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Measuring the Velocity of Fluorescently Labelled Red Blood 

Cells with a Keyhole Tracking Algorithm  

C.C. Reyes-Aldasoro1, S. Akerman and G.M. Tozer 

 

Abstract In this paper we propose a tracking algorithm to measure the 

velocity of fluorescently labelled red blood cells (RBC) travelling through 

microvessels of tumours, growing in dorsal skin flap window chambers, 

implanted on mice. Pre-processing removed noise and artefacts from the 

images and then segmented cells from background. The tracking algorithm is 

based on a ‘keyhole’ model that describes the probable movement of a 

segmented cell between contiguous frames of a video sequence. When a 

history of cell movement exists, past, present and a predicted landing position 

of the cells will define two regions of probability that resemble the shape of a 

keyhole. This keyhole model was used to determine if cells in contiguous 

frames should be linked to form tracks and also as a post-processing tool to 

join split tracks and discard links that could have been formed due to noise or 

uncertainty. When there was no history, a circular region around the centroid 

of the parent cell was used as a region of probability. Outliers were removed 

based on the distribution of the average velocities of the tracks. Since the 

position and time of each cell is recorded, a wealth of statistical measures can 

be obtained from the tracks.  The algorithm was tested on two sets of 

experiments. First, the vasculatures of eight tumours with different geometries 
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were analysed; average velocities ranged from 86 to 372 [µm/s], with minimum 

and maximum track velocities 13 and 1212 [µm/s], respectively. Second, a 

longitudinal study of velocities was performed after administering a vascular 

disrupting agent to two tumours and the time behaviour was analysed over 24 

hours. In one of the tumours there is a complete shutdown of the vasculature 

while in the other there is a clear decrease of velocity at 30 minutes, with 

subsequent recovery by 6 hours. The tracking algorithm enabled the 

simultaneous measurement of RBC velocity in multiple vessels within an 

intravital video sequence, enabling analysis of heterogeneity of flow and 

response to treatment in mouse models of cancer.  

Keywords— Red Blood Cell Tracking, Keyhole Tracking Model, Blood Flow, 

Tumour Vasculature. 

 

INTRODUCTION  

Intravital microscopy allows direct observation of red blood cell (RBC) 

movement in microvessels of small animals under both normal and 

pathological conditions (Sandison, 1924, Algire, 1943, Algire & Legallais, 

1949, Branemark & Lindstrom, 1963). The analysis of RBC movement and 

velocity is of great interest in many areas of research, for example, the RBC 

velocity before and after a treatment can contribute to the responsiveness to 

vasoactive drugs (Prazma et al., 1989), the distribution and flow of RBCs in 

cerebral microvessels can be used to measure oxygen tension (Tsukada et 

al., 2004) or the velocity can be used to estimate hydrodynamic wall shear 

stress (Vennemann et al., 2006). RBC velocity can also be used as a 
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measure of response to vascular disrupting agents in cancer research (Tozer 

et al., 2001). The tumour vasculature has become an attractive target for 

therapy because the provision of oxygen and nutrients by a single vessel 

supports the proliferation and survival of many tumour cells and it provides a 

main route for metastatic spread. Vascular disrupting agents (VDAs) are a 

new class of anti-cancer drugs that are aimed at causing rapid and selective 

shutdown of the established tumour vasculature, leading to secondary 

tumour-cell death (Tozer et al., 2005b). 

Despite its importance, the off-line measurement of RBC velocity from a 

dynamic sequence of images captured from intravital microscopy preparations 

has been restricted mainly to 1D or 2D cross-correlation or even manual 

measurements of distances over a screen (Tozer et al., 2001). Particle Image 

Velocimetry (PIV) (Sugii et al., 2002, Tsukada et al., 2000) relies on the 2D 

cross-correlation between “investigating windows” (small, fixed-size regions of 

interest within an image) which allows the measurement of the relative 

movement of the intensities inside the window between time-frames. This 

analysis is restricted to simple geometries, like a single vessel, since more 

complicated geometries could result in incorrect measurements due to 

aliasing, flows in opposite directions or other artefacts. Kymographs (Salmon 

et al., 2002, Waterman-Storer et al., 1998, Japee et al., 2005, Ji & Danuser, 

2005) (sometimes called Space-Time Images) rely on 1D cross correlation of 

the intensities described by a manually-traced line over an image in 

consecutive frames. This analysis is thus restricted to a single straight line, or 

at the most a collection of straight lines, and does not consider orientations 

but only relative movement within a line. 
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A proper tracking algorithm that traces the course or 2D movements of 

