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Abstract—Goal: Ultrawideband radar imaging is regarded as one 

of the most promising alternatives for breast cancer detection. A 

range of algorithms reported in literature show satisfactory 

tumor detection capabilities. However, most of algorithms suffer 

significant deterioration or even fail when the early-stage 

artifact, including incident signals and skin-fat interface 

reflections, cannot be perfectly removed from received signals. 

Furthermore, fibro-glandular tissue poses another challenge for 

tumor detection, due to the small dielectric contrast between 

glandular and cancerous tissues. Methods: This paper introduces 

a novel Robust and Artifact Resistant (RAR) algorithm, in which 

a neighborhood pairwise correlation-based weighting is designed 

to overcome the adverse effects from both artifact and glandular 

tissues. In RAR, backscattered signals are time-shifted, summed, 

and weighted by the maximum combination of the neighboring 

pairwise correlation coefficients between shifted signals, forming 

the intensity of each point within an imaging area. Results: The 

effectiveness was investigated using 3-D anatomically and 

dielectrically accurate finite-difference-time-domain numerical 

breast models. The use of neighborhood pairwise correlation 

provided robustness against artifact, and enabled the detection of 

multiple scatterers. RAR is compared with four well-known 

algorithms: delay-and-sum, delay-multiply-and-sum, modified-

weighted-delay-and-sum, and filtered-delay-and-sum. 

Conclusion: It has shown that RAR exhibits improved 

identification capability, robust artifact resistance, and high 

detectability over its counterparts in most scenarios considered, 

while maintaining computational efficiency. Simulated tumors in 

both homogeneous and heterogonous, from mildly to moderately 

dense breast phantoms, combining an entropy-based artifact 

removal algorithm, were successfully identified and localized. 

Significance: These results show the strong potential of RAR for 

breast cancer screening.  

 

Index Terms—Breast cancer detection, delay-and-sum (DAS), 

finite-difference time-domain (FDTD), ultrawideband (UWB) 

imaging. 

I. INTRODUCTION 

REAST cancer is the most common cancer among 

females [1], and one of the leading causes of death 

worldwide [2]. Although less common in males, detected 

incidences of breast cancer among males have been increasing 
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recently [3]. Early diagnosis of breast cancer is one of the 

most challenging and important aspects for the management of 

the disease, as it may be possible to detect the cancer before it 

spreads [4]. Three commonly used screening methods for 

breast cancer are X-ray mammography [5], Ultrasound (US) 

[6], and Magnetic Resonance Imaging (MRI) [7]. A higher 

rate of false-positive examination results with US makes it less 

popular than mammography [8], whereas MRI is usually 

suggested to be used in conjunction with mammography [9]. 

Despite the merits of mammography, its deficiencies are 

evident: low sensitivity [10], painful breast compression [11], 

and radiation exposure from X-rays, which brings a potential 

threat of increasing the cancer risk [12]. The limitations of 

existing methods constitute a motivation for better options.  

In the last few decades, different modalities of microwave 

imaging for breast cancer detection, including passive, hybrid, 

and active approaches, have attracted considerable attention. 

The passive imaging techniques seek to identify tumors based 

on the temperature differences between normal and cancerous 

breast tissues with the aid of radiometers [13]-[14]. Hybrid 

approaches differentiate biological tissues by the distinctive 

acoustic waves radiated from the thermoelastic expansion 

when tissues are under microwave illumination [15]. Active 

methods distinguish normal and malignant breast tissues based 

on their contrast of dielectric properties at microwave 

frequencies [16]. Based on the reconstruction technique used, 

active detection methods can be categorized into microwave 

tomography and ultrawideband (UWB) radar based imaging. 

In microwave tomography, the spatial distributions of 

dielectric constant and/or conductivity within the breast are 

iteratively calculated, thus nonlinear inverse scattering 

problems are involved. More details on tomographic imaging 

systems can be found in [17], [18]. UWB radar methods, on 

the other hand, aim to identify the presence and location of 

strong scatterers such as tumors, rather than quantitatively 

computing the distribution of dielectric properties.  

UWB radar based imaging systems face several challenges 

for breast cancer detection, two of them is the antenna design, 

and the construction of realistic finite-difference time-domain 

(FDTD)-based [19] breast model. Another difficult challenge 

is image formation algorithm. The image formation algorithm 

is expected to provide superior tumor identification ability, 

accurate positioning, strong robustness, and fast computation 

speed. A variety of image formation algorithms have been 
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proposed over the last decade. Hagness et al. [20]-[21] first 

proposed the confocal microwave imaging (CMI) technique 

which adopted delay-and-sum (DAS) beamforming algorithm. 

Research on beamforming algorithms for CMI has evolved 

into two branches: data-dependent and data-independent. 

Some promising data-dependent beamforming algorithms that 

have been considered are multistatic adaptive microwave 

imaging (MAMI) [22], multi-input multi-output (MIMO) [23], 

and time-reversal multiple signal classification (TR-MUSIC) 

[24]-[25]. Data-dependent algorithms can reconstruct high-

resolution images when the array steering vector 

corresponding to the signal of interest (SOI) is accurately 

known, which is difficult in realistic breast imaging scenarios. 

In contrast, data-independent beamformers are free from this 

prior information and have been constantly developed. A 

number of data-independent algorithms are proposed in recent 

years, including delay-multiply-and-sum (DMAS) [26], 

modified-weighted-delay-and-sum (MWDAS) [27], and 

filtered delay-and-sum (FDAS) [28]-[29]. Compared with the 

classical DAS algorithm, improved performance of clutter 

rejection is offered by DMAS and MWDAS. FDAS shows its 

capability of detecting multiple scatterers in dense breasts, 

where the presence of fibro-glandular tissue is considered. It is 

recognized that the increased heterogeneity of normal breasts 

introduced by glandular tissues constitutes a big challenge for 

tumor detection. There are two reasons for this: first, although 

there is a large dielectric contrast between adipose and 

cancerous tissues, the difference between glandular and 

cancerous tissues is much less pronounced. Also the glandular 

tissue introduces a significant amount of attenuation and 

dispersion in backscattered signals, making it more difficult to 

detect any small tumors present. Despite the strengths of these 

algorithms, all of them are only examined in scenarios 

assuming an ideal artifact removal method is applied. 

However, this assumption is oversimplified and infeasible in a 

real set-up. Because the artifact is typically several orders of 

magnitude greater than the reflections from tumors within the 

breast, even a very small amount of residual artifact can easily 

mask the desired tumor response, which may result in the 

failure of existing algorithms to identify any tumors present. 

In this paper, a new Robust and Artifact Resistant (RAR) 

image formation algorithm for early breast cancer detection is 

proposed. Extensive simulations and analyses using 

backscattered signals received from three-dimensional (3-D) 

anatomically realistic MRI-derived numerical breast models 

were conducted to validate the performance of the proposed 

algorithm. Results showed that RAR offered superior tumor 

identification, accurate localization, and strong artifact 

resistance over existing data-independent algorithms. The 

robustness of RAR was demonstrated under various scenarios: 

homogenous and heterogeneous breast models with varied 

densities, combining both ideal and practical artifact removal 

methods were considered. The remainder of this paper is 

organized as follows: in Section II, the breast model and the 

configuration of imaging system are introduced. Section III 

presents the RAR algorithm and Section IV describes the 

assessment criteria of algorithms and corresponding results. 

Concluding remarks are summarized in Section V. 

II. BACKSCATTERED SIGNAL ACQUISITION 

A. Breast Model 

Realistic models must incorporate various attributes of the 

breast, including geometrical properties, spatial distribution of 

different constituent tissues, and the dispersive property. In 

this study, 3-D anatomically accurate FDTD-based breast 

models are developed and employed, based on UWCEM MRI 

breast cancer repository [30]. Besides skin layer and malignant 

tumor, the breast model comprises three types of fatty and 

three types of fibro-glandular tissues. The dielectric properties 

of skin, fatty, and glandular tissues used in the model are 

based on Lazebnik’s studies [31], whereas those representing 

malignant tumors are obtained from Bond et al. [32].  

