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ABSTRACT

This thesis describes a new technique for studying the non-linear behaviour

of reinforced concrete frames with flexible joints. The method is based on

the concept of establishing an equilibrium deflected shape of a structure. The

computations involve two basic levels of iteration. First, starting with an

assumed nodal deformation, equilibrium deflected shapes and end forces of

individual members in a structure are calculated using

moment-thrust-curvature relations. The out of balance forces are computed

by considering equilibrium of member forces at nodal points. In the second

level of iteration based on a numerically computed nonlinear stiffness

matrix, the nodal deformation are updated until the out of balance forces are

negligible. The interaction of torsion with flexure has been assumed to be

independent and further, the members are assumed to behave linearly in

torsion. The influence of floors and cladding is ignored and only the skeleton

frame is considered in the analysis. The associated computer program

SWANSA based on the above method can be used as a design tool for sway

and nonsway concrete frames with or without flexible joints. An interactive

data entry facility allows the user to enter data by answering simple questions

or by returning default values.

Full scale experiments were carried out on eight column beam subframes to

validate the computer program. Each subframe consisted of a two storey

column with a short length of a typical mid-storey beam. Four types of

connection commonly used in precast construction were selected to connect

the beam to the column at mid height. Two sets of subframes were made for

each connection, one each of a pair of subframes was tested for upward and

11



downward rotations. The numerical technique is further validated with

results published in literature, including experiments and the finite element

method. All the comparisons show that the analysis developed in this thesis

can be used to predict the behaviour of precast and other reinforced concrete

frames for deflections, strains and for the ultimate loads.

Finally, it is shown how a computer program based on the new numerical

method can be used as an alternative method of designing rigid jointed or

semi-rigid jointed precast concrete 3-dimensional frames, taking into

account material and geometrical nonlinearities.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Precast concrete construction has been a competitive solution for single and

multi-storey buildings for a number of years. It is possible to construct

almost an entire structure, for industrial, commercial or residential purposes,

using precast components [1-6]. The components like column, beam, wall,

staircase and slabs are cast separately in a factory and assembled at site.

Casting these components in a factory gives the advantage of achieving

quality products. Precast components can be produced with good quality

finish so that no extra effort is needed on site. By using suitable connections

to assemble the components, the work involved at the construction site is

minimised and thereby the construction time is shortened considerably.

Practices in precast construction differ significantly from contractor to

contractor in terms of percentage of precast components used in forming the

structure and in the type of connections used in assembling the precast

components. In the UK most of the precast companies are involved in both

design and construction of precast structures. Design and construction by the

same company gives freedom to the contractor to develop and use their own

connections, developed and perfected over a long period. Four types of beam

column connections used by four different contractors in the UK are shown

in Fig45-4.8. This does not cover the entire range of connections used in the

UK but represents a typical range. The four types shown may be described

as Cleat connector, Welded connector, Billet connector and Web connector.
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General guidance for the design of precast structures is covered by the code

of practice on structural use of concrete, B S 8110[28]. There is also a helpful

document available, "The Manual of Structural joints in precast concrete

17], which gives detailed guidance in designing and constructing precast

concrete structures.

In precast construction, the components are connected on site. In design,

these connections have traditionally been considered as pin-joints for the

purpose of structural analysis of the frame. The moment of resistance of the

mechanical connections is not taken into consideration in determining the

strength of the structure. Thus, beams are designed as simply supported

members. The stability of a frame against lateral loading is normally

provided by rigid structures like, lift walls, shear walls, the cantilever action

of the columns, or by a combination of these.

A typical bending moment diagram of a portal frame with pin connections is

shown in Fig 1.1a and the moment diagram for a portal frame with monolithic

connections is shown in Fig 1.1b. The maximum sagging beam moment in

the beam is reduced considerably when the connection is monolithic.

When the frame is subjected to lateral load as shown in Fig 1.2, it is seen

that the moment at the base of the column is reduced considerably for the

frame with rigid connections. The reduction in column moment can have a

great effect on the design as the frame height increases. Multi-storey

buildings with pin connections have to resist lateral loads by cantilever

action of the columns or by introducing structural bracing. The connections

used in precast construction specially with cast in slab have considerable

connection stiffness, which could be used to advantage if taken into account.
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The real behaviour of precast connections would be semi-rigid, that is,

somewhere between that of a pin and a rigid connection.

The behaviour of precast connections is not well understood at the moment

and hence the designers ignore moment capacity of connections. This

simplifies the design, but makes the structure somewhat over-conservative.

If the knowledge of precast concrete connections could be developed to a

point, where a frame could be designed incorporating the strength and

stiffness of the connection, it would become possible to produce more

economical precast concrete structures.

The principal objective of this project, thus, was to develop a numerical

method incorporating the realistic behaviour of connections in determining

the ultimate strength of precast concrete frames and to verify the

mathematical model by means of full scale experiments.

A detailed literature survey revealed that there were two methods of analysis

that could be adopted for the purpose: the finite element method and the finite

difference method. The finite element method was not adopted on the basis

that modelling and computation can be time consuming and would not be

suitable for day-to-day application. The finite difference method based on

establishing equilibrium deflected shape [8] offered the prospect of a rapid

analysis, suitable for use with engineering workstations.

The method to be developed was kept simple by assuming the following:

1.	 Influence of slab and cladding through diaphragm action on beams and

columns and torsional moment on end beams is ignored and all the loads
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such as dead load, live load and wind load are transferred to beams and

columns.

2. Only the skeletal frame is considered in the analysis.

3. Plane section of a member remains plane after deformation.

4. Members behave linearly in torsion. Thus interaction of torsion with flexure

is ignored.

1.2. OBJECTIVES

1	 Developing a numerical model to study the behaviour of precast concrete

frames with flexible (semi-rigid) joints.

2 Obtaining experimental values for the ultimate load, member forces and

member deflections for precast column beam subframes under different

loading conditions and verifying the numerical model with the values

obtained from experiments.

3	 Verifying the numerical model with other available experimental and

analytical results.

4	 Producing a design approach.

1.3 SUMMARY OF WORK

Chapter 1: An introduction to the current practice in precast industry is given.

The need for a numerical method to analyse precast concrete frames with

flexible joints is discussed.

Chapter 2: In this chapter a literature review is presented under three

headings. a.) The analysis of individual members under elasto-plastic

behaviour, b.) analysis of nonlinear frames, and c.) influence of joint

flexibility in overall stability of frames.
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Chapter 3: A new numerical technique for analysing reinforced concrete

frames with flexible joints using moment-thrust-curvature relations [8] is

developed in this chapter. An associated computer program SWANSA is

described in a later part of the chapter.

Chapter 4: This chapter deals with the experiments carried out to verify the

new numerical method. A detailed description of the testing rig is given with

illustrative diagram and photographs. The manufacturing, storing, erecting

and testing of the column beam subframes used in the experiments are

detailed.

Chapter 5: The experimental results of the subframes tested are presented

along with the computed values for individual experiments. The attention is

given to the reliability of the computer program in calculating deflected

shape and the ultimate load. The comparison includes the deflections of the

two storey columns, strain values at critical positions and ultimate loads.

Chapter 6: Experimental and analytical study carried out by other

researchers on precast concrete frames are used to validate further the

computer program SWANSA. In this, six no-sway frames and two sway

frames are included.

Chapter 7: The design method proposed in this thesis is illustrated through

an example, where a two bay, three storey frame is designed using the

computer program SWANSA. Three types of connections are considered in

the analysis: one a monolithically cast frame, second a frame with flexible

connections and third with pin connections. The benefit obtained from

5



considering the strength and stiffness of the precast connection is

demonstrated.

Chapter 8: The results of the theoretical and experimental work carried out

in this project are discussed and conclusions from the work are drawn.

6
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CHAPTER 2.

SURVEY OF PREVIOUS WORK

2.1 INTRODUCTION

This literature review covers the theoretical development of the following

aspects:

The behaviour of beam-columns

The behaviour of joints used in precast concrete construction

The behaviour of structural frames with flexible joints.

The principal object of the review is to gather available knowledge that

would be useful in developing a numerical model for the analysis of precast

concrete frame. Both nonlinear numerical techniques and methods of linear

elastic analysis are reported.

2.2 GENERAL STRUCTURAL ANALYSIS

The behaviour of a structure depends on the geometry of the cross-section of

the members, boundary conditions, any initial imperfections and the material

properties of its members. The basic problem for the designer is to specify

the section details of the members to resist given external forces. The

designer has to assure that the structure has a stable equilibrium deflected

shape and the deflections in the members are acceptable under given loading.

Advanced theoretical analysis methods may be used to accurately predict the

capacity of a structure. In the absence of analytical methods, the strength of

the members may be obtained from experiments. Experiments are also
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essential for validating theoretical models, but once a theory is validated it

should be applicable to other similar circumstances.

2.3 PREVIOUS WORK ON BEAM-COLUMN ANALYSIS

BUCKLING ANALYSIS

The theoretical analysis of column behaviour is first attributed to Euler [10].

He considered a pin ended geometrically perfect column subjected to

compressive load acting along the column axis as shown in Fig 2.1. He stated

that the buckling load of a column is the load that a column can support

without bending and he further stated that the buckling load is inversely

proportional to the square of the height of the column. He defines the

buckling load as Tc2Ekk /a2. Where a is the length of the column and Ekk is

the stiffness moment which has to be evaluated experimentally. As defined

by Euler, Ekk is a function of sectional dimension of the column and the

stiffness of the material, equivalent in current definition to the product of the

modulus of elasticity and the second moment of area. Euler concluded that

the Ekk value is a constant for columns of same cross-section and material.

A corollary of the equation given by Euler is that very high values for

buckling load are obtained as the length of the column is reduced.

If a geometrically perfect column subjected to axial compressive load is

considered, the strain across the section will be uniform. When the axial load

is increased, at a critical load the column has two paths available. For slender

columns the buckling load is reached before stress in the cross-section of the

column reaches the yield value, resulting in the column failing by buckling.

If the column is short then the stress in the cross-section reaches the ultimate
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stress before the load reaches the Euler buckling load, and the column fails

in crushing.

Lamarle [11] observed that the Euler formula for predicting the buckling load

is applicable only if the column is not stressed beyond the elastic limit prior

buckling. Later, Considere and Engesser [11,12] modified Euler's formula

for the inelastic zone by replacing the Young's modulus by the tangent

modulus of elasticity, which is defined as shown in Fig 2.2. This modification

enabled a failure load to be predicted for short columns stressed into the

inelastic range before buckling. Shanley [13] observed that the actual

buckling load was close to the critical load calculated using the

tangent-modulus method.

A pin ended column bends in a single smooth curve when buckling load is

reached. For a fixed ended column, the ends are prevented from rotating and

the column bends as shown in Fig 2.3. This gives rise to the concept of

effective length. By using the distance between the points of contraflexure

as the effective length to be used in the Euler formula, the failure loads of

columns with different end-conditions, can be obtained. The effective length

method of designing a column is the outcome of the buckling analysis and is

widely used for steel and concrete structures.

By considering a column in its deflected shape under an axial load, a

differential equation governing the equilibrium of the column can be

obtained. The above equation can then be solved for the applicable boundary

conditions [14].
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SIMPLIFIED METHODS OF ELASTIC BUCKLING ANALYSIS

The following simplified methods to calculate the buckling load are available

if the cross-section of a column varies along its length.

Principle of stationary potential energy: This is also known as the

Rayleigh-Ritz [15] method. In this method a suitable deflected shape in the

form of algebraic or trigonometric series is assumed and the solution is

obtained by considering that the sum of the strain energy in the column and

the potential energy of loading will not change at equilibrium. The critical

load, obtained by this method, depends on the accuracy of the approximation

for the deflections.

The Finite Difference Method was developed by Collatz [16]. Finite

differences are used to represent the differential coefficients at nodes along

the beam-column by a linear combination of deflections. This allows the

differential equation governing the behaviour of the beam-column to be

replaced by a series of linear equations. The advantage in using this method

is that sufficiently accurate answers can be found for problems involving a

change of cross-section along the length.

Finite Integral Method: This method was developed by Brown and Trahair

[17]. This is a reversal of the finite difference method. It is claimed that the

numerical integration gives greater accuracy than that provided by numerical

differentiation[ 11].
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NON-LINEAR ANALYSIS

Commonly used columns are not perfect and often subjected to loads other

than the axial load. Columns in this category do not have a buckling load but

maintain an equilibrium deflected shape from the beginning of loading. Lack

of strength to support the load is indicated by excessive deflections.

There are three modes of deflections anticipated in a beam-column, namely:

single axis bending, bi-axial bending and lateral torsional buckling. Lateral

torsional buckling is not covered in this study since reinforced concrete

columns have a relatively large torsional rigidity, reducing the influence of

torsional effects.

A theoretical analysis of eccentrically loaded column was first considered

by von Karman [11,18]. A strain pattern was assumed for the column section

and an expression was derived for the axial load and bending moment at the

section. The above expression was equated to the axial load and the external

moment at that point. The resulting equation was solved for deflections using

the stress-strain curve for the material with the assumption that the concave

side of the column reaches a maximum strain. A graphical integration method

was used to evaluate the integral.

The above method was later simplified by Westergaard and Osgood [19] by

assuming a suitable shape for the column deflection.

A procedure based on moment-thrust-curvature relations for computing

deflected shape, using a stress strain table, was proposed by Wilson [20].

His procedure, however, was limited for beam-column with prismatic

sections. This method was later adapted for irregular sections by Gesund
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[21]. The deflected shape of the column was assumed and the curvature of

the column was calculated at selected stations along the column. By varying

the neutral axis position, axial thrust in the column was calculated using

stress-strain data. The difference between the von Karman method and this

method is that no assumption for strain and boundaries are made. The

bending moment was then calculated at the neutral axis position for which

the axial thrust equals the column load. This procedure was repeated at all

the stations and the station moments were equated to the moments due to

external forces. Iterative technique was then used to modify the deflection.

Another computer method, applicable for single axis bending, was developed

based on the moment-thrust-curvature relations by Cranston [22]. He used a

computer program based on the above method to do an extensive study on

ultimate load of concrete columns subjected to varying end conditions. The

findings of the above study were later included in CP110 [72] both for the

column effective length calculations, and for the added moments to be

included for second order deflections. The area integration for axial load and

bending moment in a section was carried out by subdividing the section in

to smaller elements. Warner [23] described a method applicable to short

reinforced concrete columns subjected to biaxial bending based on

moment-thrust-curvature relation. It is similar in concept to the method

proposed by Gesund. Milner [24] also developed a concept to calculate the

ultimate load for restrained H-columns under biaxial bending using moment

thrust curvature interaction. Virdi [8] further extended this method by using

numerical integration techniques and a better iterative method which leads

to faster convergence. Virdi's modification provides an advantage when

analysing members with section consisting of different materials and

arbitrary boundaries. The method is based on the determination of the actual

deflected shape of the beam-column and hence gives an almost exact solution

14



to the problem. The above method has been verified extensively for steel,

reinforced, and composite columns [25,26,27]

The finite element method could also be used to perform linear and

non-linear analyses of reinforced concrete beam-column. This is discussed

in some detail under the literature review on frame analysis.