individual RBCs from frame to frame can provide more information than 

kymographs or PIV, by obtaining data from multiple blood vessels, in different 

orientations, within a region of observation. For this purpose, the RBCs need 

to be segmented from each video frame and their positions need to be 

identified in so-called pre-processing steps. Methodologies to track leukocytes 

with active contours and Montecarlo methods have been presented in (Cui et 

al., 2006, Ray et al., 2002, Acton et al., 2002) where the shape and size of a 

leukocyte are used to track its movements adequately, yet these algorithms 

are restricted to the analysis of a single leukocyte of interest. A complete 

methodology to track circulating fluorescent particles is presented in (Eden et 

al., 2005). The algorithm requires many pre- and post processing steps (edge-

based registration of the frames to compensate for mesenteric movements, 

texture and temporal-based segmentation of the vessels to restrict the 

correspondence of objects between frames, calculation of optical flow to 

resolve uncertainties, colour-feature segmentation of the cells and model-

based motion correspondence), which require user interaction like manual 

initialising or testing and training of Artificial Neural Networks. 

In this study, we developed a tracking algorithm based on a ‘keyhole’ model 

that describes the probable movement of fluorescently labelled RBCs 

travelling within tumour vascular networks and links RBCs on contiguous 

frames to form tracks that span over the analysed frames. The algorithm 

relies on fluorescence labelling to enable the segmentation of the RBCs. 

‘Keyhole’ relates the shape of two regions that when put together resemble a 

traditional door keyhole. A series of post-processing steps are required to 
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minimise the effect of uncertainty in the linking process, to discard tracks that 

may arise from noise and to join split tracks. The algorithm requires minimal 

user intervention, does not require training data or sophisticated pattern 

recognition techniques and is capable of analysing complex vascular 

networks with RBCs travelling simultaneously in different directions.  

We used the algorithm to investigate tumours with different vascular 

architectures and the effect of the VDA, disodium combretastatin-A-4 3-O-

phosphate (CA-4-P) on RBC velocity in murine tumours expressing only 

single isoforms of the important pro-angiogenic growth factor, vascular 

endothelial growth factor (VEGF). The most prevalent isoforms of VEGF are 

VEGF120, VEGF164 and VEGF188 in the mouse. Transgenic mice 

expressing only one of these isoforms have helped establish that expression 

of VEGF120 alone is associated with poorly developed and leaky blood 

vessels in normal tissues, whereas VEGF188 is associated with recruitment 

of peri-endothelial support cells and complex vascular networks. VEGF164 

tends to have intermediate effects (Carmeliet & Collen, 2000, Stalmans et al., 

2002). The tumour cell lines used in the current study express either 

VEGF120 alone or VEGF188 alone and present very different vascular 

morphology and function, when grown as solid tumours in vivo (Akerman et 

al., 2006). Thus we hypothesized that the different tumour types would 

respond differently to VDA treatment and provide a range of red cell velocities 

for testing the proposed tracking algorithm. RBC velocity was assessed for a 

24-hour period after a single moderate dose of CA-4-P. 
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MATERIALS AND METHODS 

Window chambers 
Intravital microscopy was carried out in tumours implanted into dorsal skin-

flap “window” chambers in mice, as described previously (Tozer et al., 2005a). 

Briefly, an aluminium window chamber weighing ~2g, with a single glass 

window in place, was surgically implanted into a depilated skin flap and a 

tumour fragment was placed onto the surgically exposed subcutaneous 

panniculus muscle within the chamber. The chamber was closed by 

placement of the second glass window, providing a depth of approximately 

200 µm for tumour growth. Animals were given appropriate post-operative 

treatment to aid recovery and then kept in a warm room, 28-30 oC, until the 

day of experiment. 

 

Red blood cell labelling 

Donor red blood cells were obtained by cardiac puncture from anaesthetized 

donor mice, as published previously (Unthank et al., 1993). Briefly, RBCs 

were separated from blood plasma and white blood cells by centrifugation and 

the isolated and washed RBCs incubated with a membrane dye, DiI 

(Molecular Probes – Invitrogen UK) for 30 mins. 25 µg of DiI was used per 50 

µl of packed RBCs. After incubation, the RBCs were washed and 

resuspended in phosphate buffered saline (50 µl ml-1 red blood cell-DiI 

complex). 

Intravital microscopy and video sequences 

Intravital microscopy was carried out approximately 6-10 days after surgery, 

when tumours reached approximately 3.5 mm in diameter. A Nikon Eclipse 
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E600FN fluorescence microscope with a x20 zoom and modified stage to take 

mice was used. Animals were placed on the stage in a custom built restrainer 

such that the window chamber was located adjacent to the objectives in a 

fixed position. The microscope was set up to view the tumour preparations 

under epi-fluorescence illumination using a 100 W mercury arc lamp for 

measurement of RBC velocity.  Fluorescence was set up to excite at 550 nm 

and detect the emissions at 565 nm from the DiI-labelled cells. Each animal 

received 0.1-0.2 ml of labelled RBCs made up at a concentration of 50 µl DiI 

labelled RBCs/ml via the tail vein. Video observations were recorded in digital 

format, using a Sony DSR-30P digital videocassette recorder that records at 

25 frames per second (fps) for off-line analysis.  

