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ABSTRACT

In general, on-line optimisation can be defined as the on-line process of finding
the optimum set-points of the system. Several areas might be concerned in this
procedure. This thesis evaluates algorithms for on-line Optimisation. Techniques
for steady-state detection, static data reconciliation, gross error detection and
steady-state optimisation are presented and implemented separately and within an
on-line optimisation methodology.

It has been acknowledged for some time now that the estimation of derivative
information is probably the major drawback of the steady-state optimisation
technique considered here: the ISOPE algorithm. This thesis investigates the
requirements of these derivatives, methods proposed to estimate them, and
presents some attempts to overcome some related problems. Also a modified
version of the dynamic model identification method that uses a nonlinear model
representation is proposed, and compared under simulation with other available
techniques. In the same context, an alternative method based on Artificial Neural
Networks to estimate the derivatives is also implemented and tested.

Often, rigorous steady-state detection is crucial for process performance
assessment, simulation, optimisation and control. In general, at steady-state data is
collected for safe, beneficial and rational management of processes. A method for
automatic detection of steady-state in multivariable processes is implemented and
tested. The technique is applied on a dynamic model of a chemical reactor.

The presence of errors in process measurements can invalidate the potential gains
obtained from advanced optimisation and control techniques. Data reconciliation
and gross error detection methods are used to reduce the inaccuracies of these
measurements. The implementation and application of static data reconciliation
and gross error detection techniques in this thesis show a noticeable improvement
in the operation of the system, and general control system performance.

The various algorithms mentioned above are successfully implemented and tested
under simulation. It is illustrated that in some cases, it is possible to use steady­
state detection in conjunction with data reconciliation, gross error detection,
parameter estimation and optimisation, to form an on-line optimisation
methodology. The methodology was tested on a dynamic model of a chemical
reactor.
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CHAPTERl

INTRODUCTION

On-line Optimisation techniques have been in existence for quite some

time and yet few industrial applications have been implemented to date. This may

stem from the general attitude in many manufacturing environments, where

advanced technologies not fully understood are rejected. In addition there are

tendencies to approach control problems from the traditional side, especially if
the solution works "well enough ".

1.1 OPTIMISATION

Optimisation, in the context of this work, may be thought of as the science of

determining the 'best' solutions to certain mathematically defined problems,

which are often models of physical reality. It involves the study of optimality

criteria for problems, the determination of algorithmic methods of solution, the

study of the structure of such methods, and computer experimentation with

methods both under trial conditions and on real life problems (Fletcher, 1980).

The concept of optimisation is now well rooted as a principle underlying the

analysis of many complex decision or allocation problems. It offers a certain

degree of philosophical elegance that is hard to dispute, and it often offers an

indispensable degree of operational simplicity.

In a mathematical cense, Optimisation may be concerned with finding the

minimum (or maximum) of an objective function, where there may exist
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restrictions or constraints as to what are permissible values of the independent

variables.

Generally, it not possible to fully represent all the complexities of variable

interactions, constraints, and appropriate objectives when faced with a complex

decision problem, a particular optimisation formulation should be regarded only

as an approximation like all quantitative techniques of analysis.

1.2 ON-LINE OPTIMISATION

On-line optimisation is an approach for trying to maintain a plant at its optimum

operating conditions by determining the required set-points of the plant. In the

majority of cases, the set-points will be made available to the plant's Distributed

Control System (DCS), although they could be used by a stand-alone computer

system. In most industrial processes, the optimal operating point is continually

shifting in response to changing market demands for products, fluctuating costs of

raw materials, products and utilities, and changing equipment efficiencies and

capacities. In addition, ambient conditions, variations in feed quality and

availability, and changes in equipment configuration are additional constraints

that can alter the location of the optimal operation point. The time frame over

which these various changes can occur ranges from minutes to months. The

competitive economic environment requires timely response to these changing

factors. This means that the optimisation must be carried out on-line to have the

plant operate continually under the best conditions.

On-line optimisation takes advantage of the fact that plants generally operate at

steady-state and have transient periods that are relatively short compared to

steady-state operations. Therefore, in on-line optimisation, steady-state models are

usually able to be used to describe these plants and their behaviour. The basic

methodology of on-line optimisation adopted in this thesis is to automatically

detect steady-state from the data samples collected from the process itself,

reconcile them to remove any random and! or gross errors, to update parameters in

the plant model in order to obtain plant-model matching. Then the current plant
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and its model are used to conduct optimisation and to generate a set of optimum

set-points. This procedure is able to be run continuously to cope with the

possibility of internal conditions (plant parameters and plant configuration) and/or

external conditions (economic parameters) changing.

Besides determining the optimum operating condition of the process from the

solution of the on-line optimisation problem, a number of other benefits are also

apparent. The detail operation information generated from on-line optimisation

provides a better understanding of the processes; this can be used to de-bottleneck

the process and to improve operating difficulties. Also, abnormal measurement

information obtained from gross error detection can help instrument and process

engineers to trouble shoot the plant instrument errors. Parameter estimation is

very useful for process engineers to evaluate the equipment conditions and to

identify the decreasing efficiencies and problem sources. Furthermore, the

detailed process simulation from on-line optimisation can be used for process

monitoring and serves as a training tool for new operators to obtain first hand

operating experience.

There are a number of areas which are central to the work and these are briefly

introduced in Sections 1.2.1-1.2.5

1.2.1. Automatic Detection of Steady-State

Process owners analyse processes when they are at steady-state, for this reason,

and for the reason that static data reconciliation and process optimisation are

steady-state procedures, it is important that the process has to be at steady-state

before applying the data reconciliation and optimisation procedures. Identification

of the steady-state can prove to be difficult because process variables may be

noisy and measurements do not settle. So. steady-state identification requires

statistical tests to compensate for the noisy data.
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1.2.2. Data Reconciliation

Measured process data inherently contains inaccurate information. This is due to

the fact that measurements are obtained using imperfect techniques. Using this

inaccurate information to estimate process variables and control the process.

results in the state of the system to be misrepresented and the control performance

to be poor, leading to sub-optimum and even unsafe process operation. The

objective of data reconciliation is to correct measured data variables so they obey

natural laws, such as energy and mass balances. Unfortunately, in the presence of

biases, all the adjustments can be greatly affected by these types of gross error,

and would in general not be reliable indicators of the state of the process.

1.2.3. Gross Error Detection

Raw process data is subject to two types of errors: random errors and gross errors.

Random errors are dealt with using data reconciliation techniques, while gross

errors need a different type of techniques, namely, gross error detection

techniques. Ideally, the aim of a gross error detection technique is to:

1 Detect the existence of the gross error

2 Identify its location

3 Identify its type

4 Determine its size

After the gross errors are identified, two responses are possible and/or desired

(Bagajewicz, 2003):

Eliminate the measurement with the bias, or

J Correct the model such as the case of a leak and run the reconciliation again.
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1.2.4. Parameter Estimation

Mismatch between models and plants can be due to a number of factors such as:

uncertain parameters, unknown state variables, unmeasured disturbances, error in

the model structure, and measurement noise. Proper adaptation schemes. where

the model parameters are updated on the basis of recent measurements. need to be

incorporated into the model-based optimisation control approach to minimise the

plant-model mismatch. There exist several approaches to cope with this problem,

where all are adaptive in nature but differ in their adaptation schemes.

1.2.5. Process Optimisation

Although there are many different available optimisation techniques, they can be

classified into two general categories: direct search and model-based optimisation

methods (Garcia and Morari, 1981).

As an on-line optimisation procedure, the Integrated System Optimisation and

Parameter Estimation (ISOPE) algorithm (or modified two step in some literature)

developed by Roberts in 1979, has some special features which can either be

considered as direct or indirect. It is based on a number of features including

derivatives calculation, originally estimated by using real process measurements,

to update a model used in the model-based optimisation, thus reaching the real

optimum of the process in spite of plant-model mismatch. Estimation of the

derivatives by means of measurement, which increases geometrically with

problem dimensionality, is a major problem of the ISOPE technique.

1.3 OBJECTIVES OF THE THESIS

The main objective of this research is to contribute to the improvement of the

current tools in the field of on-line process optimisation. This includes the

construction of plant models, the development, evaluation and comparison of



algorithms for process derivatives estimation, conducting and implementing

steady-state detection, data reconciliation, gross error detection, parameter

estimation and optimisation.

Any improvement in this area should help give more understanding of the way

on-line optimisation has to be implemented, and hence lead to more benefits of

on-line optimisation.

1.4 THESIS SCOPE

This thesis is concerned with certain on-line optimisation structures and the

general ISOPE algorithm which integrates an optimisation scheme together with

parameter estimation. Examples of situations using this structure are presented

within this thesis, and these examples should help to indicate how practical

problems can be treated and structured in this form. The thesis is also concerned

with the analysis and comparison of algorithms and techniques for solving both

general on-line optimisation problems and some related sub-problems. Problems

of steady-state detection, data reconciliation, gross error detection and parameter

estimation are also discussed and treated.

1.5 THESIS OUTLINE

This thesis is structured as follows:

Chapter 2 introduces the well known Integrated System Optimisation and

Parameter Estimation (ISOPE) algorithm developed by Roberts (1979). The

method was developed to overcome the problems of measurements and noise in

the direct optimisation approach, and plant-model differences in the indirect one.

A brief history is given together with the advantages and disadvantages that the

method presents. One major drawback that poses a practical limitation and which

wi II be the basis of some research in the following chapters is the need for real

process output derivatives with respect to the set-points to be computed at each

iteration of the algorithm.
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Chapter 3 presents simulation case study systems. Two systems which will be

used throughout the thesis for simulation purposes in order to assess and compare

the performance and effectiveness of some of the techniques developed and

presented in this thesis.

In chapter 4, a comparison study between some of the established methods for real

process output derivatives with respect to set-points when used within the ISOPE

algorithm and a new method based on a nonlinear dynamic model is made. These

methods try to overcome the limitation caused to the ISOPE algorithm, by the

need to perturb the system to obtain these derivatives. The methods are

implemented under simulation on one of the two case study systems presented in

chapter 3, which is the two Continuous Stirred Tank Reactors (CSTR) system.

Results of the simulations are then presented and compared

Chapter 5 presents a method for estimating real process derivatives with respect to

set-points. This method is based on Artificial Neural Networks (ANN). At first, a

brief history is given on ANN's, together with the main philosophy behind the

creation of ANN's. The neural network scheme is then presented and tested under

simulation on the two systems presented in chapter 3. Results are compared with

those obtained using a method described in chapter 4.

Chapter 6 introduces the area of data reconciliation and gross error detection for

the use to correct data measurements by removing both random and gross errors

from the data set. After a review of previous work, data classification and a

description of the problems that both random and gross errors present on on-line

optimisation and a full description of data reconciliation and gross error detection

techniques is given. The performance of these techniques is demonstrated in a

simulation case study. The case study uses the CSTR system described in chapter
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Chapter 7 incorporates the techniques implemented in chapter 7 for the static data

reconciliation and gross error detection for the elimination of random noise and

biases within the ISOPE algorithm. Again, simulations are carried out using the

CSTR system. Results of these simulations are discussed and compared to the

case when data reconciliation or gross error detection is not implemented.

Chapter 8 presents the on-line optimisation methodology as adopted in our work.

and gives a brief description on how each step of the methodology is carried out.

Methods for steady-state detection, data reconciliation, gross error detection.

parameter estimation and process optimisation are reviewed. Difficulties and

drawbacks of each method are discussed and compared to other methods in the

literature. Simulation studies were conducted to test some of the key methods on

the two Continuous Stirred Tank Reactors (CSTR) system. Finally, the whole

methodology was implemented under simulation on the CSTR system. The

implemented methodology procedure includes a steady-state detection module

connected to a gross error detection module, which in itself connects to a static

data reconciliation module. This latter is directly linked to the ISOPE algorithm

module for optimisation of the two CSTR system.

The thesis concludes with a number of suggestions for further research related to

the work carried out in this thesis.

1.6 SUMMARY

An introduction to the broad area of optimisation was given in this chapter.

Specifically, on-line optimisation, which here is considered to be a multi-step

procedure consisting of steady-state detection, data reconciliation, gross error

detection, parameter estimation and the actual optimisation procedure. One

particular method for system optimisation and parameter estimation (lSOPE) was

presented. The scope and a short outline of the thesis were also given.

In the next chapter, the ISOPE algorithm is presented in more detail.

''l-'-



CHAPTER 2

THE ISOPE ALGORITHM

2.1 INTRODUCTION

The On-line optimisation problem, which consists of the determination of

controls, or set-points, of a system controller, can be divided into two major

categories: the direct and indirect approaches. The direct approach uses

measurements taken directly from the real physical system and applies one of the

basic optimisation techniques to optimise the process performance objective

function. However, in practice this can give rise to some difficulties such as

having to contend with measurement noise and having to allow the process to

settle sufficiently before measurements are taken.

In the indirect or model-based approach, the optimisation is performed on a

mathematical model of the plant instead of the real system itself. When found, the

results are then applied to the real system. The use of model-based approaches has

several advantages. The measurements contaminated by noise and other process

disturbances are largely avoided. Also, there may not be a need to allow the

system to settle before taking measurements or to have available all measurements

of process variables which appear in the performance index (Ellis et aI., 1988).

Again, this is unlikely to produce the process optimum, as it is inevitable that

model-reality differences exist at least to some extent, in terms of structure and

parameter.

To overcome the problems of measurements and noise in the direct approach. and

model-reality differences in the indirect one, the ISOPE (Integrated System

Optimisation and Parameter Estimation) algorithm was introduced (Roberts.

1979). Possessing features from both approaches, the key feature of the algorithm



is to replace the model-based optimisation problem, after an analysis of first-order

optimality conditions (Appendix A) by an equivalent problem which is ultimately

decomposed into a parameter estimation problem and a modified model-based

optimisation problem (Roberts et al., 1988). In this method, information gained

from the real process is used to correct the errors occurring in the model. Hence.

reaching the optimum of the real process in spite of model-reality differences.

All ISOPE algorithms designed to date are derived from the basic and well-known

two-step technique, which consists of two major steps. The first step solves. with

the aid of process measurement, a simple model parameter estimation procedure.

The updated model is then used in the optimisation problem. The second step

obtains the process controls via an optimisation routine (Figure 2-1). The major

drawback of the two-step method is that it assumes a complete match between the

output derivatives with respect to set-points of the real system and its model. This

is highly unlikely to happen in reality where the degree of non-linearity is very

high and the environments are varying. This problem was addressed by the ISOPE

(sometimes referred to as the modified two-step) method, by introducing a new

modifier variable. This modifier takes into account differences between the real

process and model-based output derivatives with respect to the set-points, which

ensures satisfaction of the system optimality conditions.

Parameter

Estimation

Real process

Optimisation

Model-based

Controls

Figure (2-1): The two-step Method.
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2.2 THE ISOPE ALGORITHM AND ITS DEVELOPMENT

The ISOPE algorithm as initially proposed by Roberts (1979), deals only with

unconstrained problems. It was only until 1986 that Brdys et al. (1986) and then

later Lin et al. (1988) extended it to include problems with output independent and

output dependent inequality constraints. Nevertheless, the algorithm was used

successfully in a large variety of cases before that. Indeed, Ellis and Roberts

(1981) used the algorithm for on-line optimisation of a chemical reactor. The

results were promising, and opened the door for other researchers to investigate

the method more deeply. The performances of the algorithm, particularly the

stability and convergence properties as well as the effect of real process

measurement errors were investigated by Roberts and Williams (1981). Also, a

convergence analysis was conducted by Brdys and Roberts (1987). Ellis et al

(1988) conducted a comparison study where three methods were applied to a fuel

gas mixer process. The methods compared were the Conjugate direction method,

a rationalised form of the ISOPE algorithm and an Approximate Linear Model

ISOPE (ALMISOPE) method. It was concluded that in some specific cases, the

ALMISOPE is more efficient than the other two methods. An algorithm with dual

control effect for which the generated control signal satisfies the main control goal

as well as providing sufficient information for future identification action was

proposed by Brdys and Tatjewski (1994). Roberts (1992) introduced DISOPE, a

dynamic extension of the ISOPE algorithm used for solving nonlinear discrete

time optimal control problems. Data reconciliation techniques were also used

within the ISOPE algorithm to improve static optimisation schemes where data

was contaminated by noise and systematic bias (Abu-el-Zeet, 2000). And lately, a

comparison study including the most popular techniques for estimating process

derivatives needed by the ISOPE algorithm, was conducted by Mansour and Ellis

(2003). In the study, it was shown that the optimum operating point is reached

with all the different estimating techniques used, but with a difference in speed of

convergence; the Dynamic Model Identification technique being superior. Further

work was carried out on the ISOPE algorithm, including: Abdullah (1988) for the

35



Augmented ISOPE (AISOPE) and Becerra et al (1998) in the area of predictive

control. A review of the ISOPE algorithm can be seen in Roberts (1995).

2.3 FORMULATION OF THE PROBLEM

Consider the general steady-state optimisation problem of finding the optimum

set-points of a system, which the behaviour obeys to the following relationships:

Vmin <v<vmax

(2.1)

(2.2)

(2.3)

where y * is an ny vector of measured outputs, v is an nil vector of manipulated

variables, H* represents the real process input-output mapping and g is a

mapping of output dependent inequality constraints.

The performance of the system is measured with the objective function Q, which

is assumed to be continuous, and differentiable.

The system optimisation problem is then considered to be:

Subject to:

Min Q(v,y*)

y* = H* (v)

\' . <" ~ "mill max

~6

(2.4)

(2.5)

(2.6)

(2.7)



In general, the above system optimisation problem is converted into a model­

based optimisation problem where the following model of the real system is used:

y = H(u,a) (2.8)

where y is a vector of model outputs, u is a vector of decision variables: H is the

model used to approximate the real process mapping and a is a vector of free

parameters.

After analysis of the 1st order necessary optimality conditions (Appendix A), the

problem (2.4) to (2.7) becomes:

subject to:

min Q(u, y)

y = H(u,a)

H* (v) = H(u,a)

v=u

g(y) < 0

(2.9)

(2.10)

(2.11 )

(2.12)

(2.13)

(2.14)

The free parameters a are chosen so that the model and real process outputs match

at the current operating point, the model is then said to be point parametric (Ellis

et al., 1988).

The above equations, after applying the necessary optimality conditions, yield the

following model-based procedure:
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subject to:

where

min Q(H(u,a),u)-AU+t pwTw+tr II u-v 11
2

u,w

g(H* (v)) + M(u - v) + w ~ 0

-
Umin ~ U < U max

-
Umin = maX(Umin , v - 5)

-
U max = min(umax , v + 5)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

5j is the maximum allowed value of IU j - vj I, j = 1,. .. ,nu ' M is given by:

(2.20)

A is computed from:

and a can be obtained from:

y* - H(v,a) = 0

(2.21 )

(2.22)

Equation (2.16) is equivalent to (2.13), and A is a Lagrange multiplier, usually

referred to as a modifier.

11' is a set of relaxation variables and p is a penalty factor. The term +r II U - \' 11
2 is

used only for highly non-convex objective functions and is seen to improve the

convergence of the algorithm (r ~ 0) (Becerra and Roberts, 2000).
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The above problem is then treated as a general nonlinear programming problem.

When found, the solution of the problem (Roberts, 1979) is then treated within a

relaxation scheme to give in an iterative manner the next control (see procedure in

section 2.5) as follows:

(2.23)

Where K E [0,1) is a relaxation gain matrix, and governs the actual changes made

to the real process inputs from one iteration to another. Its purpose is to ensure

that excessive alterations are not made.

The basic scheme of the algorithm can be seen in Figure (2-2).

*Model-based Optimisation o, H (v) Parameter estimation
... ,

A Calculate a from (2.22).Solve the optimisation problem •
,

• Calculate the processv
given by equations (2.15) to (2.23). .J derivatives used in (2.20)

and (2.21).

• Compute A from (2.21).

)

Set-points Measurements
*

Vk Y
'If

Real process

Figure (2-2): The ISOPE algorithm.

From the previous relations (2.20) and (2.21), it can be seen that real process

derivatives are needed in order to compute the modifier A. Various techniques
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exist and have been developed and applied to date to estimate these derivatives.

Finite Differences Technique using perturbation, based on measurements, was

originally suggested with the algorithm by Roberts (1979). Although simple to

apply, the technique proved to be inefficient in the case of large, slow and

randomly noisy processes. The dynamic model identification method introduced

by Zhang and Roberts (1988). The major advantage the technique brought was the

reduction of the amount of time taken to estimate the derivatives. However. it

encountered some difficulties such as: the huge amount of data needed and the

poor inaccurate model it gives at the beginning of the identification.

Broydon's approximation method, based on the well-known Broydon's family of

formulas, mainly oriented to the approximation of derivatives was also used and

implemented. These techniques are studied in detail in Chapter 4, where an

assessment of their efficiency is made through a simulation of a Continued Stirred

two Tank reactor (CSTR) system. Other methods have been developed with the

aim of totally eliminating the need for the derivative information from within the

ISOPE algorithm. However, these techniques have not proven to be highly

successful, and therefore have not been included in this work.

2.4 SPECIAL CASE: QUADRATIC OBJECTIVE WITH

LINEAR MODEL AND CONSTRAINTS

Although the structure of most dynamical systems is of non-linear form, it is often

possible to obtain a good linear approximation to the behaviour of the system

around a suitable operating point. Thus, many systems can be described by the

following linear representation:

y=H(u,a)=Au+a

g(y)=Gy-h~O
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where A is an ( ny x nu ) matrix. And g is the output inequality constraints.

In the special case where the objective function Q is quadratic of the form:

(2.26)

where C and D are symmetric positive definite weighting matrices. e and f

weighting vectors, Yd and ud are the desired steady-state output and set-point

vectors respectively.

The physical interpretation of such a performance index, is that we desire to

maintain the output vector Y close to a target vector value Yd without using

excessive control effort, by keeping U near a given vector value uti. The

weighting matrices C and D (Singh and Titli, 1978) enable us to define the

relative importance of keeping the output near the desired target, the expenditure

of control effort and the need to ensure that at the final time, the output vector will

be very close to the desired target (convergence).

The reasons behind using linear models with quadratic performance indices is to

be able to use Quadratic Programming to solve the general non-linear problem of

finding the optimum point of a given non-linear system (which can prove to be

very difficult and time consuming) by converting it into a simplified quadratic

problem. One of the principal properties of quadratic programming problems is

that the constraints are linear, so they are convex, and in the case of a convex

objective function (which can happen if the weighting matrix is positive definite

or positive semidefinite). there is a unique solution to the problem which is the

global optimum. Quadratic programming arises in many applications and it forms

a basis of some specific algorithms and techniques. As it is usually solved using

calculus, many problems which are highly non-linear are converted into quadratic

formulation. A quadratic program is greatly simplified, and can be solved in

closed form if it contains equality constraints only.
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In this case the parameter a will be calculated by:

•a = y - Au (2.27)

And A can be found by combining equation (2.21) with (2.24) and (2.26) to be:

(2.28)

In this case the modifier A is found using the above formulation with the help of

process information such as measurement (i.e.: matrix A obtained using

measurements) and optimiser parameters such as D, C, and e.

The optimisation problem therefore IS reduced to the following quadratic

programming problem:

Subject to:

. I TS Tmln2"x x+q x
x

-
Gx<h

(2.29)

(2.30)

x m in < X < x max
(2.31 )

where:

x=[:] (2.32)

s = [ATCA + D + rIll I Onvx,]

°IXII I pI,r
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II = [b - Gy· - GAv]

The above optimisation problem is solved using quadratic programming.

(2.35)

(2.36)

2.5 A SIMPLIFIED VERSION OF THE ISOPE ALGORITHM

A practical version of the ISOPE algorithm presented in this chapter and

developed by Becerra and Roberts (2000) is given below. It is worthwhile noting

that the convergence of the algorithm for which a summary is given in section 2.6,

depends upon several factors. The accuracy of the derivative estimation is one of

these factors. The procedure is (Becerra and Roberts, 2000):

Data: C,D,e,j'Yd' ud ' G, h, r, p.K, vk and means for measuring y. and computing

Ak • Put k = aand go to step l .

1. Apply the current input vk to the plant, wait for a steady-state to be reached

•and measure the process output Yk .

2. Update the gain matrix Ak by using one of the available estimation methods

presented in chapter 4.

3. Compute a k using (2.27) and Ak using (2.28).

4. Solve the optimisation problem given by equations (2.29) to (2.36) using

quadratic programming to obtain the next input candidate Uk+1 •
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5. Compute the next process input by using (2.23).

6. Set k = k+ 1, check for convergence and go to step 1.

These steps are repeated until convergence is reached. Convergence occurs when

no further improvement is observed. In other words, when the new control is no

longer a better candidate than the previous one. Theoretically, convergence is

checked in step 6 by testing the equality vk + ) =V k• Practically, the previous

equality vk+) =V k is replaced by the following inequality: II Vk+1 - V k 11< e .

Where e > 0 is a desired accuracy threshold.

2.6 CONVERGENCE PROPERTIES

The convergence and optimality properties of the ISOPE algorithm for on-line

determination of the optimum steady-state operating point of a given process was

investigated in detail by Brdys and Roberts (1987). The conclusion was that,

under mild assumptions, a suitable gain matrix K exists such that every point

generated by the iterative procedure (equation (2.23)) is feasible. In fact, in order

to assure feasibility during iterations for a general constrained case, the gain

matrix K must be of the form:

K=kI

Where k is a positive scalar, and I is the identity matrix.

This involves all individual gains k, to have the same identical numerical values,

unlike in the unconstrained case. where the gain matrix K is allowed to have

di Ifcrent individual diagonal elements. However, the scalar parameter k in the

constrained case. is allowed to change from one iteration to another
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Under such conditions, the process performance index is improved at each

iteration and each cluster point of the sequence generated by the algorithm

satisfies first-order necessary conditions for optimality. Furthermore. everv

optimal point belongs to the solution set of the algorithm.

Although, in order to guarantee convergence, the composition of the performance

index and the process mathematical model should be uniformly convex functional

on the set of admissible controls, the real process input-output mapping may be

non-linear such that its composition with the performance index is not required to

be convex. Hence, the algorithm is applicable to a broad class of real problems

(Brdys and Roberts, 1987).

