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1 Introduction

“For any thing so overdone is from the purpose of playing, whose end, both at the first and

now, was and is, to hold, as ’twere, the mirror up to Nature.” And thus The Bard has so

well summed up (Hamlet, III.ii.5) a sometime too blunted purpose of String Theory, that

she, whilst enjoying her own Beauty, should not forget to hold her mirror up to Nature and

that her purpose, as a handmaid to Natural Philosophy, is to reflect a Greater Beauty in

Nature’s design. These lectures, as I was asked, are intended to address an audience equally

partitioned between students of mathematics and physics. I will attempt to convey the little I

know on some aspects of the deep and elegant interactions between physics and mathematics

within the subject of gauge theories on D-brane world-volumes arising from compactifications

on Calabi-Yau spaces; I will try to inspire the physicist with the astounding mathematical

structures and to hearten the mathematicians with the insightful physical computations, but

I shall always emphasise an underlying theme of Nature, that this subject of studying gauge

theories arising from string compactifications is, sicut erat in principio, et nunc, et semper,

motivated by the pressing need of uniquely obtaining the Standard Model from string theory.

The lectures are entitled D-branes, gauge theories and Calabi-Yau singularities. I must

motivate the audience as to why we wish to study these concepts. First, let me address the

physicists. The gauge theory aspect is clear. Depending on the particulars, string theory

possesses, ab initio, a plethora of gauge symmetries, from the Chan-Paton factors of the

open string to the E8 × E8 or Spin(32)/Z2 groups of the heterotic string. Our observable

world is a four-dimensional gauge theory with the group SU(3)×SU(2)×U(1) with possible

but not-yet-observed supersymmetry (SUSY); methods must be devised to reduce the gauge

group of string theory thereto.

Of course, of equal pertinence is the need to reduce dimensionality. The ten dimensions
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of string theory (or the eleven dimensions of the parent M-theory) can only have four direc-

tions in the macroscopic scale. The traditional approach has been compactification and this

is where Calabi-Yau spaces enter the arena. We will impose N = 1 supersymmetry in four

dimensions. This imposition is completely independent of string theory. Many phenomenolo-

gists find the possibility of N = 1 SUSY at the electroweak scale appealing because, amongst

other virtues, it helps to provide a natural solution to the hierarchy problem: the amount of

fine-tuning needed to make the Higgs mass at the electro-weak scale. The six-dimensional

space for compactification is constrained by this imposition of low-energy supersymmetry to

be a Calabi-Yau (complex) threefold.

Why, then, D-branes? As it is by now well-known, string theory contains one of the most

amazing dualities, viz., Maldacena’s AdS/CFT duality, relating bulk string theory with a

holographic boundary gauge theory. The root of this correspondence is the open/closed string

duality wherein the open strings engender the gauge theory while the closed strings beget

gravity. The boundary conditions for the open strings are D-branes, which are dynamical

objects in their own right. Therefore, our stringy compactification necessarily includes the

subject of D-branes probing Calabi-Yau spaces.

The paradigm we will adopt is a “brane-world” one. We let our world be a slice in the

ten-dimensions of the Type II superstring. In other words, we let the four dimensional world-

volume of the D3-brane carry the requisite gauge theory, while the bulk contains gravity.

Therefore, as far as the brane is concerned, the six transverse Calabi-Yau dimensions can be

modeled as non-compact (affine) varieties. This “compactification” by non-compact Calabi-

Yau threefolds greatly simplifies matters for us. Indeed, an affine variety that locally models

a Calabi-Yau space is far easier to handle than the compact manifold sewn together by local

patches.

The draw-back, or rather, the boon - for a myriad of rich phenomena germinates -

is the obvious fact that the only smooth local Calabi-Yau threefold is C3. We are thus

inevitably lead to the study of singular Calabi-Yau varieties. This is reminiscent of the fact

that in standard heterotic phenomenology it is the singular points in the moduli space of

compactifications that are of particular interest. The qualifiers local, non-compact, affine

and singular will thus be used interchangeably henceforth. In summary then, our D-brane

resides transversely to a singular non-compact Calabi-Yau threefold. On the D-brane world-

volume we will live and observe some low-energy effective theory of an N = 1 extension of

the Standard Model.

Now, let me turn to address the mathematicians. Of course, the astonishing phenomenon
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of mirror symmetry for Calabi-Yau threefolds has become a favoured theme in modern geom-

etry. Mirror pairs often involve singular manifolds and in particular, quotients. Indeed, the

local mirror programme has been extensively used to compute topological string amplitudes

and, hence, Gromov-Witten invariants for counting curves. Thus far, affine Calabi-Yau sin-

gularities used in local mirrors have been predominantly toric varieties such as the conifold

and cones over del Pezzo surfaces. These, together with above-mentioned quotient spaces,

shall also constitute the primary examples which we will study.

The resolution of singularities has been a classic and ongoing subject. Ever since McKay’s

discovery of the correspondence between the finite discrete subgroups of SU(2) and affine

simply-laced Lie algebras, geometers have been attempting to explain this correspondence

using resolutions of C2 quotients and to extend it to higher dimensions. Now, we have a new

tool.

String theory, being a theory of extended objects, is well-defined on such singularities.

As far back as the 1980’s, Dixon, Harvey, Vafa and Witten had realised that closed strings

can propagate unhindered on orbifolds. In addition, they made a simple prediction for

the Euler character of the orbifold in terms of the resolved space, prompting the study by

mathematicians such as V. Batyrev, S. S. Roan and Y. B. Ruan.

The open-string sector of the story, initiated by the investigations of Douglas and Moore,

is concerned with D-brane resolutions of singularities. Quiver theories that arise have been

used by Ito, Nakajima, Reid, Sardo-Infirri et al. to understand the essence of the McKay

correspondence. Recent advances, notably by Bridgeland, King and Reid, have understood

and re-casted it as an auto-equivalence in the bounded derived category of coherent sheafs

on the resolved space. Indeed, this is closely related to the physicist’s understanding of

D-branes precisely as objects in the derived category.

Realising branes as such objects, or more loosely, as supports of vector bundles (sheafs)

is the mathematician’s version of brane-worlds. With the help of the works of Donaldson,

Uhlenbeck and Yau, wherein solving for the phenomenological constraints of super-Yang-

Mills theory in four dimensions during compactification has been reduced to constructing

polystable vector bundles, one could move from the differential to the nominally simpler

algebraic category. Thus, gauge theory on branes are intimately related to algebraic con-

structions of stable bundles.

In particular, D-brane gauge theories manifest as a natural description of symplectic

quotients and their resolutions in geometric invariant theory. Witten’s gauged linear sigma

model description, later utilised by Aspinwall, Greene, Morrison et al. as a method of
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Reduce dimensionality

Reproduce Particles and Interactions

Break Supersymmetry

U p−Branes

SU(3) x SU(2) x U(1) GAUGE THEORY

e.g.

1. Maldacena’s AdS/CFT

Our 4D World

Superstring Theory in 10D
(M−Theory in 11D)

(p+1−D hypersurfaces in 10D)

= Standard Model + Gravity

2. Randall−Sundrum’s Brane Worlds

4. Hanany−Witten’s Brane Setups
3. Dimensional Deconstruction

5. Brane Probes
6. Geometrical Engineering

...

U

{
10 = 4 + 6

Calabi−Yau 3

Figure 1: A pictorial representation of our motivations. We need to reduce the 10 dimensions of super-

string theory with various gauge groups down to a 4 dimensional world with N = 1 supersymmetry and

SU(3)× SU(2)×U(1) gauge group with specific matter content and interactions. Various techniques

have been adopted. The one we will study here is that of D3-branes probing a transverse Calabi-Yau

threefold singularity.

finding the vacuum of the gauge theory, provided a novel perspective on symplectic quotients,

especially toric varieties. In summary then, our D-brane, together with the stable vector

bundle (sheaf) supported thereupon, resolves the transverse Calabi-Yau singularity which is

the vacuum for the gauge theory on the world-volume as a GIT quotient.

Hopefully, I have given ample reasons why both physicists and mathematicians alike

should study D-brane gauge theories on singular Calabi-Yau spaces. The motivations are

summarised in Figure 1. Without much ado, let me proceed to the lectures. The students

can refer to [17] wherein most of the material in the first two lectures are expanded.

2 Minute Waltz on the String

To set the arena let me very rapidly present to the neophytes, the necessary ingredients from

type IIB superstring theory which will be used [1]. The section is hopefully to be perused in a

single minute. The theory is a ten dimensional one with 32 super-charges and there is a spinor
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generator corresponding to the 210/2 = 32 dimensional representation of the Clifford algebra.

This is a theory of closed strings, i.e., mapping from S1 to the Minkowski R1,9 spacetime.

Bosonic particles are excitations on the world-sheet, which is here a cylinder, traced out by

S1 in spacetime. Fermionic particles also exist, as is required by supersymmetry. Indeed,

spacetime supersymmetry is induced by the existence of worldsheet fermions the boundary

conditions on which first gave the name type IIB.

By the closed/open duality inherent in string theory, that the existence of one necessitates

that of the other (as the tree-level amplitude of the closed string is the vacuum loop of the

open), we also have open strings in the theory. They must end on subspaces of R1,9. The

subspaces which provide Dirichlet boundary conditions for the ends of the open strings are

known as D-branes. We shall call one with a p + 1-dimensional world-volume a Dp-brane.

Pictorially, this is represented in Figure 2. Polchinski’s [2] realisation, that Dp-branes are

dynamical objects carrying p + 1-form charges, brought D-branes on an equal footing as the

fundamental string. In type IIB, p will take values of all odd integers from 1 to 10. For our

purposes, we will henceforth take p = 3, and our world will be 3 + 1-dimensional, as it is so

observed.