2.4 PREVIOUS WORK ON FRAME ANALYSIS

GENERAL

Cast-in-situ reinforced concrete frames are an example of rigid frame

construction where the beam-column connections have sufficient rigidity to

maintain the original angle between members at the junction. Precast

concrete frames are usually considered as simple frames in current design

practice assuming that the beam-column connections have little moment

resistance and are free to rotate. The semi-rigid frames are those where the

beam-to-column connections have finite moment capacity ranging between

the capacity of monolithic connection at one extreme and a pin connection

at the other.

The design specification for reinforced concrete frames as specified in

BS8110 [28] suggests that non-sway frames can be divided into sub-frames

in order to calculate the member forces due to vertical load. A moment

distribution method is then applied to the subframe to calculate the member

forces. The lateral loads on non-sway frame are assumed to be taken by stiffer

components like lift walls within the structure.
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In sway frames the member forces are calculated by combining the forces

obtained from non-sway analysis and the forces obtained from lateral loads.

The cantilever method or portal method [29] is used to calculate the member

forces due to lateral loads.

LINEAR ANALYSIS

Moment distribution was first introduced by Hardy Cross [32,33]. The

method is a mechanical process to calculate the member forces in an

indeterminate structure. The stiffness and carry over factor of the member

are calculated assuming an elastic behaviour of the material. Starting from

the fixed end moments of the beam, the moments are progressively

distributed at the joints in proportion to the stiffness of the members

connected at each joint and carried over to the far end of the members. The

distribution of moments is continued until the out of balance moment in each

joint is zero. The subfrarnes suggested in BS8110, could be analysed using

the moment distribution method. This method is still considered by designers

as a valuable tool for solving structural problems.

When considering sway frames, the Hardy Cross method requires additional

analyses to be performed considering shear in each storey separately. Naylor

[34] developed a faster converging method based on the Hardy Cross method,

to analyse single-bay multistorey frames with sway.

The slope deflection method to analyse multistorey frames was given by

Chwalla and Jokisch [35]. The Moment distribution method is a procedure

for solving the equations in the slope deflection method. The slope deflection

method is used widely for linear analysis of frames. In the basic method the

axial shortening effect is not considered in the analysis. The effect of axial
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load on the flexural behaviour of the member is considered by using stability

functions[36]. Ekhande et al[37] detail stability functions that could be

included in three-dimensional analysis.

Frazer, Duncan, and Coller [38] proposed the concept of analysing a frame

by combining the structural solution with matrix theory. Their method is

basically a slope deflection method adding axial shortening and axial load

effects to flexural behaviour. It's full development occurred after computer

became widely available.

The P-delta effect, that is taking into account the eccentricity of axial load,

was considered in elastic analysis of concrete frames by MacGregor et al

[39].

As the structures become tall and slender non-linear and secondary effects

become more important. Over the past 20-30 years, considerable research

effort has been directed towards the nonlinear behaviour of frames.

BUCKLING ANALYSIS

Bleich [11,30] first presented a systematic analysis of the stability of frames.

He used the fundamental differential equation of the tangent modulus theory

and defined the stability factors. Then equilibrium and stability were

considered in the analysis of the frame. Bleich also developed buckling

analysis of frames using energy methods[11,30]. By applying the principle

of virtual work to the frame, a condition of equilibrium could be obtained

for internal and external forces.

The influence of axial load effect on torsional stiffness was included in an

elastic stability analysis of frames by Vaart [31].
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NON-LINEAR ANALYSIS

The plastic theory of analysing frames started after the Steel Structures

Research Committee pointed out, in 1930[51,52], the uncertainties in

designing the structure using the elastic method. The elastic method does not

provide the designer with a knowledge of the exact behaviour of structures

which approach their failure load. The theory assumes that whenever the

fully plastic moment is attained at any section, a plastic hinge is formed

which can undergo rotation of any magnitude as the moment at the hinge

remains unchanged at plastic moment value. The plastic method of design

was first used in 1949 [40,41]. Plastic theory was used to estimate the

collapse load of the structure.

The plastic theory has the following limitations;

1. Loads are carried mainly by bending, and the effects of axial load and shear

force on a member are assumed to be small.

2. The checks on deflections have to be made separately.

Majid [42] developed a theory to analyse the geometrically nonlinear,

elasto-plastic behaviour of frames up to collapse. He traced the load

deflection history of the frame by varying the applied load in small

increment. When the bending moment was equal to plastic moment a hinge

was introduced at that point and the procedure carried on until the frame had

lost all its stiffness.

Design methods were formulated to include the additional moment created

due to the eccentric action of vertical load due to side sway. A numerical
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method presented by Gharpuray [43] calculates the elastic plastic response

including the P-Delta effects and the reduction in plastic moment capacity

due to the presence of axial load. The method gives reasonable agreement

with the experimental results.

Turner et al [44] developed a numerical technique called the finite element

method and Zienkiewicz [45] has contributed a considerable amount of work

in further development of finite element analysis. The technique is widely

used for elastic analysis. Structures of any shape can be analysed using this

method. However, it can be an expensive method in terms of computer time,

for day to day use in a design office.

A finite element method for elasto-plastic analysis was presented by Hsiao

et al [46]. This method uses beam elements and solves the nonlinear

equilibrium equations. This method is applicable for analysing frames with

large displacement.

The finite element model for non-linear behaviour of concrete members was

developed some 25 years ago by Ngo and Scordelis [47]. The basic difficulty

in modeling concrete in the finite element method is that the method has to

locate zones of cracking and then estimate the effect of cracking on the

overall behaviour of the structure. Several current computer programs (e.g.

LUSAS) can perform analysis of reinforced concrete frames with flexible

joints. Non-linear material models for concrete in finite element packages

usually have limitations. The stress strain relation for concrete in

compression is assumed to be linear. The computer time required to perform

the analysis also makes the program unusable in daily practice.

Gesund [21] proposed a method to analyse space frames based on the finite

difference method. Using the stress-strain relation of the member material
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and sectional dimension, moment thrust relations are obtained over a

possible range of curvatures. The axial load and the trial moment at the ends

of the members are calculated using elastic analysis. The members of the

frame are divided in to a number of segments and the bending moment at

each node is calculated from the end forces. By using these moments together

with the help of a moment thrust curvature table, corresponding curvature at

all the nodes can be found. The curvatures are then converted to

displacements, subject to boundary conditions. This method assumes that the

axial load remains constant during the calculation. The procedure is repeated

until the deflections converge. The method of analysis is limited to regular

frames.

A concrete portal frame was analysed by Chan s [48] using

moment-thrust-curvature relation. Good correlation was obtained when

compared with experimental results.

Virdi [49] proposed a method to analyse space frames using the

moment-thrust-curvature relation. The method was an adaptation of his

theory for biaxially loaded columns. It takes into account the change in

direction of member forces along the member stations. Equilibrium is

considered at all the stations and at nodal points. For an assumed deflected

shape internal forces at the stations are calculated and by using equilibrium

equation corrections for the deflection can be calculated.

The moment-thrust-curvature method provides the flexibility necessary to

introduce semi-rigid joints at the end of the members. An incremental

stiffness matrix can be formed which incorporates the behaviour of the

joints. This will be discussed in more detail in Chapter 3.
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The effect of torsional moments on the flexural behaviour of steel members

was considered in the analysis of columns [50]. In general, the effect of

torsion on reinforced concrete members is considered separately from

flexural effects.

2.5 PREVIOUS WORK ON EFFECT OF JOINT FLEXIBILITY

GENERAL

Steel frames are treated as rigid frames and the existence of connection is

ignored in the overall analysis. Any connections are designed to have

minimum rotation when subjected to bending moment.

The importance of considering the flexible connection into the behaviour of

frames was first pointed out by the Steel Structures Research Committee in

1930 [51,52]. Considerable research has been carried out since then in

incorporating the effect of flexible joints in the design of steel frames.

Reinforced concrete frames are also treated as rigid frames and the frames

are cast monolithically to ensure rigid frame action. In the case of precast

concrete frames the analysis is normally carried out on the assumption that

the connection has no rigidity and only serves as a shear connector from

member to member. The actual connections do have considerable strength in

flexure [53] and if this is considered in the overall analysis of the frame it is

anticipated that the precast frame would have the advantage of having better

resistance against lateral load and also lesser mid span moments in the beam.
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The requirements of steel frames and precast frames seem to have a common

ground so that the knowledge in both the fields could be shared to advantage.

LINEAR ANALYSIS

Early researchers on the linear analysis of frames with flexible connections

are Wilson and Moore [56], Baker [57], and Rathburn [58]. The slope

deflection method was modified by Baker to include the flexibility of the

joint given that the behaviour of the joint was linear.

The moment distribution method of analysing frames was modified by

Rathburn, by considering that the behaviour of a connection was linear.

The matrix method of analysis was modified by Monforton and Wu [59] to

incorporate flexible joints. A linear behaviour of connections is assumed and

a modified stiffness matrix incorporating connection stiffness is used in the

analysis.

BUCKLING ANALYSIS

Very little work has been carried out on the stability aspect of flexibly

connected frames. The matrix stability analysis method was modified by

Romstad and Subramanian [54] by adding a correction factor for coefficients

of end rotations. The analysis was based on an elastic stiffness matrix. The

above method can be used to calculate the buckling load of flexibly

connected frames. A similar stiffness matrix method was proposed by Yu and

Shanmugan [55] to include the P-A effects and also the effect of axial load

on flexural stiffness in analysing flexibly connected frames.
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NON-LINEAR ANALYSIS

Two types of non-linearities are discussed under this heading. One is the

non-linear behaviour of connections and the other is the non-linear

stress-strain behaviour of the material.

The non-linear behaviour of connections was first considered by Batho [60].

He developed a method called the Beam Line method to calculate the moment

distribution in a member connected by flexible connections. The member is

considered as behaving elastically and the connections as behaving

non-linearly.

A matrix stiffness method incorporating the axial force bending moment

interaction was proposed by Chen and Lui [61]. The tangent stiffness matrix

of the beam column was formed for an assumed deflected shape and modified

for the connection behaviour by assuming an exponential function for the

moment rotation behaviour of the connection. The procedure was continued

by calculating the correction factor for the assumed deflection and was

repeated until convergence for deflection is achieved. The stress strain

behaviour of the beam-column itself was considered linear.

One method which considers the non-linear behaviour of the frame with

flexible connections is the plastic hinge method suggested by Melchers and

Kaur [62]. It is similar to the collapse mechanism discussed in the analysis

of frames. Hinges forming at the connections are based on the moment

rotation characteristic of the connections and are included in the analysis.
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A finite element method of analysis was developed by Hsieh and Deierlein

[ 63] to analyse steel space frames with flexible connections. The biaxial

behaviour of connections is considered in the analysis.

2.6 CONCLUSION

Since faster computers with more memory are becoming available for an

affordable price in design offices, it is considered that a numerical method

that could perform non-linear analysis of precast concrete space frame with

flexible joint would be an asset to the designer.

A finite element method of analysis, however, is anticipated to be time

consuming in terms of preparing the data and computing. As an alternative,

the moment-thrust-curvature method of analysing beam-columns was seen

as a potentially rapid approach for predicting a solution closer to the exact

behaviour of frames. This is developed fully in the next chapter.
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CHAPTER 3.

NUMERICAL ANALYSIS OF PRECAST CONCRETE FRAMES

3.1 INTRODUCTION

It is customary to study the nonlinear behaviour of structural frames by

following their load-deflection response. Frames generally exhibit reduction

in stiffness with increase in external loading. The ultimate load is determined

when the structure stiffness reduces to zero.

The overall nonlinear behaviour of a structure can be attributed to the

following two parameters.

1	 Actual nonlinear stress-strain behaviour of the material.

2.	 Geometrical nonlinearity, associated with the need to satisfy equilibrium in

the deflected state of the structure or its members.

This chapter describes a new numerical method of analysis of precast

concrete frames with semi-rigid joints. The procedure is based on the

calculation of the equilibrium deflected shape of the frame and its members

for increasing levels of applied external loading. The procedure incorporates

both material and geometrical nonlinearities. Nonlinear behaviour of

semi-rigid joints is taken into account,
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3.2 ASSUMPTIONS MADE IN THE NUMERICAL MODEL

The following assumptions are made for formulating the numerical model to

analyse the precast concrete frames with flexible joints.

I. Influence of slab and cladding diaphragm action on beams and columns, and

torsional moment on end beams, are ignored and all the loads such as dead

load, live load and wind load are transferred to beams and columns.

2. Only the skeletal frame is considered in the analysis.

3. Plane section of a member remains plane after deformation.

4. Members behave linearly in torsion

5. Torsional or shear forces do not affect the calculation of axial load and

moment using moment-thrust-curvature relations of a section.

3.3 MODELLING OF FRAMES

Precast concrete frames may be viewed as an assembly of members forming

a structure skeleton. A general member in the structure can be represented

by a beam-column of finite length, connected on either side through flexible

joints. A flexible joint is an element with zero length but has defined rotation

for a given moment. Monolithic joints may be assumed to be flexible joints

with zero rotation for any given moment. In the case of a pin connection, the

joint has zero moment of resistance for any joint rotation.

3.4 CONDITION OF EQUILIBRIUM AND COMPATIBILITY

For a frame at its equilibrium deflected shape the nodes in the frame have

specific rotations. A typical beam-column also has an equilibrium deflected

shape. There exists a set of end forces and end deformations relating to this
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beam-column deflected shape. A flexible joint transmits the forces from one

end to the other end without any change in magnitude. The member end

deformation is thus equal to the nodal deformation. The difference in member

end rotation and beam-column end rotation is due to the rotation in the joint.

For the equilibrium deflected shape of a frame at a given load level, the

following basic conditions need to be satisfied.

1. Beam-column is in equilibrium with end forces.

2. Joint moments and rotations are in accordance with joint characteristic.

3. Member end forces at a node are in equilibrium with external nodal forces.

4. Compatibility of member end deformation at nodal points must be satisfied.

3.5 OUTLINE OF THE METHOD OF ANALYSIS

It may be helpful to state the overall scheme of computations.

1. Consider a frame with assumed or previously calculated nodal deformations.

2. Nodal deformations in global coordinates are converted to member end

deformations by using a transformation matrix.

3. Member end forces required to hold the member in equilibrium deflected

shape, retaining the end deformation obtained in the above step, are

calculated.

4. Member end forces are then transferred to global axes and assembled at the

nodes. These forces are then checked for equilibrium with external forces.

5. If member end forces are not in equilibrium with the external forces, an

iterative technique is used to calculate the corrections to the nodal

deformations.

6. Steps 1-5 are repeated until convergence in global deformations is obtained.
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52i

53i
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These steps are also shown in the flow chart of Fig. 3.6.

3.6 DEVELOPMENT OF THE NUMERICAL MODEL

3.6.1 NODAL AND MEMBER DEFORMATIONS

A typical member A-B in a space frame is shown in Fig. 3.1. A global

coordinate system is used to define the nodal points on the frame. Each

member has its own local coordinate system to represent member forces. The

member A-B has global node i at end A and global node j at end B. The

deflections of the global node i and j at the two ends of the member are

expressed in terms of its components.

