
−2c

−1Lm

−3
Lm

−2
|Ω〉 2.9813218055361256 × 10−6

Lm

−3
Lm

−3
Lm

−2
|Ω〉 −5.422796727699355 × 10−7

b
−1c

−3Lm

−2
Lm

−2
|Ω〉 0.00004728162691342103

b
−2c

−2Lm

−2
Lm

−2
|Ω〉 0.00010011937816215435

b
−3c

−1Lm

−2
Lm

−2
|Ω〉 0.000015760542304474034

Lm

−4
Lm

−2
Lm

−2
|Ω〉 −4.371565449219928 × 10−6

b
−1c

−1Lm

−2
Lm

−2
Lm

−2
|Ω〉 −3.759766768481099 × 10−7

Lm

−2
Lm

−2
Lm

−2
Lm

−2
|Ω〉 7.259081254041818 × 10−7

(A.1)

B. Fitting of the Parameters of A

B.1 A up to Level 9 without Gauge Fixing

As A is of ghost number −1 and has only odd levels, we here tabulate such field basis at levels

3, 5, 7 and 9. The best-fit numbers are the coefficients of A obtained by best-fit via minimizing

ǫ =
|QΨ0

A−I|

|I|
. The stable fit at level 9 is constructed so as to control the convergence behaviour of
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the coefficients.

