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ABSTRACT: We develop an unhiggsing procedure for finding the D-brane probe world volume gauge
theory for blowups of geometries whose gauge theory data are known. As specific applications we
unhiggs the well-studied theories for the cone over the third del Pezzo surface. We arrive at what
we call pseudo del Pezzos and these will constitute a first step toward the understanding of higher,
non toric del Pezzos. Moreover, our methods and results give further support for toric duality as

well as obtaining superpotentials from global symmetry considerations.
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1. Introduction

D-brane probes to singularities have by now become an important tool in understanding the
compactification of string theory on Calabi-Yau manifolds. Indeed the resolution of the singularities
[, B, B] to smooth Calabi-Yau’s by the sub-stringy scale dynamics of the world-volume gauge theories
is of great interest to the physicist and mathematician alike.

With the help of the myriad of combinatorial techniques of toric geometry, notably the system-
atic partial resolution by blowups of Abelian orbifolds, a particular class of non-compact, singular
Calabi-Yau threefolds have been extensively investigated' [, B, fl, [. These are the so-called toric
singularities. Well-studied cases include Abelian orbifolds and the famous conifold. Though the con-
struction of the world-volume gauge theories for arbitrary singularities which model the Calabi-Yau
remains an open question [[[3, [4], BQ], progress has been made in this subclass.

The method of extracting the world-volume gauge theory of the D-brane probing transversely to
such toric singularities has been formalised and conveniently algorithmised in []. An interesting by-
product of the so-called Inverse Algorithm is the phenomenon of Toric Duality where a systematic
method has been created to construct classes of vastly different gauge theories having the same
(toric) moduli space in the infra-red [B, [, B, B]. A subset of the gauge theories that share the
same toric moduli space, the toric phases, have the interesting property of laying in the conformal
window. Recently, activities from three different perspectives have hinged on the conjecture that
toric duality is generalised Seiberg’s N' = 1 duality [§, [5, PJ].

Prime examples of toric duality and the Inverse Algorithm have been the cones over del Pezzo
surfaces. These surfaces sit as compact 4-cycles (divisors) in the Calabi-Yau and have been a long-
time player in the field of String Theory. There are in total 10 of such surfaces, namely P! x P!, P2
and By, := P? blown up at k = 1,...8 points. Research of these surfaces in string theory has been
diverse and has ranged over directions from mirror symmetry [[1]] to mysterious dualities [[J].

The first 5 members of the series, namely the cones over Fy := P! x P!, P? (which gives the
resolution of the famous orbifold C3/Zs) as well as dP1,2,3 (the cones of the first 3 del Pezzo
surfaces) are toric and have been scrutinised in the context of D-brane probes by [[, B, [1, B, [3,
B3, B, [0, [[q], especially since the advent of the Inverse Algorithm. The remaining members,
dP4,...,8, are non-toric and the first venture into this terra incognita has been [[[G], wherein the
quiver diagrams have been constructed.

Indeed, of late four techniques have been in circulation, towards the full understanding of

probing toric singularities: (1) direct field theory techniques wherein the acquisition of vevs to

'Recently, new phenomenological constructions have been developed by wrapping D6-branes on compact, inter-
secting 3-cycles of Calabi-Yau manifolds [@, @]



spacetime fields is considered [[I], B, B4, @, [3], (2) brane configurations such as diamonds [BT], §] and
(p, q)-web techniques [I§, 6, [, [J], (3) geometric engineering wherein exceptional collections of
coherent sheafs over the divisors provide the gauge theory data and certain geometric transitions
provide large N dualities P2, B3, B3], as well as (4) the Inverse Algorithm [, [, B, B, which is
computationally very convenient and methodical. All these complementary techniques have thusfar
supported each other perfectly, as in particular exemplified in the detailed study of the above five
toric varieties.

However, to have a better understanding of the D-brane probe theory, we need to proceed
beyond toric varieties. In this paper, we develop a systematic method, the so called unhiggsing
mechanism?, to deal with this problem. The basic idea is the following. Given a singularity
Y, it is relatively simple to calculate the quiver diagram (matter content) by the aforementioned
geometric methods. The difficult part is to find the corresponding superpotential (for example,
by calculating the mapping among the collections of coherent sheafs). Now if we know the quiver
and superpotential of a singularity X which is the blow down of Y, we can use the unhiggsing
mechanism to get the superpotential of ¥ more easily?.

This above method is of course perfectly adapted to our needs: we have the quivers of the
higher dPk’s from [[§], we know that each dPk is the P!-blowup of dP(k — 1) and we have the
full theories for dP0,1,2,3 from [ff]. Inspired by this philosophy and armed with this technique,
we attempt at finding the corresponding superpotential of the non-toric dP4 and dP5 singularities,
with quiver diagrams given in [[G. The results turn out to be toric. In other words, the moduli
space of these gauge theories, unhiggsed from the known dP3 theory, defined by the subsequent
superpotentials and quiver diagrams, are in fact toric varieties. We will see that these toric moduli
spaces are not generic, smooth dP4 and dP5, but degenerate cases with non-isolated singularities.
These singularities we shall call pseudo del Pezzos. These surfaces, which we denote as PBjy,
over which the PdPFk are affine cones, bear close semblance to the del Pezzo surfaces Bj as they
are also P? blown up at points .

Although we do not reach our initial aim, the method itself is very useful and can be applied
to hosts of examples in order to construct new classes of D-brane gauge theories. We will discuss
more about this issue in the conclusion.

Furthermore, continuing along the path of [{, 0], we shall use elegant symmetries inherited
from the very geometry (and indeed from the closed string sector), to arrive at the superpotentials
4

for these theories Once again, we shall find that such symmetry considerations are powerful

2During the preparation of this manuscript, YHH has learnt from M. Wijnholt that the latter’s collaboration
group is also working in this direction and has reached similar results.

3There are some subtle points in this inverse process which we will discuss later.

4The issue of multiplicity symmetry, raised in [H], has also been considered in [@]



enough to uniquely determine the superpotential, the calculation of which is often a daunting task,
either for the Inverse Algorithm, or for the composition of Ext’s in the derived category of coherent
sheafs.

The organization of the paper is as follows. In Section 2, we refresh the readers’ memory on the
four toric phases of the dP3 theories, known to the literature. Then, in Section 3, we present the
other ingredient and explain the (un)higgsing mechanism in relation to geometric blow (down) ups.
Thus prepared, we unhiggs the dP3 theories to obtain the dP4 gauge theory in Section 4, and check
the consistency by higgsing back to dP3 in Section 5. As a hind-sight, in Section 6, we shall see that
we have in fact obtained the PdP4 theory and discuss some of the geometric properties thereof.
Continuing in this vein, we obtain the PdP5 theory in Section 7. As an additional confirmation
to the unhiggsing method, we also use global symmetry arguments to check our superpotentials in

Section 8. Finally, we conclude in Section 9.

Nomenclature

Unless otherwise stated, we shall throughout the paper adhere to the notation that d Pk means
the affine cone over the k-th del Pezzo surface By, i.e., P? blown up at k generic points. When these
blowup points are not generic, i.e., 3 or more may be colinear, or 6 or more may lie on a single
conic, we shall call the resulting surface the non-generic (or Pseudo) del Pezzo, denoted as P By;
some of these may actually be toric as we shall see. The affine cones over these surfaces we shall
call PdPk.

Often we shall append a Roman numeral subscript as in dPk;; this means the /-th (toric-dual)
phase of the theory for dPk. And so likewise for PdPk.

In the quiver theory, the arrow X;; corresponds to the bifundamental field from node 7 to j.

2. The Four Phases of dP3

The starting point for the unhiggsing process that we will use to generate the theories associated
to higher del Pezzos is dP3. There are four toric phases corresponding to dP3 [§, B, [0, [7]. To
refresh the reader’s memory, let us clarify what we mean by a toric phase, as inspired by the Toric
Duality discussions in [f}, §]: we call any gauge theory where the quiver has the rank of all nodes
equal to N (for simplicity, most times we set N = 1) as well as only monomial F-terms, i.e., suitable
for the Forward Algorithm of [, f]. Indeed this is not a necessary condition for the moduli space
to be toric. We can have phases without all the ranks of the nodes equal, and still obtaining a toric

moduli space when calculating it in terms of gauge invariant operators.
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Figure 1: Quiver diagrams of the four phases of dP3.

Now, let us recall the dP3 quivers in Figure [ll, where we have used the versions presented in
[, which make global symmetries explicit.

The superpotentials for these theories are

Wi = X192 X203 X34 X5 X56 X1 — [X23 X35 X56 X2 + X13X34 X6 X1 + X12X24 X5 X51] (2.1)

+[X13 X35 X51 + X4 X6 Xeo]

Wit = [X12 X6 X61 — X12X05X51 + X6 X624 Xu3 — X35 X54Xy3] (2.2)
+[— X1 X13X36 + X51Y13X35] + [ X6 X64 X141 Y13 X 30 + Xo5 X540 X1 X13 X30]

Wiir = [Xan X15X54 — X540 X3 X35 + Va5 X0 X3 — X52.X01Yi5) (2.3)
+[=Xa1Y15X56 X6a + X6aXa3Y35Y56 — Xoz X35 X56X62 + Xe2Xo1 X15Y56]

Wiv = [Xu1 X16Xe6a + Xa3X36Ysa + XaoXo6Z64] — [Xa1Y16Y64 + Xa3Y36 264 + X42Yo6X64] (2.4)

+ [X51Y16X65 + X53Y36Ye65 + X52Ya6Z65] — [X51X16Ye5 + X53X36Z65 + X52X26 X65)-

From this data, we shall use the technique of “unhiggsing” to attempt to arrive the theories for
the higher del Pezzos.
3. Blowing Up and Down versus Unhiggsing and Higgsing

Now we need our second ingredient and discuss the geometric origin of the (un)higgsing method.