For demonstrating the algorithm in tumours with different vascular 

architectures, video sequences of a maximum of 500 frames from each of 8 

tumours with different vasculatures were selected from a range of single 

VEGF isoform expressing tumours with no drug treatment. A longitudinal 

study was designed to investigate the effect of the tumour vascular disrupting 

agent, CA-4-P on tumour RBC velocity. A single VEGF120-expressing and a 

single VEGF188-expressing tumour were observed before CA-4-P was 

administered and at the following time points: 2.5, 15, 30, 60 [minutes], 3, 6, 

24 [hours]. Two separate regions of interest were observed in each tumour, 

resulting in 4 series of measurements, with 8 time points in each. At each time 

point, 60 frames were analysed. The resulting tracks made by the fluorescent 

RBCs were manually validated. This involved visual examination of each track 

to determine whether the cells linked by the algorithm corresponded to the 
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same cell moving from frame to frame (correct) or if they were the product of 

different cells or noise (incorrect).  

DESCRIPTION OF THE TRACKING ALGORITHM 

The tracking algorithm consisted of three main steps:  pre-processing which 

transformed the acquired videos into a sequence of suitable binary images 

containing segmented foreground objects; tracking, which linked the objects in 

contiguous frames to form the tracks; and post-processing which removed 

links in tracks that could have resulted from noise and joined sections that 

were considered to be split sections from a single track.  

Reduction of the computational complexity 

One second of video (at 25 fps, 576 rows and 720 columns) yields more than 

10 million pixels and so it is important to reduce the computational complexity 

of processing a video. We reduced the number of pixels by a factor of 4 by 

discarding alternate rows of each image and then, for every row, 2 contiguous 

pixels were averaged and their mean value used to create a new pixel, thus 

reducing the columns by half. This process is similar to a standard quad tree 

averaging (Gaede & Günther, 1998). Besides the dimension reduction, this 

averaging provides local smoothing. The general effect of the local averaging 

is an increase on the certainty of the intensities, which improves the 

segmentation, against an increase of the uncertainty of the position, which 

could impact on the velocity. Since the distances are calculated on the 

centroid of the cells, we do not consider that the averaging has a considerable 

impact on the velocity. 

Removal of artefacts 
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First, it was necessary to remove any artefacts, such as intensity 

inhomogeneity, noise, and any labels that have been super-imposed on the 

images during acquisition. A mean image of a sequence of images was 

obtained by averaging the intensity values from every pixel of the whole 

sequence of images. The mean image was then subtracted from every frame 

to remove the artefacts. This process is shown in figures 1 (a-c). 

Next, a suitable fluorescence intensity threshold was selected to segment a 

number of foreground objects (that is, the RBCs themselves) from the 

background; this is the only manual intervention required from the user (figure 

1 (d, e)). Although the segmentation may exclude several objects whose 

brightness is below the threshold level, this is not critical for the tracking since 

it will exclude some tracks corresponding to relatively dark RBCs. Once the 

binary images were obtained a unique label was assigned to each of the 

objects. In figure 1 (f) each labelled object is represented by a different shade. 

Finally, the centres of gravity or centroids of the objects were obtained 

together with the distances that separated them from their neighbours, if any. 

Tracking of the red blood cells 

A keyhole model was developed to perform the tracking of the fluorescently 

labelled RBCs. The model arose from the observation of the movement of 

RBCs in the tumour vasculature: the most probable step for a RBC that is 

moving from frame t-1 to frame t, is to follow the direction of the previous 

steps with the same velocity to frame t+1. If we assume that a child RBC (cell 

at frame t) will move with exactly the same direction and velocity as its parent 

(same cell at frame t-1), we can predict its landing position for the next frame. 

Of course, this would not cover changes in speed, turns in vessels or even 
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simple movements within a wide vessel. We therefore defined two regions of 

probability, a narrow wedge (60° wide) oriented towards the predicted landing 

position, and a truncated circle (300°) that complements the wedge; together 

they resemble a keyhole (figure 2). The radius of the wedge was longer (3 x 

parent-child distance) than that of the circle (0.5 x parent-child distance) to 

capture objects that increased their speed. Similarly, the circle would capture 

RBCs that changed direction but only those that are close to the parent. In 

this way, parent-child relationships are restricted to objects that are relatively 

close to their parents or that follow the previous movements. This model can 

only be assumed if there is a previous history of movements of the RBCs, 

which of course introduces uncertainty into the relationship assigned, but this 

will be tested later in the post-processing (see below). When there was no 

history to determine the size of the circular region, the radius was determined 

by 50% of the minimum distance between neighbouring objects. If there is just 

one object in the frame and no history, then the radius will be arbitrarily 

assigned as the number of columns or rows, whichever is smaller, divided by 

4. 