Figure 2: Open strings stretched between parallel D-branes. On the world-volume of each brane is a

U(1) gauge bundle. As the two coincide, the gauge group is enhanced to U(2).

2.1 The D3-brane in R1,9

Now, open strings have in their spectrum, a massless vector particle, i.e., a U(1) gauge field.

Therefore, the D-brane must carry a U(1) gauge connexion on its world-volume so as to

accommodate the charge on the ends of the open string. It is in this sense that we consider

the D-brane as supporting a U(1) vector bundle (sheaf). When we place a stack of n parallel
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D-branes coincident upon each other, we would näıvely expect a U(1)n gauge theory on the

world volume. Instead, we have an enhancement to the non-Abelian group U(n). As can be

seen from Figure 2, this gauge enhancement is due to the open strings which are stretched

between the parallel branes. The masses of these strings are proportional to the distance

between the branes and thus as the brane become coincident, we have massless particles that

are precisely the extra gauge fields.

2.2 D3-branes on Calabi-Yau threefolds

So far we have a ten dimensional theory of superstrings, and D-branes on which there could

be an U(n) gauge group. This, of course, is quite far from a Standard Model in four

dimensions. We now follow the canonical practice of considering string theory not on R1,9

but on R1,4 × M (6) where M (6) is some internal manifold at the string scale, too small

to be observed. This is known as compactification, an idea dating back to T. Kaluza

and O. Klein in 1926. As mentioned earlier, we shall require that our R1,3 universe have

N = 1 supersymmetry (which may be subsequently broken at a lower energy scale). This

translates to the existence of covariantly constant spinors on M (6) that would function as

the supersymmetric charge.

The solution for M (6) is that it is (1) compact, (2) complex (i.e., of dimension 3 = 6÷2),

(3) Kähler (the metric gµν̄ should equal to ∂µ∂ν̄K for some scalar K) and (4) has SU(3)

Holonomy. E. Calabi, an old gentleman of a distinguished bearing whose office is two floors

up from mine, conjectured in 1954 that such manifolds should admit a unique Ricci-flat

metric in each Kähler class. It was only until 1971 that this conjecture was proven by S.-

T. Yau, who has been gracious to organise this summer school, by a tour de force differential

analysis. In their honour, M (6) is called a Calabi-Yau threefold.

As far as our brane-world is concerned, we have four dimensional D3-branes in R1,4×M (6)

on which there is an U(n) gauge group and transverse to which gravity propagates. We take

the R1,4 to be precisely the world-volume of the brane and the transverse directions will be

Calabi-Yau. In this scenario, the Calabi-Yau manifold is to be taken as non-compact, filling

the remaining six dimensions. In other words, M (6) is an affine variety that locally models

a Calabi-Yau threefold.

Indeed, if M (6) were smooth, then it can only be the trivial case of C3; we will address

this case in the following section. Therefore, we are lead to M (6) being singular. We will see

that it is exactly the singular structure of the geometry which aids us phenomenologically:
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it will break U(n) into product gauge groups, it will reduce supersymmetry and it will yield

particles that transform under the gauge factors. We remark that the general problem of

D-branes on compact Calabi-Yau manifolds, instead of a mere affine patch, is an extremely

difficult one and excellent reviews may be found in [71, 72]. One reason why we choose the

brane-world paradigm wherein the transverse space can be taken as a non-compact local

model, is that technically this is a much simpler problem.

A point, almost trivial, which I must emphasise, is that, as far as the transverse singularity

is concerned, the D3-brane is a point. This obvious fact places a crucial relationship between

the D3-brane world-volume theory and the Calabi-Yau singularity: that the latter should

parametrise the former. That is, the classical vacuum of the gauge theory on the D3-brane

should be, in explicit coördinates, the defining equation of M (6). I will re-iterate this point

later.

For now, let us summarise the philosophy pictorially in Figure 3. We place a stack

of n D3-branes transverse to a Calabi-Yau threefold M (6), which, since it is singular, we

will henceforth call S. The local model S will afford some explicit description as an affine

variety. The geometry of S will project the U(n) gauge theory to product gauge groups

(ultimately that of the Standard Model). The singularities so far used have been orbifolds,

toric singularities and cones over del Pezzo surfaces, the relations amongst which are drawn

in the Venn diagram in the figure.

3 The Simplest Case: S = C3

Let me begin with the simplest non-compact Calabi-Yau threefold. This is, of course, when

S is C3, which is trivially Ricci flat. Here, the D3-brane freely propagates in flat space. The

world volume theory has a U(n) gauge group as mentioned above. The presence of the brane

breaks the SO(1, 9) Lorentz symmetry of R1,9, whereby breaking half of the supersymmetry

and we are left with 16 supercharges. In four dimensions, this amount of supercharges

corresponds to 16/24/2 = 4 supersymmetry. We therefore have N = 4 superconformal

(SCFT) U(n) gauge theory on the world-volume.

This gauge theory, is the famous boundary SCFT for Maldacena’s Correspondence [3].

Of course, the D3-brane will warp the flat space metric to that of AdS5 × S5 and the bulk

geometry is not strictly C3. However, as stated above, we are only concerned with the local

gauge theory and not with gravitational back-reaction, therefore it suffices to consider S as

C3.

8



Π
i

SU(k )i

U(n)

n D-Branes

World-Volume
Gauge Theories

Toric

Quiver (Graph) Theory

Algebraic Singularities

SingularitiesOrbifolds

Generic Orbifolds

Abelian

del

Pezzo

Figure 3: Our paradigm is to place a stack of n parallel coincident D3-branes on an affine Calabi-Yau

threefold singularity S. The geometry of S will project the U(n) gauge group on the branes to product

gauge groups with bi-fundamental matter and interactions. The resulting theory is conveniently repre-

sented as a quiver diagram. Examples of S thus far investigated have been orbifolds, toric singularities

and cones over del Pezzo surfaces, as shewn in the Venn diagram.

The matter content of the theory is as follows. There is a gauge field Aµ under the

U(n) group. Moreover, there is an SU(4) R-symmetry inherent to the N = 4 SCFT which

essentially is a rotation of the four supersymmetries. Of course, in the AdS/CFT picture,

this SU(4) ≃ SO(6) is the isometry group of the S5 factor in AdS5 × S5. Under this R-

symmetry, there are Weyl fermions Ψ4
IJ , I, J = 1, . . . , n, transforming as the 4 of the SU(4)

and as adjoints under U(n). The SUSY partners are bosonic fields Φ6
IJ under the 6 of the

SU(4). The superpotential is uniquely determined by the matter. In terms of the three chiral

superfields Ci, it is simply W = Tr(CiCjCk)ǫijk. For the mathematicians in the audience,

we will consider Aµ as Hom(Cn, Cn), Ψ4
IJ as 4⊗Hom(Cn, Cn), and Φ6

IJ as 6⊗Hom(Cn, Cn).

What I have described above we shall call the “parent theory.” Her progeny will be the

subject matter of these lectures.
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4 Orbifolds and Quivers

The next best things to C3 are its quotients. This simple class of singularities is called

orbifolds and has been studied as far back as the 1960’s by Satake et al. [4]. Here, I take

C3 and quotient is by some discrete finite group Γ. The group action is

(γ ∈ Γ) : (x, y, z) → γ · (x, y, z), (4.1)

where the element γ is written in explicit matrix representation and (x, y, z) are the complex

coördinates of C3. We see that the origin (0, 0, 0) is a fixed point. Because of this fixed

point, i.e., the action is not free, the quotient C3/Γ consisting of equivalence class under the

group action, is not a smooth manifold.

Certainly, Γ cannot be arbitrary. In order that S = C3/Γ be a Calabi-Yau singularity, it

must admit a resolution to a smooth Calabi-Yau manifold S̃. This is known as a crepant

resolution, i.e., for the map f : S̃ → S,

f ∗KS = KS̃ = OS̃, (4.2)

where KS and KS̃ are the canonical sheaves of S and S̃ respectively and KS̃ is trivial

since S̃ is Calabi-Yau. The subject of crepant resolutions is one in its own right and the

mathematicians in the audience are referred to, for example, [5, 6]. For our purposes I will

take Γ to be a discrete finite subgroup of SU(3), i.e., the holonomy of S̃. This is not a

sufficient condition for crepancy, but the techniques we introduce below work in general.

For Γ ⊂ SU(2), i.e., S = C × C2/Γ, however, they all have crepant resolutions and have a

beautiful structure which we will present later. The case of Γ ⊂ (SU(4) ≃ SO(6)) is also

possible [25] but we need to consider S = R6/Γ; this is, for now, of less interest to us because

it is a real quotient and preserves no SUSY.

4.1 Projection to Daughter Theories

As initiated in the study of Douglas and Moore [7], with cases addressed by Johnson and

Meyers [8], and the methodology formalised by Lawrence, Nekrasov and Vafa [9], let us now

study what happens to the parent theory due to S. The prescription is straight-forward: we

will use elements γ to project out any states not invariant under Γ. That is, only Aµ, Ψ4
IJ

and Φ6
IJ that satisfy

γAµγ−1 = Aµ, Ψ4
IJ = R(γ)γΨ4

IJγ−1, Φ6
IJ = R(γ)γΦ6

IJγ−1 (4.3)
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remain in the spectrum. We have used R(γ) for the matter fields since there should also

be an extra induced action on the R-symmetry. Furthermore, the resulting SUSY is the

commutant of Γ in SU(4). That is, the R-symmetry left untouched by Γ will serve as the

R-symmetry of the daughter theory.

More formally, in the notation of [9], let the irreducible representation of Γ be {ri} and

decompose

Cn ≃
⊕

i

CNiri (4.4)

for integer multiplicities Ni. Then, the resulting gauge group is given by the Γ-invariant part

of the gauge group Hom (Cn, Cn). That is,

Hom (Cn, Cn)Γ =
⊕

i,j

(
CNi ⊗ CNj∗ ⊗ ri ⊗ r∗j

)Γ
=
⊕

i

CNi⊗
(
CNi

)∗
, (4.5)

where we have used Schur’s Lemma that (ri ⊗ r∗j )
Γ = δij for irreducible representations {ri}.