Also, it was found (Kambhampati, 1988) that:

1. The derivative differences given by [[ 8H· (J-L)]1' _ [8H(J-L)]7' ]
8J-L JI=1- 8J-L JI=1-

constitute the model-reality differences.

2. The modifier Acan be interpreted in either of the following two ways:

1. A parameter which quantifies the violations of the sufficiency

conditions by the models

or

ii. A compensator which permits differences in the model based

performance index and the system based performance index.

These conclusions helped us understand the model-reality differences and what

necessary characteristic the model has to fulfil in order that the performance of the

algorithm is efficient. And hence, the smaller the model-reality differences are.

the more efficient is the performance of the algorithm.



2.7 SUMMARY

In this chapter, the ISOPE algorithm has been presented and reviewed. An

improved version of the algorithm developed by Becerra and Roberts (2000) has

also been outlined. The major inconvenience the method possesses which is the

need for derivative information to be estimated at each operating point was also

addressed. In the algorithm, a special case for quadratic objective and linear

model was treated. Finally, the convergence and optimality properties have been

outlined.
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CHAPTER 3

CASE STUDY SYSTEMS

3.1 INTRODUCTION

In this chapter two examples of systems are introduced. These are to be used in

simulations in order to assess and compare the performance and effectiveness of

all the techniques presented in this thesis. The first example is a simple SISO

(Single Input Single Output) nonlinear discrete time system used as an

introduction to illustrate simple algorithmic design aspects. The second is a more

realistic system widely used in different situations and which consists of a two

Continuous Stirred Tank Reactors (CSTR's) connected in series.

The following subsection introduces the first example with its basic details and

system equation. The next subsection gives a detailed description of the second

system (CSTR), its functionality, equations and an explanation of all the related

constraints and restrictions. The design and implementation issues of both systems

are also outlined.
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3.2 EXAMPLE 1:

We consider the Single Input Single Output (SISO) non-linear plant represented

by the following first order discrete-time input! output representation:

y(k +1) = y(k) + u3(k)
1+y\k)

(3.1)

where y(k)is the plant output at time kT (T is the sampling time) and u(k) is the

input.

u

Signal generator uA3

'------I yl( 1+yA2)

yl(1+yA2)

y

Figure (3-1): SIMULINK implementation example of the
SISO non-linear plant.

This example, presented in Narendra and Parthasarathy (1990) and Kambhampati

et al. (2000), is an introductory example only. It is used to illustrate simple

algorithmic design and applicability aspects. In Chapter 5 it is used under

simulation to assess the effectiveness of the Neural Networks model structure

used in identification, after training the model with real input/ output data

candidates (taken from the real system described above).

3.3 THE TWO CONTINUOUS STIRRED TANK REACTORS
(CSTR'S)

This example presented by Garcia and Morari (1981) used by lang et al. (1987)

and later treated by Becerra and Roberts (1995), consists of two Continuous

Stirred Tank Reactors (CSTR's) connected in cascade in which an exothermic

autocatalytic reaction takes place (Figure 3-2). The components interact in both
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directions due to the recycle of 50% fraction of the product stream into the first

reactor. Regulatory controllers are used to control the temperature in both

reactors.

The reaction is described by the basic reaction equation:

(3.2)

where A and B are two chemical components.

The real process is represented by the following relations:

dCa2 = Cal _ C a2 _ (k C C - k C 2)

dt 2+ a2 h2 2- h2

'2 '2
dCh2 = ChI _ C h2 (k C C - k C 2)

dt
+ 2+ a2 h2 2- h2

'2 '2

(3.3)

(3.4)

(3.5)

(3.6)

Where CXi is the concentration of component x in tank i, '1 =30 min is the mean

residence time of reactor 1, '2 =25 min is the mean residence time of reactor 2,

which result in an overall time constant of approximately 40 min (Garcia and

Morari, 1981). kit = A± exp(- E± / RI;) are the reaction rates, E+ / R = 17786K,

E_ / R =23523K, A+ = 9.73 x 1022 m3
/ kmols, A_ = 3.1xl 030 m3

/ kmols, CaO =0.1 IS

the feed concentration of component A, 1; is the temperature in tank 1, T2 is the

temperature in tank 2.
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CaO L2 ~
Cal, Cbl

Cal, Cb2

CONC
2

Figure (3-2): The two Continuous Stirred Tank Reactors system.

These equations, together with the regulatory control loops, the measurement

transducers and the valve actuators provide the real process description. In our

case, the dynamics associated with the regulatory controllers were neglected as

well as the measurement transducers and actuators (which were originally

modelled as first order lags), as the real system process is a very slow process and

its dominant time constant is very large compared to those of the instrumentation.

There fore, the above equations represent the mapping H* of the real system.

It has to be mentioned that when using the ISOPE algorithm (Chapter 2), an

incorrect and simplified model is used as a mapping H to represent the system.

This mapping is different from the one given above.

The two CSTR plant has 4 outputs which are the concentrations of the two

components A and B in both tanks. Hence, the output vector can be written as:
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(3.7)

The manipulated variables which are the set points of the temperature controllers

in both reactors are given by,

These are bounded between upper and lower levels:

300 < 1; <312 K, 300 < T2 < 312 K and are assumed to be known noise free.

3.4 IMPLEMENTATION ISSUES

The implementation of the CSTR and the simple SISO systems presented in this

chapter was performed using a MATLAB@/SIMULINK software platform.

MATLAB is a high-performance language for technical computing. It integrates

computation, visualisation, and programming in an easy-to-use environment

where problems and solutions are expressed in familiar mathematical notation.

Typical uses include:

• Mathematics and computation

• Algorithm development

• Modelling, simulation, and prototyping

• Data analysis, exploration, and visualisation

• Scientific and engineering graphics

• Application development, including Graphical User Interface (GUI)

building.

MATLAB is an interactive system whose basic data element is an array that does

not require dimensioning.
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The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINPACK and

EISPACK projects, which together represent the state-of-the-art in software for

matrix computation.

MATLAB features a family of application-specific solutions called toolboxes.

Toolboxes are comprehensive collections of MATLAB functions (M-files) that

extend the MATLAB environment to solve particular classes of problems.

SIMULINK, a companion program to MATLAB, is an interactive system for

simulating both linear and nonlinear dynamic systems. It is a graphical mouse­

driven program that allows a system to be modelled by drawing a block diagram

on the screen and manipulating it dynamically. It can work with linear, non-linear,

continuous-time, discrete-time, multivariable and multirate system (The

MathWorks, 1996).

The implementation of both systems was achieved by creating a SIMULINK

model architecture which is able to interact with the MATLAB environment via

calling a subroutine containing the appropriate identification and optimisation

algorithms stored in an M-file. The subroutine acquires the information data under

the form of measurements from the SIMULINK model of the plant (figure 3-3).

The subroutine is executed at every time sample given in the SIMULINK model

parameters, which makes the whole procedure recursive. Major consideration and

extra care have to be taken when choosing the simulation parameters. For

example, we mention that the time step in a SIMULINK model is not the real time

step which means if a measured variable is plotted against time; it would be the

internal SIMULINK time not real time. Therefore the time, ODE and the other

parameters are to be tuned first before simulation starts. These parameters are

chosen following some specific criteria so that the whole system (SIMULINK

1110del and optimisation routine) works in a perfect state.

It is worth noting that the simulation times which appear In the results in

subsequent chapters relate to the real plant. The simulations would typically run

at speeds of between 10 to 100 times faster depending on the computational load

on the algorithm; and they are run for suitable time durations, giving time to the

52



appropriate system to settle down for a steady-state position and for the

appropriate algorithms to perform their tasks. All the results are then stored in the

workspace to be analysed and plotted.

I .......

~
~... Ca1 -,..

~
Ca2... ~ "'- Ca2 I-,.. ...--.

~ Ca1 I -+
Ca1

Ca2

~
...... ...

>-
...

~
......
~

+- - ...
~

Subsystem
...

Subsystem1

~
...

~
~... ...... ~... ...

+- ~...
Subsystem2 Subsystem4

~ Cb1 I...

~
~ Cb2 I... Cb1 ...--. "'-

~
....

Cb2... -....
~

Cb1 ....
Cb2

~
~...
......

Subsystem3

Figure (3-3): SIMULINK implementation example of the CSTR system.

3.5 SUMMARY

Two examples of systems, which are going to be used in case studies throughout

this thesis, were presented in this chapter. The first example is a simple

introductory system, which consists of a nonlinear discrete time plant. The second

one is a two Continuous Stirred Tank Reactors (CSTR's) connected in series. The

two plants equations and characteristics together with different implementation

aspects are presented in a way to describe the functionality of both systems.



CHAPTER 4

TECHNIQUES FOR THE ESTIMATION OF

THE DERIVATIVE INFORMATION

4.1 INTRODUCTION

The model-reality differences problem in the general on line optimisation problem

is usually overcome by using adaptive models which can be updated regularly

while seeking to reach the solution of the optimisation problem. The Integrated

System Optimisation and Parameter Estimation (lSOPE) algorithm uses such

models. The major drawback the method possesses is the need for derivative

information to be estimated at each operating point. These derivatives are needed

by the algorithm in order to satisfy necessary optimality conditions (Appendix A).

This chapter investigates methods and techniques developed for the purpose of

estimating the process derivatives. Methods of Finite Difference Approximation,

Dual Control Optimisation, Broydori's method and a Dynamic Identification

Method, with a Linear and Non-linear models, are presented, implemented and

tested, under simulation, on the cascade Continuous Stirred Tank Reactor (CSTR)

system presented in Chapter 3.



4.2 FINITE DIFFERENCE APPROXIMATION METHOD
(FDAM)

This method was the first employed for estimation of derivatives (Roberts, 1979)

and use is made of process measurements. If the process is subject to noise, then

the derivative estimates can suffer large errors giving problems in obtaining the

correct final solution. Other difficulties which might arise, apart from those

concerned with noise, are the obtaining of actual measurements and, for slow

dynamic processes, having to wait for the process to settle sufficiently before

steady-state measurements are taken.

In most practical situations, the process mapping is not given by a specific

formula or is difficult to find; rather it is a combination of experimental and

computational procedures. Thus, the output derivative matrix with respect to the

set-points needed by the ISOPE algorithm is usually unavailable.

In one dimensional case, the derivative of a certain function fix) can be replaced

by the secant line that goes through I at Xc and at some nearby point Xc + h,

(Dennis and Robert, 1983). The most obvious formulation of that line slope is:

[tx; +hJ- l(xJa = -=---~_.::.......--------:'--

C h
c

(4.1)

Therefore, the output derivative function with respect to the set-point of a given

process can be replaced by the following estimation:

al I(x + h) - I(x)
-ax h

(4.2)

However. will the above formulation be a faithful approximation to the derivative

function off?
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The answer comes from the fact that as h goes to zero, a
c

converges to f'(x).

Therefore, h has to be chosen conveniently small so that the estimation (4.2) can

be true, and ac can be calledfinite-difference approximation to f'(x).

In the multidimensional case, it is reasonable to use the same idea to approximate

the (ij),h component of the derivative matrix A by the following forward

difference approximation

1;(x + heJ ) - 1;(x)
a .. =---....:..----

If h (4.3)

where e j denotes the /h unit vector. The above formula IS equivalent to

approximating ther column ofA by

A = _F_(x_+_he....:c.J_) _F_(x_)
J h (4.4)

where A is the derivative matrix of the multidimensional function F.

Again, the matrix A converges to the true derivative matrix only if h is chosen to

be sufficiently small.

In practice, and in MIMO (Multi Input Multi Output) systems, the output

derivative matrix with respect to the set-points is similarly given by:

D = _8y ~ _y_(v..:..:....k _+_g_)_y_(---,vk",--)

k av g
(4.5)

where 8 is a small perturbation signal applied to the system in order to estimate

the derivative matrix and y and v are the output and manipulated (set-point)

variables respectively. The perturbation signal g is chosen to provide enough

excitement needed by the system, and at the same time ensures greater accuracy

of the derivative estimates. In practice, 8 is usually left as an adjustable

parameter.



Being the basic method used in the original ISOPE algorithm (Roberts, 1979), this

technique can give sufficient accuracy of the derivatives in an acceptable time

span, for the case of small and noise-free processes which have reasonably rapid

dynamics. However, it has been shown to perform very inconveniently for large

and slow processes because of the huge amount of time it takes for the estimation.

Indeed, as demonstrated by Ellis et al. (1988) and Mansour and Ellis (2003). a

large number of set-point changes are required for problems with large number of

inputs and outputs (Roberts, 1995). Furthermore, the inaccuracy of the

measurements for noise-contaminated processes might make the robustness of the

algorithm against disturbances very poor.

For these reasons, alternatives had to be found in order to overcome these

problems. A number of ISOPE techniques have been developed and applied in

different situations since the algorithm was first proposed. Below. some of these

techniques are listed. For a review of the different ISOPE techniques and their

applications, see Roberts (1995).

4.3 METHOD FOR DUAL CONTROL OPTIMISATION

This was the first algorithm based on steady-state measurements that does not

require additional set-point changes for the derivative approximation purpose

(Brdy's and Tajewski, 1994). It generates a control signal in such a manner that it

fulfils the main control goal, and produces an output signal which caries sufficient

information for future identification purposes. Below is a brief description of the

algorithm:

The algorithm assumes the existence ofa collection ofn+ 1 points \,1, Vi-I, ... ,

such that all vectors

I-n
\'

dcf
A ik i ; - k
oV = v - v

are linearly independent. i.e.
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del
dettS" =[~Vil ~Vi2... ~vinf):;t: O. (-+.7)

Directional derivatives F. j of the /h plant output y E 9{ny at a point Vi and in a

d
. . ~f

irection s" = Vi - Vi - ', can be computed as:

(-+.8)

for each k = 1, ..., n, j = 1, ..., m, with m is the number of outputs. Therefore

(4.9)

If the points vi
-

j are close enough to Vi then for every j = 1, ..., m,

(4.10)

This formulation assures generation of consecutive set-points Vi in such a way

that the efficient estimation of the plant output derivatives using equation (4.10)

can be applied. However, this estimation can not be applied successfully except if

the matrix s' is non-singular and sufficiently well conditioned. This can be

fulfilled only if the consecutive set-points Vi are appropriately located in their

space (Brdy's and Tatjewski, 1994).

In order to achieve this goal, a new inequality constraint has to be introduced to

the modified model-based optimisation problem. This new added constraint is

based on a function d connected with non-singularity of the matrix Sf. Brdys and
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Tatjewski (1994) proposed two formulations of the function d. The most practical

of them is:

(+'11)

where O"min(Si) and O"max (Si) are the minimal and maximal singular values ofs'.

This means that (4.11) is the reciprocal of the condition number of the matrix

Si (in 2-norm). This method is then implemented within the ISOPE algorithm in

order to estimate the output derivative matrix with respect to the set-points of a

given process. As shown in section 4.6, the performance and ability of this

method are demonstrated, and also compared to some other techniques which will

be discussed below.

For more details of the method and its practical implementation, see Brdys and

Tatjewski (1994).

4.4 Broydon's Method

One way to avoid estimating derivatives (since in practice the derivatives may not

be conveniently available) is the so-called Broydon family of algorithms

(Fletcher, 1980).

Proposed by C. Broydon, it is considered to be the most successful secant

approximation to the Jacobian. Broydon's approximation or as it is usually

referred to as Broydon's update, is used to solve systems of nonlinear equations.

The key feature of the method is that it updates the matrix Ak at each iteration so

that the next approximation Ak+1 is given by the equation:

where

Yk = f(xk +1) - f(x)
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(.+.1'+)

Broydon's update, belonging as it does to the class of Newton methods, may need

to be supplemented by some techniques to converge from a starting point. This

starting point has to be chosen conveniently in order to ensure convergence. In

practice, the initial approximation An is computed by using finite differences in

order to get a good start. This also makes the minimum-change characteristic of

Broydon's update more appealing.

In practice, equation (4.12) is used to estimate the output derivative matrix with

respect to the set-points of a given process. The derivative matrix is needed by the

ISOPE algorithm in order to calculate the modifier A (chapter 2).

Broydon's update gives:

(4.15)

Where BRk and BRk_1 are respectively the present and previous estimates of the

output derivative matrix (also known as Broydon's matrix), Yk and Yk-l are the

present and previous values of the measured output vector, while Uk and Uk- 1 are

the present and previous values of the manipulated variables respectively. The BR

matrix is updated periodically using present and previous measurements of the

output and manipulated variables and needs to be initialised at the start up.

Some remarks have to be made here regarding some obstacles that the algorithm

might encounter:

1. The first observation is that the algorithm needs an initial value of the

matrix BR to start with. Usually and as mentioned above. the finite

differences method (FOAM) is used to calculate it. However, in practice

and as explained in section 4.2, the FOAM has some disadvantages when

used on line. For instance, measurements might be contaminated by noise.
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or the system might have slow dynamics leading to a very slow estimation

process.

2. The second observation is that close to the optimum point, the current

control Uk and the previous one Uk-I are very close to each other

(i.e.: Uk ~ Uk-I)' which may cause the approximation formula (4.15), to

reach some prohibited values and therefore the algorithm to fail In

convergence.

More details about Broydon's family of algorithms can be found In Fletcher

(1980).

4.5 Dynamic Model Identification Method (DMI)

This method is based on the identification of a dynamic model that is used to

approximate the real process locally at each working point for the purpose of

estimating steady-state derivatives. It was first introduced into the field of

optimisation by Bamberger and Isermann (1978), where it was shown to be an

efficient tool for identification, especially in the case of slow processes.

The key feature of the method is to approximate the real process by a dynamic

model during the transient using real process information (Figure 4-1). In this case

the waiting time for the steady-state to be reached in order to estimate the

derivatives is avoided; these derivatives are calculated directly from the steady­

state model derived from the identified dynamic model. The structure of the

dynamic model to be identified is pre-specified and is updated on-line (Forbes,

1994). In many cases a linear structure is assumed (Garcia and Morari, 1981 ~

Becerra et al., 1998). However this is not always the case as general non-linear

forms can also be used (Bamberger and Isermann, 1978; Mansour and Ellis,

2003).

In this work, two different structures of models are used: a linear representation

with a non-iterative technique developed by Becerra et al. (1998) and a non-linear

model based on a 2nd order Hammerstein Model presented in Bamberger and

61



Isermann, (1978). The two techniques, based on the 1\\'0 different model

representations, follow.

Nd Samples

Transient
~

Time

Figure (4-1): The DMI notion aspect.

4.5.1. DMI with Linear Model Representation

A multivariable ARMAX (Auto-Regressive Moving-Average with eXogeneous

inputs) model is employed (Becerra et al., 1998) to estimate the linear dynamic

model, based on the least squares method.

A general state-space model representation which has the following form is used:

Llx(k+ l)=ALlx(k)+B!J.u (k)

!J.Y(k )=CLlx(k)

(4.16)

(4.17)

where k is an integer index, x E mny is a state vector, U E mnu is a set of independent

inputs, Y E 9,ny is a vector of measured outputs and A, B, C are matrices of the

appropriate dimensions. This technique is based on the moving- horizon concept

(Figure 4-2), but it exploits the displacement structure of the data window, so that

its cOlnputational load is reduced. For models with multiple outputs and a large

number of parameters it may provide a lower computational load than that of the

standard recursive least squares algorithm, as described below. Moreover. using a



non-minimal realization, the state space basis is invariant even when the model

matrices are updated periodically.

Ns Samples. )

Previous data window 14------+

n, samples

)

Ns Samples

Present data windowI'" ,

1 N;
I

: samples ""--- ---l

1

1 ~.-----------+
1
1

Time

Figure (4-2): The moving Horizon aspect.

Assume that the output of the system at discrete time k is denoted as yE mnv
, and

the input variable at time k is given by u(k) E 9{nu
• An ARMAX model of the

system can be written as (Bamberger and Isermann, 1978):

(4.18)

where

(4.19)

B•( -1) B -1 B -2 B -nhq = lq + 2q +... + n q
h

(4.20)

C•( -I) I C -I B-/1. q = + Iq + ... + n q c
c

(4.21 )

are matrix polynomials of the degrees na' n, and nc respectively, in the backward

shift operator q-t . d is the minimum pure time delay in samples from inputs to
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outputs, the sequence &(k) E mny is assumed to be zero mean discrete white noise,

and b E mny
is an off-set parameter vector introduced to take into account non-zero

levels in the signals involved. It has to be mentioned that in an ARMAX model

the dynamics of the process are incorporated in the model by the lags in the

polynomial arrays A, Band C.

An equivalent non-minimal state-space realization of the deterministic part of the

ARMAX model (4.18) is as follows:

where

x(k+l) Ax(k)+Buu(k)+c

y(k)=Cx(k)

x(k) = [y(k)7' y(k _1)1' ... y(k - na + 1)1'

u(k _1)7' ... u(k - d)1' ... u(k - d - nh + 2)7'f

(4.22)

(4.23)

(4.24)

is a state vector which contains present and past data values of the output at time

k, and past values of the input variables, dim x = n = n.n; + nu (nb + d-2), A

and B; are matrices of the appropriate dimensions which are formed in terms of

the ARMAX model polynomial coefficients, c E 91" is an off-set vector.

For instance, for the case when d = 1, matrices A, B; and C are given as:

-A -A2 -All B2 B"I a h

I" 0 0 0 0
\

A= 0 0 ... I" 0 0 0 (4.25)
.'

0 0 0 0 0

o o o
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where A is of dimension: (n n + n (n -1)) x (n n + n (n -1))ya u b yo u b •

B = 0u

In
"

(4.26)

Multiplying equations (4.22) and (4.23) by the difference operator l1=l_q-l, the

following incremental state-space model is obtained:

Ax (k+ l)=AAx (k )+Bul1u (k)

l1y (k )=CAx (k)

(4.28)

(4.29)

This model is a locally valid linear state space model in the form used in the

special case defined above.

The ARMAX model given by equation (4.18) may be written as a regression:

where

y(k) = eTrp(k) + s(k)
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qJ(k) =[-y(k _1)1' - y(k - na)1'

u(k-d)1' u(k-nh -d+1)1' e(k-1l ... e(k-nJ1'1f

where the residuals e E 91 nv may be defined as:

e(k) =y(k) - e1'rp(k)

(-+.3~)

(4.33)

Given N d distinct data samples {y(i), rp(i)}, i=l, ... , N d , the least square estimate

of the parameter matrix e is given by the solution of the following linear system:

where

_ N
d

R =L rp(i)rp(i) r
i=1

Nd

1 =L rp(i) y(i)1'
1=1

(4.34)

(4.35)

(4.36)

It is assumed that the input sequence u (k), k E [1, Nd ] is such that matrix R IS

non-singular, which occurs if the input sequence is a sufficiently exciting signal. It

is intended to use this formulation in a moving horizon fashion (Figure (4.2)). The

length of the data window being Nd' the parameter matrix is updated every Nil data

samples, where Nil < N d and p =N d / N u is an integer ratio.

A forgetting factor is generally introduced (Becerra et al., 1998) to enhance the

model adaptation to changes in the dynamics, by giving less importance to older

data within the data window.
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-
Therefore, the matrices Rand r may be written as follows:

- p -

R =I A;-s R.I'
s=l

('+.37)

(4.38)

where Ai is a scalar parameter °< Ai < 1 known as the forgetting factor. R, and

F, are given as:

sNd

Rs = I rp(t)rp(tf
1=(s-I)Nu+1

.I'Nd

r, = I rp(t)y(t)T
1=(s-I)Nu+1

(4.39)

(4.40)

It is important to note that the algorithm avoids the same sections of data between

consecutive parameter updates by exploiting the displacement structure of the data

window (Figure 4-2). Also, because the matrices R
I
. and r s are updated at every

sampling instant, there is no need to store Nd pairs of measurements. The

algorithm is recursive if nc > 0, since the previous value of the parameter

matrix e J -
1affects its current estimate e J • because the residuals

e( k -1) ... e ( k - n
c

) are computed using e J-
1

•
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The full algorithm is given below (Becerra et al., 1998):

Data

Step 0

Step 1

Step 2

Set k=O, j=O, jlag=O, I", =0, R, =0, S =1, ... , p.

Obtain a new measurement vector y(k) and input vector u(k).

If k ~ 1do the following sub-steps:

2.1 Form the regression vectoflp(k) , using the latest value of e to

compute the residuals e(k -1), ... ,e(k - nc ) '

2.2 Ifjlag = °then set L=Nd , else L= Nu '

2.3 If k < L then do

2.3.1 Ifjlag = 1 then set i = j, else set

i =int [ (k -1)/ NuJ +1

else do

2.3.4 If jlag = ° then set jlag - 1, and compute the

following summations:

- p -
R =LAP-s(r) Rr

r=l

p

r =LAp-.\(r)rr
r=\

68



where s(r) is an integer function mapping the corresponding

segment of the data window from the indexed matrix set index

r.

2.3.5 Compute the parameter matrix e by solving the linear

system (4.34).

2.3.6 If} = p then set} = 0

2.3.7 Set} = }+1, R = 0 and I". = 0
.I J

2.3.8 set k = 0

2.4 Set k = k+1 and go to step 1.

4.5.2. DMI with a Non-linear model representation

Most dynamical systems can be better represented by non-linear models, which

are able to describe the global behaviour of the system over a wide operating

range, rather than by linear ones that are only able to approximate the system

around a given operating point. Hence the use of a general non-linear model (2nd

order Hammerstein Model for simplicity) for the identification, in order to extract

the derivative matrix from it. A Hammerstein Model is a series combination of a

memoryless nonlinearity and linear dynamics. It is used to identify systems of

high nonlinearities.

This is the first time it is used and implemented within the ISOPE algorithm. The

work is inspired from that of Bamberger and Isermann, (1978).
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It is assumed that the process is stable and can be approximated by a non-linear

lumped parameter model. The process model to be identified considers n inputs.