The philosophy is straight-forward and standard to the literature:



the blow-up of a point, replacing it by a compact 2-cycle, is translated to an unhiggsing of the
field theory on the D-brane. Conversely, blowing down a 2-cycle corresponds to the higgsing of
turning on a VEV for a bifundamental field that breaks two U(1) factors down to a single one.

In terms of fractional branes, the higgsing process corresponds to the combination of the frac-
tional branes of the higgsed gauge groups into bound states as discussed in [[9].

Let us now discuss the connection between the higgsing and the partial resolution methods
3, B, @, B]- When Fayet-Iliopoulos (FI) terms acquire generic values the singularity is completely
resolved. On the other hand, when the FI terms lie on some non-generic cones, we obtain a partial
resolution corresponding to a non-trivial (singular) geometry. This technique was exploited in
M, B, B4, A, B to obtain theories for various toric varieties starting from abelian orbifolds. To
illustrate, let us consider the resolution of the C3/(Zy x Zy) down to the Suspended Pinched Point
(SPP). The quiver for C3/(Zy X Zs) is given in Figure JJ(a) (which we quote from [24, fi]), while its

superpotential is

W = X13Ys4 241 — Xi13Z32Yo1 + X31Y10 293 — X31214Y 3 (3.1)
+X04Ya3Z39 — XoaZYio + XuoYo1 214 — Xy2Zo3Y34.

1 2 The SPP is obtained by constraining
[ [ 14 the four FI terms to be [P4, f]
=0 G=0 G+G=0 G#O0.
(3.2)
o [ This corresponds to higgsing U (1)) x
4 3 3 o U(1)() toasingle U(1). We can do it by

giving a non-zero VEV to Zy4 (the alter-
Figure 2: (a) The quiver for the parent orbifold C3/(Zs x

native of giving a VEV to Z;; is equiva-
Z3); (b) The quiver for the SPP, a partial resolution from

lent by symmetry). Let us set (Z14) = 1.
higgsing the parent. . L
During the higgsing process, mass terms
are generated for X3, Vi3, Xyo and Y, so they have to be integrated out. Calling nodes 1(4) — 1,
we get

W= X21}/12Z23Z32 - Z32Z23}/31X13 + X13YE$1Z11 - X2IZII}/12 (33>

and the quiver in Figure PJ(b), which is exactly that for the SPP.

More explicitly, let us consider the D-terms of nodes 1 and 4. If we give only one field Z14 a
nonzero VEV, to satisfy D-terms for these two nodes, both (; and (4 can not be zero, but (;+{4 =0
because of the opposite sign of field Z;4 in these two D-terms. This establishes the relationship

between Fl-parameters and fields which acquire nonzero VEV.



Therefore, we have shown in a simple example how the linear relations among FI parameters
associated to a blow-down such as (B.2) straightforwardly determine a higgsing in the gauge theory.
The methodology is of course easily generalised and the reverse of the procedure, viz., the unhiggsing
is much in the same spirit and will be detailed in the next section. We remark that such relation

between (un)higgsing and blowing (up) down is very conveniently visualised in the (p, ¢)-web picture

IERIEE

4. Unhiggsing From dP3 to dP4

Thus our ingredients are complete. With the full theories for dP3, the quivers for the higher (non-
toric) del Pezzo’s given in [[If], as well as the preparatory étude on the SPP in the previous section,
let us proceed.

The quiver diagram of dP4 given in [[[] is redrawn here as Model I in Figure f|. The other
models we shall obtain later. For this phase of dP4, we have a total of 15 fields. When we higgs
down to dP3 in the manner of Section 3 therefore, we can reach at most three of total four phases,
viz. dP3; with 12 fields as well as dP3;; and dP3;;r with 14 fields. For dP37y there are 18 fields so

it obviously can not be higgsed from this phase of dP4. Let us analyze this process in more detail.

) 3 4.1 Higgsing dP4;

4.' f‘ First, notice that there is an explicit symmetry of the
ay/an quiver for dP4;, namely the reflection about the 456-

axis. This means that node-pair (2,3) as well as the
pair (1, 7) are equivalent. Now let us see whether dP4;

7 can be higgsed down to dP3y; the latter seems a nat-

/ﬂ.ir'i

— ural choice because it, as with dP4;, is the only model
/ without multiple arrows between any two nodes. How-

ever, we can not find the reflection symmetry exhibited

/ in dP4y, i.e., we can not find such equivalence between
6 pairs of nodes in dP3;. This tells us that when we higgs
down, such symmetry could be broken and in fact will

Figure 3: The quiver diagram for dP4j, re- be so.

drawn from the results in [1§]. In this paper Second, notice that for node 5 in dP4, we have
this model is referred to as Model I, a U(1)"  three arrows coming in and three going out while there
theory with 15 bifundamentals. are only two incoming and two outgoing arrows for any

node in dP3;. This means that we must integrate out



one incoming and one outgoing arrow at node 5 when we higgs down; these two fields must acquire
mass when we higgs. In other words, there must be a cubic term in the superpotential that involve
these two fields and another field to which we will give nonzero vacuum expectation value (VEV).

To set some notations, we shall label fields in dP4 by ¢ and those in dP3 by X. Moreover,
in the quiver diagrams, the daughter of the higgsing will have its nodes indexed by numbers with
“[']" around them and node a/b[c] would thus mean node ¢ in the daughter, obtained from higgsing
nodes a and b in the parent.

Combining the above two observations, we see that the one field which is integrated out must
be ¢95. Indeed we can make this choice due to the symmetry between nodes 2 and 3. Now to get the
cubic term which includes ¢95, we have only two choices: @o5057070 and ¢o5¢51¢012 as they are the
only closed loops in the quiver diagram (i.e. gauge invariant operators) involving node 5. Again,
since node 7 is symmetric to node 1, these two choices are equivalent to each other. So without loss
of generality we take ¢o5051012.

We should also condense field ¢ from ¢o5¢p51¢012. The condensation process is shown in part
(a) of Figure f] wherein we give the corresponding nodes of dP3 in brackets for comparison. We
have drawn dashed lines for the field that gets a non-zero VEV and those that become massive and
are integrated out.

So far we have used the quiver alone, the next step is to start from the superpotential of dP3; to
attempt to reach that for dP4; which is thusfar unknown in the literature. From the superpotential
for dP3y,

Waps, = X12X03 X34 X5 X56 X61 — [X23 X35 X56 Xe2 + X13 X34 Xa6X61
+X19 X094 X5 X51] + [X13 X35 X51 + X4 Xy Xe2]
we replace by the corresponding fields in dP4 (in the way that is suggested by Figure fJ.a) to get

Wapa, = G34045056067072075 G13 — [Pa5Ps1P12091 + Pa5Ps6P61P13
+073031046067] + [P73035057 + D21046P61D12]

In Wypy, to close the loops we needed to replace Xus by ¢g1¢12. The crucial step is that the
term X9 X3 X34 X 45 X56X61 must be replaced by q534¢45¢56¢67q572q51_21q513 where we have put in q51_21
to show that this term is the result of integrating out massive fields. In other words, this term
should come from the replacement of ¢o5 or ¢5; by their equations of motion.

If it came from the replacement of ¢o5, we should have the term ¢o5¢56¢67¢72 Which upon

substitution of ¢25 from ¢12¢25 = ¢13¢34¢45 giVGS the required ¢34¢45¢56¢67¢72¢1_21¢13- Thus we get
the final superpotential as

WdP41 = ¢24¢46¢61¢12 + ¢73¢35¢57 - ¢73¢34¢46¢67 - ¢45¢57¢72¢24 - ¢35¢56¢61¢13
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Figure 4: The higgsing of dP4 down to dP3. (a) The quiver diagram after we condense ¢12 from dP4
to dP3r; (b) similarly we obtain dP3jy from dP4; by turning on a VEV for ¢s6.

+¢25¢56¢67¢72 - ¢51 (¢12¢25 - ¢13¢34¢45)- (41>



If on the other hand we were to do the replacement of ¢51, we should have the term ¢51¢13¢34¢45,
with the EOM ¢51012 = ¢56067¢72. From this we would have the superpotential

Wapa, = 021016061912 + Q13035057 — Pr3P340P46067 — PasPs7P72024 — P35P56P61 P13
+ 051013034045 — P25(P51012 — P56P67P72)-
This is the same as ([.]]). We have therefore obtained the superpotential for dP4;.

4.2 The Various Phases of dP4

Having obtained one phase of the dP4 theory, it is natural to seek other phases related thereto by
Seiberg duality. In this section, we shall look for the duality transformations which stay within the
toric phase. We shall also find the closure of this set of dual theories.

For dP4;, we can rewrite ([L.1) as

Wapa, = —[951012025 — O57073035) + (12024016061 — P73P31P16D67] (4.2)
+ (034045051013 — D20045057072] + (P25 P56P67 P72 — P35P56P61P13]

where to show explicitly the symmetry between the pair (1,2) and (7, 3) we have redefined the fields
and grouped them properly. We remind the reader that this can be higgsed down to model I of
dP3.