In other words, the daughter gauge group is
∏
i

U(Ni) with Ni given in (4.4). It turns out

that in the low energy effective theory the U(1) factors decouple. Therefore, in fact, the

resulting gauge group is
∏
i

SU(Ni).

Now, the matter fields Ψ4
IJ and Φ6

IJ encounter a similar projection. For R = 4 or 6, we

have

(R⊗ Hom (Cn, Cn))Γ =
⊕

i,j

(R⊗
(
CNi ⊗ CNj∗ ⊗ ri ⊗ r∗j

)
)Γ

=
⊕

i,j

aR

ij

(
CNi ⊗ CNj∗

)
, (4.6)

where we have again made use of Schur’s Lemma and, in addition, the decomposition

R⊗ ri =
⊕
j

aR
ijrj. (4.7)

In other words, the matter fields become a total of a4
ij bi-fundamental fermions and a6

ij bi-

fundamental bosons transforming as the (Ni, N̄j) of SU(Ni) × SU(Nj) under the product

gauge groups. To solve (4.7), one uses standard orthogonality conditions in character theory

and obtain [18]

aR

ij =
1

g

r∑

γ=1

rγχ
R

γ χ(i)
γ χ(j)∗

γ , (4.8)

where g = |Γ| is the order of the group, rγ is the order of the conjugacy class containing γ

and χi
γ is the character of γ in the i-th representation. We summarise the daughter theories
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below:

Parent
Γ

−→ Orbifold Theory

SUSY N = 4 ;

N = 2, for Γ ⊂ SU(2)

N = 1, for Γ ⊂ SU(3)

N = 0, for Γ ⊂ {SU(4) ≃ SO(6)}

Gauge

Group
U(n) ;

∏
i

U(Ni),
∑
i

Nidimri = n

Fermion Ψ4
IJ ; Ψij

fij

Boson Φ6
IJ ; Φij

fij
R⊗ ri =

⊕
j

aR
ijrj

(4.9)

for I, J = 1, ..., n and fij = 1, ..., aR=4,6
ij .

4.2 Quivers

A convenient and visual representation of the resulting matter content in (4.9) is the so-

called quiver diagram, originating from the German “Köcher” [24]. The rules are simple:

it is a finite directed graph such that each node i represents a gauge factor SU(Ni) and each

arrow i → j, a bi-fundamental field (Ni, N̄j). The adjacency matrix A of the graph is a

k×k matrix with k being the number of nodes (gauge factors) and encodes this information

by having its entry Aij counting the number of arrows (bi-fundamentals) from i to j. My

discussing finite graphs at this point is hardly a digression. We will see next that the very

usage of quiver is undoubtedly inspired by a remarkable correspondence.

4.3 The McKay Correspondence

Let us specify the discussions in (4.9) to the case of N = 2, i.e., to orbifolds of the type

C3/Γ ≃ C × C2/(Γ ⊂ SU(2)). In 1884, F. Klein, in finding transcendental solutions to

the quintic problem [11], classified the discrete finite subgroups of SU(2). These are double

covers of those of SO(3), which simply constitute the symmetries of the perfectly regular

shapes in R3, viz. the Platonic Solids. The groups fall into 2 infinite series, associated

to the regular polygons, as well as 3 exceptionals, associated with the 5 regular polyhedra:

the tetrahedron, the cube (and its dual tetrahedron) and the icosahedron (and its dual
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dodecahedron). The groups are

Group Name Order

An ≃ Zn+1 Cyclic n + 1

Dn Binary Dihedral 2n

E6 Binary Tetrahedral 24

E7 Binary Octahedral (Cubic) 48

E8 Binary Icosahedral (Dodecadedral) 120

(4.10)

It was not until 1980, almost a full century later, that a remarkable correspondence

between these groups and Lie algebras were realised by J. McKay [12], yes, the very McKay

also responsible for initiating Moonshine. It has never ceased to astounded me, this uncanny

ability of his to recognise, amidst a seeming cacophony of sounds, a single strain of melody.

I first met John in Warwick I believe, me in my younger and even more ignorant days,

him ruddy faced and a glass of wine in hand. Overcoming my initial trepidation by a few

quick bites at my own sturdy drink - my liver being more lively at the time - I proceeded

to him with reverence. But my intimidation was unwarranted and with paternal patience

he explained at length his new conjectures regarding modular forms, sporadic groups and

exceptional algebras, which, alas, due part to my own wanting of knowledge and part to the

fine workings of the potent liquid upon my head, I only managed a vague glimpse, a fuller

view of which only of late, fewer hair and dryer stomach, did I acquire in more conversations

with him.

What McKay realised was that one can take the Clebsch-Gordan decomposition for R,

the fundamental 2 of Γ ⊂ SU(2) and {ri}, the irreps. That is, one can take

2 ⊗ ri =
⊕

j

a2
ijrj, (4.11)

and treat a2
ij as the adjacency matrix of some finite graph. Then, the graphs are precisely
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the Dynkin diagrams of the affine simply-laced Lie algebras:

7

2

2 11 3 34 2

E 8E

3

1 2 2453 64

1

1 1

2

2 23

6E

.
.
.
.

1

1

1

1 1

1

A n . . . . .

1

1

1

1

2 2 2

D n

(4.12)

In other words, the McKay quiver for Γ is in one-one correspondence with the affine ADE

Lie algebras (the affine diagram adds one more node to the usual Dynkin diagram, here

corresponding to the trivial representation) and the matrices a2
ij in (4.11) are precisely the

Cartan matrices of the associated algebra. With this hindsight, it is natural that we have so

named the groups in (4.10). There are many accounts for the McKay Correspondence, and

the audience is referred to, e.g., [13].

Shortly after this discovery, algebraic geometers were busy trying to explain this corre-

spondence. Indeed, crepant resolution of C2/Γ gives the K3 surface, which, other than the

trivial T 4, is the only Calabi-Yau two-fold. In explicit affine coördinates , our orbifolds are

the following singularities:

An : xy + zn = 0

Dn : x2 + y2z + zn−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0.

(4.13)

It was soon realised by González-Springberg and Verdier [14], that in the crepant resolution

of (4.13), the intersection matrix of the −2 exceptional curves, i.e., the P1-blowups, is exactly

McKay’s a2
ij in (4.11). Only until recently did there exist a categorical description of the

McKay correspondence in terms of an auto-equivalence in Db(coh(X̃/Γ)) = Db(cohG(X))

[15].
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4.4 McKay, Dimension 2 and N = 2

The astute audience will recognise (4.11) as something earlier mentioned, viz., the matter

matrix (4.7). If we take the decompositions

4 = 12 ⊕ 2,

6 = 12 ⊕ 2 ⊕ 2̄ (4.14)

respectively for the fermions and bosons, then, the McKay quivers give the matter content

of the N = 2 SCFT that lives on the four-dimensional world-volume of the D3-brane which

transversely probes C × C2/(Γ ⊂ SU(2)) (i.e., local K3). The trivial 1’s in (4.14) add to

nothing except diagonal entries in (4.8), i.e., to self-adjoining arrows at each node. The 2̄

in the decomposition of the 6 adds another copy of a2
ij to the matter content. One can also

easily obtain the interaction terms which are nicely presented in [9].

This toy model, though endowed with such a beautiful structure, is still far from a

phenomenological interest. We have N = 2 supersymmetry and the theory is non-chiral,

i.e., for each arrow between two nodes, there is another exactly in the opposite direction.

In other words, the matter comes in conjugate pairs; the real world, on the other hand, has

chiral fermions. Therefore, though fed a mathematical treat, we must trudge on.

4.5 N = 1 Theories and C3 Orbifolds

Phenomenologically, the most interesting case for us is N = 1 theories in four dimensions.

Referring to (4.9), we need orbifolds of C3; i.e., we need the discrete finite subgroups of

SU(3). This task, was luckily performed by Blichfeldt in 1917 [16]. We summarise the

classification below:

Infinite Series ∆(3n2), ∆(6n2)

Exceptionals Σ36×3, Σ60×3, Σ168×3, Σ216×3, Σ360×3

(4.15)

We see that there are two infinite series of order 3n2 and 6n2 respectively, as well as 5

exceptionals whose orders I have labelled as subscripts. I remark that the orders are all

divisible by 3, much like the SU(2) subgroups, whose orders are divisible by 2. This is

because here, in analogy with the Z2 centre of SU(2), the centre is Z3.

The matter content for these theories was established in [18]. The fermionic 4 is now

4 = 1⊕3 while the bosonic 6 decompose as 3⊕3. The essence, then, is McKay-like quivers
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dictated by 3 ⊗ ri =
⊕
j

a3
ijrj. We present the fermion graphs below for the exceptionals:

Σ216×3

2

1

1

1

2

2

3

3

3

3

3

3

3

6

6

6

6

6

6

8

8

8

9

9

Σ36×3

1

11

1

3 3

3 3

3

3

3

3

4

4

1

3

3

6

Σ168

8

7

Σ60

1

4 3

3

5

1

3

3

3

9

9

8

9

3

5

15

15

10

6

6

8

5
Σ360×3

(4.16)

We immediately see that not all arrows come with partners in the reverse direction. This is

the desired chirality for fermions. Constructing phenomenological viable theories from these

theories have been well under way, cf. e.g., [10, 19]. To give a flavour of the type of gauge

groups one might obtain, I tabulate below the result for the various subgroups. Note that

I have listed more than (4.15), by also including the subgroups of SU(2), embedded into

SU(3).