52j
63j

Similarly, the rotation of the global nodes i and j are

Oi =
eli

°21

03i

O . =

Li

02j
03j

3.2

These deflections and rotations are transferred to member axes by the

following transformation

{5} = [1]{A}	 3.3
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where {ö} is the vector of member deformations at end A and end B with

respect to member axes.

In expanded form, the above equation may be written as:

-
11m1n1000000000

12 m2 n2 0 0 00 0 00 0 0

13m3n3000000000

0 0 0 1 1 m 1 n 1 0 0 0 0 0 0

00012m2n2000000

0 0 0 13 m3 n3 0 0 0 0 0 0

0 0 0 0 0 0 1 1 m 1 n 1 0 0 0

0 0 00 0 0 12 m2 n2 0 0 0

0 0 0 0 0 0 13 m3 n3 0 0 0

0 0 0 0 0 0 0 0 0 11m1n1

0 0 0 0 0 0 0 0 0 12 m2 n2
0 0 0 0 0 0 0 0 0 13 m3 n3_

Where the lk,mk,nk (k= 1,3) are the direction cosines of the member axes.

3.6.2 EQUILIBRIUM DEFLECTED SHAPE OF MEMBERS

TYPICAL MEMBER

Typical member from a frame is shown in the left hand side of Fig 3.2. All

the members in a frame can be represented by a unified representation

without losing its functionality by shifting member z-axis to pass through

end B as shown in the right hand side of Fig 3.2. By developing a method to

calculate an equilibrium deflected shape of this typical member all the

members in a frame can be analysed for equilibrium deflected shape.
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The stability behaviour of isolated restrained columns has previously been

studied by Virdi [8]. The method, and the associated computer program

VARCOLS, enables computation of the ultimate load of no-sway isolated

columns. Columns of a variety of cross-sections, including material and

geometrical nonlinearities, a variety of load paths, as well as variability of

cross-section along the length of the column can be analysed. The method

has been extensively verified by tests on composite and reinforced concrete

columns[25-27] For member equilibrium, Virdi's method has been adopted

with no major modifications.

Fig 3.3 shows a beam-column of length L with flexible joints at the ends.

The axial load is P, the biaxial end moments at A are MxA and MyA, and

the end moments at B are MxB and MyB. The end B is restrained in all six

directions. The end A is restrained in all the directions except for the

displacement along z-axis.

The stable equilibrium shape of a deflected beam-column is obtained by

subdividing the column into a number of segments and establishing

conditions of equilibrium at the stations where segments are connected. For

given end forces, the moments produced at a station by the external forces

need to be in equilibrium with the internal moments derived from the

curvature.

The beam-column is subdivided into n segments. The stations at the end of

the segments are numbered, starting from end A to end B, as 1 to (n+1). The

length of each segment h is equal to L/n. Let the lateral displacements of the

centroid of the cross section at station i be ui and vi and the moments due to

external forces be Mexi and Meyi.
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3.6

3.7

3.8

MOMENT-THRUST-CURVATURE RELATION

For small deflections, the total curvature in the x and y planes, ckx and (by,

can be expressed in the form of second derivatives of deflections, which can

be simplified using finite differences as follows.

a2v	 1
(pxj—

az2

_vi_1-2vi+vi+i)
3.5

Thus, the curvatures can be calculated from the assumed deflections. These

curvatures are combined to obtain the principal curvature 4), with the neutral

axis lying at an angle 0 measured from x-axis anti-clockwise Fig 3.3.

0:1)_46:13,2x±(1)20

7C	 —1
0 = —2 +tan Oy (kx)

The strain distribution across a section is a function of the corresponding

curvature (I), the direction of neutral axis 0, and the location of neutral axis

dn.

= E(x,y,CO,dn)	 3.9

From the assumption that plane sections remain plane upon flexure, it

follows that

6 = (IA	 3.10

Where d is the perpendicular distance of the point from the neutral axis.
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The material stress-strain curves are represented by

{a} = {(3(8)}
	

3.11

Stress is interpolated for a given strain from the provided material stress

strain data. The internal forces of the section may then be expressed as

P = f a dA
A

Mx = i
A

 a x dA

M = .1
A

 a y dA
Y 

This area integration over an arbitrary cross section with nonlinear stress

distribution is very complex. The above calculation is simplified by

discretising the section into a number of quadrilaterals. Using transformation

of natural coordinates and Gauss quadrature, the area integral can be replaced

by weighted double summation [1]. By systematic correction, it is possible

to calculate the position of the neutral axis for which the internal axial load

equals the external load. Internal moments are then calculated for this

position of the neutral axis.

MOMENT ALONG THE MEMBER DUE TO EXTERNAL FORCES

General equations for moments at a distance d from the end A can be written

as follows. These expressions are based on uniformly distributed lateral load

W. For other loads, similar expressions can be obtained.

3.12

3.13

3.14
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3.15

3.16

3.17

3.18

3.21

3.22

d2

Mex= PvA– Pvd + MxAAd " y 2

d2
Mey= – Pu.A+ Pud + MyA + FxAd + vv x 2

L2
where FxAL – MyA – MyB + PuA – vv x-2

w L
2

FyAL = Mxp + MxB + PvA " Y 2

and P represents FzA.

by substituting for Fx)k and Fy ik in equation 3.15 and 3.16

Mex= PvA– Pvd+ MxA– (MxA+ M + PvA— 
L2 d	 d2

	
3.19

viT L2\ d	 d2
Mey= – PuA+ Pud+ MyA+ (–MyA–MyB+ Pup– vv x 2 )L+ vvx

The moments due to external moments at station i can be written by

substituting d=L*(i-1)/n. The simplified equations after substitution are as

follows.

Mexi= PvA.– Pvi+ (
n–i+1

)MxA– n
1
)( /1xl3+ PvA)

+w (i-1)(n–i+1)
L

2

2n2

meyi_ puA+ pu	 i„i tn–i+1\
n	 AmyB– PUP)

_wx(i-1)(n–i+1) 2

2n2

3.20
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Where up and vp are lateral deformations at end A in the x and y directions

respectively, relative to end B as shown in Fig 3.3.

END ROTATIONS AND END MOMENTS

The following finite difference form is used to calculate the end rotations of

the beam-column.

3.23NA = — (v3 — 4v2 +3va)/ 2h OyA = —(u3 — 4u2 +3ua) /2h

ey B = —(vn_ 1 — 4vr) / 2h	 ey B = —(un_1 — 4un) / 2h
	

3.24

The end rotations of the members are directly obtained from nodal

deformations of the frame. The joint rotations are given by relative rotation

between the beam-column and the corresponding member end. In the

presence of flexible joints at the ends, the joint moments are related to joint

rotation through the characteristic of the joint, Fig 3.5. As already

mentioned, rigid joints can be analysed using very high values for joint

stiffness. Similarly, pinned connections are assumed to have zero stiffness.

The following expressions may be written for the joint rotations and member

end moments.

KA—KA (Or)	 1\'/IxB=MxB (NB)
	

3.25

MyA—MyA (0yAr)	 MyB=MyB (eyBr)
	

3.26

Where Or's are joint rotations as shown in Fig. 3.4
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3.29

3.30

After the calculation of internal and external moments, an iterative technique

is required to obtain a solution for the beam-column deflections.

ITERATION SCHEME

A simple iterative scheme to arrive at equilibrium deflected shape is

explained below. Equations 3.21 and 3.22 can be rewritten as follows.

n—i+1	 i-1 
Pvi= PvA— Me,d+ n )MxA—( n )(/1xB±PvA)

3.27i —1)(n—i+1) 2
"Y 2n2

n—i+
1
	,i-1

Pu i= PuA±Mexr( n ) A k n —PuA)

3.28(i-1)(n—i+1)
L

2
+Wx

2n2

For equilibrium deflected shape, the external moment must be equal to the

internal moment calculated from curvature. Let the deflection be {u,v} k and

the next correct deflection be {u,v} k+1 . It can be shown that:

re k+1
r Vi =—ivixi

k n vA+(
n—i+1

)MxA
k
+(--

i—
ni )(MxB

k
+PvA)

(i-1)(n—i+1)L2
+Wv

'	 2n2

n—i+1	 k ii
Puik+1 =Mxik+Pup--( n )MyA +( 1-7)(MyB

k
—PuA)

(i-1)(n—i+1) 2
+Wx

2n2
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.k	 .kWhere Mx i and My i are the internal moments at deflection I ti,v1 
k

The equilibrium-deflected-shape can be calculated from the above four

equations by modifying the deflections iteratively and also modifying the

end moments if they are functions of end rotations.

By going through the above cycle, starting from an assumed deflected shape,

convergence will be reached if an equilibrium shape exists for the given

load condition.

SECOND ORDER ITERATION

By using a Newton-Raphson iterative technique, the convergence can be

accelerated considerably. The Newton-Raphson method suggests that if

M(w)=0 is a function of w, a better approximation wk+i for an assumed value

Wk can be given by.

wk+i =	 [1\4' (wk)]-11\4(wk)	 3.31

Where M (wk) is the matrix of derivatives of M(wk) with respect to w at wk.

by replacing the function M by {Min(w)-Me(w)} and rearranging

e] { wk+1- wk}	 {Min+ Me}	 3.32

{Min-Mel is the vector of difference of internal moment to external moment

and has (2n+2) elements, where n is the number of subdivisions in the
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member. {wk-Fl-wk} is the vector of correction to the deflections and also has

(2n+2) elements.

It follows that the [M in-M e] term is a matrix of (2n+2)x(2n+2) elements.

This matrix can be considered as a difference of matrices, [M in] based on

internal moments and [M e] based on external moments, each of

(2n+2)x(2n+2) elements. The method of forming these matrices is examined

next.

Formation of matrix [M in]

Internal moments Mxi and Myi are functions of curvatures in the x and y

axes at station i. Therefore they may be regarded as functions of ui+1, ui,

Vi+1, vi and vi-i. The non zero derivatives of internal moment at station i with

respect to deflections can be written as follows.

alwx öM 1 5M 1 öM 1 amx amx 

5ui-1 	 aui	 avi	 avi-Fi

amy amy amy amy amy amy

aui-i	 aui	 aui-Fi	 j-i	 avi

where i=2,n

For a small increase A in displacement ui at station i new curvature is

calculated. As described before new internal moment Mxi and Myi are

calculated using moment-thrust-curvature relations. Difference in moment

divided by the increase in displacement gives the derivative of moment with
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3.33

3.34

respect to u at station i. Similarly by repeating the analysis for displacement

v derivatives of moments with respect to v at station i can be obtained.

Using Equations 3.5 and 3.6 the following relationships are obtained.

aMx aMxi--2 .31\4x	 aMy amy	 aMy

-	 --2
aui-1	 i+1	 aui	 aui-1 aui+1	 aui

amx  amx amx	 amy	 amy
-	 --2	 -	 --2

avi-1 avi+1	 avi	 avi-1 avi+i	 avi

The above relationships are used to calculate the rest of the nonzero

derivatives in matrix [M ini.

Formation of Matrix [M e]

The moment due to external loading consists of two components, one due to

axial load and the other due to external moments.

In the equilibrium state, the external moments along the length of the member

depend upon the end rotations, which in turn are functions of the deflections

of points used to calculate the end rotations. Therefore, the end moments may

be regarded as functions of UA, u2, U3, vA, v2, v3, un-1, un, Vn-1, V. If the

external moment at end A in the y-axis is M°yA, due to an increase of A in

U3 the contribution of external moment at station i is given by

aMexi (fl-i+1 M° A 
X Y

A—3

3.35

similarly for a A increase in un-I
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3.36

3.37

3.38

3.39

3.40

exi i-1 M°yB—MyB
)

f	 \f

au.-1 n	 A

for a A increase in v3

Meyi
—(n

—i+1
) (

M°xA—MxA
)

5v 3	n	 A

for A increase in vn-1

i-1 1\4°xErIVIxB,eyi 	 \f

n A A

By using equations 3.23 and 3.24 the following expressions are obtained.

aMexi 1 aMexi	 i 1 Meyi 
=—(A)	 Y --(A) n‘,

uu2 	 "3	 "2	 '3

Mexi 1 Mexi	 5Meyi
--(

1
)
Meyi 

=—(aun	4 aun_i	 avn	 4 avn-1

The moment aloag the member due to axial force is a linear function of

deflection. Hence the derivative of this moments with respect to deflections

may be expressed as a diagonal matrix with axial load as the uniform

diagonal member.

The above derivatives together with the uniform diagonal matrix with axial

load are combined to form the matrix [M e].
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Solution technique for member equilibrium deflected shape

A systematic procedure for solving the nonlinear equations 3.31 is outlined

below.

1. Assume a deflected shape.

2. Calculate curvatures.

3. Calculate internal moments. Using a small increment calculate the
.	 ,

matnx [M ].

4. Calculate end rotation of the beam-column.

5. Calculate joint rotation and then obtain joint moment.

6. Calculate moments along the stations due to external forces.

7. Solve the simultaneous equation 3.32

8. If the correction for deflections are not small enough, steps 1 to 8 are repeated

until convergence in deflections is obtained.

This step by step procedure gives member equilibrium deflected shape for a

given end rotations and member loadings. It is important to notice that the

axial load in the member is not altered in the above procedure. As mentioned

earlier end A is free to move in z-direction. The axial deformation at the

equilibrium deflected shape can be obtained by summing up the axial

shorting of the individual segments between two stations. Axial shortening

of a segment can be calculated by multiplying the average strain along its

geometrical centre line by the original length of the segment.

For the purpose of the frame analysis the deflected length of the member

must be equal to the distance between the corresponding nodal points in the

frame. This necessitates another iteration that systematically alters the axial

load until the above condition is satisfied.

42



3.6.3 EQUILIBRIUM DEFLECTED SHAPE OF FRAMES

NODAL EQUILIBRIUM

The end forces obtained from member equilibrium deflected shape

calculation is now checked for equilibrium at nodal points. If the two are not

in equilibrium then corrections to nodal deformations must be calculated.

Consider a beam-column as shown in Fig.3.2. The member end forces {p}

are functions of member deformation {S}.

{p}={p(5)}
	

3.41

These end forces are transferred to the global axis system by multiplying by

a transformation matrix. The member forces in global coordinates become:

{P} = {P(A)}
	

3.42

-where {A} = [T] 1 {d} are the global deformations. In the context of iterative

procedures, if the external nodal forces were represented by {F}, and

unbalanced nodal forces by {R} the global unbalanced nodal forces may be

written as:

{P}-{F}={R(Ar)}	 3.43

where {Ar} are the global deformations at the rth iteration. The aim of the

iteration is to reduce all the unbalanced forces to an acceptably small value.
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The generalised Newton-Raphson method for iterative solution suggests that

an improved set of deformations {Ar+1} is given by

lAr+i-z } = [R'(AM-11R(AM
	

3.44

By substituting {R} in terms of {P} and {F}

lAr+i-Arl =- - [Pr f	 ]11{Pr}-IFII
	

3.45

Since applied {F} are constant for a load case, {F }=0. Thus,

{ Ar+i-Ad = - [Pr f ]{ {Pr}- {F)}
	

3.46

By multiplying both side by [Pr I

[Pr ' l{Ar+14} = -{Pr}+{F}	 3.47

where [Pr ] is an assembly of member incremental matrices [K].

