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<Abstract: Strain-penetration of the longitudinal reinforcement of reinforced concrete (RC) members in the joints and/or footings results in 

fixed-end rotations at the member ends. Several experimental studies have shown that fixed-end rotations caused by strain-penetration 

contribute significantly (up to 50%) to the total displacement capacity of RC members. Hence, accurate determination of these fixed-end 

rotations at yielding and ultimate limit states becomes of primary importance when defining the structural response of RC members. The 

purpose of this study is to present the theoretical background and the assumptions behind the most common relationships found in the  

literature for determining strain-penetration induced  fixed-end rotations at yielding and ultimate. Furthermore, new simple relationships 

are proposed on the basis of realistic and mechanically-based assumptions. Comparisons between the existing and proposed 

relationships demonstrate the limitations of the former. Finally, the proposed relationships are calibrated against experimental 

measurements of RC column specimens subjected to cyclic loading with recorded fixed-end rotations due to strain-penetration in the 

adjacent joints and/or footings.>  

 

Keywords: <Reinforced concrete; seismic; strain-penetration; fixed-end rotations; anchorage slip; yielding; ultimate> 

1 Introduction 

Performance-based design increasingly gains ground in seismic design of RC structures. A basic prerequisite of reliable 

performance-based design of RC structures is the reliable knowledge of individual member lateral displacement at the 

threshold of different performance levels. 

In general, for RC members, lateral displacement at yielding and ultimate can be considered as the sum of three individual 

components. The displacements originating from flexural and shear deformation mechanisms and the displacement due to 

strain-penetration of the longitudinal reinforcement at the beam-column joints and/or footings. Estimation of the latter 

displacement component represents the main focus of the study presented herein. 

Several experimental studies have shown that fixed-end rotations caused by strain-penetration of longitudinal bars in the 

joints contribute significantly (up to 50%) to the total displacement capacity of RC members [1-3].  

Various analytical methodologies have been developed so far for the determination of fixed-end rotations caused by strain-

penetration in the anchorage zone. These methodologies range from the most elaborate and accurate, which use the finite 

element or finite difference method [4-6] to rather simplified ones, yet accurate enough, which assume prescribed 

distributions of bond stress along the anchorage length [7-13]. 

The main objective of this study is to propose new simple closed-form relationships for calculating anchorage slip rotations 

at yielding and ultimate. The proposed relationships are mechanics based, which assures that all main parameters affecting 

anchorage slip are taken sufficiently into consideration. The new relationships are calibrated against experimental 

measurements and are later used to evaluate widely adopted relationships from the literature. 
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2 Fixed-end rotation at yielding 

 

If s denotes slippage of the tension reinforcement from its anchorage, fixed-end rotation θslip is given by Eq. (1), where xc is 

the neutral axis depth and d is the effective depth of the member end section  
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The most common assumption, when estimating fixed-end rotation at yielding, is that the bond stress τbe is constant along an 

anchorage length Lbe [7-13]. This assumption is convenient but does not accurately reflect the real phenomenon.  

As shown in Fig. 1, when τbe is assumed constant along Lbe, bar stress σs(x) increases linearly from zero at the end of Lbe to 

the bar yield strength fyl at the member end section. Since the bar remains in the elastic range, steel strains εs(x) also increase 

linearly from zero to εy at the respective locations. Anchorage slip at yielding sy can now easily be calculated by integration 

as 
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The length Lbe is determined by equilibrium for the bar with diameter dbl as: 
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Combining Eqs. (1), (2) and (3), the fixed-end rotation at yielding θy,slip is obtained as a function of the curvature at yielding 

φy. 
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One problem in the afore-described approach is the determination of the uniform bond stress τbe. Biskinis and Fardis [11] 

suggest that τbe≈√fc. This value is adopted as the mean bond stress along Lbe, which is about 40% to 50% of the maximum 

bond strength τbu of the local constitutive bond-slip law of unconfined or confined concrete, respectively, for “good” bond 

conditions according to Model Code  1990 [14]. The same value for τbe is proposed by Lehman and Moehle [3] and Sezen 

and Setzler [10], who studied fixed-end rotations of RC columns subjected to cyclic loading.  