The dispersive nature of tissues is incorporated into the 

FDTD model using the time-domain auxiliary differential 

equations (ADE) ([19], Ch. 9) for a single-pole Debye model. 

In a Debye model, the dielectric spectrum of a tissue sample is 

characterized by different dispersive regions or ‘poles’ at a 

range of frequencies. In each dispersive region there is a 

relaxation time, which describes the time needed for electron 

polarization to relax towards a new equilibrium when there is 

an applied electric field. The relaxation time is regarded as a 

constant in the simplest form. The dispersion in frequency 

domain through Debye model can be described as [33]:  

 

 𝜀𝑟(𝜔) = 𝜀∞  +  𝜎𝑠 𝑗𝜔𝜀0⁄  +  (𝜀𝑠1 − 𝜀∞) (1 + 𝑗𝜔𝜏1)⁄  (1) 

 

where 𝜀𝑟(𝜔) is the calculated relative permittivity at a certain 

frequency, 𝜀∞ is the permittivity in infinite frequency, 𝜎𝑠 is the 

static conductivity (in siemens per second),  𝜀0  is the free-

space permittivity (8.854 pF/m), 𝜀𝑠1 is the permittivity at static 

frequency of the dispersive pole, 𝑗 = √−1, 𝜔 is the angular 

frequency (in radians per second), 𝜔 = 2𝜋𝑓, 𝑓 (in Hz) is the 

frequency of input signal, and 𝜏1 is the relaxation time of the 

dispersive pole (in picoseconds). Debye parameters for each 

tissue type are summarized in Table I [34]. 

 

TABLE I 

TISSUE PARAMETERS ASSUMED FOR THE SINGLE-POLE DEBYE MODEL 

 

 
 

Fig. 1 illustrates the 3-D breast phantom and antenna 

configuration used in our simulation. To focus on the breast 

tissue response and avoid possible interference, the chest wall 

is not included as assumed in [25] and [28]. Two concentric 

rings of antennas are positioned around the skin layer, which  
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Fig. 1. 3-D FDTD breast model with two concentric rings of 24 antennas 

(indicated by solid dots) surrounding the breast. The different tissue types are 

represented by difference values: fat-high(3.1), fat-median(3.2), fat-low(3.3), 
fibro-glandular (FG)-high(1.1), FG-median(1.2), FG-low(1.3), and skin(-2). 

 

has a thickness of 1.5 mm, with a 10 mm spacing to the skin 

surface. Each element is modeled as a point source with 

horizontal polarizations (x-directed). The outer ring of 

antennas is at x = 80 mm (antennas 1 to 24), and the inner ring 

(antennas 25 to 48) is at x = 130 mm, in which the position of 

both rings are related to the chest wall. The same yz plane 

coordinates for both rings of antennas are: (39, 101), (50, 

120), (63, 140), (82, 153), (100, 158), (116, 159), (131, 158), 

(147, 154), (162, 145), (174, 132), (185, 116), (192, 97), (189, 

74), (178, 56), (166, 47), (152, 39), (135, 34), (119, 32), (103, 

31), (84, 38), (71, 44), (59, 55), (43, 69), and (37, 83).  

For completeness, six breast medium types with various 

structures and radiographic density classifications are 

evaluated with the proposed algorithm. The medium types are 

selected from the UWCEM database [30] and shown in Fig. 2. 

The density follows the definitions of the American College of 

Radiology (ACR) [35]. The details of these phantoms are the 

following (ACR type, Breast ID, characteristics): a) medium 

type A: ACR-I-ID-071904, homogenous breasts composed of 

fatty-median tissue only, all other tissues are replaced by the 

fatty-median tissue; b) medium type B: ACR-I-ID-071904, 

heterogeneous breasts composed of three types of fatty tissues, 

all glandular tissues are replaced by the fatty-median tissue; c) 

medium type C: ACR-I-ID-071904, full heterogeneous breasts 

composed of three types of fatty, and three types of glandular 

tissues with a percentage less than 25%; d) medium type D: 

ACR-II-ID-010204, full heterogeneous breasts contain 

glandular tissues with a percentage ranging between 25% and 

50%; e) medium type E: ACR-III-ID-070604PA2, full 

heterogeneous breasts contain glandular tissues with a 

percentage ranging between 50% and 75%; f) medium type F: 

ACR-IV-ID-012304, full heterogeneous breasts contain 

glandular tissues with a percentage over 75%.  

Although tumors have irregular shapes, for this study they 

are constructed as spheres. Without losing generality, a 10 mm 

diameter tumor placed at three different positions are 

considered: 1) close to the center of the outer ring; 2) at the 

center between the two antenna rings; and 3) off-center 

between the two antenna rings. Position 1 at (x, y, z) = (80, 

119, 94) represents tumor locations on different x cross-

sections and are close to one of the antenna rings. Positon 2 at 

 

Fig. 2. Breast medium types represented by relative permittivity at center 

frequency of input pulse [30]. A tumor with 10 mm diameter is constructed as 

a sphere. The 2D slices are taken at the x cross-sections of Fig. 1. 

 

(x, y, z) = (95, 119, 94) is representative for those which are 

between two antenna rings and center at the yz plane with 

different x cross-sections. Those off-center at the yz plane with 

different x cross-sections and are close to the skin surface are 

represented by Position 3 at (x, y, z) = (95, 99, 112). In 

addition, since a high proportion of breast cancers are invasive 

ductal carcinomas, which start at fibro-glandular regions [36], 

tumors which are located within fatty and glandular tissues are 

both considered. To avoid the strong reflections from skin-fat 

interface, the entire model and antenna array are considered to 

be positioned inside an immersive liquid with the same 

permittivity as that of fat-median tissue at the center frequency 

of the input pulse, as it is generally done [26], [27].  

B. Measurement Setup 

The antenna array is excited with a modulated Gaussian 

pulse (Fig. 3), which is given by 

 

 𝐺(𝑡) = sin[𝜔𝑐(𝑡 − 𝑏)] 𝑒𝑥𝑝{−[(𝑡 − 𝑏) 𝑐⁄ ]2} (2) 

 

where 𝜔𝑐 = 2𝜋𝑓𝑐  is the center angular frequency with 𝑓𝑐  = 

6.85 GHz, the center position of Gaussian envelope 𝑏 = 0.375 

(ns), and 𝑐  = 0.0802 (ns) is the standard deviation which 

controls the width of Gaussian envelope. Gaussian modulated 

pulses are selected since they are considered to present better 

spectral control in practical use [37]. The input pulse width is 

0.56 (ns), which has a full-width at half maximum (FWHM) 

bandwidth of 6.6 GHz. The acquisition of backscattered 

signals can be implemented by monostatic or multistatic 

method. In the monostatic approach, each element in the 

antenna array transmits the pulse and receives backscattered 

signals from the breast model sequentially. In the multistatic 

method, each element in the antenna array takes a turn to 

transmit and the backscattered signals are recorded at all 

elements. Despite the advantage of multistatic approach in 

terms of capturing more information about the target, its 

disadvantages are obvious, such as additional hardware cost 

and high algorithmic complexity. Monostatic method is 

adopted for data acquisition in this study. To discretize the 

FDTD problem space, a rule of thumb to select the grid size is 

to keep it below one-tenth of the wavelength, with the purpose  
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Fig. 3.  Modulated Gaussian pulse used as the UWB excitation signal in the      
FDTD breast model simulations. (a) Time domain. (b) Frequency domain. 

 

of making numerical dispersion error negligible [38]. 

