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Abstract: Quiver theories arising on D3-branes at orbifold and del Pezzo singularities are studied

using mirror symmetry. We show that the quivers for the orbifold theories are given by the soliton

spectrum of massive 2d N=2 theory with weighted projective spaces as target. For the theories

obtained from the del Pezzo singularities we show that the geometry of the mirror manifold gives

quiver theories related to each other by Picard-Lefschetz transformations, a subset of which are

simple Seiberg duals. We also address how one indeed derives Seiberg duality on the matter con-

tent from such geometrical transitions and how one could go beyond and obtain certain “fractional

Seiberg duals.” Moreover, from the mirror geometry for the del Pezzos arise certain Diophan-

tine equations which classify all quivers related by Picard-Lefschetz. Some of these Diophantine

equations can also be obtained from the classification results of Cecotti-Vafa for the 2d N = 2

theories.
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1. Introduction

The technology of D3-branes probing singularities as a method of establishing classes of gauge theo-

ries in four dimensions is by now a well-establish subject. Indeed we are interested in local algebraic

models of non-compact Calabi-Yau threefolds that give N = 1 supersymmetric gauge theories. In

addition to the orbifolds pioneered by Douglas-Moore and followups [1], toric singularities have also

been extensively investigated [2, 3, 4, 5].

Attention has been paid of late to del Pezzo surfaces [6, 4, 7, 8]. Indeed with the rôle of

mirror symmetry [9, 10] in the geometrisation of N = 1 dualities [11, 12, 13, 14, 15], D3-branes

probing the cone over del Pezzo surfaces as well as the mirror perspective of D6-branes wrapping

special Lagrangian three-cycles have been increasingly important. An intriguing matter has been

the realisation of Seiberg’s duality in terms of what has been called “Toric Duality” [4, 5, 16, 17, 18].



Treading upon this path, the quiver theories we are interested in are N = 1, supersymmetric

D = 4 gauge theories arising on the worldvolume of D3-branes transverse to a Calabi-Yau three-

fold with del Pezzo singularity in the Type IIB background. If the singularity is not an orbifold

singularity it is difficult to obtain the information about the gauge groups and the matter content.

However, it was shown in [8] that mirror symmetry provides a powerful tool in determining the

gauge groups and the quiver diagrams representing the matter. In [13] mirror symmetry was used

to engineer Seiberg dual theories arising on the toric del Pezzo singularities and a conjecture was

given for calculating the superpotential. It was shown that under certain Picard-Lefshetz transfor-

mation the superpotential transforms as expected from Seiberg duality. Also in the case of P
1 ×P

1

a duality cascade was engineered using the results of [10].

In this paper we continue to study the gauge theories arising on the D3-branes from the mirror

symmetry perspective as D6-branes wrapped on 3-cycles in Type IIA. We study the case of del

Pezzos in more detail by giving an exceptional collection forming a helix on the del Pezzo surface

and show that this exceptional collection gives the correct Ramond charges for the massive theory

with del Pezzo surfaces as the target space. The exceptional collections also give the charges

of the fractional branes in the Type IIB description and therefore the constraint that we get

correct Ramond charges from a collection of bundles on the del Pezzo surfaces gives us certain

Diophantine equations which classifies all quiver gauge theories related to each other by Picard-

Lefschetz transformations. We also obtain the same Diophantine equations from the geometry of

the Calabi-Yau mirror to the local del Pezzos.

Besides del Pezzos, orbifold singularities provide an interesting class of singularities of the

Calabi-Yau threefolds. These orbifold singularities arise when a four cycle which is a weighted

projective space collapses. However, if we resolve the singularities of the weighted projective space

as well then the singularity is produced by multiple four cycles collapsing. Mirror symmetry is

a powerful tool for studying the gauge theories obtained from these singularities1 and gives a

geometric interpretation to Seiberg duality [13, 15].

Under mirror symmetry D3-branes transverse to a non-compact Calabi-Yau threefold X become

D6-branes wrapped on a T 3 in the mirror Calabi-Yau Y [19, 8, 13]. The homology class of this T 3

is given by

[T 3] =

K∑

a=1

naSa , na ∈ Z , (1.1)

where {S1, · · · , SK}, which form a basis of H3(Y, Z), are three cycles topologically equivalent to S3

and na is the wrapping number of cycle Sa. The D6-brane wrapped on T 3 gives rise to a N = 1

D = 4 theory with gauge group G and quiver matrix Q given by [8, 13]

G =

K∏

a=1

U(na) , Qab = Sa · Sb . (1.2)

1Also for non-toric singularities once the mirror manifold is determined.



In the above equations we have assumed na ≥ 0 which can always be arranged by changing the

orientation of the 3-cycles Sa. The quiver matrix is just the intersection matrix of the 3-cycles. In

terms of the fractional branes {F1, · · · ,FK} (which are mirror to Sa) on X, on Type IIB side, this

is given by [7, 20, 8, 13]

Qab =

∫

X
ch(Fa ⊗F∗

b )Td(X) . (1.3)

The anomaly cancellation condition is given by

0 =

K∑

b=1

nbQab =

K∑

b=1

Sa · nbSb = Sa · [T 3] , ∀a . (1.4)

and the fact that it is satisfied automatically follows from the geometry of the mirror manifold [8].

Equation (1.1) gives us a particular solution to the anomaly cancellation condition, more general

solutions {n1, · · · , nK} can also be found such that
∑K

i=1 niSi is not topologically a T 3, but still

has zero intersections with all Sa.

We can rephrase Equations (1.3) and (1.4) in the language of exceptional collections of vector

bundles (or sheaves) over the compact divisor of the Calabi-Yau X. (q.v. [9, 10, 8, 13]). Given an

exceptional collection

{F1, · · · , FK} (1.5)

such that2

K∑

a=1

nach0(Fa) = 0,

K∑

a=1

nach1(Fa) = 0,

K∑

a=1

nach2(Fa) = −1, (1.6)

we get an anomaly free gauge theory with gauge group and quiver given by

G =

K∏

a=1

U(na) , Qab = χ(Fa, Fb) − χ(Fa, Fb), (1.7)

where χ(Fi, Fj) :=
∑

m(−1)m dimC Extm(Fi, Fj). For each subset of the exceptional collection

{Fα1 , · · ·Fαn} there is a term in the superpotential [13](the bi-fundamental fields are Xi
αβ ∈

Hom(Fα ⊗ F ∗
β )):

ai1i2···inXi1
α1α2

· · ·Xin−1
αn−1αn

X∗ in
α1αn

, (1.8)

where X∗ in
α1 αn

∈ Hom(Fα1 ⊗ F ∗
αn

) and ai1i2···in are such that if f i
βα : Fα 7→ Fβ then

f in−1
αnαn−1

· · · f i2
α3α2

f i1
α2α1

= ai1i2···in−1inf in
αnα1

. (1.9)

In other words the terms of the superpotential come from non-zero loop contractions in the quiver,

where by contraction we mean composition of maps.

2ch0(V ), ch1(V ), ch2(V ) are, respectively, the rank, first Chern class and second Chern character of V .



Since {F1, · · ·FK} is an exceptional collection then we can consider the left and the right

mutations [13], with respect to the l-th node,

{Fl, Fl+1} 7→ {RlFl+1, Fl} , (1.10)

7→ {Fl+1, Ll+1Fl} ,

dictated by

ch(RlFl+1) = ch(Fl+1) − χ(Fl, Fl+1)ch(Fl) , (1.11)

ch(Ll+1Fl) = ch(Fl) − χ(Fl, Fl+1)ch(Fl+1) .

Then, defining χl := χ(Fl, Fl+1), the changes on the gauge group factors and the quiver diagram

are:

∏

a

U(na) 7→
l−1∏

a=1

U(na) U(nl+1)U(nl + χlnl+1)

N∏

a=l+2

U(na) , (1.12)

7→
l−1∏

a=1

U(na) U(nl+1 + χlnl)U(nl)
N∏

a=l+2

U(na) ,

(1.13)

where it is easy to check that these new na satisfy anomaly free conditions (1.6). and

Qab 7→ Qab , a, b 6= l, l + 1 , (1.14)

Qa,l 7→ Qa,l+1 − χlQa,l

7→ Qa,l+1 ,

Qa,l+1 7→ Qa,l ,

7→ Qa,l − χlQa,l+1 ,

Ql,l+1 7→ −Ql,l+1 ,

7→ −Ql,l+1 .