7' TU = [U j J U2 J ••• , Un] and p outputs, Y =[YI'Y2, ... ,Yp ]. A generalised second

order Hammerstein model is used (Bamberger and Isermann, 1978):

Y] (k) = boo + BIIO(q-I )uI(k - d) +...+ Bill (q-I )U]2 (k - d) +...+

B'vJ' (q-I )u1,(k - d)uJ,(k - d) +...+ B'nn (q-I )u~ (k - d) - Al~ (q-I )y,(k)

where:

A ( -I) 1 -I -111
11 q = + a1/1q + ...+alllllq

B (-]) b -] b- III

lvu q = 'I'pl q + ...+ h'JI",q

(4.-+1)

(4,42)

(4.43)

are polynomials of order I in the backward shift operator ('. and T denotes

Transpose.

Thus, equation (3.41) can now be written in the form:

(4.44)

where:

Q(k) =[1 u
1
(k -d) .. ,u

1
(k - d - m) u]2(k -d) ... u]2(k - d - m) ...

ul.(k - d)up(k - d) .. .ut]: - d - m)uJJ(k - d - m) ... (4.45)

u~(k-d) ",u,~(k-d-m)"'YI(k-l) ... y,(k-m)]

and

(4.46)
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The calculation of all the parameters IS made VIa a recursive least-square

algorithm:

(4.47)

1\1\
1\

8(k+l) =8(k)+ P(k)[Yl(k+I)-OT(k+I)8(k)]

and

p(k) = 1 P(k)O(k + I) (4 48)
OT(k + I)P(k)O(k + I) + A .

P(k + I) =[I - p(k)OT (k + l)]p(k)jA (4.49)

with,

P(O) =OJ1, OJ» 1000 (4.50)

1\

0(0) = 0 (4.51 )

with 0.95 < A ~ 0.98.

As in our case the derivative information is needed, only the steady-state model of

the system is required. This is obtained by simply setting q=1 (final value for z­

transform) in equation (4.41).

Therefore:

The coefficients boo' BIi; and Ail are the result of the least-square identification

process of the non-linear model.
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By comparison, one can easily extract the output derivative matrix with respect to

the set-points of any system that can be represented by equations (4.16) and

(4.17).

In the case of very noisy processes, identification with a special correlation

technique gives better performance, without any parameter estimation (Bamberger

and Isermann, 1978).

Only the steady-state model obtained during the transient phase is used in the

ISOPE algorithm in order to optimise the performance index. To start the

procedure, a test signal Vs which has to fulfil certain conditions, is used to

accelerate the process identification. After the initial crude model is obtained, the

optimisation starts providing additional changes of the input v. These changes in

the input are to improve the continuing process identification so that the

amplitudes of the test signals can be reduced.

4.6 Simulation Case study

A set of simulations is carried out on the two Continuous Stirred Tank Reactors

(CSTR's) connected in cascade presented in chapter 3. These simulations were

created in order to assess the methods and techniques presented in this chapter. A

comparison is made between these methods in terms of convergence, stability and

speed.

4.6.1. Optimisation objectives and goals

The objective function for all the simulations using this system was chosen to be

linear of the measured variable Ch2 and reflects the desire of maximising the

amount of component B in tank 2. Thus the form of the objective function is as

follow:

Liy, v) = -Ch2

1'2
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It has to be noted that this objective function is linear of the measured variable

Ch2 , but is a nonlinear function of the manipulated variables 1;. and T
2

. This is

due to the nonlinearity of the system equations (chapter 3).

However, the model-based optimisation is performed on the unfaithful model

chosen to be linear of the form:

(4.54)

where a l and a 2 are the free parameters to be estimated and au {i = 1,2, j = 1,21 are

model parameters updated periodically using measurements (for more details. the

reader is referred to Ellis et al, 1993).

A SIMULINK model of the real process was created to enable periodic calls to

the ISOPE algorithm saved in an M-file. All the simulations were started from the

same starting point which is the initial steady-state condition given by:

1;. = 307K and 1; = 302K, which yields the following steady-state outputs:

Ca]=O.041361 [lanallm 3
] and Ch2=O.058638 [lanallm 3

] .

During the simulations, sufficient time was allowed for the system to settle down

to a new steady-state condition before measurements were taken. The only

exception was for the DMI method where the identification was carried out during

the transient and then the updated model was used in the optimisation routine to

update the set-points.

When using the dynamic model identification method to approximate the real

system output derivatives with respect to the set-points. a pseudo random binary

sequence (PRBS) of magnitude ±0.5K was needed to excite the system in order

to get an accurate enough model, for which the identifier parameters were tuned
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as given in Table 4.1. The tuning of these parameters purely depends on practical

Issues.

Three phases In the DMI procedure can be distinguished: dynamic model

identification (or updating), steady-state model updating and model-based

optimisation. The model based optimisation is incorporated in the ISOPE

algorithm as explained in Chapter 2. The identification is performed during the

transient using input/ output data gained from the real process (measurements).

When found the steady-state model is extracted and the derivative information is

therefore found and used in the model-based optimisation procedure.

The relaxation gain matrix choice is dependent on the method being used. The

value of the gain matrix was practically chosen to suit the algorithm convergence

and stability.

The final converged results of the simulations for the various techniques using this

example are shown in Tables (4.2) to (4.3) and Figures (4-3) to (4-9).

We notice that all the methods converge to the correct process optimum point

given by ~=312 K andT2=310.2K "'" with the optimum objective function value

of -0.0725. This is to be expected, as all techniques satisfy the necessary system

optimality conditions. Table (4.3) shows that the method using dynamic model

identification scheme converges faster than the other methods used in the

simulations. It is also seen from the same table, that the method using finite

differences to estimate the derivatives takes much more time to converge (in terms

of number of set-point changes), while it only needs a few iterations. This is in

total agreement with what was stated in the previous sections, because in the

dynamic model method the derivatives are estimated during the transient using

real system measurements, while the original method using finite differences is

steady-state and needs n times more the number of iteration (n being the number

of set-points); which could be prohibitive for large systems with a large number of

inputs and outputs and also for slow processes.
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Figures (4-3) to (4-7) show the trajectories taken by the manipulated variables

(set-points) and process outputs. It is seen how the changes in the set-points affect

the measured outputs and how they derive their values from the initial steady-state

condition given by Ca2 (0)=0. 041361 [lana/1m3
] , C

b2(0)=0.058638
[lana/1m3 ] to

the final converged solution (Ca2=0.0275 [lana/1m3
] , C

b2=0.0725
[lana/1m 3 ] ).

Figure (4-8) illustrates the results of noise-contaminated case simulations for the

dynamic model identification method. The results show that this method is noise­

insensitive because even in the presence of noise the final optimum solution was

reached, yet it made the algorithm slower taking more time to converge than in

the noise-free case.

Table (4.1): Tuning the identifier parameters.

Linear model

-------_._-------- --- ---------

Length of data window

Model orders

Identifier sampling time

Relaxation gain

n =2n =5n =ld=l
a 'b 'c '

K =0.03/

N =60d

d = 1

K =0.1/

Table (4.2): ISOPE algorithm with the different estimation techniques.

• -'0_" _'.~ --
Dual control Linear dynamic NonlinearFDAM Broydon's

method method model d}1lamic

model

Function value -0.0725 -0.0725 -0.0725 -0.0725 -0.0725

Number of Set- 22 12 14 10 12

point changes
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4.6.2. Results and Discussion

Techniques for estimation of real process derivatives to be used within the ISOPE

algorithm have been presented and applied on a cascade process consisting of two

Continuous Stirred Tank Reactors.

All methods, due to the satisfaction of optimality conditions, do achieve the real

process optimum provided they can be implemented in a stable manner after a

suitable choice of relaxation gains. The speed of convergence and the sensitivity

to noise are the criteria for algorithm selection.

It is well documented that the FDAM is not a good choice in the case of high

order, slow and noisy processes. Each time a process derivative is requested, a set­

point perturbation needs to be applied and a measurement time must to be

observed to allow the process to settle before the derivatives are calculated.

Additional difficulties are observed when noise is present on the output

measurement. This set-point perturbation, and the subsequent measurement time,

is where the majority of time is spent in the algorithm so this is a major

consideration in assessing the algorithm. As can be seen from the simulation of

the CSTR's system (Table 4.2), the FDAM, approaches twice the number of set­

point changes of the various following methods and would seem not to be the

perfect choice of algorithm.

The dual control method takes 14 set-point changes (Table 4.2) to achieve the

optimum in the CSTR's simulation. This is still more than the rest of the methods

but the ability of the algorithm to estimate the derivatives without any excess in

the set-point changes makes it a good choice. However, the applicability of this

algorithm is quite limited due to the need of an additional inequality constraint in

order to obtain a smooth trajectory of successive set-points in their space, which is

not always reachable (Brdy' s and Tatjewski, 1994).
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Both Broydon's method and DMI with non-linear model take 12 set-point

changes in the simulation. Even though they converge to the correct optimum, the

first method encountered a major drawback near the optimum (equation 4.15). as

it could lead to an infinite estimate of the derivative matrix. While the second

method, which is the DMI with non-linear model proved to be suitable only for

low-order non-linear systems. TIlls is contrary to DMI with the linear dynamic

model, which has a wide applicability range.

The most suitable used method in this example is DMI with the linear dynamic

model as only 10 set-point changes are needed. However, this is likely to be

because the process performance has a fairly smooth nature. In other situations.

where the process performance is more erratic, DMI with the non-linear model

may be more appropriate. The DMI with the linear model method is seen to be the

fastest to converge and moreover noise insensitive as the least square estimator

used in the algorithm plays a filter role. However, the huge amount of data needed

for the estimation and the poor model estimates it gives at the beginning of the

identification are its major drawbacks.

Table (4.3): Derivatives Comparison table.

Estimates of the Derivatives at the
optimum

. --- -------~--­- - ------~- -~

[-0.0094 -0.0071
0.0094 0.0071]

[0.0081 0.0086
-0.0081 -0.0089]

[-0.0007 -0.0008
0.0007 0.0008]

[-0.0096 0.0071
0.0096 -0.0071]

[-0.0092 -0.0070
0.0092 0.0070]

Optimum set-points

ISOPE with Broydon's method

ISOPE with Nonlinear dynamic
mooel

ISOPE with linear dynamic
model

ISOPE with FDAM

ISOPE with dual control
method

Method

~=312K

T2=310.2K

~=312K

T2=310.2K

T]=312 K

1;=310.2K

~=312 K

T:J=310.2K

~=312 K

T1=310.2K---" ------_._-_._---~-_.---------
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4.7 Summary

In this chapter, algorithms for estimating real process derivatives were presented.

These derivatives are needed by the ISOPE algorithm in order to satisfy necessary

optimality conditions. The techniques presented here are well known and most of

them have been successfully used in real situations. Comparison simulations were

carried out on a Two Continuous Stirred Tank Reactors system connected in

cascade. Results showed the superiority of the dynamic model identification

method .

In the next chapter, a neural network method for estimating the process

derivatives to be used in the ISOPE algorithm will be presented.
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CHAPTERS

A NEURAL NETWORKS APPROACH

5.1 INTRODUCTION

Neural Networks represent an emerging technology rooted in many disciplines.

They are endowed with some unique attributes: universal approximation (of

functions), the ability to learn from and adapt to their environment, and the ability

to invoke weak assumptions about the underlying physical phenomena

responsible for the generation of the input data.

This ability of learning from the environment and producing accurate

approximation of functions make neural networks an effective tool (Narendra and

Parthasarathy, 1990) to be used in identification and control of nonlinear

dynamical systems. In fact, the development and design of a neural network

which can learn and quickly adapt from its environment, the physical system. is

shown in this chapter to give good results when used within the ISOPE algorithm

in terms of convergence properties involving such factors as: speed, precision.

stability. etc.

This chapter presents an attempt to use Artificial Neural Networks (ANN) to

estimate real process derivatives to be used within the ISOPE algorithm. A

general but brief introduction to Neural networks is given first, with all the related

details and background related to our work. Then, two types of ANN architectures

namely Multilayer and recurrent networks are described together with static back­

propagation algorithm used to train the network and adjust its parameters. The
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performance of the neural network scheme presented in this chapter is tested

under simulation in two case studies employing the systems presented in chapter

3. The results are compared with those obtained by the FDAM method described

in the previous chapter.

Artificial neural networks (ANNs) can be considered as collections of very simple

"computational units" which can take a numerical input and transform it into an

output. It resembles the brain in two aspects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store

the knowledge.

The procedure used to perform the learning process is called a learning algorithm,

the function of which is to modify the synaptic weights of the network in an

orderly fashion so as to attain a desired design objective (Haykin, 1995).

The principle of supervised learning in ANNs is that the ANNs take numerical

inputs (the training data) and transform them into "desired" (known,

predetermined) outputs. The input and output nodes may be connected to the

"external world" and to other nodes within the network. The way in which each

node transforms its input depends on the so-called "connection weights" and

"bias" of the node, which are modifiable. The output of each node to another node

or the external world then depends on both its weight strength and bias and on the

weighted sum of all its inputs, which are then transformed by a normally

nonlinear, weighting function referred to as its activation function. The great

power of neural networks stems from the fact that it is possible to "train" them.

Training is achieved by continually presenting the networks with the "known"

inputs and outputs and modifying the connection weights between the individual

nodes and the biases, typically according to some kind of back-propagation

algorithm (Rumelhart et al., 1986), until the output nodes of the network match

the desired outputs to a stated degree of accuracy. If the outputs from the
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previously unknown inputs are accurate, the trained ANN IS said to be

generalised.

Neural networks are characterized by two major capabilities. The first is their

parallel distribution structure and the second, is their ability to learn and

generalize. These two capabilities make neural networks an attractive tool that can

find application in many disciplines.

The use of neural networks offers the following useful properties and capabilities:

1. Nonlinearity: As most physical activities happening around us are mainly

nonlinear, neural networks provide a useful tool in dealing with such phenomena

because of its nonlinearity capabilities.

2. Input-Output mapping: Similar to the nonparametric statistical inference.

neural networks have the capability of performing input-output mappings using

the so-called supervised learning. In fact, this involves training the network for a

given set of data for which the synaptic weights are modified accordingly using an

appropriate optimisation criterion.

3. Adaptivity: The ability to adapt to any changes in the surrounding

environment added to the natural architecture of a neural network make it an ideal

tool in adaptive pattern classification and adaptive control. Indeed, whenever

changes occur in the system or its environment, the network is retrained for the

new set of data, and the synaptic weights are adapted to their new values.

4. Uniformity of Analysis and Design: Neural networks enjoy universality as

information processors. This feature manifests itself in different ways (Haykin,

1994):

a. Neurons, in one form or another, represent an ingredient common

to all neural networks.

b. This commonality makes it possible to share theories and learning

algorithms in different applications of neural networks.

c. Modular networks can be built through a seamless integration of

modules,
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Many other properties and capabilities can be offered by neural networks. For

further details, see Haykin (1995).

5.1.1 History and development of Neural Networks

The first step toward artificial neural networks came in 1943 when Warren

McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts, wrote

a paper (McCulloch and Pitts, 1943) on how neurons might work. They modelled

a simple neural network with electrical circuits.

Donald Hebb (1949) reinforced this concept of neurons and how they work in his

book Organization ofBehaviour published in 1949. In the 1950's more research

was carried out in the area of artificial neural networks. Indeed, after many failed

attempts, researchers finally succeeded in simulating a neural network. In 1956

Uttley (1956) demonstrated that a neural network with modifiable synapses may

learn to classify simple sets of binary patterns into corresponding classes. In the

same year, the Dartmouth Summer Research Project on Artificial Intelligence (AI,

as it is known in industry) provided a boost to both AI and neural networks, by

stimulating research in both the intelligent side, AI, and the much lower level

neural processing part of the brain.

The following years saw the introduction of a new approach to the pattern

recognition problem by Rosenblatt in his work on the perceptron. In the

beginning of the sixties, Widrow and Hoff (1960) introduced the least mean

square (LMS) algorithm and used it to develop their ADALINE (ADAptive

LINear Element) and MADALINE (Multiple ADALINE) models (Widrow,

1962). MADALINE was the first neural network to be used in a real world

problem, and is still in commercial use. An important disadvantage was

encountered in the design of multilayer perceptrons which is the credit assignment

problem. This problem was first observed by Minsky (1961). However. the

solutions to this problem did not emerge until the 1980's. The reasons behind this

lag of over 10 years are multiple, but they are mainlv caused hy the halt of
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funding and the more or less dampening of interest in neural networks in the

1970s, where many researchers deserted the field. In 1982 several events caused a

renewed interest. John Hopfield made a transformation in the field of neural

networks by introducing a new approach to understanding the computation

performed by recurrent neural networks with symmetric synaptic connections

(Hopfield, 1982). At the same time the US-Japan joint conference on cooperative/

competitive neural networks resulted in a flowing of funding once again. 1986

saw the publication of a two volume book by Rumelhart and McClelland. The

book has made considerable contribution in the use of the back propagation

learning algorithm which is considered to be the most popular learning algorithm

for the training of multilayer perceptrons. In the 1990s, neural networks attracted

more interest from researchers in different disciplines because of its versatile

application and use. Today, neural networks are developing fast and their promise

seems to be very bright as nature itself is the proof that such things do work. A

full and detailed review of neural networks and its applications can be found in

Haykin, (1994).

5.2 MULTILAYER AND RECURRENT NETWORKS

In general, four different classes of neural networks architectures can be

distinguished (Haykin, 1994):

1. Single layer Feedforward networks

2. Multilayer Feedforward networks

3. Recurrent Networks

4. Lattice Structures

The difference between each type of architecture is the manner in which the

neurons of the neural network are structured and organised within the actual

network. Also, we have to mention that the architecture of an ANN is intimately

linked with the learning algorithm used to train the network (Haykin. 1994).
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In this section, two different classes of architectures namely the multilayer. "'

feedforward and recurrent networks are described. These two classes have

received considerable attention in the area of ANN. Multilayer networks have

proved to be successful in pattern recognition, while recurrent networks have been

used in associative memories as well as for the solution of optimisation problems.

Theoretically, multilayer networks represent static nonlinear maps of systems.

However, recurrent networks are represented by nonlinear dynamic feedback

systems (Narendra and Parthasarathy, 1990).

5.2.1. Multilayer Feedforward networks

One distinguished class of neural networks architecture is the multilayer

feedforward network (Figure 5-1). It is characterised by the presence of one or

more hidden layers; each layer can have one or more hidden neurons. The

function of the hidden neurons is to intervene between the external input and the

network output. By adding one or more hidden layers, the network is enabled to

extract higher-order statistics, for the network acquires a global perspective

despite its local connectivity by virtue of the extra set of synaptic connections and

the extra dimension of neural interactions. The neural network presented in Figure

(5-1) is said to be fully connected as every node in each layer is connected to

every other node in the adjacent forward layer. However, if some of the synaptic

weights are missing, the network is said to be partially connected. A simplified

block diagram representation of the multilayer neural network of Figure (5-1) is

given in Figure (5-2), where each layer of the network is represented by the

following:

Ni[u] = f[Wiu] (5.1)

The matrices Wi·s are weighting matrices tuned as described in section 5.3, r is a

diagonal nonlinear operator referred to as the activation function.

In this case the input/output mapping of the multilayer network presented 10

Figure (5-2) is given by:
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c·-

The choice of the acti vation function r depends on the user and sometimes of the

type of the application (Haykin, 1994). The most commonly used activation

function IS the sigmoidal function which the elements yare of the

form (Figure 5-3):

(5 .3)

One reason that makes ANN's with feed-forward architecture so attractive is that

it has been shown mathematically (Hornik et aI., 1990 ; White, 1990) that a neural

network consisting of only one hidden layer, with an arbitrarily large number of

nodes, can learn any arbitrary, and hence nonlinear, continuous function to an

arbitrary degree of accuracy. In addition, ANNs are widely considered to be

relatively robust to noisy data (Haykin, 1994).
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Figure (5-2): Bloc diagram representation of a two layer network.
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5.2.2. Recurrent Networks

A recurrent neural network distinguishes itself from a feedforward neural network

in that it has at least one feedback loop. For example, a recurrent network may

consist of a single layer of neurons with each neuron feeding its output signal

back to the inputs of all the other neurons, as illustrated in the architectural graph

of Figure (5-4). In the structure depicted in this Figure there are no self-feedback

loops in the network; self-feedback refers to a situation where the output of a

neuron is fed back to its own input. The recurrent network illustrated in Figure (5­

4) also has no hidden neurons. Other structures of recurrent networks with hidden

neurons may also exist. Figure (5-5) shows an example of a network with hidden

neurons. The presence of feedback loops in a recurrent network structure has a

profound impact on the learning capability of the network and on its performance

(Haykin, 1994). Moreover, the feedback loops involve the use of particular

branches composed of unit-delay elements (denoted by z-J), which result in a

nonlinear dynamical behaviour by virtue of the nonlinear nature of the neurons.

The most common recurrent network architecture is the Hopfield network shown

in the example systems in Figures (5-4) and (5-6). One version of the network

suggested by Hopfield consists of a single layer network NJ, included in feedback

configuration, with a time delay (Figure 5-6). It can be described by the following

discrete time representation (Narendra and Parthasarathy, 1990):

x(k +1) =N)[x(k)], x(O) =xo (5.4)

In the continuous time case, the dynamic system in the feedback path (z-J) has a

diagonal transfer matrix with identical elements of the form: lI(s + a) along the

diagonal. The system can then be represented by the following equation:

x =-ax + N) [x ]+ I
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where xCt) E ~H n is the state of the system at time t, and the constant vector

I E mn is the input.

Inputs
Outputs

Figure (5-5): Recurrent network with hidden neurons.

w r

Figure (5-6): Bloc diagram representation of a typical Hopfield
network.
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5.3 THE BACK PROPAGATION ALGORITHM

The 'Back Propagation Algorithm' or as it is referred to in some literature "The

Error Back-Propagation Algorithm", consists of two passes through the different

layers of the network (Haykin, 1994): a forward pass and a backward pass. In the

forward pass, an activity pattern (input vector) is applied to the sensory nodes of

the network, and its effect propagates through it, layer by layer. Finally. a set of

outputs is produced as the actual response of the network. During the forward pass

the synaptic weights of the network are all fixed. During the backward pass, on

the other hand, the synaptic weights are all adjusted in accordance with the error­

correction rule. Specifically, the actual response of the network is subtracted from

a desired target response to produce an error signal. This error signal is then

propagated backward through the network, against the direction of the synaptic

connections. The synaptic weights are adjusted as so as to make the actual

response of the network move closer to the desired response.

The corresponding architecture for back propagation learning algorithm of the

architecture layout of the multilayer network of Figure (5-1) is presented in Figure

(5-7). The top part of the Figure accounts for the forward phase where the layer

index I extends from the input layer (l = 0) to the output layer (l = L). In Figure (5­

7) we have L = 2, where L is referred to as the depth of the network. The lower

part of the Figure accounts for the backward phase, which is referred to as a

sensitivity network for I computing the local gradients in the back-propagation

algorithm.

While the network of Figure (5-1) is merely an architectural layout of the back­

propagation algorithm, it is found to have substantial advantages in dynamic

situations where the algorithmic representation becomes cumbersome (Narendra

and Parthasarathy. 1990).
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Figure (5-7): Architecture of two-layer feedforward network and
its associated back-propagation signal error.
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It has to be mentioned that the pattern-by-pattern updating of weights is the

preferred method for on-line implementation of the back-propagation algorithm.

For this mode of operation, the algorithm cycles through the training data

{[x(n),d(n)]; n = 1,2, ..., N} as follows (Haykin, 1994).

1. Initialisation. Start with a reasonable network configuration, and set all the

synaptic weights and threshold levels of the network to small random numbers

that are uniformly distributed.

2. Presentations of Training Examples. Present the network with an epoch of

training examples. For each example in the set ordered in some fashion, perform

the following sequence of forward and backward computations under points 3 and

4, respectively.

3. Forward Computation. Let a training example in the epoch be denoted

by[x(n),d(n)] , with the input vector x(n) applied to the input layer of sensory

nodes and the desired response vector den) presented to the output layer of

computation nodes. Compute the activation potentials and function signals of the

network by proceeding forward through the network, layer by layer. The net

-(I)

internal activity level Vj (n) for neuronj in layer I is:

-(/) p

v. (n) = L wj/(n)v;l-l\n)
i=O

(5.6)

where v;'-l)(n) is the function signal of neuron i in the previous layer 1-1 at

iteration nand wj;(n) is the synaptic weight ofneuronj in layer I that is fed from

-(/-I)

neuron i in layer 1-1. For i = 0, we have VQ (n) =-land wj~(n) = B.y)(n). where

e(l)(n) is the threshold applied to neuron j in layer I. Assuming the use of a
.I

logistic function for the sigmoidal nonlinearity, the function of neuronj in layer I

is:
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(5.7)
1VU>Cn) =-----:-::----

J _(I)

1+ exp(- v j (n))

If neuron} is in the first hidden layer (i.e., 1=1), set

(5.8)

where u/n) is the r element of the input vector u(n). If neuron} is in the output

layer (i.e., I=L), set

v(L>Cn) =y. (n)
.I J (5.9)

and the error signal is computed as:

(5.10)

where dj(n) is the r element of the desired response vector den) obtained from

the real plant.

4. Backward computation. Compute the 8's (i.e., the local gradients) of the

network by proceeding backward, layer by layer:

for neuron} in output layer L

aj'>Cn) = vj/) (n) [1- vy) (n) ] I ai'+I) (n)Wk:+I) (n)
k

for neuron} in hidden layer 1

Thus the adjustment of the synaptic weights of the network in layer 1 is obtained

by applying the following:

(5.11)

where '7 is the learning-rate parameter and u is the momentum constant.
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5. Iteration. Iterate the computation by presenting new epochs of trairung

examples to the network until the free parameters of the network stabilise their

values and the average squared error C;av computed over the entire training set

is at a minimum or acceptably small value. The order of presentation of

training examples should be randomised from epoch to epoch. The momentum

and the learning-rate parameter are typically adjusted (and usually decreased)

as the number of training iterations increases.

5.4 THE CONTROL PROBLEM AND THE NEURAL

NETWORK SCHEME

As discussed in the preceding chapter, one of the problem areas of the ISOPE

algorithm is the required estimation of real process derivatives.

In this section, a method based on neural networks for estimating real process

output derivatives with respect to the set-points for the general optimisation

problem of nonlinear processes is presented. The method is used within the

ISOPE algorithm presented in chapter 2.

