
              

City, University of London Institutional Repository

Citation: Kaishev, V. K. & Dimitrova, D. S. (2009). Dirichlet Bridge Sampling for the 

Variance Gamma Process: Pricing Path-Dependent Options.. Management Science, 55(3), 
pp. 483-496. doi: 10.1287/mnsc.1080.0953 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/8539/

Link to published version: https://doi.org/10.1287/mnsc.1080.0953

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Dirichlet bridge sampling for the Variance Gamma
process: pricing path-dependent options
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The authors develop a new Monte Carlo based method for pricing path-dependent options under the variance

gamma (VG) model. The gamma bridge sampling method due to Avramidis et al. (2003) and Ribeiro

and Webber (2004), is generalized to a multivariate (Dirichlet) construction, bridging ’simultaneously’ over

all time partition points of the trajectory of a gamma process. The generation of the increments of the

gamma process, given its value at the terminal point, is interpreted as a Dirichlet partition of the unit

interval. The increments are generated in a decreasing stochastic order and, under the Kingman limit, have

a known distribution. Thus, simulation of a trajectory from the gamma process requires generating only

a small number of uniforms, avoiding the expensive simulation of beta variates via numerical probability

integral inversion. The proposed method is then applied in simulating the trajectory of a VG process using

its difference-of-gammas representation. It has been implemented both in plain Monte Carlo and Quasi-

Monte Carlo environments. It is tested in pricing lookback, barrier and Asian options and shown to provide

consistent efficiency gains, compared to the sequential method and the difference-of-gammas bridge sampling

due to Avramidis and L’Ecuyer (2006).

Key words : option pricing; gamma bridge; Variance Gamma process; Dirichlet partitions; quasi-Monte

Carlo; Kingman limit

1. Introduction

Pricing path-dependent options whose underlying financial asset is driven by the so-called Variance

Gamma (VG) process, introduced by Madan and Seneta (1990), has recently been considered by

Ribeiro and Webber (2004), Avramidis et al. (2003) and Avramidis and L’Ecuyer (2006). These

authors develop bridge methods for sampling from Gamma and Variance Gamma processes in

Monte Carlo (MC) and Randomized Quasi-Monte Carlo (RQMC) environments, which demon-

strate very good efficiency in estimating exotic option values. Developing such methods and improv-
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ing further their efficiency is of considerable practical importance, since different types of new and

existing exotic derivatives are actively traded in the over-the-counter market and their fast and

accurate pricing under the VG model has proved to be crucial. There are several advantages in

assuming that a VG process is the driver of the underlying asset price. The VG process represents

a pure jump Lévy process, constructed by randomly changing the time in a Brownian motion,

following a gamma process with unit mean rate and certain variance rate. Such a random time

change allows for modelling the flow of economically relevant time, reflecting the random speedups

and slowdowns in real time economic and business activity. Choosing unit mean rate of the gamma

subordinator guarantees the unbiasness of the random transformation of the time unit.

Another advantage of the VG process, pointed out by Madan et al. (1998), is that it offers much

more flexibility in modelling skewness and kurtosis of the asset returns, compared to Brownian

motion. As shown by the authors, once calibrated to market prices, the VGmodel captures volatility

smile and fat-tailness of the asset return distribution. The modelling power and flexibility of the

VG process has recently been emphasized by Carr et al. (2007). As they point out, the random

change in time of the rate at which business news on stocks arrive, has a direct impact on the

movement of their prices, hence on the volatility of the related option prices. Carr et al. (2007)

highlight the ability of the VG process to successfully capture upward and downward jumps as well

as infinitesimally small movements (jitters) in the underlying stock price.

The VG model has been reported to perform better than the geometric Brownian motion in a

number of empirical studies, such as those by Daal and Madan (2005), in pricing foreign currency

options, by Fiorani (2004) in pricing European and American options on S&P 500, and by Fiorani

and Luciano (2006) in credit risk modelling under VG log-asset values. The latter study establishes

that VG jumps in the company’s asset value give much smaller prediction errors in the credit

default swap spreads than diffusion-based structural models. Moreover the VG model is reported to

adequately solve the problem of the deep understatement of credit spreads produced by diffusion-

based models. These findings, and the recent paper by Hurd (2007), clearly indicate the very good

potential of applying the VG process in the credit risk modelling paradigm.
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The nice properties of the VG model have led to its recent implementation in the Bloomberg

system, through the function SKEW. It allows for contrasting VG against Black-Scholes in pricing

options, based on market data. No doubt, this important step will boost further the popularity of

the VG model among financial analysts, traders and other practitioners. The importance of the

VG model has been highlighted also in the growing number of publications devoted to its empirical

and theoretical properties, computational methods and various financial applications. Among these

are recent contributions by Yor (2007), Fu (2007), Carr et al. (2007), Daal and Madan (2005),

Carr et al. (2002), to name only a few. All this suggests that exploring the VG model further and

developing efficient methods for option pricing under VG becomes more and more relevant both

from the practical and theoretical point of view.