Assuming the breast is mainly composed of fatty-median 

tissue, and using the center frequency of input pulse as a 

baseline, obtaining the wavelength is 21 mm, thus one-tenth of 

wavelength is 2.1 mm. A smaller grid size of ∆𝑥 = ∆𝑦 = ∆𝑧 = 

1 mm is employed for capturing the response from small sized 

tumors and adapting possible smaller wavelengths in dense 

breasts. The time step represented by ∆𝑡 is determined by the 

Courant-Friedich-Lecy (CFL) stability condition [19], which 

equals 1.91 (ps) in our simulation. Ten-layer convolutional 

perfectly matched layer (CPML) [39] absorbing boundary 

conditions are placed around the computational domain to 

attenuate outgoing radiation. 

III. IMAGE RECONSTRUCTION 

A. Pre-processing for Artifact Removal 

Recorded backscattered signals consist of two parts: the 

early-stage and the late-stage. The majority of early-stage 

parts consist of incident signals and strong reflections from 

skin-fat interface, whereas the late-stage parts include tumor 

response, glandular tissue response, fatty tissue response, and 

the multi-reflections between these tissues. Tumor, glandular, 

and fatty responses refer to the signals directly reflected from 

these tissues. For identification, only tumor response is 

needed, and all other signals are viewed as interference, which 

can be categorized as the early-stage artifact and the late-stage 

clutter. The late-stage clutter mainly includes glandular and 

fatty tissues responses, which mix with tumor response and 

should be suppressed for effective tumor detection. The early-

stage artifact includes incident signals and skin-fat reflections. 

The incident signal refers to the transmitted signal being 

received directly (non-reflected) at the same transmitting 

antenna. These artifact can be several orders of magnitude 

greater than the desired tumor response, thus they must be 

removed before applying any image reconstruction algorithms. 

Ideal removal of the early-stage artifact is realized with the 

aid of a priori information generated from a tumor free breast 

model. The ideal tumor response from the 𝑖𝑡ℎ transceiver in a 

discrete form denoted as 𝑆𝑖(𝑛) can be obtained by 

 

 𝑆𝑖(𝑛) = 𝑆𝑖_𝑤𝑖𝑡ℎ_𝑡𝑢𝑚𝑜𝑟(𝑛) − 𝑆𝑖_𝑡𝑢𝑚𝑜𝑟_𝑓𝑟𝑒𝑒(𝑛) (3) 

 

where 𝑛  = 1,2,…, 𝐾 , and 𝐾  is the signal sampling number, 

𝑆𝑖_𝑤𝑖𝑡ℎ_𝑡𝑢𝑚𝑜𝑟(𝑛) is the backscattered signal received at the 𝑖𝑡ℎ 

transceiver from a breast with tumor, and 𝑆𝑖_𝑡𝑢𝑚𝑜𝑟_𝑓𝑟𝑒𝑒(𝑛) 

represents the backscattered signal received at the same 

transceiver from a breast which is exactly the same as the 

previous one except that no tumor present. 𝑆𝑖_𝑤𝑖𝑡ℎ_𝑡𝑢𝑚𝑜𝑟(𝑛) is 

composed of early-stage artifact, tumor response, glandular 

tissue response, fatty tissue response, and the multi-reflections 

between different tissues, while 𝑆𝑖_𝑡𝑢𝑚𝑜𝑟_𝑓𝑟𝑒𝑒(𝑛)  comprises 

similar level of early-stage artifact, glandular tissue response, 

fatty tissues response, and multi-reflections between them, 

thus 𝑆𝑖(𝑛) is the signal dominated by tumor response. This 

method not only removes the early-stage artifact, but also the 

glandular tissue response, fatty tissue response, and the multi-

reflections between tissues. This is not feasible in practice; 

however, it could serve as a useful benchmark of the best 

performance of algorithms possible. A number of more 

practical artifact removal algorithms have been developed, 

these can be classified as adaptive and non-adaptive 

techniques. Adaptive methods include Wiener filter [32], 

recursive least squares (RLS) filter [40], and singular value 

composition (SVD) [41], whereas some other promising 

techniques include average subtraction [20], rotation 

subtraction [42], frequency domain pole splitting [43], and 

entropy-based time window [44]. Robustness to local 

variations of skin thickness and differences in antenna-skin 

distances are observed in adaptive filtering methods, however, 

varied levels of distortion to the tumor response is introduced. 

Considering both the capability of preserving tumor response 

and the effectiveness of removing artifact, the best results are 

offered by Wiener filter and entropy-based time window [45].  

The performance of beamformers closely depends on the 

outcome of artifact removal. If artifact cannot be removed 

effectively, the residual artifact could easily mask the tumor 

response. For completeness and fairness, it is thus essential to 

evaluate all beamformers in various cases with both ideal and 

non-ideal artifact removal, under the same conditions.  

B. RAR Algorithm 

The block diagram in Fig. 4 shows RAR to reconstruct the 

intensity value of each pixel in breast model. Let 𝑙 represent 

the 𝑙𝑡ℎ location of a pixel within the imaging area 𝐿. For each 

location, RAR explores and exploits the correlation between 

time-shifted signals. To time-shift each signal, an estimated 

average velocity for all propagation channels, between 

transmitter to scatterer and back to receiver, is assumed to be 

sufficiently close to the actual speed and could well represent 

the characteristics of propagation channels. Higher correlation 

between time-shifted signals at neighboring antenna pairs is 

more likely to occur at tumor positions. Considering the larger 

dielectric property of tumor than other comparably sized 

tissues, tumor response is the dominant part of received 

signals within a certain time widow, in most if not all cases. 

Thus, time-shifted signals should have a higher correlation 

between tumor responses resulted from the same strong 

scatterer, compared with those signals from other 

heterogeneous breast tissues. The enhancement of tumor 

detection is achieved by rewarding this correlation. To 

calculate the intensity value of 𝑙, three steps are involved. 

Step 1. Each pre-processed 𝑆𝑖(𝑛) is time-shifted based on 

the corresponding round-trip time delay at 𝑙. The time-shifted 
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signals are expressed as 𝑆𝑖(𝑛 + 𝜏𝑖𝑙), where 𝑛 = 1, 2,…, 𝐾, and 

𝜏𝑖𝑙  is the two-way travel time from the 𝑖𝑡ℎ  transceiver to a 

specific location l within the imaging region. Propagation 

distance is calculated based on space coordinates in the model. 

Signal propagation speed is calculated under the assumption 

that each traversed medium, including immersive liquid, skin 

layer, and underlying breast tissue, has a constant relative 

permittivity at the center frequency of input pulse. The relative 

permittivity at center frequency is chosen because it represents 

the majority of tissues’ permittivity across the frequency range 

of the input pulse. The average dielectric property of 

underlying breast tissue is assumed to be established through 

an appropriate patient-specific dielectric properties estimation 

algorithm such as the one developed by Winters et al. [46].  

Prior to further processing, a window truncation for each 

time-shifted signal is applied. The utility of time window 

truncation is twofold. First, it only preserves the desired tumor 

response. Second, it reduces the algorithmic complexity since 

only truncated signals are needed in the following steps. The 

time window is represented as 𝑊𝛼, where 𝑊𝛼 = 𝛼∆𝑡. 𝛼 is an 

integer and ∆𝑡 is the time step used in FDTD, which equals 

1.91 (ps) as explained in Section II B. 𝑊294 which represents a 

length 294∆𝑡 = 562 (ps), equals to the input pulse is used as a 

default time window, unless otherwise specified. The selection 

of this length is because backscattered signals from dispersive 

biological tissues are a distorted version of the excitation pulse 

as frequency-dependent tissues broaden the duration of the 

input pulse. Studies show that this broadening effect is directly 

proportional to the tumor size [32]. The aim of this research is 

to detect early-stage breast cancer when the tumor size is 

small, thus a short-length time window, which is comparable 

to the input pulse width, is selected. Larger or smaller time 

windows could result in either high clutter or tumor location 

bias. Thus, the time-shifted signal after truncation with length 

of 𝑊𝛼 can be represented as 𝑆𝑖(𝑛 + 𝜏𝑖𝑙), where 𝑛 = 1, 2 , … , 𝛼.  