The member incremental stiffness matrix can be represented by

dP(8i)
	

3.48

doi

where i,j=1,12
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INCREMENTAL STIFFNESS MATRIX

In the general case, the incremental stiffness matrix would be a 12x12 full

matrix. By the assumption mentioned earlier that the torsion is independent

of all the other deformations, the columns and rows representing the torsional

force and torsional rotation in the above matrix are made zero except for the

derivative of torsional force with twisting rotation, which represents the

torsional rigidity.

aFvk aFzA aFzAaFzA aFzq aFzA aFzA aFLA	 aFzik aFzA -0	 o	 ,	 ,,
as.A as.A a8yA	 ao.A aeyA as.B a8xB 38yB	 aUxB aUyB
aFxA aFxA aFxA	 aFxA aF.A aF.A aF.A aF.A	 aF.A aF.Ao	 o „

avyBaa.A as.A asyA	 ao.A aeyA 08.B ao.B a8yB	 au.B
_y_a F A __y_aF A (1F_y_A 	aFyA aFyA 	 aaFyA FyA aF A	 _y_aF A ___y_L,aFo	 0
aszA as.A asyA	aoxp aOyA MA; akB a8y13	 aOxB aoyi,

0	 0

am.A am.A„	 „
av.B avyB
aiviyA amyA

ao.B aoyB
aFzB aF.B 

aaFex,: aaFeY.BB
aoxB aoyB

B _y_aF B
aoxB aoyB

am.B 	 amzB0	 0	 0	 0	 0	 0	 0	 0 -,,v,,	 0	 0
aozA	o.B

amxB amxB amxB	 amo am.B amo alqxB am.B	 am.B am.B0	 o
aozA as.A a8yA	 ao.A aoyA as.B aa.B asyB 	 ae.B aeyB
amyl ON4343 amyB 0 iv.y1 131.1.yia	 amyB WyB PIAE 0 y  am B am B

ao.A aoyA aszB aozB aoy8	 ao.B aoy.a87A ao.A a8yA

The procedure for calculating the terms in the incremental stiffness matrix

is now explained using a step by step approach.

0	 0
am.A am.A

0

aivi.A am.A am.A

00000
aezA

am.A am.A am.A am.A am.A
aozB

o
as, as, aa,A

o ..,,,
ou.A aeyA aszB 88.B	 asyB

[K] =

amyl, amyA fylyp
 

amyA amyA amyA amyA amyA 0
oath a8.A aayA
aF zB aFzB aF zB

o
ao.A aoyA mai ao.B	 asyB
aFzB aFzB aFzB aFzB	 aFzB 0

aszA ao.A aayA
aF.B aF.B aF.B

0
ao.A aoyA as.B as.B	 asyB
aF.B aF.B aF.B aF.B 	 aF.B

aNA akA aoyA ao.A aoyA aszB a8.B	 asyB
aF,B aFyB aB aFyB aFyB aF B	 B	 B 0
aszA aa.A asyA ao.A ae,A ao.B okB	 asyB
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STEP 1

The member equilibrium position is calculated by keeping the end

displacements OxA, OyA, OxB, OyB and (OzA- OzB) constant as described in

section 3.6.2. End moments MxA, MyA, MxB and MyB and end forces

FzA, FxA, FyA, FxB, and FyB are obtained from the above calculation.

STEP 2

The member equilibrium position is calculated for an increment dFzA to

the existing axial load Fzik, while all the end rotations are kept constant.

Axial deformation O lizA, end moments MiixA, MiiyA, MiixB and MiiyB and

end transverse forces F iixA, F iiyA, F iixB and F iixB are obtained from the

above calculation. The following components of the matrix are then formed

using the above information.

dOzA. = (OnzA - OzA + OzB)

k(1,1)=-k(1,7)=-k(7,1)=k(7,7)=dFzA/dOzA

k(2,1)=-k(2,7)=(F11xA-FxA)/d8zA

k(3,1)=-k(3,7)=(F11yA-FyA)/dOzA

k(8,1)=-k(8,7)=(FilxB-FxB)/d8zA

k(9,1)----k(9,7)=(FilyB-Fy0dOzA

k(5,1)=-k(5,7)=(MilxA-MxA)/d6zA

k(6,1)=-k(6,7)=(MilyA-MYA)/dOzA

k(11,1)=-k(11,7)=(MuxB-MxB)/dOzA

k(12,1).----k(12,7)=(MilyB-MyB)/dOzA
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STEP 3

The member equilibrium position is calculated for a displacement of

dOxA at the end A along x axis while all the end rotations are kept

constant.

Axial deformation S iiizA, end moments M iiixA, MiiiyA, MiiixB and MiiiyB and

end transverse forces F iiixA, F iiiyA, F iiixB and F iiiyB are obtained from the

above calculation. The following components of the matrix can then be

formed using the a b ove information.

dOzA = (S inzA - OzA + 8zB)

k(1,2) = -k(7,2)= -k(1,8)= k(7,8)= -k(1,1)*dOzA/d5xA

k(2,2)=- k(2,8) = ((F11 A-FxA)-k(2,1)*d8zAl /dOxA

k(3,2)=- k ( 3 , 8 ) = “Fil1YA-FyA)-k(3,1)*d6zA }/dOxA

k(8,2)=- k( 8 , 8 )= {(FiNB-FxB)-k(8,1)*d8zA }/dOxA

k(9,2)=- k ( 9 , 8 ) =- {(FiliyB-FyB)-k(9,1)*dOzA lidOxA

k(5,2)=- k ( 5 , 8 )= {(Mi11xA-MxA)-k(5,1)*dOzAl /dOxA

k(6,2)=- k ( 6 , 8 )= {(MiliYA-MyA)-k(6,1)*dOzA lidOxA

k(11,2)=- k( 11 , 8 )= {(Mil1xB-MxB)-k(11,1)*dOzA }/dOxA

k(12,2)=- k(12, 8 ) == {(MillyB-MyB)-k(12,1)*dOzA }/dOxA

STEP 4

Similar to the procedure shown in step 3 the member equilibrium position

is calculated for a displacement of dOyA at the end A along y-axis while

all the end rotations are kept constant.
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Axial deformation, end moments, and end transverse forces are obtained

from the above calculation. Using the above information column 3 and 9 of

the element matrix can be formed following the same procedure as given in

step 3.

STEP 5

The member equilibrium position is calculated for an increment of dOxA

in rotation exp while all the other end rotations are kept constant.

Axial deformation O vzA, end moments MvxA, MvyA, MvxB and MvyB and

end transverse forces Fvxik, FvyA, FvxB and FvyB are obtained from the

above calculation. The following components of the matrix may then be

formed using the above information.

dOzA = (O V A - OzA + OzB)

k(1,5)=--k(7,5)= -k(1,1)*dOzA/dexA

k(2,5)=1(Fvx.A-FxA)-k(2,1)*(15zAl/dexA

k(3,5)={(FvyA-FyA)-k(3,1)*(1.5zA }/clexA

k(8,5)={(F vx13-FxB)-k(8,1)*ciOzA }/dOxA

k(9,5)=--{(F vy13-FyB)-k(9,1)*65zA }/dOxA

k(5,5)={(MvxA-MxA)-k(5,1)*dOzAl /dexA

k(6,5)={(MvyA-MyA)-k(6,1)*clOzA }/dexA

k(11,5)={(MvxB-MxB)-k(11,1)*c15zA }/dexA

k(12,5)={(MvyB-My3)-k(12,1)*clOzA }/dexA
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STEPS 6, 7, 8

The member equilibrium position is calculated for an increment of de in

rotation eyA, exB, eyB respectively while all the other end rotations are

kept constant.

Axial deformation, end moments and end transverse forces are obtained

from the above calculation. The columns 6, 11 and 12 of the matrix may then

be formed following the same procedure as detailed in step 5.

The above step by step procedure enables the member stiffness matrix to be

evaluated by a numerical procedure. Major advantages are that this procedure

has no limitation on the constitutive relations of the materials or on the

geometric shape and constitution of the cross-section.

SOLUTION TECHNIQUE

The element incremental matrices and the end force matrices are

transformed to the global axis system using standard transformation

matrices. By considering the equilibrium at nodes, the following

simultaneous equations are obtained:

-{Pr} + {F} = [1(]{dA}

The above simultaneous equations are solved for incremental

nodal deformations, such that the frame deformations are modified. The

above values are in turn used as the new nodal deformation in the procedure
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described in section 3.5. The process is repeated until the displacements

and rotations converge.

3.7 ULTIMATE LOAD

The equilibrium deflected shapes of a frame are calculated as described in

previous chapters for increasing values of applied loads. As the load is

increased the stiffness of the structure reduces and eventually vanishes. The

load at which equilibrium deflected shape for a member or a converged

solution for nodal deformations can not be found is defined as the ultimate

load of the structure.

3.8 DESCRIPTION OF COMPUTER PROGRAM "SWANSA"

INTRODUCTION

A computer program SWANSA (SWay And No-Sway Analysis) has been

developed based on the above procedure. A user friendly interactive data

entry facility has been written in C programming language. It allows the user

to modify an existing data file or to accept the default values. The main

program has been written in FORTRAN 77 and the full version can be

installed on any machine with UNIX or 0S2 operating system. A limited

version, mainly due to memory limitations, can be installed on any personal

computer that works under DOS.

A user manual for the above program has been written[70].
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MODELLING OF THE STRUCTURE

The structure is simplified as an assembly of nominally straight members.

The nodal points where members are assembled are defined by a global

coordinate system. The nodes are numbered in sequence starting from one.

In addition to global coordinate system each member is given a coordinate

system unique to that member so that member end forces and deformations

can be defined. The z-axis of the member coordinate system passes through

the member centre line from one end to the other. This defines the direction

of members. Assembly of members are defined by their node numbers at the

two ends, referred to as End A and End B. The member coordinate system

though fixed along the z-axis requires x-axis to be fixed in direction. This is

defined by giving the global coordinates of a point along the positive

direction of x-axis. This global and member coordinate system defines the

frame in a unique manner.

Member subdivision to be considered in the analysis is specified for each

member. The subcl ivisions are numbered starting from one at End A to End

B. Different sections occurring in all the stations in all the members are

classified and numbered. The shape of the cross section of a member is

defined in terms of constituent quadrilateral components. A given cross

section can consist of a combination of elements of different material

properties. An axis parallel to member x and y axis and containing the

cross-section in its positive quadrant is selected to define the coordinates of

quadrilateral components in a section. The member axis, normally the

geometrical centre, is fixed along the member z-axis. The coordinates of this

member axis relative to section x, y axis are also given while defining the

section data. Stress strain relations for each material are given as data.
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The members are connected through flexible joints. The moment rotation

characteristics of flexible joints are given as data. By default the program

assumes monolithic connection. The boundary conditions are given as fixed

or free for all six degrees of freedom (3 deflections and 3 rotations) wherever

it is required. By default the nodes are assumed to be free in all six directions.

LOADING

The external nodal loads are given at respective nodes in global axes. The

member loads such as distributed and point loads are given in terms of

member axis. It must be noted that the initial load factor to calculate

equilibrium deflected shape of a frame must be much lower than its expected

failure load factor. The facility is there in the computer program to maintain

a set of loading constant while the other set of loading is increased

proportionally with the load factor upto the failure of the structure.

ANALYSIS TYPES

The program SWANSA has the following options:

I. Non-linear analysis of 3-dimensional precast concrete frames. This analysis

can be carried out by providing non-linear stress strain data. Geometrical

nonlinearity is also considered in this analysis. Joints can be rigid, pinned,

or flexible. The data for joint characteristic is provided as multi-linear curve.

2. Linear analysis of 3-dimensional precast concrete frames. This analysis can

be carried out by providing linear stress strain data. Geometrical nonlinearity

is considered in this analysis. Joints can be rigid, pinned, or flexible. The

data for joint characteristic is provided as multi-linear curve.
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3. Any one or a combination of external forces can be increased to reach the

ultimate load. If the load increment is specified as zero, an equilibrium

deflected shape for the given loading can be obtained.

4. The output includes deflections, moments, shear forces, axial forces and

torsion at all the member stations and at global nodes.

STRUCTURE OF THE COMPUTER PROGRAM

Figure 3.6 shows a flowchart of the computer program SWANSA. The

geometrical, material and loading data are first read. The data file is

identified with ".dat" as its extension and any file submitted as data file

without this extension will result in termination of the program with a

message suggesting to submit a data file with ".dat" extension. The data are

first checked for validity and the interrelation. The data can be printed out

for verification purposes. If there is any data found to be invalid, the program

would be terminated printing out appropriate message with suggestions (if

any). Successful reading of data will initiate a routine to create a result file

with the same first name as data file but with ".res" extension. Similarly a

file is created for writing results on strain with ".stn" extension and a file for

writing information on plotting with ".plo" extension.

INITIAL CALCULATION

Values that will remain constant throughout the analysis are calculated at the

beginning of the program. The transformation matrix and the lengths of all

the members are calculated at the beginning. Gauss point coordinates and

weights of all the cross-sections are also calculated. Facility is provided for

using up to 10 Gauss points for each quadrilateral in the analysis. If the initial
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deflected shape is to be obtained from an elastic analysis, coefficients of

linear stiffness matrix are calculated as explained above. The initial

imperfections in members are calculated from the central deflection data

provided, if sinusoidal imperfection is to be included in the analysis.

ELASTIC ANALYSIS

Nodal and member loads are obtained by multiplying the given loads by

initial load factor. Elastic stiffness matrix and fixed end moments for each

member are calculated. The member stiffness matrix and fixed end moments

are then transformed to global axes. The out of balance force vector is formed

by considering equilibrium at the nodal points. The overall stiffness matrix

is modified according to boundary conditions. The solution of the above

simultaneous equation is obtained by Gaussion elimination, and used as trial

deformation for the frame nonlinear analysis.

NONLINEAR ANALYSIS

Nodal deformations are transformed to member deformation using

transformation matrix. Using material nonlinear data and joint moment

rotation characteristics member end forces are calculated for all the members

corresponding to their member end deformation. Equilibrium deflected shape

of a member is confirmed when member deflections at its stations converge

to a value. The tolerance for convergence is a predetermined percentage of

the summation of absolute values of deflections at all stations. If no

convergence in deflection is reached with prescribed number of iterations the

load factor is reduced. Recalculation starts from the last converged load

factor. The process is repeated until the load factor increments are reduced

to the prescribed accuracy.
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Incremental stiffness matrices for all the members are calculated step by step

as detailed in the previous sections. When the type of iteration used is the

modified Newton-Raphson technique, the Incremental stiffness matrix is not

recalculated and the last calculated stiffness matrix is used instead. The

vector of member end force and the Incremental stiffness matrix of each

member are transformed back to global axes using appropreate

transformation matrices. The overall incremental matrix is then modified

according to the boundary condition. If the boundary condition at any node

is rigid then the column and row in the overall matrix corresponding to that

deformation are made zero and the diagonal element of that row and column

is assigned a value of 1. The corresponding row in the out of balance force

vector is also made zero so that the modification to that particular

deformation will work out to be zero in the solution of the matrix equation.

