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1. Introduction

As Ricci-flat threefolds of SU(3) holonomy were upon the centre stage in the compactification

of string theory in the past two decades, so too have phenomenological considerations lead us

in the past two years to focus on M-theory compactification to real sevenfolds of G2 holonomy

[1, 2, 3, 4, 5, 6]. And thus compounded upon our tremendous attention on Calabi-Yau and

Kähler manifolds, both physically and mathematically, is our revival of interest on special

holonomy [14, 15] in super string theory and indeed, on real algebraic geometry. Inspired

thereby, an impressive collection of excellent works appeared in quick succession within the

community.

Yet, our inherent difficulty with the explicit construction of G2 manifolds has been one

fundamental limitation and so far very few examples of compact G2 sevenfolds are known

[12, 13].

A classic theme in the Calabi-Yau case has been that whereas understanding string

theory on arbitrary members in the space of these manifolds is substantially challenging, one

could gain great insight by moving to particular points in the moduli space and notably, to

the singular Calabi-Yau’s. In other words, we model our compact (projective) variety with



local, non-compact (affine) algebraic singularities (cf. [35] for some review in this context).

For example, the Calabi-Yau twofold K3 can be regarded locally as resolutions of the ALE

orbifold C2/Γ for Γ some discrete finite subgroup - of ADE type - of SU(2), the holomony

of K3.

The advent of the technology of D-brane probes on such singularities [27] has brought

about systematic methods [28] for constructing low-energy effective gauge theories of various

supersymmetry, matter content and interactions. The case of K3 was considered in [29], that

of local orbifolds of Calabi-Yau threefolds, in [21, 23] and that of fourfolds in [24].

A natural question then arises as to whether we could do the same, as we did for

holonomy SU(n = 2, 3, 4), for local G2 and study the discrete finite subgroups Γ of G2

and hence orbifolds of the form R7/Γ. Yet, caveat emptur; for though with the extensive

machinery of complex algebraic geometry, canonical Gorenstein singularities of the form

C2/(Γ ⊂ SU(2)), and C3/(Γ ⊂ SU(3)) for abelian Γ have been intensively studied and

found to admit crepant resolutions, the same certainly cannot be said for orbifolds of R7.

In other words, though in the Calabi-Yau case there are well-studied resolutions to smooth

Ricci-flat manifolds from the said orbifolds (which in string theory correspond to well-defined

states which become massless at the singular limit), our present lack of more tools of real

algebraic geometry, let alone real resolutions, hinders a complete understanding of such G2

orbifolds.

Nevertheless, much nice works have been on non-compact G2 manifolds (cf. [16] and ref-

erences therein) and in particular on D-brane probes on G2 orbifolds [7, 8, 9, 10]. Quantum

moduli spaces of such theories have been considered in [11]. Examples of abelian orbifolds

have been detailed in [7, 10] while elegant extensions of ADE singularities to real dimension

seven have been addressed in [8, 9]. Therefore naturally does arise a present want which de-

sires a immediate supplement and indeed for which [7] has kindly beckoned: the classification

of the discrete subgroups of G2.

And thus is the purpose of the present writing. As a companion monograph to [21,

24], we have transcribed some known results, collected from mathematical works seemingly

obscure to the physics literature [17, 18, 19] and recast them into a compilation explicit in

representation, feasible to computation and abundant in tabulation. These shall constitute

Sections 2 and 3. We then calculate and draw what we call “G2 quivers” from this data in

Section 4 and discuss implications thereof.

2. Some Preparatory Remarks and Nomenclature

2.1 Reducibility and Primitivity

We are concerned with finite discrete subgroups of Lie groups and are thus confined to the



study of linear transformations, manifesting as matrix groups acting upon vector spaces.

Indeed, standard in the mathematical literature is the following terminology which further

categorises such groups. The reader is referred to the excellent monographs [25] and [26],

(or to [24] in a context more immediate to this paper), for further details.

Essentially, a linear transformation group Γ is called Intransitive or Reducible if it

is block-diagonalizable and Transitive or Irreducible otherwise. The Irreducible Γ can

be further divided into the Primitive and Imprimitive, where the imprimitive can still

have blocks of zeros while the primitive groups generically have no zero entries and are the

fundamental building blocks in the classification.