By setting τbe=√fc, the following equation for θy,slip is obtained, which is the same as the one adopted in EC8-Part3 [15]. 
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Despite the convenience of the previous approach, it is not consistent with the actual local bond-slip response as it assumes 

constant bond stress along the anchorage length, while the slip increases quadratically from zero to the maximum value sy at 

the beam-column end section. This is not consistent with the local bond-slip constitutive law presented in Fig. 2.  

To overcome this limitation, a new, simple procedure is proposed herein for evaluating sy. The method assumes that the local 

bond stress of an anchorage point is a general power function of the distance x from the anchorage point of zero stress, 

strain, and slip (Fig. 3). Hence, it is assumed:  
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The proposed method assumes that all points along Lbe remain on the ascending branch of the local bond-slip law. Hence, at 

the end of the calculations, the following relationship should hold: sy <s1 (see Fig. 2). It is worth noting that Eq. (6) at x=0 

yields τb(x)=0, which is in accordance with the boundary condition s(x)=0 at x=0 and the local constitutive bond-slip law 

shown in Fig. 2. 

Parameters b and c are considered unknown and will be determined in the following by satisfying local bond-slip law at 

x=Lbe and at an arbitrary anchorage point P at distance x=xP=Lbe/m, where m>1 (see Fig. 3). Thus, no additional assumptions 

are introduced for the calculation of b and c.  

Application of Eq. (6) to the two points mentioned above, gives: 
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By equilibrium of an infinitesimal anchorage length dx and the boundary condition (x=0  σs=0), one obtains: 
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For x=Lbe, it is assumed that the steel bar is at the point of yield i.e. σs=fyl. Solving for Lbe and using Eq. (7), leads to: 
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Furthermore, since the reinforcement bar remains in the elastic region: 
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where E is the elastic modulus of steel. By ignoring the concrete strain and applying the boundary condition s(x)=0 at x=0, 

slip s(x) at distance x becomes: 
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At x=Lbe and at x=xP, by using Eq. (11), anchorage slips sy and sp respectively are related as: 
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Moreover, by considering the relationship of the bond-slip constitutive law ascending branch shown in Fig. 2 and Eq. (7), it 

is obtained: 
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Combining Eqs. (12) and (13) and since m is an arbitrary constant, it follows that: 

 

  2 2
( 2)

1

c c
m m c c c

 





      


 (14) 

 

Slip sy can now be determined by applying Eq. (11) together with Eq. (9): 

 

 
       

24

1 2 2 2

yl be y bec

y be

bl

f L Lb
s L

E d c c E c c




 
    

      
 (15) 

 

By further substitution of Lbe from Eq. (9) and using the local bond-slip constitutive law, the following is obtained: 

 

 
 

 

 

 
1

1 1

4 2
4 2

y yl bl y yl bl

y a

by y

bu

f c d f c d
s

c s
c

s

 




       
 

   
   

 

 (16) 

 

Finally, by substituting c from Eq. (14) and solving for sy, it results: 
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It is important to note that Eq. (17) provides a closed-form solution to the calculation of sy from the steel properties and the 

local bond-slip constitutive law parameters. The proposed methodology takes into account the variation of bond stress along 

the anchorage length and accounts for the actual shape of the local bond-slip law by introducing the constitutive parameters 

α, s1 and τbu.  

One of the advantages of the proposed methodology is the fact that it calculates sy as a function of local constitutive bond-

slip law parameters that have already been calibrated for different bond conditions and levels of confinement. Fig. 4(a) 

compares sy predictions for different bar diameters derived by the uniform bond stress assumption τbe=√fc (i.e. EC8-Part 3 

[15] approach) and the proposed methodology for the bond-slip constitutive law parameters corresponding to “Good” and 

“Other” bond conditions for the pull-out failure mode in accordance with fib Model Code 2010 [16]. Additional parameters 

influencing bond, like yielding, transverse stress, longitudinal cracking and cyclic loading are not examined herein. In Fig 4 

concrete compressive strength is assumed equal to fc=35MPa and steel yield strength fyl=500MPa.  