Let 𝐴 be the number of antennas. After artifact removal, 𝐴 

calibrated signals containing tumor responses are collected in 

a monostatic way. Thus, for every single location 𝑙, there are 𝐴 

sets of time delays corresponding to each transceiver. Let 

𝑆𝑢𝑚𝑙(𝑛) (𝑛 = 1, 2 , … , 𝛼) denote the sum of all time-shifted 

signals within the time window 𝑊𝛼 at 𝑙 given by 

 

 𝑆𝑢𝑚𝑙(𝑛) = ∑ 𝑆𝑖(𝑛 + 𝜏𝑖𝑙)
𝐴
𝑖=1  (4) 

 

Step 2. To enhance tumor response, and eliminate the 

adverse effects resulted from both the early-stage artifact and 

the late-stage clutter, a weight factor 𝑤𝑓𝑙 for the 𝑙𝑡ℎ location is 

introduced. The Pearson’s correlation coefficient 𝑟𝑖𝑗_𝑙 between 

neighboring pair of time-shifted signals is calculated as 

 

 𝑟𝑖𝑗_𝑙 = ∑ 𝑋𝑖(𝑛)𝑋𝑗(𝑛)𝛼
𝑛=1 √∑ 𝑋𝑖(𝑛)2𝛼

𝑛=1 ∑ 𝑋𝑗(𝑛)2𝛼
𝑛=1⁄  (5) 

 

where 𝑋𝑖(𝑛) =  𝑆𝑖(𝑛 + 𝜏𝑖𝑙) and 𝑋𝑗(𝑛) =  𝑆𝑗(𝑛 + 𝜏𝑗𝑙) with 

𝑗 = 𝑖 + 1, are the time-shifted signals at l from the 𝑖𝑡ℎ and 

(𝑖 + 1)𝑡ℎ  transceiver, respectively. 𝑟𝑖𝑗_𝑙  measures the degree 

of coherence between time-shifted signals. High positive  

 

Fig. 4.  Block diagram illustrating the RAR algorithm used to calculate the 

intensity of the 𝑙𝑡ℎ pixel 𝐼𝑙 in the imaging region indicated by the mesh area.  

 

correlation between signals received from neighboring 

antenna pairs is expected at tumor locations, considering all 

time-shifted signals are a broadened version of the same input 

pulse, after reflect from the same strong scatterer. Based on 

(5), the neighborhood pairwise correlation coefficients vector 

𝑃𝑙  composed of (𝐴 − 1) elements for 𝑙 is obtained, where 𝐴 is 

the number of antenna. Thus, 𝑃𝑙  can be expressed as 

 

 𝑃𝑙 = [𝑟12_𝑙  𝑟23_𝑙  ⋯ 𝑟(𝐴−1)𝐴_𝑙] (6) 

 

Considering correlation coefficient 𝑟𝑖𝑗_𝑙 is in the range of [-1, 

1], all coefficients are linearly normalized to the range of [0, 

1], avoiding negative coefficients generating a high weight. 

 

 𝑃𝑙_𝑁𝑜𝑟 =  (𝑃𝑙 + 1)/2 (7) 

 

Let 𝑃𝑙_𝑆𝑜𝑟𝑡  be the sorted 𝑃𝑙_𝑁𝑜𝑟  in a descending order and 

𝑅𝑖_𝑙  be the sorted coefficients, 𝑖 = 1, 2, … , (𝐴 − 1). Therefore, 

 

 𝑃𝑙_𝑆𝑜𝑟𝑡 =  [𝑅1_𝑙  𝑅2_𝑙  ⋯ 𝑅(𝐴−1)_𝑙] (8) 

 

where 𝑅1_𝑙  >  𝑅2_𝑙 > ⋯ >  𝑅(𝐴−1)_𝑙. The associated weighting 

factor 𝑤𝑓𝑙 for the 𝑙𝑡ℎ location is introduced as 

 

 𝑤𝑓𝑙 = ∏ 𝑅𝑖_𝑙
𝑖= (𝐴−1)/2
𝑖=1   (9) 

 

which is the product of the first half elements of 𝑃𝑙_𝑆𝑜𝑟𝑡. The 

neighborhood pairwise correlation ensures that the correlation 

between two antennas for each location is measuring the 

reflection from the same scatterer, because of the short 

distance between two neighboring antennas. The distance 

between adjacent array element of 20 ± 5 mm is used since it 

provided an optimum trade-off between performance and 

complexity.  Considering the useful tumor response contained 

in signals from different antennas varies, depending on tumor 

locations, skin thickness variations, differences in antenna-

skin distances, and interfering responses from other tissues, 

the selective multiplication of the maximum half coefficients 

is adopted. This mechanism implements the adaptive 

combination of antenna pairs, which guarantees the introduced 

weight can focus on those strongest scatterers, regardless of 

tumor’s position. Considering malignant tumors’ higher 
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scattering cross-section relative to comparably sized 

heterogeneity in normal breast tissue [32], 𝑤𝑓𝑙  adaptively 

rewards potential tumor locations with a high weight, thereby 

enhancing tumor identification in most if not all cases. 

Step 3. The last step calculates the intensity for the 𝑙𝑡ℎ 

location. Although the maxima of coherent addition of time-

aligned signals may no longer exactly correspond to the tumor 

location in a complex medium, the sum still has a relatively 

high value at tumor locations, since signals from some, if not 

all antennas, are still able to add coherently. The constructed 

signal 𝐶𝑙(𝑛) in the RAR algorithm is therefore 

 

 𝐶𝑙(𝑛) = 𝑤𝑓𝑙 ∙ 𝑆𝑢𝑚𝑙(𝑛) (10) 

 

Let 𝐼𝑙  denote the intensity of a specific location 𝑙 within the 

desired imaging area, and it is given by 

 

 𝐼𝑙 = ∑ [𝐶𝑙(𝑛)]2𝛼
𝑛 = 1  (11) 

 

The procedure is repeated for every location within the 

imaging region as shown in Fig. 4, and 𝐿 loops in total are 

required. The distribution of intensity at each location 𝐼𝑙  is 

displayed as an image. The pairwise correlation in the 

proposed RAR algorithm measures the backscattered energy 

intensity from each scatterer. The combination of neighboring 

antennas ensures that the strong reflection received at each 

neighborhood antenna pair is from the same strong scatterer, 

considering possible multi-scatterer cases. The maximum 

combining of correlation coefficients implements an adaptive 

selection of neighborhood paired antennas, only those that 

have a high correlation can contribute to the weight factor, 

yielding a flexible beamforming. The efficacy and robustness 

of RAR are demonstrated under a variety of challenging 

scenarios, where non-perfect artifact removal, and in breasts 

with varied levels of glandular tissues are considered, and 

these are presented in the following sections. 

IV. PERFORMANCE ANALYSIS 

In this section, algorithm performance is analyzed in depth. 

The superiority of RAR is demonstrated via comparisons with 

four techniques, including DAS, DMAS, MWDAS, and 

FDAS. First, algorithms were evaluated in mostly sparse 

breasts with medium type A and B, applying an idealized 

artifact removal method. Then combining practical artifact 

removal methods, the algorithm effectiveness was investigated 

for dense breast models with various medium compositions 

and tumor positions. The computational analysis of algorithms 

is also provided considering its significance in practical use. 

A. Ideal Artifact Removal  

Serving as a benchmark of imaging algorithm performance, 

ideal artifact removal (Fig. 5) for obtaining clear tumor 

response was firstly applied. It can be seen that desired tumor 

response indicated by the dotted box in Fig. 5(c), which exists 

in later time, is totally obscured in received signals in Fig. 

5(a). This is due to its small order of magnitude, compared 

with that of incident signals and skin reflections appear earlier. 