The usual scheme of classification of the subgroups of Lie groups is over the field C

whereas for obvious physical reasons we are interested in 7-manifolds over R and hence dis-

crete subgroups of G2(R). Henceforth by G2 we shall mean G2(R). Indeed the classification

in light of the categorisations [17, 18, 19] has been performed for G2(C) and we beg the reader

to take heed that in the ensuing reducibility etc. refer to the groups over C. Nevertheless we

can still refer to these groups under their present categories, since any subgroup of G2(C),

being compact, is actually contained in a maximal compact subgroup of G2(C) and is hence

conjugate to a subgroup G2(R) [18] and whence the classifications coincide in any event. Of

course, we shall be careful to take appropriate involutions to ensure that our matrix groups

are indeed real in that they have generators in GL(7, R) and hence have a real 7-dimensional

irrep as reflected in the character tables.

Unless otherwise stated, we adhere to the following nomenclature throughout the writing.

By Lie groups of finite type we mean discrete finite groups which are the corresponding

continuous Lie groups defined over some Galois field. Thus for example GL(n; q) is the

general linear group GL(n) over the field Fq; it is thus the endomorphism for the vector

space F⊕n
q . By Γ := 〈{ai}〉 we shall mean that the finite group Γ is generated by elements

(matrices) ai.

2.2 Automorphisms of the Octonions

Let us first recall some rudimentary facts concerning G2 in light of its linear transformational

properties [17]. The Octonions O is a real non-associative division algebra. In particular,

it is a 7-dimensional vector space over R, endowed with basis e0 = Id as well as {ei=1,...,7}
satisfying

e2
i = −1, eiej = ek for (i, j, k) = (1 + r, 2 + r, 3 + r) mod 7.

On this vector space, a natural quadratic form exists for any element x ∈ O =
7∑

i=0

aiei

(where ai ∈ R), namely Q(x) =
∑

i a
2
i . Thenceforth the following bilinear and trilinear forms



b( , ) and t( , , ) can be established for x, y, z ∈ O:

b(x, y) = 1
2
(Q(x + y) − Q(x) − Q(y))

t(x, y, z) = b(xy, z)

In fact, any automorphism of O preserves these above forms. The group Aut(O) of these

automorphisms is isomorphic to G2(R), or what we shall refer to2 as G2.

It is into the discrete finite subgroups of this automorphism group, as linear transforma-

tions of the real vector space O, that this writing shall delve.

3. The Classification of the Discrete Finite Subgroups of G2

The classification, in its original form, has been existent in the mathematical literature for

some time [17, 18]. Such a result of Wales-Cohen has been transposed into modernity by

Griess in [19]. Our first task then, before moving on to quivers and gauge theories, is to

recast yet again, all these marvelous results, from their perhaps abstruse guise, to a more

tangible form, whose concrete realisation as matrix groups are explicit.

3.1 Reducible

As with all classifications of these discrete finite subgroups of Lie groups (cf. [25, 26]), the

reducible groups are always direct and semi-direct products of Lie subgroups of the parent.

In the case of G2, all these reducible are constructable from the finite discrete subgroups of

SU(2) and SU(3) [17, 12]. Explicit representations of these infinite series follow along the

lines of the ZD-type groups for SU(3) in [22, 23], composed of two non-commuting pieces,

viz. the Z and the D of SU(2) →֒ SU(3), with their generators appropriately concatenated.

So likewise could we do so for G2.

Now in order to preserve the automorphism structure of O and reality of our 7-dimensional

representation, the denouement is that [17] only subgroups of (a) SU(2) × SU(2) and (b)

SU(3) are allowed. Therefore, the reducible finite subgroups of G2 are quite well-known, as

has been considered in for example [7, 10] and easily extended from the famous ADE sub-

groups of SU(2) [20] as well as those of SU(3) [25, 26, 21]. Therefore upon these irreducibles

let us not dwell.

3.2 Irreducible Imprimitive

The heart of the classification lies in the irreducibles, which in some sense reflect the intri-

cacies of the structure of Aut(O). There are in all 7 of these, 2 imprimitive and 5 primitive.

2G2(C) is thus Aut(O ⊗R C).



To the particulars of these 7 exceptionals let us now turn. The ensuing computations are

done with the extensive aid of [30] to whose writers we are forever indebted.