Along with the above mentioned advantages, a difficulty in using a VG process, and more generaly

a Lévy process, as driver of the price of the underlying asset is that they require more sophisticated

stochastic analysis and in the case of path-dependent option pricing do not lead to closed-form

solutions. Thus, in the latter case it has proved essential to develop efficient Monte Carlo based

valuation methods. However, in general, a well known drawback of the plain Monte Carlo methods

is their slow convergence, which can make the estimation process very time consuming if a precise

estimator is required. Various techniques, among which control and antithetic variates, stratified

sampling and QMC methods, have recently been used for efficiency improvement over the plain

Monte Carlo. A detailed account on these techniques is to be found in Glasserman (2004). For a

recent overview of Monte Carlo methods for sampling from the VG process see Fu (2007).

As has recently been demonstrated by Avramidis et al. (2003), using low discrepancy sequences

is a very promising approach to variance reduction of the estimated payoff of a path-dependent

option. The authors have combined this approach with the so-called bridge sampling (see Moskowitz

and Caflisch 1996) and have developed a method for sampling from the gamma process. It has

been applied by Avramidis et al. (2003) to the gamma process used to randomize the time in the

Brownian motion representation of the VG process, a method, named Brownian Gamma Bridge
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Sampling (BGBS). The same bridge technique for sampling from the VG process has been inde-

pendently developed by Ribeiro and Webber (2004). Avramidis et al. (2003) and Avramidis and

L’Ecuyer (2006) have also applied gamma bridge sampling to develop the Difference-of-Gamma

Bridge Sampling (DGBS) method, based on the representation of the VG process as a difference

of two independent gamma processes (see Madan et al. 1998). Both the BGBS and the DGBS

methods utilize the fact that the gamma bridge sampling improves the efficiency of the QMC by

concentrating the variance at the first few simulated random numbers, thus reducing the effective

dimension of the valuation problem. However, these methods involve generating computationally

expensive beta random variables via numerical probability integral inversion.

Our aim in this paper is to develop a new efficient Monte Carlo method for pricing path-

dependent options, when the underlying asset is driven by a Variance Gamma process, which

requires generation of uniform variates only. It is called Dirichlet bridge sampling (DirBS) and

incorporates a multivariate (Dirichlet) generalization of the gamma bridge sampling. Our approach

can be interpreted as a multivariate bridging ’simultaneously’ over all the partition points of the

trajectory of a gamma process. It is based on the fact that the beta distribution defined by the

two increments of the gamma bridge, generalizes to a Dirichlet distribution of the increments at

all time partition points, of the gamma process, given its terminal value (see e.g. Wilks 1962 and

Kotz et al. 2000, chapter 49). Furthermore, we view this Dirichlet distributed random vector of

increments as a Dirichlet partition of the unit interval. Hence, the simulation of a trajectory of a

gamma process is interpreted as a Dirichlet division of the unit interval. This important observation

has allowed us to exploit the properties of the so-called size-biased permutation of the Dirichlet

fragments of the unit interval, which represents a size-biased Dirichlet fragment selection procedure

(see section 3.2). Thus, following this procedure, we generate the increments of a gamma process

in a decreasing stochastic order.

To achieve sufficient accuracy of the estimated price of a path-dependent option, whose payoff

is a function of the entire continuous-time sample path, the number of points in the time partition

needs to be sufficiently large which causes the mesh size of the time partition to decrease. In the
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limit, as the number of time points goes to infinity, the mesh size goes to zero, but their product

remains constant. We use the fact that under such a limit, called Kingman limit (see section 3.2),

for large enough number of partition points, the stochastically ordered Dirichlet fragments (i.e.,

the increments of the gamma process) have the so-called Griffiths-Engen-McCloskey or GEM(β)

distribution (see e.g. Johnson et al. 1997, p.237), where the parameter β is defined as the terminal

time divided by the variance rate of the underlying gamma process. The considerable advantage

which these asymptotic considerations bring to bear is that, as shown in section 3.2, the simulation

of Dirichlet fragments (and hence of the increments of the gamma process) is reduced to the

problem of simulating Beta(1, β) variates, and therefore, to simulating only uniforms (since the

cdf of Beta(1, β) is analytically invertible). Thus, the expensive simulation of beta variates via

inversion, required by the BGBS and the DGBS methods, is eliminated. A further speed up of

the DirBS method is achieved by noting that, since we generate the increments in a decreasing

stochastic order, we can take only the first few increments which are significantly different from

zero, i.e. influence significantly the gamma trajectory, hence the estimated option price. This allows

to considerably reduce the number of uniforms required to sample the gamma (and hence the