Notice that if nl +χlnl+1 < 0, we should choose the negative RlFl+1 as well as the Qa,l+1 calculated

above. These mutations are also called Picard-Lefschetz transformations, which we will discuss in

detail in Section 5. The field theory interpretation of these mutations is nothing but a realization

of Seiberg duality as will be discussed throughout this paper.

The paper is organized as follows. In Section 2 we briefly review the classification of N = (2, 2)

theories, in particular how one could obtain the quiver diagram of N = 1 probes on cones over del

Pezzo as the soliton spectrum of these massive theories in 2-dimensions. Subsequently, we show

how this technique may be extended to the Abelian orbifold C
3/ZN in Section 3. We show how we

can use exceptional collections over weighted projective spaces, as opposed to P
2 and its blowups



in the del Pezzo case, to study the quiver theories. Explicit examples are constructed for C
3/Z5.

Then in Section 4, we return to the case of the del Pezzos and study in detail how we could wrap

D6-branes on the mirror to obtain classes of gauge theories related by Picard-Lefschetz monodromy.

Therefrom arise certain Diophantine equations which completely classifies these theories.

We continue in this vein in Section 5 where we show in detail how one derives Seiberg duality

rules for the matter content from Picard-Lefschetz, characterized by “(p, q) 7-brane” moves and

how one can go beyond and obtain “fractional Seiberg duality.”3 In Section 6 we briefly remark

certain relations between the superpotentials obtained in this setup and the global isometries of

the background geometry and also comment on the case of P
2, the zeroth del Pezzo, especially its

Diophantine equation, in some detail. We end with Conclusions and Prospects in Section 7.

2. Classification of N = (2, 2) two dimensional theories and solitons

In this section we collect few facts from the theory of massive N = (2, 2) two dimensional theo-

ries and prepare their use for quiver theories. We will see that the quiver diagram for the four

dimensional theories we are interested in are identified with the soliton diagram of the massive two

dimensional theory.

For a non-homogeneous superpotential W of a massive LG theory, the soliton spectrum is

determined by the intersection number of middle dimensional cycles in the geometry defined by

W (x, y) = z . (2.1)

The middle dimensional cycles which start at the critical points of the superpotential and project to

straight lines in the z-plane are the D-branes of the massive theory [10]. The intersection number

of these middle dimensional cycles calculates the Witten index in a sector in which strings are

stretched between the two D-branes given by the cycles.

In [10] it was shown that the intersection numbers of three cycles in the mirror CY manifold,

Y , give the soliton numbers of the massive two dimensional theory with toric del Pezzo as the

target space. We will see that the geometry of the mirror CY Y is completely captured by the four

dimensional non-compact surface defined by Equation (2.1) for an appropriate W and therefore the

quiver diagram, which is obtained from the intersection number of three cycles, is identified with

the soliton diagram of the corresponding massive theory.

From the classification results of [21] we know that an arbitrary soliton diagram does not

necessarily correspond to a massive theory as the soliton spectrum is related to the Ramond charges.

Let A be an upper triangular matrix such that

Aab = 0 , a ≤ b , (2.2)

Aab = µab , a > b ,

3By (p, q) 7-brane here and in the rest of the paper we just mean the marked point on the z-plane over which the

elliptic fiber has a degenerating (p, q) cycle.



where µab is the number of solitons between the a-th and the b-th vacua. The eigenvalues λa of the

matrix

H = (1 − A)(1 − A)−T , (2.3)

are given by

λa = e2πiqR
a (2.4)

and thus are all phases. This follows from the fact that the matrix H is the monodromy matrix of

the D-branes of the massive theory as the massive superpotential W goes to e2πiW . A derivation

of this result is given in Section 4 of [10]. The integer part of the Ramond charge qR
a can also

be calculated as discussed in [21]. The fact that the eigenvalues must be phases implies that the

characteristic polynomial of the matrix H

P (z) = det(z − H) (2.5)

is a product of cyclotomic polynomials.

In the case that the target space is a compact Kähler manifold of complex dimension n which

satisfies the condition on the Hodge numbers hp,q = hp,pδp,q, the Ramond charges are given by

p − n
2 , each with multiplicity hp,p. Specializing to the case n = 2, we find that for all del Pezzo

surfaces Bk=0,... ,8 (with h0,0 = h2,2 = 1, h1,1 = k + 1) the eigenvalues are equal to one, since the

charges are integral, and thus the characteristic polynomial is

Pk(z) = (z − 1)k+3 , for Bk , (2.6)

where k + 3 =
∑

p hp,p(Bk) = χ(Bk).

As an example consider the case of B3. The quivers for this case are given in [4, 5, 8, 17, 16] and

all of them are related to each other by Picard-Lefschetz transformation of three cycles. Consider

case (IV) of [17] (also case (IV) of [16]):

AIV =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

−2 −2 −2 3 3 0




, (2.7)

the characteristic polynomial is given by

P (z) = det(z − H) = (z − 1)6 . (2.8)

By comparing the coefficient of zk+2 in Equation (2.6) we find a necessary condition for the inter-

section numbers µab: the trace of H should be equal to the Euler characteristic of the del Pezzo

surface,

TrH = k + 3 . (2.9)



This gives us a Diophantine equation satisfied by the soliton spectrum of the del Pezzo surfaces.

This equation will turn out to play an important role in the study of Seiberg dualities for the given

singularity.

We can use this formalism to calculate charges of fractional branes. This is demonstrated in

the following two examples:

Example one: Consider the case of B4 (P2 blownup at four points). The basis of H2(Bk) we

will consider is given by {H,E1, · · · , Ek} with

H · H = 1 , Ea · Eb = −δab , H · Ea = 0 . (2.10)

The following collection of bundles and sheaves is an exceptional collection forming a helix on B4

[10, 7]

{−O(−H + E1 + E2),OE2(0),OE1(0),O(E3),O(−H + E3), (2.11)

−OE4(−1),−O(−E4)}

Following [10] we define

Sab =

∫

B4

ch(Fa ⊗ F ∗
b )Td(B4) . (2.12)

It is easy to see that the characteristic polynomial of H = S−T S is given by

P (z) := det(z − H) = (z − 1)7 = (z − 1)χ(B4) . (2.13)

Thus the Ramond charges are integers and are given by [21],4

qR = {−1, 0, 0, 0, 0, 0, 1} = {p + q − 2

2
| p + q = deg ωi, ωi ∈ Hp,q(B4)} . (2.14)

Where ωi form a basis of Hp,q(B4).

Example two: As another example we consider the case of B8. In this case we consider the

following exceptional collection [7],

{O(−H + E1 + E2 + E7),OE7 ,OE2 ,OE1 ,OH−E3−E6,O(−H + E6),

O(−E5),−OH−E3−E5(1),−OE4(−1),−OE8(−1),−O(−E4 − E8)} .

The characteristic polynomial of H = S−T S, where S is defined as before, is

P (z) = (z − 1)11 = (z − 1)χ(B8) . (2.15)

And the Ramond charges are given by (p + q = degHp,q(B8))

qR = {−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} = {p + q − 2

2
| p + q = degωi, ωi ∈ Hp,q(B8)} . (2.16)

4The integer part can be calculated as shown in [21].



Where ωi form a basis of Hp,q(B8).

As discussed in detail in [10] these exceptional collections are not unique and other exceptional

collections can be obtained by mutations. However, all exceptional collections must give same

Ramond charges and therefore Equation (2.9) must be satisfied. This gives a severe constraint on

the integers Sab. In the case of B0 := P
2, which is the compact divisor of the resolution of the

Abelian orbifold C
3/Z3, it is easy to see that the equation is given by [21]

µ2
21 + µ2

31 + µ2
32 + µ21µ31µ32 = 0 , (2.17)

upon which we shall elaborate in Section 6.

3. C
3/ZN

The theories arising on the D3-brane transverse to an orbifold can be studied using the orbifold

methods [1]. In this section, however, we will use mirror symmetry to study these theories and

their Seiberg duals following [17, 13] where the case of C
3/Z3 was discussed.