The first irreducible imprimitive we shall call II1; it has the following generators

II1 := 〈





0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

−1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 1



,





0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

−1 −1 −1 −1 −1 −1 −1



〉 . (3.1)

We see of course that II1 is indeed 7-dimensional over the reals. This group is in fact none

other than the projective special linear group over the finite field F7, PSL(2; 7), which is

isomorphic to another Lie group of finite type, viz. GL(3; 2). Moreover, II1 is a group of

order 168 and is in fact isomorphic to the familiar exceptional group Σ168 of SU(3) [26, 21].

The character table for II1 is computed as follows.

1 21 24 24 42 56

Γ1 1 1 1 1 1 1

Γ2 3 −1 w w̄ 1 0

Γ3 3 −1 w̄ w 1 0

Γ4 6 2 −1 −1 0 0

Γ5 7 −1 0 0 −1 1

Γ6 8 0 1 1 0 −1

w := −1−
√

7
2

Moving on to the next in the irreducible imprimitives, we have II2, which is generated

by

II2 := 〈





0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0



,





0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1



,





0 −1 0 0 0 0 0

−1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 −1 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 −1



〉 . (3.2)

Now II2 is a group of order 1344 and is in fact a central extension of II1 in the sense



that II2/Z3
2
∼= II1. It character table is as follows:

1 7 42 42 84 168 168 192 192 224 224

Γ1 1 1 1 1 1 1 1 1 1 1 1

Γ2 3 3 −1 −1 −1 1 1 w w̄ 0 0

Γ3 3 3 −1 −1 −1 1 1 w̄ w 0 0

Γ4 6 6 2 2 2 0 0 −1 −1 0 0

Γ5 7 −1 −1 3 −1 −1 1 0 0 −1 1

Γ6 7 7 −1 −1 −1 −1 −1 0 0 1 1

Γ7 7 −1 3 −1 −1 1 −1 0 0 −1 1

Γ8 8 8 0 0 0 0 0 1 1 −1 −1

Γ9 14 −2 2 2 −2 0 0 0 0 1 −1

Γ10 21 −3 −3 1 1 1 −1 0 0 0 0

Γ11 21 −3 1 −3 1 −1 1 0 0 0 0

with w as in the characters for II1.

Thus concludes the irreducible imprimitives.

3.3 Irreducible Primitive

We now present the irreducible primitives, which, as was mentioned in the preliminary

remarks, are the true fundamental building blocks. There are 5 of these groups, of substantial

size and we beseech the reader’s patience.

The first primitive we shall call IP1, with the rather complicated generators

IP1 := 〈1
c





23 b1 + 22 b2 31 b1 + 41 b2 −15 b1 − 12 b2 7 b1 − 7 b2 18 b1 + 27 b2 9 b2 14 b1 + 22 b2

−4 b1 − 5 b2 −23 b1 − 40 b2 12 b1 − 3 b2 7 b1 + 20 b2 −9 b1 − 27 b2 −c

2
−22 b1 − 32 b2

0 0 0 0 0 0 c

−19 b1 − 17 b2 −8 b1 − 37 b2 −15 b1 − 21 b2 4 b1 + 23 b2 −45 b1 − 54 b2 27 b1 + 18 b2 −10 b1 − 26 b2

−5 b1 − 4 b2 −13 b1 − 23 b2 15 b1 + 12 b2 −7 b1 + 7 b2 −9 b2 −9 b2 4 b1 − 4 b2

2 b1 − 2 b2 −2 b1 + 2 b2 12 b1 + 6 b2 −8 b1 − 10 b2 0 0 2 b1 − 2 b2

5 b1 + 4 b2 13 b1 + 23 b2 3 b1 + 6 b2 7 b1 − 7 b2 18 b1 + 27 b2 −18 b1 − 9 b2 14 b1 + 22 b2




,

1
c





5 b1 + 4 b2 13 b1 + 23 b2 −15 b1 − 12 b2 7 b1 − 7 b2 9 b2 9 b2 −4 b1 + 4 b2

17 b1 + 10 b2 b1 − 19 b2 3 b1 + 6 b2 13 b1 + 23 b2 −9 b2 −9 b2 8 b1 − 8 b2

18 b1 + 9 b2 27 b1 + 54 b2 9 b2 9 b1 − 18 b2 9 b1 + 27 b2
−c

2
18 b1 + 36 b2

−5 b1 − 4 b2 −31 b1 − 41 b2 15 b1 + 12 b2 −7 b1 + 7 b2 −9 b2 −9 b2 −14 b1 − 22 b2