 
Fig. 5.  Illustration of ideal artifact removal. (a) Signal recorded at antenna 4 

of Fig. 1. A tumor with a 10 mm diameter is placed at (x, y, z) = (95, 99, 112). 

(b) Signal recorded from a tumor-free breast model. (c) Pure tumor response 

obtained by subtracting (b) from (a), which is indicated by dotted boxes. 

 

All reconstructed images were normalized to the maximum 

intensity value of the 3-D imaging volume. Same datasets 

were applied for all algorithms. To assess algorithm’s imaging 

performance, two quantitative metrics were applied, which are 

signal-to-clutter ratio (SCR) and signal-to-mean ratio (SMR). 

SCR was defined as the ratio of the maximum tumor response 

to the maximum clutter response, whereas SMR was defined 

as the ratio of mean tumor response to the mean response of 

the whole image. The maximum or mean tumor response was 

assumed to be the peak or average intensity of an area defined 

by twice physical extent of the tumor [26], whereas clutter 

response was those outside this area. SCR defines the 

difference between tumor and clutter response, whereas SMR 

shows the image contrast between tumor and non-tumor areas. 

 

 
Fig. 6.  (a) 2D slice of breast model of medium type A. (b)-(f) Imaging results 

with ideal artifact removal. Tumor’s position is indicated by dotted circle. 

 

Fig. 6 presents the reconstructed images through the five 

techniques, representing a distribution of energy resulted from 

each voxel within the breast model. The peak intensity of 

image is usually regarded as the tumor position, which has the 

strongest reflection among all heterogeneous breast tissues 

with a comparable size [32]. It can be seen that the embedded 

10 mm diameter tumor is clearly identified and accurately 

localized by all algorithms. However, the clutter rejection 

capability of them varies due to the different weighting 

mechanisms employed. Specifically, the image offered by 

DAS [Fig. 6(b)] is filled with the strongest level of clutter, 

which is indicated by the smallest SCR of 7.01 dB (Table II). 

This shows its limited capability for discriminating against 

clutter since it does not account for any dispersive propagation 

effect. The result of FDAS [Fig. 6(e)] is cleaner than that of 

DAS, which validates the effectiveness of its filtering process, 

but its performance is still inferior to the other three 

algorithms. It is observed that DMAS, MWDAS, and the 

proposed RAR algorithm provided almost clutter-free images  
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Fig. 7.  (a) 2D slice of breast model with medium type B. (b)-(f) Imaging 

results with ideal artifact removal.  

 

[Fig. 6(c), (d), and (f)]. Assuming perfect tumor response 

could be captured, the cross multiplying of weighted tumor 

response from all channels in MWDAS forms particularly 

high weights [Fig. 6(d)], which achieved the strongest clutter 

rejection with a SCR of 415.58 dB in this case. 

Imaging results in Fig. 7 employ the same ideal artifact 

removal method as in Fig. 6, but the breast model is changed 

from homogeneous fatty to heterogeneous fatty [Fig. 7(a)], in 

which three different fatty tissues, fatty-low, fatty-median, and 

fatty-high are included. With increased heterogeneity, more 

dispersion of received signals is expected due to the increased 

propagation behavior difference of frequency components 

among various tissues. Furthermore, the estimated average 

propagation velocity might not as well represent the actual 

speed as in the homogeneous case, leading to a mismatch  

between the estimated and actual time delay. This is reflected 

by the imaging results. Compared Fig. 6(b) with Fig. 7(b), 

both of which are the results of DAS, more clutter outside the 

circle is observed in Fig. 7(b), corresponding to a 2.03 dB 

decrease of SCR. The same trend applies for all algorithms 

considered. Despite a slight degradation of clutter suppression, 

the inserted tumor is accurately localized by all techniques. 

This also indicates the fault-tolerant capability of these 

algorithms for certain propagation time-delay mismatch. 

B. Realistic Artifact Removal  

Previous results show that all algorithms present decent 

tumor identification and localization capabilities, regardless of 

homogeneous or heterogeneous breasts, assuming the tumor 

response could be ideally extracted. However, perfect removal 

of artifact is unlikely in practice, it is therefore critical to test 

algorithms’ performance in scenarios applying more realistic 

artifact removal methods. The artifact is a mixed signal 

composed of incident signals and skin-fat interface reflections, 

thus pure tumor response can be difficult to recover. Even the 

state-of-the-art artifact removal methods are unable to 

completely remove the interference. However, desired tumor 

response can be easily obscured by the artifact that has a much 

higher order of magnitude, especially when the tumor has a 

relatively small size. All these pose a great challenge to the 

image reconstruction algorithms.  

Based on the latest review study provided in [45], which 

evaluated seven different artifact removal methods, the best  

 
Fig. 8.  (a)-(d) represent the pre-processed signals of antenna 4, 16, 33, and 46 

as numbered in Fig. 1, exemplifying the performance difference between 
artifact removal methods. The solid and dotted curves are the results based on 

ideal and entropy-based method for artifact removal, respectively. The circle 

indicates where tumor response is expected to appear. A tumor with 10 mm 
diameter is placed at (x, y, z) = (95, 99, 112) of the model shown in Fig. 1. 

 

two are Wiener Filter [32] and the entropy-based time window 

[44]. The correlation measure between recovered tumor 

response by these two techniques and perfect tumor response 

are 0.66 and 0.60 (ranging from 0 to 1), respectively. In 

Wiener Filter, the artifact in each propagation channel is 

estimated as a filtered combination of the signals from all 

other channels, then the estimated artifact is subtracted from 

the signal received at the chosen channel. Wiener Filter can 

remove most of the artifact. However, this method requires the 

prior knowledge of the time interval in which only artifact is 

included. Moreover, distortion is introduced to tumor response, 

which might result in tumor location bias. By contrast, the 

entropy-based method introduces zero distortion to tumor 

response, has higher computational efficiency, and does not 

require any prior information. Hence, given both efficacy and 

efficiency, the entropy-based is chosen as the artifact removal 

method for the following study as used in [47]-[48]. 

Fig. 8 illustrates the entropy-based time window truncation 

for artifact removal. The ideal tumor response at antenna 4 is 

shown as the solid curve in Fig. 8(a). Comparing the actually 

received signal [Fig. 5(a)] with the entropy-truncated signal 

shown as the dotted curve in Fig. 8(a), it is noted that this 

method effectively removes the majority of the early-stage 

artifact composed of incident signals and skin-fat reflections, 

which has a several higher orders of magnitude than the tumor  

response. As shown in Fig. 5(a), the pure tumor response that 

has an order of magnitude of 1e-5 is completely overwhelmed. 

This efficacy can also be noticed at antenna 16 [Fig. 8(b)], 

where almost all artifact is removed and no obvious distortion 

is imported, compared with the ideal tumor response within 

the time period from 1.0 to 1.5 (ns). However, for antenna 33 

and 46 [Fig. 8(c) and (d)], there is still a large amount of 

residual artifact with high amplitudes. This is because in 

entropy-based method, the time window truncation of same 

length is used for signals received at all antennas [44]. Hence, 

depending on tumor-antenna distance variations, truncated 

signals of different antennas could contain varied percentages 

of useful tumor response versus residual artifact, which could 

potentially lead to location bias in constructed images.  
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Fig. 9.  (a) 2D slice of breast model with medium type B. (b)-(f) Imaging 

results with entropy-based artifact removal.  