It can be seen that sy predictions differ significantly for different bond conditions. The lower sy values are predicted for 

concrete in “Good” bond conditions. This is expected since bond-slip ascending response is stiffer in this case. It is also 

interesting to compare EC8-Part 3 [15] predictions with the predictions of the proposed methodology for “Good” bond 

conditions (Fig. 4-right). It can be seen that the two solutions tend to converge for small bar diameters, but they deviate 

significantly for large diameters. This observation drives to the conclusion that no unique uniform τbe can be assumed for all 

bar diameters, as assumed (for simplicity) in EC8-Part 3 [15].  

An additional advantage of Eq. (17) is the fact that it can be readily applied to the calculation of anchorage slip for steel 

strains εso less than εy. This is achieved by simply setting in Eq. (17) εso instead of εy and corresponding stress σso =E·εso 

instead of fyl.  

Fig. 4(b) compares anchorage slip calculated according to EC8-Part 3 [15] and proposed approaches for the same material 

properties as above and bar diameter dbl=8mm. It can be seen that sy predictions from the two methodologies coincide for 

this bar diameter size. However, further comparison reveals that the EC8-Part 3 [15] approach may considerably 

underestimate anchorage slip at low steel stresses. This is because the uniform bond stress value τbe=√fc assumed by EC8-

Part 3 [15] only applies for yielding of the longitudinal reinforcement. For lower steel stresses, lower slip values and bond 

stresses are expected. Hence, the EC8-Part 3 [15] approach may overestimate bond and underestimate slip of the anchorage. 

Having established sy and using the definition of the yield curvature, fixed-end rotation at yielding θy,slip can be determined as 
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3 Fixed-end rotation at ultimate 

 

For the calculation of fixed-end rotation at ultimate θu,slip the additional ‘plastic’ fixed-end rotation arising from the inelastic 



part Lbp of the anchorage θpu,slip has to be added to θy,slip. Typically, θpu,slip is significantly higher than θy,slip due to the large 

strains and the reduced bond capacity developed in the inelastic part of the anchorage. 

To calculate accurately θpu,slip elaborate analytical methodologies are generally required like the ones mentioned in the 

Introduction. In addition to these methodologies, a number of researchers have made various simplifying assumptions in 

order to provide approximate estimates of θpu,slip. The most widely adopted approach for calculating θpu,slip at onset of 

flexural failure is the equivalent plastic hinge length approach [17-18]. According to this approach, θpu,slip can be determined 

by the following equation, where Lsp,u is the strain-penetration length at flexural failure: 
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Different empirical relationships, based on experimental results, have been proposed in the literature for the calculation of 

Lsp,u. Paulay and Priestley [17] propose the following equation (fyl in MPa). 
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Depending on the way the curvature of the RC member end section at flexural failure φu is calculated, EC8-Part 3 [15] 

proposes two different equations for the determination of Lsp,u (fyl, fc in MPa), depending on the model used for confined 

concrete. 
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At this point, it is important to mention that the actual value of Lsp,u cannot be treated as independent of the assumptions 

made for the calculation of φu in moment-curvature analysis. These assumptions concern the constitutive models for 

confined and unconfined concrete, the constitutive model for reinforcing steel, the determination of the ultimate concrete 

strain at failure εcu and the steel strain at failure εsu. A thorough description of the assumptions made for the determination of 

φu in the three different equations of Lsp,u (Eqs. 19 to 21) can be found in Fardis [18]. 

In the following, a more generic approach for determining Lsp,u will be developed. The methodology is based on the 

assumption of uniform bond stress τbp inside the inelastic part of the anchorage Lbp (Fig. 5). The same assumption has been 

made by several researchers [8-13] who found good correlation of the experimental measurements and the analytical 

calculations. However, the previous research efforts aimed at calculating directly θpu,slip and not Lsp,u.  