Γ ⊂ SU(3) Gauge Group

Ân
∼= Zn+1 (1n+1)

Zk × Zk′ (1kk′

)

D̂n (14, 2n−3)

Ê6
∼= T (13, 23, 3)

Ê7
∼= O (12, 22, 32, 4)

Ê8
∼= I (1, 22, 32, 42, 5, 6)

E6
∼= T (13, 3)

E7
∼= O (12, 2, 32)

E8
∼= I (1, 32, 4, 5)

Γ ⊂ SU(3) Gauge Group

∆3n2(n = 0 mod 3) (19, 3
n2

3
−1)

∆3n2(n 6= 0 mod 3) (13, 3
n2

−1

3 )

∆6n2(n 6= 0 mod 3) (12, 2, 32(n−1), 6
n2

−3n+2

6 )

Σ168 (1, 32, 6, 7, 8)

Σ216 (13, 23, 3, 83)

Σ36×3 (14, 38, 42)

Σ216×3 (13, 23, 37, 66, 83, 92)

Σ360×3 (1, 34, 52, 62, 82, 93, 10, 152)

(4.17)
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4.6 Quivers, Modular Invariants, Path Algebras?

One might ask whether as rich a structure as the abovementioned dimension two example,

shrouded under the veil of Platonic perfection, could persist to our present case, and, more

optimistically, to higher dimension. Indeed, the subject of various generalisations of the

McKay Correspondence is an active one, q.v. [20].

For now, I hope you could indulge me in a moment of speculation. In [18], a certain re-

semblance was noted between the (4.16) and the fusion graphs of ŝu(3) Wess-Zumino-Witten

models, much in the same spirit of the well-known fact that fusion graphs for ŝu(2) WZW

models are (truncations of) ADE diagrams. Similar observations had been independently

noticed in the context of lattice models [21]. Inspired by this observation, [22] attempted

to establish a web of correspondences wherein stringy resolutions and world-sheet conformal

field theory are key to the McKay correspondence in dimension two and, in specialised cases,

for higher dimension. A weak but curious relation was established in [23] wherein the SU(3)

finite group was found to act on the terms of the modular invariant partition function of the

ŝu(3) WZW.

On more categorical grounds, the specialty of dimension two is even more enforced. A

theorem of P. Gabriel dictates that the path algebra (i.e., the algebra generated by composing

arrows head to tail) of any quiver has finite representation iff quiver is ADE. Therefore, C2-

orbifold quivers are the only finite quivers.

The tree-level beta function for the orbifold theories were identified with a certain crite-

rion for (sub)additivity of graphs in [26]. In dimension two, the conformality of the IR fixed

point implies that the quiver must be strictly additive, the only cases of which, by a theorem

of Happel-Preiser-Ringel, are (generalisations of) ADE graphs. Higher dimensional cases

require an extension of the definition of additivity, a systematic investigation of which thus

far has not been performed. It is expected, however, that these theories are unclassifiable, a

true hindrance to the persistence of the intricate web of inter-relations in [22].

4.7 More Games

Before leaving the subject of orbifolds, let me entice you with a few more games we could

play. In the derivations (4.5) and (4.6) presented above, we used the ordinary representation

of Γ. More concretely, we used explicit matrix representations of the group elements as

linear transformations. What if we used, instead, more generalised representations such as

projective representations? These are representations γ of Γ such that for any two group
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elements g1,2 ∈ Γ,

γ(g1)γ(g2) = A(g1, g2)γ(g1g2) (4.18)

for some factor A(g1, g2). Of course, if A(g1, g2) were identically unity, then we are back

to our familiar ordinary representation (i.e., a linear homomorphism to a matrix group). It

turns out that A(g1, g2) must obey a cocycle condition and is in fact classified by the group

cohomology H2(Γ, C∗). Our orbifold group admits a projective representation iff H2(Γ, C∗),

dubbed discrete torision, does not vanish.

In string theory, this is an old problem. It was realised in the first paper on orbifolds by

Dixon, Harvey, Vafa and Witten [27] that (in the closed string sector) the partition function

for the orbifold theory can admit an ambiguity factor. In other words, in writing the full

partition function that includes the twisted sectors, one could prepend the terms with a

phase factor obeying certain cocycle conditions as constrained by modular invariance. In

the open string sector, this extra degree of freedom was realised in [28] to be precisely the

possibility of discrete torsion.

Such liberty, wherever admissible, gives us new classes of gauge theories that could differ

markedly from the zero discrete torsion case [29]. Physically, what is happening to the D-

brane? There has been long investigated, notably by Connes, Douglas, Schwarz, Seiberg and

Witten, that there is an underlying non-commutative structure in string theory [30]. For

the D-brane probe, if one turned on a background NSNS B-field along the world volume,

then the moduli space is actually expected to be a non-commutative version of a Calabi-Yau

space [31]. This scenario is the physical realisation of discrete torsion. The exponential of the

B-field, as it was in the DHVW case as the complexification of the Kähler form, corresponds

to the phase ambiguity.

A highly intuitive and visual way of studying gauge theories from brane dynamics is the

so-called Hanany-Witten setup wherein D-branes are stretched between configurations

of NS5-branes. Supersymmetry is broken according to the setup and the world-volumes

prescribe desired gauge theories [32]. The relative motion of the branes provides the defor-

mations and moduli in the physics.

It is re-assuring that there is a complete equivalence between our D-brane probe picture

and the Hanany-Witten setups (and, actually, also with geometrical engineering methods

wherein D-branes wrap vanishing cycles, a point to which we shall later return), cf. e.g.,

[33]. The mapping is through T-duality. The earliest example was the realisation that T-

duality of C2/Zn, the first of the ADE quiver theories, gives n NS5-branes placed in a ring;

the world-volume theory of D4-branes stretched between these branes, the so-called elliptic
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model, is the N = 2 A-type orbifold theory discussed above. With the aid of orientifold

planes, one could find the brane setup of D-type orbifolds [34]. The three exceptional cases,

however, still elude current research.

In dimension three, the abelian orbifolds Zm×Zn can be dualised to a cubic version of the

elliptic model, appropriately called brane boxes [35]. Similar orientifold techniques have been

applied to other C3-orbifolds [36]. The general problem of constructing the Hanany-Witten

setup given an arbitrary orbifold group remains a tantalising issue [37].

5 Gauge Theories, Moduli Spaces and

Symplectic Quotients

Having expounded upon some details on orbifolds and seen intricate mathematical structures

that also manufacture various gauge theories in four dimensions, we are naturally lead to

wonder whether a general approach is possible; i.e., given any singularity, how does one

reconstruct the gauge theory on the D3-brane world volume? We are in desperate need

of “the method,” and being of the Cartesian School, I quote, “Car enfin La Méthode qui

enseigne à suivre le vrai ordre, et à dénombrer exactement toutes les circonstances de ce qu’on

cherche, contient tout ce qui donne de la certitude aux règles d’arithmétique” (R. Descartes,

Discours Sur La Méthode). We shall see later that these rules of arithmetic, ingrained into

the computations of algebraic geometry, will constitute algorithms that will help answer our

question above.

The converse of our question, i.e., to obtain the singularity given the gauge theory, is a

relatively simple one. Indeed, the vacuum parametre space of the scalar (bosonic) matter

fields of the gauge theory is the so-called moduli space (we will give a more precise definition

later). As emphasised in the introduction, and we re-iterate here, by our very construction,

this vacuum moduli space, because our D3-brane is a point to the transverse Calabi-Yau

threefold, is exactly the threefold. In other words, in local variables, the moduli space M of

the world-volume gauge theory is the affine coördinates of the Calabi-Yau singularity S.

In the case of the abovementioned ADE N = 2 theories, the moduli space, by the

Kronheimer-Nakajima construction [38], is a generalisation of the ADHM instanton mod-

uli space. Their result, is a hyper-Kähler quotient. In general, the moduli space can be

constructed as a so-called quiver variety. We will see extensive examples of this later.

The lesson I wish to convey is that there is a bijection between the four-dimensional SUSY
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world-volume gauge theory and the Calabi-Yau singularity. We shall adopt an algorithmic

outlook. To proceed from the physics to the mathematics is the calculation outlined in the

previous two paragraphs as we compute the moduli space of the gauge theory; this we call

the Forward Algorithm. To proceed from the mathematics to the physics is our desired

question as we extract the gauge theory given the geometry of the Calabi-Yau singularity,

this we call the Inverse Algorithm.

5.1 Quiver Gauge Theory

For the mathematicians in the audience let me assume a moment of attempted rigour and

define what we have been meaning by our N = 1 four-dimensional super-Yang-Mills gauge

theory. For our purposes, a world-volume gauge theory is a (representation of a) finite labelled

graph (quiver) with relations. It is finite because there are a finite number of nodes and

arrows, representing gauge factors and matter fields. It has a label {ni ∈ Z+} for the nodes,

signifying the dimensions of vector spaces {Vi} each of which is associated with a node. The

gauge group is
∏
i

SU(ni). The gauge fields are then self-adjoining arrows Hom(Vi, Vi) while

the matter fields are bi-fundamentals fermions/bosons and are arrows Xij ∈ Hom(Vi, Vj)

between nodes. In addition, the matter content must be anomaly free. This is a condition

which ensures that the quantum field theory is well-defined. For the quiver with adjacency

matrix aij and node labels ni, the condition reads

(aij − aji)ni = 0. (5.1)

In other words, the ranks of the gauge groups must lie in the nullspace of the antisymmetrised

adjacency matrix. The above data then specify the matter content.