−19 b1 − 8 b2 −17 b1 − 19 b2 3 b1 + 6 b2 −5 b1 + 5 b2 −36 b1 − 27 b2 18 b1 + 9 b2 −10 b1 − 8 b2

−19 b1 − 17 b2 10 b1 + 35 b2 −15 b1 − 3 b2 −14 b1 − 31 b2 −45 b1 − 18 b2 27 b1 + 18 b2 −10 b1 + 10 b2

b1 − b2 8 b1 + b2 −3 b1 − 15 b2 −4 b1 − 5 b2 9 b1 −9 b1 −8 b1 − 10 b2



〉

(3.3)

with

x := cos(2π
13

), c := 9
1+2x

;

b1 := 2 − 9x − 2x2 + 24x3 − 16x5, and

b2 := −3 + 14x + 4x2 − 44x3 + 32x5.



Now IP1 is nothing but the group PSL(2; 13), of order 1092. Its characters are given below:

1 84 84 91 156 156 156 182 182

Γ1 1 1 1 1 1 1 1 1 1

Γ2 7 p q −1 0 0 0 −1 1

Γ3 7 q p −1 0 0 0 −1 1

Γ4 12 −1 −1 0 r1 r2 r3 0 0

Γ5 12 −1 −1 0 r2 r3 r1 0 0

Γ6 12 −1 −1 0 r3 r1 r2 0 0

Γ7 13 0 0 1 −1 −1 −1 1 1

Γ8 14 1 1 −2 0 0 0 1 −1

Γ9 14 1 1 2 0 0 0 −1 −1

with p := 1−
√

13
2

, q := 1+
√

13
2

and r1,2,3 the three roots of the cubic equation 1−2r−r2+r3 = 0.

The next in the family is IP2, generated by

IP2 := 〈





−
1

3
0 1 −

4

3

1

3
−1 5

3

−3 −2 2 −1 0 −2 3

0 0 0 0 −1 0 0

0 0 −1 0 0 0 0

−
4

3
0 1 2

3
−

5

3
1 2

3

4 3 −3 2 1 2 −4

−1 0 1 −1 1 −1 2



,





−
16

3
−3 4 −

7

3
−

2

3
−2 17

3

7 3 −6 2 2 2 −7

−
16

3
−2 5 −

7

3
−

5

3
−1 17

3

0 0 0 0 0 0 1

−
4

3
0 1 2

3
−

5

3
1 2

3

−
10

3
−2 2 −

1

3
−

5

3
−1 8

3

2 0 −3 1 1 0 −2



〉 (3.4)

This group is in fact PSL(2; 8), of order 504 and with character table:

1 56 56 56 56 63 72 72 72

Γ1 1 1 1 1 1 1 1 1 1

Γ2 7 −2 1 1 1 −1 0 0 0

Γ3 7 1 −p −q p + q −1 0 0 0

Γ4 7 1 p + q −p −q −1 0 0 0

Γ5 7 1 −q p + q −p −1 0 0 0

Γ6 8 −1 −1 −1 −1 0 1 1 1

Γ7 9 0 0 0 0 1 r s t

Γ8 9 0 0 0 0 1 s t r

Γ9 9 0 0 0 0 1 t r s

with (p, q) :=
(
cos(4π

9
), cos(8π

9
)
)

and (r, s, t) :=
(
cos(2π

7
), cos(4π

7
), cos(6π

7
)
)
.

And thence follows the next imprimitive, IP3, with generators

IP3 := 〈





20

7
5 8

7

10

7
−

17

7
6 −

13

7

0 0 1 0 0 0 0

−
1

7
−1 8

7
−

4

7

4

7
0 1

7

0 3 0 1 −2 2 −1

0 1 0 0 0 0 0

−
16

7
−4 −

12

7
−

8

7

15

7
−5 9

7

−4 −7 0 −1 3 −7 1



,





−
33

7
−8 −

9

7
−

13

7

27

7
−9 12

7

0 0 0 0 0 0 −1

−
4

7
−1 −

3

7
−

2

7

2

7
−2 −

3

7

−
5

7
1 −

2

7

1

7
−

1

7
0 −

2

7
4

7
0 3

7

2

7

5

7
1 −

4

7
23

7
5 5

7

8

7
−

15

7
6 −

2

7
12

7
4 −

5

7
−

1

7
−

13

7
3 −

5

7



〉 (3.5)