3.1 Weighted projective spaces

The singularity C
3/ZN is produced by a collapsing two complex dimensional weighted projective

space. This can be seen by using the linear sigma model description of the Calabi-Yau threefold

[2]. The linear sigma model charges of the C
3/ZN are [22]

(−N, k1, k2, k3) , ki > 0 , k1 + k2 + k3 = N . (3.1)

The compact divisor described by the charges (k1, k2, k3) is the weighted projective space P
2
[k1,k2,k3]

,

with homogeneous coordinates

[w1, w2, w3] = [λk1w1, λ
k2w2, λ

k3w3] ∈ P
2
[k1,k2,k3]

, λ ∈ C
× . (3.2)

We will consider the case when one of the ki is equal to one, ki = (1, a, b). The weights (1, a, b)

give the action of ZN on the complex coordinates z1, z2, z3 of C
3,

(z1, z2, z3) 7→ (ωz1, ω
az2, ω

bz3) , 1 + a + b = N , ω = e
2πi
N . (3.3)

The corresponding weighted projective space is P
2
[1,a,b]. This weighted projective space is a toric

variety with the toric diagram in Figure (1). We denote by D1,D2 and D3 the divisors corresponding

to the three faces. These divisors are not all independent and satisfy the following relations

D1 = aD3 , D2 = bD3 . (3.4)

The intersection numbers, which are useful when dealing with fractional branes, are given by

(defining H = abD3)

D1 · D1 =
a

b
, D1 · D2 = 1 , D1 · H = a , (3.5)

D2 · D2 =
b

a
, D2 · H = b , H · H = ab ,



(1,0)

(0,1)

(−a,−b)

Figure 1: Toric diagram of P2
[1,a,b].

and the cycle dual to the first Chern class is given by

c1 = D1 + D2 + D3 . (3.6)

The (p, q) web description of the above orbifolds is easy to obtain. We consider the case for odd

N = 2k + 1 for simplicity. In this case we are looking for a web with three external legs such that

the intersection number of the charges of the external legs is equal to N . If we let the external

charges5, be (p1, q1) = (−1,−1), (p2, q2) and (p3, q3) then

det

(
p2 −1

q2 −1

)
= det

(
−1 p3

−1 q3

)
= det

(
p3 p2

q3 q2

)
= 2k + 1 . (3.7)

The solution is given by6

(p2, q2) = (−k, k + 1) , (p3, q3) = (k + 1,−k) ,
∑

i

pi =
∑

i

qi = 0 . (3.8)

The resolution of the singularity corresponds to resolving the web diagram as shown in Figure (2)

and there could be many possible ways of doing so corresponding the possible ways of orbifold

action of C
3. In the case of C

3/Z5 the resolution is unique and is determined completely by the

charges of the external legs of the web diagram.

3.2 Mirror manifold and fractional branes

From the linear sigma model description we can determine the mirror Calabi-Yau as discussed in

detail in [9, 10]. In the case we are interested in the linear sigma model charges are given by

(−1 − a − b, 1, a, b) and the superpotential of the mirror LG theory is [9]

W = x0 + x1 + x2 + e−t x
1+a+b
0

xa
1x

b
2

, xi = e−Yi , (3.9)

5(p1, q1) has been fixed using SL(2, ZZ).
6Up to SL(2, ZZ) transformations fixing (−1,−1).



(−1,−1) (3,−2)

(−2,3)

Figure 2: The web diagram of the resolution of C3/Z5.

where t is the complexified Kähler parameter, which measures the size of projective weight space

P
2
[1,a,b], and Yi are the fundamental fields taking value in C. From the above superpotential the

following equation for the mirror Calabi-Yau can be determined (taking u, v, x, y ∈ C) [9, 10]:

eu + ev + e−au−bv = z , (3.10)

z + e
t

a+b+1 = xy .

By homogenizing the first equation we see that it defines a genus g = (a+b)(a+b−1)
2 curve over the

z-plane. In the first equation the left hand side of the equation is exactly the Landau-Ginsburg

superpotential for the massive N = (2, 2) theory which is mirror of the sigma model with weighted

projective space P
2
[1,a,b] as the target. Therefore from the discussion of Section 2 it follows that

the number of 3-cycles in the mirror geometry described by Equation (3.10) is exactly equal to the

number of vacua of the massive LG theory and also the soliton number between the vacua gives

the intersection number of 3-cycles7 .Thus the quiver diagram is given by the soliton diagram of

the massive theory.

The soliton diagram can be obtained easily for these geometries using the results of [10] and

has been worked out in [26].

The vector bundles in this geometry mirror to the S3’s are shown in Fig. 3 and are given by

[23, 24, 25, 26]:

Fi = (S−1)jiO(j) , (3.11)

where [26]

Sij = χ(O(i),O(j)) = 0 , if i < j (3.12)

= #{(m1,m2,m3) |mi ≥ 0, i − j = m1 + am2 + bm3}.
7For a detailed discussion of how the 3-cycles are constructed in this geometry see [10, 8, 13].



Figure 3: Three cycles mirror to the fractional branes in the resolution of C3/ZN .

Then we see that

χ(Fi,O(j)) = δij , (3.13)

χ(Fi, Fj) = (S−1)ij ,

For a weighted projective space with weights {a1, a2, · · · , an} the generating function of the

number of solitons is given by [26] as

F (q) = 1 +
∑

I

nIq
I =

n∏

i=1

(1 − qai) . (3.14)

The number of solitons between the i-th and the j-th vacua can be read from the above function

as n|i−j|. For the case we are interested in

F (q) =

3∏

k=1

(1 − qak) = (1 − q)(1 − qa)(1 − qb) , (3.15)

= 1 − q − qa + qa+1 − qb + qb+1 + qa+b − qa+b+1 .

And this gives us the quiver diagram for each i in Figure (4). Note that in the case b = a + 1 (i.e.,

N = 2a + 2) there are bi-directional arrows related to nodes. There are 8 terms in Equation (3.15)

where the first term and the last term do not contribute to the quiver diagram and cancel each other

since we identify the nodes modulo N . Now F (1) = 0 implies the anomaly cancellation condition

(the number of incoming and outgoing arrows being the same for each node). In general the mirror

manifold is given by a (non-compact) genus g fibration over the z-plane and a C
× fibration over the

z-plane. The genus g fibration degenerates at N = χ(M) number of points on the z-plane where

M is compact divisor of X. In general M will be a set of four manifolds Mi joined together along

some rational curves. The degeneration, of the genus g fibration, is due to a 1-cycle collapsing.

Using these collapsing 1-cycles one can construct 3-cycles, which are topologically S3, in the mirror

manifold Y .



i+1

i+a

i+a+1i+b

i+b+1

i+a+b

 i

Figure 4: The i-th node of the quiver diagram for C3/ZN . We have marked all the nodes linked to i.

Let us denote by Va the set of exceptional bundles on M corresponding to the fractional branes,

ch(Va) = {(r(a)
1 , · · · , r(a)

g ), (Σ
(a)
1 , · · · ,Σ(a)

g ), (k
(a)
1 , · · · k(a)

g )} , a = 1, · · · , N.

Where r
(a)
i is the rank, Σ

(a)
i the first Chern class and k

(a)
i the second Chern character of the

restriction of the bundle V (a) to Mi. Given this set of fractional branes the set of vanishing 1-cycles

Ca is given by8

Ca =

g∑

i=1

d
Σ

(a)
i

αi +

g∑

i=1

r
(a)
i βj , a = 1, · · · , N . (3.16)

It follows then that the quiver diagram given by the intersection matrix of 3-cycles is

Iab = Ca · Cb =

g∑

i=1

det

(
d
(a)
i d

(b)
i

r
(a)
i r

(b)
i

)
. (3.17)

And if the sum of the fractional branes is a D3-brane (0-cycle),

N∑

a=1

r
(a)
i =

N∑

a=1

d
Σ

(a)
i

= 0 , ∀i = 1, · · · , g . (3.18)

then C =
∑N

a=1 Ca is such that

C · Ca = 0 , ∀a = 1, · · · , N , (3.19)

and gives rise to a T 3.

8Here {α1, β1, · · · , αg, βg} is a basis of 1-cycles on the genus g curve such that the only non-zero intersection

numbers are αi · βi = 1, i = 1, · · · , g.



Example: C
3/Z5:

We consider the case when (a, b) = (2, 2) (the other case of (a, b) = (1, 3) is equivalent to this one).

In this case we have P
2
[1,2,2] as the weighted projective space collapsing to produce the orbifold

singularity. The weighetd projective space itself has singularities which when resolved give the

compact divisor M as a P
2 and F2 joined along a rational curve [25] as can be seen in the web

diagram Figure (2). As discussed in the previous section the mirror Calabi-Yau is a genus two

fibration and a C
× fibration over the z-plane given by

W := eu + ev + e−2u−2v + e−t2+ 3
5
t1−v = z , (3.20)

z + et1/5 = xy .