VG) process. For example, only 40 uniforms were required to produce a gamma trajectory in the

numerical examples considered in section 4. In conclusion, all these considerations, described in

details in section 3 make DirBS a competitive (multivariate) bridge sampling method (see section 4

for the efficiency gains achieved by DirBS in comparison with existing methods). It has to be noted

that in the case of a contingent claim whose payoff is a function of the path at a finite number of

(discrete) observation times, the basic (non-asymptotic) version of the DirBS method described in

section 3.1 can be applied as a competitive alternative to existing methods, e.g. BGBS and DGBS.

The structure of the paper is as follows. In the next section, we define the problem of contingent

claims pricing under the VG model and review the existing bridge sampling methods. In section

3, we develop the Dirichlet bridge sampling scheme and provide the necessary theoretical back-

ground. In section 4, the proposed method is implemented in MC and RQMC environment and

compared with the sequential sampling and the (symmetrical) DGBS method of Avramidis and
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L’Ecuyer (2006), in terms of efficiency in pricing Asian, barrier and lookback options. Comments

and conclusions are provided in section 5.

2. Pricing path-dependent options under the Variance Gamma model
2.1. Background

Assume the dynamics of the price of a financial asset is described by the risk neutral asset price

process {S(t), t≥ 0},

S(t) = S(0) exp{(ω+ r) t+X(t)} , (1)

where X(t) =X(t;ϑ,σ,κ), t≥ 0 is a Variance Gamma (VG) process, r > 0 is the risk free rate of

interest and the constant ω = [ln (1−ϑκ− (σ2κ)/2)]/κ is chosen so that E (S(t)) = S(0) exp{rt},

i.e. the process exp{X(t)} is a martingale, which imposes the requirement (ϑ+σ2/2)κ< 1 on the

parameters of the VG process.

The VG process was first introduced by Madan and Seneta (1990) and developed further by

Madan and Milne (1991) and Madan et al. (1998). It represents a Brownian motion W (t) =

W (t;ϑ,σ) with drift parameter ϑ ∈ R and variance parameter σ > 0, in which the time variable

is replaced by an independent gamma process G(t;α,λ) with parameters α > 0 and λ > 0, and

density at t given by

fG(t;α,λ) (x) =
λαt

Γ(αt)
xαt−1e−λx, x > 0,

where Γ(·) denotes the gamma function. The parameter α of a gamma process G(t;α,λ) controls

the intensity of the jumps of all sizes simultaneously, whilst λ captures the decay rate of big jumps.

In the case of the VG process α= λ= 1/κ, so that the variance rate of the gamma subordinator is

κ> 0 and its mean rate is unity.

It can be shown (see Madan et al. 1998) that the VG process can also be expressed as a difference

of two independent gamma processes

X(t) =G0 (t;α,λ0)−G1 (t;α,λ1) , (2)

with a common shape parameter α= 1/κ and scale parameters

λ0 =
2

κ

(√
ϑ2 + 2σ2

κ
+ϑ

) ,
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λ1 =
2

κ

(√
ϑ2 + 2σ2

κ
−ϑ

) .

A recent overview of the properties of gamma processes, which appear as building blocks for the

VG process, can be found in Yor (2007). In the sequel, we assume that a Variance Gamma model

has been fitted to financial data and therefore, the values of the parameters of the VG process,

X(t;ϑ,σ,κ), have been determined (see e.g. Chan 1999, Seneta 2004 and Madan et al. 1998 for

further details and ideas on how this can be done).

Now, consider the problem of pricing a contingent claim, such as an option contract, with payoff

at maturity, T , given by

CT = f ({S(t),0≤ t≤ T}) ,

where f is some function of the stock price process (1). Then, the price at inception of the contract

is

C0 = Ê
(
C̃T

)
,

where Ê denotes the expectation under some risk neutral martingale measure P̂, and C̃T denotes

the terminal payoff discounted at the (possibly stochastic) risk free interest rate.

In reality, the process S(t) is observed at some fixed points in time 0 = t0 < t1 < · · ·< tN = T ,

(or the payoff may depend on the value of S(t) at a finite number of time epochs), therefore

CT = f (S(t1), . . . , S(tN)) .