The aim of the proposed methodology is to propose a closed-form relationship that accounts seperately for the effects of the 

main parameters governing the development of the inelastic fixed-end rotations (i.e. reinforcing steel strain-hardening 

response, bar size, material strengths and bond-slip response between steel and surrounding concrete). In this manner, all 

possible combinations can be taken into consideration. Furthermore, the proposed relationship will be able to determine 

inelastic fixed-end rotations θp,slip at limit states prior to flexural failure. This is very important for the purposes of 



performance-based design for multiple performance levels. 

An important issue when calculating θp,slip is the assumption regarding the reinforcing steel strain-hardening constitutive law. 

Most analytical models [8-10,12] assume, for simplicity, linear hardening constitutive law. Nevertheless, a previous 

analytical study by Mergos and Kappos [13] has shown that the nonlinearity of the strain-hardening material law plays a 

significant role in the determination of θp,slip. Hence, in the following, closed form relationships will be derived for both 

linear and nonlinear strain hardening laws of reinforcing steel. 

 

Linear strain-hardening law 

 

Figure 5 illustrates bond stress, steel stress and steel strain distribution along Lbp, where reinforcement plastic slip sp 

and the corresponding fixed-end rotation θp,slip are developed. When linear strain-hardening law is assumed, steel stress after 

yielding σs is given by Eq. (22) as a function of the respective steel stress εs and the steel stress fsu and strain εsu at maximum 

strength.  
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The anchorage length Lbp in the inelastic range is determined by equilibrium and by using Eq. (22). In Eq. (23), σso and εso 

are the steel stress and strain at the loaded end of the anchorage (Fig. 5). 
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For linear strain distribution, post-yield anchorage slip sp is easily calculated by integration as: 
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The respective fixed-end rotation is given by the following equation, which makes the common assumption [18] that the 

neutral axis depth remains approximately constant after yielding of the longitudinal reinforcement. In this equation, φο is the 

curvature at the critical end section of the RC member. 
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The strain penetration length Lsp can now be calculated as: 
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The equation above can be also written in the following form, where εno is the normalized post-yield strain ratio εno=(εso-

εy)/(εsu-εy); in the post-yield range, εno ranges from zero to unity. 
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According to Eq. (27), Lsp increases linearly with the normalized post-yield strain ratio εno. The same equations can be also 

written as: 
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The second term of Eq. (28) can generally be neglected since εy<<εsu. In this case, Lsp takes the simple form of Eq. (29): 
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The post-yield fixed-end rotation θp,slip corresponding to arbitrary post-yield curvature φο and steel strain σso of the RC 

member end section can now be calculated by the standard equation: 
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Nonlinear strain-hardening law 

 

Nonlinearity of the strain-hardening law increases considerably the complexity of the analytical derivation of post-yield 

anchorage slip sp. In the present study, the nonlinear strain-hardening law suggested by Priestley et al. [17] is examined. This 

is given by the following relationship: 
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The steel stress σs(x) at a distance x from the loaded end of the anchorage is determined by equilibrium: 
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Hence, the respective steel strain can be calculated by combining Eq. (31) and Eq. (32) as: 
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The anchorage slip sp developed in Lbp is calculated by strain integration along this length: 
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where Lbp is given by the general Eq. (35) 
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Now, the equivalent plastic hinge length for anchorage slip Lsp can be determined by: 
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The analytical solution of Eqs. (34-36) has the following form: 
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where: 
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Fig. (6a) presents variation of λ(εno) with the normalized post-yield strain ratio εno. It can be seen that λ(εno) increases initially 

nonlinearly with εno and then tends to stabilize. In fact, when εno approaches unity, λ(εno) slightly decreases, but this can be 

neglected for practical applications. The maximum value of λ(εno) is approximately ¾. 

More interestingly, Fig. (6b) shows the variation of λ with the normalized ratio σno=(σso-fyl)/(fsu-fyl). In this figure, it can be 

seen that λ(σno) increases almost linearly from zero to ¾ as σno increases from zero to unity. This observation drives to the 

conclusion that for practical applications, Eq. (37) can be written as: 

 

 
 3

4 8

so yl bl

sp

bp

f d
L





 
 


 (39) 

 

Comparing Eqs. (29) and (39), it can be observed that they can both be written in the following general form: 
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where μ is a scalar that accounts for the constitutive strain hardening law of steel (i.e. μ=1 for linear hardening law and μ=3/4 

for quadratic hardening law). It is worth noting that for the nonlinear hardening law it is μ<1. This is due to the fact that for 

the same σno strains along Lbp are generally lower than the ones corresponding to linear hardening law as evident in Fig. 5. 