In the above equation t1 and t2 are the complexfied Kähler parameters. The genus two fibration

degenerates at five points on the z-plane (depending on the Kähler parameters) as can be seen by

solving the equations ∂uW = ∂vW = 0. For λ2 = e−t2+(2/5)t1 << 1 the five degenerate fibers lie

approximately on a circle in the z-plane and are, using Equation (3.16) and results of [25] 9

C1 = −β1 + 2β2 , C2 = −α1 − 3β2 , C3 = 4β1 + α2 − β2 , (3.21)

C4 = −β1 − α2 , C5 = α1 − 2β1 + 2β2 .

Given these cycles the quiver diagram can be obtained from the intersection numbers (see Figure

(5)),

Sa · Sb = Ca · Cb . (3.22)

[1]

[1]

[1][1]

[1]

Figure 5: The quiver diagram of C2/Z5. Here we use [1] to denote the rank of that node is 1.

9Here {α1, β1, α2, β2} is a basis of 1-cycles on the genus two curve such that the only non-zero intersection numbers

are α1 · β1 = α2 · β2 = 1.



4. Local del Pezzo Surfaces

4.1 Mirror Manifolds and Elliptic fibration

In this section we will consider non-compact Calabi-Yau threefolds which are line bundles over del

Pezzo surfaces and their mirror partners. We will study the geometry of the mirror manifold in

detail and see that results about classification of [p, q] 7-branes in F-theory backgrounds actually

allow us to write Diophantine equations, for all del Pezzo surfaces, whose solutions determine the

quiver diagrams. We will see that these Diophantine equations derived from the geometry are

the same as the equations given by the theory of solitons in N = (2, 2) massive theories in two

dimensions [21].

The superpotential of the LG theory mirror to the linear sigma model provides the description

of mirror CY. Since P
2 blown up at more than three points is not toric we cannot use the linear

sigma model to obtain the mirror CY. However, it is possible to obtain the mirror manifolds Xk

to local non-toric del Pezzos Yk along the lines discussed in [7] using the fact that 1
2 -K3 (P2 blown

up at nine points) is self-mirror [27]. The Calabi-Yau manifold mirror to local Bk (P2 blown up at

k points) is given by (x, y, z, w1, w2 ∈ C)

y2 = x3 + fk(z)x + gk(z) ,

w1w2 = z − z∗ , (4.1)

where fk(z) and gk(z) are polynomials in z and the explicit form of these polynomials can be found

in [28]. The parameters in the polynomials fk and gk are the complex structure parameters of the

mirror CY and are related to the Kähler structure parameters of the local del Pezzo.

The geometry of the mirror manifold Xk is clear and is discussed in several papers [8, 10, 13].

We briefly mention it here again for completeness and because it will be useful for later discussion.

The first equation in (4.1) describes an elliptic fibration over the complex z-plane. This elliptic

fibration has k+3 degenerate fibers whose positions depend on the Kähler parameters of the Calabi-

Yau Yk or the complex structure parameters of Xk. The second equation in (4.1) describes a C
∗

fibration over the z-plane such that at z = z∗ the C
∗ fibration degenerates when its non-trivial S1

shrinks.

The only non-trivial compact closed cycles in this geometry are 3-cycles. These 3-cycles are

constructed as follows: we connect the point z∗ to the position of the degenerate fiber za, over this

path we have 2-cycles which collapse at the two ends of this interval. The circle of the C
∗ fibration

collapses at z∗ and a 1-cycle of the elliptic fibration collapses at za. These cycles together with the

path in the z-plane form a closed 3-cycle which is topologically an S3.

In this way we obtain k +3 3-cycles with topology of S3. This lattice of k +3 3-cycles is mirror

to k + 3 dimensional lattice H0(Bk) ⊕ H2(Bk) ⊕ H4(Bk) of compact cycles in Bk. The intersection

between the 3-cycles is completely determined by the vanishing cycles of the elliptic fibration and

the point z∗ can be thought of as the point from which the charges of the vanishing cycles are to

be measured. This is quite reasonable since the only points at which the 3-cycle intersect lie on the



elliptic fiber above the point z = z∗. Thus if the vanishing cycles are Ca ≡ [pa, qa] ∈ H1(π
−1(z∗),ZZ)

and the corresponding 3-cycles are Sa then

Sa · Sb := Ca · Cb = det

(
pa pb

qa qb

)
. (4.2)

Thus the information about the intersection numbers is naturally contained in the charges of the

vanishing cycles of the elliptic fibration. Because of Picard-Lefschetz monodromy there is no unique

choice of charges and by changing the paths connecting the position of degenerate fibers to z∗ we

can change the charges.

A natural question is whether there is some invariant which characterizes this configuration

of degenerate fibers. As discussed at length in [29] the only invariants of these configurations

are the number of the degenerate fibers, the trace of the SL(2, Z) monodromy matrix and the

greatest common divisor of the intersection numbers. Actually one can write down Diophantine

equations such that their solutions completely describe all the configurations which can be obtained

by Picard-Lefschetz transformations as was done in [13] for the case of Y0.

It is easy to understand the origin of such an equation. The monodromy matrix of a configura-

tion of degenerate matrix is invariant under Picard-Lefschetz transformations but it is not invariant

under global SL(2, Z) transformation. However, the trace of the monodromy matrix is invariant

under global SL(2, Z) as well as Picard-Lefschetz transformations. The trace of the monodromy

matrix does not depend on the vanishing charges and only depends on the intersection numbers

between the vanishing charges [29]. The configuration of degenerate fibers we are considering are

such that they have trace of the monodromy matrix equal to two. The implications of this were

discussed at length in [29]. Thus the solutions of the equation

det(KBk
− 1) = TrKBk

− 2 = 0 , (4.3)

except the trivial solution, completely describe different configurations related by Picard-Lefschetz

transformations.

local B0:

This case was discussed in [13] where the Diophantine equation was also given but was derived

using the relation of the local B0 mirror geometry with superpotential geometry of the mirror of

the massive P
2 model. We will show that these two points of view give the same equation in all

local del Pezzo cases. The equation in this case is

µ2
21 + µ2

32 + µ2
31 + µ21µ32µ31 = 0 . (4.4)

local B1 and local F0:

In both these cases the equation is given by

µ2
21 + µ2

31 + µ2
41 + µ2

32 + µ2
42 + µ2

43 + µ21µ32µ31 (4.5)

+µ21µ42µ41 + µ31µ43µ41 + µ32µ43µ42 + µ21µ32µ43µ41 = 0 .



In order to distinguish the two models, B1 and F0, we divide the solutions of the above equation in

two sets. One set will have solutions with gcd equal to one giving the result for B1 and the other

set has solutions with gcd equal to two giving the result for the F0 case. At this moment we do

not know why B1 and F0 are distinguished by gcd. However, recalling the fact that B1 has only

SU(2) global flavor symmetry while F0 has SU(2) × SU(2) symmetry [18], we speculate that the

symmetry maybe the reason behind. Similarly, we speculate that the fact that the gcd of B0 in all

phases are always 3 is related to the SU(3) global flavor symmetry.

local Bk:

In the general case the equation is given by [29]

TrK − 2 =

k+3∑

r=2

∑

i1>i2>i3···>ir

µi1i2µi2i3 · · · µir−1irµi1ir = 0 . (4.6)

Where K is the monodromy matrix of a configuration of k + 3 degenerate fibers.

¿From the above equation it is clear that if µij = 0 for all j and a fixed i then the equation

reduces to the Diophantine equation for Bk−1. All solutions of the above equation are Picard-

Lefshetz equivalent to the intersection numbers obtained from the following configuration,

µij = Ci · Cj , (4.7)

Ci = α , i = 1, · · · , k , Ck+1 = 2α − β , Ck+2 = −α + 2β , Ck+3 = −α − β .