This group is isomorphic to PGL(2; 7) and is of order 336. Its characters are:

1 21 28 42 42 42 48 56 56

Γ1 1 1 1 1 1 1 1 1 1

Γ2 1 1 −1 −1 −1 1 1 −1 1

Γ3 6 −2 0 0 0 2 −1 0 0

Γ4 6 2 0 −
√

2
√

2 0 −1 0 0

Γ5 6 2 0
√

2 −
√

2 0 −1 0 0

Γ6 7 −1 1 −1 −1 −1 0 1 1

Γ7 7 −1 −1 1 1 −1 0 −1 1

Γ8 8 0 2 0 0 0 1 −1 −1

Γ9 8 0 −2 0 0 0 1 1 −1

Our fourth member is the group IP4, generated by

IP4 := 〈





0 0 0 0 0 0 −1

1 −1 −1 0 0 0 0

0 0 0 −1 −1 0 −1

−1 1 0 0 0 0 −1

1 0 0 0 0 0 0

−1 0 0 1 1 −1 1

0 −1 0 0 1 0 1



,





−1 0 0 1 0 −1 0

0 0 0 −1 −1 0 −1

−1 0 0 1 1 0 0

0 −1 0 1 1 −1 1

0 0 0 0 −1 0 0

0 0 1 0 1 0 1

0 0 0 −1 0 0 0



〉 (3.6)

This group IP4 is identified as PU(3; 3), of order 6048. The character table is:

1 56 63 63 63 378 504 504 504 672 756 756 864 864

Γ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Γ2 6 −3 −2 −2 −2 2 1 1 1 0 0 0 −1 −1

Γ3 7 −2 −1 3 3 −1 0 0 2 1 −1 −1 0 0

Γ4 7 −2 3 −1 − 2 i −1 + 2 i 1 −1 − i −1 + i 0 1 −i i 0 0

Γ5 7 −2 3 −1 + 2 i −1 − 2 i 1 −1 + i −1 − i 0 1 i −i 0 0

Γ6 14 5 −2 2 2 2 −1 −1 1 −1 0 0 0 0

Γ7 21 3 5 1 1 1 1 1 −1 0 −1 −1 0 0

Γ8 21 3 1 −3 + 2 i −3 − 2 i −1 i −i 1 0 −i i 0 0

Γ9 21 3 1 −3 − 2 i −3 + 2 i −1 −i i 1 0 i −i 0 0

Γ10 27 0 3 3 3 −1 0 0 0 0 1 1 −1 −1

Γ11 28 1 −4 −4 i 4 i 0 i −i −1 1 0 0 0 0

Γ12 28 1 −4 4 i −4 i 0 −i i −1 1 0 0 0 0

Γ13 32 −4 0 0 0 0 0 0 0 −1 0 0 1−i
√

7
2

1+i
√

7
2

Γ14 32 −4 0 0 0 0 0 0 0 −1 0 0 1+i
√

7
2

1−i
√

7
2

Finally, the largest member in our classification, is the group IP5,

IP5 := 〈





−
5

2
−7 −

15

4
−

1

4

15

2
−2 7

2

−
1

4
−3 −

15

8
−

5

8

13

4
−

1

2

3

4

−
5

4
−5 −

15

8

3

8

17

4
−

3

2

11

4

−
3

4
3 15

8
−

3

8
−

9

4
−

1

2
−

3

4

−1 −5 −
5

2
−

1

2
5 −1 2

2 2 3

2

1

2
−2 2 −3

−
1

4
−4 −

15

8

3

8

17

4
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This IP5 is in fact none other than G2(2), i.e., G2 defined over the Galois field F2. The

order is the rather formidable 12096 and the character table is

1 56 63 126 252 252 378 504 672 1008 1008 1008 1512 1512 1728 2016

Γ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Γ2 1 1 1 1 −1 −1 1 1 1 −1 −1 1 −1 1 1 −1