In order to estimate C0, the process S(t) is sampled at the time points 0 = t0 < t1 < · · ·< tN = T ,

using Monte Carlo methods. By generating M > 0 sample paths, M values of the discounted payoff

function, c̃mT , m= 1, . . . ,M , can be calculated. The Monte Carlo estimate, c0, of the contract price

can then be obtained as

c0 =

∑M

m=1 c̃
m
T

M
. (3)

In the next section, for the case of a VG economy, we present efficient and accurate Monte Carlo

algorithms for pricing of exotic contracts, whose terminal payoffs highly depend on the trajectory

followed by the underlying since inception.
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2.2. Bridge sampling of Gamma and VG processes

As described in the introduction, there are two bridge approaches to the construction of a sample

trajectory X(t1), . . . ,X(tN) of the VG process X(t), namely the BGBS method, which is based

on the representation of the process as a subordinated Brownian motion, and the DGBS method,

which utilizes the representation (2) of the VG process. The core part of both approaches is the

bridge sampling of a gamma process G (t;α,λ) which can be summarized as follows.

Given any three time points 0≤ ti < tj < tk ≤ T and the values of the gamma process, G (ti;α,λ)

and G (tk;α,λ), at ti and tk, respectively, consider the problem of generating G (tj;α,λ). Let Y1 =

G (tj;α,λ)−G (ti;α,λ) and Y2 =G (tk;α,λ)−G (tj;α,λ). Hence, Y1 and Y2 are mutually indepen-

dent, and Y1 ∼Gamma (g1, λ), Y2 ∼Gamma (g2, λ), where g1 = (tj − ti)α and g2 = (tk − tj)α. Fur-

thermore, Z = Y1+Y2 =G (tk;α,λ)−G (ti;α,λ) is Gamma (gZ , λ) distributed with gZ = (tk − ti)α.

It can be shown that the conditional density of Y1, given Z = z, is

fY1|Z(y1|z) =
1

B (g1, g2)

(y1
z

)g1−1 (
1− y1

z

)g2−1

z−1,

which implies that

G (tj;α,λ) =G (ti;α,λ)+ btjz,

where btj ∼Beta (g1, g2) and B (a, b) denotes the beta function.

Ribeiro and Webber (2004) show that the BGBS method, when combined with stratification

at certain time points, leads to substantial efficiency gains, relative to plain Monte Carlo, despite

the time-consuming generation of the beta random variables btj ∼ Beta (g1, g2) using the inverse

transform method. Avramidis et al. (2003) compare different algorithms for sampling from the

VG process in Monte Carlo (MC) and Quasi-Monte Carlo (QMC) environment and show that

generally, DGBS gives the maximal variance reduction, but BGBS often leads to higher efficiency

gains. The latter is again due to the expensive simulation of btj ∼Beta (g1, g2), based on the inverse

transform method, compared to generating normal or gamma variates.

Recently, Avramidis and L’Ecuyer (2006) enhanced further the DGBS method by using dyadic

partition for the time points 0≤ ti < tj < tk ≤ T and hence, by generating symmetrical beta random
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variables btj ∼ Beta (g, g) with the Fast Beta Generator of L’Ecuyer and Simard (2006). They

also find a lower and an upper bound for the resulting estimator and illustrate how in an RQMC

environment the sampling procedure can be truncated and combined with bias extrapolation. The

numerical results presented in Avramidis et al. (2003) and Avramidis and L’Ecuyer (2006) show

that the DGBS method is very competitive for the pricing of Asian, barrier and lookback options.

3. Dirichlet Bridge Sampling for Gamma and VG processes

As described in the previous section, the gamma bridge involves three time points from the chosen

time partition of [0, T ]. Given the values of the process at the two end points, it samples the

gamma process at the intermediate (bridge) point by generating a Beta (g1, g2) random variable.

This bridge technique is applied sequentially until all the points in the partition are exhausted.

A possible way to generalize this bridge construction is to base the bridge on all intermediate

time points in the partition of [0, T ] simultaneously and observe that the joint distribution of the

increments of the gamma process at the bridge points generalizes from Beta (g1, g2) to the Dirichlet

distribution, D(g1, . . . , gN) (see, e.g., Wilks 1962 or Kotz et al. 2000, chapter 49).

A significant enhancement of this Dirichlet generalization of the gamma bridge, is achieved by

considering its large sample (asymptotic) properties. This asymptotic approach is well justified,

noting that accurate valuation of path-dependent contracts, such as Asian, barrier and lookback

options, requires more frequent monitoring of the trajectory of the underlying asset and hence a

larger number of observations, N (see, e.g. Fu 2007). However, it should be mentioned that such

frequent price monitoring is not always needed and in such cases, it is more appropriate to use the

basic Dirichlet bridge sampling algorithm described in section 3.1.

3.1. The Dirichlet Bridge

The generalized bridge sampling method, which we introduce in this section, is applied to generate

trajectories of the VG process, X(t), using its representation as a difference of two independent

gamma processes, X(t) =G0(t;α,λ0)−G1(t;α,λ1), given by (2).