C
3/Z5:

For C
3/Z5 we can also write down a Diophantine equation whose solutions (except the trivial one)

give the quiver diagram and the gauge group factors for all theories obtained from this geometry by

Picard-Lefschetz transformation. If M is the monodromy matrix around five degenerate fibers of

a genus two fibration (given in terms of the charges of the degenerate fibers) then the Diophantine

equation, which is function only of the intersection numbers, is given by

det(M − 11) = 0 . (4.8)

The above equation simply means that the collection of degenerate fibers allow an eigenvector of

eigenvalue one. Thus if the above equation is satisfied then there is a 1-cycle in the fibration which

is invarinat under the monodromy and gives topologically a T 2 together with the path in the base

that goes around the degenerate fibers. This T 2 together with the S1 of the C
× fibration gives

a T 3. In the case of C
3/Z3 and other local del Pezzo singularities the matrix M is an SL(2,ZZ)

matrix and therefore since for an SL(2,ZZ) matrix det(M − 11) = 2 − TrM , the equation is given

by TrM = 2 as discussed in the previous section.

It is easy to show that two solutions to Equation (4.8), which are related to each other by PL

transformation, are given by

C1 = −β1 + 2β2 , C2 = −α1 − 3β2 , C3 = 4β1 + α2 − β2 , (4.9)

C4 = −β1 − α1 , C5 = α1 − 2β1 + 2β2 .



and

Ĉ1 = −C1 , Ĉ2 = C2 , Ĉ3 = C3 , Ĉ4 = C4 + 2C1 , Ĉ5 = C5 + C1 . (4.10)

On the z-plane the two solutions correspond to the 3-cycles shown in Figure (6) below. These two

1

23

4
5

1

23

4

5

Figure 6: Two solutions to the diphantine equation related to each other by PL transformation.

solutions are Seiberg dual to each other. The first solution gives a
∏5

i=1 U(1) gauge theory with

quiver given by Figure (7)(a). The second solution gives a U(2) ×∏4
i=1 U(1) gauge theory with

quiver given by Figure (7)(b).

[1]

[1]

[1][1]

[1] [1] [1]

[1][1]

[2]

Figure 7: Two Seiberg dual quivers related to each other by Picard Lefschetz transformations.

C
3/Z2k+1:

In this case we take the action of Z2k+1 on the C
3 to be given by (1, k, k). In this case the compact

divisor of the resolved space is a P
2 and k− 1 Hirzebruch surfaces joined along the rational curves.

The mirror is given by [9, 10]

eu + ev + e−ku−kv +

k−1∑

m=1

λme−mu−mv = z , (4.11)

z + e
t0

2k+1 = xy .

Where λm are the complex structure parameters related to the Kähler parameters as λm =

e−tm+
t0

2m+1 . For |λm| << 1 we see that the critical points of the first equation above lie on a



circle and the 3-cycles are as shown in Figure (8)(a). As we change the Kähler parameter t0 we

see that cycles undergo Picard-Lefschetz transformation as shown in Figure (8)(b). In this case

also the intersection matrix of cycles will obey the Equation (4.8) with M a 2k + 1 monodromy

matrix given in terms of intersection numbers. However, in this case since there are more than one

possible in equivalent resolutions of the singularity therefore not all solutions will be related by PL

transformations. Thus it is necessary condition but not sufficient. Under the change in the basis

Figure 8: The two basis for the C3/Z2k+1.

of cycles shown in Figure (8)(b) the new basis is given by

S0 7→ Ŝ0 = −S0 , (4.12)

Si 7→ Ŝi = Si , i 6= 0, k + 1, 2k ,

Sk+1 7→ Ŝk+1 = Sk+1 + 2S0 ,

S2k 7→ Ŝ2k = S2k + S0 .

Where we have used the intersection numbers between the 3-cycles determined from the quiver

diagram given by F (q) = (1 − q)(1 − qk)2. Since
∑2k

a=0 Sa = [T 3] therefore requiring the same for

the new basis we get

2k∑

a=0

naŜa = [T 3] =⇒ n0 = 2, ni>0 = 1 . (4.13)

Thus we get a U(2) ×∏2k
i=1 U(1) theory with quiver determined from Ŝa · Ŝb. It is easy to check

that the new quiver is indeed that of the Seiberg dual theory with duality performed on the 0− th

node corresponding to S0.

5. Seiberg Duality and Picard-Lefschetz Monodromy

The realisation that Seiberg’s duality can be geometricised as Picard-Lefschetz monodromy has

been permeating in the literature since at least [14]. Recently works on Toric Duality [4, 5, 17, 16]

have beckoned for a re-examination of the geometry of Seiberg duality. Indeed some ideas were

presented in [17] and addressed in detail in [8, 13]. The purpose of this section is to explicit

the derivation, as mentioned in [8], of Seiberg duality in terms of the quiver rules in [17] and

point out some interesting examples in a comprehensive fashion. In due course we will resolve the



discrepancies and puzzles which arose in [17] concerning the relation between Seiberg duality and

Picard-Lefschetz theory. The relation between Seiberg duality and Picard-Lefshetz transformation

was discussed in detail in [13] in terms of mutation of bundles and the corresponding action on the

3-cycles.

Instead of using the nomenclature of [17], we shall here use the language of (p, q) 7-branes. As

addressed in the earlier sections, the mirror picture of the transverse D-brane probe on M consists

of collections of (vanishing) three cycles Si with ni D-branes wrapped thereon in the mirror Calabi-

Yau W . The result is a
∏

i U(ni) gauge theory with bifundamentals aij given as the intersection

matrix of these vanishing cycles Si · Sj .

Now let us phrase these (Picard-Lefschetz) cycles Si in the language of (p, q) 7-branes in the

spirit of Section 2, emphasizing on the monodromy. Each Si can be represented by a [pi, qi] 7-brane

together with a wrapping number ni
10. The usual anomaly cancellation condition

∑
j aijnj = 0

now translates to
∑

j

(Si · Sj)nj = 0, ∀j. (5.1)

In other words, the cycle T =
∑
j

njSj should have zero intersection with any cycle Si. One

particular case is that the cycle T is precisely the T 3 fibre. As far as the (p, q) charges are concerned,

(5.1) is simply (see Equation (5.3))
∑

i

ni[pi, qi] = 0. (5.2)

As mentioned earlier the bifundamental matter content is given by intersection numbers, which

are computed as determinants. Strictly speaking, in the usual notation the adjacency matrix aij

of the quiver is such that Aij = aij − aji = Si · Sj where to distinguish them we have used Aij

which can be both positive or negative. Through out the whole paper, except in Section 5.2, we

assume that only one of aij, aji of a given pair i, j is nonzero. Under this assumption, if Aij > 0 it

is aij 6= 0 and if Aij < 0 it is aji 6= 0. The Aij is calculated as

Aij = Si · Sj =

∣∣∣∣∣
pi qi

pj qj

∣∣∣∣∣ . (5.3)

Now Picard-Lefschetz monodromy is the motion of vanishing cycles Sj about a chosen one Si

such that thereafter the cycles becomes the linear combination (no summation on i)

Sj → Sj + (Sj · Si)Si.

With wrapped branes the situation is a little more involved as we have to take into account how

fractional branes rearrange in the new basis. Alternatively, one can take into account the usual

brane creation mechanism [10, 13]. However before we elaborate on how to cooperate these factors

in the following discussion, let us restate Picard-Lefschetz transformations in the language of (p, q)

charges:
10Comparing with equation (1.1), here we use ni instead of na to emphasize that we consider the general situation

where the sum does not need to be T 3.



Rules for Picard-Lefschetz on (p, q) 7-branes

1. For a collection of vanishing cycles Si = [pi, qi], each with wrapping number ni, we let Sk−1

pass through Sk for a chosen k.

2. All Si and ni for i 6= k, k − 1 remain uneffected.

3. The concerned cycles transform as Sk−1 → Sk−1 + (Sk−1 · Sk)Sk and Sk → Sk, i.e.,

(
pk−1

qk−1

)
→
(

pk−1

qk−1

)
+ [Det

(
pk−1 qk−1

pk qk

)
]

(
pk

qk

)
(5.4)

=

(
1 + pkqk −p2

k

q2
k 1 − pkqk

)(
pk−1

qk−1

)
; (5.5)

(
pk

qk

)
→
(

pk

qk

)
(5.6)

4. The wrapping numbers transform as

nk−1 → nk−1; nk → nk − (Sk−1 · Sk)nk−1

If this new number nk is negative, we should simply make it positive and multiply the new

[pk, qk] by −1. In geometric language, this changes the fractional brane into the anti-fractional

brane as well as the orientation of the cycle Sk,
11 so the net effect of (anti)-branes wrapping

will be the same.