Γ3 6 −3 −2 −2 0 0 2 1 0 −i
√

3 i
√

3 1 0 0 −1 0

Γ4 6 −3 −2 −2 0 0 2 1 0 i
√

3 −i
√

3 1 0 0 −1 0

Γ5 7 −2 −1 3 −3 1 −1 2 1 0 0 0 −1 −1 0 1

Γ6 7 −2 −1 3 3 −1 −1 2 1 0 0 0 1 −1 0 −1

Γ7 14 −4 6 −2 0 0 2 0 2 0 0 −2 0 0 0 0

Γ8 14 5 −2 2 −2 2 2 1 −1 1 1 −1 0 0 0 −1

Γ9 14 5 −2 2 2 −2 2 1 −1 −1 −1 −1 0 0 0 1

Γ10 21 3 5 1 −1 3 1 −1 0 −1 −1 1 1 −1 0 0

Γ11 21 3 5 1 1 −3 1 −1 0 1 1 1 −1 −1 0 0

Γ12 27 0 3 3 −3 −3 −1 0 0 0 0 0 1 1 −1 0

Γ13 27 0 3 3 3 3 −1 0 0 0 0 0 −1 1 −1 0

Γ14 42 6 2 −6 0 0 −2 2 0 0 0 0 0 0 0 0

Γ15 56 2 −8 0 0 0 0 −2 2 0 0 0 0 0 0 0

Γ16 64 −8 0 0 0 0 0 0 −2 0 0 0 0 0 1 0

And so these above are the groups of our interest, the 7 exceptional discrete finite

irreducible subgroups of G2. Thus armed, let us now venture into the physics.

4. McKay Quivers, G2 and Gauge Theories

The construction of world-volume gauge theories for D-brane probes transverse to orbifold

singularities was pioneered in [27] wherein the plethora of mathematical machinery in the

resolution of singularities using the hyper-Kähler quotient was brought into string theory.

The case then studied, as well as by subsequent works, have been on local models of non-

compact Calabi-Yau manifolds. In other words the orbifolds originated from the discrete

finite subgroups of the holonomy SU(2) (cf. [27, 29]), SU(3) (cf. [21, 26, 23]) and SU(4)

(cf. [24, 25]).

The general methodology for retrieving the world-volume gauge data from orbifolds was

outlined in [28] where the D-terms and F-terms of the gauge theory became purely dependent

upon the group-theoretical properties of the orbifold, notably the group representation ring

and in particular the Clebsch-Gordan composition therein. Recently, [7] and [10] discussed

some abelian examples of G2 orbifolds in this context.



We here study M-theory in the back-ground of a singular spacetime: to result in N = 1

supersymmetry in four dimensions it is well-known that one needs to “compactify” on real

sevenfolds of G2 holonomy. Whence our singularity X will be non-compact local G2 of the

form R7/(Γ ⊂ G2) and we are studying some brane probe on X. Of course the resolution

of singularities of this type, especially crepant ones to G2 manifolds still remain an open

question in mathematics [12] due largely to the want of more powerful techniques in real

algebraic geometry. Yet let us trudge on.

4.1 D-Brane Probes in Type II

Following the prescription of [7, 8, 9], we will study the D-brane probe theories of type II

originating from the parent M-theory. Indeed, we have much more knowledge of D-brane

worldvolume technology than M-branes. Therefore our natural setting will be the reduction

of the M-brane probe theory on the singular space X of G2 holonomy, to a D-brane probe

theory of type IIA.

As pointed out in [8], we can do so in two ways. We can reduce on an S1 transverse to

both the M-probe and to X. In this case we have X being the Higgs branch of the moduli

space of the D2-brane world-volume gauge theory. Alternatively, we can reduce on an S1

contained within X, leading to type IIA backgrounds with D6-branes and/or RR flux which

may give rise to extra subtleties. In this case X will be the Coulomb branch of the D2-brane

theory. We will focus on the first construction of the Higgs branch.

Therefore the preparatory work in the above sections will be in service to the N = 1

SUSY theory in three dimensions on the D2-probe. Mirror to this picture is the type IIB

perspective of [7] wherein one has a D1-probe and the world-volume theory is (1, 1) sigma

model in two dimensions.

The extraction of the matter content and interactions follow the canonical methods

mentioned above [27, 28, 21] and we shall see the natural emergence of the McKay quiver

[33].