Now let us discuss the symmetries of this model in the spirit of [J]. First, from the quiver
diagram in Figure ] we see following symmetry: (1) nodes 1 <> 7; (2) nodes 2 < 3; (3) nodes
46,1+« 3,2« 7 as well as reversing the directions of all arrows.

However, the superpotential we found in ([.3) does not preserve all these symmetries. It is easy
to see that only the following symmetries are preserved: (1) simultaneous exchange of nodes 1 < 7
and 2 < 3 (we have shown this symmetry explicitly by the brackets in (£.9)); (2) exchange of nodes
46,1+« 3,2« 7 and reversal of the directions of all arrows.

These observations of symmetries are very important and will reduce much computation in
tracing through the tree of generalised Seiberg dualities. For example, we see immediately that
dualising on node 4 will give the same theory as on 6. Similarly, dualising on any of 1,2, 3,7 will
also produce the same theory.

Now starting from dP4; we can dualise either node 4,6 to give us a new model which we shall

call dP4;;. The superpotential is after integrating out, given by

Wapa,, = —[0s51012025 — Ps57P73035] + [¢12$26¢61 - ¢73$36¢67] (4.3)
+ [535¢51¢13 - 525?557(?72] + P25 P56P67D72 — B35P56 D61 P13]
+ [525@554@2 - 535?554(?43] - [526@564(?42 - 536¢64¢43],

10



where the 5 are dual meson fields and the last row comes from the added meson interaction of the
form Mqq.

Now let us discuss the symmetries of dP4,;, which from the quiver we see as (1) 2 «<» 3 and
(2) the permutations of nodes (1,4,7). Again, the superpotential preserves only the symmetry of
exchanging 1 < 7 and 2 < 3 at the same time. This is also explicitly shown in ({.3) by grouping
the appropriate terms in brackets. The symmetry indicates that dualising nodes 1,7 will give the
same theory. It is also worth to mention that although ¢35 and 535 are doubly degenerate in the
quiver diagram, the superpotential breaks this degeneracy explicitly. The same conclusion holds for
fields ¢95 and 525.

Finally, we have nodes 1,2,3,7 to choose from in dualising dP4;. Let us without loss of
generality choose to dualise node 1; we reach yet another model, which we call dP4;;;. Comparing
with the quiver of dP4;, we notice that they are almost the same except one thing: there is a
bi-directional arrow between nodes 3,5. This difference is very important and non-trivial. For all
del Pezzo surfaces we have encountered before, they are always chiral. This property of the del
Pezzo surfaces was also pointed out in [I§]. In fact, the rules given in [§, [[0] about Seiberg duality
can not be directly applied to such cases. It is certainly worth to investigate this and generalise
the Seiberg duality rules. In any event we seem to have a puzzle here as the the del Pezzo surfaces
admit only uni-directional arrows [[]. We shall address this puzzle in Section . For now let us

present the superpotential:

WdP4111 = [¢62¢24¢46 - ¢62¢21¢16] + [¢34¢45¢53 - ¢31¢15¢53] (44>
+ ¢57¢73¢35 - ¢35¢56¢63 + ¢63¢31¢16
- ¢73¢34¢46¢67 - ¢24¢45¢57¢72 + ¢21¢15¢56¢67¢72-

The quiver of this model has only an explicit Z, symmetry 1 < 4.
These three models are the only toric phases of dP4 under Seiberg duality and we summarise

them in Figure .

5. Higgsing from dP4 to dP3

In the previous sections we have studied how to obtain one of the phases of dP4 by unhiggsing
dP3;, and then calculated all the three toric phases of dP4 that are closed under Seiberg dualities.
Now we will show how it is possible to get all the four toric dP3 phases by higgsing the d P4 models.
One can conversely adopt the unhiggsing perspective, and think about the result we here present
as possible ways of going from dP3 to dP4 by suitable unhiggsings. Once again one could take the

(p, q) perspective [I9) to visualise more easily.

11
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Figure 5: The quivers for the three toric Seiberg dual phases of dP4. The nodes upon which one dualises

to transform between them are shown next to the arrows.

5.1 Phase I of dP3

The discussion in Section f] showed how one obtains dP3; from dP4; and vice versa. Here we show
how to accomplish the same using dP4;;; as our starting point.

Let us turn on a non-zero VEV for ¢3; in dP4;;;. This expectation value for a charged bi-
fundamental field breaks U(1)n) x U(1)(3) down to the U(1)[ subgroup, thus leading to a theory
with U(1)% gauge group. The subsequent quiver diagram is shown in Figure f]. Looking at the
superpotential ([.4) we see that the cubic terms containing ¢s; give rise to masses for bs3, b,
QNS% and ¢16. When looking at the IR limit of the gauge theory, these massive fields have to be
integrated out using their equations of motion. The result, is a U(1)® gauge theory with 12 fields
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and superpotential given by

W= ¢~562¢24¢46 + O57P73035 + P21 034D 45 P56P67 P72
— 356 Do — PradsaPsePsr — D2abasdsrdra,

which, after the following renaming of the gauge groups (1/3,2,4,5,6,7) — (5,4,6,1,2,3) and
calling the fields X and setting (¢3;) = 1 becomes

W = X9y Xue Xea + X13X35X51 + X5 X56X61 X120 X23 X34

_X51X12X24X45 - X35X56X62X23 - X46X61X13X34-

We recognise this exactly as the superpotential, and part (b) of Figure f, the quiver, for phase I of
dP3, as is required.

5.2 Phase 1I of dP3

Referring to Figure []], let us start from model II of dP4 and give a VEV to ¢12. In this case, only
the U(1)y in U(1)q) x U(1)(9) survives. Mass terms are generated for ¢gs, ¢s1, $a6 and ¢g1. After
integrating them out, we have a U(1)® theory with 14 fields and the following superpotential

W = hssdeaus + PosPsadas — Pradssder — Paspsrdra + Ps7dr3¢ss
— 35 B5a0a3 + D35056P67O12013 — D35 D56P6aPa2Pi3-

Renaming the gauge groups (1/2,3,4,5,6,7) — (4,1,5,3,2,6) as well as the fields
¢35 — Xi3, &35 — Y13, (536 — Xy, ¢a3 — Xs1,
we get

W= X12X25X51 + X43X35X54 - X61X12X26 - X43X36X64 + X36X61X13
_)/13X35X51 + }/13X32X26X64X41 - X13X32X25X54X41-

This is precisely, upto an overall minus sign, the superpotential for dP3;;. Likewise, the quiver of
the dP3 model is reproduced exactly, as shown in Figure [1.

We can get the model II of dP3 also from phase III of dP4, whose superpotential is given by

W= ¢62¢24¢46 - ¢62¢21¢16 + ¢34¢45¢53 - ¢31¢15¢53 + ¢57¢73¢35 - ¢35¢56¢63
+¢63¢31¢16 - ¢73¢34¢46¢67 - ¢24¢45¢57¢72 =+ ¢21¢15¢56¢67¢72-
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Figure 6: (a) Higgsing the field ¢15 of dP4; to obtain dP3;. (b) Higgsing the field ¢31 of dP4;r1 to also
reach dP3;. We have used the dashed lines to indicate the fields to be integrated out and nodes in bracket

to indicate the corresponding nodes in model I of dP3.

Setting (¢73) = 1, U(1)(7y x U(1)(3) is broken down to U(1)z. During the higgsing, ¢35 and ¢s7

become massive, with equations of motion

¢35 = ¢24¢45¢72
¢57 = ¢56¢63-

Finally, renaming nodes (1,2,3/7,4,5,6) — (5,2,3,6,4, 1), and calling the two fields connecting
nodes 1 and 3 in the final theory

o7 — X3, o6z — Yis,
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Figure 7: Higgsing the field ¢12 of dP4;; to reach dP3;;. We have used the dashed lines to indicate the

fields to be integrated out and nodes in bracket to indicate the corresponding nodes in dP3j;.

we get

W = X12X26X61 - X12X25X51 + X36X64X43 - X35X54X43 + }/13X35X51
_X36X61X13 - X26X64X41}/13X32 + X25X54X41X13X327

which is again the superpotential for phase II of dP3.

5.3 Phase III of dP3

This time, we can start from any of the models I, IT and III of dP4 to reach model III of dP3.
First we start from dP4;;; and turn on a VEV for ¢56. The fields ¢35 and &63 will become massive.
Then, in the IR we have a U(1)% theory with 14 fields. Taking (¢ss) = 1, the superpotential is

W= _¢31¢15(553 + ¢34¢45(£53 - (562(?21(;516 + &62(?24(?46 - ¢24¢45¢57¢72
+¢57¢73¢31¢16 - ¢73¢34¢46¢67 + ¢21¢15¢67¢72

Let us rename the U(1) gauge factors as (1,2,3,4,5/6,7) — (1,4,2,3,5,6) and call the fields X,
except

P16 — Xi5, P15 — Y15,

P67 — Xs6, P57 — Yo,

P16 — X35, Qa5 — V5.
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Figure 8: Higgsing the field ¢56 of dP4;;; to reach dP3r;;. We have used the dashed lines to indicate
the fields to be integrated out and nodes in bracket to indicate the corresponding nodes in dP3;j;.