 

Fig. 9 displays the imaging results where using the same 

medium type B as in Fig. 7. Instead of using ideal artifact 

removal, the entropy-based method is applied. Compared with 

Fig. 7, it is noticed that the performance of DAS, DMAS, 

MWDAS, and FDAS suffers significantly. The result of DAS 

[Fig. 9(b)] is seriously unrecognizable, only an area with high 

intensity is observed. However, none of these high-intensity 

positions reveal the actual tumor location indicated by the 

dashed circle. Although the results of DMAS, MWDAS, and 

FDAS [Fig. 9(c)-(e)] only show a few focused areas, the peaks 

of these images are far away from the actual tumor position. In 

contrast, the tumor is conspicuously shown at the correct 

location in the image constructed by RAR [Fig. 9(f)]. This 

demonstrates the robust performance of RAR even if the 

artifact cannot be removed faultlessly. Specifically, the SCR 

of DAS, DMAS, MWDAS, FDAS, and RAR are -11.94 dB, -

25.91 dB, -728.06 dB, -17.85 dB, and 5.27 dB, respectively. 

The positive SCR of RAR signifies that it is the only 

algorithm that reveals the tumor with correct location, which 

illustrates its clear advantage of excellent artifact resistance. 

These results also prove that effective artifact removal is vital 

for imaging, even for breasts with relatively low heterogeneity. 

The reason behind the robustness of RAR lies in the fact 

that except RAR, all other algorithms simply exploit the 

amplitude information of time-shifted signals, expecting the 

maximum coherent addition or multiplication could occur at 

tumor locations. According to the results shown in Section IV 

A, this is indeed the case when tumor responses can be 

perfectly extracted, and all algorithms can perform well. 

Nevertheless, when the artifact cannot be removed effectively, 

it is very likely that at some non-tumor positions, only the 

artifact from one propagation channel can be greater than the 

coherent sum of tumor responses from all other channels, due 

to the different orders of magnitude between artifact and 

tumor response. For RAR, in addition to utilizing the coherent 

addition of tumor responses from various propagation 

channels, it also explores the phase coherence between signals.  

The introduced adaptive weight control mechanism of RAR 

ensures its robustness on two aspects. First, the neighborhood 

pairwise correlation between all antennas measures the 

average coherence, which is less likely to be distorted by one 

or two artifact signals with abnormally large amplitudes. This  

 
Fig. 10.  (a) 2D slice of breast model with medium type C. (b)-(f) Imaging 

results with ideal artifact removal.  

 

is because phase coherence is independent of signal amplitude, 

only the linear relationship between signal shapes affects 

correlation coefficients. Second, the maximum combining of 

pairwise coefficients adaptively focuses on those points with 

large scattered energy. Considering the relatively high 

magnitude of scattered energy from tumors over other tissues, 

this maintains the capability of RAR in terms of localizing 

tumors in most if not all cases with a much higher chance. 

Aside from artifact, it is agreed that the glandular tissue 

forms another challenge for tumor detection. This is not only 

due to the substantial amount of attenuation and dispersion to 

received signals introduced by glandular tissues, the small 

dielectric contrast between cancerous and glandular tissue 

could easily result in misidentification of glandular tissues as 

tumors. Thus, it is important to evaluate algorithm’s 

performance in such cases. Results shown in Fig. 10 are based 

on the collected signals from breast model with medium type 

C, with the same ideal artifact removal used as in [29]. Results 

reveal that the presence of glandular tissue can seriously 

deteriorate algorithms’ performance, even assuming the early-

stage artifact is ideally removed. Compared Fig. 10(b) with 

Fig. 7(b), both using the ideal artifact removal, it is observed 

that DAS failed to correctly localize the tumor in Fig. 10(b) 

where considered glandular tissues. Although the actual tumor 

position has a relatively high value, the peak of the 

constructed image no longer corresponds to tumor’s position, 

which was the case in Fig. 7(b). This indicates the limited 

detectability of DAS to separate the scattering due to glandular 

tissues and the scattering due to the tumor. After combining 

signals from all propagation channels, the multi-reflections 

between tumor and glandular tissues could generate a higher 

intensity than those reflections from tumor or glandular tissues 

individually, which is indicated by the peak at the lower right 

part of Fig. 10(b). Similar erroneous tumor locations are also 

offered by DMAS and MWDAS [Fig. 10(c) and (d)]. Neither 

of them localized the tumor correctly, which indicates their 

vulnerability to the interference caused by glandular tissues. 

Despite clutter, the result offered by FDAS [Fig. 10(e)] 

revealed the tumor with accurately, which shows its advantage 

over DAS, DMAS, and MWDAS. This confirms the efficacy 

of the compensation of attenuation and dispersion offered by 

the filtering process in FDAS. The result is consistent with its 
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original presentation [28], whereas the slight difference is due 

to the different percentages of glandular tissues contained in 

the breast models used. However, the best imaging result is 

provided by RAR [Fig. 10(f)], which not only pinpoints the 

tumor accurately, but also provides the best clutter rejection. 

RAR ensures that high weights measured by correlation 

coefficients are obtained at tumor positions. Because after 

time-shifting the same signals at neighboring antenna pairs for 

tumor and non-tumor positions, higher correlation is obtained 

between tumor responses which resulted from the same high-

contrast scatterer, whereas lower correlation is expected for 

those signals from low-contrast heterogeneous breast tissues. 

Thus, signals with high weights at tumor positons generate 

large intensities after being combined, thereby discriminating 

tumor responses against glandular response. Comparing the 

results offered by FDAS and RAR [Fig. 10(e) and (f)], 

although both identified the tumor, the clutter suppression 

capability varies considerably, and an improvement of SCR 

with 3.51 dB is offered by RAR. This is non-trivial, because 

the much more cleaner image offered by RAR can remarkably 

reduce the uncertainty of the existence of multi-tumors that are 

located near this region, which is greatly desirable in practice. 

Undoubtedly, it is not realistic to assume the early-stage 

artifact could be ideally removed, especially considering the 

enormous impact of artifact, which has been confirmed in Fig. 

9. Therefore, combining the entropy-based artifact removal 

method, the algorithm performance for heterogeneous breast 

models with medium type C is investigated and results are 

shown in Fig. 11 (Figs. 11-18 are available in supplemental 

materials.). In this challenging scenario, the proposed RAR is 

the only algorithm reveals the tumor with correct location [Fig. 

11(f)], whereas with other four techniques, the tumor is either 

unidentifiable or with wrong estimated locations [Fig. 11(b)-

(e)]. Similar to results in Fig. 9, when the early-stage artifact 

cannot be effectively removed, the late-stage signals no matter 

tumor or glandular tissue response is totally masked by the 

residual artifact, because of the distinctively different order of 

magnitudes. Even the filtering process introduced in FDAS is 

unable to be immune to this interference. This can be clearly 

illustrated by comparing Fig. 10(e) and Fig. 11(e), where ideal 

and entropy-based artifact removal methods are applied, 

respectively. These results once again confirm RAR’s 

superiority over other methods in terms of both strong artifact 

resistance, and high detectability of distinguishing the 

scattering from tumor and glandular tissues. 

Since a high percentage of breast cancers are invasive 

ductal carcinomas, which start at fibro-glandular regions [36], 

it is worth testing the imaging algorithms in the case 

considering tumors are very close to or grow from the 

glandular tissues. Fig. 12  shows a tumor located very close to 

glandular tissues. In the analysis of this case, the backscattered 

response from tumor and glandular tissues could easily 

overlap due to the small spacing, raising a challenge about the 

specificity of algorithms. Encouragingly, although with a 

decrease of SCR from 4.10 dB to 3.92 dB with respect to Fig. 

11(f), RAR was still able to localize the tumor correctly [Fig. 

12(f)]. The other four algorithms failed to do so, this proves 

the effectiveness of RAR for cases of ductal carcinoma. 