4.2 World-Volume Theories and McKay Quivers

The matter content descents from the parent theory of the D-brane in flat space and the

resulting bi-fundamentals are summarised by a quiver diagram whose adjacency matrix aij

is determined as

R(7) ⊗ R(i) =
⊕

j

aijR
(j) , (4.1)

where R(i) is the i-th irreducible representation of the orbifold group Γ and R(7) is the

defining 7-dimensional representation which for us is a real 7 × 7 matrix. Indeed we choose

the 7-dimensional irrep so as to guarantee that our orbifold action resides in the full G2



and not any subgroup thereof, such as SU(3) (which would make our space essentially a

Calabi-Yau threefold). We refer the reader to [28] for the details, [21] for a summary and [7]

for the present guise of the derivation of (4.1).

To (4.1) shall the character tables of the previous section lend an immediate hand: we

can instantly invert the equation to arrive at the quiver [21] as

aij =
1

g

r∑

γ=1

rγχγχ
(i)
γ χ(j)∗

γ (4.2)

where χ
(i)
γ is the i-th irreducible character for the conjugacy class represented by γ ∈ Γ and

χγ is the character of our chosen defining 7-dimensional real irrep. Furthermore, g = |Γ| is

the order of the orbifold group Γ and rγ is the order of the conjugacy class of γ. The sum

extends over the r conjugacy classes, which by the orthogonality theorem of characters is

equal to the number of irreps.

Therefore standard results dictate that if we have n parallel coincident branes (in the

regular representation n = Ng), then from the parent U(n) SYM would result a daughter

gauge theory which has gauge group
r∏
i

U(Nni) with aij bifundamentals transforming in the

U(Nni) × U(Nnj) factor.

We see of course, that aji = 1
g

∑
rγχγχ

(j)
γ χ

(i)∗
γ which since the adjacency matrix has

integer entries must equal to a∗
ji = 1

g

∑
rγχ

∗
γχ

(j)∗
γ χ

(i)
γ . The latter is equal to aij precisely

because our defining representation is real and thus χ∗
γ = χγ. Hence aji = aij and our

quivers are symmetric. In other words the reality of our singularity in the sense that the

orbifold is a real algebraic variety compels us not to have chiral matter and we have a “non-

chiral” N = 1 theory in three dimensions3. In order to arrive at chiral fields, one must use

the complex 7-dimensional representation for R(7), yet this is geometrically less clear and

complications shall arise as to how one finds a real G2 locus in the complex 7-dimensional

quotient.

The McKay quivers of (4.2) nevertheless provides us with an interesting class of non-

oriented finite graphs. We present them in Figure 1 for the imprimitives and Figure 2

for the primitives. The labels of the nodes (in blue) are the ni’s in the abovementioned

product gauge group
r∏
i

U(Nni). In the case of Γ ⊂ SU(2) these labels, by virtue of the

McKay Correspondence [33], are precisely the dual coxeter numbers of of the affine ADE

Dynkin diagrams. Moreover, each edge in the graph is a bi-directional arrow due to the

symmetry (non-chirality) of the adjacency matrix; multiplicities of these arrows are indicated

thereupon.
3We are of course being cavalier with the word chiral which for phenomenological purposes are of interest

to four dimensional theories; by non-chiral here we merely mean non-oriented quiver and ergo symmetric

aij .
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discrete subgroups of G2.

As a parting digression let us briefly comment on some implications of these graphs.

Indeed, as brane-probe theories, each graph corresponds to an N = 1 gauge theory whose



superpotential could also be computed using the Clebsch-Gordan coefficients of the respective

groups in the manner of [28].

Furthermore, it was conjectured in [21] and addressed further in [31, 32, 34] (see [35] for

some review) that string orbifolds provides some type of generalised McKay Correspondence

between the representation ring of discrete subgroups of SU(n) and the fusion ring of ŝu(n)

Wess-Zumino-Witten models at least for n = 2, 3, 4 where D-brane probe technology is

applicable. So these were the cases for Calabi-Yau orbifolds, now we have G2-orbifolds and

M-theory; could there be similar relations to ĝ2 WZW models? Indeed, some exceptional

cases for the latter model were found at levels 3 and 4 [36] while the complete classification is

still in want; could these perhaps be in correspondence with the quivers thus far presented?
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