The algorithm involves linking objects between consecutive frames based on 

the following criteria: when the algorithm begins, all the objects look for a 

possible child in the next frame within a circular region around their own 

position; those who find a child will be linked. When an object has been linked 

to another object in a previous frame, they form a track and the keyhole model 

is used to look for a child within the keyhole in the following frame. In case a 

RBC lands in two different keyholes, it will be linked to the keyhole whose 

predicted landing position is closest. In the case that more than one RBC land 
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within one keyhole, the one closest to the predicted landing is selected. Once 

all segmented RBCs have been examined for possible parent-child 

relationships, a reduced number of them will have formed a series of tracks of 

different lengths. Figure 2 (e) exemplifies the tracking algorithm with two 

tracks of different velocities. 

Post-processing of tracks 

Post-processing of the tracks consisted of four steps: analysis of the first link 

of each track, linking of disjointed tracks, removal of short tracks and removal 

of outliers. First, for every track, the first or top RBC (time t) would have been 

assigned as a parent without any previous history of movements, thus it is 

possible that it was incorrectly assigned to the track. This was tested by 

analysing the movement backwards. That is, the same keyhole model used 

child (t+1) and grandchild (t+2) to generate a keyhole at time (t). If the top 

RBC was found to land inside the keyhole, it remained as part of the track, 

otherwise it was removed.  

Next, tracks that appeared to be split artefactually, perhaps as a result of 

noise or incorrect segmentation, were tested for linkage by a similar 

backwards analysis. For every track, we generated a keyhole with its top two 

RBCs. If the bottom RBC of another track landed within the keyhole, the 

tracks were linked.  

Then it was assumed that longer tracks were more reliable than smaller 

tracks. Tracks that have only 2 or 3 RBCs linked between frames were 

considered unreliable and deleted from further analysis.  

The last post-processing step was to discard outliers, those tracks whose 

average velocity exceed 3 times the standard deviation from the mean 
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average velocity of the whole distribution were discarded. The mean average 

velocity was calculated as a weighted average of the velocity by their length in 

order to compensate for the fact that long tracks (which can span up to 500 

frames) will tend to have lower average velocities than shorter tracks. So the 

weighted average or expected value of the velocity is given by: 

! 

E(x) =

velocity(i) " length(i)
i

#

length(i)
i

#
 

where i represents every track and E(x) is the expected value of the velocity. 

The standard deviation is obtained by: 

! 

Std(x) = E(x
2
) " E(x)

2( ) . 

RESULTS 

Vasculature analysis experiment 

This experiment was performed to test the algorithm and to observe the 

different vasculatures described by the velocity of RBCs travelling through 

eight different tumours. The corresponding tracks with their average velocities 

are presented in figure 3. The average velocity of each branch determined 

their colour; dark blue corresponds to the vessels with slowest RBCs and red-

brown corresponds to vessels through which the fastest RBCs were travelling. 

The geometry of the tumour vasculature can be observed clearly from the 

tracks together with the varying velocities of the RBCs. In figure 3 (a) it can be 

seen that there are several rather straight and narrow vessels with few 

curves, while in the other figures vessels tend to be more tortuous and 

curvilinear. It can be seen that even within one tumour, the velocity of different 
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vessels can be quite dissimilar; this is particularly noticeable in 3 (a, b, d, and 

g) where some vessels tend to have fast RBCs while others have only slow 

ones. In 3 (a) for instance, a “fast” vessel can carry RBCs that travel at 500-

700 [µm/s] (long straight on the left), while a “slow” vessel can have RBCs 

moving at 15-120 [µm/s] (“J” shaped in the top centre). In general the tracks 

show heterogeneity of flow, which is well-known in tumours (Fukumura & Jain, 

2006). The velocity for each of the eight tumours analysed (E(x)±Std) is 

presented in table 1 together with the maximum and minimum track velocities. 

The average velocity for all the 8 sets is 230 [µm/s] with a range 7-1082  

[µm/s].  

The tracks produced in this analysis are inherently 3D vectors [rows x 

columns x time], and therefore they can be plotted with different view angles, 

which can reveal information that is not visible in a traditional 2D time 

projection like the ones in figure 3. In figure 4, the tracks of two tumours, 

those corresponding to figure 3 (a, b) are presented with different view angles. 