Finally, there are relations which arise from interaction terms in the field theory. These

are algebraic relations satisfied by the fields Xij. These relations arise from a (polynomial)

superpotential W ({Xij}), the generalisation of a potential in ordinary field theory. Indeed,

as it is in the case of classical mechanics, the vacuum is prescribed by the minima of the

(super)potential. In other words, the relations come from the critical points

∂W

∂Xij

= 0. (5.2)

Indeed, (the supersymmetric extension of) our Standard Model is a generalisation of this

structure above. The Holy Grail of string theory is to be able to obtain the Standard Model’s

(generalised) quiver from a unique compactification geometry. As a hypothetical example,
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the quiver below is a U(1)2 × SU(2) × SU(3) gauge theory with 8 matter fields Xα=1,...,8.

These fields carry gauge indices: (Xα)i
j being a SU(ni) × SU(nj) bifundamental. Relations

could be such polynomial constraints as (X1)
i
j(X2)

j
k = (X5)

i
m(X4)

m
k .

Adjacency Matrix Incidence Matrix

A B C D

A 0 1 1 2

B 0 0 0 2

C 0 0 0 1

D 1 0 0 0

1 2 3 4 5 6 7 8

A −1 −1 −1 0 −1 −1 −1 1

B 1 0 0 0 0 0 0 0

C 0 0 0 −1 1 0 0 0

D 0 1 1 1 0 1 1 −1
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X8

1 1

2 3

(5.3)

We have used two equivalent methods of encoding the quiver in (5.3), the adjacency matrix

introduced in §4.2 and a rectangular incidence matrix I whose columns index the arrows

and the rows, the nodes, such that the α-th arrow from node i to j receives a −1 in position

Iiα and a 1 in position Ijα and zero elsewhere.

This more axiomatic approach above is not a self-indulgence into abstraction but rather

a facilitation for computation. In summary, our algorithmic perspective is as follows:

PHYSICS: Gauge Data

Forward Algorithm

⇋

Inverse Algorithm

MATHEMATICS: Geometry Data

m m

QUIVER ⇋ Intersection Theory, etc.

5.2 An Illustrative Example: The Conifold

As a real example let us look at a famous case-study of a gauge theory corresponding to

a well-known singularity: the so-called conifold singularity; it is a Calabi-Yau threefold

singularity whose affine coördinates are given by a hyper-surface in C4:

{uv − zw = 0} ⊂ C4. (5.4)
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The world-volume gauge theory of a stack of N D3-brane probes was shewn in [40] to have

4 bi-fundamental fields A1,2, B1,2 with superpotential W as follows:

A , A1 2

B , B1 2

NN SU(N) SU(N)

Ai=1,2

Bj=1,2

W = Tr(ǫilǫjkAiBjAlBk). (5.5)

For simplicity, take N = 1, i.e., let all gauge factors be U(1). Then W = 0 and no extra

conditions (5.2) are imposed. The gauge invariant operators, i.e., combinations of fields that

carry no net gauge index are easily found: these are simply the closed loops in the quiver

diagram. Here, they are u = A1B1, v = A1B2, z = A2B1, w = A2B2. These scalars must

parametrise the vacuum moduli space. Since W gives no further relations here, we merely

have a single relation amongst them, viz., uv − zw = 0, precisely the affine equation (5.4).

This is what we mean by having the gauge theory vacuum being the Calabi-Yau singularity,

the conifold. What we have just performed, was the Forward Algorithm. In general, for

N > 1, one obtains an N -th symmetrised product of the conifold.

5.3 Toric Singularities

With the above example let us launch into our next class of singularities of Figure 3, the

toric cases. Whereas orbifolds are the next best thing to flat space, toric varieties are the

next best thing to tori. Began in the 1970’s, these spaces have been extensively used in the

early days of constructing Calabi-Yau manifolds. Even completely outside the realm of string

theory, many gauge theories have their classical moduli spaces being toric varieties, such as

the conifold example in §5.2. The Forward Algorithm and some of the Inverse Algorithm

for toric singularities, among a host of results on D-brane resolutions, have been beautifully

developed in [42, 43, 44, 45, 46] based on the gauged linear sigma model techniques of [41].

The Inverse Algorithm in this context was formalised in [48].

Whereas we have shewn in §4 that the geometry of orbifolds is essentially captured by the

representation theory of the finite group, for the toric singularities, the geometry data will

be encoded in certain combinatorial data. I must point out that there is a limitation to the

gauge theory data due to the inherent Abelian nature of toric varieties. The algorithms can

only treat product U(1) groups, i.e., ni = dimVi = 1 for all the labels. Moreover, the relations

imposed on the arrows must be in the form
∏

α Xα =
∏

β Xβ, the so-called generators of

monomial ideals [49]. One could get higher rank gauge groups by placing stacks of branes

but the algorithms we present below will capture only the Abelian information.
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5.3.1 A Lightning Review on Toric Varieties

More to set nomenclature than to provide an introduction, let me outline the rudiments of

toric geometry; the audience is referred to the excellent texts [50]. An r complex dimensional

affine toric variety is specified by a integer cone σ in an integer lattice Zr. To extract the

variety from σ we proceed as follows:

1. Find the dual cone σ∨, i.e., the set of vectors w such that v · w ≥ 0 for all v ∈ σ;

2. Find the intersection σ∨ ∩ Zr
; finitely generated semigroup Sσ;

3. Find the polynomial ring C[Sσ] by exponentiating the coördinates of Sσ;

4. The maximum spectrum (i.e., set of maximal ideals) of C[Sσ] ; the toric variety.

Compact toric varieties correspond to gluing these affine cones into a fan, but we will, of

course, be interested only in the local patches and thus will focus only on cones. As a

concrete example, consider the following (I point out that instead of cones, physicists often

use the notation of simply drawing the lattice generators of the cone. Therefore, in this

notation, the toric diagram is simply a configuration of lattice points marked below):
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Dual
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N

Physicist’s
Notation

Sσ = 〈(1, 0); (1, 1); (1, 2)〉 ⇒

C[Sσ] = C[X1Y 0, X1Y 1, X1Y 2]

≡ C[u, v, w]/(v2 − uw) ⇒

SpecMax (C[Sσ]) = C2/Z2

(5.6)

The above is our familiar orbifold C2/Z2; I have explicitly shewn the (2-dimensional) cone

σ, its dual σ∨, the semi-group Sσ, the polynomial ring C[Sσ] as well as how its maximal

spectrum leads to the defining affine equation of the orbifold. In fact, all Abelian orbifolds

are toric varieties, a piece of information, shewn in Figure 3, that will be of great use to us

later.

5.3.2 Witten’s Gauged Linear Sigma Model (GLSM)

Witten in [41] gave a physical perspective on toric varieties. The prescription in the previous

subsection in fact has a field theory analogue. Even though it was originally used in the
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context of two-dimensional sigma models, it gives us the right approach to the Forward

Algorithm. Here is an outline of Witten’s method. Take xi as coördinates of Cq, and a

C∗(q−d)-torus action

λa : xi → λ
Qa

i
a xi, (5.7)

where λa ∈ C∗ and Qa=1,...,q−d
i=1,...,q is a q × (q − d) integer matrix. The (symplectic) quotient of

Cq by this action gives a d-dimensional space. This is our desired toric variety. There could

be relations among the row vectors of the matrix Qa
i , viz.,

∑

i

Qa
i vi = 0 ∀ a. (5.8)

In our notation in §5.3.1, the vectors vi defines the cone σ while Qa
i is the semi-group Sσ of

the lattice points in the dual cone. Witten’s insight was to realise Qa
i as charges of fields in a

U(1)q QFT; the final affine coördinates of the variety, in the spirit of [51], are homogeneous

coördinates {za =
∏

i x
va

i

i }. This charge matrix, which encodes all the information of the

variety, will be key to our algorithm.

Another crucial property of toric varieties that we need is the so-called moment map.

A toric variety is naturally equipped with a symplectic form, and with such, is always

armed with such a map. I will not bore the audience with the formal definition, which

essentially is a mapping that takes the variety to it associated toric diagram (polytope). In

Witten’s language, this map is simply (5.8). What is convenient is that to perform a Kähler

resolution, i.e., P1-blowup, of the singularity, one merely changes the right-hand side from 0

to some parametres ζa ∈ R+, known as Fayet-Iliopoulos parametres. The charge matrix Qa
i

together with these parametres completely specify the resolved toric manifold. Graphically,

this desingularisation corresponds to node-by-node deletion from the toric diagram, each

deletion signifying a P1-blowup 1.

5.4 The Forward Algorithm

Endowed with the knowledge of some requisite rudiments on toric varieties, we can now

proceed to the Forward Algorithm. We must re-cast the procedure of solving for the vacuum

moduli space into the above language of the gauged linear sigma model in the manner of

1As mentioned in the example in the previous subsection, the toric diagram in physicists’ notation is a

configuration of points. In the cone language of mathematicians, desingularisation corresponds to a process

called stellar division of the cone.
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[42, 43, 44, 45, 46]. This not only greatly simplifies and systematises our computation, but

also will enable us to construct gauge theories with the Inverse Algorithm.

The definition of gauge theory moduli space presented in §5.1, for the case of toric

singularities, can now be formalised to the following:

DEFINITION 5.1 The Moduli space M of a U(1)k Quiver Yang-Mills gauge theory with

matter content given by incidence matrix dia and interactions given by monomial relations
∏

X ia
a =

∏
X ib

b is the space of solutions to the following two equations:

1. D-Term: Di =
∑
a

dia|Xa|2 = 0;

2. F-Term:
∏

X ia
a =

∏
X ib

b ,

where i = 1, . . . k, a = 1, . . .m with k = # Nodes and m = #arrows.

Indeed, the fact that all quiver labels are 1 and that the F-terms generate monomial

ideals, as discussed earlier in §5.3, is what we call the toric condition. Comparing the

definition of the D-term with (5.8), we see that it is precisely the moment map. We conclude

therefore that the matter content of the gauge theory specifies a toric variety. However,

as we learnt from the conifold example in §5.2, this is not sufficient. One must also take

the interactions, i.e., the superpotential W , into account. The F-terms above are precisely

the critical points of W shewn in (5.2). A primary task of [43] is to actually transform the

F-terms into the form of D-terms and to encode the gauge theory into a combined charge

matrix Qt.