Thus far, breasts with homogenous and inhomogeneous 

structures and tumors at different locations have been 

considered. The breast models employed before are assumed 

to be mildly dense, in which the fibro-glandular tissue is less 

than 25%. It should be considered that the increased glandular 

tissues could noticeably increase the breast density and result 

in further signal attenuation. Therefore, for comprehensive 

analysis, moderately and severely dense breasts are used to 

test algorithms in the following scenarios. In Fig. 13, the 

breast with medium type D is used. Although the percentage 

of glandular tissues for this type is normally between 25%-

50%, which belongs to a moderately dense category, the 

randomly scattered glandular tissues can seriously reduce the 

homogeneity of propagation channels, making the detection of 

tumors much more difficult. From the results shown in Fig. 13, 

it is clear that RAR is again the only method that identified the 

tumor correctly. However, strong scattered clutters are 

generated. Specifically, comparing Fig. 12(f) with Fig. 13(f), 

the SCR of RAR results dramatically decreased from 3.92 dB 

to 0.48 dB. This indicates that the increased glandular tissues 

not only cause the change of breast density and corresponding 

signal attenuation, it also complicate the propagation channels, 

rendering the identification of strong scatterers such as tumors 

more difficult to be achieved. Results in Fig. 14 employed the 

same breast model as in Fig. 13, but the tumor is moved 

within the scattered glandular tissues to simulate the invasive 

ductal carcinoma. In comparison to Fig. 13, algorithm 

performance in scenario of Fig. 14 further degraded due to the 

further reduced uniformity of assumed propagation channels. 

Encouragingly, the proposed RAR algorithm in this case still 

kept its edge with a positive SCR of 0.10 dB (Table II), 

indicating its robustness to certain deviation between the 

assumed uniform propagation channels and the actual ones. 

For completeness, the performance of all algorithms in very 

dense breasts with medium type E and F are also investigated. 

In Fig. 15, a tumor in breast model with medium type E, 

which includes glandular tissues with percentage ranging from 

50% to 75% is considered. It is noted that the result offered by 

RAR algorithm [Fig. 15(f)] is the one with highest SCR of 

0.05 dB, while all others have a negative SCR, corresponding 

to a poorer performance. Although the peak in the result of 

RAR does not exactly correspond to the tumor position, a 

relatively high intensity within the circle is observed. Also the 

peak generated by RAR is quite close to the tumor position, 

and this explains why RAR has a positive SCR. However, 

when the breast model with medium type F is considered (Fig. 

16), all algorithms failed to differentiate between the tumor 

and the glandular tissue, and none were able to provide images 

with discernable and correct tumor positions. For both 

scenarios considered in Fig. 15 and Fig. 16, tumors located 

within fatty tissues instead of within glandular tissues are also 

tested to simulate various clinical scenarios. The results 

obtained were similar, which indicated the limited detection 

capability of these algorithms for severely dense breasts. 



0018-9294 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBME.2015.2393256, IEEE Transactions on Biomedical Engineering

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING -TBME-00837-2014.R2 10 

The poor performance of algorithms considered for severely 

dense breasts with medium type E and F is mainly due to the 

following three reasons. 1) Dense breasts could considerably 

attenuate the propagated signals, resulting in very weak tumor 

response contained in received signals. 2) The reflected energy 

from other scatterers such as glandular tissues might be 

equivalent or even higher than that from tumors, due to the 

variability in adipose versus glandular tissue compositions. 3) 

For almost fully dielectrically heterogeneous ACR-III and 

ACR-IV breasts, the assumed uniform propagation channel 

would not be able to represent the actual one, and fatal 

inaccuracy of time delay estimation could occur, leading to 

incorrect localization. Specifically, when the percentage of 

glandular tissues is higher than a certain threshold, the average 

estimated time delay of each propagation path might be far 

from the actual ones. To solve these problems, the following 

potential solutions could attenuate the effect of previous 

problems respectively: 1) Employ multistatic instead of 

monostatic acquisition to collect more useful backscattered 

signals from the tumor. 2) Enhance the contrast between 

tumor and the background through increasing the relative 

permittivity of tumor, such as using the contrast agent 

described in [36]. 3) Improve the accuracy of individual 

propagation channel estimation. The investigation of these 

solutions is beyond the scope of this work. 

The imaging with the RAR algorithm from different view 

angles is also tested for completeness. The results shown in 

Fig. 11 with a tumor at (x, y, z) = (95, 99, 112) are selected as 

an example. On one hand, images are reconstructed at 

different x planes, where x = 85 mm, 95 mm, and 105 mm are 

selected. Results illustrated that the largest intensity occurs at 

plane x = 95 mm, corresponding to the actual tumor position, 

proving that RAR is able to accurately identify the plane that 

bears the tumor. On the other, the y and z cross-section 

imaging results by RAR are displayed in Fig. 17, where y = 99  

mm and z = 112 mm are chosen, respectively. It is observed 

that the reconstructed images clearly identify the tumor in both 

cases, with accurate positioning and strong clutter suppression. 

SCR and SMR statistics of algorithms are summarized in 

Table II. Based on the calculated average of all ten scenarios, 

the proposed RAR algorithm achieves the highest SCR of 4.08 

dB and SMR of 16.51 dB, respectively, indicating its excellent 

performance and strong robustness. It should be noted that 

RAR is the only algorithm which provided a positive SCR in 

results shown in Fig. 11, Fig. 12, Fig. 14, and Fig. 15, proving 

its distinct advantage. On the other hand, MWDAS has the 

smallest SCR and SMR in average. In spite of its excellent 

clutter rejection with ideal artifact removal (Fig. 6 and Fig. 7), 

this efficacy suffer significantly even with a small portion of 

residual artifact, indicating its limitation in more practical 

scenarios. The second best technique is FDAS, although it is 

very sensitive to artifact, results show that the filtering is 

beneficial since in most cases it outperforms the original DAS 

algorithm and achieves the second high SCR of -1.68 dB and 

SMR of 9.17 dB. Comparing DMAS with DAS, results reveal 

that the pure coherence-based algorithm DMAS is not always 
 

TABLE II 

SIGNAL-TO-CLUTTER RATIO (SCR) AND SIGNAL-TO-MEAN RATIO (SMR) OF 

ALGORITHMS IN DIFFERENT SCENARIOS. BEST RESULTS OF EACH CASE ARE 

HIGHLIGHTED IN BOLD 

 

 Fig. 6 Fig. 7 Fig. 9 Fig. 10 Fig. 11 

SCR (dB) 

(b) DAS 7.01 4.98 -11.94 -2.30 -3.58 

(c) DMAS 14.92 10.82 -25.91 -4.63 -5.63 

(d) MWDAS 415.58 403.25 -728.06 -78.48 -107.49 

(e) FDAS 11.43 6.77 -17.85 1.25 -4.24 

(f) RAR 13.99 8.47 5.27 4.76 4.01 

SMR (dB) 

(b) DAS 17.22 17.03 -1.87 7.62 6.90 

(c) DMAS 20.75 20.27 -12.35 7.29 7.14 

(d) MWDAS 21.14 21.08 -705.34 -56.50 -89.97 

(e) FDAS 17.22 16.47 -2.86 11.55 8.93 

(f) RAR 20.98 20.67 20.09 17.12 14.29 

 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Ave 

SCR (dB) 

(b) DAS -6.5 -1.83 -2.46 -0.65 -2.80 -2.00 

(c) DMAS -12.28 -0.49 -4.57 -2.35 -5.28 -3.54 

(d) MWDAS -306.46 -40.11 -87.19 -17.86 -129.46 -67.63 

(e) FDAS -11.89 0.09 -1.60 -0.31 -0.47 -1.68 

(f) RAR 3.92 0.48 0.10 0.05 -0.26 4.08 

SMR (dB) 

(b) DAS 2.58 9.52 7.02 9.09 5.63 8.07 

(c) DMAS -3.07 11.13 6.61 11.09 5.48 7.43 

(d) MWDAS -285.34 -61.82 -65.01 -3.34 -114.12 -133.92 

(e) FDAS 1.12 10.71 9.24 10.97 8.30 9.17 

(f) RAR 18.16 11.43 15.89 17.25 9.19 16.51 

 

superior to the classic DAS. In scenarios assuming the early-

stage artifact could be perfectly removed, DMAS outperforms 

DAS without question (Fig. 6 and Fig. 7), however, in later 

scenarios considered denser breasts and non-perfect artifact 

removal, DAS shows more robustness than DMAS. This is 

because the pair multiplication used in DMAS could lead to 

erroneous peaks in more complicated environments with less 

coherence among all propagation channels. 