Field Basis level 3 fit level 5 fit level 7 fit level 9 fit stable level 9 fit

b
−2 |0〉 1.12237 1.01893 0.948316 1.25995 0.931864

b
−3b

−2c1 |0〉 0.50921 0.37306 0.660674 0.401547

b
−4 |0〉 −0.518516 −0.753272 −0.25828 −0.753004

b
−2Lm

−2
|0〉 0.504193 0.50695 0.400769 0.496562

b
−4b

−3c1 |0〉 0.698601 −0.10683 0.691255

b
−5b

−2c1 |0〉 0.893251 −1.8453 0.888407

b
−6 |0〉 −0.531323 1.40819 −0.541737

−b
−3b

−2c
−1 |0〉 −1.87167 3.14822 −1.86475

−b
−4b

−2c0 |0〉 −2.54254 3.2966 −2.54625

b
−2Lm

−4
|0〉 0.264611 −0.750856 0.255304

b
−3Lm

−3
|0〉 0.00193005 −0.0539165 −0.0191971

b
−3b

−2c1Lm

−2
|0〉 0.358002 0.301463 0.338645

b
−4Lm

−2
|0〉 −0.724095 0.163428 −0.744985

b
−2Lm

−2
Lm

−2
|0〉 0.166002 0.180328 0.169096

b
−5b

−4c1 |0〉 0.0796036 0.273844

b
−6b

−3c1 |0〉 −1.09893 −0.107261

b
−7b

−2c1 |0〉 0.847731 0.195816

b
−8 |0〉 −0.313743 −0.277211

b
−3c

−3b
−2 |0〉 −19.0376 −4.11409

−b
−4b

−2c
−2 |0〉 −0.147445 −0.626872

−b
−4b

−3c
−1 |0〉 1.80597 −0.0745503

−b
−5b

−2c
−1 |0〉 −0.172462 −0.356920

b
−4b

−3b
−2c0c1 |0〉 1.05994 −0.102556

−b
−5b

−3c0 |0〉 1.48397 −0.319450

−b
−6b

−2c0 |0〉 −0.784562 0.0949989

b
−2Lm

−6
|0〉 0.103719 −0.00879977

b
−3Lm

−5
|0〉 −0.530976 −0.0537990

b
−3b

−2c1Lm

−4
|0〉 0.428303 0.0633010

b
−4Lm

−4
|0〉 0.114766 0.111182

b
−4b

−2c1Lm

−3
|0〉 0.687831 0.200100

b
−5Lm

−3
|0〉 −0.165379 −0.134011

−b
−3b

−2c0Lm

−3
|0〉 −2.72288 −0.722198

b
−2Lm

−3
Lm

−3
|0〉 0.3427 0.0910701

b
−4b

−3c1Lm

−2
|0〉 −0.01845 0.304266

b
−5b

−2c1Lm

−2
|0〉 −0.628564 −0.137309

b
−6Lm

−2
|0〉 0.39923 0.195490

−b
−3b

−2c
−1Lm

−2
|0〉 −0.537685 −0.289167

−b
−4b

−2c0Lm

−2
|0〉 0.951973 −0.288878

b
−2Lm

−4
Lm

−2
|0〉 −0.237783 −0.0856879

b
−3Lm

−3
Lm

−2
|0〉 −0.332135 −0.0868470

b
−3b

−2c1Lm

−2
Lm

−2
|0〉 0.128844 0.126029

b
−4Lm

−2
Lm

−2
|0〉 −0.00185911 −0.160345

b
−2Lm

−2
Lm

−2
Lm

−2
|0〉 0.0403381 0.0402361

ǫ = |QΨ0
A − I|/|I| 0.171484 0.117676 0.0453748 0.0243515 0.0356226

(B.1)

B.2 Fitting A in the Feynman-Siegel gauge

As A enjoys the gauge freedom A → A + QΨ0B, we can fix it to be in the Feynman-Siegel gauge.
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This is another way to control the convergence behaviour of the coefficients.

fields level 3 fit level 5 fit level 7 fit level 9 fit

b
−2 |0〉 1.12237 1.01893 1.12465 1.05322

b
−3b

−2c1 |0〉 0.50921 0.467 0.500266

b
−4 |0〉 −0.518516 −0.503772 −0.53228

b
−2Lm

−2
|0〉 0.504193 0.476325 0.504269

b
−4b

−3c1 |0〉 0.333428 0.326986

b
−5b

−2c1 |0〉 −0.330557 −0.328381

b
−6 |0〉 0.346811 0.331188

−b
−3b

−2c
−1 |0〉 0.325862 0.327997

−b
−4b

−2c0 |0〉 0 0

b
−2Lm

−4
|0〉 −0.166799 −0.164306

b
−3Lm

−3
|0〉 0.00133026 0.000334022

b
−3b

−2c1Lm

−2
|0〉 0.341592 0.328637

b
−4Lm

−2
|0〉 −0.332864 −0.327326

b
−2Lm

−2
Lm

−2
|0〉 0.1686 0.165931

b
−5b

−4c1 |0〉 0.245489

b
−6b

−3c1 |0〉 −0.253014

b
−7b

−2c1 |0〉 0.250149

b
−8 |0〉 −0.257672

b
−3c

−3b
−2 |0〉 0.249999

−b
−4b

−2c
−2 |0〉 −0.256812

−b
−4b

−3c
−1 |0〉 0.246526

−b
−5b

−2c
−1 |0〉 −0.25213

b
−4b

−3b
−2c0c1 |0〉 0

−b
−5b

−3c0 |0〉 0

−b
−6b

−2c0 |0〉 0

b
−2Lm

−6
|0〉 0.00104113

b
−3Lm

−5
|0〉 0.0000151443

b
−3b

−2c1Lm

−4
|0〉 −0.126025

b
−4Lm

−4
|0〉 0.12448

b
−4b

−2c1Lm

−3
|0〉 −0.0004548

b
−5Lm

−3
|0〉 −0.000819122

−b
−3b

−2c0Lm

−3
|0〉 0

b
−2Lm

−3
Lm

−3
|0〉 0.0000905036

b
−4b

−3c1Lm

−2
|0〉 0.250728

b
−5b

−2c1Lm

−2
|0〉 −0.251499

b
−6Lm

−2
|0〉 0.250865

−b
−3b

−2c
−1Lm

−2
|0〉 0.249179

−b
−4b

−2c0Lm

−2
|0〉 0

b
−2Lm

−4
Lm

−2
|0〉 −0.123363

b
−3Lm

−3
Lm

−2
|0〉 0.000457948

b
−3b

−2c1Lm

−2
Lm

−2
|0〉 0.126358

b
−4Lm

−2
Lm

−2
|0〉 −0.125248

b
−2Lm

−2
Lm

−2
Lm

−2
|0〉 0.0406385

ǫ = |QΨ0
A − I|/|I| 0.171484 0.117676 0.0480658 0.0320384

(B.2)

B.3 Expansion of I up to level 9

Immediately below the field basis at ghost number 0 and levels 1, 3, 5, 7 and 9 is given the coefficient
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of the expansion of I.