5.4.1. The Optimisation problem and the ISOPE algorithm

Although many different process optimisation techniques exist, they can be

classified into two general categories: direct search and indirect or model-based

optimisation methods (Garcia and Morari, 1981). In the direct method,

measurements are taken directly from the real process as it is moving from one

operating point to another, and a suitable optimisation technique is then applied to

optimise the process performance objective function. In the indirect approach, the

optimisation is performed on a model of the system instead of the physical system

itself, and when found the results are applied to the real process.
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As described in chapter 2, the Integrated System Optimisation and Parameter

Estimation (ISOPE) technique (Roberts, 1979) has some special features from

both approaches: direct and model-based. It is based on derivatives calculation

provided by real process measurements to update an unfaithful or deliberately

simplified model used in the model-based optimisation, thus reaching the real

optimum of the process in spite of model-reality differences. However. it is

established now that the need to evaluate real process derivatives at each iteration

by the ISOPE algorithm in order to satisfy necessary optimality conditions is

probably its major drawback. A neural networks approach has been developed and

is presented here as an attempt to overcome this need. The technique reaches

successful results in terms of estimating real process derivatives, which makes the

ISOPE algorithm, converge to the exact optimum point without having to wait to

settle for steady-state or applying repetitive disturbances on the set-points.

5.4.2. The Neural Network scheme

The technique is based on training a neural network to learn from the physical

process itself. Once the training is finished, a steady-state neural network model,

which imitates the static behaviour of the dynamical system, is reached. This

model is used to find the system outputs to a given set-points. In this case,

accurate enough model outputs and their derivatives are available to the ISOPE

algorithm and prohibitive waiting times are avoided as in the traditional way when

computing the output derivatives with respect to the set-points. In the case where

system parameters change, the algorithm is set to adapt to it. In other words, the

algorithm will retrain the neural network for a suitable time, and provide an

accurate updated model of the modified system as illustrated in Figure (5-8).

It has to be mentioned that during training, switches k2 and k, are closed, k, is

open and k; is in position 1. This enables the algorithm to collect input/output

data candidates required for the training in order to generate the identification

neural network model. The states of these switches are reversed otherwise.
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Figure (5-8): Neural Networks scheme used within the ISOPE algorithm.

5.4.3. Identification

As mentioned earlier, the ability of learning from the environment and producing

accurate approximation of input-output mappings of systems make neural

networks a prime candidate for use in dynamic models for the representation of

non linear plants. Therefore, the identification problem consists of setting up a

suitably parameterised network model and adjusting the parameters of the model

to optimise a performance index based on the error between the plant and the

identification model outputs. Every neural network model is composed of a series

of weight vectors, which form what we call weight matrices. These matrices are

updated each time the network is trained for another input! output data sample

until no further improvement is hoped. Hence, the procedure consists in adjusting

the parameters of the neural network in the model using a suitable training

algorithm. In our case, we chose the back-propagation algorithm presented in

section 5.3 based on the error between the plant and the identification model

outputs. However, other types of model networks and training algorithms can also

be used. The training of the network is performed once only. This takes place

at the beginning of the optimisation procedure. Once a performance goal is
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Figure (5-9): Flow chart diagram representation of the neural
network scheme.
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reached, training stops, the model and its parameters are saved to be

used In the optimisation procedure. In case one or more of the svstern

parameters change, the neural network model has to be retrained. In this case, a

suitable time is given to the algorithm to perform identification and produce a new

model. Once training is finished, the model parameters are updated. saved and

passed to the optimisation routine (Figure 5-9). In practice, to cover against

system parameter changes, retraining may be carried out at periodic intervals.

5.5 SIMULATION CASE STUDIES

In order to evaluate the performance of the neural network scheme presented in

this chapter, two sets of simulations were carried out using the systems presented

in chapter 3. The first set uses a simple single input-single output non linear

system. This set of simulations was used to assess the accuracy. and adaptability

of the neural network scheme. While the second set was carried out on a two

Continuous Stirred Tank Reactors (CSTR's) connected in cascade, and was

employed with the aim of demonstrating the characteristics of the same neural

network scheme on a higher scale, when incorporated within the ISOPE

algorithm. A comparison is made between this method and an older method

presented in the previous chapter.

5.5.1. Case study 1

Consider the single input-single output non linear plant driven by the following

input/ output relationship:

y(k+l)= Y(:) +u\k)
1+ y (k)

where l' is the output and u is the input.
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A nonlinear feedforward back propagation network model of the above system is

created in order to imitate the behaviour of the actual system.

This model has three nodes in the input layer, one hidden layer with five nodes,

and one output node. This choice of node numbers was entirely practical, and

depended on which option resulted in the best approximation of the real system

behaviour by the identification model. The structure of the input vector to the

model was therefore chosen to be:

X(k) = [u(k), u(k -1), y(k)] (5.13)

where u(k) and u(k -1) are the present and previous inputs to the real system

respectively, y(k) is the present output of the real system resulting from the

application of u(k) to its input.

At first, the network was trained for 10000 different input/output data samples

measured from the real system. The input was a random input whose amplitude

was uniformly distributed in the interval [-2, 2]. This results in the neural network

model approximates the behaviour of this plant over this interval only (which is

enough for our application). This in tum results in the variation of y over the

interval [-10, 10]. After training, a model of the system is developed. The internal

architecture of this model is not known, however its behaviour follows exactly

that of the real system.

The results of the simulations for various input signals are shown in Figures (5-

10)to(5-12).

Figure (5-10) shows the trajectory taken by the real plant and neural network

identification model output signals when applied a sinusoidal function of the
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~ (k)' (2n k) . 2n .. .rorm: u =SIn - + sinf - k) In Its Input It is clear that the identification
10 25 .

model output follows exactly the real output signal, and that the error difference

between the two signals is very small and negligible. This shows how accurate the

neural network model used in approximating the behaviour of the real system.

In the case when the input signal changes, the model output also adapts to the new

set of data and follows the real process output (Figure 5-11). The input to the plant

d jd ificati d I . b . 2n 2nan 1 enu ication mo e was given y: U(k)=sIn(-k) +sin(-k) for k ~ 350
10 25

and u(k)=0.2sin( 2n k) + 0.8sin( 2n k) for k > 350. The functions y = flu) and
5 25

1\

y = N[u] are shown in figure (5-12). Again, the difference between the two output

signals can not be distinguished, even after the input signal was changed. This is

in total agreement with the results found in Narendra and Parthasarathy, (1990).

A second set of simulations this time employing a Radial Basis Function (RBF)

network, has been performed on the same system. The results are shown in figures

(5-13) to (5-15). From the figures, it is clear that the model output signal

trajectory matches the real system output signal trajectory with great precision.

Compared to the results found with the back propagation network, this type of

network gives more accurate approximation of the system mapping. This is to

show the fine ability of an RBF network to approximate nonlinear functions. In

fact, RBF networks are differentiated from back propagation networks by the fact

they learn much faster especially if the number of input variables is not too high

like in our case. However, the required number of neurons in the single hidden

layer increases geometrically with the number of the input variables. This

becomes prohibitive for systems with a large numbers of input variables. RBF

networks are also known to work best when many training vectors are available.

which means when more time is spent collecting the input-output candidates for

training the network.
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5.5.2. Case study 2

The two CSTR system is described in detail in chapter 3. It has four outputs which

are the concentrations in the two tanks: y. = (Cal'Chl'Ca2,Cb2f. Temperatures in

the two tanks T; and T2 are the set-points. In our case study, we only consider two

components from the output vector y., which are: Ca2 and Ch2.

A feedforward back propagation neural network with one hidden layer and six

output neurons or units was used in simulation. In a feedforward network, the first

layer has weights coming from the input. Each subsequent layer has a weight

coming from the previous layer. The last layer is the network output.

In our case, a feedforward back propagation network with one single hidden layer

was chosen because such a structure is capable of accurate approximation of an

arbitrary function and its derivatives (Hornik et aI., 1990) and for simplicity

reasons. Other types of networks can be used to accurately approximate the

system's mapping. For instance, RBF networks are best candidates for this

purpose.

It has to be mentioned that the choice of number of neurons in the single hidden

layer depends totally on the experimenter. The main factor to be taken into

account is the number of input and output samples, and the algorithm behaviour

towards the different values tested. The choice adopted above proved to be more

suitable because it produced the best results among those many tested. In practice,

the algorithm can be tested with different combinations of layers in simulations

based on robust models of the system which is the usual step to be carried out

before any real implementation is performed. The optimum (best) choice is then

applied on the physical system itself.
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The training of the network was performed using the back-propagation algorithm,

Training takes place only once (at the beginning, unless the system's parameter

change), when a suitable performance goal is reached, training is stopped, model

parameters are updated and then passed to the ISOPE algorithm.

At first, the network was trained for 100000 different input/output data samples

measured from the real system. Since the real system is a BIBO (Bounded Input

Bounded Output) system, the training input set used to train the neural network

was chosen to be a random input in the interval [295, 320]. This is due to the fact

that we want to cover all the input interval range that the real system inequality

constraints satisfy. These are given by the set-points of temperature controllers

upper and lower bounds: 300 s T; < 312 K, 300 < t, S 312 K.

After training, a model of the system is developed. The internal architecture of

this model is not known, but as with the first case study, its behaviour follows that

of the real system. During the simulations, sufficient time was allowed for the

system to settle down to a new steady-state condition before measurements were

taken or new set-points were applied.

The optimisation was performed on a linear objective function of the measured

variable C
hZ

and reflects the desire of maximising the amount of component B in

tank 2.

L(y, v) = -ChZ
(5.14)

As mentioned in the previous chapter, this objective function is linear of the

measured variable C
hZ

' but is a nonlinear function of the manipulated variables

To. and Tz . This is due to the nonlinearity of the system equations (chapter 3).
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A SIMULINK model of the process was created to enable periodic calls to the

ISOPE algorithm saved in a MATLAB file. The simulations were started from the

same starting point which is the initial steady-state condition given by:

T; =307K and T2 =302K, which yields the following steady-state outputs:

Ca2=O.041361 [kmol/m
3

] and Cb2=O.058638 [kmol/m 3
]. The relaxation gain

matrix was chosen to be: K =0.11. The choice of the relaxation gain is crucial

and was adopted after a number of trials, and is the most appropriate among

several tested. This gain allows the system to remain stable by generating small

but suitable changes to the set-points as the system moves towards the optimum as

quickly as possible.

5.5.2.1 Simulation results:

The results of the various simulations applied on this system are shown in Table

(5.1) and Figures (5-16) to (5-17).

In table (5.1), a comparison of the final set-points and derivative matrix values is

given. The comparison was set between the neural network scheme presented in

this chapter and the Finite Differences Approximation method (FDAM) presented

in chapter 4 for approximating process derivatives. It is clear that the new method

based on neural network model performs a good estimation of the real process

derivatives; moreover, it is fast and does not need a waiting period for settling

down neither it needs major disturbances on the real system inputs. This is

demonstrated by the small number of set-point changes the neural network

method takes to converge compared to that of the FDAM. It is known that the

FDAM take at least (n+ 1) times set-point changes more as it attempts to compute

the process derivatives (n being the number of set-points).

Figure (5-16) shows the trajectory taken by the real system outputs and set-points.

while attempting to find the optimum operating point when using the Finite

Differences Approxinlation method (FDAM) (chapter 4) to compute the output
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derivative matrix with respect to the set-points. From the figure, we see that time

is mostly consumed when the derivatives are computed by applying small

perturbations and waiting for the system to settle down before taking

measurements. Figure (5-17) shows the trajectories taken by the real system

outputs, identification model outputs and set-points. Unmistakably the

identification model outputs follow exactly those of the physical system with a big

precision driving it from the initial steady-state position given bv

Ca2(0)=0.04136 [kmol/m 3
] , Ch2 (0)=0. 05864 [kmol/m 3

] to the final converged

solution (Ca2=0.0275 [kmol/m3
], Ch2=0.0725 [kmol/m 3

] ). It is clear that in this

case, time is not wasted waiting for the system to settle down for a steady-state

position to compute the derivative matrix as this latter is found using the

identification (neural network) model instead. This model provides the model

outputs that match the real process outputs for a given set-point as well as an

approximation of the real process derivatives. This leads to the optimum operating

point being reached quickly without applying any perturbations on the system.

It has to be said that for large scale systems, the training takes much more time.

This is due to the fact that almost all the situations that the system can be

subjected to have to be considered. For instance, in case of no parameter change

in the system, we can say that the algorithm performs well and is more

advantageous than using earlier methods like the FDAM. as it allows us to gain

the time taken to compute the real process derivatives with respect to the set­

points which results in a faster convergence. It also provides an accurate

estimation of the process outputs if the training was performed well. Moreover. it

avoids applying unnecessary perturbations to the actual system when on-line

optimisation (lSOPE) is performed.
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Table (5.1): Derivatives Comparison table.

ESTIMATES OF NUMBER OF SET-
METHOD OPTIMUM THE POINTS CHANGES

SET-POINTS DERIVATNESAT
THE OPTIMUM

ISOPE with FDAM T]=312 K [-0.0094 -0.0071 22

T]=310.2K 0.0094 0.0071]

ISOPE with Neural ~=312 K [-0.0094 -0.0071 7
Network scheme T;=310.2K 0.0094 0.0071]
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Figure (5-16): Set-points changes and outputs trajectories for the
FDAM method.
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The simulation case studies presented in this chapter do not include the case

where the system was subjected to an additive noise or gross error. This issue is

addressed in chapter 7 where data reconciliation and gross error detection

techniques will be employed.

5.6 SUMMARY

A Neural Network technique for estimation of real process output derivatives with

respect to the set-points for general nonlinear systems to be used within the

ISOPE algorithm has been presented, implemented and applied under simulation

on two examples of systems. The first system was a simple single input-single

output non linear plant, while the second was a cascade process consisting of two

Continuous Stirred Tank Reactors. The method converged to the correct optimum
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point even when a change in the real process parameters occurred. The only

drawback of the method encounters is that as the process parameters change. the

algorithm needs some time to collect data and retrain the neural network to adapt

to the new changes. In practice, to cover against system parameter changes.

retraining may be carried out at periodic intervals. However, since the generated

neural network identification model is a steady-state model, waiting periods for

calculating derivatives is avoided, hence, the ISOPE algorithm converges faster.

Simulations that include noise contaminated processes are treated in chapter 7

together with the data reconciliation and gross error detection techniques for

detecting, locating, estimating and eliminating random and gross errors.
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CHAPTER 6

DATA RECONCILIATION AND GROSS ERROR

DETECTION

6.1 INTRODUCTION

Process data and measurements are the basis for monitoring, evaluating process

performance, and for process models that are used to optimise and control

processes. The reliability of measured data is of great importance. However,

measurements are usually subject to random errors and/or gross errors, and also

not all variables are available for measurement because of cost consideration or

technical unfeasibility. The presence of such errors causes the violation of the

mass, energy and other physical constraints of the process. When information

gained from flawed measurement is used for state estimation and process control,

the state of the system is misrepresented and the resulting control performance

may be poor and can lead to suboptimal and even unsafe process operation. The

objective of data reconciliation and gross error detection techniques is to correct

the measured variables by removing both the random and gross errors from the

data set, and to estimate the values of the unmeasured variables, so that we obtain

an estimate of the true state of the plant. Hence reaching better results when

applied in optimisation and control. In other words, using data reconciliation and

gross error detection within the ISOPE algorithm to remove errors from measured

variables, can improve the parameter estimation, and enhance the quality of the

derivative estimation resulting in more efficient operation of the system.

In this chapter, static data reconciliation and gross error detection methods for the

estimation of random and gross errors respectively are presented. These are used

in case data measurements are corrupted with random and/ or gross errors in order
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to detect and eliminate them. The performance of these methods is demonstrated

in a simulation case study. The case study uses a two Continuous Stirred Tank

Reactors (CSTR) connected in series system. This system was described in

chapter 3. In the simulations, biases and random errors were added to the

measurements, to investigate whether static data reconciliation and gross error

detection are able to detect, estimate and eliminate them. Comparisons are made

between simulation results when measurements are affected by noise and! or bias,

with and without data reconciliation and gross error detection. Section 6.5.4 of

this Chapter provides a discussion of the results, and Section 6.6 summarises it.

6.2 DATA RECONCILIATION

Data reconciliation, also called validation, allows state estimation and

measurement correction problems to be addressed in a global way. The aim of

validation is to remove errors from available measurements, and to yield

consistent and complete estimates of all the process state variables as well as

unmeasured process parameters. Data reconciliation is based on measurement

redundancy (Arora et al., 2003). A redundant measurement is a measurement

which the value can be calculated based on other measurements. There are two

types of measurement redundancy (Liebman et al., 1992): spatial and temporal.

A measurement is said to be spatially redundant if there are more than enough

data to completely define the process model at any instant in time, in other words

the system is overdetermined. Whereas a temporally redundant measurement is

defined as a measurement which past values are available and can be used for

estimation purposes. Data reconciliation uses measurement redundancy that arise

from the fact that at least some information about the process is known and relates

the measurements to each other (Liebman et al., 1992). These are used to correct

measurements and convert them into accurate and reliable knowledge. As a

result the reconciled values exhibit a lower variance compared to original raw

measurements: this allows process operation closer to limits (when this results in

improved economy).
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One main aspect of the data reconciliation problem is incomplete measurement

sets. Usually, not all process variables are available (or convenient) for

measurement because of cost considerations or technical unfeasibility. Therefore.

Coaptation (Mah et al., 1976), which is the process of estimating the value of

some unmeasured variables through mass, energy and component balances, is

used.

In general, the data reconciliation problem IS stated as follows (Bagajewicz,

2003):

Given a set of measurement values of a subset state variables, it is desired to

obtain the best estimators of these measured state variables and as many

unmeasured variables as possible.

6.2.1. Types of errors

Raw process data is subject to two types of errors, random errors and gross errors.

Gross errors are caused by non-random events such as process leaks, biases in

instrument measurements, malfunction of instruments, inadequate accounting of

departures from steady-state operations and/or inaccurate process models. The

random errors come from the randomness of measurements, such a process noise,

and they are normally distributed.

6.2.2. Measurement data processing

Figure (6-1) illustrates the concept of the three basic steps for processing

measurement data (Liebman et al., 1992).

Step 1 concerns variable classification. It embroils orgarusmg variables into

specific categories. Multiple algorithms have been designed to date to deal with

this issue (Stanley and Mah, 1981, Crowe, 1986, and Mah, 1990). Variables are

classified as observable or unobservable and redundant or undetermined. A

variable is said to be unobservable if it is possible to make a feasible change

(without violating the conservation constraints) for a variable without being

detected bv the instruments. In other words, a measured variable is always
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observable, but an unmeasured variable mayor may not be observable (Figure 6­

2). The test for redundancy is as stated above.

The second step concerns gross error detection and identification. In this step. any

gross error is detected, identified, its value estimated and subsequently eliminated.

Many gross error detection techniques exist and have been developed to date. This

subject will be addressed in detail in section 6.3.

The third and final step is the coaptation and data reconciliation step which is as

described earlier. The mathematical formulation of the steady-state data

reconciliation problem is given in section 6.2.6.

Measurements Model

Undeterminable
Variable

Classification

Determinable

Gross Error
Detection and
Identification

Coaptation
and Data

Reconciliation

"
Estimates

Figure (6-1): Three steps for processing measurement data
(Liebman et al., 1992).
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Redundant Not redundant Observable Unobservable

Figure 6-2: Variable classification

The common assumptions underlying steady-state data reconciliation methods and

software implementations are as follows (Kim et al., 1997):

1. A stationary process: The system is at steady-state.

2. Measurement error is Gaussian with zero mean value, and known variances

(usually diagonal covariance is assumed). This signifies that the measurements

are not affected by any gross error.

6.2.3. History

Data reconciliation has been used for several years as means of obtaining accurate

and reliable data in process plants. The earliest work reported in the literature is

probably that of Kuehn and Davison (1961). The authors presented a formulation

of the data reconciliation problem and a method based on Lagrange Multipliers in

order to solve the steady-state data reconciliation problem. In dynamic cases. Gelb

(1974) used Kalman Filtering successfully to recursively smooth measurement

data and estimate paran1eters. However. both concepts (steady-state and dynamic)
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were developed for linear systems only. Therefore, modifications had to be made

in order to handle nonlinear systems. Knepper and Gorman (1980) proposed a

method based on successive linearisation of the system's nonlinear equations

(constraints). The method was based on the application of the analytical solution

for the linearly constrained data reconciliation problem. In a comparison study,

Jang et al. (1986) came to a conclusion that better results in terms of response to

changes in parameters and robustness in the presence of modelling errors and

strong nonlinearities can be achieved when nonlinear programming is used. So

much so, Liebman and Edgar (1988) illustrated that nonlinear programming gives

improved reconciliation estimates compared to successive linearisation. Crowe et

al. (1983) proposed a method based on matrix projection to reconcile process

flows. In this method, a Chi-square test based on the inverse of the reduced

Hessian was used. This method was later reviewed by Crowe (1986). Narasimhan

and Mah (1987) introduced their Generalised Likelihood Ratio (GLR) method for

gross error detection. This method based on the likelihood ratio statistical test is

capable of detecting, identifying, estimating and eliminating a wide variety of

gross errors. Also, a strategy for identifying multiple gross errors namely the

Serial Compensation strategy was proposed in the same paper. Based on the Chi­

square test, a linear combination technique that identifies equivalent gross errors

was derived by Rollins et al. (1996). A review of important results for gross error

detection is available in Crowe (1996), for steady-state systems and Albuquerque

and Kramer (1995) for dynamic systems. Based on a bivariate distribution

function constructed using the maximum likelihood principle, Tjoa and Biegler

(1 991) presented a method for combined data reconciliation and gross error

detection applied to steady-state processes.

One of the problems researchers were faced with is the detection of the steady­

state. The fact that processes are never in a steady-state, which is the assumption

that all data reconciliation algorithms are based on, means not only random errors

but also process variations are averaged with good measurements. This issue was

addressed in many publications (Narasimhan, 1984, Holly et al., 1989, and Abu-

el-zeet et al., 2000).
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Most recently, Narasimhan and Jordache (2000) published a book, which provides

a systematic and comprehensive treatment of data reconciliation and gross error

detection techniques.

The literature is rich with excellent review papers: Mah (1982); Tamhane and

Mah (1985); Mah (1990); Madron (1992); and Crowe (1996).

6.2.4. Benefits

The benefits derived from data reconciliation in chemical and process industry are

many. They include (Arora et al., 2003):

• Improvement of measurement layout.

• Fewer routine analyses.

• Reduced frequency of sensor calibration (only faulty sensors need to be

cali brated).

• Removal of systematic measurement errors.

• Systematic improvement of process data.

• A clear picture of plant operating condition.

• Reduced measurement noise for key variables.

Moreover, monitoring through data reconciliation leads to early detection of

sensor deviation and equipment performance degradation, actual plant balances

for accounting and performance follow-up, safe operation closer to the process

limits and improved quality and performance at the process level.

6.2.5. Recent developments and software packages

People both from academia and industry, are being attracted to the area of data

reconciliation. Hundreds of articles have been published, few books have been

wri tten and a couple of industrial software packages exist at the present moment

(Bagajewicz, 2003).

Recent developments in the field aim at combining online data acquisition with

data reconciliation, where reconciled data are displayed in control rooms in
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parallel with raw measurements. Departure between reconciled and measured data

can trigger alarms and analysis of time variation of those corrections can draw

attention to drifting sensors that need recalibration (Arora et al., 2003). Amongst

the software packages developed to date, we note: PRECISE, from Ok-Solutions,

VALI, which is a data reconciliation and data validation software available from

BELSIM s.a, we also note RAGE, which is a software for data reconciliation and

gross error detection developed by the Chemical Engineering Department (lIT

Madras).

The next subsection presents the mathematical structure of the steady-state data

reconciliation problem. A comprehensive case study that illustrates the use of this

structure is provided in Section 6.5. The case study also motivates the treatment of

gross errors using gross error detection techniques, and uses the two CSTR system

presented in chapter 3.

6.2.6. Mathematical structure of the data reconciliation problem

The underlying idea in Data Reconciliation is to formulate the process model as a

set of constraints. Here, this will involve mass and energy balance and some

constitutive equations. All measurements are corrected in such a way that

reconciled values do not violate the constraints. Corrections are minimised in the

least-squares sense, and the measurement accuracy is taken into account by using

the measurement variance-covariance matrix as a weight for the measurement

corrections.

The data reconciliation problem is formulated from data collected at sampling

instants i, If we assume these data sets to be independent of each other, and that

no gross error is present, and the process is at steady-state, the measurement

vector (YIII) can be written as:

Y - V +&
III - . true
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where Ytrue is the vector of the true values of the variables. e is a vector of

random measurement errors. These errors are assumed to be normally distributed

with zero mean, and a covariance matrix V.

The general data reconciliation problem can be stated as the following nonlinear

programming (NLP) problem:

Min F(ym, Ytrue)
Ytrue

Subject to: h(ytrue) = 0
(6.2)

where F(Ym' Ytrue) is some objective function that depends on a difference

between the measurements and their reconciled values, and h is a set of algebraic

equality constraint equations. In (6.2), we assume that all variables are identified

with a particular data set and the problem is an errors in variables measured

(EVM) problem. On the other hand, one can also have multiple measurements of

each variable, such as in problems with moving horizons.

Problem (6.2) is usually formed with objective functions derived from the

maximum likelihood (Arora et aI., 2003). Here a number of specialisations can be

made for data reconciliation. In particular, if we assume data snapshots i are

independent and all data have errors from similar sources, we can simplify the

error structure. For most applications the objective function in (6.2) is simply a

Weighted Least-Squares (WLS):

) _ ~ ( _ )1' V-I ( _ )F(ym, Ytrue - 2 Ym Ytroe Ym Ytroe (6.3)

V, the variance-covariance matrix which each element ~j is (Jj2 , is assumed to be

the same for all data sets. In addition, if we assume that the elements of each data

vector are independent of each other, then the off diagonal elements of the

variance-covariance matrix can be assumed to be zero. In other words (6.3) can be

\vritten as:
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Hence the steady-state data reconciliation problem (6.2) can be simplified to:

min {~(Y _ )T V-I ( )}
2 m Y true Y m - Y true

subject to: h(Ytrue) = 0

(6.4)

(6.5)

Once formulated, problem (6.5) can be solved with a number of efficient

approaches.