5.4.1 Forward Algorithm for Abelian Orbifolds

Recalling that all Abelian orbifolds are toric varieties, what better place to start indeed than

such an example. In point form let us outline the procedure, following the notation of [46]:

1. Take C3/Γ; the Abelian finite subgroups SU(3) are Γ = Zn or Zn × Zm of order r;

2. The matter content is simply the McKay quiver obtained from 3⊗Ri =
r⊕
i

aijRj , with

#nodes = r and #arrows m = 3r. From the adjacency matrix aij one obtains the

incidence matrix dr×m describing the charges for the D-terms;

3. Solving the F-Terms gives us Xa =
r+2∏

j

v
Kaj

j where Km×(r+2) is an integer matrix of

exponents and generates a convex polyhedral cone M ≃ Zr+2. It fits into the sequence

0 → R → Z3r Kt

→ M → 0, (5.9)
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with a sequence for N ≃ Zc, the dual cone to M as

0 → S
Qt

→ Zc T
→ N → 0; (5.10)

4. Indeed, adding the D-Term constraints forms the moduli space

M ≃ {F-Term solution}//U(1)r.

Actually one can remove one over-all U(1) and consider the matrix ∆(r−1)×m which is

dr×m with a row deleted;

5. Factor ∆ : Zm → Zr−1 into V ◦ p, with V : M → Zr−1 and p : Zm → M . Combining

with above gives an complex of sequences

0

0 - N

6

- (Zm)∗ - R∗ - 0 ;

Zc

T

6

U t

?
�U tV t (

Zr−1
)∗

∆t

6
�

V t

S

Qt

6

0

6

6. The final toric data is given by the integer matrix G3×c such that

0 - S ⊕
(
Zr−1

)∗
Qt :=

(
Qt

(V U)t

)

- Zc - G - 0 .

The matrix Qt is the total charge matrix, combining the D-terms and F-terms into a

single moment map;

7. Associate each column of G as a GLSM field and one sees that there is repetition,

i.e., multiple GLSM fields are associated to a single node in the toric diagram.
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As a specific case, consider C3/(Z2 × Z2), which has gauge theory data

��
��
��
��

��

��
��
��
��

��
��
��
��

A B

CD

Quiver Diagram

[aij ]4×4 =




0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


⇒ [dia]4×12

W = XACXCDXDA − XACXCBXBA+

XCAXABXBC − XCAXADXDC+

XBDXDCXCB − XBDXDAXAB−

XDBXBCXCD,

∂W
∂Xa

= 0 ; 12 F-terms

(5.11)

Applying the Forward Algorithm finally gives us the G matrix encoding the toric diagram,

which we indeed recognise to be that of the desired moduli space C3/(Z2 × Z2), a generali-

sation of our example in (5.6). We have drawn the nodes according to the columns of G and

have also marked the multiplicity when columns repeat:

G =




0 1 0 0 −1 0 1 1 1

1 1 1 0 1 0 −1 0 0

1 1 1 1 1 1 1 1 1


⇒

�����
�
�
�

�
�
�
�

����

�� ��

Toric Diagram

(0,0,1) (1,0,1)

(1,−1,1)

(−1,1,1) (0,1,1) (1,1,1)

2

1 2 1

2

1

(5.12)

One thing to note, of course, is that we have been able to draw the toric diagram in a

plane even though we are dealing with a threefold. This is possible because we are dealing

with Calabi-Yau singularities. All the toric diagrams we henceforth encounter will have this

feature of co-planarity.

In summary then, we have a flow-chart that takes us from the physics (quiver) data

(d, K) to the moduli space geometry (toric) data G:

D-Terms → d → ∆

↓

F-Terms → K
V ·Kt=∆
→ V

↓ ↓

T = Dual(K)
U ·T t=Id
→ U → V U

↓ ↓

Q = [Ker(T )]t −→ Qt =

(
Q

V U

)
→ G = [Ker(Qt)]

t

(5.13)
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5.5 The Inverse Algorithm

Our chief goal is to be able to obtain the gauge theory given the geometry, i.e., to obtain the

pair (d, K) given G. Näıvely, I can simply trace back the arrows of flow-chart (5.13). How-

ever, the Forward Algorithm is a highly non-unique and non-invertible process. Therefore,

we must resort to a canonical method.

The method which we will use is the so-called partial resolutions used in [45, 47] and

formalised in [48]. The procedure is as follows:

1. We first note that the toric diagram D of any Calabi-Yau threefold singularity embeds

into the diagram D′ of the Abelian orbifold C3/(Zk × Zk) for large enough k. This is

because D′ is a triangle of lattice points (cf. the example (5.12) for the case of k = 2).

For example, the following is an embedding of some given diagram D into that of k = 3:

Z3 3Z  x

2. Now, D′ is an orbifold, thus the McKay analysis in §4 conveniently gives us the gauge

theory data. We can subsequently perform the Forward Algorithm on D′ as was done

in the example in §5.4.1.

3. As mentioned at the end of §5.3.2, D′ can be desingularised by node deletion. This

stepwise blowup is called partial resolution of the Abelian orbifold. In the GLSM

picture, this corresponds to the Higgsing, i.e., acquisition of vacuum expectation

values (VEV’s) of the GLSM fields. Therefore, one can partially resolve D′ until one

reaches D. This is the crux of the algorithm, which essentially is a game, since we are

dealing with lattice polytopes, in Linear Optimisation;

4. The gauge theory for D, our desired output, is then, by construction, a subsector of

the theory for D′, via stepwise acquisition of VEV’s of GLSM fields.
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5.6 Applications of Inverse Algorithm

Supplanted with the method, one must apply to concrete examples. It is expedient to

introduce to the physicists in the audience a class of singularities pertaining to del Pezzo

surfaces.

5.6.1 del Pezzo Surfaces

When His Grace Pasquale del Pezzo, Duca di Cajanello [39] took reposes from political

intrigues, his passions led to an important class of complex surfaces which now bears his

name. Of primary note is the fact that these surfaces constitute the two complex dimensional

analogues of the sphere S2 in that they have positive c1. More strictly, they are the only

surfaces with ample anticanonical bundle, as P1 ≃ S2 is the only example in dimension one.

Therefore, they are the possible four-cycles which may shrink in a Calabi-Yau threefold.

The first two members of the family are straight-forward: they are P2 and P1 × P1. The

remaining members are these two surfaces with k generic points thereupon blown up with

P1’s, with k up to 8. The case of k = 9 is usually called the ninth del Pezzo surface even

though strictly it should not be so-named since its first Chern class squares to 0. For this

reason it is also called 1
2
K3. The blowup relations within the family are as follows:

(F0 = P1 × P1)

↓

(dP0 = P2) → dP1 → dP2 → . . . → dP8 → (dP9 = 1
2
K3).

(5.14)

Of curious and McKay-esque interest is the second cohomology H2(dPk, Z) (q.v. [52]). In

k = 0, H2(dP0, Z) clearly consists only of the single element ℓ, which is the hyperplane class

of P1 ⊂ P2. For k > 0, each time there is a blowup, we introduce an exceptional P1-class Ek.

Therefore

H2(dPk, Z) = span(ℓ, Ei=1,...,k), Ei · Ej = −δij , Ei · ℓ = 1, ℓ2 = 0. (5.15)

The first Chern class is given by

c1(TdPk) = 3ℓ −
k∑

i=1

Ei. (5.16)

We see indeed that c1(TdP9)
2 = 0 and k = 8 is the last case for which c1(TdPk)

2 = 9−k > 0.

Remarkably, H2(dPk, Z) in (5.15) is the root lattice of the exceptional Lie algebra Ek.
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Finally, we note that F0, dP0,1,2,3 actually admit a toric description. We are, of course,

concerned not with the surfaces themselves but affine cones over them which are Calabi-Yau

threefold singularities. Slightly abusing notation, we will also refer to the affine cone by

the same name as the surface. We now apply the Inverse Algorithm in §5.5 to the affine

three-dimensional varieties F0, dP0,1,2,3.

5.6.2 Application to Toric del Pezzo’s

Observing the toric diagrams of F0, dP0,1,2,3, we see that they can all be embedded into

C3/(Z3 × Z3):

8

37

13

7, 14, 17

del Pezzo 0

6, 7, 12, 14, 15, 18, 30

5 9

84

37 38

del Pezzo 310

5, 13, 20

4, 16, 23

9, 11, 26

8, 27, 28

30, 31, 32, 33, 34, 35

17, 18, 19, 21, 22, 24, 25

1, 2, 3, 6, 7, 12, 14, 15

29

37, 41, 42 38, 39, 40

36

Z3 3Z  x

(1, 0, 0) (0, 1, 0)

(−1, 2, 0)

(−1, 0, 2)

(−1, 1, 1)(0, 0, 1)

(−1, −1, 3)

(0, −1, 2)

(1, −1, 1)

(2, −1, 0)

9

84

37

7, 12, 14, 15, 18

Hirzebruch 0

8

37 38

13

7, 14, 17, 32

del Pezzo 1

7, 12, 14, 15, 18, 21

4

9

8

36 37

del Pezzo 2

(5.17)
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Running the Inverse Algorithm gives us the following quivers,
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Parent Theory

(5.18)

together with associated superpotentials which I will not present here. As an immediate

check, we know that the cone over dP0 = P2 is C3/Z3 as we could have seen from the toric

diagram in (5.17). In fact the crepant resolution of C3/Z3 is the bundle OP2(−3). Hence,

the quiver should simply be the McKay quiver for Z3 ⊂ SU(3). Indeed the top-left quiver

in (5.18) is consistent with this fact.