Then, after redefining X,; — — X4 and X43 — —Xy3, the superpotential becomes
W = —X01Y15X50 + Xo3Y35X50 + X54 X1 Xi5 — X54 X3 X35 + Xy3Ys5Y56 X6
+ X091 X15Y56 X62 — XeaXo3X35X56 — Xu1Y15X56 Xea,

which is the superpotential for phase III of dP3. The quiver of this model is also correct, as drawn
in Figure B.

Next we start from from phase I of dP4, whose superpotential is

W = ¢73¢35¢57 + ¢51¢12¢25 + ¢24¢46¢61¢12 - ¢73¢34¢46¢67
_¢45¢57¢72¢24 - ¢35¢56¢61¢13 + ¢25¢56¢67¢72 - ¢51¢13¢34¢45-

We turn on (¢s6) = 1. In this case, no mass terms are generated. After renaming nodes
(1,2,3,4,5/6,7) — (1,4,2,6,5,3), calling

¢s1 — X51, P61 — Y51, o7 — X3
G571 — Y53, Qa6 — Xes, Gas — Yos,
and changing the signs X4 — —Xy6 and Yg5 — —Yi5, the superpotential becomes
W = X3 X05Y55 + X51 X14Xu5 — Xos Y51 X192 + X5 X535 X510 — Xu6Xe5Y51X14
— X320 X096 X65X53 — Y65 Y53 X34 X 46 + X51X12X26Y65-
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We recognise this to be the superpotential for Phase 111 of dP3 after charge conjugation.
Finally we start from phase II of dP4 with superpotential

W = —@51012025 + @57073¢P35 + ¢12¢~526¢61 - ¢73<]336¢67 + ¢~535¢51¢13 - <ZB25¢57¢72
+<1325¢54¢42 — P35P54043 — <526¢64¢42 + <ZB36¢64¢43 + Go5Ps56P67P72 — P35056P61P13-

Setting (pes) = 1, U(1) ) x U(1)(s) breaks to the U(1)5 and mass terms are generated for bas,
Da2, Q~536 and ¢43, with equations of motion

P26 = D255 P12 = Q12061
P36 = P35054 Pz = Pr3P67 -
Relabelling nodes (1,2,3,4/6,5,7) — (4,1,3,6,5,2), changing X5 — —X35 and calling

¢25 — X5, §Z~525 — Y5
O35 — Y35, ¢35 — X35
¢54 — Xs6, P56 — Yse,

we get
W = Xsa X X5 + X5 Xo3Yss + X35 X5a Xug — Yis X0 Xo1 — Xi5Y56X62X01
— Y35 Y56 X64Xa3 — Xog X35 X56X62 + Yis X56X64X41,

and once again obtain the theory for dP3;.

5.4 Phase 1V of dP3

After the above detailed demonstrations, we will be brief in this part. In this case, we start from
the model II of dP4 and give the nonzero VEV to ¢s¢. It is easy to see the quiver will be that of
model IV of dP3, as drawn in Figure fJ. Renaming nodes (1,2,3,4,5/6,7) — (2,4,5,1,6,3) and

making the following replacements

P51 — Xe2, P61 — Ye2,
b5 — Zag, 525 — Yie, 526 — Xe,
P57 — Xes, P67 — Yes3,
G35 — Zse, &535 — Xs6, 536 — Y56,
G510 — Yo, Pea — X1

we get the correct superpotential, upto an overall minus sign and the charge conjugation of all fields
suggested by the condensed quiver.
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Figure 9: Higgsing the field ¢56 from dP4;; to give dP3ry. We have used the dashed lines to indicate the
fields to be integrated out and nodes in bracket to indicate the corresponding nodes in model IV of dP3.

6. PdP4: del Pezzo Three Blownup at a Non-Generic Point

We have obtained, via the unhiggsing method, three toric phases of a new theory from the four
phases of the cone over del Pezzo 3. In the previous sections, because we have used the quivers
obtained from (p, ¢)-web techniques in, [[@], we have assumed that we have arrived at the theory
for dP4. Is this indeed so? The purpose of this section is to show that we are not quite right, even

though we did arrive at a new theory which is dP3 blownup at one point.

Let us begin with the model dP4;;; obtained from unhiggsing. We recall the matter content

and superpotential here:

WIII = [¢62¢24¢46 - ¢62¢21¢16] + [¢34¢45¢53 - ¢31¢15¢53]
+ ¢57¢73¢35 - ¢35¢56¢63 + ¢63¢31¢16
- ¢73¢34¢46¢67 - ¢24¢45¢57¢72 + ¢21¢15¢56¢67¢72
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and

15 P16 P P P31 P3u Pz Pas Pas sz Ps6 Psr Pe2 Pes Per P12 P13
-1 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0O -1 -1 0 0 0 0 0 0 0 0 1 0 0 1 0
dir = 0 0 0 o -1 -1 -1 0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 1 0 -1 -1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 -1 -1 -1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0o -1 -1 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 -1

We can obtain all the 17 F-terms from W;;:

P21 Ps6P67PT2 = P31P53,  P31063 = P21P62,  P15P56P67PT2 = P16P62,  PasPe2 = PasPs1P72
P16063 = P15P53,  PasPs3 = PuePerPr3,  P57P13 = P56P63,  P3aPs3 = P Ps7Pr2,

Pouber = P3aPerdr3,  P3uPus = P15P31, P15 Perdr2 = P35P63,  P35P73 = P21PusPr2,
P2ubas = P16021,  P16P31 = P35P56,  P15P21 P56Pr2 = P3aPac P13, P15P21Ps56P67 = P21Pas P,
P35P57 = P31Pa6P67-

These are all monomial relations! These F-terms thus generate a toric ideal. This is suggestive
that our moduli space is actually toric and thus cannot be the cone over the generic del Pezzo 4.
Let us perform the Forward Algorithm of [fj] to check.

From the F-terms we can actually express the solution space in terms of the K-matrix prescrib-

ing a cone:

d15 P16 P21 P24 P31 P34 P35 Pas  Pas D53 b6 P57 Pe2 P63 Per P2 P73

$15 1 2 0 1 -1 0 1 0 1 1 0 0 -1 0 0 0 0

$21 0O 1 1 1 0 0 1 0 1 1 0 0 -1 0 0 0 0

#4s«+ 0O -1 0o o0 1 1 O O -1 -1 0o O 1 0 0 0 O

KT — ¢s5s 0 -1 0o -1 1 o O 1 0 -1 o O 1 0 0 0 O

“ |l ¢, 0 2 o 1 o0 o 1 o0 1 1 1 0 -1 -1 o o0 o |

¢4s7 0 -1 o -1 0 O -1 0o O o0 o0 1 1 1 0 0 O

¢ O 1 o0 1 o0 o0 1 o 0 1 0o 0 O o0 1 0 O

¢4 O 1 0o O O o0 1 o 1 1 o 0 O 0 0 1 o

43 0 -1 0o O o0 O0 -1 0 -1 0 0 o0 1 1 0 0 1

where we express the 17 variables in terms of 9 as we read from the above vertically: ¢;—1, 17 =

o K
Hi:l ¢; .
Equipped with the d and K matrices we can now easily perform the Forward Algorithm to
quipp yp g

obtain the moduli space as a toric variety. The answer is:

0 0 0 0 1 1 111111111 1 2
G=|l-1001-1 -1000000O0O0O0O0 1 -1
2 1 10 1 1 000O0O0O0OO0OO0OO0OO0O-1 0 -1
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We immediately see that after a permutation s and an SL(3;Z) transformation, which certainly
do not effect the moduli space, we can bring the above G; to a familiar form:

0 0 0 1 12 2 o1 2 0 1 2 0 1

1
-101 -10 1 -1 0 }|=2|10 -10 -1 0 -1 1
210 1 0 -1 0 -1 oo o 1 1 -1 2 -1
0 0 1
(0—1—1)00011—12—1
01 -1 0 1 -1 0
10 1 0 1 0 2

We recognise the embedding of this toric diagram into our familiar orbifold C3/(Z3 x Z3) in
Figure [[]. We have explicitly labelled the multiplicity of the GLSM fields (homogeneous coordi-

nates) and see that it is perfectly congruent with the observations in [, BI] about the emergence
of the Pascal’s triangle.

10
(-1,-1, 3
0, -1,2 -1,0,2)
L XZ,
5,13,20 911,26
5 (1,-1,1) ©0.0. 1) 1,1, 1)
4,16,23 [ J 8,27,28
1,236,7,12,14,15
17,18,19, 21, 22, 24,25

30,31, 32, 33, 34, 35
(2,-1,0) (1,0, 0 0, 1,0

1 2 1 @0 37,41, 42 38,39, 40 c120

(1,0,0 (0, 1,0

Figure 10: The embedding of the moduli space for the model III obtained from unhiggsing dP3, into the
toric diagram of C3/(Z3 x Z3). We have labelled all coordinates explicitly. In the left the numbers (in

blue) are the multiplicities corresponding to the nodes (q.v. [fl, BI]) and in the right, the numbers are the
GLSM fields commonly used.

What we have for the moduli space is therefore a toric variety which is a blowup of dP3.
According to [I7], such a cone is no longer over an ample surface. Therefore whatever theory we
have obtained, is not that of the generic del Pezzo 4 theory, because all del Pezzo surfaces are ample;
to this point we shall return in the next subsection.

Certainly, unhiggsing the dP3 corresponds to blowing it up at a point and the so-called dP4
theories in the previous sections are indeed dP3 blowup at a point and hence the cone over P?

blowup at 4 points. We thus conclude that the theories we have obtained in the previous sections

20



must be the cone over P? blownup at 4 non-generic points. We shall henceforth call this variety
the Pseudo dP4, or PdP4.