In figure 4 (a, b) the tracks are presented in a “lateral” or column projection, 

where the vertical axis represents time going upwards and the horizontal axis 

represents the rows. The time activity of the RBCs is highlighted in this view in 

two ways: first, the tracks of two RBCs that travel through the same vessel at 

different times will appear at different “heights” while in figure 3 they were 

projected one on top of the other one. Second, slow tracks will have a higher 

slope than the faster tracks that tend to be horizontal. There are even RBCs 

that seem to be trapped in their positions (dark blue vertical tracks). These 

vertical tracks are not due to vessels perpendicular to the field of view since 

RBCs travelling in this direction would be out of focus as soon as they leave 
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the optical plane, their intensity would decrease and would not be segmented 

as foreground objects. In figure 4 (c) a few tracks have been selected for 

clarity and the angle has been shifted to a proper 3D plot where rows and 

columns form a base plane and time is going upwards. It is now easier to 

distinguish the paths of the RBCs, most of which travel left-to-right, which 

would correspond down-up in figure 3 (a). Notice the RBC that changed 

direction in the middle of its path; the track followed this RBC correctly. Figure 

4 (d) presents the tracks of the second tumour in a 3D plot. The majority of 

the RBCs travel through a wide vessel that then branches left and right. In 

figure 3 (b) all these tracks appear stacked on top of each other and it is hard 

to distinguish their paths. Some of the tracks on the left branch then change 

direction very abruptly. The tracks on the right-hand side are slower than 

those in the centre. 

The behaviour of the tracks in the whole set can also be analysed through a 

scatter plot of the velocity against the track length, direction, maximum 

distance travelled between two frames or other measurements. Figure 5 

presents measurements from three different tumour in one Cartesian (velocity 

against length of track) and two Polar scatter plots (direction of the track 

corresponds to the angle of the plot and velocity of the track corresponds to 

its distance from the centre of the plot). Each asterisk represents a track, for 

which the average velocity (total distance of the hops/time) and average 

direction (direction from first to last point) has been calculated. Several 

important observations arise from these scatter plots. First, outliers are easily 

identifiable, such as the solitary track (which will be discarded by the 

algorithm) circled in red with a velocity of nearly 2500 [µm/s] in (a). This track 
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is clearly an outlier and was discarded from the set. Another observation is 

the directional behaviour of the RBC through the tumour; it can be widely 

spread like in 5 (b) or quite concentrated like in 5 (c). Finally, since the 

movement between every frame is recorded for each RBC, it is possible to 

obtain a wealth of information beyond the average velocity. A plot of distance 

per frame of the RBC or cumulative distance could be useful where, for 

example, velocity is being monitored over a period of time during which the 

conditions may change e.g. the administration of a drug.  

 

Longitudinal study 

Figure 6 presents the resulting RBC velocities for the longitudinal study. In the 

case of the tumour expressing only VEGF120, a considerable reduction of the 

RBC movement appears after a few minutes and a total shutdown of the 

vasculature occurs after approximately 6 hours. In the tumour expressing only 

VEGF188 there is also a considerable reduction of the velocity reaching its 

lowest point after 30 minutes but then there is a recovery and the velocities 

after 3 hours are comparable to the starting values. The different velocities 

between regions are attributed to their positions within the tumour. Figure 7 

presents a light microscopy image of the whole tumour at 0, 60 min and 24 

hours. Here it can be appreciated that while there is haemorrhage in the 120 

tumour and no visible vasculature in the centre of the tumour at 24 hours, the 

188 presents a reduction of vasculature and then a recovery after 24 hours. 

All the tracks of the longitudinal study were manually validated to verify they 

were tracking RBCs correctly. Every link between two objects in contiguous 

frames could correspond either to a single cell which has traversed a certain 
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distance, or two different objects. The first case is providing a correct link 

while the second is not. All tracks were visually analysed and if there was a 

single link that appeared to be incorrect, the whole track was considered 

incorrect.  For the tumour expressing VEGF188, the accuracy was 91.1% 

(317 correct tracks vs. 31 incorrect) and for the VEGF120 tumour it was 

96.9% (246 vs. 8). The artefacts that caused 39 tracks to be considered 

incorrect were mainly due to groups of objects travelling very close to each 

other, thus having more than one object inside the keyhole and the 

correspondence was incorrectly assigned by the model. 

It is important to consider that the velocities calculated with this algorithm, and 

indeed with any other method that follows objects through a sequence of 2D 

frames, are essentially a lower-bound estimation of the real velocity. Since the 

image captured by the microscope is a 2D projection of a RBC moving 

through a three-dimensional structure, the displacement of the RBC in the 

third dimension cannot be observed in the 2D image other than as a slight 

change of focus of the RBC. Therefore, the RBC could have travelled a longer 

distance than the one shown in the 2D image. Figure 8 shows this ‘out-of-

plane’ condition for a single RBC travelling through a vessel.  