This matrix equation is then solved using Gaussion elimination for increment

in nodal deformation. Deflections and rotations at each node are checked for

convergence separately. Current deflections at all the nodes are compared

with the previous deflection. If the difference in deflection is less than a

percentage of absolute total of all nodal deflections then the deflections are

considered converged. Similar check is made for rotations at nodal points

and convergence is determined. If the deformation converges, the structure

is considered to be in equilibrium deflected shape, otherwise nonlinear

procedure is repeated with the latest nodal deformation until convergence is

reached. The member deformation, member end forces and nodal

deformation are printed to the result file and to the plotfile after convergence.

The curvatures in x and y axis at all stations along the members with neutral

axis position are printed in to strain file for future extraction of strain profile

across member sections.
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The final value of the load factor for which a converged solution is obtained,

is taken as the ultimate load factor.

OUTPUT

A post processor for the above program has been developed for use with the

drafting system MICROSTATION from INTERGRAPH. The post processor

reads data from the plotfile and writes user command files as used in

Microstation drafting system. Microstation software has been customised by

modifying the side bar menu to include the commands necessary for viewing

the frame, deflected shape, bending moment diagram and shear force

diagram. The postprocessor will automatically activate Microstation with a

default drawing. The menu also allows the option to produce hard copy of

deflected shapes, bending moment diagrams and shear force diagrams. This

form of graphical presentation has been found to be very convenient for use

by practising engineers from the participating concrete firms.
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FIG.3.1 TYPICAL MEMBER IN A SPACE FRAME
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CHAPTER 4.

EXPERIMENTS

4.1 INTRODUCTION

As noted in the literature review, experimental results on flexibly connected

precast concrete frames or subframes are not readily available. In order to

fill this void, eight full scale experiments on column beam subframes CT1

to CT8 have been conducted to test the capability of the new theory discussed

in Chapter 3, and to validate the associated computer program for eventual

use in design or for developing design aids.

Each subframe consisted of a two storey column together with a short length

of a typical mid storey beam. In each case the beam was connected to the

column at mid height through a mechanical joint. Four types of connection

commonly used in precast construction were selected to construct the

subframes. These were selected so that a range of strengths and stiffnesses

of the connection could be covered. The four connections chosen are used

by four different firms, participating in the project. Two sets of subframes

were made for each connection type so that the behaviour of subframes could

be tested for upward and downward rotations of each connection. The

continuous two storey column in the subframes was considered pin-ended at

top and bottom. The end moments were introduced by eccentric column

loads. The lateral movements of the column at both ends and at mid height

were restrained to simulate nosway plane frame behaviour. The free end of

the beam in the subframe was allowed to move freely in the vertical direction.

This free movement was adopted in order to have control over moment
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transferred from beam to column through the connection. This subframes

were tested to collapse.

4.2 SPECIMENS

Originally, it was planned to use columns of size 200mmx200mm. However,

in discussions with the participating firms, it became clear that the minimum

size used in precast construction practice was 300mmx300mm. In order to

remove any problems with reduced scale specimens, it was agreed that a

column size of 300mmx300mm should be adopted for these tests. Columns

of these dimensions are used in the construction of structures up to four

stories high. The detail of the connection and the additional reinforcements

were available only for the above column size and a reduction in column size

was thought not to represent realistic connection behaviour. The size of the

stub beam was decided in accordance with the standard dimensions used in

practice with contractors' connection details. The two storey continuous

columns were of 6m height, resulting in storey heights of 3m. The length of

the stub beam was 1.5m in each case.

The reinforcement in the beam and the two storey column was determined

so as to be representative of typical members used in practice. Four 20mm

bars were used as the main reinforcement in all the columns. In order to

ensure efficient transfer of end moments to the column, an end steel plate of

18mm thick was welded to the main reinforcements at both ends of the

columns. The links used in the columns were of 6mm mild steel at 200mm

spacing. The detail of the connection and the additional reinforcement

around the connection were those used commonly by the participating firms.

Though the length of the stub beam used in the subframe was 1.5m for all
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the test frames, the sectional dimension varied according to the connection

detail. The reinforcement and sectional details of the column and beam used

in the experiments are given in Fig.4.1 to 4.4. The connections used in the

respective tests are shown in Fig. 4.4 to Fig. 4.8.

4.3 TESTING RIG

During the planning stage two methods of testing were considered. One

method is to test the subframe horizontally to eliminate difficult handling of

heavy members of subframes. The other method was to test the subframe

vertically so that the effect of self weight, specially when the portion of the

slab was included in the subframes, will not have an adverse effect on the

behaviour of the subframe. It was decided to adopt the latter option.

A special testing rig was designed to accommodate the subframe. A

perspective view of the rig with the subframe in place is shown in Fig. 4.9

and Fig. 4.] 0. The rig consists of two parallel rectangular plane frames

consisting of two columns of section 254x254x73 UC connected by "C"

channels at top and bottom of the frame. The top and bottom horizontal

beams of the front frame were an assembly of three steel beams. One steel

beam of 254x254x132 UC was in the centre connected to the steel column

with end plates using 6 bolts of 24mm dia. Two 305x305x198 UB sections

were arranged on either side of the first beam and were fixed to the column

using stiffened angular bracket welded to the column. The layout of the

beams and the connections is shown in Fig.4.9. The front frame of the rig

was capable of carrying 2500 kN at the centre of the horizontal support beam.

This would be the limiting axial force on the column under test. The total
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height available for the specimens was little over 6m. This parallel

arrangement of beams enabled a realistic two storey subframe to be tested.

The intermediate beam of section 254x254x73 UC in the rear frame was

capable of carrying a maximum load of 250 kN, acting upwards or

downwards. Axial load in the column was applied by three 900 kN hydraulic

jacks with a manifold to permit simultaneous loading. The jacks were

clamped together to the base as shown in Fig. 4.11 and Fig. 4.12. Three jacks

of low capacity were preferred to a single 2500 kN jack, because the latter

would have occupied a greater length of valuable clear height available in

the Heavy Structures Laboratory.

The whole rig was assembled vertically from the basement through a purpose

made opening in the structural floor of the Heavy Structures Laboratory.

4.4 LOADING

The load was transferred to the column through a ball bearing on the column

cap. By locating the centre of the ball bearing eccentrically with respect to

the column centre, as shown in Fig. 4.11 and Fig. 4.12 end moments on the

column could be introduced. The column and the beam are loaded so as to

bend in one plane only. The eccentricities at the two ends of the continuous

column are kept opposite to each other in order to allow each column of the

two storey subframe to bend in single curvature. It was felt that this would

result in maximum instability effects through combined bending and axial

compression. This arrangement corresponds to patterned load combinations

used in the design of columns in frames. Provision was made at the top and

bottom of the frame to reverse the direction of eccentricity to enhance the
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effect of the moment applied to the cantilever beam of the subframe. This is

illustrated in Fig.4.11, Cases 1 and 2.

Three horizontal channel sections fixed to the upright columns of the rig are

provided at the top, middle and bottom of the column to prevent the

horizontal movement of the column at nodal points. The connection between

the channels and the column is such as to prevent translation, but to permit

rotations in the plane of bending. This is shown schematically in Fig. 4.13.

4.5 MANUFACTURE OF SPECIMENS

The manufacture of the specimens was carried out at casting yards normally

used by the manufacturers, This procedure was adopted to make sure that the

specimens tested were representative of those available on site. Internal

electrical resistance strain gauges, with marked output leads, were pasted on

to prepared surfaces of the reinforcement in the column prior to casting

(Fig.4.14). The pasting of the gauges was carried out at the casting yards by

the City University staff, under supervision from one of the investigators.

Specimens were stripped out of formwork 24 hours after casting. All gauges

were tested for integrity of the electrical circuits, before casting took place.

Curing procedures were the same as those adopted for prototype frames.

Specimens were transported to the Heavy Structures Laboratories at City

University, some two weeks after casting.
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4.6 INSTRUMENTATION

To measure the axial load in the column a load cell of 2500 kN capacity was

located between the assembly of the three jacks and the ball bearing. A load

cell of 500 kN capacity was located in series with the jack used for applying

the lateral load on the cantilever beam as shown in Fig. 4.12 and 4.13.

In order to measure displacements an isolated scaffolding frame was erected

around the test subframe as shown in Fig. 4.11. Digital readout dial gauges,

supported by the scaffolding frame, were positioned at 500 mm spacing along

the height of the continuous column and along the cantilever beam (Fig.

4.15).

Two inclinometers were also used, one at middle of the column and the other,

on the beam near the beam column junction, to assist with the measurement

of rotations (Fig.4.15). Vertical beam displacements at three points close to

the column face were also used to measure the beam rotations.

Eight external strain gauges were fixed on the clear concrete surface at

selected points as shown in Fig.4.1 to 4.8 for recording concrete strains.

4.7 PREPARATION FOR THE TESTS

The test column was erected in position and located on the bearing of the

three-jack assembly. The column was tied through pins to the restraining

channels located at the top, middle and bottom of the rig (Fig. 4.9).

68



The cantilever beam was then connected to the column by the mechanical

joint provided, and temporarily held in place by slings. When the alignment

of the connection was correct, the connection was grouted. The method of

grouting was determined in consultation with the participating firms. The

grout was allowed to gain strength for a minimum of 7 days before testing.

The connections used in subframes CT1 and CT2 were cleat connection and

were grouted with cement sand grout with CONVEX100 admixture. The

subframes CT3 and CT4 were assembled using welded plate connection and

the connection area was covered with a concrete mix poured into a mould set

around the joint. The connections used in subframes CT5 and CT6 were of

similar type to those used in CT1 and CT2 but from a different contractor

and were grouted using cement sand mix with CONVEX100 admixture. The

subframes CT7 and CT8 were of special type with newly designed web

connection with steel plate packing to fill the tolerance in construction. The

beam was cast with the top part of the reinforcement exposed to have

monolithic connection with slab. Formwork was made on either side of the

beam to include 200mm thick 500mm width slab. The cast-in socket in the

precast column just above the joint was connected to threaded reinforcement

to have dowel action in to the slab. The reinforced slab was cast with

structural concrete. The detail of the concrete mix and the strengths are given

in Appendix 2.

The test column and beam were painted with a thin coat of emulsion paint

for clearer visibility of tension cracks. The first specimen was not so painted,

and it was found that in this case crack detection was difficult.

All gauges were tested to check that the wiring was still intact before

connected to data logger. The three column jacks were connected to a hand
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pump in parallel to ensure uniform pressure on all three jacks. The beam

jack was connected to another hand pump. The load cells were connected to

an electronic display meter separately. A separate display meter was

connected to inclinometers.

Trial runs with small loads were carried out to check the functioning of the

instruments before starting actual experiments.

At this stage the specimen subframe was ready for testing.

4.8 TEST PROCEDURE

In general, the column was first loaded until any initial slack in the top

support was taken up. After embedding the specimen, and before applying

further load, initial readings of all displacements, applied loads, rotations

and strains were recorded. Subsequently the column load was increased

through a series of predetermined steps to a level approximately 10% of the

failure load expected. The beam load was increased next. Once the beam load

had reached the desired level, which varied from about 50% of the estimated

capacity to about 95%, the beam load was kept constant, and the column load

was increased in steps, until either the column visibly failed through spalling,

or the column failed to take any further loads. At all steps of loading, lateral

displacements, axial loads, cantilever beam loads, rotations and strains were

recorded. Visual checks such as appearance of cracks were also made, and

subsequently photographed if considered important. The sequence was

changed when subframe CT7 was tested where the column load was kept

constant at 10% of the expected failure load and the beam load was increased
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until subframe failed to take further beam moment. It was intended to follow

the same procedure for CT8 but after observing the shear failure near the

joint in CT7 due to high moment it decided not to load the subframe with

high joint moment. The loading sequence followed for CT8 was similar to

that of CT1 to CT6.

The detailed loading sequences are given separately for each test in

Refs.[68,69]. The subframe CT1, CT4, CT6 and CT7 were tested for upward

connection rotation and the subframes CT2, CT3, CT5 and CT8 were tested

for downward connection rotation.

4.9 MATERIAL PROPERTIES

In order to assess the strength of the concrete in the specimens, 150 mm

concrete cubes were cast together with the column and beam specimens. The

cubes were tested on the same date as the corresponding subframe. Three 500

mm steel reinforcement bars were also cut at random from the lengths used

in the test specimens. The steel bars were tested for strength and elastic

modulus in an INSTROM testing machine available for the purpose in the

Laboratory. The machine can record load elongation data at predefined

interval. A delicate elongation gauge was used for measuring elongation up

to yielding.
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TABLE 4.1 PROPERTIES OF CONCRETE AND REINFORCEMENT

1

CT1 CT2 CT3 CT4 CT5 CT6 CT7 CT8

Cube strength N/mm2 59.0 59.0 59.9 65.2 69.5 60.2 64.9 68.2

Strength of grout N/mm2 53.3 50.2 49.8 55.3 30.1 44.6 55.2 48.7
,

Steel Yield stress N/mm2 533.4 533.4 522.5 522.5 538.6 538.6 522.7 522.7

Ultimate stress N/mm2 642.7 642.7 602.5 602.5 627.3 627.3 618.2 618.2

Yield strain 0.00267 0.00267 0.00261 0.00261 0.00269 0.00269 0.00261 0.00261

Ultimate strain 0.240 0.240 0.240 0.24 0.236 0.236 0.240 0.240
_

4.10 FAILURE OF THE SUBFRAMES

During erection the column specimen for subframe CT1 was slightly

damaged at the base. It was decided, nevertheless to proceed with the test,

as it was considered useful to complete the full test procedure and to check

the rig performance. As anticipated the column failed abruptly and

prematurely. The results are, however, perfectly acceptable for the primary

purpose of verification of the numerical model, up to the load that the column

was able to sustain.

The subframes CT2,CT3,CT5,CT6 and CT8 were loaded up to failure. In all

these cases, the column failed suddenly at an end of the column, with

concrete bursting away. The subframes CT2,CT3 and CT8 failed at the
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bottom end of the column and subframe CT5 and CT6 failed at the top end

of the column. The subframe CT5 was expected to fail at the bottom

according to the loading arrangement, however it failed at the top. This

failure could be due to some imperfection in the material since the beam load

applied was relatively small.

The test on subframe CT4 was terminated just below the failure load. The

failure appeared imminent at the top of the column and it was considered

unsafe at that time to continue with the test. The subframe CT7 was tested

with a very high beam moment and the column failed in transverse shear near

the junction. The failure was not well defined as the connection failed before

it could be verified that the column could take no further moment. It should

be mentioned that no special shear reinforcement had been provided to cater

for this form of loading.

A sample subframe assembly before testing is shown in Fig 4.16. The same

frame is shown after failure at the base of the column, in Fig 4.17. Figure

4.18 and Fig 4.19 show the crack patterns which appeared in the upper and

lower column during the test. The crack pattern was consistent but the width

of the crack was very fine even near the failure load. This behaviour is

expected for a column of l/h ratio of 15. The failure of the column above the

beam column joint in CT7 is shown in Fig 4.20.