5. Now we have a new collection (ñi, S̃i) which is as before except for when i = k, k − 1; these

could then be used to calculate the new quiver S̃i · S̃j .

As a check let us verify that the anomaly cancellation still holds. The condition (5.1) now

reads

∑

i

ñiS̃i =
∑

i6=k,k−1

niSi + nk−1(Sk−1 + (Sk−1 · Sk)Sk + (nk − (Sk−1 · Sk)nk−1)Sk

=
∑

i

niSi + nk−1Sk(Sk−1 · Sk) − (Sk−1 · Sk)nk−1Sk

=
∑

i

niSi

= 0,

which is as desired. The new quiver remains anomaly-free after any Picard-Lefschetz transforma-

tion.

11When we apply this to Seiberg duality, it is more convenient to define Sk → −Sk and nk → −nk +(Sk−1 ·Sk)nk−1.



5.1 Example: Hirzebruch Zero

After these generalities let us re-examine the by now familiar example of the cone over the zeroth

Hirzebruch surface F0 [4, 5, 17, 13]. The two toric (Seiberg) dual cases are recapitulated in Figure

(9). Our starting point is the following set of (p, q) charges giving the affine E1 background [29, 7]

A : N + M1 [1,−1] B : N + M2 [1, 1] C : N + M1 [−1, 1] D : N + M2 [−1,−1]

where N,M1,M2 are all positive integers. This is the most general form of anomaly free theories

on F0. Notice also that although we have three numbers N,M1,M2, only two combinations, say

|M1 −M2| and N + min(M1,M2), are independent parameters. We can easily verify by computing

pairwise determinants that the quiver is as given in Case (I).
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A [1,−1]

B [1,1]
C [−1,1]

D [−1,−1]

1
1

1

1

PL on (C,D)

A [1,−1]

B [1,1]
D [1,1]

C’ [−3,−1]

1
1

1

1

Case I

Quiver Diagram

Case II

(p,q) 7−brane config.

Figure 9: The toric (Seiberg) dual cases of the zeroth Hirzebruch surface F0. Below the respective quiver

diagrams we show the (p, q) 7-brane configurations which give the quiver. Furthermore we see clearly how a

Picard-Lefschetz transformation, as we move D across C in Case (I), gives Case (II).

If we move cycle D past C, we will obtain the new configuration

A : N + M1 [1,−1] B : N + M2 [1, 1] D : nD [−1,−1] C ′ : N + M1

where according to the rules above A,B,D remain unchanged while

C → C ′ =

[
1 + pq −p2

q2 1 − pq

]

D

[
p

q

]

C

=

[
2 −1

1 0

]

D

[
−1

1

]

C

=

[
−3

−1

]
.

Moreover, the wrapping numbers are such that nA, nB and nC′ = nC = N + M1 remain

invariant, while

nD → n′
D = nD − (SC · SD)nC = −N + M2 − 2M1 (5.7)



where we see that we still satisfy the zero charge (anomaly cancellation) condition,
∑
i

ni[pi, qi] = 0.

For the special case where N = 1,M1 = M2 = 0, we have n′
D = −1. The negativity for n′

D indicates

that we should reverse direction of the new 7-brane by changing the cycle into [−p,−q]. So finally

we obtain the configuration

A : [1,−1] B : [1, 1] D : [1, 1] C ′ : [−3,−1] with nA = nB = nD = nC′ = 1

Notice that under the above transformation, only the rank of node D changed, so the node D is

exactly the node upon which we Seiberg dualise.

5.2 Deriving Seiberg Duality on one node from Picard-Lefschetz

First let us recall the rules for Seiberg duality on a single gauge group (single node) from the point

of view of supersymmetric field theory. For clarification, we consider a general field theory with only

bi-fundamental fields. We use aij > 0 to denote the multiplicity of fields which are fundamental

under U(ni) and anti-fundamental under U(nj). In the quiver diagram this means that there are

aij arrows12 starting from node i and ending on node j. The steps of Seiberg duality are:

• (a) Pick up a node, for example k, to do Seiberg duality.

• (b) Ranks of all other nodes except node k are invariant while that of k becomes Nk − nk

where Nk =
∑

i6=k niaik =
∑

i6=k akini is the total number of flavors for U(nk).

• (c) Reverse the direction of arrows connected to node k. In field theory, this means that the

dual quarks of the gauge group U(Nk − nk) are in complex conjugate representations to the

original quarks in representations of the gauge group U(nk). Therefore aik → aki, akj → ajk.

• (d) Add the Seiberg mesons. If for given i, j we have aik 6= 0, akj 6= 0, there are mij = aikakj

arrows starting from i to j (if i = j they are adjoint fields). Thus the total number of arrows

starting from i to j will be aij + mij .

• (e) Add the Seiberg superpotential of meson fields and dual quarks to the original super-

potential with the original quarks fields replaced by meson fields. If there are fields which

acquire mass, we simply integrate them out by their equations of motion.

Now the issue is how can we explain Seiberg duality from the geometrical Picard-Lefschetz

transformations. Before doing so, there are a few points which are worth pointing out. First,

Seiberg duality includes action on two parts: the matter part (quiver diagram) and the superpo-

tential. At this moment, we can only reproduce the matter part by the geometric Picard-Lefschetz

transformations. It will be interesting to derive the superpotential from these geometric transfor-

mations as well13.

12Note that it is possible to have aij 6= 0 and aji 6= 0 for given pair (ij). This just means that there are arrows

from i to j as well as arrows from j to i.
13Though in the exceptional collection picture, we can in principle, though not very conveniently, obtain the

transformation rules for the superpotential as well.



Second, even for the matter part, our understanding is not complete. The reason is that we

calculate the quiver diagram by intersections of cycles in the mirror manifold. The intersection

matrix captures only the antisymmetric part of the quiver diagram, i.e., we assume that one of

aij , aji to be zero for any bi-directional pairs between nodes i and j as explained at the beginning

of Section 5. It is important to note that only under these premises can we derive the matter part

of Seiberg duality from geometric Picard-Lefshets transformation.

Now we show how to reproduce the matter part of Seiberg duality from geometric Picard-

Lefschetz transformations, by comparison of the quiver duality rules above with those rules at the

beginning of this section. We find that it is important to distinguish other nodes relative to the

node k, the dualized node. In the spirit of [17], these nodes fall into three categories: the ones

such that only aik 6= 0, the ones such that only akj 6= 0 and those with both aik = aki = 0.

For simplicity, we call them “Out”, “In” and “No” respectively. Furthermore, we make another

important assumption: the order of cycles relative to cycle Sk are as SA∈Out, Sk, SB∈In while Sp∈No

can be anywhere.14 We do not know why this is a necessary condition, but from the derivation we

can see it is indeed required for Picard-Lefschetz transformation to explain Seiberg duality. Other

ordering would lead to Seiberg-like dualities, but not the simple Seiberg duality on a single node

we are familiar with. Justifying this condition would be very interesting for the geometrisation of

field theoretic dualities.

Now we proceed with the derivation. Under this condition of the ordering of cycles, we move

Sk all the way to the left hand side, passing through all the SA in the Out category and possibly

some Sp in the No category. We have the following transformation for each cycle in A,B, p:

SA → SA + (SA · Sk)Sk

Sk,B,p → Sk,B,p

nk → nk −
∑

A∈Out

nA(SA · Sk) = nk − Nk < 0

nA,B,p → nA,B,p,

where the sum is accumulated as we move through each Out cycle. The cycles Sp do not change

even if cycle Sk has passed them because they have zero intersection number with Sk. Notice also

that the quantity
∑
A

nA(SA ·Sk) is exactly the number of flavours Nk with respect to the dualising

node k. Now since nk − Nk < 0, according to our convention, the rank of the new gauge group

should be ñk = Nk − nk and the corresponding cycle should be −Sk. This reproduces rule (b) of

Seiberg duality.

Next we need to calculate the quiver diagram by calculating the intersection of cycles. First

ãik = Si · (−Sk), which implies that ãik = −aik. This explains the reversal of arrows connected to

node k, i.e., rule (c). Second, we calculate ãij, i, j 6= k. This part is modified only when at least

14recall that (p, q) 7 branes appear with a natural ordering.



one of i, j is in the category “Out”. In this case, we have

S̃p · S̃A = Sp · SA

S̃A · S̃B = SA · SB + (SA · Sk)(Sk · SB)

S̃A1 · S̃A2 = SA1 · SA2

which exactly reproduces rule (d). In summary then we have derived Seiberg duality from Picard-

Lefschetz.