6.2.6.1 Nonlinear Programming (NLP)

For instance, any Nonlinear Programming (NLP) solver can solve problem (6.5).

Often Sequential Quadratic Programming (SQP) is the method of choice as it

requires the fewest function evaluations. In this case, it is simple to add upper and

lower bounds on the measured variables, so problem (6.5) can be more

generalised. These upper and lower bounds are considered as an extra inequality

constraint, and can be formulated as:

Y , . < y .<y .true, ,I - truei - trueui Vi, (6.6)

where Ytrue,l,i and Ytrue,u,i refer to the lower and upper constraints on variable Ytrue,i'

6.2.6.2 Quadratic Programming (QP)

In case the equality constraint equations are linear, or linearised if they are almost

linear. problem (6.5) can be reduced to an unconstrained Quadratic Programming

problem (QP) that can be solved analytically. In this case,

(6.7)
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where A is the Jacobian of the constraint equations, and the solution is obtained

by the use of Lagrange multipliers and is given by (Abu-el-zeet. 2000):

_ T T -1
Y'nJe - Ym- VA (AVA ) a

where a is the residual of the unsatisfied balances and is given by:

a=Ae=Aym

(6.8)

(6.9)

6.2.6.3 Successive Iinearisation

A shortcoming of the linear solution is that the solution does not necessarilv

satisfy the non-linear constraints. In successive Iinearisation, the linear problem is

iterated until an optimal point is obtained satisfying the non-linear constraints. As

in the linear solution method, the advantage of successive linearisation is its

relative simplicity and fast calculation.

Before solving the NLP problem, equation (6.5), some variable classification and

pre-analysis is needed to identify unobservable variables and parameters, and non­

redundant measurements. As stated in section 6.2.2, Stanley and Mah (1981), and

later Crowe (1986), proposed observability and redundancy tests for steady-state

data reconciliation. Albuquerque and Biegler (1996) extended these to dynamic

systems and applied a sparse LV decomposition rather than a QR factorization.

The reconciliation algorithm will correct only redundant variables. The

preliminary analysis should also detect overspecified variables (particularly those

set to constants) and trivial redundancy, where the measured variable does not

depend at all upon its measured value but is inferred directly from the model.

Finally, it should also identify model equations that do not influence the

reconciliation but are merely used to calculate some unmeasured variables. Such, .
preliminary tests are extremely important, especially when the data reconciliation

runs as an automated process.
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In the preVIOUS section we indicated the usefulness of data reconciliation for

obtaining accurate states, assessing the sensitivity of measurements and their

uncertainties on estimated parameters, and in providing a tool for fault detection.

In the following section we focus on efficient strategies for handling gross errors

in data reconciliation.

6.3 GROSS ERROR DETECTION

The least squares objective function in equation (6.3) can, in certain situations, be

severely biased leading to incorrect reconciliation and estimation. A common

procedure can identify the measurements that suffer from gross errors and

eliminate them in a sequential procedure. This procedure is called gross error

detection. Early papers on the subject describe tests based on Chi-square statistics

as the criteria for identifying outliers (Crowe, 1996). Madron (1985) and (1992)

proposed a Chi-square test based on the squared studentized residuals following a

non-central Chi-square distribution. They also provided methods for gross error

detection and the concept of measurement credibility. Kao et al. (1992) proposed

a Chi-square test for gross error detection in serially correlated process data. They

also compared this with three other tests for outlier detection.

Two central issues are of concern when dealing with a gross error detection

problem: proper location of the gross errors (instrument biases and leaks) and

estimation of their sizes. Thus, the main task is to (Bagajewicz, 2003):

• Identify the existence of gross errors

• Identify the gross errors location

• Identify the gross error type

• Determine the size of the gross error.

After the gross errors are identified. two responses are possible and/or desired:

• Eliminate the measurement with the bias, or

• Correct the 1110del (case of a leak) and run the reconciliation again.
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The first alternative is the one implemented in commercial software. which only

considers biases.

One of the most recognised methods for gross error detection is the Generalized

Likelihood Ratio (GLR) method ofNarasimhan and Mah (1987).

6.3.1. Formulation of the GLR method for gross error detection

As described in Narasimhan and Mah (1987), the Generalised Likelihood Ratio

(GLR) method is used for the detection, identification and estimation of gross

errors in steady-state processes.

The method is based on the GLR method developed by Willsky and Jones (1974)

to identify abrupt failures in dynamic systems. It assumes the knowledge of a

mathematical model describing the effect of a leak and / or bias on the process.

Although suited for single gross error identification, a serial compensation

strategy is often adopted in combination with the GLR method when dealing with

multiple gross errors (Narasimhan and Mah, 1987).

The method is described below:

I. Process model:

Consider a steady-state model of a chemical process described by (6.1) and (6.7).

In other words:

Y -Y +&III - true
(6.10)

(6.11)

where all variables are same as before. To mention that equation (6.11) represents

the linear or linearised mass and energy conservation constraints.

For a system affected by a gross error of unknown magnitude b, the model of the

svstem IS given by: )'11/ =Ytm e + e + be; for a measurement bias and
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h(Ytnle) = AYtnle - bm I =0 for a process leak as a leak affects the balance

constraints only.

For the general problem of detecting the presence of a gross error. identifying its

source and estimating its value, we first consider the case where only one gross

error is present at most.

Consider r to be the residuals of the material balances

r=Aym (6.12)

Since r is a linear transformation of Y
III

' it has a multivariate normal distribution.

Moreover, in the absence of gross error, the expected value of E(r) = 0 (where

E(r) is the statistical mean of r), and the covariance matrix cov(r) = H = A VA' .

where V is the variance-covariance matrix of the random measurement errors. are

assumed to be known.

If a gross error due to a bias of magnitude b is present in a measurement i. then

E(r) = bAe; "* o. So much so, if a gross error due to a process leak of magnitude b

is present in a certain node j (in the system), then E(r) =bm j "# 0 .

In general, in the presence of any type of a gross error, we can write:

where

E(r) =bf

={Ae;
i; m.

J

for a bias in measurement i

for a process leak in node j

(6.13 )

(6.14 )

Therefore. the hypotheses for gross error detection can be formulated as follows:

Ho:p=O

HI: p =bf,
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where Jl is the unknown expected value of r, Ho is the null hypothesis that there

is no gross error and HI is the alternative hypothesis that either a process leak or a

measurement bias is present. HI has got two unknown parameters, band f. The

value of the gross error magnitude b can be any real number. and 1; (gross error

vectors (Narasimhan and Mah, 1987)) can be any vector from the set F given as:

F = {Aej,mj : i = 1...n,j = 1... m}

The likelihood ratio test statistic in our case is given by:

A =sup Pr{r IHI I}
Pr{r Itt, I}

(6.16)

(6.17)

where Pr is the normal probability density function for r and the supremum in

equation (6.17) is computed over all possible values of the parameters present in

the hypotheses.

Using the normal probability density function for r, equation (6.17) can be written

as:

') exp{-0.5(r-b1;)'H-I(r-b1;)
/l. =sup I

h,i; exp {-0.5r' H- r}

Equation (6.18) can be simplified to the following (as it is always positive):

T =2ln A =sup r 'H -1 r - (r - b1;),H- I(r - b1;)
h.I,

(6.18)

(6.19)

The computation of the test statistic T is very important in the process of

detecting, identifying and estimating the value of the gross error of magnitude h.

The procedure to compute T is given as follows.
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1\

First, we calculate the estimate b of b for which equation (6.19) is satisfied. b IS

called the maximum likelihood estimate, and is given by:

1\

(6.20)

1\

Substituting this value of b in equation (6.19) we obtain:

T _ d%2
i - C

I

Where

(6.21 )

(6.22)

(6.23)

After every 1; (for every J; in the set F) is computed, the test statistic T is

obtained as:

ii. The test:

T =sup 1; (6.24)

At this stage, a comparison test is performed on the value of the test statistic T. If

T is greater than a certain threshold C , a gross error associated with the vector r
is detected, identified and then its value estimated using equation (6.20). r being

the vector that leads to the supremum in equation (6.24).

The above algorithm is summarised in Figure (6-3).
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Compute the residuals

r=AYm

Compute the gross error vectors 1;'s

_{Ae i for a bias in measurement i
1;- c. I k i dmj lor a process ea In no e j

for every i =1.. ,n, j =1... m

Compute the 1; 's

1;=%

Compute T
T =sup 1;

NO
Stop

Identify Gross error (associated

with the gross error vector 1;*,
1\

and estimate its value b ,

Estimate the value of Ytrue using
1\

.1'tnle = Ym -B-be,

Figure (6-3): Bloc diagram representation of the GLR algorithm.
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In the above formulation, additional constraints can be added as to oblige process

leak values to be positive. This can be done by testing the computed value of b for

nonnegativity. If the value of b is negative, we discard that process leak as a

possible source of gross error. So much so, and in a similar way, one can include

upper and lower bound constraints on the magnitude of process leaks

(Narasimhan and Mah, 1987).

The above formulation of the GLR algorithm is applicable only when a single

gross error is present. In the case of multiple gross errors, Narasimhan and Mah

(1987) proposed a strategy based on serial compensation of gross errors. This

strategy is described in section 6.4.

6.3.2. Bias estimation

In the special case where the locations of the biased variables are known a priori,

bias can be estimated as a parameter (McBrayer and Edgar, 1995).

The procedure is to solve the following NLP problem:

"
Min J(y, b)

subject to:

fey) = o.

(6.25)

- < -. < - .y/,i - y, - yu" Vi,

Vi, (6.26)

where

ley, b) = [)71 -(~I -bl)J+ [)7, -(~,' -b,)J+

,.. + ()7; - (~:i -b, )J
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where Ymi is the i
th

measured variable, Yi is the ith estimate, (Ji is the measurement

noise standard deviation of the ith measured variable and b is the estimate of bias
I

h ·th . A

on tel measured vanable. Note that b, is also included in the inequality

constraints. This allows for physical limits on the range of admissible biases.

6.4 STRATEGY

DETECTION

FOR MULTIPLE GROSS ERROR

The GLR method presented in the previous section is only applicable for single

gross error detection and identification. However, when more than one gross error

is present, strategies are needed to identify them. Many strategies exist and have

been developed for this purpose. The serial elimination strategy (Ripps, 1965) is

one of the first proposed strategies. It is based on applying the test recursively on

the different variables and the elimination of the current measurement.

Commercial versions of this procedure (Datacon, Sigmafine) eliminate one

measurement at a time and use the measurement test or similar. The serial

compensation strategy which is based on identifying one gross error at the time

using the GLR test was developed by Narasimhan and Mah (1987). This strategy

can be used to identify multiple gross errors of any type. This method will be

presented in detail in the next subsection. Another strategy known as serial

collective compensation method, exists (Bagajewicz, 2003), and it is based on

applying the test recursively, to determine the sizes of all errors and adjust the

measurements.

6.4.1. The Serial Compensation Strategy

The serial compensation strategy proposed by Narasimhan and Mah (1987). as

opposed to its predecessors. can be used to identify multiple gross errors of any

type. In this technique one gross error is identified at a time, by applying the GLR

test as presented earlier in this chapter. After estimating its magnitude. this value
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is used to compensate for the error before moving to other gross errors. This

process is repeated until no further gross errors are detected.

The serial compensation strategy is described below:

Let us denote the compensated measurements and residuals after k applications of

the GLR test as Ymk and rk , respectively. Let h* and b; be the gross error vector

and estimated magnitude, respectively, of the gross error being identified in

application k of the GLR test. Also, let the following matrices E;, AI; and G; be

defined as follows:

where

(6.28)

* {Oe -i-e.
J

if a bias is not identified in application i

if a bias in sensor j is identified in application i
(6.29)

where

M; = [m; ,m; ... m;] (6.30)

m* ={O
I m ,

J

if a leak is not identified in application i

if a leak in node j is identified in application i
(6.31)

From the above formulations of E;, M; and G;, and definition of the gross error

vector I; we can put into effect that:

(6.32)
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We can then deduce that the compensated measurements and constraints at the

end of application k are:

(6.33)

(6.3~)

where

(6.35)

If we define the compensated residuals r
k

as

(6.36)

Then, by using equations (6.31), (6.32) and (6.12) we can see that

(6.37)

Therefore the hypotheses for application k+1 of the GLR test is formulated as

H o.k : E[rkJ =0

Hi, : E[rkJ =bf.i ], E F,
(6.38)

where ~ is the set of gross error vectors corresponding to the gross errors that arc

not identified in the first k applications of the GLR test. If we assume that the

gross errors identified in the first k applications are actually present in the data and

that their actual magnitudes are equal to the estimated magnitudes, then under

H the true constraint model is given by equation (6.3~) and that true
O.k

measurement model of the system is given by:



(6.39)

Then, by using equations (6.12), (6.32), (6.34), (6.37) and (6.39), we arrive to the

conclusion that

rk ~ N(O, H) under Ho,k (6.40)

The test statistic for each gross error vector in F; can therefore be achieved

through equations (6.21), (6.22) and (6.23) by using rk for r. We draw the

attention here that the test statistics for application k+1 are conditional test

statistics of the previous tests. In other words, if a gross error is not detected in.

say application n of the GLR, then no test is carried out for the application n+1.

and the serial compensation strategy is brought to an end. The compensated

residuals rn_1 are used in data reconciliation to estimate all the variables.

Also, it should be noted that the serial compensation strategy described above

should be applied only if the detection of a gross error is not affected by the

presence of any other gross error. In case this is not satisfied, then a more correct

procedure is to apply the test to all postulated combinations of gross errors

(Narasimhan and Mah, 1987).

6.5 SIMULATION CASE STUDY

In order to assess the Steady-state Data Reconciliation (SDR) and Gross Error

Detection (GED) schemes presented in this chapter, a set of simulations was

carried out on the two Continuous Stirred Tank Reactors (CSTR's) system

(chapter 3). In the simulations, biases and random errors were added to the

measurements, to test whether the above schemes are able to detect, estimate and

eliminate them. Comparisons are made between simulation results when



measurements are affected by noise and or bias, with and without the SDR and

OED scheme.

6.5.1. The system

The two CSTR system is described in detail in chapter 3. It has four outputs which

are the concentrations of the two components A and B in the two tanks:

y = (Cap C hl'Ca2, C h2f . In our example, only two concentrations are considered C
hI

and Ch2 •

Temperatures in the two tanks T; and 1; are the set points. These are bounded

between upper and lower levels: 300 ~ T; ~ 312 K, 300 < 1; ~ 312 K and are

assumed to be known noise free.

6.5.2. The simulations

All simulations were started from the same initial operating point given by

T; =307K and T2 =302K, yielding the following steady-state output values of the

concentration of product B in Tanks 1 and 2, ChI (0) = 0.05165 [kmol/rrr'] and

Ch2 (0)=0.058638 [lana/1m 3
] . The set-points of the temperature controllers were

not changed during the simulations. Sufficient time was allowed to the system to

settle down for a steady-state condition before measurements were taken. This

time was chosen to be T = 60 min which is enough for the system to settle down

given the system's open loop time constant I: =40 min.

The simulations carried out on the above system were to assess the ability of the

SDR and OED scheme in eliminating the effect of noise and detecting, estimating

and eliminating biases. These noise and biases were deliberately added to the

output measurements in order to simulate a real life situation where measurements

might be contaminated by random and/ or gross errors.

The biases added to the measurements are given as follows.



In the case where only Chi was biased, the added bias was of a value of +25% of

the nominal value. In the case where only Ch1 was biased. the value of the bias

added to the output measurement Cb2 was +30% of the nominal value.

In the case where both measurements were biased, the value of the bias added to

Chi was -20% of the nominal value, and +200/0 of the nominal value for Ci..

The noise present on the measurements is considered to be normally distributed

and of zero mean. The value of the variance-covariance matrix is:

(6.41)

where (j"1 is the standard deviation for the variable Chi and was chosen to be 50/0

of the nominal value, (j"2 is the standard deviation for Ch2 and was of a value of

50/0.

The implementation of the CSTR system together with the SDR and GED scheme

presented in this chapter was performed using a MATLAB@/SIMULINK software

platform.

A SIMULINK model of the CSTR process (saved in an .mdl file) was used to

enable periodic calls to the SDR algorithm saved in an M-file. As the SDR and

GED schemes are steady-state procedures, the CSTR system was led to a steady­

state position and left static. Therefore, there was no need to wait for the system to

settle down afterwards. The algorithm was called periodically to reconcile the

noisy and biased measurements Chi and! or C h2, until the algorithm converged,

and the correct values of Chi and! or C h1 were found. Once convergence is

reached, the values of the biases (if they exist) on the measurements are estimated.

and compared to the values simulated, and later eliminated to provide a more

accurate state of the current measurement.



6.5.3. The results

Simulation results for this case study are shown in Table (6.1) and Figures (6-4) to

(6-7).

Table (6.1) summarises the results obtained when the SDR and QED scheme was

applied to reconciliate measurements affected by noise and bias of different

values. The table gives important details of the values of the real, noisy and

reconciled output vector. The level of bias added to the measurement ChI for this

case was in the range -40% to +400/0 of the nominal value, whereas the level of

bias added to Ch2 was in the range -20% to +300/0 of the nominal value. It is clear

that data reconciliation was successfully implemented and conducted, and that

noise and biases were eliminated.

Figures (6-5), (6-6) and (6-7) show the trajectories taken by the outputs of the

plant when a bias of a given magnitude was present on measurements ChI or C h2

and ChI and C h2 together respectively. The figures show the values of the outputs

before and after the SDR and QED scheme was applied. It is clear that the

reconciled estimates of the plant outputs and the real system outputs are

superimposed, and there is no difference between them. Also, it is shown how the

data reconciliation performed on the output measurements does converge in short

time whether one measurement or two were biased. This time is relatively small

compared to the system's settling time constant, which makes it desirable to be

used in steady-state optimisation and control especially for slow processes, when

most time is spent waiting for steady-state to be reached.
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Table (6.1): Bias values and their estimates.

Bias Added Bias Added Associated Reconciled Bias

to CbI to Cb2
Figure Value estimates

- -------- .---- -

No No 6-4 CbI = 0.05165 No

Cb2= 0.05863

-0.0206 No
A

b, =-0.0206
CbI = 0.05165

Cb2= 0.05863
0.0129 No 6-5 A

CbI = 0.05165
bI =0.0129

C
b2

= 0.05863

CbI = 0.05165 "No -0.0117 b
2=-O.0117

Cb2= 0.05863

No 0.0175 6-6 "
CbI = 0.05165 b~=O.0175

-

Cb2 = 0.05863
"

-0.0103 0.0117 6-7 CbI = 0.05165 b =[-0.0103:

Cb2= 0.05863 0.0117]

0.0129 0.0175 "

CbI = 0.05165 b =[-0.0129~

C
b2=

0.05863 0.0175]
_.~-~-.--=~._'....-...=--"" "

137



O·08 r - --,--- - -.--- --,-- - -.--- --r- - -.-- -----r- - --,--- -.- - -,

0.075

0.07 Reconciled measurement Cb2 Noisy measurement Cb2

-1

I
I

0.065

--+-

Real process out put Cb1

Reconciled measurement Cb1

r: I r:

0.05

co'e
~ 0.06
g ~/'-1--_.....:::-_~'-+-++"c--+--"r---i--"+'ro-'-+-+--""'-+---n--f--Jf-!.-....-.---,..-~

8
0.055 ~~

f

0.045
Real process output Cb2 Noisy measurement Cb2

100 200 300 600 700 800 900 1000

Figure (6-4): Reconciliation when measurement were subject to noise but
without bias.
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Figure (6-5): Reconci liation v hen only one measurement Cbl ' as biased.
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6.5.4. Discussion of the results

One of the main aims of any simulation exercise is to verify the theory discussed.

It was mentioned earlier in this chapter that data reconciliation is a tool used to

correct measured data variables by removing errors from data sets using mass and

energy balances equations of the system.

From the simulation results presented above, it is seen that the SDR and GED

scheme has been successfully implemented and conducted in order to detect and

eliminate errors from faulty measurements. In the case where measurements were

biased, the bias was effectively detected, its value estimated and consequently

eliminated. Given values of bias added (imposed) ranging from -400/0 to 40% of

the nominal values, we can say that the whole SDR and GED procedure produced

good results. Also, it was observed that the scheme was seen to be able to detect

affected measurements and correct them in most cases. In overall, the SDR and

GED scheme studied in this chapter, which comprises of a gross error detection

module and a data reconciliation unit, has been successfully tested in different

cases. The results obtained from the simulations carried out on a CSTR system

were encouraging.

6.6 SUMMARY

In this chapter, data reconciliation and gross error detection techniques have been

presented. The techniques ensure measurement correction in presense of different

sorts of noise and errors. The three basic steps for processing measurement data

were also presented. In this concept, data collected from any plant is initially

classified, then any gross errors are removed, and finally data reconciliation is

applied to adjust the set of data so the quantities derived from the data obey

natural laws, such as material and energy balances. The techniques were tested

under simulation on a cascade process consisting of two Continuous Stirred Tank

Reactors (CSTR). The simulation results showed that the data reconciliation and

gross error detection techniques presented in this chapter were successfully
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implemented and applied. This was tested for a large variety of cases using the

two CSTR system. In the next chapter, these techniques will be implemented

within the ISOPE algorithm to verify if they can improve optimisation.
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CHAPTER 7

GROSS ERROR DETECTION AND DATA
RECONCILIATION IN ON-LINE OPTIMISATION

7.1 INTRODUCTION

Data reconciliation and parameter estimation are important components of model

fitting, validation, and real time optimisation in the chemical and process

industries. In its most general form, data reconciliation is a minimisation of

measurement errors subject to satisfying the constraints of the process model. The

most commonly used formulation of both problems is to minimise the sum of

squares of the measurement corrections subject to model constraints and bounds.

This formulation is based on the assumption that measurements have normally

distributed random errors, in which case least-squares is the maximum likelihood

estimator. However, the data reconciliation problem is compounded when gross

errors are present in the data, as these can lead to incorrect estimates and severely

biased reconciliation of the other measurements. Therefore, gross errors have to

be removed from the measurements before data reconciliation can be applied.

Gross error detection techniques as seen in the previous chapter are based on

hypothesis testing. Combined techniques for gross error detection and data

reconciliation exist. They are based on the distribution function of measurement

errors. The measurement test method using a normal distribution and robust

statistical method using robust functions are the two algorithms used.

In this chapter, data reconciliation and gross error detection methods presented in

chapter 6 are applied within the on-line optimisation scheme (ISOPE algorithm)

introduced in chapter 2. The effectiveness of this scheme and issues related to it
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are demonstrated under simulation on the two CSTR system, described in chapter

3. Simulation results are also compared with results obtained from previous

chapters.

7.2 Data Reconciliation

Process measurements from a plant are never error free. Typically, these

measurements contain both random and gross errors. Data reconciliation is a

necessary operation for obtaining accurate and consistent data in process plants by

forcing them to obey constraining mass, component, or energy balances.

Results of research on data reconciliation have been reported for both steady-state

and dynamic and linear and nonlinear processes. Chapter 6 provides a short

review of previous work.

Generally speaking, the data reconciliation problem can be formulated as a

constrained optimisation problem. That is a least-squares estimation problem if

the measurements contain random errors only.

Ifwe consider e to be a vector of random measurement errors:

£ = Y1I/ - Y'me (7.1 )

where Y is the vector of measured process variables, and Y'me denotes the vector
11/

of true values of measured variables.

If these errors are normally distributed (which is assumed in almost the majority

of the cases) with zero mean, and a covariance matrix V, the data reconciliation

problem can be easily defined as a least-squares estimation problem as follows:

1 T 1
Minimise: F(Ym' Y,roJ = 2 (Ym - Y,roe) V- (Ym - Y'rue)

Ytrue

subject to: h(Y'me) = 0

where h is a set of algebraic equality constraint equations.
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If the equality constraints are linear, or linearised if they are almost linear, then

the above optimisation problem can be reduced to an unconstrained Quadratic

Programming Problem (QP) that can be solved analytically (Mah and Tamhane.

1982).

7.3 THE ON-LINE OPTIMISATION PROBLEM AND THE ISOPE

ALGORITHM

As has been described in Chapter 2, many different process optimisation

techniques exist. They all fall into two major categories: direct search and model­

based optimisation methods (Garcia and Morari, 1981). The direct approach uses

measurements taken directly from the real system itself and applies one of the

basic optimisation techniques to optimise the process performance objective

function. While in the model-based approach, the optimisation is performed on a

mathematical model of the system, when found, the results are then applied to the

real system. However, the two approaches present some major drawbacks as in

practice, measurements can be contaminated by noise or all sort of gross errors,

and it is inevitable that model-reality differences exist, at least to some extent. in

terms of structure and parameters.

As stated in Chapter 2, the Integrated System Optimisation and Parameter

Estimation (ISOPE) technique (Roberts, 1979) was developed to overcome such

problems as model-reality differences and is an indirect method. It is based on

derivatives calculation provided by real process measurements to update an

unfaithful or deliberately simplified model used in the model-based optimisation,

thus achieving the real optimum of the process in spite of model-reality

differences. All ISOPE algorithms designed to date are derived from the basic

and well-known two-step technique, which consists of two major steps. The first

step solves. with the aid of process measurements, a simple model parameter

estimation procedure. The updated model is then used in the optimisation

problem. The second step obtains the process controls via an optimisation routine

(Figure 7-1).
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Various versions of the ISOPE algorithm exist such as Approximate Linear Model

ISOPE, ALMISOPE (Ellis et al, 1988) and Augmented ISOPE (Abdullah et al.

1988).

Ootimisation

Set-Points

Real process

Parameter

Estimation

Figure (7-1): The two-step Method.

The solution of the ISOPE algorithm problem, as given in Chapter 2, is usually

converted from the following general nonlinear programming problem (with

equality and inequality constraints):

subject to:

Min Q(v,y*) (7.3)

(7.4)

(7.5)

(7.6)

to a simple quadratic programming problem in the case of a quadratic objective

function and linear constraints. Quadratic programming problems are easv to

solve because the theory is rich and the computation is less.
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Figure (7-2): Schematic representation of the SDR and GED scheme
when implemented in steady state optimisation.