Here is an important fact: whereas P? blownup at generic points are the del Pezzo surfaces,
as we shall see below, blowing up at non-generic points no longer gives us del Pezzo surfaces in the
strict sense. Indeed as remarked above, our dP4 is really a toric variety while the generic del Pezzo

k for k > 4 certainly is not. Recently such non-generic del Pezzos have risen in the context of [B(].

6.1 Some Properties of the Moduli Space

We here have a toric variety whose toric diagram is given in Figure [[0; let us determine some of its
geometrical properties in light of the discussion above that it should be a PdP4.

Let us study the compact surface as a projective variety because we know the properties of the
del Pezzo surfaces well; our dP4 is simply an affine cone thereover. In other words we shall study
the so-called Pseudo del Pezzo surface PB4 in comparison to the true B4.

First, given the toric diagram, one could immediately find the characteristic classes using com-
binatorics [Bg]. With the convenient help of the package Macaulay [BJ], we immediately arrive at
the Betti numbers: 0° = b* = 1,b! = b*> = 0 and b?> = 5. Indeed the middle-dimensional homology
of P? blown up at 4 points should consist of the hyperplane P! class as well as 4 exceptional divisors
of the blowup. Thus we pass our preliminary test of homology.

Next let us study the explicit embedding as projective varieties. We know, using the method
of fat points® in P? [B4] that the generic del Pezzo 4 surface can be embedded as the smooth
intersection of 5 quadrics in P® (q.v. [Bf]). The affine cone over it, would have an isolated singular
point at the conical apex (say, at the origin) and it is this point upon which we place our D-
brane probe. A non-generic one however, say 3 co-linear points being blown-up, may have more
complicated presentation. Moreover, the precise positions of the blowups determine the complex
structure moduli space of the By, whereupon singularities may arise as one varies these positions
and causes the Jacobian matrix to be non-maximal rank. In these cases the affine cone dP4 would
have singularities at more than the point at the origin. To these we refer as non-generic, or pseudo
dP4’s.

From the toric diagram in Figure [[J, we can instantly determine the projective embedding
by finding the relations of the homogeneous coordinate ring BJ. We find that we obtain the
intersection of 5 quadrics in P?; and indeed upon computing the Jacobian matrix of the variety
we find non-trivial singular loci. Therefore our toric diagram corresponds to a non-generic dP4, or
PdPA4.

SYHH would like to thank Hal Schenck of Texas AMU for extensive discussions on this point.
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Let us re-iterate to our reader that a surface given by a toric diagram of the form Figure [I(
does not have ample anti-canonical class (and hence not del Pezzo). Standard results from toric
geometry (e.g., [BY]) dictates that a Cartier divisor D on a complete toric variety X is ample iff its
support function is strictly convex. Combinatorially this translates to the following: Let X be a
complete toric variety with fan 3 = {o,} with each cone o generated by {v;} as 0 = >, Rsov;. A

divisor D can be written as Z:Zl a; D; with D; corresponding to v;, then

THEOREM 6.1 D is ample iff for each cone o there exists an integer vector m, such that (my,v;) =

—a; for all i and such that m, # m, for different cones o and 7.

The anticanonical class is of course given by K = —> ' | D; with all ¢; = —1. We can
thus easily proceed with the check for ampleness. The surface we have at hand has the fan as
given in Figure [0: ¥ = {0;,=1.7} with o; generated by {v;, v(i41)moa7} Where {vy,vs,...v7} =
{(é), (?), <_11>, (_01>, (j), (_01>, (_11>} The list of support function m, can be easily com-
puted as {(1), (?), (_01>, (_01>, (_01>, (j), (;)} Due to the repetition therein we conclude
that —K is indeed not ample and our surface is not del Pezzo.

In fact all the toric diagrams which satisfy the criteria of the above theorem are classified in
dimension 2 [B9] and are precisely the del Pezzo polytopes; Figure [[( is certainly not a member of

the classification.

6.2 Confirmations from the Inverse Algorithm

Having assertained that the moduli space is actually toric with the explicit toric diagram and
embedding given in Figure [[(, we can naturally use the conjecture that toric duality is Seiberg
duality [B, [[§] to see whether we indeed obtain the above phases. We will use the algorithm of the
multiplicity symmetry introduced in [Jf.

We have 3 models which we must obtain. Starting from the 42 GLSM fields of Z3 x Zs3 in
Figure [, we obtain a total of 216 theories which fall into various isoclasses. If we keep, for
example, the fields { 4, 5, 6, 7, 8,9, 12, 14, 15, 18, 21, 22, 23, 30, 36, 37, 38, 42 }, we obtain the
theory with 17 fields, precisely the model III addressed above. If, on the other hand, we kept the
fields { 4, 5, 6, 7, 8, 11, 12, 17, 18, 19, 21, 22, 23, 24, 25, 30, 32, 36, 37, 38, 42 }, then the resulting
theory is the model II with 19 fields.

These consistency checks are very re-assuring: even though the moduli space we obtained is
not that of the cone over the generic del Pezzo four, it is a perfectly well-defined toric Calabi-Yau
variety. Most importantly, toric duality from the Inverse Algorithm indeed reproduces the Seiberg

dual theories obtained from field theoretic analyses using unhiggsing.
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However we have yet to obtain the model I with 15 fields. This poses a hitherto unencountered
problem. The Inverse Algorithm does not give us any theories with 15 fields. What seems to be
wrong? Let us attempt to find the moduli space of Model I using the Forward Algorithm. From
the superpotential

W = — X9 Xos X51 + X3 X34 Xys X1 + X1 Xog Xyg X1 — X3 X35 X6 Xo1 —
Xog Xus X7 Xog + Xos X6 Xo7 Xvo + X35 Xs7 Xz — Xy Xug Xy Xvs,

we can solve for the 15 F-terms as

_ X13 X34 Xa5 X56 Xe7 X X13 Xo4 X45 X56 Xe1 X Xo4 X34 Xg5 Xa6 Xer X
{Xlg,X73,X35,X57,X25,X51}—:IZ{\/ 13 X34 A45 A56 X67 727\/ 13 X24 A45 A56 X61 X72 24 A34 X45 X46 K67 A72

Xog4 X6 X61 X34 Xae Xo7 ’ X13 X56 X61 ’
X13 X34 X46 Xs56 X61 Xo67 X13 Xog4 X34 X45 Xa6 Xe61 Xoa X4 X56 X61 Xo7 X72}
Xog X45 X72 ’ Xs6 Xo7 X172 ’ X13 X34 Xu5 ’
(6.1)

These are not monomial relations! In fact no attempt of the solution space (the so-called space
of commuting matrices [H]) of these F-terms could give purely monomial relations. In other words,
we cannot generate a K-matrix which corresponds to an integral polyhedral cone. The Forward
Algorithm thus already fails to be valid.

This is rather surprising. We have checked in Subsection [.] that the moduli space is toric
and in particular, the toric PdP4. Furthermore we have checked above that we indeed consistently
obtain models dP4;; and dP4;;;. Indeed we must be able to obtain this remaining model of dP4;
from partial resolutions. Yet, the Forward Algorithm (and thus necessarily the Inverse Algorithm)
already does not seem to succeed to generate a cone, and hence a toric description.

The situation however, is easily remedied. The F-terms in (f.1]) generate a cone over Q instead
of our usual circumstance of Z. It corresponds to a K-matrix with % entries due to the square root

exponent; we simply reconvert our basis and work in a large integral cone by multiplying it by 2:

1 20 1 0 -100 -10 1 000 1
%10%07%007%0%000% -1 02 1 0 1 00 1 0 -1 000 1
2 0l 5 0 g 00 5 0 -3 000 g 1 00 1 2 1 00 -10 1 000 -1
£ oo 2 1 7 00 -3 0 4 o000 -1
A A S O 1 00 1 0 1 20 -1 0 -1 000 1
2 2 2 2 2 2 X2 T
-+o0o0 L ol o1 L o L ooo0o L] =K' =|-1001 01 021 0 1 000 -1
1 1 1 1 1 1
3 90 =3 0 =5 00 5 1 5 000 5 1 00 -10 -100 1 2 1 000 1
-2 00 5 o -3 00 3 o I 100 3
F e L e -1 00 1 0 -100 1 0 1 200 1
7 7 i 7 ! 12
T o0 -F o 1 oo 1 o-1 o001 § 1 00 -10 1 00 1 0 1 020 —1
1 00 -10 1 00 1 0 -1002 1

Now application of the standard Forward Algorithm on this integral matrix K and the incidence
matrix for the quiver in Figure [ readily gives us (after an appropriate unimodular transformation
that does not change the geometry) the correct toric diagram in the left of Figure [[{.

Therefore with the caveat of needing to convert a rational cone to an integral one, upon which

both the Forward and Inverse Algorithms depend, we have shown that the remaining case of dP4;

23




also gives the same toric variety. Therefore all 3 Seiberg dual phases for dP4 give the same moduli
space, as expected. More importantly, the moduli space is toric, an affine variety which is a cone
over P? blown up at 4 colinear points. Thus in our notation, the models dP4r rr.r11 should really

be called PdP4; rr,r1r and to this convention we shall henceforth adhere.

7. Unhiggsing PdP4 Once Again to PdP5

Having obtained the toric, non-generic, PdP4, it is natural to ask whether this pattern should
continue. In other words, could we unhiggs/blowup this non-generic dP4 to something else that is
perhaps also toric, and in particular, PdP5?