It is generally suggested that τbp be taken as τbp=ψ·√fc where ψ is a constant parameter. For example, Lehman and Moehle [3] 

suggest that ψ be taken equal to 0.5 for RC columns subjected to cyclic loading. Alsiwat and Saatcioglu [8] suggest that τbp 

be taken equal to the residual bond strength τbf of the local bond-slip constitutive law (Fig. 2). According to Model Code 

2010 [16] and for pull-out failure, τbf  is equal to √fc for “Good” and 0.5√fc for “Other” bond conditions. However, the 

previous values should be modified by reduction factors accounting for reinforcement yielding, longitudinal cracking, 

transverse stress and cyclic loading. Hence, significantly smaller values often apply. 

By substituting τbp in Eq. (40), Lsp takes the following general form:  
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The strain penetration length at flexural failure Lsp,u can be determined by direct substitution as: 
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The form of Eq. (42) can be considered as a generalization of the Eqs. (20-21) that are widely adopted for the calculation of 



Lsp,u [17-18]. The general form of all equations is the following  
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where κ is a scalar given by  
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Eqs. (43) and (44) are useful because they reveal the influence of different parameters on Lsp,u. More particularly, it is shown 

that Lsp,u increases with fyl and dbl and decreases with √fc. These observations are in agreement with models in existing 

literature. In addition, Eq. (44) shows that Lsp,u depends on the steel stress at failure, the strain-hardening constitutive law and 

the general bond conditions (i.e. level of confinement, position of reinforcement, cyclic loading, longitudinal cracking, and 

transverse stress). The latter parameters are not taken explicitly into consideration in Eqs. (20-21). 

Figure 7 illustrates the range of κ for possible values of ψ (0.1≤ ψ≤1) and σso,u/fyl (1.1≤ σso,u/fyl ≤1.5) for nonlinear hardening 

constitutive law (i.e. μ=3/4). It can be seen that κ varies from 0.01 to 0.47. It is recalled that according to EC8-Part 3 [15] κ is 

either 0.11 or 0.24. Hence, it is obvious that EC8-Part 3 [15] may lead to serious underestimation or overestimation of Lsp,u 

and consequently θpu,slip. 

In Eq. (44), σso,u is the steel stress corresponding to onset of flexural failure of the RC member end section. Usage of σso,u, 

instead of fsu, is strongly recommended for non-ductile RC members that can fail in flexure at steel stress levels significantly 

lower than fsu. This depends also on the type of the strain-hardening law. For linear hardening law, for example, it is unlikely 

that σso,u will reach fsu even for well confined members.  

In addition to the above, it should be clarified that Lsp,u should not be used for the determination of θp,slip as it will lead to 

overestimation of the post-yield fixed-end rotations. Instead, the value of Lsp corresponding to the curvature of the member 

end-section should be applied. Lsp varies from 0 at yielding to Lsp,u at onset of flexural failure. 

 

4 Calibration against experimental data 

 

In this section, the equations derived analytically for the determination of fixed-end rotations at yielding and ultimate will be 

calibrated against experimental data. To this goal, a set of specimens comprising 10 RC columns subjected to cyclic loading 

up to onset of flexural failure is utilised. For all columns, fixed-end rotations due to strain penetration in the footing were 

recorded during the testing procedure. Column properties and experimentally recorded fixed-end rotations are reported in 

Table 1; it is worth recalling herein that measurement of fixed end rotations is not easy or standardised, and hence subject to 

uncertainty. 