7.4 SIMULATION CASE STUDY

In this case study, a group of simulations was carried out in order to assess the

Steady-state Data Reconciliation (SDR) and Gross Error Detection (GED)

schemes presented in the previous chapter when applied in steady-state

optimisation (using the ISOPE algorithm, figure 7-2). The simulations use a two

Continuous Stirred Tank Reactors (CSTR's) connected in cascade (Chapter 3). A

comparison is made between simulations when measurements are affected by

noise and or bias, with and without the SDR and GED scheme.

The two CSTR system has four outputs which are the concentrations in the two

tanks: y. = (C
a l

,C"I' Ca 2,C"2)T. In our example here. only two concentrations arc
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assumed to be available for measurement Cbl and Cb2 • Temperatures in the two

tanks T, and T2 are the set-points. In other words:

(7-7)

All simulations were started from the same initial operating point given by

~ =307K and T2 =302K, yielding the following steady-state output values of the

concentration of product B in Tank 1 and 2 ChI (0) =0.05165 [kmol/nr'] and

Ch2 (0)=0 .058638 [kmol/m 3
] . Sufficient time was allowed to the system to settle

down for a steady-state condition before measurements were taken. This time was

chosen to be T =60 min. Once the system is at steady-state, the data reconciliation

and gross error detection take place in order to detect and eliminate random and/

or gross errors.

The added noise was simulated as normally distributed with zero mean. The value

of the variance-covariance matrix was chosen to be:

(7.8)

where 0"1 is the standard deviation for the variable Chi and was chosen to be 5%

of the nominal value, 0"2 is the standard deviation for Ch2 and was of a value of

5%. These values were chosen as they represent typical values in many realistic

situations.

The optimisation was performed on a linear objective function of the measured

variable C
h

7. ' This choice of the objective function manifests a desire to maximise

the amount of component B in tank 2. Therefore, the mathematical form of this

function is given as:

(7.9)
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The whole procedure is carried out as follows (Figure 7-3):

1. The set-points are applied to the CSTR system.

2. Measurements are taken after a suitable period giving time for the system

to settle down.

3. The measurements are fed to the SDR and GED module which has the role

of eliminating random noise and detecting, identifying and estimating gross errors

if any are present.

4. The noisy data is corrected (reconciled). Hence a more accurate process

output measurements (and derivatives with respect to the set-points needed by the

ISOPE algorithm) are found.

5. Reconciled measurements are fed into the ISOPE algorithm box. One

iteration of the optimisation algorithm is performed and the results which are the

set-points of the temperature controllers T; and T
2

are found.

6. The set-points values of T; and T; are applied to the real system.

The whole procedure is repeated until convergence is reached. Convergence

occurs when no further improvement is observed. In other words, when the new

set-points are no longer a better candidate than the previous one.

The whole process was implemented using a MATLAB@/SIMULINK software

platform. The CSTR system was modelled under SIMULINK, while the data

reconciliation and gross error detection and ISOPE algorithms were implemented

under MATLAB in a separate module. Because of the interaction capability

between MATLAB and SIMULINK that the software offers, a SIMULINK

model of the system was run for a suitable time, during which periodical calls to

the data reconciliation and ISOPE algorithms module saved in an M-file were

made.

Simulation results for the case study outlined above are shown in Table (7.1) and

Figures (7-4) to (7-13).

In the first simulation, both measurements were subjected to 50/0 additive noise.

with no data reconciliation. The ISOPE algorithm failed to converge (figure 7-4).
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Apply set-points to the system.

Take measurements from the
system after it settles down.
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of the system including mass and

energy balances.
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Is Convergence
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END

Figure (7-3): Bloc diagram representation of the application
of the SDR and OED scheme within the ISOPE algorithm.
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In the second simulation however, data reconciliation was applied on the output

measurements and the reconciled measurements fed into the ISOPE algorithm. It

is clear from figure (7-6) and (7-7) that the reconciled measurements follow

exactly the real process outputs (which are the values of the measurements

without the noise). Moreover, the outputs converge to the real optimum point

given by: Chi =0.0644 [kmol/m 3
] andCh2=0.0725 [kmol/m 3

] corresponding to the

set-point values of ~=312K and T2=310.2K.

In the following simulations, biases of different values were added to either one of

the measurement or both at the time. Figure (7-8) shows the real outputs and

reconciled measurements trajectories when bias of a value -200/0 of the nominal

value was added to the measurement of Chi' Figures (7-10) and (7-11) present the

results of the overall scheme including SDR, OED and steady-state optimisation

when Ch2 was added a bias of 250/0 of the nominal value. In the presence of

multiple biases, both measurements Chi and C h2 were added biases of different

values. For instance, the simulation was carried out with a bias of -200/0 of the

nominal value added to Chi and 20% of the nominal value added to C h1 . The

results of this simulation are shown in figures (7-12) and (7-13).

The last simulation was performed to highlight the contribution of SDR to the

enhancement of data collection and use of Artificial Neural Networks (ANN). In

fact, the neural network scheme presented in chapter 5 was tested in presence of

noise and bias without data reconciliation. The results were not promising (table

(7.1 )). However, when SDR and OED techniques were applied together with the

neural network scheme for estimating process derivatives, the results were very

encouraging. Table (7.1) gives a comparison between the two schemes with and

without SDR and OED. From the table, it is clear that the real process optimum

was reached even in presence of noise and bias in both measurements when data

reconciliation was applied with the application of a neural network model based

on these measurenlents.
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These results together with those found earlier show that whenever a noise and or

bias are present on one or both measurements, the data reconciliation and gross

error detection algorithm detects and eliminates them This also proves that the

application and use of data reconciliation and gross error detection on corrupted

data measurements within the ISOPE algorithm improves optimisation This is

mainly due to the improved parameter estimation, and derivative estimation as

well. Resulting in the ISOPE algorithm performing well and converging to the

optimum point even in presence random errors and biases.

Table (7.1): ISOPE with neural network scheme when data reconciliation is

applied.

Bias Added Bias Added Convergence Final measured

Method to Cb1 to Cb2
outputs

-~_._--

~

ISOPE

without SDR -0.0103 0.0117 No No converged

andGED values
-_._------~~--~-~----_._-- .

ISOPE with

SDRand CbJ=O.0644 [kmo/lm3
]

GED using -0.0103 0.0117 Yes

ANN Cb2=O.0725 [kmovm3
]

,...---_.._--..-...... ~--~------

____..---~.u_

.. -.-"_._---.=,................._>,..~-, ...._~"~ -_..".-'"""...>-.~''''•._~._•..,..;<--~~'''.. ,..."
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when optimisation was applied when both measurements are affected by noise

with data reconciliat ion
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7.5 SUMMARY

Gross error detection and data reconciliation techniques are part of model

validation for process monitoring and control. The application of these techniques

to data measurements collected from a two CSTR system simulated in this chapter

has proved to improve optimisation especially when using a neural network model

to represent the real system.

In the next chapter, methodology of on-line optimisation is studied, where a

detailed description of on-line optimisation with its different components and

structure is given.

157



CHAPTER 8

THE METHODOLOGY OF ON-LINE OPTIMISATION

In this chapter, all the steps studied separately in the previous chapters. are

grouped together, in order to form a methodology of on-line optimisation. The

methodology would, typically, be implemented within a Distributed Control

System (DCS) as such systems are new common place within the process

industries. For this reason, the description here will focus on the DCS

implementation of the methodology. However, it should be borne in mind that the

methodology is not restricted to DCS implementation as, especially with the

computing power available at the present time, the elements of the methodology

could exist safely within a stand-alone computer system. The various steps of

Steady-state Detection, Gross Error Detection, Data Reconciliation, Parameter

Estimation and Optimisation which are part of the methodology are performed

sequentially in a modular way in order for the on-line optimisation procedure to

be completed successfully. The application of this methodology is generally seen

to be more beneficial than when on-line optimisation is applied in the traditional

way. The advantages and disadvantages of using each step of the methodology are

given. Also, simulation case studies are performed throughout to assess these

schemes when incorporated within the ISOPE procedure.

8.1 INTRODUCTION

As shown In figure (8-1). on-line optimisation involves three steps: Data

Validation, Parameter Estimation, and Optimisation. Data sampled from the

process and, typically, held within the Distributed Control System (DCS) is first

validated. This procedure involves steady-state detection, gross errors removal.

and data reconciliation to be consistent with material and energy balances of the
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process. This data is next used in parameter estimation to update the plant

parameters. This in tum updates the process model to enable plant-model

matching. When finished, the updated model is then used in the optimisation to

determine the optimal operating point of the plant.

-------------------- ------------------~

Data Validation

Steady-state Detection

No
Wait

Yes

Data Reconciliation

Parameter Estimation

Gross Error Detection

------------------,
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
--------------------

I
I
I
I
I
I
I

~------------------
-------------------- ------------------,

I
I

Optimisation :
I
I

NoIs plant still
steady?

YesSolution to ~__<,

DeS

Figure (8-1): Schematic representation of on-line optimisation.

159



8.1.1. Methodology of On-line Optimisation

Industry practitioners have reported that after four decades there has been an

increase in the application of on-line optimisation, but the same initial weaknesses

or more generally speaking some common causes of poor performance still

remain. These issues are related with the different steps of steady-state detection,

data reconciliation and the optimisation itself.

On-line optimisers are directly linked to the plant instrumentation through the

DCS. The DCS gathers real time data measurements from the process. This data is

used to update and refine the plant model on a continuous basis.

On-line optimisation can be used in two ways:

1. Open-loop: In this case, the computations are carried out off-line, but the

results are applied or given to the operator to apply on the system.

2. Closed-loop: Automatically implementing optimal set-points VIa the

plant's DCS.

Closed-loop optimisers run continuously; responding to changes, ameliorating

upsets and exploiting opportunities to create more profit.

The general on-line optimisation problem is to find those optimum operating

points for which the system operates most efficiently. This involves the solving of

three Non Linear Programming (NLP) problems: one for combined gross error

detection and data reconciliation, one for simultaneous data reconciliation and

parameter estimation and one for the actual optimisation.

Each of the three NLPs has the following form:

Optimise:

Subject to:

Objective function fix)

Constraints from plant model
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The objective function to be optimised, can be a joint distribution function for

data reconciliation, a least squares for parameter estimation or a profit function for

plant economic optimisation.

The constraints arise from a variety of causes. They are almost referred to as

maximum allowable stresses or displacements according to normative and

material capabilities. They can be material and energy balances, chemical reaction

rate equations, thermodynamic equilibrium relations, capacities of process units.

demand for product, availability of raw materials, and so on. It is usual to express

constraints as inequalities; nevertheless inequalities can be converted into equality

expressions with the help of slack variables.

The above NLP problem can be solved using many of the methods and techniques

that have been developed during the years.

Anyone of the above three optimisation problems: gross error detection and data

reconciliation; parameter estimation; or optimisation can be solved separately.

As stated in the previous section, the key elements of on-line optimisation are:

• Steady-state detection

• Gross Error Detection

• Data Reconciliation

• Parameter Estimation

• Economic optimisation

These steps are carried out in real time as the process is moving from one

operating point to another (Figure 8-1), and are described in detail in the

following sections of this chapter.

161



8.2 AUTOMATIC DETECTION OF STEADY-STATE

Often, in the area of process control, rigorous steady-state detection is crucial for

process performance assessment, simulation, optimisation and control. In general,

at steady-state data is collected for safe, beneficial and rational management of

processes.

However, identifying steady-state can prove to be a difficult task. This may be

due to the process variables being noisy and measurements do not settle down at

one value (Brown and Rhinehart, 2000).

Steady-state can be defined as an acceptable constancy of the mean values of

measurements over a given period of time. Statistical methods based on the

constancy of these variables are generally used to test for steady-state

identification.

The issue of steady-state detection has been addressed by a number of researchers

in the field. In what could be considered to be the first method developed for this

purpose the crow et al. (1955) method which uses an F-test. This test is based on

the ratio of two variances as measured by two different methods on the same set

of data. The first variance is calculated as the mean-squared-deviation from the

average of the most recent window data. While the second one is computed from

the mean squared differences of successive data. If the process is at steady-state.

the ratio of the two variances is unity, as the two methods produce unbiased

estimates of the process variance. In practice, however, the ratio of the variances

will not be exactly unity, due to limited sampling and random noise but will have

a value near unity. If the process is not at steady-state, the ratio will be unusually

large. The major drawbacks to this method include the considerable quantity of

on-line data handling, as well as user expertise choices of data window length.

Narasimhan et al. (1986) presented a two-stage composite statistical test to detect

departures from steady-state. The technique examines successive time periods and

consists of two tests: the first one establishes whether the unknown covariance

matrices were equal, and the second test establishes whether the means of the two

periods were equals (using the Hottelings r 2 test). This method presents a similar
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drawback to that presented above, which IS that it requires extensive

computational effort.

In another work, Narasimhan et al. (1987) applied the mathematical theory of

evidence to the detection of changes in steady-states which is an alternative to

their earlier method, but it cannot be applied if the variables to be tested are not

independent.

An alternative method (Betha and Rhinehart, 1991) is to perform linear regression

over a data window, and use a t-test on the regression slope. The system is said to

be at steady-state if the slope is equal to zero. This method also requires

considerable data storage and computational effort as well as user-required choice

of the data window length.

More recently, Loar (1994) presented a method based on a Statistical Process

Control (SPC) moving average chart. In the same year, Alekman (1994) proposed

a technique which compares the average calculated from a recent history to a

standard based on an earlier history, then applies the t-statistic test to analyse

whether the average is unchanged: the steady-state hypothesis. Again, storage and

data processing is a computational burden.

Perhaps the most practical of the methods reviewed by authors in literature, is the

Cao and Rhinehart (1995) method, which is a modification of the primitive F-test

type of statistics of, crow et al. (1955). The ratio of two variances as measured on

the same set of data by two different methods is calculated. However, in order to

reduce computational effort, exponentially weighted moving average and

variances are used instead of the conventional average or variance. These values

are calculated from exponentially weighted moving average filters. In this case,

data can be treated sequentially for steady-state identification without the need to

select a time window required in most of the earlier methods which is the main

drawback of these methods. For this technique to be effective on-line, the filter

constants must be chosen judiciously and optimally. Critical values for R (ratio of

variances), based on the process being at steady-state with independent and

identically distributed variation, were also developed by Cao and Rhinehart

(1997). An extension to the multivariable case was presented and experimentally

demonstrated on a distillation column by Brown and Rhinehart (2000).
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The method of Cao and Rhinehart (1995) is given below:

We consider the discrete filtered value of the measurement value X given by:

where:

Xi : is the process measured variable at time i

X f ,i: is the filtered value ofX at time i

X f ,i-1 : is the filtered value ofX at time i -1

L1 : is a filter factor

(8.1 )

In this method, one needs to calculate two variances in order to obtain the R­

statistic value. The first variance uses a filtered mean square deviation from the

previous filtered values V~,i and the other one uses a filtered mean square

difference of successive data d~,i' The ratio of the two gives the value of the R-

statistic.

The filtered mean square deviation from the previous filtered values

computed as follows:

where:

V~,i: is the curent filtered mean square deviation

v}i-\ : is the previous filtered mean square deviation

L2 : is a filter factor

While filtered mean square difference of successive data d}.i is given by:

16.+

.,
v.. IS(,I

(8.2)

(8.3 )



where:

d},i : is the curent filtered square difference of succesive data

d},i-I : is the previous square difference of succesivc data

L3 : is a filter factor

From the above equations, we can compute the R-statistic which can be used to

ascertain the existence of the steady-state as follows (Appendix B):

R = (2-L,)v},i

-:,1 (8.4)

The four equations given above represent the only requirements needed in order to

check for steady-state condition. These requirements are direct, need no-logic.

have low storage and low computational operation calculations. In total. there are

three variables to be stored, ten multiplications, eight additions, and one

comparison per observed variable.

The R-value found in equation (8.4) is compared with some critical value of R­

statistic (ReriD. The system is said to be at steady-state if the R-value is found to

have a distribution of values close to Rerit.

An Rerit value is selected and determined by the level of significance, a .

alternately the confidence level, [100(1- a )], that we want to achieve. The null

hypothesis is that the process is at steady-state. If the computed R-statistic from

equation (8.4) is greater than Rerit, then we are 100(1- a) percent confident that

the process is not at steady-state. Consequently, a value of R-statistic less than or

equal to Rerit means the process may be at steady-state. We assign values of either

"0" or "1" to a variable, say SS, which represents the state of the process. If R­

calculated > Rerit (a) "reject" steady-state with 1OO( 1- a) confidence, assign

SS=O. Alternately, if R-calculated< Rerit( a) "accept" that the process may he at

steady-state, and assign SS=1.

Cao and Rhinehart (1997) suggested some critical values for R, together with the

filter factors ~, L2 and L). Thev came to a conclusion that filter values of
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L) =0.2 and L2 =L3 =0.1 produce the best balance of Type I and Type II errors.

Type I error is the error associated with wrongly rejecting the null hypothesis

(process at steady-state) when it is true. While Type II error is the error

associated with wrongly accepting the null hypothesis when it is false.

An alternative procedure to find the optimal values of ~, L
2

and L
3

is given here

(Bhat et aI., 2003):

1. Select a value of L3 (say 0.01)

2. Select a value of L2 (say 0.05)

3. For these value of L2 and L3 , start with a low value of L; (say 0.02). and

calculate Rerit, Type II errors as well as steady-state detection lag.

4. Increase L) and repeat calculation of step 3 until allowable Type II error

limit is crossed.

5. Increment L2 by 0.05 and return to step 3. Keep on incrementing L
2

until

the local minimum in terms of earlier detection of steady-state is obtained

corresponding to given value of L
3

•

6. Increment L3 and return to step 2 until a global minimum is obtained.

A small drawback to the steady-state detection method outlined above is

illustrated in the fact that data points cannot be auto-correlated at steady-state.

Commonly, we get around this disadvantage by adjusting the sampling interval to

eliminate auto-correlation when at steady-state.

The extension of the Cao and Rhinehart method for steady-state detection

presented in this chapter to multivariable analysis was performed by Brown and

Rhinehart (2000), and is given as follows:

It is assumed that a system is not at steady-state if at least one process variable is

not at steady-state. and might be at steady-state if all variables might be at steady-

state.
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This can be easily tested with a single statistic:

N

SSprocess =11SSi
i=1

where N is the total number of process variables.

A steady-state condition is identified when:

(8.5)

N N

P(SSprocess =1)=11P(SSi =1)=11 (1-ai) (8.6)
;=1 ;=1

N

(1- aprocesJ =11(1- aJ (8.7)
;=1

a process IS the global level of significance, while a i are individual level of

significance for each variable. From equation (8.7) it can be deducted that each

individual level of significance a is equal to: a = 1- N/(l- a )
I I 'J process'

Two requirements are necessary for this method to be used. The first requirement

is the traditional non auto-correlation of the data in every single variable. The

second one is that there should not be cross-correlation between the variables (at

steady-state). This means that in steady-state condition, the noise on one variable

should not be correlated to the noise on another (Brown and Rhinehart, 2000).

8.2.1. Application

The above steady-state identification algorithm is applied and tested on the two

CSTR system presented in detail in chapter 3.

The system has four outputs which are the concentrations of the two components
. T '

A and B in the two tanks, I.e.: y = (Cal,ChI'Ca2,Ch2) . In our example, these four

variables are to be monitored for steady-state identification. Temperatures in the

two tanks, T; and T2, are the set points.
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Equation (804), used for calculating the R-statistic was rearranged in order to

avoid dividing by zero. The rearrangement was: If (2 - ~) *v2 > R
erit

*d 2 then SS

= 0, else SS=1.

Choosing a global level of significance a process =0.05, and four variables, then the

individual level of significance for each variable IS given by:

a, =1- ~(1-a process) , where i =1,2, ..,4 and N =4. Which results in a; =0.012

for each variable. This means that, we were [100(1- a
j

) ] confident that variable i

might be at steady-state when its corresponding SSj value was high, and we

rejected steady-state with [100(1-aJ] confidence when its corresponding SSj was

low. This confidence level is equal to 98.8.

The three filter parameters LI , L2 and L3 were chosen, following some trial and

error procedure, to be: LI =0.06, L2 =0.01 and L3 =0.01 . These values proved

to be the best values when applied amongst those tested. The values of Rerit were

chosen to be as follows: Rerit = [104 ; 1.35 ; 104 ; 1.35]. Rerit is a vector of four

values, as each element corresponds to one output variable of the process.

The simulations were carried out using MATLAB® and were started from the

same initial operating point given by T; = 307K and T2 = 302K, yielding the

following steady-state output values of the concentration of products A and B in

the two tanks 1 and 2, Cal (0) = 0.04835 [krnol/rrr'}, ChI (0) =0.05165 [kmol/rn'] .

C
a2

(0)=0.04137 [kmollm 3
] and Ch2 (0)=0.058638 [lanollm 3

] . In order to perform

the steady-state detection scheme, the set-points were changed four times during

simulations to enable us to test the steady-state detection scheme in multiple

cases. These changes were random.

Simulation results are presented in figures (8-3) to (8-13).

Figure (8-3) shows how sampled data taken from variable C"I are organised. It is

clear that there is no auto-correlation between the samples (which is requirement

for this method to work). This is mainly due to the well choice of sampling time.
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Cross-correlation between variables is illustrated in figure (8-4). It is shown that

there is no cross-correlation (another requirement for the method to be applied and

used) for example during steady-state between ChI and C
h2

, and between rest of

variables in general.

Figures (8-4), (8-5), (8-6) and (8-7) show trajectories of the different values of R

for different outputs, together with their corresponding SS variable values. It has

to be mentioned that an SSj variable is at a high level "1" if the corresponding

output i is probably at steady-state, and low "0" otherwise. It is clear from the

graphs that when the R-value for each output is below a selected point, steady­

state is detected and the corresponding output might be at steady-state. In this case

the corresponding SS variable is put to a high level. However, if the Rvvalue is

above the selected point given by Rerit the corresponding output is probably not at

steady-state and its SS variable value is put to a low level.

Figures (8-8), (8-9), (8-10) and (8-11) show the trajectories of the different

outputs of the system and their corresponding SS values. In these figures, it is

demonstrated that when an output might be at steady-state, the corresponding SS

variable value is set to a high level, indicating the variable might have reached

steady-state with a confidence level of [100(l-a j ) ] = 98.8.

Figure (8-12), is a summary of the previous figures, in which all four output

trajectories are shown, together with the overall SSproceo'o, variable. which indicates

that the system might be at steady-state when SSprocess is at a high level (which

value is divided by a given factor in order to have all variables plotted on the same

graph). By visual inspection, the method is shown to be working well as during

the transient, the value of the SSprocess variable was always null, which indicates

system not at steady-state with a confidence level of [IOO(l-a)] = 95. While it

goes up to a high level when the system might be at steady-state with the same

level of confidence.
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8.3 DATA RECONCILIATION

Measured process data may contain inherentl y inaccurate information because, for

example, the measurements are obtained with imperfect instruments or the

presence of random errors. When imperfect information is used for state

estimation and process control, the state of the system is thus misrepresented and

the resulting control performance may be poor and can lead to suboptimal and

even unsafe process operation.

The objective of data reconciliation is to correct measured data variables so thej

obey natural laws, such as material and energy balances. Data reconciliation is

achieved by removing all sorts of random errors that might have corrupted the

data measurements. Because random errors are caused b., the randomness of the

measurements, they possess a zero-mean and are assumed to be normally

distributed. This contrasts \ ith gross errors \ hich are usually caused by non­

random e ents such as process leaks and biases. Data reconciliation techniqu



cannot remove such gross errors, and therefore gross error detection techniques

are used in such circumstances (section 8.4). In this section, xve assume only

random errors are present in the measurement data, which is the frequently

encountered practical situation.

The data reconciliation problem can be defined as the estimation of measured

process data variables to reduce measurement error through the use of temporal

and special or functional, redundancies (Liebman et aI., 1992). Mathematically. it

can be defined as an NLP problem.

As introduced in chapter 6, the measurement error e is given by:

e =YIII - Y/rne (8.8)

where Ym is the vector of measured variables, and Y/roe is the vector of true values

of variables.

The measurement errors are estimated by minimising sum-squares of standardised

measurement errors, &7'V-
I&, subject to a set of constraints that describe the

relationship among the variables, i.e., the process model. In other words:

Min
Y'rue

~ (Ym - Y,ro,)' V-I (Ym - Y,m)

Subject to: h(y,rol') = 0

(8.9)

where V is the variance-covariance matrix where each element v,; is (J,2, and is

assumed to be the same for all data sets, and h is a set of algebraic equality

constraint equations. h can be linear as well as nonlinear. The above equation is a

general formulation of the data reconciliation problem. It is a NLP problem as

stated earlier. Solving equation (8.9) gives the reconciled values of the process

variables and the estimated measurement errors.
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In the case of linear constraint equations, where material balances are considered

only, so,

(8.10)

where A is the Jacobian of the constraint equations. Then the optimisation

problem of equation (8-9) has an analytical solution which can be written as:

(8.11)

and the vector of measurement adjustments is:

(8.12)

However, if the constraint equations are nonlinear, that is h includes material and

energy balances, chemical reaction rate equations, thermodynamic relations ... etc;

the solution found in equation (8.11) is no longer applicable. In this case. the

problem of equation (8.9) is solved by nonlinear programming techniques.

8.4 GROSS ERROR DETECTION

Gross error detection techniques are used to detect errors which are of a non­

random nature. As mentioned previously, raw process data are subject to two

types of errors: random errors and gross errors. Gross errors are of different types.

Figure (8-13) shows some examples of these types (Narasimhan and Jordache.

2000). As data reconciliation techniques only remove random errors with the

condition of non-existence of gross errors, a gross error detection phase is needed

in order to deal with such non random errors.
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Figure (8-13): Types of gross errors (Narasimhan and Jordache, 2000).

Ideally, the main tasks of a gross error detection technique are to:

Detect the existence of gross errors, identify their locations, identify their types

and to determine their sizes. After that, the gross errors are either corrected or

eliminated.

Several approaches, such as time series screening, statistical, or neural network

methods have been proposed and developed for gross error detection.