We shall see that this indeed is the case in this section, whereby confirming out unhiggsing
procedure as well as the Inverse Algorithm. We find that there are in fact four toric phases which

are related to each other by Seiberg duality. Without much ado let us present the results below.

7.1 Model PdP5;

Now we unhiggs the above PdP4 to the dP5
given in [[). Indeed it will turn out that it is not
really dP5 either and we will use the notation PdP5
for pseudo-dP5. Comparing the quiver of model I
of PdP5 in [If] with the quiver of PdP4;, we see

T that giving the field ¢z nonzero VEV is the way to
9,“"/’;17" ””””””” higgs PdP5 to PdP4.
Since the PdP5; has 16 fields while PdP4; has

15, there is no mass term generated in the higgs-

Model | ing process and the unhiggsing is straight-forward.

We just need to lift the superpotential of PdP4;

Figure 11: Model I of the PdP5 theory, unhig- directly. With a little of algebra we reach the su-
gsed from PdP4;. perpotential ([1)):

Wi = ¢13¢35053081 + 014016 PesPs1 + P35057072P23 — PasPerPr2P24 (7.1)
+P67071 013036 — P57071 P14Pa5 + P58P82P24Pa5 — PesPs2P23P36.-

Let us analyze the symmetry of the quiver. First there is a cyclic Z4 symmetry around the
horizontal axis. Second, there is a Z, symmetry which exchanges (1357) and (2864) and reverses

the arrows (i.e., charge conjugation). The superpotential preserves both symmetries. It is easy to
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see that by redefining the signs of fields ¢sg, @13, dag, P14, P23 We can regroup the superpotential as

W; = [(1358) — (3572) + (5714) — (7136)] +
[(3682) — (5824) + (7246) — (1468)],
where the four terms in brackets are related to each other by Z, and two brackets are related to
each other by Z,.
Due to the abundance of such symmetries, Seiberg dualising any of the nodes will give the same
result. We will call, without loss of generality, the result from dualising on node 8, PdP5;;, upon
which we shall in the ensuing subsections continue to dualise to obtain models PdP5 ;s 1v.

7.2 Model PdP5;;

Without loss of generality, let us dualise PdP5; on node 8. Since there are no cubic terms in ([.1),
no mass terms are generated. The resulting model has 20 fields, with no bi-directional arrows. It

is then possible to call all fields ¢;;, and the superpotential is

W = ¢13¢35051 + P14da6061 + O52P21045 —  (7.2)
Pe2023036 — P51018085 — Pe1P18P86 —
P52028Ps5 + Pe2PasPse + P35057P72023 —
Pa6Pe7P72024 + Pe7dTIP13036 — P57P71P14P45

The symmetries are Zs : (1,5) < (2,6) and Zy : (1,3) <
(2,4). Using these we can group the superpotential in the

orbits of the global symmetries as
Wi = [(7246) + (7145) — (7136) — (7235)]

PdP57;. This is a nice 3D representa- +[(513) + (623) - (524) - (614)]
tion, with nodes 7 and 8 located at the +[(528) + (618) — (518) — (628)].

centre.

Figure 12: The quiver for the theory

Geometrically, we let (12) be the z-axis, (34), the y-axis,
(56), the z-axis and (7, 8), around the origin as in Figure [[Z;
Then symmetries are just the rotation with z,y, z axis.
From these symmetries, we see that to get new Seiberg dual phase, we have only two choices:
dualise node 3 or node 7. Starting from node 3 we obtain a new theory: PdP5;;; and starting from

node 7 we obtain PdP5r. To these we now turn.
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7.3 Model PdP5I[I

Recall from the above that dualising PdP5;; on node 3 we obtain the quiver in Figure [[3 with the

dual superpotential

W = Mis¢s1 + @14Pa6P61 + Q25024045 — PsaMog — P51P18085 — Pe1018¢86
— Q52028085 + P2PasPss + MasPsrdra — PasPerPr2024 + PP Mg
— Q57071 P14P45 — M15€Z~553¢~531 - M16¢~563¢~531 — Mzsﬁg53¢~532 + M26Q~563Q~532-

We see that M5, ¢15, Mgz and ¢og become massive, leading to a theory with 20 fields. Inte-

grating them out using their equations of motion (and calling all fields ¢;;) we finally have

W = ¢p14046061 + P52024045 — P61P18086 — Ps52028P85 + P25Ps57072 + Pe7P71P17 (7.3)
— 016063031 — P25P53032 — P53031P180P85 + Pe3P32028Ps6 — DasPe7Pr2P24 — P57P71P 14015

7 8
1 6
2 5
3 4
Model 111

Figure 13: The theory for PdP5;;;. Notice the
bidirectional arrows (16) and (25).

From the quiver in Figure [[J we see that the
theory has these symmetries: Zgl) : (15) < (26),
72 : (34) < (78) and Z : (1237) « (6548).
Grouping terms together with respect to this sym-

metry we get the superpotential
Wi = [(7145) + (7246) — (3185) —
(3286)] + [(528) + (618) — (524) — (614)]

+[(163) + (253) — (167) — (257)],

where every bracket is invariant under Zgl) X Zg)

while the first bracket is invariant under Zg)’) and
last two brackets are related by Zg’). From the sym-
metry, we see that no new phase can be reached by

Seiberg duality that still remains toric.

7.4 Model PdPE)[\/

Recall that we have a final model which comes from
PdP5;; after dualising on node 7. Now this node

does not appear in any cubic term of ([[.g), thus there are no massive fields. This phase has 24

fields, with the quiver shown in Figure [[4 and the superpotential is

W= ¢13¢35¢51 + ¢14¢46¢61 + ¢52¢24¢45 - ¢62¢23¢36 - ¢51¢18¢85 - ¢61¢18¢86 - ¢52¢28¢85 - ¢62¢28¢86
+¢35¢~)52¢23 - ¢46(§62¢24 + Q;61¢13¢36 - (§51¢14¢45 + &51¢17¢75 - Q~552¢27¢75 - (§61¢17¢76 + Q;62¢27¢767
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where we have indicated the Seiberg mesons with tildes.
The theory has the symmetry: Z{" : (15) < (26), Z5? : (73) < (84) and changing tildes to
non-tildes, Zé?’) : (78) < (43) and Zg” : (173) <> (284) (here the tildes are not changed to non-tilde).
7 3 The superpotential can be accordingly grouped
as

Wiy = {— [(627) + (517) + (628) + (518)] +
1 6 [(624) + (514) + (623) + (513)]} +
{[(617) 4 (527) + (618) + (528)] —
[(614) + (524) + (613) + (523)]}.

2 5 Here every bracket is grouped by Zgl) X Zf);
the first and second brackets as well as the third
and the fourth are each grouped by Zg’). Moreover
these two pairs of brackets ([1][2]) and ([3][4]) are

8 4 related to each other by Zgl). From the symmetry,
we see that nodes 3,4,7,8 are equivalent to each

Model 1V : : .
other, so Seiberg duality can not give new phase

Figure 14: The quiver diagram for model that is toric.

PdP5ry. In conclusion then, by unhiggsing the PdP4
theory we have obtained a toric phase for a blownup

of thereof, which we have called PdP5. By applying Seiberg duality, we have found all toric phases

of this theory and there are 4 of these: PdP5; rr 177 1v. We summarize them in Figure [[3.

7.5 PdP5 and the Orbifolded Conifold

In the vein of thought of Section [, let us investigate whether continuing this method of blowing
up/unhiggsing would give rise to yet another toric moduli space, in particular the cone over the
so-called pseudo del Pezzo 5.

Let us study model dP5y; the others are related thereto by Seiberg duality and hence have
the same moduli space. From the quiver from Figure [[]] and the superpotential in ([]]), we can
readily proceed with the Forward Algorithm of I, B, B, A, fij. The final moduli space we obtain is
summarised in the GG; matrix for the toric diagram:

o000 1 1 111111111111 1 1 2 2 2 2
Gt:<—1001—1—1000000000000 1 1 -1 0 0 1),
2 110 1 1 000000000000 -1 -1 0 —1 -1 —2
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Model |

Model I
3,4 7
3,4,7,8 3,4,7,8
7 8 7 3
1 6 1 6
2 > 2 5
3 4 8 4
Model 111 Model 1V

Figure 15: The quivers for the four Seiberg dual phases of dP5 which all have rank one nodes. The nodes

upon which one dualises to transform between them are shown next to the arrows.

This corresponds to the toric diagram as shown in Figure [[§ (we have performed the usual SL(3;7Z)

transformation so as to make the presentation compatible with the standard Zsz x Zs toric diagram

in [, B)-

28



2 The toric diagram is indeed expected, consis-

1 (-1.0. 2 1 tent with the node-addition of Section f]. Inciden-
012 ® PY ® (212 tally, the multiplicities of the GLSM fields (shown in
blue next to the nodes) are still consistent with the
001 observations of [[, B1]. What might be a surprise to
(1.-1. 1) . ° o (LLU the reader is that this is a well-known toric diagram
2 12 2 (q.v. e.g. BI, B3, BY) and the superpotential has
been known from the brane diamond techniques.
Figure [[ is the orbifolded conifold, with the
o ® ® affine equation
@10 (1, 0, 0) ©.1.0
1 2 1 vy =2 ww =2

Figure 16: Toric diagram for the theory cor- Lherefore the surface over which our Calabi-Yau is
responding to dP3 blownup twice, or what have an affine cone is a compact divisor (4-cycle) in the
called the toric PdP5. We have shown the coor- orbifolded conifold Cf .
dinates in red and the multiplicity of the GLSM Along the lines of Subsection B.]], let us again
fields, in blue. check the geometry we have obtained. As before, we
focus on the compact projective surface over which
our moduli space is an affine cone. Computing the homology of the toric surface corresponding to
Figure [[6, we obtain b° = b* = 1,b' = b® = 0 and b*> = 6. This is indeed the homology of P? blown
up at 5 points.