Figure 8a compares the analytical predictions of θy,slip based on EC8-Part 3 Eq. (5) with the experimental measurements. It 

can be seen that EC8-Part 3 [15] underestimates significantly the experimental fixed-end rotations. The test-to-prediction 

ratio has a mean of 1.93 and median of 2.03 and coefficient of variation of 25%. Figure 8b presents the same comparison 

when the proposed Eq. (18) is applied. The following constitutive bond-slip parameters are adopted for this comparison: 

α=1.0, s1=0.85mm and τbu=1.25√fc. These parameters were chosen both because they provide the best correlation with the 

experimental results and they are consistent with the experimental measurement of the local bond-slip response under cyclic 



loading conditions by Lehman and Moehle [3]. The test-to-prediction ratio has a mean of 1.00 and median of 1.03 and 

coefficient of variation of 23%. 

Figure 9a compares the analytical predictions of θp,slip based on EC8-Part 3 (Lsp from Eq. (21a) and Eq. (21b)) with the 

experimental measurements. It can be seen that Eq. (21a) underestimates the experimental fixed-end rotations. The test-to-

prediction ratio has a mean of 1.34 and median of 1.38 and coefficient of variation of 33%. On the other hand, Eq. (21b) 

slightly overestimates experimental measurements. More particularly, test-to-prediction ratio has a mean of 0.97 and median 

of 0.80 and coefficient of variation of 50%. 

Figure 9b presents the same comparison when the proposed Eq. (42) is applied for Lspu. For the calculation of the plastic 

fixed-end rotation θp,slip, the yield and ultimate curvature φy and φu were calculated by moment-curvature analyses and by 

employing the confined concrete model by Mander et al. [20] and the steel model with nonlinear hardening law suggested by 

Priestley et al. [17]. Critical concrete and steel strains at the ultimate limit state were assumed in accordance with the 

recommendations by Mander et al. [20] and Priestley et al. [17].  

The following constitutive bond-slip parameters are employed for this comparison: ψ=0.29 and μ=0.75. Parameter μ was 

chosen in accordance with the adopted steel model and parameter ψ was selected to provide the best fit to the experimental 

results. The test-to-prediction ratio has a mean of 1.10 and median of 1.00, and coefficient of variation of 54%. The 

predictions are slightly better than the EC8-Part 3 predictions, but still the coefficient of variation is very high. This 

observation reflects the level of uncertainty when calculating displacement components at the ultimate limit state. As noted 

earlier, the uncertainty in the experimental fixed-end rotation measurements should also have affected the quality of the 

comparison. 

 

5 Conclusions 

 

Accurate determination of fixed-end rotations at the ends of RC members due to strain penetration of the longitudinal 

reinforcement in the joints and/or footings, at yielding and ultimate limit states, is of primary importance for defining their 

inelastic structural response and is also a prerequisite for their design based on multiple performance levels.  

Fixed-end rotations are either calculated by over-simplified empirical approaches that are not able to capture all aspects of 

strain-penetration response or by advanced numerical solutions that cannot be used in everyday engineering practice.  

In an attempt to bridge this gap, this study proposed new closed-form relationships for determining strain-penetration fixed-

end rotations at yielding and ultimate limit states.  The relationships are based on simple, yet rational, mechanical models 

that increase the reliability of the results, while they also provide a better insight into the parameters affecting strain 

penetration.  

The new relationships were first used to examine the validity of widely adopted equations in the literature and EC8-Part 3 

[15] and then calibrated against experimental data from RC column specimens subjected to cyclic loading for which fixed-

end rotations were recorded.  

Regarding fixed-end rotation at yielding, comparison of the EC8-Part 3 equation and that proposed herein shows that the 

EC8-Part 3 approach is of limited validity since it assumes a uniform bond stress along the anchorage length taken always as 

τbe=√fc. However, it is shown that this uniform bond stress depends on several factors like the bond conditions (“Good” and 

“Other” in accordance with fib Model Code 2010 [16]), level of confinement, and longitudinal bar diameter. Moreover, it is 

demonstrated that the EC8-Part 3 equation should not be used for steel stresses lower than the yield strength. 