The Inverse Algorithm is general and we can apply it to any other toric singularity.

The only draw-back is that finding dual cones, a key to the algorithm, is computationally

intensive. I have been using the algorithm in [50] which unfortunately has exponential

running time. Of course, more efficient methods do exist but have not yet been implemented

in this context.
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5.7 Toric Duality, or, Non-Uniqueness: Virtue or Vice?

Now, in §5.5 I emphasised that the Forward Algorithm in (5.13) is highly non-invertible.

This was why we resorted to the canonical method of partial resolutions. However, can this

vice be turned into a virtue and a heaven be made from a Miltonian hell? If the process is

so non-unique, could we not manufacture a multitude of N = 1 world-volume gauge theories

having the same moduli space? Can one indeed have many pairs (d, K) having the same

G? Of course, one needs to be careful. Not all theories having the same G are necessarily

physical in that they can be realised as brane probes. The Inverse Algorithm guarantees that

the output is a physical theory because it is a subsector of the well-known orbifold theory.

Therefore, one technique does ensure physicality. We recall from (5.4.1) that the final

output of the Forward Algorithm, the toric data G has multiplicities and each node could

correspond to many different GLSM fields. The choice of which GLSM to acquire VEV, so

long as during the Inverse Algorithm the right nodes are deleted at the end, is completely

arbitrary. This ambiguity will constitute a systematic procedure in finding physical theories

having the same toric moduli space. Other methods may be possible as well and the audience

is encouraged to experiment.

As a momentary diversion, let me intrigue you with an observatio curiosa: if one per-

formed the Forward Algorithm to various Abelian orbifolds C3/(Zk ×Zm), the multiplicities

in G, which I will label in the diagram below, actually exhibit the Pascal’s Triangle (which

my ancestors, and I thank a member of the audience to have reminded me, have dubbed the

Yang-Hui Triangle, pre-dating Monsieur Blaise by about 500 years; however I shall refrain

from evoking my namesake too much):

(1, 1, 1)

(1, 0, 1) (0, 1, 1)

(1, −1, 1) (0, 0, 1) (−1, 1, 1)

(k,m) = (2,2)

(1, −1, 1)

(−1, −1, 3)

(0, −1, 2) (−1, 0, 2)

(0, 0, 1) (−1, 1, 1)

(2, −1, 0) (1, 0, 0) (0, 1, 0) (−1, 2, 0)

(k,m) = (3,3)

(1, −1, 1)

(0, −1, 2)

(0, 0, 1)

(2, −1, 0) (1, 0, 0) (0, 1, 0) (−1, 2, 0)

(k,m) = (2,3)

2

11

2

1

2

3

1

3

1
3 3

1

21

3

3

1
3 3

1

1

2 6

(5.19)

I have no explanation for this fact: the details of the algorithm are not analytic and I know

of no analytic determination of say, generators of dual cones; thus I do not know how one

might proceed to prove this observation, which, curiously enough, is key to constructing

gauge theories with the same moduli space.

32



Bearing this insight in mind, we can re-apply the Inverse Algorithm to (5.17), varying

which GLSM fields to Higgs. The result is the following, with 2 phases for F0, 2 for dP2

and 4 for dP3; Model I in each case refers to the theory in (5.18), though drawn with more

explicit symmetry (Model I of dP3 for example, has been re-arranged, by the good Hanany,

in a flash of precipience, as if the figure awakened a symbolism distilled into his very blood.

“The Star of David, you see.” he said calmly. “Ah! And Solomon’s wisdom has inspired

you to get back to your roots.” I jocundly replied. With a mischievous glare in his eyes he

shrugged his habitual non-chalance, motioned to me with the palm of his hand, and gave his

canonical response: “you said it.”)

6,10

5,9

2,41,3

7,8,11,12

A B

D C

X

X

YYi11

i12

i21

i22

A B

C D

F0

Model I Model II

4

5

1 23

4

5

231

Model I

dP2

Model II

Model II

1

5

4

3

6

2

2

3

51

4

6

Model III
Model IV

4

5

1

2

6

3

1

62

3 5

4

Model I

dP3

(5.20)

We will call this phenomenon of having different gauge theories having the same IR

moduli space toric duality.

5.7.1 What is Toric Duality?

For the mathematicians let me briefly point out that in physics, a duality between two

QFT’s is more than an identification of the infra-red behaviour of the moduli space. It

should be a complete mapping, between the dual pair, of quantities such as the Lagrangian

or observables. Usually, the high-energy regime of one is mapped to the low-energy regime
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of the other. Famous duality transformations exist for QFT’s with various supersymmetries.

For N = 4, there is the Montonen-Olive duality, for N = 2, Seiberg-Witten theory and for

N = 1, there is Seiberg’s duality.

Seiberg Duality is, in its original manifestation [53], a duality (when 3Nc/2 ≤ Nf ≤ 3Nc)

between the following pair of N = 1 theories with a global chiral symmetry SU(Nf )L ×

SU(Nf )R:

Electric Theory Magnetic Theory

Gauge Group SU(Nc) SU(Nf − Nc)

Fund. Flavours Nf Nf

Matter Content

SU(Nc) SU(Nf )L SU(Nf )R

Q 1

Q′ 1

SU(Nf − Nc) SU(Nf )L SU(Nf )R

q 1

q′ 1

M 1

Superpotential W = 0 W = Mqq′

(5.21)

Such a dualisation procedure can be easily extended, node by node, to our N = 1 quiver

theories. One might naturally ask whether toric duality might be Seiberg duality in disguise.

If so, our games on integer programming would actually possess deep physical significance.

And so it was checked in [54] and also independently in the lovely papers [55, 57] that this

is the case. We conjecture that Toric Duality = Seiberg Duality for N = 1 SUSY theories

with toric moduli spaces. Of course, this has no a priori reason to be so and indeed if we find

toric dual pairs that are not Seiberg dual then we would be led to the interesting question

as to what exactly this new duality would mean.

Now, ignoring the superpotential for a while and consider Seiberg duality acting on the

matter content. Then, as an action on the quiver, it is the following set of rules:

1. Pick dualisation node i0. Define: Iin := nodes having arrows going into i0; Iout :=

coming from i0 and Ino := unconnected with i0;

2. rank(i0): Nc → Nf − Nc (Nf =
∑

i∈Iin

ai,i0 =
∑

i∈Iout

ai0,i);

3. adual
ij = aji if either i, j = i0;

4. adual
AB = aAB − ai0AaBi0 for A ∈ Iout, B ∈ Iin
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5.7.2 Other Geometrical Perspectives

It is now perhaps expedient to take some alternative geometrical perspectives on our story.

We shall see that the quiver transformation rules at the end of §5.7.1 naturally arise as

certain geometrical actions.

The Mirror I can hardly give a talk on Calabi-Yau spaces without at least a mention

of mirror symmetry, a beautiful subject into which I shall not delve here. For now, let us

merely use it as a powerful tool. Following the prescription of [58], that mirror symmetry is

thrice T-duality, our configuration of D3-branes transverse to Calabi-Yau threefold singular-

ity is mapped to type IIA D6-branes wrapping vanishing 3-cycles in the mirror Calabi-Yau

threefold. We have gained one dimension, both for the D-brane and for the homology, each

time we perform a T-duality: D3-branes thus become D6-branes and the 0-cycles (recall that

for the D3-probe the transverse Calabi-Yau space is a point) become (Special Lagrangian)

3-cycles.

The mirror manifold of our affine singularities can be determined using the methods of

[59]. This is known as “local mirror symmetry.” For example, the mirror of cones over del

Pezzo surfaces is an elliptic fibration over the complex plane.

In this context [60, 61, 62], the quiver adjacency matrix is simply given by (up to anti-

symmetrisation and convention) the intersection of the vanishing 3-cycles ∆i:

aij = ∆i ◦ ∆j . (5.22)

A convenient method of computing this intersection is to use the language of (p, q)-webs

[63]. It turns out that each 3-cycle ∆i wraps a (pi, qi) 1-cycle in the elliptic fiber in the

mirror. The intersection number then simply reduces to

aij = ∆i ◦ ∆j = det

(
pi qi

pj qj

)
. (5.23)

The configurations of (p, q)-webs can be a formidable simplification in constructing the mat-

ter content for toric singularities because the web itself is a straight-forward dual graph of

the toric diagram. The audience is referred to [61, 62, 64] which produce toric quivers very

efficiently. The only short-coming is that obtaining the superpotential thus far escapes this

simple approach.

Within this context of vanishing cycles, the rules for quiver Seiberg duality at the end

of §5.7.1 may look rather familiar. There is an action in singularity theory [65] known
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as Picard-Lefschetz transformation as we move a cycle ∆i monodromically around a

vanishing cycle ∆i0 . The cycle is transformed as

∆i → ∆i − (∆i ◦ ∆i0)∆i0 . (5.24)

Combining this with (5.22), it was shewn in [62, 66] that Seiberg duality is precisely a

Picard-Lefschetz transformation in the vanishing cycles of the mirror.

Helices and Mutations Moving back to the original Calabi-Yau singularity, there is

yet another description that has been widely used in the literature and has been key in a

general methodology. This is to regard the D-brane probe as helices of coherent sheafs

[57, 60, 62, 67, 68, 69]. Once the helix is constructed on the base over which our singularity

is a cone, the appeal of this approach is that it is completely general, being unrestricted

to orbifolds and toric singularities. One can obtain the gauge data, both the matter and

superpotential with the prescribed method which we outline below. The caveat is that

constructing the helix is a rather difficult task for general singularities. However, for del

Pezzo surfaces, helices have known in the mathematics community [70]. In fact, because

of this fact, cones over the higher, non-toric del Pezzo surfaces constitute the only known

examples2 of non-orbifold, non-toric singularities for which probe gauge theories have been

constructed [61, 68].