|0〉 b
−3c1 |0〉 −b

−2c0 |0〉 Lm

−2
|0〉 b

−5c1 |0〉

1 −1 2 1 1

−b
−2c

−2 |0〉 −b
−3c

−1 |0〉 b
−3b

−2c0c1 |0〉 −b
−4c0 |0〉 Lm

−4
|0〉

1 −1 2 −2 − 1

2

b
−2c1Lm

−3
|0〉 b

−3c1Lm

−2
|0〉 −b

−2c0Lm

−2
|0〉 Lm

−2
Lm

−2
|0〉 b

−7c1 |0〉

0 −1 2 1

2
−1

−b
−2c

−4 |0〉 −b
−3c

−3 |0〉 b
−3b

−2c
−2c1 |0〉 −b

−4c
−2 |0〉 b

−4b
−2c

−1c1 |0〉

0 −1 1 0 0

−b
−5c

−1 |0〉 b
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(B.3)

C. The Proof for the Simplified Expression for the Identity

In this section we wish to present the proof for the analytic expression for the identity as given in
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(3.3). We remind the reader of the expression:

|I〉 =

(
∞∏

n=2

exp
{

− 2

2n
L−2n

})

eL−2 |0〉

= . . . exp(− 2

23
L−23) exp(− 2

22
L−22) exp(L−2) |0〉 , (C.1)

or its BPZ conjugate form11

〈I| = 〈0|UhUf2Uf3Uf4 . . . , (C.2)

where Ufn = e−
2

2n L2n for n ≥ 2 and Uh = eL2 . In [57], the identity is given by 〈I| = 〈0|UfI where

UfI is the operator corresponding to the function

fI(z) =
z

1 − z2
.

Using the composition law Ug1Ug2 = Ug1◦g2 , what we need is to prove

UhUf2Uf3Uf4 . . . = Uh◦f2◦f3◦... = UfI

which is equivalent to proving

lim
k→∞

h ◦ f2 ◦ . . . ◦ fk(z) = fI(z) =
z

1 − z2
. (C.3)

For the operator Uf = eaLn , the corresponding function f is given by [54]

f(z) = exp
{

azn+1∂z
}

z =
z

(1 − anzn)1/n
,

so we have
h(z) = z

(1−2z2)1/2

fn(z) = z
(1+2z2n )1/2n .

A useful property of the fn is that fn(z) = (g(z2n
))1/2n

where

g(z) :=
z

1 + 2z
=

1

2 + 1/z
.

Before writing down the general form, first let us do an example:

f2 ◦ f3 ◦ f4(z) = f2 ◦ f3[(g[z
24

])1/24

]

11Please notice that, besides the replacement Ln → (−)nL−n, the orders under BPZ-conjugation are also reversed.

This is because we use Ln instead of the oscillators αm, whose orders do not get reversed under BPZ.
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= f2[(g[((g[z
24

])1/24

)23

])1/23

]

= f2[(g[g
1/2[z24

]])1/23

]

= (g[((g[g1/2[z24

]])1/23

)22

])1/22

= (g[g1/2[g1/2[z24

]]])1/22

= (g1/2[g1/2[g1/2[z24

]]])1/2.

Now it is easy to see that the general form is

h ◦ f2 ◦ f3 ◦ . . . ◦ fk+1(z) = h ◦ (g
1
2 ◦ . . . ◦ g 1

2

︸ ︷︷ ︸

k

(z2k+1

))
1
2 .

Thus equation (C.3) is equivalent to showing that

lim
k→∞

g
1
2 ◦ . . . ◦ g 1

2

︸ ︷︷ ︸

k

(z2k+1

) = (h−1(f(z)))2 =
z2

1 + z4
.

The left hand side can be written as

((2 + (2 + . . .+ (2
︸ ︷︷ ︸

k

+1/z2k+1

)
1
2 . . .)

1
2 )

1
2 )−1 = z2((2z22

+ (2z23

+ . . . (2z2k+1

+ 1)
1
2 . . .)

1
2 )

1
2 )−1.

Thus (C.3) reduces to the verification of the equation

lim
k→∞

(2z22

+ (2z23

+ . . . (2z2k+1

+ 1)
1
2 . . .)

1
2 )

1
2 = 1 + z22

.

This can be done as follows. Consider first squaring both sides of the above equation and canceling

2z22
from the two sides, we get

lim
k→∞

(2z23

+ . . . (2z2k+1

+ 1)
1
2 . . .)

1
2 )

1
2 = 1 + z23

.

Repeating the above operation k times, the left hand side gives 1 while the right hand side gives

1+ z2k+2
. Thus as long as z < 1, we get that the left and right hand sides do converge to each other

as k → ∞.
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