For the fixed-end rotation at ultimate, comparison of the EC8-Part 3 equation and that developed herein reveals again the 



limitations of the EC8-Part 3 approach. It is shown that the strain-penetration length Lsp,u used in EC8-Part 3 to calculate the 

plastic fixed-end rotation is not a function of only the longitudinal bar diameter, concrete strength and steel yield strength; it 

also depends on the steel stress at flexural failure, the constitutive strain-hardening steel law and the general bond conditions 

(i.e. level of confinement, position of reinforcement, cyclic loading, longitudinal cracking, and transverse stress). 

Finally, comparisons with experimental results from reinforced concrete column specimens subjected to cyclic loading 

demonstrate that the EC8-Part 3 equations underestimate significantly the fixed-end rotation at yielding. They provide better 

estimations of the fixed-end rotations at ultimate, but still with high coefficients of variation. The proposed equations 

produce very good predictions of the fixed-end rotation at yielding. Predictions of the fixed-end rotation at the ultimate limit 

state are generally better than the EC8-Part 3 equations, but they are also characterised by high coefficients of variation. 
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Fig. 1. Determination of fixed-end rotation at yielding by assuming uniform bond stress distribution 

  



 

 

 

Fig. 2. Local constitutive bond-slip law (adopted by Model Code 2010 [16]) 
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Fig. 3. Proposed solution methodology for fixed-end rotation at yielding: a) bond stress distribution and b) steel strain distribution along Lbe 

  



 

 

  

Fig. 4. Comparison of proposed  model (with τ-s from MC2010) and relationships from the literature: (a) sy vs. dbl; (b) s vs. σso/fyl  

 

  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25

S
li

p
 a

t 
y
ie

ld
in

g
 s

y
(m

m
)

Bar diameter dbl (mm)

EC8 - Part 3

MC2010 - Good bond conditions

MC2010 - Other bond conditions

Lehman & Moehle (1998)

0.00

0.05

0.10

0.15

0.20

0.25

0 0.2 0.4 0.6 0.8 1

S
li

p
 s

(m
m

)

Steel stress ratio σso/fyl

EC8-Part 3

MC2010 - Good bond conditions

fc=35MPa

fyl=500MPa

dbl=8mm

a)

) 

b)

) 



 

 

Fig. 5. Proposed solution methodology for inelastic fixed-end rotations: a) steel stress distribution; b) steel strain distribution and c) bond distribution along 
Lbp 

  



 

 

 

 

 

Fig. 6: Variation of λ with a) εno; b) σno 
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Fig. 7: Range of values of κ for typical values of ψ and σso,u/fyl 
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Fig. 8: Comparison of θy,slip experimental data with analytical predictions by a) EC8-Part 3 [15]; b) proposed methodology 
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Fig. 9: Comparison of θp,slip experimental data with analytical predictions by a) EC8-Part 3 [15]; b) proposed methodology 
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Table 1 Experimentally recorded fixed-end rotations of RC column specimens 

Reference Specimen Cross 

section 

h 

(mm) 

fc 

(MPa) 

fyl 

(MPa) 

dbl 

(mm) 

Ls 

(mm) 

θexp
y,slip 

(rad) 

θexp
u,slip 

(rad) 

θexp
p,slip 

(rad) 

[3] 415 Circular 610 31 462 15.9 2440 0.002 0.023 0.021 

[3] 815 Circular 610 31 462 15.9 4880 0.0022 0.0255 0.0233 

[3] 1015 Circular 610 31 462 15.9 6100 0.0024 0.0271 0.0247 

[3] 407 Circular 610 31 462 15.9 2440 0.002 0.0276 0.0256 

[3] 430 Circular 610 31 462 15.9 2440 0.0025 0.037 0.0345 

[19] 328 Circular 610 34.5 441 19.05 1828.8 0.0028 0.04 0.0372 

[19] 828 Circular 610 34.5 441 19.05 4876.8 0.0028 0.0297 0.0269 

[19] 1028 Circular 610 34.5 441 19.05 6096 0.003 0.044 0.041 

[2] U4 Square 350 32 438 25 1000 0.0028 0.024 0.0212 

[2] U6 Square 350 37.3 438 25 1000 0.003 0.034 0.031 

 

 