We proceed to check the embedding equations. We recall that P? blown up at 5 generic points
is the well-known del Pezzo surface of degree 4, as the intersection of 2 quadrics in P*. If we have
say, b non-generic points however, we could again use [B4] to find that such a surface is given by 2
quadrics in P4, but with non-trivial singular loci. On the other hand, the homogeneous coordinate
ring of the toric variety in Figure [[f gives us precisely such an embedding into P*. Thus we have
shown that our moduli space is indeed a toric variety, the non-generic PdP5. Once again, we see
that checking against Theorem [6.]], the anticanonical divisor is not ample and our surface is not del
Pezzo.

Therefore with the current technology of the inherently toric method of (p,q) webs which
provided us the quivers, the unhigssing procedure stays within the toric realm. The unhiggsing can
bring us from P? to del Pezzo 3, and continue so to the surfaces corresponding to P? blownup at 4
and 5 special points, which we have rather cavalierly called the non-generic or pseudo del Pezzos.

We summarise our results for the unhiggsing/blowups in Figure [7.
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8. Quiver Symmetries and the Superpotential

In this section, we will try, in the spirit of [, [(], to use symmetry arguments to fix the superpo-
tentials for the theories which we have called PdP4; ;; in Section []. The situation is more complex
here than the cases discussed in [f] because PdP4;;; does not have any explicit symmetry. More
precisely, the quiver has some symmetry but the superpotential breaks it. We will show here, by
certain consistency arguments, that we can sometimes determine how the superpotential breaks the

quiver symmetry.

8.1 Symmetries of PdP4;

Let us start from model I. We recall from Figure [§ that there is an explicit ZS) X Zg) (1~ 7and
2 < 3) quiver symmetry; here we list the orbits of loops (i.e., possible terms in the superpotential)
under this group®:

1. {(125), (725), (135), (735)}

2. {(1256), (7256), (1356), (7356)}

3. {(1245), (7245), (1345), (7345)}

4. {(1246), (7246), (1346), (7346)}

5. {(12456), (72456), (13456), (73456)}.

Now there is yet another group Zg’) defined by the simultaneous action of (4,1,2) < (6,7,3)
plus charge conjugation. Under this third Z,, orbits (1), (4) and (5) are self-dual while orbit (2)
maps to (3). Therefore under this full Zy x Zs X Zs quiver symmetry we have four orbits: (1),
(4), (5) and (2-3). We can easily count the number of times the fields appear in these orbits to be
respectively 12, 16, 20 and 32. Now in Section [, we have assertained that PdP4; is toric, thus
since it has 15 fields, a total of 15 x 2 = 30 fields must appear in the superpotential [, @]. This is
incompatible with the orbit counting above. Therefore the quiver symmetry must be broken. But
how?

First we assume only one Z, is broken. We have the following cases: (A) Zg’) is broken, giving
us 5 orbits with number of fields 12,16, 16,16 and 20. Again it does not work; (B) Zf) is broken.
Now although 2 < 3 is broken, by Zg?’) we still have the loop 3 <= 1 «= 7 < 2, so we still have

6In fact, there is another set of gauge invariant operators (1257346), (7251346), (1357246), (7351246) which con-
tains the seven nodes. It is easy to concluded that this orbit has to be excluded, so we will neglect it in the following

discussion.
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orbits with field numbers 12, 16, 32, 20 and it still can not be; (C) Zél) is broken, giving us the same
situation as case (B). These cases tell us that we must break a combination of Z,’s and leave the
) can not combine with Zgl) or Zf). This leave us with
the only choice (D) breaking the combination Zg’) and Zgl), defined by the action (1,2) < (7,3).

This will turn out to be the right choice.

diagonal term invariant. It is obvious that Zg?’

Now let us write down the orbits of loops under the symmetry Zg)’) X Zgl):

o (In). {(125),(735)}

Th).

135), (725)}

Ic). {(1246), (7346)}

( (
(Ie). {(
o (Id). {(7246), (1346)}
(Te). {(
(If)

o~

1256), (7356), (7345), (1245)}
); (1356)

(7256), (1356), (7245), (1345)}

(Ig). {(12456), (73456)}

(Ih). {(72456), (13456)}

The number of fields in the orbits are respectively 6,6, 8, 8,16,16,10 and 10. There are these ways
to get the number 30: 6 + 8 + 16,6 + 6 + 8 4 10.

For the choice of 6 4+ 6+ 8 + 10, From orbits (Ta) and (Ib), we get (125) — (135) + (735) — (725)
where we have chosen the sign properly. If we choose the orbit (Ic) we get (125) — (135) + (735) —
(725) — (1246) — (7346) where the minus sign of last two terms is determined by the positive sign of
(125), (735). However, we find that field ¢4 shows up twice with the same sign and contradicts the
toric condition [f]. The same argument shows that the orbit (Id) is not the correct choice either.
This tells us that we should choose the other combination 6 + 8 + 16.

For this combination of 6 + 8 + 16, there are two orbits with 16 fields. However, since they are
different by only relabelling 2 < 3, we can choose without loss of generality, for example, the orbit
(If). Starting from this orbit we write down

_¢13¢35¢56¢61 + ¢72¢25¢56¢67 - ¢72¢24¢45¢57 + ¢13¢34¢45¢51-

Now we need to determine the other orbits. Since ¢13 has appeared twice in orbit (If) already, we
must choose orbit (Ic) and (Ia). Putting every thing together we get

Wi = [— 013035056061 + Pra025P56P67 — Pr2024Pa5P57 + 13030 Pu5P51]
+ 35057073 — G51025012) + [P12024016061 — 73034016067
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1,02 0,-1,2) @ ©.-1,2) ® =2
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001 ©.0.1)
0,0, 1) 1.-1.1) @ ) 1,1, 1) 1,-1.1) @ [ ] ® (-1.1.1)
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(1,-1, 1)
210 ® ©. 1,0 @ -1.0) ° © 1,0
© 1,0
(1.0.0 (1,0.0 (1,0, 0
dP3 Non-Generic, Toric, PdP4 Non-Generic, Toric, PdP5 = C(2

Figure 17: The sequence of generic P' blowups from dP0 = Op2(—3) to dP3. The last blownups from
dP3 give non-generic, toric, PdP4 and PdP5. We have drawn the toric diagrams in a way such that it is

obvious that each blowup corresponds to an addition of a node.

which is exactly the superpotential derived by the unhiggsing in (f.T]).

8.2 Symmetries of PdP4;;
Now let us discuss model IT with 19 fields. The quiver has the symmetry Zgl) x S3 where Zgy : 2 < 3

and S3 is the symmetric group on the 3 nodes (1,4, 7). As before, we write down the orbits as
1. {(125), (135)} + {(425), (435)} + {(725),(735)}
2. {(1256), (1356)} + {(4256), (4356)} + {(7256), (7356)}

3. {(125436), (135426)} + {(125736), (135726)} + {(425136), (435126)} +
{(425736), (435726)} + {(725436), (735426)} + {(725136), (735126)}

4. {(126), (136)} + {(426), (436)} + {(726), (736)}

5. {(126735), (136725)} + {(126435), (136425)} + {(426735), (436725)} +
{(426135), (436125)} + {(726135), (736125)} + {(726435), (736425)},

where we have divided the action of Zél) and S3. Notice that the number of fields in the orbits are
18,24,72,18,72, it is impossible to get the 38 fields needed in the superpotential. Again, the quiver

symmetry must be broken by the superpotential. Let us analyse how the symmetry is broken.
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First we consider the case that only one symmetry is broken: (A) Zél) is broken and we get orbits

with number of fields 9, 12, 36, which can not in any way combine to get 38; (B) Ss is broken to the
cyclic subgroup Zs so that only orbits (3) and (5) are broken to two parts and we get the numbers
18,24, 36 which again can not give 38; (C) Ss is broken to the subgroup Zf) which we can take to
be the action that exchanges nodes 1 <= 7. In this case, every orbit is broken and we get numbers
12,6, 16,8, 24. We have five solutions 24+8-+6,16+16+6, 16+8+8+6,12+12+8+6, 12+8+6+6+6
which give 38.

Now we will try to show that these five solutions can give at most one consistent result:

e The 124846+ 6 + 6 case: Only orbits (1) and (3) can be broken to provide the number 6.