5.3 An Interesting Question

Now we come to an interesting question. As we saw above, only in conjunction with the ordering

of the cycles and making the special move of letting node Sk pass through all nodes such that

(Si · Sk) > 0, does Picard-Lefschetz monodromy derive Seiberg duality. Thus indeed the former

is a more general class of phenomenon than the latter. This has been recently pointed out in [13]

where Seiberg-like dualities were discussed.

If we do not pass through all nodes, what field theory is given by the transformation? We will

see below that it is not a simple Seiberg Dual theory. It is important to figure out what is the

physics behind such a perfectly well-defined procedure in geometrical engineering. To demonstrate

this point, we continue with the above example of F0 (see Figure (10)). Starting from Case (I)

cycle : A : [1,−1] B : [1, 1] C : [−1, 1] D : [−1,−1]

n : 1 1 1 1

Si · SD : −2 0 2 0

Picard-Lefschetz transformation with respect to node D relative to C, we obtain Case (II)

cycle : A : [1,−1] B : [1, 1] D : [1, 1] C : [−3,−1]

n : 1 1 1 1

Si · SA : 0 −2 −2 4

Si · SB : 2 0 0 −2

Si · SD : 2 0 0 −2

Si · SC : −4 2 2 0

These are the cases discussed earlier and presented in Figure (10).

If we move the node A relative to node C of phase II, we obtain case (III)

cycle : C : [1,−5] B : [1, 1] D : [1, 1] A : [−1, 1]

n : 1 1 1 3

Si · SA : −4 2 2 0

Si · SB : 6 0 0 −2

Si · SC : 0 −6 −6 4

Si · SD : 6 0 0 −2



which is Seiberg Dual to (II). However, if we dualise node C relative to node D of (II), we will

obtain Case (IV)

cycle : A : [1,−1] B : [1, 1] C : [3, 1] D : [−5,−1]

n : 1 1 1 1

If we further transform node C relative to node B, we get Case (V)

cycle : A : [1,−1] C : [3, 1] B : [−5,−1] D : [−5,−1]

n : 1 3 1 1

which is Seiberg dual to (II). We see that after two successive Picard-Lefschetz moves, we do obtain

a Seiberg dual theory. This hints us that Picard-Lefschetz duality is a fractional Seiberg-duality.

The various dualities are summarised in Figure (10).

6. Superpotential from Global Symmetries

We have seen that thusfar two alternative methods, one algebro-geometrical [13] and another com-

binatorial [4, 5], exists in the computation of the matter content and superpotential. The first

problem of finding the quiver is relatively straight-forward and there exists yet another prescrip-

tion using (p, q)-brane webs [8]. The superpotential on the other hand is rather involved: the

(p, q)-description so far gives no direct technique, the exceptional bundle method requires involved

Ext computations and the Inverse algorithm requires nontrivial integrating back.

The problem of finding an efficient method of determining the superpotential for classes of

algebraic singularities remains a tantalising one. The following observations may yet point us to

the right direction (q.v. [18] for discussions in a similar vein, especially on the third del Pezzo

surface).

6.1 Example: B0

Let us proceed with the example of the cone over the zeroth del Pezzo surface, i.e., the blowup of

the well-known orbifold C
3/Z3 (cf. page 65 of [13]). Let us consider phase II of Figure 11. The 12

fields are arranged as 3 from node B to A, labelled as ~X ; 3 from node A to C, labelled as ~Y and

6 from node C to B, labelled as Zij . Now SU(3) is the isometry group of C
3/Z3, thus becomes a

global symmetry group for the gauge theory. We expect the two triplets of fields ( ~X, ~Y ) to be in

irreducible representations of SU(3) and we assign for convenience the anti-fundamental 3̄ of SU(3)

while the sextuplet (Zij), to be in the symmetric 6 of SU(3), an invariant scalar contraction is then

obviously XiY jZij , which is precisely the superpotential computed by either algebraic methods or

by performing Seiberg duality on phase I of Figure 11. In general we can follow the tree given in [13]

modelling all the Seiberg dual theories of the above and arrive at Equation (2.17) for all the allowed

number of fields µ21, µ32 and µ31 between nodes 12, 23 and 13 respectively. (Here to compare to

Figure 11 just make the replacements A by 1, B by 2 and C by 3). We expect such numbers to

be all solutions for the ir(reducible) representations of SU(3) and appropriate contractions then

suffice.
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Figure 10: The web of dualities one obtains for the zeroth Hirzebruch surface F0, as we perform Picard-

Lefschetz moves on the corresponding (p, q) 7-brane configurations.

6.1.1 Series of Theories for B0

The above is but one phase of a series of Seiberg duals of the theory [13, 17] and we made use of the

explicit global SU(3) flavour symmetry (also see [18]). We will now show that using this symmetry

alone we can in fact write down the superpotential uniquely for many phases related to each other

by Seiberg duality.

Let us start from model I in Figure 11. This is the toric phase [4]. In this model, we have 9

fields XAB,i, XBC,i and XCA,i with i = 1, 2, 3, all of which transform as the fundamental 3 of the

SU(3) flavor symmetry. There is only one combination (tensor product as a Hom composition) of

these to give a singlet of SU(3), viz. , 3 ⊗ 3 ⊗ 3 = 1 + 8 + 8 + 10. Therefore, the only invariant



scalar is given by

WI = XAB,iXBC,jXCA,kǫ
ijk. (6.1)

This is of course the well-known superpotential [4, 13] for the toric phase of del Pezzo zero.

Now let us perform Seiberg duality with respect to node A. This model II is what was discussed

above and in [17, 13]. We here discuss this example in detail to demonstrate our idea. First let

us analyse the dual quarks. Under Seiberg duality, the fields XAB,i and XCA,i become Xi
BA and

Xi
AC . Therefore under the SU(3), the 3 changes to 3̄. The fields XBC,i are invariant and remain

as 3. Next we need to add the meson fields MCB,ij which should transform under the tensor

product 3 ⊗ 3. Since 3 ⊗ 3 = 6sym + 3̄antisym, we can write the meson fields into two irreducible

representations Y i
CB for 3̄ and YCB,(ij) for 6 where (ij) means the symmetrisation of ij.

The subsequent superpotential of the dual field theory becomes W ′ = MCB,ijXBC,jǫ
ijk −

MCB,ijX
i
BAXi

AC where the first term comes from WI and the second term comes from the duality.

Notice that since MCB,ijǫ
ijk = Y k

CB, the first term in W ′ tells us that both fields Y k
CB and XBC,i

are massive and should be integrated out. Using the equation of motion of fields XBC,j we find

Y k
CB = 0 and the final superpotential is:

WII = −Xi
BAXj

ACYCB,(ij). (6.2)

The above result is derived from applying Seiberg duality rules in field theory. Now let us show

how to use symmetry alone to reproduce this result. Under Seiberg duality, we have fields which

transform under the following representations of SU(3):

Field Rep(SU(3))

Xi
BA 3̄

Xi
AC 3̄

XBC,i 3

MCB,ij 3⊗ 3 = 6sym + 3̄anti = YCB,(ij) + Y i
CB

Whence we see that the fields XBC,i(3) will combine with fields Y i
CB(3̄) to become massive, so they

can be integrated out. The remaining fields are 3̄, 3̄ and 6. Symmetry therefore tells us that there

is only one flavor invariant superpotential we can write down:

WII = Xi
BAXj

ACYCB,(ij),

giving us the same results as (6.2) with much less work.

Next we dualize with respect to node C to reach model III. In this case, the meson fields

will be 6 ⊗ 3̄ : Mk
AB,(ij), which can be decomposed into 15 + 3. The 3 is given by the trace

part YAB,j =
∑

i M i
AB,(ij) while the 15 is given by the traceless part Y k

AB,(ij) with the condition∑
k Y k

AB,(kj) = 0. As in model II, the 3 field YAB,j will be integrated out with 3̄ field Xi
BA. Thus

from these representations we find that the superpotential is uniquely determined as

WIII = Y
(ij)
BC XCA,kY

k
AB,(ij).