Let us begin with preliminaries. A collection of coherent sheafs Fi, with a specified Mukai

vector ch(Fi) := (rk(Fi), c1(Fi), c2(Fi)), has a natural intersection pairing given in terms of

the Euler character:

aij = χ(Fi, Fj) :=
∑

m

(−1)mdimCExtm(Fi, Fj). (5.25)

In the case that the collection is exceptional, i.e., Extm(Fi, Fi) = Cδm0 for all i, and

Extm(Fi, Fj) = 0 for all m if j > i and for all but at most one m if i < j, this intersection

pairing (5.25) is precisely the adjacency matrix of the quiver (cf. [59, 69]). The F-terms [57]

can be obtained by successive Yoneda compositions, along closed cycles in the quiver, of the

Ext groups.

In this language, there is an action, perhaps inspired by biology, on the exceptional

collection, known as mutation. Left (L) and right mutations (R) with respect to the l-th

2One could also use certain Unhiggsing techniques from pure field theory [55, 56].

36



sheaf in the collection proceed as

{Fl, Fl+1} 7→ {RlFl+1, Fl} ,

7→ {Fl+1, Ll+1Fl}
s.t.

ch(RlFl+1) = ch(Fl+1) − χ(Fl, Fl+1)ch(Fl) ,

ch(Ll+1Fl) = ch(Fl) − χ(Fl, Fl+1)ch(Fl+1).

(5.26)

This should once again be reminiscent of (5.24) and one could refer to [69] to see how Seiberg

duality in this language is a mutation of the exceptional collection. Of course, to fully explore

the sheaf structure of the D-branes, as we have secretly done above in the mutations, one

must venture into the derived category of coherent sheafs (q.v. e.g. [71, 72] for marvelous

reviews). Computations in the context of del Pezzo singularities have been performed in

[73]. Indeed, Seiberg duality in this context become certain tilting functors in Db(coh(X))

[74].

With this digression I hope the audience can appreciate the rich and intricate plot of our

tale. From various perspectives, each with her own virtues and harmartia, one can begin to

glimpse the vista of probe gauge theories. I have throughout these lectures emphasised upon

an algorithmic standpoint because of its conceptual simplicity and transcendence above the

difficulties and unknowns of geometry.

6 A Trio of Dualities: Trees, Flowers and Walls

In this parting section, let me be brief, not so much that brevity is the soul of wit, but that a

bird’s-eye-view over the landscape will serve more to inspire than a meticulous combing of the

nooks and crannies. We will see how our excursion into gauge theories, algebraic geometry

and combinatorics will take us further into the realm of number theory and chaotic dynamics.

6.1 Trees and Flowers

In §5.7.1 we have seen that a very interesting action can be performed on our quivers, viz.,

Seiberg/toric duality. In general, the rules therein can be applied to any quiver which may be

produced by the Inverse Algorithm. Indeed, though the said algorithm will always produce

quiver theories satisfying the toric conditions in Definition 5.1, the Seiberg duality rules can

well take us out of these constraints. Of course, by definition of duality, these rules must

generate theories with the same moduli space which here happens to be toric.

That said, one could dualise a given quiver ad infinitum with respect to various choices

of nodes at each stage. The result, is a dendritic structure which we call the duality tree.
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The node-labels, i.e., the ranks of the gauge group factors, amusingly enough, will always be

constrained to obey some classifying Diophantine equation. Let us take the example of dP0,

the cone over the zeroth del Pezzo surface P2. The resolution space, as mentioned earlier,

is simply OP2(−3) → C3/Z3. The quiver was given in (5.18) and is a U(1)3 theory in the

toric phase. In the diagram below, we leave the labels as well as the number of arrows

arbitrary, but satisfying the anomaly cancellation (5.1). The question is, what are the values

of ni=1,2,3 such that the quiver may be obtained from a sequence of Seiberg dualities from

the canonical ~n = (1, 1, 1) quiver in the toric phase? It turns out that [60, 62] they must

satisfy the Diophantine equation

n2
1 + n2

2 + n2
3 = 3n1n2n3, (6.1)

which is known as the Markov equation. We have shewn, in the diagram below, the first

9 solutions of this equation in terms the quivers that can be obtained from dualisation. The

figure to the right is the duality tree associated with dP0. The trifurcating structure is due

to the Z3 symmetry: at each stage of have a choice of 3 nodes to dualise.

n1

n3 n213n

23n 33n

Markov Eq. n2
1 + n2

2 + n2
3 = 3n1n2n3

1 1

1

3

33

1 1

33

1

3

1

3

1

3

2 2

5 5

2

5

5 5

2

6 6

15 15 87

6

582 15 87 87

6

15

39

39

102

39 1299

50715

13

29

169292934

13 13

194

433

(6.2)

It is a beautiful fact that all del Pezzo surfaces give rise to generalisations of the Markov

equation [70]: the exceptional collections on these surfaces are classified by such equations.

It was shewn in [67] that these equations coincide with the associated Diophantine equations

of the duality tree.

Of course, I am being cavalier with the name tree since in graph theory a tree should not

contain closed cycles. But I hope you will indulge my botanic fancy. In fact, when the tree
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structure gets more complicated, as we will see later, we will refer to the duality graph as

flowers.

6.2 Cascades and Walls

The last member of this trinity of dualities [77] is the concept of duality walls coined in

[76]. This will perhaps be of greater interest to the physicists in the audience. Thus far, we

have been dealing with conformal fixed points in the IR and the beta-function vanishes. To

be phenomenologically viable, we must allow evolution of the renormalisation group. What

we must do in the D-brane probe picture is to introduce fractional branes. Simply stated,

we must generalise the representation in (4.4) to more liberal choices of the labels Ni so

long as they satisfy the anomaly cancellation conditions in (5.1). Then, the beta-function,

out of conformality, can be thereby expressed using the prescription of NSVZ [79]. The

determination of the NSVZ beta-function for quiver theories was performed in [80].

How does the theory evolve with the beta-function? The answer was supplanted in [10]

for the simplest geometry, viz., the conifold studied in (5.5). The beta functions for the two

nodes are of order (M/N)2 where M is the number of fractional branes and N , the number

of branes; the linear order, O(M/N), vanishes due to the Z2 symmetry. We thus have

β1 = −3M + O(M/N)2, β2 = 3M + O(M/N)2. (6.3)

The two inverse gauge couplings evolve in linear fashion according to (6.3) and when one

reaches zero, i.e., the coupling becomes infinite, we perform Seiberg duality to map to a weak

coupling regime. Hence the inverse couplings xi=1,2 = 1
g2

i

, when plotted against t = log µ of

the energy scale µ, evolve in weave pattern, criss-crossing to infinite energy. This is known

as the Klebanov-Strassler cascade for the conifold:

A , A1 2

B , B1 2

NN

xi=1,2 = 1
g2

i

, t = log µ

x ι

t

(6.4)

The prescription is then evident if we wish to generalise this cascade to other geometries

as we will in the next subsection 3. We will remember the following rules: (1) dualise
3For a duality group perspective of general cascades, q.v. [78].
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whenever the inverse coupling for the i-th node, 1/g2
i → 0; (2) generically we obtain piece-

wise linear βi; (3) for the k-th step in the dualisation, 1/g2
i ∼ [βi]k∆k for step-size ∆k

in energy. Conceptually, we are bouncing within simplicies in the space of inverse gauge

couplings.

6.2.1 The Duality Wall and Flos Hirzebruchiensis

A question was raised in [76], and subsequently answered in the affirmative in [81, 82]

and [83, 84], whether there could ever be a duality wall in a cascade for an arbitrary

singularity. In other words, could there be a case where the steps ∆k in energy scale during

each dualisation decrease consecutively, so that even after an infinite number of dualisations

one could not exceed a certain scale? This cutoff scale, where the number of degrees of

freedom in the gauge theory accumulates exponentially, is called the duality wall.

Certainly, this phenomenon does not occur for the conifold: the steps in the KS cascade

are constant in this case. However, if we took the next simplest case, the cone over F0 =

P1 × P1, the zeroth Hirzebruch surface, a markedly different behaviour is noted. The quiver

for this theory was presented in (5.18). We reproduce it below, together with the first 11

dualisations, as well as the duality tree:
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Inspired by the aesthetic appeal of the duality structure, we could not resist treasuring the

result as a flower, which, with some affection, we call the flos Hirzebruchiensis.

Now, there are four nodes and hence the evolution of four gauge couplings. If we dualised

in the manner of alternating between the two phases as shewn below, we would obtain the
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cascading behaviour very much in the spirit of (6.4):
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However, if we dualised the phase below, we would observe an strikingly apparent (and

analytically proven [83, 84]) convergence to a wall.

3N N-M

N+M N

1 2

34
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>

> >>

2

4
62

6
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t

0
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1

1.5

2
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(6.7)

We have mentioned above that the degree of freedom explodes at the wall. This is indeed

so. Recall from (5.24) that the Seiberg duality action is a monodromy matrix action m. At

the k-step, as have an action mk on the labels ni of the initial quiver. On the other hand,

the dof, i.e., the total amount of matter (arrows), is determined from the labels via (5.1).

Therefore, the dof goes as the sum over λk where λ are the eigenvalues of m. It was then

discussed in [81] the conditions on λ for which this sum diverges; these quivers are known

to the mathematicians as hyperbolic.

The bloodhounds in the audiences may have acutely followed a scarlet thread in this

chromatic skein of our discussion. They have seen bouncing in a simplex and the explosion

of the degrees of freedom; do they not smell chaos? It is indeed shewn in [84] that the

generic geometry does give rise to cascades that exhibit chaotic behaviour. As a tantalising

last figure to our swift codetta, if one plotted the position of the wall versus the initial gauge

couplings (specifically, twall against x3(0) for (1, 1, x3(0), 0) for F0), a self-replicating fractal
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is seen:
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