The experimental results obtained are presented in detail together with the

theoretical results in Chapter 5.
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FIG.4.9 TEST RIG GENERAL LAYOUT
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FIG.4.10 GENERAL LAYOUT OF THE TEST RIG
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FIG.4.11 TWO LOADING CASES FOR WHICH SUBFRAMES ARE
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FIG.4.12 LAYOUT OF JACKS
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FIG.4.14 INTERNAL STRAIN GAUGES
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FIG.4.15 DIGITAL READOUT DIAL GAUGES AND INCLINOMETERS
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FIG.4.16 COLUMN BEAM SUBFRAME IN POSITION
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FIG.4.17 COLUMN FAILURE (CT3)
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FIG.4.18 CRACK PATTERN IN THE UPPER COLUMN
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FIG.4.19 CRACK PATTERN IN THE LOWER COLUMN
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FIG.4.20 FAILURE OF BEAM COLUMN JOINT (CT7)
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CHAP TER 5.

COMPARISON OF EXPERIMENTAL RESULTS WITH
COMPUTED RESULTS

5.1 INTRODUCTION

In Chapter 3, a new method of analysis of precast concrete frames with

semi-rigid joints was described. Tests on eight subframes consisting of

2-storey precast column connected to precast beams with semi-rigid joints

were described in Chapter 4. The behaviour of eight test subframes CT1 to

CT8 is now compaired with computed results from the new method of

analysis. The non-linear analysis is based on observed stress-strain data of

concrete and steel used in manufacturing the subframes. The equilibrium

deflected shapes of the subframes were calculated at all the recorded load

combinations used in the experiment. The analytical and test results are

compared below.

5.2 MATERIAL MODEL USED IN THE ANALYSIS

The average cube strength obtained for each subframe was used to define the

stress-strain characteristic of concrete. The ultimate stress of concrete in the

column was obtained by multiplying the cube strength by 0.67 in accordance

with BS8110. Material partial safety factor for concrete was assumed as 1.0,

a factor commonly used to compare experimental results. A parabolic

variation upto maximum compressive stress and a constant stress variation

upto crushing of concrete were assumed as given in BS8110.Partl :1985. The

tensile strength of concrete was assumed to be zero.
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The average yield strength of cut steel bar of each subframe was used to

define the stress-strain characteristic of reinforcement steel. An elastic

perfectly plastic bi-linear relation was assumed as suggested in BS8110:Part

1:1985. Material partial safety factors used was 1.0. A sample stress-strain

curve for concrete and steel is shown in Fig 5.0.

5.3 MODELLING SUBFRAMES FOR COMPUTER ANALYSIS

As mentioned in Chapter 3 the section of the members was represented by

single rectangular element with eight Gauss points. The reinforcements were

treated as additional Gauss points with the steel area as weight of that Gauss

point. The two storey continuous column was treated as pin-ended at all the

two ends. The top end of the column was considered restrained in all three

directions of displacements but allowing only inplane rotation. The

mid-point and the bottom supports of the continuous column were restrained

against inplane and out of plane movement but were allowed to slide

vertically and to rotate inplane. The column load was applied vertically at

the bottom end of the column with an eccentricity of 100mm. The reaction

at the top end of the column was set at 100mm eccentricity in an opposite

direction to that at the bottom end.

The beam load and the moment transferred from the beam were directed at

the mid-point of the two storey column. Both the upper and lower columns

were subdivided in to 12 segments for the analysis.

The equilibrium deflected shape analysis of the subframe was carried out for

each of the load cases as observed in the experiment. The deflection at

stations and strain pattern across the sections were obtained for the
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continuous column. These calculated deflections and strains are compared

in the following section with the values obtained from the experimental

values.

For the final beam load an ultimate load analysis was carried out by

increasing the column load until further equilibrium deflected shape could

not be found. This ultimate load analysis was carried out to compare the

failure column loads (for specimens CT1-CT6 and CT8) or failure beam

moment (in case of specimen CT7) with the experimental values.

5.4 COMPARISON AND DISCUSSION OF RESULTS

The comparison between experimental and analytical behaviour of the two

storey columns is discussed under the headings of deflection and strain to

highlight the accuracy of the analytical prediction and to explain the

discrepancies if any.

1. Deflected shape of the two storey column for increasing axial load.

2. Deflection at the centre of the upper column with axial load.

3. Deflection at the centre of the lower column with axial load.

4. Strains at selected points in the upper column against axial load.

5. Strains at selected points in the lower column against axial load.

6. Strains across the section for increasing axial load.

A point to note while assessing the graphs is that there are two variables,

namely column axial load and beam moment. The graphs demonstrate

deflection or strain for only one variable. Thus, for example, when the

column axial load is kept constant while beam load is varied, a flat line is

observed. The numerical values in all the graph presented here are tabulated
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in the Refs.[68,69]. The loading sequences followed for each test are also

detailed in Refs. [68,69].

COLUMN DEFLECTIONS

The variation of deflections with the axial load applied to the two storey

column for all the tests is shown in Figs 5.1 to 5.24. Change in beam moment

varied with axial load is noted in parenthesis. A set of three graphs are

presented for each test. The first graph in the set shows the computed and

experimental deflections for the two storey column. The following two

graphs show the deflection at the centre of the upper and lower column,

respectively.

As explained in Chapter 4, test CT1 unfortunately did not reach the expected

failure load. The column failed prematurely at the base due to an earlier slight

damage at that end during the erection procedure. Nevertheless the

performance of the column up to the observed premature failure is compared

(Fig 5.1- 5.3) with the computed values and it shows good agreement. The

difference in analytical and experimental deflection of the lower column

becomes almost zero at the last observed column load. The observed upper

column deflection is consistent with the computed deflection but the

magnitude of the initial discrepancy remains constant with the increment in

axial load.

It should be noted that the computed and experimental deflected shapes are

in excellent agreement for the tests CT2 and CT5 over the full range of

applied loading (Fig 5.4 - 5.6, 5.13 - 5.15). The uneven experimental

deformation of the upper and lower columns in test CT2 are difficult to

explain, this behaviour was not observed in the other seven experiments. The
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uniform variation of the observed strain on the column shown in Fig 5.28

and 5.29 supports this argument. The observed deflection profile shown for

CT5 is uniform and in excellent agreement with the calculated deflections.

For test CT3 (Fig 5.7 - 5.9) the computed and experimental deflections for

the lower column are in good agreement. However in the upper column the

computed and experimental deflections show some divergence particularly

near failure. Reversing of calculated deflection between column loads of

126kN to 402 kN was observed as shown in Fig.5.8 and 5.9. The mid span

deflection of the column for low axial load and high end moment was reduced

as the column load increased while the beam moment remained constant.

This is similar to pre-stressing effect. The actual behaviour of the column

did not exhibit this except for the steeper load deflection curve in that region.

Even though the observed load deflection profile of the upper column was

similar in nature, the deviation with increase in column axial load is

attributable only to the movement of the test rig as the beam load was

increased to develop high connection moment while the column axial load

was low.

For experiment CT4 (Figs 5.10 - 5.12) the computed deflections show

consistently good agreement with the experimental deflections, the

agreement improving with increasing axial load. The beam load was

increased in two stages to avoid rig movement at high beam load as observed

in experiment CT3. The two stages of beam load increment could be observed

by two horizontal load mid-span deflections shown in Fig5.11, 5.12.

However, subframe CT4 was not loaded right up to failure and the test was

terminated just slightly prematurely. Bursting failure appeared imminent at

the top of the column and it was considered unsafe to continue with the test.
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Experiment CT6 (Figs 5.16 - 5.18) shows consistently good agreement

between the computed and experimental deflections. The agreement

improves with increasing axial load. The mid-span deflection is almost the

same near failure for both upper and lower columns. The upper column

displayed larger displacement at mid point than the calculated value and the

difference reduce considerably near failure.

Experiment CT7 was conducted in a slightly different manner, compared

with all the other experiments. The aim was to fail the column by applying

excessive beam moment while the axial load in the column remained

constant. Accordingly, the deflections are shown against beam moment (Figs

5.19 - 5.21). The computed and experimental deflected profile of the lower

column show very good agreement. However the upper column, which

suffered local shear damage near the joint, shows divergence between

calculated and experimental deflections. Due to the high moment in the

column beam joint the column section just above the joint cracked

diagonally. The crack width was found to increase with increasing beam

moment.

The deflected shape for test CT8 (Fig 5.22 - 5.24) is consistent over the full

range of loading. The difference between the computed and experimental

deflections decreases with increasing axial load. This subframe was also

expected to have a very high connection moment. From the experience gained

from experiment on CT7 it was decided not to fail the column by excessive

beam moment. The column was loaded upto axial load of 500kN before

increasing the beam load. The beam load was increased up to a point to

produce 75% of the expected connection moment capacity. The wavy pattern

that may be observed in the flat portion of the load displacement curve in
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Fig 5.23 and 5.24 is due to observed increment in column axial load as the

beam load was increased.

STRAIN ACROSS THE SECTION

The calculated and experimental strains at preselected positions are shown

in Figures 5.25 to 5.48 for all the tests. A set of three graphs are presented

for each test. The first two graphs show the computed and experimental

strains at the positions marked on the subframe diagram shown within each

graph. The third diagram is an alternative way of presenting the data from

the above two graphs, by showing the strain variation across the sections.

Strain measurement near the beam column joint is presented for experiment

CT1 in Figs 5.25 to 5.27. The strain gauges near the ends of the column failed

to function therefore the strain at the critical area, near the ends could not be

recorded. The failure was expected to occur near the columns ends. The

computed and experimental strain values are shown in Figs 5.25 and 5.26.

The magnitudes of the strains compared are generally very small. Little

correlation could be found in this experiment for strain. The strain profiles

across the sections are shown in Fig 5.27.

The computed and experimental values of strain for test CT2 are given in

Figs.5.28 and 5.29. The compressive strains (strain gauges SG2, SG7) show

fair agreement, but the strain gauge SG8 shows some erratic response

towards the failure load. The strain gauge SG1 did not show any response

and it could be due to some defect in the strain gauge. The above information

is additionally shown as strain profile across the section in Fig. 5.30.
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The results of strains for experiment CT3 are shown in Figs 5.31 and 5.32.

Although the experimental and computed results do not show good

agreement, over the loading range, strains in gauges SG1 and SG8

demonstrate good agreement near failure. The strain gauges SG2 and SG7

show good agreement in the early part of the curve. The strain profiles

shown in Fig 5.33 show good agreement at lower load levels but the

discrepancy increases at higher loads.

The strain profile for experiment CT4 is shown in Figs 5.34 and 5.35 and

strain gauges SG1, SG2 and SG7 show excellent agreement but strain gauge

SG8 shows diverging results. The strain profiles shown in Fig.5.36 show very

good correlation except for compressive strain in section 1. The predicted

strain pattern and the deflection pattern as shown in Figs 5.10 - 5.12 are in

good agreement with the experimental observations.

In experiment CT5 the strain gauges SG2 and SG7 (Figs 5.37 and 5.38) show

excellent agreement. Also, strain gauge SG8 shows consistent and good

correlation with the experimental values. The strain Gauge SG1 seems to

have an initial set back which is maintained through out the load range. This

is reflected well in the section profile for strain shown in Fig.5.39.

All the strain gauges SG1, SG2, SG7 and SG8 in experiments CT6 and CT8

show excellent agreement (Figs 5.40, 5.41, 5.46 and 5.47). It may be noted

that the displacement also showed good agreement for tests CT6 and CT8

between computed and experiment results. The strain profiles across the

sections for tests CT6 and CT8 are shown in Figs 5.42 and 5.48 and it may

be noted that the correlation between computed and experimental strains is

excellent for both the tests.
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As explained before for subframe CT7 the moment near the beam column

joint was very high and therefore the strain near the joint was selected for

comparison. The strains are shown with respect to beam moment in Figs 5.43

and 5.44. The calculated and experimental strains show good agreement in

the lower column. Strain gauge SG6 shows close agreement in the initial

loading and deviates towards the end. A vertical crack appeared in the

upper part of the column, passing through strain gauge SG5, and it may be

noted that the experiment terminated abruptly. The strain profile shown at

section2 in Fig.5.45 shows very good agreement.

Correlation of deflection and strain in the behaviour of most of the subframes

is an moderate indicator of the reliability of results predicted by the computer

program "SWANSA" for varying moment and axial load conditions.

5.5 COMPARISON OF ULTIMATE LOADS

As discussed in the previous section the prediction of deflections of the

members and the strain patterns across the sections are very much in

agreement with the observed values. The reliability of the numerical model

in predicting the failure load in addition to the equilibrium deflected shape

at intermediate loads is also an important factor to consider. Predicted failure

loads for all the eight experiments are compared with the actual failure

column load below in Tables 5.5.1 and 5.5.2.
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TABLE 5.1 EXPERIMENTAL AND THEORETICAL FAILURE LOADS

LOADS IN kN

TEST NO. EXPERIMENT SWANSA %ERROR REMARKS

1 1140.4 1801.0 Note 1

2 1939.1 1818.1 -6.2

3 1862.2 1737.8 -6.7

4 1704.9 1796.5 Note 2

5 2042.8 2132.4 4.4

6 2023.6 1899.2 -6.1

8 2038.0 2086.1 2.4

TABLE 5.2 EXPERIMENTAL AND THEORETICAL FAILURE MOMENTS

MOMENTS IN kNmm

TEST NO. EXPERIMENT SWANSA %ERROR REMARKS

7 180,136.0 238,489.0 32.4 Note 3

NOTES

1. Experiment CT1 did not reach the expected failure load due to accidental

damage at the base during the erection procedure. This resulted in premature

failure at the damaged end. The test was continued nevertheless to the end

in order to gain experience for subsequent tests.

2. Experiment CT4 was terminated just below the failure load. The failure

appeared imminent at the top of the column with the likelihood of bursting

failure of concrete, and it was considered unsafe to continue with the test.
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3. Experiment CT7 was tested with a very high beam moment and the column

failed in transverse shear near the junction. The failure load is compared in

terms of beam moment.

As noted above the failure of a two storey column due to its rather stocky

nature was by sudden crushing of concrete. The analytical method also

predicted this mode of failure. Except for the subframes CT1, CT4 and CT7

the analytical prediction of failure load is within 7%. This may be regarded

as an excellent accuracy as far as concrete structures are concerned.

The behaviour of frames with slender members should also be considered

before the acceptance of the results from the analytical method. In Chapter

6, the analytical results from portal frames with slender members are

compared with experimental results obtained from published literature.

5.6 MOMENT ROTATION RELATION FOR THE JOINT

From the measured rotations of the beams and the columns the relative

rotation of the joints and the moments exerted by the beams in the centre of

the columns were computed. The joint moments are shown with the relative

rotation for all the joint tested in Fig 5.49. The response due to hogging and

sagging moments for a joint is shown in one diagram for easy comparison.

This data together with the moment rotation data collected by Nottingham

University[71] could be used for future analytical study.
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CHAPTER 6.