In the time screening approach, horizontal time screening is used to check lor

steady-state data, while vertical screening is used to filter out the gross errors in

sampled data. This approach has practised in industrial applications. But because

instrument errors and process leaks usually result in persistent gross errors. they

cannot be detected or eliminated by time screening methods which are insensitive

to such types of errors (Chen, 1998).
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In the neural network approach, trained ANN's can be used for effective fault

detection and diagnosis of chemical plants. Artificial Neural networks (.-\~1\·s)

can be considered as collections of simple computational units which can take a

numerical input and transform it into an output. Because they possess a

considerable ability to learn from and adapt to their environment. they can be

trained to learn associations between faults in systems and the vector of sensor

measurement. Noise in process measurement is accommodated and therefore.

effectively detected and identified. However, this approach presents one major

drawback: it is computationally expensive. In other words, the complexity of

computations increases with the number of sensors. For example, if the number of

sensors IS: 1000 sensor, training and its consequent computations become

prohibitive.

The statistical approach however, requires a detailed model of the process.

Knowledge of the measurement error structure is also essential. Generally

speaking, a statistical method involves solving a NLP problem in order to estimate

the errors. This kind of approach has been reported to be the most effectivc

method for gross error detection.

We consider a linear (or linearised) measurement model represented by:

Y -Y +s11/ - true

S = S + e e.r g 1

(8.13)

(8.1'+)

h and e are as above, the measurement error e contains random
were Y111 ' Y1me'

errors (e, ) and gross errors. Sx is a vector of gross errors values, while ei is a unit

vector which all elements are zero except the ith element is 1.

The constraint residuals vector r is given by (Mah, 1990):

r > t\' -c.. III
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where A is as above, and c is a constant vector in the constraint.

The vector of measurement adjustments a can be given by:

a=y -ytrue m (8.16)

It is typically assumed that there are no unmeasured variables (Sequiera, 2003).

Statistical methods for gross error detection can be divided into two categories:

The first category uses the distribution of constraint residuals r, while the second

one uses the distribution of measurement adjustments a.

Methods based on constraint residuals include: the Global test. Nodal test and

GLR (see chapter 6). In these methods, linearity of the constraints is assumed, and

all variables must be measured.

Methods based on measurement adjustments include: the measurement test. Tjoa

and Biegler's contaminated Gaussian distribution method, and the robust function

method. Unlike the methods based on constraint residuals, the methods based on

measurement adjustments need to reconcile process data first, then the reconciled

data is tested or examined for errors (the reconciled data should follow a normal

distribution (Sequiera, 2003)). Also, these methods allow unmeasured variables to

be included in the plant model and can handle nonlinear constraints as well as

linear. This kind of methods is classified as gross error detection and data

reconciliation methods and will be covered in detail in the next section.

Below, is a list of the main contributions in the area of gross error detection:

• The Global Test (Ripps, 1965): This method uses hypothesis testing to test for

gross errors presence. The null hypothesis test u., that there is no gross error, is

used. It is based on the fact that the objective function of the data reconciliation

problem has a Chi-square distribution at the minimum if the sampled data

measurements are independent and normally distributed around their true values.

This method was later modified by Almasy and Sztano (1975) to include cases

where the variances of the measurements are not known.
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• The Nodal Test (Reilly and Carpani, 1963; Mah et al.. 1976): Based on the

constraint residuals r. In the absence of gross errors r follows . I
,11 a m-vanate norma

distribution. Therefore

(8.17)

follows a standard normal distribution, N(O,1), under n., If fA is larger than the

critical value based on a confidence level a, then it is concluded that there is at

least one gross error present in the set of measurement that participates in the

corresponding node balance. Rollins et al. (1996) proposed a strategy using this

test on linear combination of nodes.

• The Measurement Test (Mah and Tamhane, 1982): this method is for

combined gross error detection and data reconciliation and will be treated in

section 8.5.

• The Generalised Likelihood Ratio Test (GLR): Originally by Wilsky and

Jones (1974) and then Narasimhan and Mah (1987). This method was developed

to identify different types of gross errors caused by either measurement biases

and/ or process leaks with the GLR test. This method assumes linearity (or

linearised) of the constraint equations, and requires a model that describes the

effect of each type of gross error. For instance, the model of the system is given

by: Y =Y + e + be. for a measurement bias of magnitude b, and
11/ true I

h(Ytrue) = AYtrue - bmj =° for a process leak. Although suited for single gross

error identification, a serial compensation strategy is often adopted in combination

with the GLR method when dealing with multiple gross errors (Narasimhan and

Mah, 1987).

• The Unbiased Estimation Technique (UBET, Rollins and Davis (1992. 199))):

This method considers both biased measurements and process leaks. It is only

applicable to normally distributed errors, steady-state and linear constraints. First.
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the global test is applied to detect any gross errors, then UBET is used to detect

the number and location of gross errors by trial and error. using two test statistics

(F and Bonferoni tests). Rollins and Roelfs (1992) extended this approach to the

case where the constraints are bilinear.

• The Principle Component Analysis Test (PCA, Tong and Crowe (1996)): In

this technique, a set of correlated variables is transformed into a new set of

uncorrelated variables, known as principal component (PC). through an

orthonormal matrix constructed by the eigenvectors of the covariance matrix H

for the projected constraint residuals, i.e.,

d=WTr (8.18)

where W is constructed from the eigenvector of covariance matrix H of constraint

residuals and satisfies

W = VA-liZ (8.19)

where matrix A is diagonal, consisting of the eigenvalues of H on its diagonal

and satisfies

A=VTHV

The matrix U consists of the orthonormalised eigenvectors of H so that

VV T = !

(8.20)

(8.21 )

Through this transformation, the new vector d becomes a new set of uncorrelated

variables and is normally distributed, i.e .. d - N(O. 1). Then the gross errors are

detected by the nodal test method as discussed previously.
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8.5 COMBINED GROSS ERROR DETECTION AND DA.TA.

RECONCILIATION

In combined gross error detection and data reconciliation, data reconciliation is

required to reconcile process data and to estimate the measurement errors for

gross error identification, These methods, can be applied to models that are highly

nonlinear and accept process variables that are unmeasured or unmeasurable.

There are several efficient methods for combined gross error detection and data

reconciliation available, As mentioned previously, they are all based on the

distribution function of the measurement adjustments. The process to proceed for

gross error detection and data reconciliation is as described bellow:

First data reconciliation is conducted to reconcile all process data by maximising

the joint distribution function subject to the process constraints. When all process

data have random errors removed, a test statistic is applied to identify the gross

errors,

Below are some of the most recognised methods In combined gross errors

detection and data reconciliation:

8.5.1. Measurement Test

Developed by Mah and Tamhane (1982), this method is based on the distribution

function of measurement errors, These errors are estimated by minimising the sum

squares of the standardised measurement errors subject to the process model

constraints, In other words:

)1' l ' -l ( )Minimise: (y", - Ytnle Y", - J'tMie
.r",

Subject to : h(y", ) = 0

(8.22)

This formulation is exactly the same as the one in equation (8.9) for solving the

'I' ti bl 1 This NLP problem can be solved bv nonlineardata reconci ia IOn pro en. .
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programming techniques, or can have an analytical solution if the constraints are

linear as shown in equation (8.11). The measurement errors (equation 8.1~) can

then be used for a test to determine whether gross errors exist or not. This test is

given as follows:

If IOj I/O'j > C then measurement i contains a gross error.

where OJ = Ym j - Ytruej is the measurement error i, and C is a certain critical value.

C is chosen from a table of a standard normal distribution function based on the

selected significant level f3 for individual measurement, which is given by:

f3=I-(1-a)l/m (8.23)

where a is the overall significance level, and m is the number of distinct values

of IOj I/O'j for all measurement errors.

The main advantages of using the measurement test is that it can detect sources of

gross errors, can be applied to nonlinear constraint cases, and allows unmeasured

variables in the model. A crucial disadvantage is that, as in most traditional gross

error detection methods, it assumes a normal distribution of the measurement

errors which is not always true.

The implementation of the measurement test algorithm as described in Serth and

Heenan (1986) is given bellow:

Step 1: Compute reconciled values Ytnle and measurement adjustments a for the

full system using equations (8.11) and (8.12).

Step 2: Compute standardised measurement adjustments: c j =Q/ / (J/ for each

measurement.
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Step 3: Compare each £; with the critical value of test statistic, C, selected from

the table of standard normal distribution at the selected significant level f3. If

1£; I> C, then denote measurement i as a suspected measurement containing

systematic errors and add the suspected measurements to set S. If 1£/1 < C for all

measurements, then go to Step 7.

Step 4: If the set S is empty, proceed to step 7. Otherwise, remove measurements

contained in S from the system by nodal aggregation. This process eliminates

some of the constraints and variables and yields a new system with reduced

number of constraints and variables, and the original constraints (A -"/me = 0) are

reduced as Bd = O. In the reduced constraints, d represents the variable vector as

Y,me excluding the variables that are eliminated by the nodal aggregation, and B

represents the constraint coefficient matrix as A excluding the rows and columns

that are corresponding to the eliminated constraints and variables from the nodal

aggregation. Also, the measurement vector Ym is reduced to vector 11' that

excludes the eliminated measurements from nodal aggregation, and let T denote

the set of measurements contained in w. In addition, the variance and covariance

matrix of measurement errors V is reduced to matrix P that excludes the variances

and covariances of the eliminated measurements.

Step 5: Repeat Step 1 to compute the estimated values of process variables and

measurement adjustments by equations (8.11) and (8.12) with A, Ym ' and I'

replaced by B, w, and P, respectively.

Step 6: Compute corrected values of variables in S by solving A Y,me = 0 with the

variables in set T specified with the estimated values from step 5 and the variables

in set R specified with the original measured values. R is a set of variables that

were eliminated during the nodal aggregation and whose measured data does not

contain gross error, i.e .. R = U - (S UT ), where U is the set of all variables i11 the

system. Then go back to Step 2.

185



Step 7: If the set S is empty, then all measurements do not contain gross error. and

the estimated values of process variables in step 1 by equation (8.11) are the

reconciled values of all process variables. Otherwise, the set of reconciled values

is obtained from the values computed in step 6 for the variables containing gross

errors in set S, the reconciled values computed in step 5 for the variables in set T.

and the original measured values for the variables in set R.

The above procedure ensures the detection of gross errors in systems with

nonlinear model constraints by minimising the sum squares of the standardised

measurement errors. However, the measurement test as it was originally proposed.

helps spread the gross error to all the measurements, leading to large residuals

corresponding to good measurements. This results in the measurements being

erroneously identified as containing gross errors (Type I errors). An iterative

elimination method was developed (Ripps, 1965; Serth and Heenan. 1986). to

overcome this problem, and was incorporated in the measurement test method to

form the Iterative Measurement Test (lMT). In this method, only the measurement

corresponding to the largest standardised error is automatically identified as

containing a gross error and is deleted each time the measurement test is applied.

The IMT reduces type I errors (a gross error is identified, while there is none)

significantly, but again, this method encounters one major problem: the set of

reconciled flow rates may contain negative values or absurdly large values

remains. Therefore, the Modified Iterative Measurement Test (MIMT) was

proposed by Kim et aI. (1997) to avoid this problem. This technique was

implemented on a simple CSTR system and results were compared when using

nonlinear programming techniques with those using successive linearisation. The

results showed that the MIMT with nonlinear programming technique performs

better and provides more accurate results (Kim et al., 1997). The IMT and \ fl\ 1'1'

algorithm procedures can be found in Appendix C.

To summarise. the measurement test is based on measurement errors. It

necessitates the elimination of random errors first by applying data reconciliation.
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The method then uses the error estimates to directly detect and locate gross errors.

It can be applied to nonlinear constraint cases and allows unmeasured variables in

the model. However, the major drawback of the method is that it assumes a

normal distribution of the errors, which cannot describe the distribution behaviour

of gross errors. The IMT and MIMT versions of the measurement test overcome

this kind of problems.

8.5.2. Tjoa and Biegler's Contaminated Gaussian distribution

This method uses a two mode (random and gross errors) Gaussian distribution of

the function of measurement error. It was proposed by Tjoa and Biegler (1991) for

gross error detection and data reconciliation. The proposed distribution function

of the measurement errors was given as:

P(Ymi IY,ruei) = (1- TJ )P(Ymi IY'ruei' R) + TJri»; IY'ruei' G) (8.24)

where P(y ,I Y ,R) is the probability distribution function for the random error,1/11 truet ,

P(y , IY ,G) is the probability distribution function for the gross error, with a
III/ 'mel'

gross error occurring with a prior probability TJ, and 1- TJ for a random error.

Because the distribution function of random errors is normal, with zero mean and

known variance (5'2 , it can be written as follows:

(8.25)
-(Ym-YI",.)2

217 21
P(Ym IY'rue' R) = J21UY e

So much so, the distribution function for a gross error which is assumed to be

normally distributed with zero mean and a larger variance (b(J")~ (with h» 1), can

be expressed as:

-(Ym -,VI"" )2

G 1 2(h(j)2

P(Ym I.l',rue' ) = ~h e
....; ':';7 (J"
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Tjoa and Biegler used the global likelihood function for all measurements. which

is the product of the individual distribution functions for each measurement and

called it the Contaminated Gaussian Distribution function. It is civen by:
'- .

N N

P(YmIYtrue) =TI P(Ym; IYtrueJ =TI {(1-77)P(Y
nll

IY/n/l!/' R)
;=1 ;=1 (8.27)

This function is maximised or its negative logarithm minimised subject to the

constraints in plant model in order to reconcile process measurements as follows:

Minimise:
Y/rue

Subject to:

-~ {In [(l-17)e -(Y~;::;-)' + ~ e-(Y~;:7')' ] -In[J2mT, J}
h(Ytrue) = 0

YL <Y < y U
true true true

(8.28)

where all the variables are as previously defined, and Yt~le and Ytl~/l' are lower and

upper bounds on the process variables.

The above nonlinear data reconciliation problem (equation 8.28) is solved using

nonlinear programming techniques, where values for 77 and b are needed.

After data reconciliation is accomplished, the measurements are analysed for

gross error presence by applying the following test statistic:

If: 77 P(Ymi IYtnlei' G) > (1-77 )P(Ymi IYtnlei' R) , then a gross error exists on

measurement i. Alternatively, use

1£; 1= Yn ll
- Ytnlel >
a;

2b
2

In[b(l- 77)]
b2 -1 77

(8.29)

If equation (8.29) is satisfied, then measurement i contains gross error. Otherwise,

no gross error is present in this measurement.
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The following procedure describes how the contaminatsr] G . di 'b .aussian istn uuon
method is implemented:

1. Solve the data reconciliation problem given by equation (8.28) to give the

reconciled values for measured and unmeasured variables, and then compute the

vector of measurement adjustments a =y _ Y
true m .

2. Apply the test statistic (equation 8.29) to determine if the measurement IS

contaminated by a gross error. If the test is positive, i.e.: the measurement IS

affected by a gross error, replace it with its appropriate reconciled value. This test

is applied on all measurements. When finished, construct a new set of

measurement using the reconciled data which replace the measurements affected

by gross errors, and those original measurements which contain random errors

only. This new set of measurements contains random errors only, and it is used in

simultaneous data reconciliation and parameter estimation to update plant

parameters for on-line optimisation.

As mentioned earlier, the values of 1] and b are two parameters needed by the

contaminated Gaussian distribution algorithm. b is a tuning parameter to shape

the distribution. Increasing b will reduce the effect of a gross error on the

estimation and increases the robustness of this approach. However, it will

decrease the asymptotic efficiency to the normality. In practice, the value of b is

usually chosen between 10-20, and the weight coefficient for a measurement with

a gross error is 100-400 times smaller than one with a random error. As for the

second parameter which is the prior probability of a gross error, 1], if no prior

information about the errors is available, then the value of 1] = 0.5 is

recommended (Chen, 1998).

It has to be said that the contaminated Gaussian distribution method is more

effective than the measurement test method (Chen, 1998). This is illustrated in the

fact that the contaminated Gaussian distribution method incorporates the

distribution pattern for both random and gross errors, and it is able to rectify both

random and gross errors in measurements. Another feature that the contaminated
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Gaussian distribution method posses, is that it can directly locate the gross error

and gives unbiased estimation for all reconciled data.

8.5.3. Robust Function Methods

In robust statistics, instead of assuming an ideal distribution of the measurement

errors as in classical approaches, an estimator which will give unbiased results in

presence of this ideal distribution is constructed. At the same time, this estimator

is insensitive to deviations from ideality. The robust function is to be insensitive

to the presence of gross errors in sampled data when this function is used to

conduct data reconciliation, and it still maintains a high efficiency (lower

dispersion) that indicates the accuracy of estimation (Huber, 1972 and Seber,

1984).

Several different classes of estimators have been developed: the Lcstimators. R­

estimators and M-estimators. The most important ones are the M-estimators,

which are generalisations of the maximum-likelihood estimator (Albuquerque and

Biegler, 1996). It is described in the following:

n

min -L P(Ymi ,Y'roei )
Ylrue ;=1

Subject to: h(Y,roe) = 0
L < < l!

Y'roe - Y'roe - Y'roe

(8.30)

Several distribution functions have been proposed in the literature. To note: the

Lorentzian and Fair function.

The Lorentzian distribution is given by (Jonston and Kramer. 1995):

1 (8.31)
p(£J =1+ 1£;2

where e is the standardised measurement error comprising both random and,

gross error, i.e.: e, =(Yml - )'troc, )/a.
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The Fair function which is convex and has got continuous first and second order

derivative. It is given by (Albuquerque and Biegler, 1996):

p(e,c) =c' [1:1_1og(I + 1:1)J (8.32)

where c i is the standardised measurement error and c is a tuning parameter.

A boxplot technique is used to test for gross error presence. The centre of the box

represents the median, and the sides represent the quartiles. Outliers are detected

by computing the order statistics (median and quartiles) and their distances from

these. In this test, the interquartile-range is defined by:

(8.33)

where Fu and F; are the third and first quartiles respectively. The outlier cutoffs

are given by: F; - ad; and F" +ad; , with a usually set to 1/3 (Albuquerque and

Biegler, 1996). Measurements outside the cutoff are considered as outliers.

Robust statistical methods were developed to overcome difficulties with data that

contain gross errors and that does not follow the ideal normal distribution. This

kind of method uses an objective function that is insensitive to gross errors in

sampled data and known to have the advantage of having a very simple

mathematical form and also for having very convenient properties for

optimisation. Moreover, robust methods do not need any prior knowledge of the

error structure of the outliers and of the data. However, the accuracy of estimation

from these methods will be slightly lost because robust functions have a flatter

shape that gives larger variation in the estimation. Also, the test used to detect

gross errors for robust methods is not as straight forward as the contaminated

Gaussian distribution, although the boxplot and dotplot methods from exploratory

statistics (Albuquerque and Biegler, 1996) may be used to identify the gross errors
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of sampled data. Moreover, such robust methods tend to cause more type I errors

that a gross error does not exist but was positively identified.

Chen (2003), reporting the results of theoretical and numerical evaluations of the

three methods for combined data reconciliation and gross error detection

presented above, showed that:

The Tjoa and Biegler's contaminated Gaussian distribution method has the best

performance for measurements contaminated by random errors and moderate

gross errors of the range (3 (J -30 (J).

The robust method using Lorentzian distribution function proved to be more

effective for measurements with very large gross errors (larger than 30 cr ).

The measurement test provides a more accurate estimation for measurements

containing random errors only. However it gives significantly biased estimation

when gross errors larger than 10 a are present in the measurements

8.6 PARAMETER ESTIMATION

In on-line optimisation, some model parameters are regularly updated. In reality,

there is generally a difference between the model and the real process it 1S

representing, so the aim is to reduce model-reality (or plant-model) differences.

For an unconstrained problem, a model of a plant can be expressed function of

process variables x, fixed parameters Pa , and variable or updated parameters PfJ ,

as:

(8.3'+)

The vector of updated parameters P
fJ

is estimated from process measurements y

with the help of an appropriate parameter estimation problem formulation. In case

the data n1easurements are affected by noise, data reconciliation can be used to

reduce the effect of noise and data variability. and hence improve the estimation.
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Deming (1943) originally formulated the general problem of parameter estimation

by taking into account all the errors in measured variables. Britt and Luecke

(1973) presented general methodology for the parameter estimation of error-in­

variables model. According to them, there are two types of models for parameter

estimation. The first type is the explicit model. In this model, measurements are

divided into two sets: dependent and independent variables. The independent

variables are measured with greater accuracy than the dependent ones. In fact. the

dependent variables are expressed as an explicit function of measured variables.

Parameters can be estimated by such procedures by minimising the sum of

squared errors of dependent variables (least squares method) or maximizing the

likelihood function, a probability distribution function of the measurement errors

of dependent variables (maximum likelihood method). This is an unconstrained

optimisation problem, and linear regression method is one of examples for this

type of estimation.

The second type of model is the implicit or error-in-variables model. Where errors

are present in all measurements and the variables cannot be divided into

dependent and independent variables as in the explicit model. The constraints of

process models are implicit. Therefore, the optimisation problem of parameter

estimation must be formulated as a constrained optimisation problem. In error-in­

variables models, the vector of measurements y is divided into measured and

unmeasured variables YIII and YII·

Often, data reconciliation and parameter estimation are joint and performed

together in what's called Simultaneous data reconciliation and parameter

estimation. They use error-in-variables models, where all the measured variables

have errors in them, and are given by the following traditional relationship:

Y -Y +&III - true

where all the variables are as previously defined.

The vector of updated parameters and reconciled variables Pp and Ytnlt' arc found

b
.... th obicctive function subject to the equality constraints iny Inlnln11s1ng C J . •

equation (8.34).
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Therefore, the general formulation of the Simultaneous data reconciliation and

parameter estimation is a least squares constrained optimisation problem.

rmn : (y - )TV-1(
P • mY/rue Y m - Y/rue)

fJ

subj ect to: h(y,rue , Pa ' P
fJ

) =0
(8.36)

Britt and Luecke (1973) described the use of Lagrange multiplier method to solve

the optimisation problem of equation (8.36). The constraints are implicit

nonlinear, and there is no analytical solution for it. The authors developed an

iterative linearisation technique to solve this nonlinear problem. They linearised

the nonlinear constraints using Taylor expansion at the solution point of the last

linearisation, and then iteratively searched for the optimal solution. They came to

a conclusion that their algorithm provided a feasible approach to the general

parameter estimation problems.

In order to eliminate plant-model mismatch, there have been several proposals to

integrate the parameter estimation problem with the system optimisation problem

in one whole formulation (Haimes and Wismer, 1972~ Roberts, 1979~ Cheng and

Zafiriou, 2000). The main contribution to the subject and relevant to our study is

of no doubt the Integrated System Optimisation and Parameter Estimation

(lSOPE) algorithm developed by Roberts (1979). The general idea behind the

ISOPE algorithm is to replace the model-based optimisation problem, by an

equivalent problem which is ultimately decomposed into a parameter estimation

and a modified model-based optimisation problems. This algorithm was

introduced in chapter 2, and will be reviewed in the following subsection.
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8.7 VARIANCE-COVARIANCE MATRIX ESTIMATION

One crucial point when solving data reconciliation. gross error detection and

parameter estimation problems, is the choice of the variance-covariance matrix. T'.

Several methods to estimate this matrix have been reported in the literature. To

note, the direct method based on the mean of the measurement samples. and the

indirect method which uses the estimates of the constraint residuals calculated

using the direct method.

In the direct method, the variance-covariance is given by:

where Y . is the mean of the measured variable YIII ; over a number of samples n,
nil

and is given by:

1 n

Ymi =- LYmik
n k=1

The variance-covariance matrix of the measurement errors V is formed from the

above formulation, and is given by:

(8.39)

The above formulation of the variance-covariance matrix is only valid for cases

where there are no gross errors present on the measurements. and the sampled

data are independent of each other. In other words, the n samples have to be taken

from the same steady-state operating point.
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From equation (8.39), one can deduct the covariance matrix of constraint residuals

H (in the case of linear constraints) as follows:

(8.40)

This formulation was used by Keller et al. (1992), in his indirect method to avoid

or eliminate the dependency between sampled data which occur in the direct

method.

Equation (8.40), which represents the constraint residuals matrix H found by the

direct method, is used to estimate the variance of the measurement errors using a

simple optimisation procedure. This procedure is the minimisation of the squared

differences between H and the estimated constraint residual variances AV· A , with

V· in the unknown:

(8.41 )

Equation (8.41) is solved to determine V· which IS the variance-covariance

matrix of the measurement errors.

8.8 OPTIMISATION

Once the data and models are reliable, i.e.: after the data measurements have been

tested for steady-state detection, data reconciliation to remove random errors,

gross error detection to remove gross errors and parameter estimation to update

the model parameters, optimisation, which is the determination of those optimal

set-points for which the system operates most efficiently. is required to be carried

out.

Generally speaking, optimisation is concerned with the mathematical problem

defined by minimising (or maximising) an objective function of n variables say [.

subject to some m equality and p inequality constraints:
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Minimize ft» x x )x' , l' 2' .. ·····, n
1,(/=1" ..n)

Subject to: hj (xI'X2, ,xn ) =0, for} =1,2, m

gk(XI'X2, ·,xn ) < 0, for k =1,2 p

(8,42)

Many methods and techniques have been developed and used to solve the

mathematical problem (8.42). Depending on the nature of the objective function.

equality and inequality constraints, it is possible to divide them into three

categories (Ellis, 1994):

" Category 1: Linear programming problems, where the objective function f{x).

the equality and inequality constraints (h(x) and g(x» are all linear functions

of the independent variable x. It is without doubt the most natural mechanism

for formulating a vast array of problems with modest effort. Linear

programming formulations are popular because it lends itself more readily to a

mathematical formulation, the theory is richer, and the computation simpler

for linear problems than for nonlinear ones. The Solutions of this problem

always lay on constraint boundaries and algorithms exploiting this fact are

well established.

~ Category 2: Quadratic programming problems, where the objective f{x) is a

quadratic function of x, with perhaps, linear or quadratic constraints.

Quadratic programming arises in many applications and it forms a basis of

some specific algorithms and techniques. As it is usually solved using

calculus, many problems (which are highly non-linear) are converted into

quadratic formulations.