The performance of RAR algorithm with respect to tumor 

size was also considered. Combining entropy-based artifact 

removal method, in breasts with medium type A and B, 

tumors as small as 5 mm in diameter were successfully 

identified. However, in a more dielectrically heterogeneous 

breast with medium type C, when the tumor size is less than 7 

mm in diameter, the imaging results are quite blurry, which 

can hardly be used to identify the tumor. As for medium type 

D, the smallest tumor that were successfully recognized at 

different positions were 10 mm as shown in Fig. 13 and Fig. 

14. Additionally, the sensitivity of RAR to the error of average 

dielectric permittivity estimation is examined. Coupled with 

entropy-based artifact removal method, in mostly fatty breasts 

such as medium type A and B, even when the relative error is 

up to 30%, only a minor reduction of SCR is observed. 

However, for fully heterogeneous breasts with low to medium 

density such as medium type C and D, when the relative error 

is over 5%, the resulted images can rarely localize the tumor 
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precisely. This reinforces the need to have an accurate average 

dielectric permittivity estimation. In our study, the collected 

signals are assumed to be noiseless; in practice, however, 

possible measurement errors and noise need to be considered. 

C. Computational Analysis 

Besides robustness, complexity of algorithms is of great 

importance, especially for imaging 3-D realistic breast models. 

In this section the time complexity of algorithms is analyzed. 

As described before, 𝐴 sets of tumor responses are collected in 

monostatic case, thus 𝐴 signals are needed to be processed. 

Let 𝐾  refer to signal sampling points and 𝛼  be the window 

length, which is smaller than 𝐾. Both 𝐾 and 𝛼 are much more 

larger than 𝐴 , which determine the calculation numbers for 

raw and truncated signals, respectively. The number of 

arithmetic operations (without distinguishing between addition 

and multiplication) needed to calculate each pixel’s intensity 

is analyzed. All algorithms considered need the same time-

shifting process, only other different processes are compared.  

To sum 𝐴  time-shifted signals, DAS needs  (𝐴 − 1)𝐾 

additions. Then the summed signal is truncated by the window 

length 𝛼, thus 𝛼 and (𝛼 − 1) operations for multiplication and 

addition are required to obtain the energy of this signal. DAS 

thus has an asymptotic complexity of 𝑂(𝐾).  

The first step in DMAS is generating 𝐶𝐴
2 sets of pairs from 

𝐴  signals for pair multiplication, and [(𝐴(𝐴 − 1) 2⁄ )  − 1]𝐾 

multiplications are required. Step 2 sums 𝐴(𝐴 − 1) 2⁄  signals 

with 𝐾  sampling points, [(𝐴(𝐴 − 1) 2⁄ )  − 1]𝐾  additions are 

involved. The last integration within the time window requires 

𝛼  and (𝛼 − 1) operations for multiplication and addition, 

respectively. Ignoring small values in summed operations of 

all steps, DMAS has an asymptotic complexity of 𝑂(𝐾).  

Unlike DAS and DMAS, MWDAS brings forward the 

windowing of signals, thus for each signal, only 𝛼 calculations 

are needed. Step 1 requires (𝐴 − 1)𝛼  summations and one 

division to obtain the reference waveform. Step 2 involves 

weighting signals from 𝐴 channels via the generated reference 

waveform, requiring 𝐴𝛼 multiplications. Step 3 is the energy 

calculation of weighted signals and needs(2𝛼 − 1) operations. 

Last step multiplies signal energy from all channels, where 

(𝐴 − 1) multiplications are needed. Thus MWDAS requires 

(4𝐴𝛼 − 1) operations in all and has a complexity of 𝑂(𝛼). 

Two additional parts are needed for FDAS in addition to 

that of DAS. First is the collection of distance-dependent 

reference waveforms for filter design. Second is the filtering 

process. Since the gathering of reference signals could be 

precomputed, main extra computational burden of FDAS lies 

in the filtering process when calculating each pixel intensity. 

For 𝐾 sampling points, 𝐾(𝑁𝐾) multiplications are required to 

implement FIR filtering in time domain, where 𝑁 is the filter 

length. Combined with extra DAS operations and ignore small 

values, FDAS has a complexity of 𝑂(𝐾2) as a result. 

In RAR, the windowing of signal is brought forward, thus 

only 𝛼 calculations is required for each signal. Step 1 involves 

(𝐴 − 1)  calculation of neighborhood pairwise correlation 

coefficients, which requires 6𝛼(𝐴 − 1)  operations following 

(5). Then the normalization needs 2(𝐴 − 1) operations. Step 3 

sorts (𝐴 − 1)  normalized correlation coefficient for the 

maximum combining. For a sorting algorithm with (𝐴 − 1) 

numbers, the time complexity is up to 𝑂(𝐴2). To generate the 

weighted value, which is the product of the first half number 

of sorted coefficients, [(𝐴 − 1)/2] − 1  multiplications are 

involved. Step 4 weights the signal and 𝛼 multiplications are 

required. Last step calculates the energy and needs (2𝛼 − 1) 

operations. Accordingly, ignoring small values in summed 

operations, RAR has an asymptotic complexity of 𝑂(𝛼). 

Simulation results on a PC with Intel (R) Core (TM) 2 Duo 

CPU E7500 2.93GHz (2 CPUS) combined with Matlab  

R2014a software confirmed the computation overhead of 

algorithms. 48 signals with 1500 sampling points in each 

signal are processed, where a time window length of 294 is 

employed. Thus, 𝐴  = 48, 𝐾  = 1500, and 𝛼  = 294 in our 

simulation tests. Calculated processing time employs the mean 

of three replicates to reduce random errors. Fig. 18 compares 

the complexity and processing time to calculate a single pixel 

intensity of algorithms. Simulation results verified the time 

complexity analysis. As can be seen, the complexity is mainly 

determined by the number of points needed to be processed in 

each signal, which can be 𝐾  or 𝛼  in different methods. A 

extensively higher computation burden than other algorithms 

is observed in FDAS, which requires the largest processing 

time of 1.37 seconds, whereas this time for DAS is only 

0.0003 seconds. In addition, the same linear growth is 

observed in DAS, DMAS, MWDAS, and RAR, whereas 

FDAS has an exponential tendency. This demonstrates that 

RAR maintains the same level of high computational 

efficiency, even compared with the simplest DAS algorithm. 

V. CONCLUSION 

A novel imaging algorithm for early breast cancer detection 

entitled RAR is proposed. The efficacy of RAR is verified 

under a number of scenarios, using FDTD-based 3-D breast 

models with various structures and densities. 

Simulation results showed imaging algorithm performance 

is more sensitive to the early-stage artifact, compared with the 

late-stage clutter, due to the different orders of magnitude of 

these two types of interferences. Results with superior 

robustness were provided by RAR in comparison to other 

algorithms, including DAS, DMAS, MWDAS, and FDAS. In 

the four of the six challenging scenarios (Fig. 11, Fig. 12, Fig. 

14, and Fig. 15), RAR was the only algorithm which clearly 

identified and accurately localized tumors. These scenarios 

considered practical artifact removal, various tumor positions, 

and breasts ranging from mildly to moderately density 

classifications. Simulations also proved the computational 

efficiency of RAR, which has the same asymptotic complexity 

as DAS, DMAS, and MWDAS algorithms. The significant 

improvement provided by RAR is only at the expense of 

negligible increased computational effort. These results show 

the high potential of RAR for the early-stage cancer detection 

in low to medium density breasts. The investigation of RAR’s 

performance for further enhancement of tumor detection in 

severely dense breasts will be involved in future work. 
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