 

Robustness of the algorithm 
 

To analyse the robustness of the algorithm we estimated the mean velocity of 

all tracks in the 8 tumour sets and varied the intensity threshold levels from 10 

to 28 (original = 16) and the angle of the wedge from 10° to 100° (original 

60°). The sensitivity to the change in the parameters is shown in figures 9 (a, 
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b). It can be seen that the algorithm is very robust to small variations of the 

angle of the wedge; there is little change in the velocities of the sets from 40° 

to 100°. Below 40° the average velocity decreases, as a considerable number 

of cells are not included in the tracks and then the cells captured by the circle 

tend to outweigh those captured by the wedge. Two tumours (tumour 3 blue 

line with diamond marker and tumour 8 black line with circle marker) present 

more variation with wedge angle than the rest. The estimate of the mean of 

the velocity in these two cases is more sensitive to variations of the 

parameters of the algorithm since they have a considerably lower number of 

tracks, 30 and 57 against more than 200 of the other tumours. This variation 

is again manifest when the threshold is varied from 10 to 28. The behaviour of 

the other tumours is relatively stable, especially those with slower RBCs, 

since smaller keyholes imply a higher certainty in the assignation of 

correspondence between RBCs. In general, their average velocities tend to 

decrease as the threshold is increased. This may be due to the fact that faster 

cells appear fainter than slower cells as they move while the shutter of the 

camera is open and thus their intensity spreads along the captured image. 

 

As an indication of the computational complexity of the algorithm presented, 

the computation time of the programs running with Matlab version 6.5 R13 

running on a Mac PowerBook G4 OS X (10.3.9) platform was measured. The 

times for the pre-processing, tracking and post-processing of a 500-frame 

video (corresponding to the tumour of figure 3 (a)) were 17.16 minutes, 4.7 

minutes, and 9.4 seconds respectively. No systematic attempt to make the 

code more efficient was made. 
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DISCUSSION  

The heuristic design of the keyhole model of movement is based on the 

observation of the movement of RBC through vasculature and when a history 

of previous locations exists, a predicted landing position can be calculated. 

From this landing position the keyhole model is constructed and 

correspondence between objects on contiguous frames is assigned only if 

they land within the two regions that form the keyhole: a circle and a wedge. 

The size of the keyhole varies according to the distance traversed by the RBC 

on the previous hop. It is important to notice that the uncertainty on the 

correspondence between objects grows in accordance to the size of keyhole 

since a higher number of RBCs can land in a keyhole with larger area. This 

adaptive nature of the model movement is more flexible than fixed-size sliding 

windows proposed in the literature and adapts to fast and slow flows. Another 

strength of the methodology is to apply this keyhole in a forward linking 

together with a backward analysis in which links can be removed or tracks 

can be merged. When simpler models such as a circle around the RBC or a 

square sliding window are used, the algorithms become more complicated 

and require extra steps, such as using Artificial Neural Networks, which need 

to be trained (Eden et al., 2005), or complicated gain functions based on 

directional and speed coherence that need initialising (Shafique & Shah, 

2005) to resolve the uncertainties of the correspondence between objects.  

It should be noted that the algorithm builds on the strength of the imaging 

procedures: the window chambers and the fluorescent labelling of the RBCs. 
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The window chambers restrict the movement of the tissue within the 

observation periods and therefore registration is not required. The labelling of 

the RBCs with fluorescent DiI is very important, first because this procedure 

allows their recognition by an intensity-based segmentation method and 

second, because among all the RBCs that travel through the vasculature just 

a small proportion of them has been labelled. If individual RBCs were to be 

identified under light microscopy shape-based methods such as 

Condensation (Isard & Blake, 1998) would be required and it may be possible 

to use more sophisticated methods such as the one proposed in (Shafique & 

Shah, 2005) to assign the correspondences between the RBCs. The use of 

fluorescently labelled RBCs means that the interaction between RBCs cannot 

be observed. It is possible that RBCs clump together, either labelled-labelled, 

which would create a single brighter cell; labelled-unlabelled, which would 

appear as a single labelled cell; or unlabelled-unlabelled, which would not be 

observed. These interactions cannot be distinguished under the current 

imaging modality and the algorithm has no way of considering this problem. 

However, where clumping occurs, a reduction in velocity would be expected 

(Lominadze & Mchedlishvili, 1999) and this would be detected by the current 

algorithm. Careful comparison of consecutive fluorescent and transmitted light 

video sequences would be required for determining whether clumping is the 

cause of a decrease in velocity. 

 

The geometry of the functional vessels of the tumour can be observed from 

the tracks, which is important since a conventional light microscopy image of 

fixed tissue would not reveal blood flow through a given vessel. From the 
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tracks, it is possible to observe how “organised” the flow through the 

vasculature is. This degree of organisation could be very important since it 

has been proposed that certain antiangiogenic agents can normalise the 

abnormal structure and function of tumour vasculature, which in turn would 

make it more efficient for oxygen and drug delivery (Jain, 2005).  