»: Category 3: The general non-linear programming problem. This problem is

usually too complex to solve using calculus because of the nonlinearity of the

objective function and constraints. Usually numerical techniques arc used to

solve this kind of problems,
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Optimisation techniques can be divided into two general categories: direct and

indirect (model-based) optimisation methods (Garcia and Morari. 1981).

In the direct approach, measurements are taken directly from the real process as it

is moving from one operating point to another, and a suitable optimisation

technique is applied to find the optimum operating point. The way to proceed in

choosing a suitable optimisation method for the direct approach depends upon

several criterions, such as stability and convergence (Mansour and Ellis, 2003).

Although these classical techniques have proved to deliver good performance in

optimising some processes 'off-line', they still have two major problems when

applied on-line (Ellis et al, 1988): the first one related to the process dynamics,

while the second to noise presence.

As all real processes are dynamic in their nature, enough time (waiting period)

must be given to the system to settle down, as the optimising control problem is

essentially a steady-state problem, before taking any measurements or applying

any inputs. This procedure can be time consuming especially in the case of slow

processes where the waiting period may become prohibitive (Ellis et aI, 1988).

Also in practice, measurements might be affected by some noise, thus givmg

wrong values of the measured variables yielding to sub-optimality.

In the indirect or model-based approach, optimisation is performed on a model of

the system instead of the physical system itself. When found the results are then

applied to the real process. In this case, measurement noises are highly unlikely to

occur, and the problem of the system dynamic is overcome via using a steady-

state model.

In practice, such problems require a realistic representation of the physical system

by means of a suitable mathematical model and the explicit or implicit

formulation of an appropriate performance criterion. The mathematical modcl

must describe correctly at least the qualitative features of the practical system in
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the complete range of the probable operating conditions. and the optimality

criterion must be a valid representation of the practical meaning of optimality.

Although proved effective in some cases, this approach presents some major

difficulties, as we could never provide the right model of the system, as there

always exist differences or mismatches between the model and reality. This has

been acknowledged for some time now, and it has been welcomed that the model

must be adaptive so that some model parameters can be periodically updated

(Lowe and Hidden, 1971).

8.8.1 The ISOPE algorithm

The key feature of the ISOPE algorithm IS to replace the model-based

optimisation problem, after an analysis of first-order optimality conditions

(Appendix A), by an equivalent problem which is ultimately decomposed into a

parameter estimation problem and a modified model-based optimisation problem

(Roberts et al, 1988). As an on-line optimisation procedure, the ISOPE algorithm

(developed by Roberts in 1979) has some features which can either be taken as

direct or indirect. It is based on derivatives calculation provided by real process

measurements (can be thought of as using elements of the direct technique) to

update an unfaithful model used in the model-based optimisation, thus reaching

the real optimum of the process in spite of model-reality differences (refer to

chapter 2 for a detailed description of the ISOPE algorithm).

However, this method suffers from a major problem, which is that the derivatives

have to be estimated by means of measurements which increases geometrically

with problem dimensionality.

Methods and techniques have since been developed for the purpose of estimating

these process derivatives, such as: Finite Difference Approximation \ lethod

(FDAM), Dual Control Optimisation, Broydons method and Dynamic vlodel

Identification method (DMI), with a linear model. These methods have been

described and applied under simulation, to a cascade Continuous Stirred Tank

Reactor (CSTR) system in chapter 4 of this thesis. together with a new version of
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the DMI which uses a nonlinear model instead of a linear one. Results of the

comparison simulations showed the superiority of the dynamic model

identification method. In chapter 5, an Artificial Neural Network method was also

introduced for the same purpose of estimating real process derivatives. Simulation

results showed the method produces extremely accurate estimates of the

derivatives in absence of noise, and results in a faster convergence of the ISOPE

algorithm.

8.9 SIMULATION CASE STUDIES

In this final section of this chapter, two simulation case studies are conducted. The

two studies are carried out using the two CSTR system of chapter 3 (Figure 3-2).

In the first simulation case study, the system with its measurements contaminated

by noise and bias is optimised without recourse to steady-state detection. gross

error detection or data reconciliation. While in the second case study, on-line

optimisation is applied as a package on the system with its measurements

contaminated by noise and bias. The package includes: steady-state detection,

static data reconciliation, gross error detection, and the actual optimisation giyen

by the ISOPE algorithm.

The whole package was implemented under a MATLABH/SIMULINK platform

in groups of interconnected modules. The first module obtains the measurements

from the system. It is directly connected to the steady-state detection module

where the data is treated for automatic identification of steady-state using the

Brown and Rhinehart, (2000) method presented earlier in this chapter. This

module is connected to the gross error detection module. If steady-state is

reached, the data measurements are passed to the gross error detection module to

be cleared of any gross errors. After that, the data reconciliation module uses mass

and energy balances equations to reconcile the data measurements resulting from

the gross error detection module. After being cleared from gross and random

errors, the data is passed to the optimisation module. where the ISOPE algorithm

performs the integrated system optimisation and parameter estimation. The whole

concept is illustrated in figure (8-14).
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Figure (8-14): On-line Optimisation Procedure

In our case, the concentrations of species B in both tanks are considered as the

measured variables, Ym = [ChI Ch2f.
Both simulations were carried out using MATLAB(I{ and were started from the

same initial operating point given by T, =307K and T2 =302K, yielding the

following steady-state output values of the concentration of products A and B in

the two tanks 1 and 2, and

For the steady-state detection module, a global level of significance was chosen to

be a process = 0.05. Which means that the individual level of significance for each

variable is given by: a, =1- IV (1- a process) , where i = 1, .... .\'. and .\' = :2. This

results in a =0.025 for each variable. The three filter parameters ~, L, and L\
I - .

were chosen by trial error to be: ~ =0.06. L2 =0.01 and L, =0.01. These values

proved to be the best values when applied amongst the various tested. The value
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of Rerit was chosen to be: Rerit = [1.35 ; 1.35]. Rerit is a vector of 1\-\"0 elements:

each element corresponds to one measured variable of the process.

For the gross error detection and static data reconciliation, the added noise was

simulated as a normally distributed noise with zero mean. where the variance­

covariance matrix V was obtained as shown in section 8.7. After a short training

period of time, which included applying some given set-points. and measuring the

corresponding outputs, the matrix V was built upon these values obtained by trial

and error. The matrix V can be updated regularly using on-line measurements.

A bias was added (in simulation) to one of the two variables Cn.? and was of a

value of 0.01172 [kmol/rrr'] which corresponds to 200/0 of the initial value ofC,,:.

Finally, the optimisation was performed on a linear objective function of the

measured variable C
h2

• This choice of the objective function manifests a desire to

maximise the amount of component B in tank 2. Therefore. the mathematical form

of this function is given as:

L(y, v) = -Ch2

8.9.1. Results

Results of simulations are shown on figures (8-15) to (8-22).

(8 ...U)

For the first case study, figures (8-15) and (8-17) show the trajectories of the true

and measured values of the output variables Chi and Ch.? when no steady-state

detection, data reconciliation or gross error detection were applied, but only the

ISOPE algorithm to optimise the objective function given by equation (8"+3). The

first figure when only noise. and no bias was present on the measurement. ('/ll'

while the second figure has both noise and bias. Figures (8-16) and (8-18) arc the

corresponding set-points trajectories for each case.
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In the second case study, the full methodology of on-line optimisation was applied

as a package on the two CSTR system. Gross error detection and elimination. data

reconciliation and also the ISOPE algorithm were not applied until we were sure

that the system was at steady-state with a certain confidence level. Figures (8-19)

to (8-22) show the results obtained with this methodology.

8.9.2. Discussion of the Results

In the first case study, it is clear that the system does not converge to what we

exactly want it to. Especially in the case when one of the measurements was

biased. However, when no bias was present on either measurements the outputs

tend to follow a certain pattern leading to a near-optimum point. But, at that stage.

the output doesn't settle for a given value, but keeps fluctuating up and down with

a certain error. In the second study however, we can see from the results obtained

that the algorithm converges even in presence of a bias on one of the

measurements. The slowness of the procedure shown in figures (8-19) and (8-20)

is due to the fact we had to leave enough time to the steady-state detection

algorithm to confidently detect steady-state before applying data reconciliation or

the ISOPE algorithm. However, this huge waiting time is reduced in figures (8­

21) and (8-22). Reducing the wasted time was achieved by activating the data

reconciliation, and thus stop the steady-state detection procedure as soon as we

are certain (of course with the given confidence level) that steady-state is reached.

In fact, and as seen from both sets of figures this waiting time is reduced by half.
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8.10 SUMMARY

In this chapter, a methodology of on-line optimisation has been presented and

reviewed. Concepts of automatic detection of steady-state, data reconciliation.

gross error detection and parameter estimation have been presented. A method for

detecting steady-state in multivariable processes developed by Brown and

Rhinehart (2000) has been implemented and tested on a two CSTR system.

Methods for combined data reconciliation and gross error detection have also

been reviewed. Simultaneous data reconciliation and parameter estimation

methods have also been outlined. A method for estimating the variance­

covariance matrix has also been presented and implemented on the two CSTR

system. Finally, optimisation and the ISOPE algorithm, which integrates system

optimisation and parameter estimation, have been outlined. This methodology was

implemented successfully on a two Continuous Stirred Tank Reactors (CSTR)

system.

In the next chapter, a summation of all the work carried out during this research

and conclusions are given, together with some thoughts for further research.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS

This thesis is concerned with certain on-line optimisation structures and the general

ISOPE algorithm which integrates an optimisation scheme together with parameter

estimation. Algorithms to improve the performance of the algorithm were presented.

These algorithms were for derivative estimation. steady-state detection. data

reconciliation, gross error detection and optimisation. These topics were also

reviewed and tested to asses their performance and effectiveness on a two CSTR

system.

The concern here has been issues related to the development and use of algorithms

for on-line optimisation and control. The methodology to apply an on-line

optimisation procedure is complex, and may involve several steps and stages from

different areas. A number of topics have been covered in this thesis. These are:

Derivatives estimation, automatic detection of steady-state, static data reconciliation.

gross error detection, parameter estimation and process optimisation. These topics

have been extensively considered.

In order to assess and compare the performance and effectiveness of the techniques

presented in this thesis, two examples of systems have been used. The first system is
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a simple SISO nonlinear discrete time system, while the second one is a more

complex system which consists of a two Continuous Stirred Tank Reactors (CSTR)

connected in series. These are presented in Chapter 3. A practical version of the

ISOPE algorithm developed by Becerra and Roberts (2000) has been implemented on

these systems and used throughout each time the ISOPE algorithm was called.

Several methods and techniques presented in this thesis have also been implemented

and tested under simulation on models of these systems. The implementations of the

models of these systems together with all the different techniques have been

performed using a MATLAB@/SIMULINK software platform. During simulations.

the SIMULINK model calls the subroutines containing the appropriate algorithms

stored in M-files. These M-files acquire the information data under the form of

measurements from the SIMULINK model, and process it as appropriate.

The solution of an on-line optimisation problem can be achieved in two ways:

The direct approach and the indirect or model-based approach. Both approaches

possess advantages as well as disadvantages. For instance, the disadvantages

associated with the direct approach are mainly due to the presence of noise and

disturbances in the measurements on one hand, and the internal nature of the process

in terms of its time response on the other hand. As in the case of a very slow process.

the algorithm used to optimise the system might take a long time to converge. The

disadvantages associated with the indirect approach however, are mainly caused hy

the mismatch that exist between the system and the model representing it, as it is very

difficult, even unlikely to obtain a correct model of the system and its environment.

One way to overcome the problems of measurements and noise in the direct

approach, and model-reality differences in the indirect one. is to use model-adaptive

technique in which some model parameters are regularly updated using real process

measurements. The ISOPE algorithm is one of these techniques. It has got features

from both the direct and indirect approaches, and do achieve the real optimum in

spite of model-reality differences.

:210



However, it has been acknowledged for some time now that probably the major

drawback of the ISOPE algorithm is the requirement of real process derivatives to be

computed at each iteration of the algorithm. These process derivatives are needed bv

the ISOPE algorithm in order to satisfy necessary optimality conditions..Attempts

have been made to overcome this problem by either developing alternative techniques

to successfully estimate these derivatives or totally eliminate this necessity. In this

thesis, several algorithms and techniques for estimating process derivatives have been

presented, implemented and tested under simulation on a two CSTR system. These

are: Finite difference approximation, dual control optimisation. Broydori's method

and dynamic model identification with linear model method. A comparison study has

also been conducted using these techniques, and results have been presented. Also. a

novel technique developed during the course of this research based on a nonlinear

dynamic model identification has been presented and tested under simulation. The

aim was to provide accurate estimates of the process derivatives, while avoiding the

difficulties encountered in the previous techniques. These difficulties are mainly

caused by excessive excitation of the set-points for some methods, and slowness and

sensitivity to noise for others. The technique when implemented has shown to be

successful and gave leading performance when compared to the other techniques. The

only exception was the dynamic model identification based on a linear model. The

results of the simulations show that this method is the most suitable method to be

used for process derivative estimation amongst those tested in our example. because

it makes the ISOPE algorithm converge faster, and its least square estimator plays a

filter role against noise. Also, it was shown that all the techniques do achieve

convergence to the optimum point, but with a small difference in the time taken to

converge, with the exception of FOAM, which proved to converge slowly due to the

need for extra set-point changes, which is problematic in the case of large-scale and

slow processes.

In the same context but with a different approach. an Artificial ;\cural network

(ANN) method has been implemented and applied on two different systeITIs. I IlL'
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method exploits the ability of ANN's to learn from the environment and produce

accurate approximations of functions, and train an ANN model in order to imitate the

behaviour of the real system. At the beginning of the procedure, and before the

optimisation is applied, input/output candidates are collected from the real system by
. .

applying a set of inputs to the system. A waiting period is allowed to transpire so that

a steady-state is reached and then the corresponding outputs are gathered. This data is

then used to train the neural network in order to obtain the model that would

represent the real system. Although the method makes the ISOPE algorithm converge

faster compared to that using FOAM to estimate the derivatives. as it is based on a

steady-state model, changes in process parameters can result in the whole scheme

producing erroneous estimates of the process derivatives and hence lead to sub­

optimality. In such cases, the algorithm needs some considerable time to retrain the

neural network model to adapt to the new changes, which can be prohibitive in the

case of slow processes. In practice, to cover against system parameter changes.

retraining may be carried out at periodic intervals.

The reliability and accuracy of measured data is of a great importance in monitoring.

evaluating process performance, and for process models that are used in optimisation

and control. The objective of data reconciliation is to correct the measured variables

by removing random errors from the data set, and to estimate the values of the

unmeasured variables, so that we can obtain an estimate of the true state of the plant.

The procedure is to reconcile process data by requiring it to be consistent with natural

laws such as energy and mass balances. The data reconciliation problem can be

solved using a number of efficient approaches. Nonlinear programming. quadratic

programming and successive linearisation methods are the common methods used.

However, in presence of gross errors, the least-squares objective function used in data

reconciliation can be severely biased leading to incorrect reconci1 iation and

estimation. Gross errors as opposed to random errors are considered to be caused by

non-random events such as process leaks, biases in instruments. and so on.
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Therefore, a gross error detection phase is usually needed before data "1""
II rcconci ration IS

applied. Ideally, the aim of a gross error detection technique is to:

1 Detect the existence of the gross error

2 Identify its location

3 Identify its type

4 Determine its size

After the gross errors are identified, two responses are possible and/or desired:

Eliminate the measurement with the bias or,

2 Correct the model such as the case ofa leak and run the reconciliation again.

In this thesis, static data reconciliation and gross error detection han? been

implemented in a module, and tested under simulation on the two CSTR system.

Errors and biases of different values have been added to the outputs of the real system

to simulate erroneous measurements. The results of the simulations have shown that

the scheme has been successfully implemented to detect and eliminate errors from

flawed measurements. Given values of biases added to the measurements to simulate

errors ranging from -400/0 to +40% of the nominal values, the whole data

reconciliation and gross error detection procedure produce good results. However,

this was only observed in this example using the CSTR system. in other situations,

other factors may need to be considered.

The application of the above data reconciliation and gross error detection within the

on-line optimisation procedure, the ISOPE algorithm has been implemented in

software. The resulting scheme (data reconciliation and gross error detection -+­

ISOPE) collects data measurements from the system. and applies the data

reconciliation and gross error detection to remove both random and gross errors.
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After that, the reconciled measurements (free of errors) are used in the optimisation.

The performance of the scheme has been demonstrated under simulation on the two

CSTR system, where the measurements were contaminated by random errors and

biases. Optimisation was performed using the ISOPE algorithm on a linear objective

function which reflects the desire of maximising the concentration of one component

in the second tank of the CSTR system. The implementation of the whole procedure

was achieved by allocating a separate module for each task. These tasks interact

where and when necessary. The simulation results have shown that the application of

data reconciliation and gross error detection on corrupted data measurements within

the ISOPE algorithm proved to improve optimisation. This is mainly due to the

improved parameter estimation, which improves the derivative estimation as \\ clI.

resulting in a more efficient operation of the system.

In order for data reconciliation, gross error detection and steady-state optimisation to

be applied, data measurements have to be collected from the system when at the

steady-state. For this purpose, a method for automatic detection of steady-state that

can be used in multivariable analysis has been presented, implemented and tested

under simulation on the two CSTR system. This method is capable of detecting

steady-state with a certain confidence level. The testing of the algorithm has proved

to be successful given the right choice of values of the parameters used in the

algorithm. These parameters are highly important, and a wrong tuning of these

parameters could lead to an early, late, or a non detection of steady-state at all.

As most methods for data reconciliation and gross error detection are based on the

knowledge of the Variance-covariance matrix V of measurements. The choice of a

suitable V matrix is crucial and sometimes proves to be verv difficult. SL'\ cral

methods to estimate this matrix have been reported in the literature. \\'c mentioned

the direct method based on the mean of the measurement samples. and the indirect

method which uses the estimates of the constraint residuals calculated uxi llt! the di rcct
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method. The direct method has been presented and implemented under simulation on

the two CSTR system, and the results have been presented.

In the final section of this thesis, the separate modules implemented for steady-state

detection, data reconciliation and gross error detection, Variance-co\'ariance matrix

estimation, process derivative estimation, and the actual optimisation (IS0PE

algorithm) have been assembled and implemented sequentially to form a

methodology of on-line optimisation. This methodology has been implemented In

software and tested on the two CSTR system. Each task in the rnethodoloux was

carried out sequentially in a modular way starting from detecting steady-state and

finishing by obtaining the optimum set-points that achieve the most efficient

operation of the system. The modules are interconnected together where and when

necessary in order to enable an easy and reliable interaction and transfer of the

information. Simulation results have shown that this methodology can successfully be

used to achieve the optimum operating point of the system if all parameters of each

task are tuned appropriately. It also reduces the time wasted waiting for the system to

settle down. This time can be either too short or wasted by a wrong choice of the

waiting time. This can be avoided by activating the steady-state detection algorithm,

which can tell us when the system settles down, within a certain confidence level.

9.2 RECOMMENDATIONS FOR FUTURE RESEARCH

As an extension to the work carried out in this thesis, the following items are most

recommended for further research:
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For the ISOPE algorithm, instead of estimating the process derivatives which some

times proves to be difficult, it might be more advantageous to develop techniques

which are indirect, but do not require derivative information to be obtained. Initial

thoughts are to use some of the features of the well established Powell's conjugate

direction method in conjunction with the ISOPE. This could be an area of possible

further research.

In the area of data reconciliation and gross error detection, one of the challenges that

should attract more attention and seek more consideration, is the elimination of the

uncertainties on the location of the gross errors and uncertainties that are independent

of the method of detection and compensation.

As for the simulations carried out in this work, only biases have been simulated as a

type of gross error. Further testing with different types of gross errors might be

beneficial to assess the data reconciliation and gross error detection methods

implemented in this work.

All the techniques presented in this thesis have been implemented and tested on the

two CSTR system. A similar task would be to test these techniques on different type

of systems.

The development of an on-line optimisation package based on the methodology

presented in this thesis might also be very useful. With the new capabilities that

MATLAB®j SIMULINK offers, it is possible to develop this sort of packages which

can implement, apply and simulate the methodology on either linear or nonlinear

systems.
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Appendix A

Necessary Optimality Conditions

Given the following optimisation problem:

min I(x)

subject to: hex) = 0

g(x) ~ 0

(:\ 1)

where j(x) is the Objective function to be minimised, and hex) and g(x) are the

equality and inequality constraint functions respectively.

First-Order Necessary Conditions

The First-order necessary conditions for optimality, also known as: The Kuhn-Tucker

Conditions (Luenberger, 1983) are:

J1 ? 0,

V/(x·)+)"IVh(x·)+ JiVg(x·) = 0

u'g(x·) = 0

(:\2 )

where x· is a relative minimum point for the above optimisation problem. and I, and ~l

are the Kuhn-Tucker multipliers.
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Second-Order Conditions

In addition to the First-order Necessary conditions given above. the Second-order

Sufficiency conditions necessitates that the Hessian matrix

is positive definite on the subspace M given by:

M ={y: Vh(x*)y =0, Vg/x·)y =°for all} E J}.

J ={}: g/x·) =O,j.1j > O}.

(:\3 )

(:\-+ )

where F, Hand G are the 2nd order derivatives of the objective function. the equality

constraint and inequality constraint respectively.
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Appendix B

The R-statistic

Given the filtered value of the measurement value X:

(8. 1)

One can compute the filtered mean square deviation from the previous filtered values

2 b .
Vf,i Y·

(B.2)

If the process is stationary:

(8.3)

Equation (B.2) is an unbiased estimate of'v' , and the variance of vI,i 2 is given by:

2 1S2 2
Var(v

f
· ) = Var((X; - Xf,. ) ),/ 2 -1S ,-1

2

(BA)

This means that equation (B.2) provides a computationally efficient unbiased

estimate of(X; - X k \ )2.

Then the estimate of the noise variance with the first approach will be:

2 2 - AI 2
SI· = vr;,/ 2·'
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Also, given the filtered mean square difference of successive data d},i :

d~,; =L3(X; - X i _I)2+(1- L3)d~,;_1

It is easily shown that the second estimate of the noise variance would be:

d 2

8 2 =-.l..:!...-
2,; 2

(8.6)

The R-statistic is computed by taking the ratio of the two estimates of variance

(measured by the two methods) as determined by equation (8.5) and equation (B.7):

R
= 81/ = (2-L1)vj /

. 2 2
1 8

2
, d

j
.

,I ,I
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Appendix C

The IMT and MIMT algorithms

The procedure of Iterative Measurement Test (lMT) is:

Step 1: Compute reconciled vector Y true and measurement adjustments vector a as in

the Measurement test (MT).

Step 2: Calculate the standardised measurement adjustments s, = 0, / (j,. as in ~IT.

Step 3: Compare each G; with the critical value C of test statistic as in MT. If /G,I < C

for all measurements, go to step 6. Otherwise, select the measurement corresponding

to the largest value of IG; I and add it to set S as suspected measurement that contains

a gross error. If two or more measurements have the same maximum values oflG,I,

select the one with lower index.

Step 4: If set S is empty, proceed to Step 6. Otherwise, remove the measurements

contained in S from system by nodal aggregation to obtain a lower dimension of

system with constraint coefficient matrix B, measurement vector w, and covariance

matrix P as MT (B, w, and P have the same meaning as given in MT). Let I denote

the measurements contained in w. Repeat Step 1 to compute Ytrue and 0 with A, Ym ,

and Vreplaced by B, w, and P, respectively.

Step 5: Compute corrected values for measurements in set S by solving equations

A Ytrue = 0 with the variables in set T specified with the reconciled values from step 4

and the variables in set R specified with the original measured values. R is a set of

variables that were eliminated during the nodal aggregation and whose measured data

does not contain gross error, i.e., R = U - (S UT ), where U is the set of all \ ariablcs

in the system. Then, go back to Step 2.

Step 6: If the set S is empty, then all measurements are free of gross errors, and the

estimated values of process variables in step 1 are the reconciled val Lies of all pWl'es s



variables. Otherwise, the set of reconciled values is obtained from the computed

values in step 5 for the variables affected by gross errors in set S. the reconciled

values computed in step 4 for the variables in set T. and the original measured values

for the variables in set R.

The procedure of modified iterative measurement test (MIMT) is:

Step 1: Compute reconciled vector Ytrue and measurement adjustments \ ector a as in

the Measurement Test (MT).

Step 2: Calculate the standardised measurement errors c; = G; / (J;, as in the \ IT.

Step 3: Compare each c j with the critical value C of test statistic as in i\IT. If Ii: 1< c

for all measurements, go to step 7. Otherwise, select the measurement corresponding

to the largest value of ICj Iand add it to set S as suspected measurement that contains a

gross error. If two or more measurements have the same maximum values ofl£,I.

select the one with lower index.

Step 4: If set S is empty, proceed to Step 7. Otherwise, remove the measurements

contained in S from system by nodal aggregation to obtain a lower dimension of

system with constraint coefficient matrix B, measurement vector w. and covariance

matrix P as MT (B, w, and P have the same meaning as given in MT). Let T denote

the measurements contained in w. Repeat Step I to compute Y,me and a with :\. y.

and Vreplaced by B, w, and P, respectively.

Step 5: Compute corrected values for measurements in set S by solving equations

A Y = 0 with the variables in set T specified with the reconciled values from step 4
true

and the variables in set R specified with the original measured values. R is a set of

variables that were eliminated during the nodal aggregation and whose measured data

does not contain gross error, i.e .. R = U - (S UT ). where U is the set of all vuriublcs

in the system.

Step 6: Check the reconciled values of process variables with the pre-specified

bounds. If one or more of reconciled data does not satisfy the bounds. then discard



the reconciled data and return to step 3, delete the last entry in set S. and replace it

with the measurement corresponding to next largest value Ofl&,I. If no bound

violation is found, go back to Step 2.

Step 7: If the set S is empty, then all measurements do not contain gross error. and the

estimated values of process variables in step 1 are the reconciled values of all process

variables. Otherwise, the set of reconciled values is obtained from the computed

values in step 5 for the variables containing gross errors in set S. the reconciled

values computed in step 4 for the variables in set T, and the original measured values

for the variables in set R.
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