The following proposition establishes that the appropriately normalized increments of Gi(t;α,λi)

at a set of points 0 = t0 < · · ·< tN = T , given that the process has taken value Gi(tN ;α,λi) at tN ,
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have a joint Dirichlet distribution. We recall that the random variables θ1, . . . , θn have a Dirichlet

distribution D(g1, . . . , gn) with (real) parameters g1 > 0, . . . , gn > 0, i.e., (θ1, . . . , θn)∼D(g1, . . . , gn),

if θn = 1 −
∑n−1

j=1 θj and the joint probability density of θ1, . . . , θn with respect to the Lebesgue

measure is

fθ1,...,θn (y1, . . . , yn−1)

=

{
Γ(g1+···+gn)∏n

i=1 Γ(gi)
yg1−1
1 · · · ygn−1−1

n−1 (1− y1 − · · ·− yn−1)
gn−1

, if yi ≥ 0,
∑n−1

i=1 yi ≤ 1

0 otherwise.

Proposition 1. Define the random variables θj = Yj/Z, j = 1, . . . ,N , where Yj =Gi (tj;α,λi)−

Gi (tj−1;α,λi), j = 1, . . . ,N are the increments of Gi (t;α,λi), at the points 0 < t1 < · · · < tN =

T , with Gi (t0;α,λi) = 0 and Z = Gi (tN ;α,λi) =
∑N

j=1 Yj, i.e. Z is the value of the process at

the terminal time T . The joint distribution of the random variables (θ1, . . . , θN) is Dirichlet with

parameters gj = (tj − tj−1)α, gj > 0, j = 1, . . . ,N , i.e. (θ1, . . . , θN)∼D(g1, . . . , gN).

Proof of Proposition 1. Since the increments Yj of Gi (tj;α,λi) are independent and Yj ∼

Gamma (gj, λi), j = 1, . . . ,N , we can apply a well known result according to which the r.v.s

Yj/
∑N

j=1 Yj have the stated joint Dirichlet distribution (see e.g. Wilks 1962). �

Although the result of Proposition 1 has first been noticed in the probabilistic literature by

Kingman (1975), somewhat surprisingly, to the best of our knowledge, it has not been exploited for

the development of simulation methods for the Gamma process based on the Dirichlet distribution

and its (asymptotic) properties. Proposition 1 motivates the following straightforward algorithm

for generating a sample path from Gi (t;α,λi), i= 0,1.

1. Generate Z ∼Gamma (αtN , λi), which represents a sample value of the process Gi (t,α,λi)

at the terminal time tN = T .

2. Generate Yj ∼Gamma (gj,1), j = 1, . . . ,N

3. Calculate the value of the process Gi (tj;α,λi) at tj as

Gi (tj;α,λi) =Gi (tj−1;α,λi)+
Yj∑N

j=1 Yj

Z, j = 1, ..,N.
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Note that, at step 2, there is no need to generate Yj ∼Gamma (gj, λi), j = 1, . . . ,N since when

the ratio Yj/
∑N

j=1 Yj is evaluated, the parameter λi cancels out, due to the rescaling property of

the gamma distribution.

The above algorithm for Dirichlet bridge sampling of the trajectory of a gamma process is a

generalization of the gamma bridge sampling method developed by Ribeiro and Webber (2004) and

Avramidis et al. (2003). It is easy to implement, given that a fast and reliable gamma generator is

available. Unfortunately, standard fast gamma generators, e.g. those of Ahrens and Dieter (1974)

and Best (1983), are unstable for (very) small values of gj, which is the case in financial applications

as the ones considered in this paper. Therefore, one has to use the inverse transform method based

on the Newton algorithm when simulating the increments Yj. Our numerical experiments show

that the Dirichlet bridge algorithm based on Proposition 1 does not provide substantial efficiency

gain in simulating a gamma process, compared to the existing methods.

3.2. Asymptotic Dirichlet Bridge: the DirBS method

Despite the fact that Proposition 1 does not directly lead to substantial efficiency gains, it is an

important generalization which, in conjunction with some asymptotic arguments with respect to

the number of time points N , allows us to enhance the Dirichlet bridge sampling technique and

refer to it as the DirBS method. For the purpose of developing DirBS, let us consider equidistant

points, 0 = t0 < t1 < · · ·< tN = T , with constant mesh size ∆ = (tj − tj−1) = T/N , j = 1, . . . ,N , as

has also been assumed in other bridge sampling methods (see e.g. Avramidis and L’Ecuyer 2006).

In this case, g1 = · · · = gN = g = ∆α = ∆/κ and the distribution of (θ1, . . . , θN) simplifies to an

exchangeable Dirichlet, DN (g). Therefore, the random vector (θ1, . . . , θN)∼DN (g) has density on

the simplex

fθ1,...,θN (y1, . . . , yN) =
Γ(Ng)

Γ (g)
N

N∏
j=1

yg−1
j 1{yi≥0,

∑N
i=1 yi=1},

where 1{A} is the indicator function of the event A.