VALIDATION OF "SWANSA" WITH EXPERIMENTS FROM
OTHER SOURCES

6.1 INTRODUCTION

Two types of comparisons are presented in this chapter. Firstly experimental

results of reinforced concrete portal frames and secondly analytical results

from other sources on single and two-storey reinforced concrete plane frames

were considered in the comparison. Experimental results were reported by

Ernst et al[65] on six nosway reinforced concrete portal frames. In this test

simple portal frames pin-connected at the base were subjected to point-loads

along the beam. The point loads were increased uniformly until the frames

failed to take further load. Mid span deflections along with the total beam

load are compared with the analytical result from the computer program

SWANSA. Results of finite element analysis performed on a single and two

storey plane frames were reported by Seniwongse[66]. Both the frames were

subjected to lateral load while the bottom of the column was rigidly fixed to

the base. The above frames were studied by Franklin[67] using another finite

element model. The lateral deformation at the loaded floor level is also

compared.

6.2 REINFORCED CONCRETE PORTAL FRAMES

The dimensions of the portal frames, tested by Ernst et al, were selected to

demonstrate the ductile behaviour of reinforced concrete portal frames and

to cover a practical range of sizes. The frames were of height 6ft (1.8m) and

the beams had a nominal span of 12ft (3.6m). The supports at the base were

designed as pin joints.
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Data for the six frames tested are tabulated below. Frames A40 to C60 were

subjected to point loads at the third points of the span and the load was

increased up to failure. The frames were tested horizontally.

TABLE 6.1 GENERAL DATA FOR THE FRAMES CONSIDERED

Frame Beam Column Concrete Steel

type type cyl.

strength(N/mm2)

yield (N/mm2)

A40 1 1 29.13 353.5

A60 1 1 39.00 426.0

B40 2 2 29.13 357.7

B60 2 2 39.00 419.4

C40 3 3 29.13 357.7

C60 3 3 39.00 419.4

TABLE 6.2 DETAILS OF BEAMS AND COLUMNS

Width Height Cover Aso Asi

Beam Type 1 114.3 203.2 38.1 2-#5 2-#5

Beam Type 2 114.3 203.2 38.1 2-#4 2-#6

Beam Type 3 114.3 203.2 38.1 2-#6 2-#4

Column Type 1 114.3 203.2 38.1 2-#5 2-#5

Column Type 2 114.3 203.2 38.1 2-#5 2-#6

Column Type 3 114.3 203.2 38.1 2-#6 2-#5
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The above six frames were analysed using the program SWANSA. The stress

strain curves adopted for steel and concrete were as defined in B S8110. The

material safety factor was taken as 1.0. The compressive stress of concrete

in the members was taken as 0.85 of the cylinder strength, as is common

practice.

Figures 6.1 to 6.6 show the mid span deflections against the total load on the

frame obtained from experiments and from the computer program SWANSA.

The ultimate loads are tabulated in Table 6.3 below.

TABLE 6.3 COMPARISON OF ULTIMATE LOADS

FRAME EXPERIMENT SWANSA ERROR%

A40 69.4 70.4 1.4

A60 88.9 85.0 -4.4

B40 82.6 73.1 -11.5

B60 93.1 87.3 -6.2

C40 73.0 73.0 -0.0

C60 77.3 87.2 12.8

Average -1.3

Standard deviation 7.8

In general, the agreement between the computed and experimental ultimate

loads is excellent except for B40 and C60, which show errors around 12%,

which are acceptable when dealing with concrete structures.
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In frame A40 the correlation between the experimental and calculated

behaviour of the frame is excellent up to 50 kN. Beyond 50 kN load the

experimental curve shows a smooth change in the rate of increase of

deflection compared with the theoretical curve which is almost stiff up to

near failure.

Frame A60 is similar to A40 except for material strength. The analytical and

experimental deflections up to load 60 kN are almost the same. The

experimental curve does not show much ductility at failure, and the failure

was stated to be due to fracture of a steel bar.

The frame B40 is also similar to frame A40, except for a slight increase in

steel strength. In frame B40, the analytical deflection closely follows the

experimental pattern except for a slight offset which can be due to initial

imperfections. The ultimate load obtained from the program SWANSA is

11.5% less than the experimental values. The failure was in the mid span. In

spite of similarity with frame A40, the experimental failure load obtained is

much greater. This is reflected in the theoretical curve, which is comparable

with that obtained for frameA40. This difference in failure loads could be

due to some material or geometrical variations.

Frame B60 is of a higher material strength than frame B40, and is similar to

frame A60. This frame also does not show much ductility. The analytical and

experimental mid span deflections show excellent agreement. There is a

6.2% variation in the ultimate load.

Experimental observations for frame C40 indicated that the frame had an

internal concrete failure due to lack of confining ties[65]. The large
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difference in deflections in the later half of the loading history can, therefore,

be explained.

Frame C60 also shows a significant difference in deflection behaviour and

in the ultimate load. The failure load in this case is not very much different

from C40, since the reinforcement and geometrical details are the same for

frames C40 and C60. The steel and concrete strengths are higher, and hence

the computed failure load is of the order of 90 kN. The failure to reach the

above load in the experiment is difficult to explain.

In all cases, the response for what would be serviceability loads are well

predicted by the computer program SWANSA in comparison with the

experiments

6.3 COMPARISON WITH FINITE ELEMENT METHOD

Seniwongse[66] reported some results on reinforced concrete frames using

a finite element program developed by him. The finite element analyses on

a single storey and a two storey plane frames are now compared with the

results from the computer program SWANSA. Both frames are subjected to

sway loading. As reported by Seniwongse these two frames were originally

studied by Franklin[67] also using finite element technique. The technique

utilises quadrilateral linear strain elements, special frame elements, and

bidirectional tie-link elements to analyse the two frames. Seniwongse

developed a finite element technique using linear beam elements with

bilinear rotational spring elements at each end of the beam element. The

literature[66] compares the results from both the analysis. The geometrical

data of the frames are given in Fig. 6.7.

159



The material data used in the analysis are as follows:

Cylinder strength of concrete in compression = 37.95 N/mm2

Yield stress of concrete in compression = 0.85*37.95 N/mm2

Ultimate strain in compression = 0.003

Young's modulus of concrete = 20.01 N/mm2

Tensile stress of concrete = 0.1*0.85*37.95	 N/mm2

A bilinear curve was used for concrete model, as in the original studies.

Yield stress of steel 	 = 284.63	 N/mm2

Ultimate stress of steel 	 =351.9	 N/mm2

Young's modulus	 = 200.1	 N/mm2

Ultimate strain	 = 0.15

The ultimate loads are compared below for both the frames. The load

deflection paths are shown in Figs 6.8 and 6.9. It should be noted that the

program SWANSA gives excellent agreement with both the finite element

results.

TABLE 6.4 COMPARISON OF ULTIMATE LOAD

FRANKLIN NLACF SWANSA ERROR WITH

FRANKLIN.

One storey frame 5.4 5.4 5.34 -1%

Two storey frame 4.0 3.8 4.28 7%
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6.4 CONCLUSION

The computer program SWANSA has been shown to give good correlation

with results for reinforced concrete frames. It can be safely concluded that

the numerical technique which forms the basis of the computer program

SWANSA can be used to study and predict the deflected shape and the

ultimate capacity of reinforced concrete sway and no-sway plane frames with

flexible connections. The numerical technique is indeed capable of analysing

space frames, but experimental results for such frames were not found in

literature.
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CHAPTER 7

EXAMPLE ON DESIGN APPLICATION

7.1 INTRODUCTION

The current design method as defined in BS8110:1985 suggests that the

connections in precast concrete members should be treated as pin-joints. The

numerical method described in Chapter 3 demonstrates how a precast

concrete frame could be analysed incorporating the semi-rigidity of the

connection. It will be shown how the computer program SWANSA based on

the above numerical method of non-linear analysis may be used as a design

tool. Apart from the normal geometrical and material properties, the

additional data required for the analysis is the moment rotation characteristic

of the connection to be used in the frame. A three-storey two-bay frame is

used to demonstrate the procedure that may be adopted.

7.2 MODELLING THE STRUCTURE

Preliminary section properties of the frame were selected from the available

precast components based on the requirements of the structure. Assumptions

relating to the connection types were also made before starting the computer

analysis. It must be understood that the moment rotation data for all the

connections used in the frames should be available before the analysis. Most

companies dealing with precast structures maintain their own data on

connection behaviour. Only the main reinforcement used in flexure was

considered in the analysis. All the additional bars such as torsional

reinforcement, shear reinforcement and connection reinforcements were not

taken into consideration. The analysis does not at present, check the structure
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for shear or torsional strength. Member shear forces and torsional moments

obtained from the analysis can be used to check the structure for the above

factors. The frame geometry and section data used in the analysis are shown

in Fig.7.1. The idealized moment rotation curve of the joint used in the frame

is also given that figure.

7.3 MATERIAL MODELS

Grade 50 concrete (cube strength) with a partial safety of 1.5 was used in the

design. Yield stress of the reinforcement used was 400 N/mm 2. A partial

safety factor of 1.15 was adopted for the reinforcement. The stress-strain

curves and the partial safety factors used in the analysis were in accordance

with BS8110:1985.

7.4 LOADINGS

The following loads were used in the analysis.

Characteristic dead load on all floors 	 = 25 kN/m length of beam

Characteristic imposed load on all floors 	 = 40 kN/m length of beam

Characteristic wind load in middle floor 	 = 16.667 kN total

Characteristic wind load in top floor 	 = 8.333 kN total

These Joads were combined according to the load factors specified in

BS8110:1985. A factor of 1.4 for dead load, a factor of 1.6 for live load and

a factor of 1.2 were used for wind load. The exact loads considered in the

analysis are given in Table 7.1. Patterned loading was used to obtain the

worst instability effects in the columns. The loads wl and w2 given in Table
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7.1 are the distributed loads on respective beams as shown in Fig. 7.1. The

notation F represents the lateral load acting at top floor level. The wind load

considered at intermediate levels were twice of F. Three combinations of load

cases were considered.

In load case 1 the total of design dead load and design live load on all the

beams were factored by 0.1 to initiate the analysis and the factor was

increased until the further equilibrium deflected shape could not be found.

It must be noted that starting load factor must be small in order to find initial

equilibrium deflected shape.

In load case 2, the characteristic dead load was allowed to act on beams

marked as wl in Fig.7.1. The total of design dead and live load was assigned

to beams marked with w2. During the analysis the load wl was kept constant

and load w2 was varied from an initial load fact of 0.1 until the frame reaches

ultimate failure load. The wind load was assumed to be zero in this analysis.

In load case 3 characteristic dead load was assigned to all the beams in the

frame and a value of 10 kN was used for the wind load common factor F .

The beam loads were kept constant while the wind load was increased from

an initial load factor of 0.1 until structure fails in sway mode.

In all the load case the structure was tested for ultimate load.

7.5 JOINT TYPES

Three types of joints were considered in the analysis as described below.
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Joint type 1 Monolithically cast reinforced concrete connection.

Joint type 2 Semi-rigid precast concrete connection.

Joint type 3 Pin jointed as often adopted in current practice.

7.6 RESULTS

Fig. 7.2 to 7.10 show bending moment distributions obtained from the

computer program SWANSA. This is an option available in the

post-processor of the computer program. It may be noted that the maximum

column moment for all the three load cases in frame of joint type 1 (Fig 7.4)

is 93.1 kNm. This maximum column moment occurs for the load case 3 in

which wind is included. The corresponding values are 90.3 kNm for joint

type 2 (Fig 7.7) and 83.2 kNm for joint type 3 (Fig 7.10). Corresponding load

factors on wind force were 29.8, 23.8 and 4.7 respectively (Table 7.1). The

increase in load factor when joint rigidity is considered in the analysis can

be observed clearly. Failure of the frames in load case 3, was due to these

ultimate moments in the column. The failure moments in column vary

slightly due to the different axial loads present for different joint types at

failure.

The mechanism by which the structure gains strength, when joint rigidity is

included in the analysis, can be noted by studying the bending moment and

axial load values given in Fig 7.4, 7.7 and 7.10. Bending moments in the left

hand side of the beams in type 1 and type 2 frames change signs. This creates

a couple of shear forces in the beams and thereby increases the load in the

right column and reduces the load in the left column. This increased column

reaction counter balances the wind force. Since these moments are zero in
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type 3 frames (with pin joints) the wind force is distributed to all three

columns and resisted by cantilever action.

The favourable redistribution of bending by considering joint rigidity is an

obvious advantage. The load carrying capacity of a simply supported beam

as in the case of type 3 frame (Fig 7.8 and 7.9) is improved considerably

when joint rigidity was taken into account (Fig 7.5 and 7.6).

The ultimate load obtained from the analysis are tabulated below. The table

shows the design loading and the ultimate load obtained from SWANSA for

the three types of joints and for the three loading combinations.

TABLE 7.1 COMPARISON OF LOAD FACTOR FOR PROPOSED METHOD AND

TILE OLD METHOD

LOAD

CASE

DESIGN LOAD ULTIMATE LOAD

W I

Id' lim

W2

kN/m

F

kN

TYPE I TYPE 2 TYPE 3

W1 W2 F W1 W2 F W1 W2 F

1 99.0 99.0 0.0 126.9 126.9 0.0 108.0 108.0 0.0 63.9 63.9 0.0

2 25.0 99.0 0.0 25.0 125.2 0.0 25.0 101.6 0.0 25.0 64.1 0.0

3 25.0 25.0 10.0 25.0 25.0 29.8 25.0 25.0 23.8 25.0 25.0 4.7

It will be observed that, in all cases, the ultimate load obtained under Type

3 is less than the design load. This implies that the structure if designed on

the bases of assumed pinned connections will have to be strengthened. The

alternative to strengthening of the members would be to use additional

structural elements such as shear walls.
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The results show that the inclusion of semi-rigid connection behaviour can

lead to a tapping of considerable reserves of strength available in the frame.

Consideration of the semi-rigid behaviour of connection can thus lead to

significant economy in design. This example also shows that the proposed

method of analysis can be a valuable design tool.
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CHAPTER 8

CONCLUSIONS

8.1 INTRODUCTION

Traditionally, by making the assumption that the beam to column connection

in precast concrete frames is pin-jointed, the design calculations are

simplified. The reason for adopting this approach in designing precast

concrete frames is that the behaviour of beam column connection and it's

influence on the stability of the frame has not been well understood. The

study carried out in this report has been aimed at achieving a better

understanding of behaviour of frames with semi-rigid connections. This has

led to the development of an analytical method to study the behaviour of

precast concrete frames with flexible connections. Experiments were carried

out to validate the new method of analysis.

8.2 ANALYTICAL METHOD

The new method of analysis of precast concrete space frames takes into

account the semi-rigid nature of connections. The numerical procedure is

based on establishing equilibrium deflected shape of the frame for given

external forces. By providing suitable moment rotation relations for the joint

at ends of beam-columns, the effects of flexible joints are included in the

numerical analysis. The method of analysis isolates the torsional effects and

direct shear from flexural behaviour of members. Of course, all torsional

moments and direct forces are considered in the overall equilibrium

requirements.
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The member equilibrium at a chosen number of points is satisfied by

considering curvatures and material stress-strain characteristics using

numerical quadrature procedure. The member deflected shape is then

obtained by the generalised Newton-Raphson, following a well established

procedure for isolated restrained columns[8]. The advancement is made in

considering equilibrium at the nodal points, by establishing a numerically

computed stiffness-matrix. The numerical approach allows introduction of

semi-rigid joints, with arbitrary moment-rotation characteristics, to be

included in the iteration procedure.