It is easy to see that fields ¢42, 43 show up three times at least, so it is not the correct choice.

e The 12 + 12 + 8 4+ 6 case: number 8 can come only from {(4256),(4356)} and number 6
can come from {(425), (435)} or {(426), (436)}. From the field ¢g4 we can choose only orbit
{(425), (435)} for the number 8. Number 12 can comes from (1){(125), (135)} +{((725), (735)};
(2) {(126), (136)} + {(726), (736)}. Since we need two 12, every orbit shows up once and only
once by considering fields ¢51, ¢61. From these arguments, we can write down the superpo-

tential uniquely as

W = [haodasPs6P6a — PasP3sPs6Pea] — [¢42<132vs¢54 — <Z543<Z/5v?,5¢54]
+[— 12025051 + P13035051 + ¢72<Z/5v25¢57 - ¢72<23;5¢57]
+[P12026P61 — P13036P61 — Pr2d26P6r + Pr3036 P67

This is a perfect legitimate toric superpotential, but is not the one found by Seiberg duality
from Model I. To see why it is not correct choice heuristically, notice the term [p2¢25056P64 —
G43035056P64] Where field @56 couples to ¢gy two times. In [H] we observed that in toric models
fields try to couple different field if it is possible. This may indicate why this is not the right

choice.

e The 16 + 8 + 8 4 6 case: since number 8 can come only from {(4256), (4356)}, by repeating

two times we get that the field ¢g4 shows up four times, so it is again ruled out.

e The 16 + 16 + 6 case: number 16 comes only from {(1256), (1356)} + {((7256), (7356)}. Re-

peating two times will give field ¢56 appearing four times, so it is not allowed either.

e The 24 + 8 + 6 case:
number 24 comes from (1) {(125436), (135426) }+{(725436), (735426)}; (2){(125736), (135726) } +
((725136), (735126)}; (3) {(425136), (435126)}+{(425736), (435726)}; (4) {(126735), (136725)}+
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{(726135), (736125)}; (5) {(426735), (436725) } +{(426135), (436125) }; (6) {(126435), (136425) } +
{(726435), (736425)}. As we have showed that 8+6 can only be {(4256), (4356) }+{(425), (435)}
However, no matter which 24 we choose, we can not satisfy the toric condition: choices (1)

and (6) do not give ¢15 appearing two times; choice (2) can not give the consistent sign for
fields @12, o6, Pg1; choice (3) has the field ¢g4 appearing four times and so does choice (5), for
the field ¢s4; and finally choice (4) can not give consistent signs for fields @12, ¢o5, Ps51.

Having ruled out the case of breaking only one group, we consider the case that two symmetry

generators are broken:

e Only the Z3 cyclic symmetry remains: We have orbits with field numbers 9,12, 18. From

these three numbers we can not get 38.

e Only Zgl) remains: We have orbits with fields 6,8, 12 which can give 38 by 12 + 12 + 8 + 6,
12+84+6+6+6,84+8+8+8+6and 8+6+6+6+ 6+ 6. It can be shown that there is

solution which satisfies the toric condition, for example,

(4256) — (4356) — (425) + (435) — (125) + (135)

+(726) — (736) — (726135), (736125)
However, for all solutions, we must have at least one of the orbits with 8 fields, for example
{(4256), (4356)} where field ¢5¢ couples to field ¢gq two times. This hints that is not the

correct choice for this kind of symmetry breaking because once again fields try to couple to
different fields.

e Only Zg) remains: this is similar to the above, i.e., from orbits with fields 8 (or two orbits
with fields 4), we will find two fields coupling to each other two times. So it hints again that

it may not be the correct symmetry.

e The diagonal Zg’) :(2,1) <> (3,7): this will turn out to be the correct symmetry preserved by

the superpotential.

Now we have the correct symmetry Zg?’) to break, let us try to fix the superpotential. First we

write down the orbits as

o (ITa). (1) {(125),(735)}; (2) {(725), (135)}; (3) {(126), (736)};
(4) {(726), (136)}; (5) {(425), (435)}; (6) {(426), (436)};

o (IIb). (1) {(1256), (7356)}; (2) {(7256), (1356)}; (3) {(4256), (4356)};
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o (Ilc). (1) {(125436), (735426)}; (2) {(725436), (135426)}; (3) {(125736), (735126)};
(4) {(725136), (135726)}: (5) {(425136), (435726)}; (6) {(425736), (435126)};

o (IId). (1) {(126735), (736125)}; (2) {(726135), (136725)}; (3) {(126435), (736425)};
(4) {(726435), (136425)}: (5) {(426735), (436125)}; (6) {(426135), (436725)}.

There are four ways to get the number 38: 12+ 124846, 124+8+6+6+6,8+8+8+8+6
and 8 +6 + 6+ 6+ 6+ 6. Let us consider them case by case:

e The case 8 +6 + 6 + 6 + 6 + 6: number 8 can come only from (IIb), where (IIb3) should
be excluded because fields ¢5g, pgs couple to each other two times. By relabelling, we can fix
the number 8 to be the orbit {(7256), (1356)}. Since (25, 35) are doubly degenerate, we need
them to show up four times, so (Ilal), (IIa2) and (IIa5) must be included. Then to complete
fields (42,12) we need to include (I1a6) and (IIa3). Putting the sign correctly we get the

superpotential

Wir = [(7256) — (1356)] — [(736) — (126)] — [(426) — (436)] + [(425) — (435)]
—[(725) — (135)] — [(125) — (735)]

where we use (25, 25) to distinguish the fields (¢os, Q;;g,) This is in perfect agreement with our
earlier results (q.v. (f3)).

e Other cases: Notice that there are three fields ¢ro, @49, p12 Which can not coexist in any orbit.
To let every field appear twice, we need six terms in the superpotential. Since all other cases
do not have six terms, the above 8 +6 + 6 + 6 + 6 + 6 case is the only allowed choice.

9. Conclusions and Prospects

The purpose of our writing is to implement the “unhiggsing mechanism” of finding the gauge theories
living on the worldvolume of D-branes probing more general classes of singularities. In particular,
we have addressed blow ups Y of singularities X (by a P!) whose corresponding probe theories are
already known.

In order to do so, we have developed a field theoretic method to obtain the superpotentials once
the matter content for the blowup geometry is at hand. The approach is based on identifying in each
case the unhiggsing associated to the blown up 2-cycles” well-known in the literature (cf. e.g. [, B,
B4]). Therefore from this standard result that acquisition of VEV’s of spacetime fields is reflected

"In the case of toric singularities, the (p, q) web techniques discussed in [@] and the Inverse Algorithm of [E] are
very computationally convenient for this purpose.
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as blow downs in the geometry, while conversely unhiggsing corresponds to blowing up, we have
devised a straight-forward algorithm of unhiggsing. The inputs to the procedure are the matter
content and superpotential of X and the matter content of Y; the output is the superpotential (and
hence the full theory) for Y.

As applications to our method, we venture into the unchartered waters of the non-toric higher
del Pezzo’s. Since we know that each dPk is dP(k—1) blown up at a point and from the techniques
of (p, q)-webs, we also know the matter content of the the higher dP(k > 3) [[], it seems that our
unhiggsing procedure is perfectly adapted to this abovementioned problem of finding the full theory
for dP(k > 3). Subsequently blow ups of dP3 were constructed along these lines, and the set of
all the toric phases (with equal rank in all their gauge groups) closed under Seiberg dualities were
found. As a confirmation, the inverse procedure of higgsing in the newly obtained gauge theory (as
blow down of the singularity) was then thoroughly studied and indeed all the toric phases of dP3

were retrieved.

The geometry of the unhiggsed theory was then analyzed in detail. We found there that direct
frontal-attack computation of the moduli space for the theory gives us a variety which we call
Pseudo dP4 or PdP4. This is a toric variety, which is intimately related to dP4 in the sense
that it is also dP3 blown up at a point, but one which is non-generic by having non-isolated
singularities. In conclusion, the unhiggsing has provided a new set of theories supporting the Toric

Duality /Seiberg Duality correspondence.

This program was repeated once more for a further blow up. The geometry of the moduli space
is in this case a toric, non-generic pseudo-dP5. It is in fact the generalised conifold C(2,2), which

is a cone over P? blown up at 5 non-generic points. Again Toric and Seiberg dualities coincide.

Finally we have systematically addressed the symmetries of these two new classes of gauge
theories along the path of [{]. Indeed from considerations of the global symmetries alone we can
obtain the superpotential by direct observation and the results are in perfect agreement with the

superpotentials obtained from the unhiggsing method.

We have thus obtained the full theories for some pseudo dP’s; of immediate concern is of course
the question of finding the actual, generic dP’s BY]. In principle, there are several reasons that
explain why the direct unhiggsing method does not produce the true dP’s. First, it is possible
that the quivers found for the higher dP’s are incomplete as the symmetric parts are missing from
the (p, ¢)-web method. This is a general problem when the matter content is calculated just from
the intersection numbers. Another possibility is that the four toric phases of dP3 are not directly
related to the phase of dP4 given by the quiver in Figure B. In other words, starting from this

phase of dP4 we cannot higgs down to the four phases of dP3. In our example, it seems that it is
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the second reason accounts for our failure. In fact, it can be seen that the superpotential

W = [(125) + (735)] + [(1246) + (7346)] + [(1346)] + [(2467)]
+[(2457) + (2567)] + [(1245) — (5673)] ,

where we have grouped terms according to the Z; symmetry: 1 < 3,7 < 2,4 < 6 plus charge
conjugation, does give the cone over dP4 as the moduli space. The question now becomes how do
we know it is a brane probe theory if we cannot establish the relationship with known results® of
dP3. Work on this issue is in progress [Bg].

Our unhiggsing technique thus stands yet another rung on the ladder toward the solution to
general D-brane probe theories upon which we daily climb. Of course, the virtues of the unhiggsing
method is appreciable; we are provided with a technique to address much more general situations
than del Pezzo surfaces, such as arbitrary toric singularities, or even for singular manifolds with G,
holonomy.
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