Note that (θ1, . . . , θN)∼DN (g) can be interpreted as N fragments of a partition of the interval

[0,1]. For our purpose of developing the DirBS method, it will be instructive to gain some insight
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into the way in which the probability mass of the Dirichlet distribution redistributes as the param-

eter g varies. Thus, the larger the parameter g, the more homogeneous are the fragments’ sizes

θj, j = 1, . . . ,N . In this case, the exchangeable Dirichlet distribution DN (g) concentrates mass at

the center of the simplex
{
yi ≥ 0,

∑N

i=1 yi = 1
}
. On the other hand, the smaller the value of g, the

more disparate are the sizes of the fragments θj, j = 1, . . . ,N and the difference between the largest

and the smallest fragments increases as g decreases. In the latter case, the distribution DN (g)

concentrates closer to the boundaries of the simplex
{
yi ≥ 0,

∑N

i=1 yi = 1
}
.

In order to achieve sufficient accuracy in the Monte Carlo estimation of the price of a contingent

claim, such as a general path-dependent option, whose payoff is a function of the entire continuous-

time sample path, the number of points, N , should be sufficiently large, which causes the mesh size

∆= T/N to decrease. In the limit, ∆, and hence g, converge to zero as N goes to infinity, while at

the same time the product

gN =
∆

κ
N =

T

κ
= β > 0

remains constant. This important observation motivates the next stage in developing the DirBS

algorithm at which we take an asymptotic point of view. More precisely, we look at the asymptotic

distribution of the random vector (θ1, . . . , θN) ∼ DN (g) as N ↑ ∞, g ↓ 0 while gN = β > 0. As

it has first been noted by Kingman (1975), this asymptotic distribution has a degenerate weak

limit (with each θj converging to zero almost surely, as N ↑ ∞), which implies that its direct

manipulation is impossible. However, useful results have been obtained for the decreasing order

statistics
(
θ(1), . . . , θ(N)

)
of (θ1, . . . , θN), in the limit N ↑ ∞, g ↓ 0 while gN = β > 0, known as

the Kingman limit. In particular, in the Kingman limit,
(
θ(1), . . . , θ(N)

)
converges in law to a

distribution known as the Poisson-Dirichlet distribution (see Kingman 1993, Section 9.3, pages

93-94). We will exploit this fact in developing the DirBS algorithm. In order to do so, it is useful

to recall once again that, given the value, Z, of the process at the terminal time T , the vector

(θ1, . . . , θN) completely describes a sample path from the Gamma subordinator Gi(t;α,λi). On the

other hand, following Proposition 1, it is also clear that (θ1, . . . , θN) comprises a random Dirichlet
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partition of the unit interval [0,1]. Thus, given Z, one can view the simulation of a path from

Gi(t;α,λi) as a Dirichlet division of the unit interval and utilize the properties of the so-called

size-biased permutation of Dirichlet fragments. The size bias comes from the fact that the Dirichlet

fragments are picked up with probabilities proportional to their sizes. This size-biased permutation

equivalently arises also from partitioning the unit interval and the subsequent residual subintervals,

following an appropriate beta distribution. This partitioning scheme, known as Residual Allocation

Model (RAM), generates the stochastically ordered Dirichlet fragments which arise in the size-

biased permutation procedure. In order to use this interpretation, we need to introduce some

additional notation.

Denote V1, . . . , VN−1 a sample of independent beta random variables with Vm ∼Beta(1+g, (N −

m)g), m= 1, . . . ,N − 1. Let

Lm =
m−1∏
j=1

(1−Vj)Vm, m= 1, . . . ,N − 1, (4)

LN = 1−
N−1∑
m=1

Lm =
N−1∏
j=1

(1−Vj). (5)

The random variables, Lm, m = 1, . . . ,N , are stochastically ordered, i.e. L1 < · · · < LN , and

correspond to a scheme of sequential partitioning of the unit interval, known as RAM. The random

variables Lm, m = 1, . . . ,N , arising from RAM, naturally arise also as a result of the following

size-biased sampling scheme of Dirichlet partitions (θ1, . . . , θN)∼DN (g). Given a random Dirichlet

partition (θ1, . . . , θN) of the interval [0,1], select a fragment θI1 at random so that the probability

P (I1 = i1|θ1, . . . , θN) = θi1 , and denote the size of the fragment chosen first as L1 := θI1 , noting that,

L1 ∼Beta(1+ g, (N −1)g). Rearrange the fragments as (L1, θ1, . . . , θI1−1, θI1+1, . . . , θN), which may

equivalently be written as
(
L1, (1−L1)(θ

(1)
1 , . . . , θ

(1)
I1−1, θ

(1)
I1+1, . . . , θ

(1)
N )