Starting with a suitable load factor, the external forces are increased in steps

until an equilibrium deflected shape for the frame cannot be found. Such a

load is taken as the ultimate load of the frame.

8.3 COMPUTER PROGRAM

The computer program SWANSA based on the numerical method developed

here, has the following options:

1. Sway and no-sway analysis of 3-dimensional precast concrete frames.

2. Joints can be rigid, pinned or flexible.

3. Any one of the forces or combination of forces can be increased to

reach the ultimate load.

4. The output can be presented in a graphical form to view and produce

hard copy of deflected shape, bending moment diagrams and shear

force diagrams.
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The program has been made user friendly, by providing an interactive data

entry facility, which allows the user to enter data by answering simple

questions or returning default values.

The principal feature of the graphical post-processor is that the results are

presented in the form of bending moment, shear force and deflection

diagrams, making them more usable by practicing engineers.

8.4 EXPERIMENTAL STUDY

Experiments were carried out on 8 full scale precast concrete subframes (CT1

to CT8) each consisting of a two-storey continuous column and a short beam,

tested primarily to validate the computer program SWANSA. Four beam

column connections from four participating precast concrete frames

manufacturers were used in the experiments. Two frames per each connection

details were made. One frame was tested in upward rotation of the beam

column connection and the other was tested in downward rotation.

8.5 COMPARISON OF COMPUTED RESULTS WITH EXPERIMENTS

The above frames were modelled and analysed using the computer program

SWANSA. Good correlation has been obtained between experimental and

computed results. Ultimate loads predicted by the computer program are

within 6-7% of the experimental values. Deflection profiles, as well as strain

distributions in the frame also show good agreement with the experimental

observations. The use of the above computer program as a tool to predict

behaviour of precast concrete no-sway frames is well demonstrated in the
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comparison of deflections and strains in the members and of the ultimate

loads of the frames.

8.6 COMPARISON WITH OTHER RESULTS

The method has been further validated with computational and experimental

results available in literature. Experimental results carried out on six portal

frames reported by Ernst et al[65] were compared with the analytical results

from SWANSA. The comparison of mid span deflections and the ultimate

loads was very good. The average error in computing ultimate loads is only

1.3%.

Results on single and two storey plane sway frames based on finite element

methods, reported by Seniwongse[66], were also compared with analytical

results obtained from the computer program SWANSA. The correlation of

lateral deflection at loaded floor level was excellent. The error in ultimate

load for the single storey frame is 1% and for the two storey frame is 7%.

8.7 DESIGN EXAMPLE

The computer program SWANSA can be used to analyse reinforced concrete

frames with or without flexible connections starting from small loads up to

failure. The use of the program as a direct computer aided design tool has

been demonstrated inside the report. The program can be used as an

alternative method of designing a structure. The only other method that could

provide a compareably exact solution is the finite element method, but that

method is obviously very time consuming in terms of modelling of the

structure and evaluation of results. The key features of the numerical method
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described in Chapter 3, relating to fewer variables needed for a solution,

allow the computations to be carried out faster than the finite element

method, yet retain the required accuracy.

8.8 FUTURE WORK

The most critical information required for an analytical study of precast

concrete frames is the moment rotation characteristic of the connections.

There are two ways of establishing this information. Each contractor can

either establish a data set based on experiments or design a connection for a

given idealised moment rotation curve. If technology used by the contractor

permits, the latter method gives designer the freedom of developing universal

design charts for a given set of connections. Unifying connection behaviour

and producing design charts would be a worth while operation to undertake.

There are no experimental or analytical data available to study the torsional

effects on a space frame. Isolating torsion from the flexure and treating the

torsional behaviour linearly, as adopted in this work, may be considered

satisfactory at working load level but the torsional effects might dominate

near failure where rotations are high. This aspect needs more consideration

if the new technique is to be used to study the behaviour of space frames in

general.

191



REFERENCES

1. BRIGGINSHAW, G F. A new era for structural frames. Concrete, Oct 1987.

2. AMEY, D J. Precast concrete structural frames in the UK., Constructional

Review, Aug, 1987.

3. Industrial news, Precast concrete frames-an economic update. The structural

engineer, Vol. 65A, No. 8, Aug. 1987.

4. Industrial news, The economics of precast frame construction, The structural

engineer, Vol. 63A, No. 7, Jul. 1985.

5. BARFOOT, J. Precast frames. Concrete, Apr. 1989.

6. Cavanagh, K. Future looks bright for prefab industry. Engineers Australia, May

1988.

7. Structural joints in precast concrete. The institution of structural engineers,

1978.

8. VIRDI, K S. and DOWLING, P J. The ultimate strength of biaxially restrained

columns. Proceeding of the Institution of civil engineers, Mar 1976, Part 2.

9. FRANKLIN, H A. Nonlinear analysis of reinforced concrete frames and panel.

PhD Thesis: University of California, Berkeley, 1970.

10. VAN DEN BROEK, J A. Euler's classic Paper 'On the strength of columns'.

American journal of physics, Vol 15, 1947.

11. BLEICH, F. Buckling strength ofmetal structures. McGraw-Hill Book Company,

New York, 1952.

12. HORNE, MR. An historical review on the interaction of plasticity and structural

stability in theory and its application to design. Modern developments in frame

and slab structures. Conference by The Institution of Structural Engineers, Nov.

1988.

13. SHANLEY, FR. Inelastic column theory. Journal of aeronautical science, 1947.

192



14. TIMOSHENKO, S P. and GERE, J M. Theory of elastic stability. McGraw-Hill

international book company, London, 1982.

15. BLEICH, F. Buckling strength of metal structures. McGraw-Hill Book Company,

New York, 1952.

16. COLLATZ, L. Functional analysis and numerical mathematics . Academic Press,

New York, 1966.

17. BROWN, P T. and TRAHAIR, N S. Finite integral solution of differential

equations. Civil Engineering Transactions, Institution of Engineers, Australia,

Vol. CE10, No2, Oct. 1968.

18. CHEN, W F. and ATSUTA, T. Theory of Beam-Columns, Volume 2 Space

behaviour and design, McGraw-Hill, Inc, New York, 1976.

19. WES TERGAARD, H M. and OSGOOD, W R. Transaction of American Society

of civil engineers, Vol 50, 1928.

20. WILSON, E L. Matrix analysis of non-linear structures. Proceeding of IInd

conference in electronic computing, American society of civil engineers, Sep.

1960.

21. GESUND, H. Stress and moment distributions in three dimensional frames

composed of non-prismatic members made of non-linear material. Space

Structures, Edited by: Davies, R M., Sep. 1966.

22. CRANSTON, W B. A computer method for the analysis of restrained columns,

Cement and concrete association, Technical report TRA 402, Apr. 1967

23. WARNER, R F. Biaxial moment thrust curvature relations, Journal of the

Structural division, Proceeding of the ASCE, May 1969.

24. MILNER, H R. Ultimate load calculations for restrained H-columns under

biaxial bending. The civil engineering transactions of The institution of

Engineers, Australia, Apr. 1971.

25. VIRDI, K S. and Dowling, P J. The ultimate strength of composite columns in

biaxial bending. Proceedings, Institution of civil engineers, Mar. 1973.

26. VIRDI, KS. Design of circular and rectangular hollow section columns. Journal

of the constructional steel research, Sep. 1981.

193



27. BRANT, N F A. Reinforced concrete columns of variable cross section. PhD

Thesis: The City University, London, Sep. 1984

28. B S8110:1985. Structural use of concrete-Part I: Code of practice for design and

construction. British standards institution, London, 1985.

29. KONG, F K. and EVANS, R H. Reinforced and prestressed concrete. Van

Nostrand Reinhold (UK) Co. Ltd. 1987.

30. SIMITSES, G J. and VLAHINOS, A S. Steel framed structures, Stability and

strength, Edited by: Narayanan, R. 1985.

31. VAART, A. Elastic stability of space framework. PhD Thesis: New York

University, 1965.

32. CROSS, H. Analysis of continuous frames by distributing fixed-end moments.

Transaction of ASCE, 96, 1932.

33. LUNDQUIST, E E. A method of estimating the critical buckling load for

structural members, NACA, Technical Note 717, 1939.

34. NAYLOR, N. Side sway in symmetrical building frames . The structural engineer,

Apr. 1950.

35. WILLIAM, M. Matrix structural analysis, Chichester, New York, 1979.

36. LIVESLEY, R K. and CHANDLER, D B. Stability functions for structural

frameworks. Manchester University Press, 1962.

37. EKHANDE, S G., SELVAPPALAM, M. and MADUGULA, K S. Journal of

structural Engineers, 1989.

38. FRAZER, R A., DUNCAN, W J. and COLLAR, AR. Elementary matrices and

some applications to dynamics and differential equations, Cambridge university

press, London, 1938.

39. MacGREGOR, J G., and HUGE, S E. Stability analysis and design of concrete

frames. Journal of the structural division,Proceedings of the ACSE Vol. 103, No.

ST10, Oct. 1977.

40. BAKER, J F., HORNE, MR. and RODERICK, J W. The behaviour of continuous

stanchions. Proceeding of royal society, vol 198, 1949.

41. STEEL DESIGNERS MANUAL, Crosby Lockwood, London, 1972.

194



42. MAJID, K I. Non-linear structures. Matrix methods of analysis and design by

computers, Butterworths, London 1972.

43. GHARPURAY, V. and ARISTIZABAL-OCHOA, D. Simplified second-order

elastic-plastic analysis offrames. JOurnal of computing in civil engineering, Vol

3, No. 1 Jan 1989.

44. TURNER, M J., DILL, E H., MARTIN, H C. and MELO SH, R J. Large deflection

of structures subjected to heating and external loads. Journal of aeronautical

science, 27, 1960.

45. ZIENKIEWICZ, 0 C. and TAYLOR, R L. The finite element method, Volume 2,

McGraw-Hill book company (UK) Ltd.,

46. HSIAO, K M., HOU, F Y. and SPILIOPOULOS, K V. Large displacement

analysis of elasto-plastic frames. Computers and structures, Vol.28, No. 5, 1988.

47. NGO, D. and SCORDELIS, A C. Finite element analysis of reinforced concrete

beams. Journal of the American concrete institute, Vol. 64, No. 3, Mar. 1967,

48. CHANG, W F. Inelastic buckling and sidesway of concrete frames. Journal of

the structural division, Proceedings of the ASCE, Vol. 93, No. ST2, Apr. 1967.

49. VIRDI, K S. and DAWLING, P J. A general formulation of the non-linear

analysis and stability of space frames. 2nd International conference on space

structures. 1975

50. SEN, T K. Inelastic H-Column performance at high axial loads. PhD Thesis,

Inperial College, London, 1976.

51. Steel Structures Research Committe, Report I, Department of scientific and

industrial research, HMSO, London, 1931.

52. Steel Structures Research Committe, Report 2, Department of scientific and

industrial research, HMSO, London, 1934.

51 S OMERVILLE, G. and BURHOUSE, P. Tests on joints between precast concrete

members. Building research station, Engineering paper 45, 1966.

54. ROMS TAD, K M. and SUBRA.MANIAM, C V. Analysis of frame with partial

connection rigidity. Journal of structural division, ASCE 96, 1970.

195



55. YU, C H. and SHANMUGAM, N E. Stability of semi-rigid space frames.

Computers and Structures Vol 28, No. 1, 1988.

56. WILSON, W M. and MOORE, H F. Tests to determine the rigidity of riveted

joints in steel structures. University of Illinois, Engineering Experiment station,

Bulletin No. 104, Urbana, USA, 1917.

57. BAKER, J F. Method of stress analysis, First Report, Steel structures Research

committe, DSIR, UK, 1931.

58. RATHBURN, J C. Elastic properties of riveted connections, Transactions of

American society of civil engineers, 101, 1936.

59. Monforton, A R. and Wu, T S. Matrix analysis of semi-rigidly connected frames.

Journal of structural division, American society of civil engineers, 89, ST.6,

Dec. 1963.

60. BATHO, C. and ROWAN, H C. First Report, Second, and final report, Steel

structures Research committe, DSIR, UK, 1931, 1934, 1936.

61. CFIEN, W F. and LUI, E M. Effects of joints flexibility on the behaviour of steel

frames. Computers and Structures Vol. 26, No. 5, 1987.

62, MELCHERS, R E. and KAUR,D. The behaviour of frames with flexible

connections. 6 th Australian conference on the mechanics of structures and

materials. 1982.

63. HSIEH, S H. and DEIERLEIN, G G. Nonlinear analysis of three dimensional

steel frames with semi-rigid connections. Computers and structures,

64. JONES, S W., KIRBY, PA. and NETHERCOT, D A. The analysis offrames with

semi-rigid connections -A state-of-the-art report. Journal of constructional steel

research, Vol. 3, No. 2, 1983.

65. ERNST, G C, et al. Basic reinforced concrete frame performance under vertical

and lateral loads, ACT Journal, 1973, April, p261.

66. SENIWONGSE, M. The deformation of reinforced concrete beams and frames

up to failure, The Structural Engineer, Vol 57B, No 4, 1979, December.

67. FRANKLIN, H A. Nonlinear analysis of reinforced concrete frames and panels.

PhD Thesis, University of California, Berkeley, 1970.

196



68. VIRDI, K S. and RAGUPATHY, P. Stability problems associated with the

behaviour of joints in precast sway and nonsway frames, Tests 1-4 on precast

concrete subframes. Report CUSRC/PCF/01, Structures Research Centre,

Department of Civil Engineering, City University, London. 1991May.

69. VIRDI, K S. and RAGUPATHY, P. Stability problems associated with the

behaviour of joints in precast sway and nonsway frames, Tests 5-8 on precast

concrete subframes. Report CUSRC/PCF/02, Structures Research Centre,

Department of Civil Engineering, City University, London. 19910ctober.

70. RAGUPATHY, P. User manual for SWANSA. Structures Research Centre,

Department of Civil Engineering, City University, London. 1991.

71. MARDI, A A. Moment-Rotation Behaviour of Connection in Precast Concrete

Structures, PhD Thesis, Department of Civil Engineering, Nottingham

University, UK. 1992.

72 CP110:1972. Code of Practice for the Structural Use of Concrete. British

Standards Institution, London, 1972.

197



APPENDIX

The concrete mixes for the columns and beams were designed by the precast

frame manufacturers, the specified characteristic strength was Grade 50

concrete.

GROUT FOR JOINTS

The grout mix used for subframes CT1, CT2, CT5 and CT6 is Conbex 100

grout prepared according to manufactures detail.

The concrete mix used to grout the joint in subframes CT3 and CT4 is given

bellow.

Cement	 11.88 kg

Sand	 11.04 kg

Water 
	

04.56 kg

Aggregate (10 mm)	 28.32 kg

Average cube strength = 49.8 Nimm2

FLOOR SLAB

For the floor slab for the specimens CT7 and CT8 which were cast in the

Heavy Structures Laboratory has the following mix.

Cement	 46.75 kg

Sand	 46.20 kg

Water	 17.60 kg

Aggregate (20 mm)	 107.25 kg

Average cube strength = 55.2 Nimm2
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