The longitudinal study shows the different behaviour of the two tumours 

expressing different VEGF isoforms. The VEGF188-expressing tumour was 

much more resistant to the vascular disrupting effects of CA-4-P than the 

VEGF120-expressing tumour. In embryology, VEGF188 is known to 

contribute to vascular recruitment of cells such as pericytes, leading to 

vascular stabilization. This suggests that VEGF188-induced stabilization of 

tumour blood vessels reduces their response to CA-4-P. However, a much 

more detailed study would be needed to test this hypothesis. In the current 

context, the VEGF120 and VEGF188-expressing tumours were used solely to 

provide a range of RBC velocities for evaluating the tracking algorithm. 

 

The data contained by the 3D tracks can provide a wealth of information 

describing the movement of the RBC through the vasculature and not just the 

traditional mean and standard deviation of the velocity. Several 

measurements, such as average velocity, number of frames or maximum 

distance per hop, of the tracks can be extracted and observed through scatter 

plots and the tracks can be observed in 2D or 3D plots. The algorithm has a 

series of noise reduction steps that increase the reliability of the results. 

If we observe which region of probability of the model determined the link 

assignment, we can monitor the behaviour of the model. The majority of the 
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links, 64% on average for all the sets, were formed by RBCs that landed in 

the wedge of the keyhole, 15% corresponded to the circle complement of the 

wedge and 21% of the links corresponded to the circular region (no history). 

That is, nearly one fifth of the links corresponded to the top link of a track.  

The wedge could be further subdivided if it would be of interest, for instance, 

to determine how straight or tortuous the vessels were. If RBCs that landed 

inside the narrow inner wedge, say 20°, would outnumber those that landed 

on the outer part of the wedge, the vessels would be straighter than those 

with the opposite behaviour. 

Finally, for the average velocity of all tracks in a tumour set, the estimate of 

the mean is fairly robust. This is especially noticeable when a large number of 

RBCs have been tracked and where the flow is slower, since a smaller 

keyhole introduces less uncertainty. In those tumours with more than 200 

tracks, variations of ±20° in wedge angle or ±4 in intensity threshold would not 

report any considerable changes in the average velocity. 

 

The system could be improved with a faster frame rate acquisition. At 25 fps 

the distance that is traversed by a RBC from frame to frame can be 

considerable but if the frame rate could be increased to 500 or 1000 frames 

per second, then a much better tracking could be obtained.  

Another improvement could be obtained by matching the calculated tracks to 

images of the blood vessels themselves, either from transmitted light images 

or fluorescence images, where the vessel walls are highlighted by fluorescent 

marker proteins, emitting at a different wavelength from the RBCs. In this way, 
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we would be able to ‘see’ the tracks that the RBCs are running on, and restrict 

the movement of the cells to these vessels.  

A final improvement for the algorithm could be to introduce a reliability 

criterion. When the correspondence between objects in consecutive frames is 

assigned, it is possible to know how many objects landed on the keyhole. If 

there is more than one, the algorithm selects the one most likely to be correct, 

which introduces uncertainty on the track. The cumulative uncertainty could 

be used as a reliability-weighting factor towards the estimation of the mean 

velocity. 

 

CONCLUSION 

A tracking algorithm based on fluorescently labelled red blood cells, window 

chambers and a keyhole model of movement has been presented. The 

proposed keyhole model considered two regions for the probable movement 

of red blood cells, which have been segmented from a fluorescence intensity 

image, between contiguous frames of a video sequence. The algorithm 

required minimal user intervention in a series of pre-processing, tracking and 

post-processing steps that produced a series of three-dimensional tracks that 

recorded the temporal position of red blood cells that travel through 

microvessels of tumours. From the tracks, the geometry of the functional 

vessels can be observed and the velocity together with other measurements 

can be extracted. The algorithm was tested first with eight tumours with 

different vasculature geometries and second, on a longitudinal study of 

velocities performed after administering a vascular disrupting agent to two 
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tumours. In both cases, the algorithm successfully tracked the cells travelling 

through the tumour vasculature. 
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Table 1. Number of frames analysed, number of tracks, mean velocity [µm/s] (weighted 

average), standard deviation, maximum and minimum values of 8 tumour sets.  