Finally, we dualize on the node A again to reach model IV. It is the first non-trivial example

where the representation is not irreducible. The meson fields will be M l
CB,(ij)k = 15⊗3 which can

be decomposed into 24 + 15 + 6. The component of 6 will become massive and be integrated out

with fields Y
(ij)
BC = 6̄. This leaves us two irreducible components 24 : Y l

CB,(ijk) with
∑

k Y k
CB,(ijk) = 0

and 15 : Y
(ij)
CB,k with

∑
k Y

(kj)
CB,k = 0. The superpotential is determined again by the SU(3) flavor

symmetry as

WIV = Y
(ik)
BA,lX

j
ACY

(kl)
CB,kǫijk + Y

(ij)
BA,lX

k
ACY l

CB,(ijk).

We see therefore that by consideration of the representation theory of global symmetries, one

could sometimes obtain the superpotential without recourse to the Inverse Algorithm or to helix

methods. The general prescription seems rather straight-forward, though the complete justification

for this elegant technique still eludes us. We first identify the isometry of the singularity of concern,

and then group the bi-fundamental fields into irreducible representations of this symmetry group.

Contraction of these fields, now arranged as tensors of various rank, into a scalar, should give the

final superpotential. Heuristically, this simply means that there is a remnant global symmetry,

perhaps in the form of the centre of the Lie group, of the enhanced gauge symmetry which arise

in the closed string sector as we compactify Type II on the appropriate Calabi-Yau cycles. The

corresponding closed string moduli realise as gauge couplings in the open string sector which lives

on the D-brane probe theory, some of which as coefficients of the terms in the superpotential,

whereby giving our superpotentials surviving symmetries from the geometry.

Mathematically, the superpotential is a sum over all minimal loops in the quiver, weighted

by the dimension of the Ext group of the various composition of the bundles in the exceptional

collection. It is the non-zero terms that interest us. When the Ext-groups do not vanish should be

precisely determined by the geometry of the Calabi-Yau base over which we have constructed the

bundles.

6.2 del Pezzo Zero, Markov numbers and Helices

Let us examine the above case of the del Pezzo zero resolution of C
3/Z3 in some more detail. As

was pointed out in [13], if we let (x, y, z) denote the number of bi-fundamentals between the nodes,

then one can construct a tree of branching integer triplets which gives all allowed solutions under

Seiberg duality.

Of course, as introduced earlier in Equation (2.17) and also in [21], the solutions are dictated

by the Diophatine equation15

x2 + y2 + z2 = xyz, (6.3)

which we obtained from tracing over the product of monodromy matrices. On the other hand if

we denote the rank of the nodes to be (m,n, p), anomaly cancellation demands this triple to be in

the nullspace of the intersection matrix. Whence,




0 x −z

−x 0 y

z −y 0







m

n

p


 = 0 and we immediately see the

solution (m,n, p) = a(y, z, x) for possibly fractional a if (x, y, z) were to have a common factor.

15For simplicity, we have redefined x = µ21, y = µ31, z = µ32.
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Figure 11: The first few phases of B0 obtained by Seiberg duality. The letters A, B, C, label the gauge

group. The numbers in square brackets are the ranks of the gauge groups.

We recognise (6.3) as a case of the Hurwitz equation [34, 35], the general solution for which

is given in [21]. One takes the fundamental solution (3, 3, 3) and repeatedly applies




−1 1 1

0 1 0

0 0 1


 in

addition to the permutation Σ3 on the triple.16 This generates the tree of solutions. One sees of

course that they generate a braid group, in concordance with the fact that Seiberg duality is a

16One should note here that this matrix is nothing but Seiberg duality on one of the nodes and though discovered

about a century ago was not termed “Seiberg Duality”.. The notes here are a gauge theory reinterpretation of these

results.



monodromy action.

With the solution above, we see that the (x, y, z) always have a common divisor of 3. This

means that we can take the a above to be 1/3 and obtain the equation

m2 + n2 + p2 = 3mnp (6.4)

for the labels of the nodes. We recognize this to be the Markov equation [30]. The solutions for

which are the renowned Markov numbers used in Diophantine approximation theory.

Indeed, we see that we are really dealing with only (6.4). Take (6.3), and consider it modolo

3. Because 22 ≡ 12(mod3), we only have to consider 4 possibilities on the left: 0 + 0 + 0, 0 + 0 + 1,

0 + 1 + 1 or 1 + 1 + 1. The second and third are instantly discarded because then the left would be

non zero mod 3 while the right divides 3. The fourth is also impossible because the left would be 0

mod 3 and the right, not so. We conclude that the only solutions to (6.3) are when all (x, y, z) are

multiples of 3, whereupon we can instantly rename (x, y, z) = (3m, 3n, 3p) and obtain (6.4). We

summarise:

Theories related by Picard-Lefschetz duality (which are Seiberg duals) for the world-volume

theory of D-branes probing the cone over del Pezzo zero are characterised by Markov numbers

(m,n, p): it is a U(m) × U(n) × U(p) gauge theory with bifundamental matter




0 3p −3n

−3p 0 3m

3n −3m 0


.

One might wonder whether our Diophantine equation, derived from the monodromy matrix

condition TrK = 2, which is obviously necessary, is in fact sufficient to describe all solutions. We

are saved by a result of Rudakov [31] which proved a 1-1 correspondence between the Fourier-Mukai

vector of exceptional bundles on P
2 related by mutations (or, in our language, the fractional brane

charges on del Pezzo zero related by monodromy) and the Markov numbers. Therefore (6.4) does

indeed characterise all solutions.

In a follow-up work [32], Rudakov addressed the case for F0. There, the statements are less

powerful than the P
2 case and a certain subset of the exceptional bundles are in bijection with 2x2+

y2 + z2 = 4xyz. The general problem of finding Diophatine equations characterising exceptional

collections over arbitrary varieties remains open.

In fact over the k-th del Pezzo surface, the bundles are associated to the equation of the Markov

type as:

ax2 + by2 + cz2 =
√

K2abc xyz,

with a, b, c integers and K2 = 9 − k the intersection number of the canonical class [33]. The ranks

of the what the authors define to be a triple of “three-blocks” of exceptional collections satisfy the

above equation. The precise relation between this Diophantine equation and the ones discussed in

Section 4 eludes us. It could well be that the fact that they coincide for the simplest case of P
2 is

mere coincidence.

7. Conclusions and Prospects

We have seen that dualities of quiver theories become geometric when these theories are realized in

the Type IIA string theory using D6-branes. Although the superpotential is difficult to determine



in these cases, in some aspects it seems that D6-brane picture is the more natural one. As we saw

in the del Pezzo cases the geometry of the mirror manifold is able to provide Diophantine equations

completely describing the various quiver diagrams related to each other by Picard-Lefschetz trans-

formations. Parenthetically, works on helices on del Pezzo surfaces have also shown how exceptional

collections could be classified by certain Diophantine equations. We have shown that in the case of

P
2 both prescriptions give the same Diophantine equation, namely the Markov equation. It would

be enlightening to find out how they are related for the higher del Pezzos.

Moreover, it would be interesting to see if such equations exist for the theories arising via

orbifolds. It is clear that the equations represent the necessary and sufficient condition for the

existence of the T 3 mirror to the zero cycle. For example in the case of C
3/Z5 orbifold the mirror

manifold has five degenerate fibers of the genus two fibration so we need an equation which gives

a necessary and sufficient condition for the existence of an eigenvector of the monodromy matrix

around five degenerate fibers of a genus two curve. Such an equation will classify non-compact CY

manifolds with two four cycles and Euler characteristic five similar to the classification of local del

Pezzos from the elliptic curve [29].

As an aside we have shown in detail how with the imposition of certain condition one could

derive Seiberg duality on the matter content of the quiver theory from Picard-Lefschetz moves;

this is very much in the spirit of [13]. As an interesting by-product we have explicited an example

where one obtains pairs of theories as a “fractional” generalisation of Seiberg duality. Of course the

full treatment, incorporating the superpotential, still awaits a geometrical perspective. This should

correspond to interesting behaviour in the field theory and seems to be a promising direction of

pursuit.

Indeed whereas the transformation rules of the matter content under Seiberg duality are seen

as a consequence of Picard-Lefschetz monodromy, the geometrisation of the superpotential trans-

formation rules still needs full understanding. The current methods of computing superpotential,

either from the Inverse Algorithm of [4, 5] for toric singularities, or from the composition of maps of

sheafs [13], are computationally intensive. To have something akin to the elegant rules for the mat-

ter content for Seiberg duality or to determine the terms purely from global symmetries (isometries

of the background geometry) would be a true blessing.
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