)
, where

(
θ
(1)
1 , . . . , θ

(1)
I1−1, θ

(1)
I1+1, . . . , θ

(1)
N

)
= (θ1, . . . , θI1−1, θI1+1, . . . , θN)/(1−L1)

is DN−1 (g) distributed, independent of (1−L1) (see e.g., Wilks 1962). Next, select at random a

fragment from
(
θ
(1)
1 , . . . , θ

(1)
I1−1, θ

(1)
I1+1, . . . , θ

(1)
N

)
with a probability equal to its size, denote its length
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as V2 and note that V2 ∼Beta(1+ g, (N −2)g). The size of the second fragment is L2 = (1−V1)V2,

where V1 = L1. Iterating until all fragments have been picked up avoiding already selected ones,

will finally yield the size biased permutation of fragments (L1, . . . ,LN). For further details on size

biased permutation, see (Kingman 1993, Section 9.6).

Denote by (π1, π2, . . . , πN) one of the N ! equally probable random permutations of the num-

bers (1,2, . . . ,N). The following proposition is a direct consequence of the exchangeability of the

Dirichlet distribution.

Proposition 2. The random vectors (Lπ1
, . . . ,LπN

) and (θ1, . . . , θN) coincide in distribution,

i.e. (Lπ1
, . . . ,LπN

)
d
= (θ1, . . . , θN)∼DN (g).

Proof of Proposition 2. Follows by noting that (L1, . . . ,LN) are obtained as a result of the

size-biased permutation of the exchangeable Dirichlet partitions (θ1, . . . , θN). �

Remark 1. Note that, in the Kingman limit, Proposition 2 does not hold since, as noted

by Kingman (1975), there is no exchangeable distribution on the infinite dimensional simplex

{yi ≥ 0,
∑∞

i=1 yi = 1}. However, the following proposition (see Kingman 1993, Chapter 9) establishes

the Kingman asymptotics of the variables Lm, m= 1, . . . ,N , which are central in developing the

DirBS algorithm.

Proposition 3. When m = o(N), in the Kingman limit, (L1, . . . ,LN)
d→

(
L̃1, . . . , L̃m, . . .

)
,

where

L̃m =
m−1∏
j=1

(
1− Ṽj

)
Ṽm, m= 1,2, . . . (6)

and Ṽm are independent random variables, Ṽm ∼Beta(1, β), with β = gN .

Proof of Proposition 3. Follows from equations (4) and (5), noting that, in the Kingman limit,

Vm
d→ Ṽm ∼Beta(1, β). �

Note that Ṽm,m= 1,2, . . . are independent, identically distributed random variables with generic

distribution Ṽm ∼Beta(1, β), hence the asymptotic distribution of (L1, . . . ,LN) no longer depends

on the parameter g and hence, on the mesh size, ∆, and the number of time partition points,
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N . Furthermore, the variables L̃1, . . . , L̃m, . . . , are stochastically ordered, i.e., L̃1 < · · ·< L̃m < . . . ,

which is due to the size-biased character of their underlying RAM, given by (6). Their distribution

is known as the Griffiths-Engen-McCloskey or GEM(β) distribution.

Proposition 3 suggests that, under the Kingman limit, for large enough fixed N , the distribution

of (L1, . . . ,LN) can be well approximated with that of the random vector
(
L̃1, . . . , L̃N

)
. However,

from Proposition 2, by randomly permuting the elements of
(
L̃1, . . . , L̃N

)
, one obtains a random

vector which is approximately Dirichlet distributed, i.e.,

(
L̃π1

, . . . , L̃πN

)
d≃ (θ1, . . . , θN)∼DN (g) .

In the latter approximate equality, the higher the value N , the better the quality of the approxi-

mation. Based on this, we conclude that, in order to simulate from (θ1, . . . , θN)∼DN(g), it is suffi-

cient to simulateN variates
(
L̃1, . . . , L̃N

)
, from theGEM(β) distribution, following the RAM given

by (6), and then randomly permute the elements of
(
L̃1, . . . , L̃N

)
, in order to obtain the required

(approximately) DN(g) distributed random vector
(
L̃π1

, . . . , L̃πN

)
. The considerable advantage of

this approach over the algorithm which follows from Proposition 1, is that generating
(
L̃1, . . . , L̃N

)
requires generation of the Beta(1, β) variates, Ṽm, for which the inverse distribution function is

F−1
Beta(1,β)(u) = 1− u1/β. Therefore, one needs only to generate uniform variates, U(0,1), and raise

them to the power 1/β in order to sample from a Gamma process, which considerably speeds up

the simulation procedure.