Tumour  1 2 3 4 5 6 7 8 

Number of frames  500 500 300 327 454 401 454 180 

Number of tracks  238 206 30 231 346 261 208 57 

E(x)           [µm/s] 203 86 260 162 236 308 131 372 

Std              [µm/s] 147 60 188 148 208 219 117 307 

Max [E(x)]  [µm/s] 760 264 933 719 967 1082 663 1212 

Min [E(x)]  [µm/s] 13 17 43 10 11 7 13 26 
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Figure 1 Pre-processing of the images from input frames to binary images. (a) One 

sample frame where several RBCs can be identified together with labels, noise and 

artefacts (notice the higher intensity at the centre of the image). (b) The mean image of 

a sequence of 50 frames. (c) Pixel to pixel subtraction of  (a) and (b); the difference of 
the images has eliminated noise, intensity bias as well as labels that are super-

imposed on the images. (d) Segmentation of the Red Blood Cells by thresholding. 

Notice not all RBC are segmented thus only some RBCs will form tracks (e) A zoom 

into the binary image obtained by thresholding (c). (f) Labelling of (e) to identify unique 

objects, 4 in this case. It will be the centroids of these objects that will be tracked. 

 

Figure 2 RBC keyhole movement model. (a) It is assumed that between consecutive 

frames a RBC can move towards any direction and with any distance. (b) Without 
movement history, the only assumption possible is that its landing prediction will be 

within a circular region. (c, d) A landing position is predicted assuming constant 

velocity and direction, this creates two probable regions: a wedge (c) and a circle (d) 

which when combined create a keyhole model. (e) Two examples of tracks of different 

velocities.  

 

Figure 3 Tracks obtained for eight different tumours. Each individual RBC track is 

presented as a line with colours representing the velocities. It can be seen that the 
velocity in some vessels is consistently faster (red) than in others (blue).  

 

Figure 4 Tracks from 2 tumours with different observation angles. While tracks in 

figure 3 are projected in time, tracks in 4 (a, b) are projected in one column plane. 

Faster tracks will have lower slopes than slower tracks. (c,d) Tracks are presented in 

3D with x-y dimensions (rows and columns) together with time in the z-axis. In (c) a 

reduced number of tracks from (a). Notice the track that changes direction in the 
middle of its path.  

 

Figure 5 Scatter plots of three measurements of the tracks. (a) A Cartesian plot with 

average velocity of the tracks on the x-axis and the number of frames the track spans 

on the y-axis. (b, c) Polar plots of two different tumours. The direction of each track 

determines the angle (0-360º) and the velocity determines its distance from the centre 

of the plot. Several important observations arise from the plots: longer tracks tend to 

have lower average velocities since they are formed by more ‘hops’. Outliers, that is, 
tracks whose velocity is beyond a normal distribution, are easily identified (red circle) 

and can be removed from the data set. General behaviour in terms of direction and 

velocity of the tumour can be identified from the polar plots 
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Figure 6 Time curves for the velocities of 2 regions in a tumour expressing VEGF188 

(solid blue lines) and 2 regions in tumours expressing VEGF120 (dashed red lines). 

The velocities were evaluated before the drug CA-4-P was administered and 2.5, 15, 30, 

60 minutes 3,6 and 24 hours after administration. While the VEGF120–expressing 
tumour presents a rapid decrease in the velocity and a complete shutdown by 6 hours, 

the VEGF188–expressing tumour presents a decrease in flow and then a recovery up 

to levels similar to the initial state. 

 

Figure 7 Low magnification (2.5x objective) light microscopy of the whole tumours 

from which time curves of figure 6 were calculated. Top row: VEGF120 tumour at (a) 0 

minutes, (b) 60 minutes and (c) 24 hours. Bottom row: VEGF188 tumour at (d) 0 

minutes, (e) 60 minutes and (f) 24 hours. The VEGF120 case presents shutdown of the 
vessels and then haemorrhage and a central necrosis at 24 hours while the VEGF188 

presents shutdown of some vessels and then a recovery of the vasculature, which is 

consistent with the quantitative velocity data shown in figure 6. 

 

Figure 8 The problem of out-of-plane imaging. The two-dimensional images that are 

obtained from a microscope are essentially 2D projections of a three-dimensional 

structure. As such, if a cell travels in the third dimension, or ‘up-down’ this movement 

is not registered within the projection except perhaps as a change of focus since the 
cell is leaving the plane at which the microscope is focused. The velocity calculated 

thus will be a lower-bound estimation. 

 

Figure 9 Variation of the average velocities against two parameters of the algorithm. (a) 

Shows the velocity when the wedge angle varies from 10º to 100º and  (b) shows the 

velocity when the intensity threshold level varies from 10 to 28. In both cases each line 

represents the estimation of the mean of the velocity of all tracks of a tumour set. In 
both cases the tumours with more variation (blue and black lines with diamond a circle 

markers) are those with lower number of tracks, i.e. those with few RBCs travelling 

within the vasculature. In the other cases, where more than 200 tracks were generated, 

the algorithm is fairly robust. 
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