To summarize, instead of simulating (θ1, . . . , θN) ∼ DN(g), the elements of the random vector(
L̃1, . . . , L̃N

)
can be simulated and then randomly permuted. It has to be noted that the mean

value of any of the fragments (θ1, . . . , θN) is E[θj] = 1/N , j = 1, . . . ,N , but it can be proved that

asymptotically the smallest one decreases like N−(g+1)/g while the largest is of order

1

Ng
ln
(
N(lnN)g−1

)
(see e.g. Barrera et al. 2005). As revealed by the RAM in (6), L̃1 < · · · < L̃N forms a scheme of

sequential partitioning of residual subintervals of the unit interval, which suggests that only the
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first, say, k∗ elements in the list
(
L̃1, . . . , L̃N

)
are significantly different from zero. Therefore, one

may generate only the first k∗-largest increments which affect the price of the underlying contingent

payment, and need not generate the insignificant, nearly zero increments, whose generation sub-

stantially increases the computational burden without improving the quality of the price estimate.

This is more formally described in the following section.

3.3. Refining the DirBS method: cutting out ’small’ jumps

Formally, we are interested in determining the value k∗ ∈N such that P
(
Z
∑∞

m=k∗+1 L̃m ≤ ϵ
)
≥ p,

for some p close to 1, where Z ∼Gamma(αtN , λi) and ϵ > 0 is a preliminary fixed small number.

Obviously, the random variable V = Z
∑∞

m=k∗+1 L̃m represents the remaining fraction of the total

increase Gi(T ;α,λi)−Gi(0;α,λi), i.e. the sum of the increments of size ’nearly zero’ which need

not be generated. In order to find k∗, one needs to know the distribution of the random variable

V and in particular its cumulative distribution function, FV (x), and find the solution of

min
k∈N

FV (k; ϵ)≥ p. (7)

Next we give a proposition which allows for the exact calculation of k∗ and also present two

alternative simpler ways of estimating it. This gives rise to a further refinement of the DirBS

method which makes it an elegant, simple and efficient algorithm for simulating a sample path

from a Gamma process Gi(t;α,λi) and hence, from a VG process.

In the following proposition, an explicit expression for FV (x) is derived and as a byproduct,

the distribution of the sum of the remaining normalized increments, W =
∑∞

m=k∗+1 L̃m, is also

obtained.

Proposition 4. Let
(
L̃1, L̃2, . . .

)
be defined as in (6) and Z ∼Gamma(αtN , λi). The cumula-

tive distribution function, FV (x), of the random variable V =Z
∑∞

m=k∗+1 L̃m is given by

FV (x) =
λi

β

Γ(β)

βk∗

Γ(k∗)

∫ x

0

vβ−1

∫ ∞

v

e−λiu

u

(
ln

u

v

)k∗−1

dudv. (8)

Proof of Proposition 4. Consider the random variable

W =
∞∑

m=k∗+1

L̃m = 1−
k∗∑

m=1

L̃m = (1− Ṽ1)(1− Ṽ2) . . . (1− Ṽk∗),
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where, from (6), (1− Ṽm) are independent Beta(β,1) distributed random variables. Hence,

lnW =
k∗∑

m=1

ln(1− Ṽm) =−
k∗∑

m=1

(
− ln(1− Ṽm)

)
and it is not difficult to see that

(
− ln(1− Ṽm)

)
∼ Exp(β) and that (− lnW ) ∼ Gamma(k∗, β)

as a sum of k∗ exponentially distributed random variables. Therefore, W
d
= e−W̃ , where W̃ ∼

Gamma(k∗, β), and FW (w) = 1−FW̃ (− lnw) =
∑k∗−1

j=0 wβ (−β lnw)j

j!
, for w> 0 and k∗ = 1,2, . . . . Now,

note that αtN = gN = β and that Z ∼Gamma(αtN , λi) and W̃ are independent random variables

with a joint density function fZ(z)fW̃ (w̃). Performing the change of variables, V = Ze−W̃ and

U =Z, for the cumulative distribution function, FV (x), x> 0, we obtain

FV (x) =

∫ x

0

∫ ∞

v

fZ(u)fW̃ (− ln
v

u
)

∣∣∣∣det(− 1
v

1
u

0 1

)∣∣∣∣dudv

=
λi

β

Γ(β)

βk∗

Γ(k∗)

∫ x

0

vβ−1

∫ ∞

v

e−λiu

u

(
ln

u

v

)k∗−1

dudv,

which completes the proof. �

Although expression (8) does not facilitate the analytical solution of problem (7), the latter can

be solved numerically by using an appropriate numerical method (see e.g. the built-in function

FindRoot in Mathematica which takes a couple of seconds to find a solution). However, a simpler

way of estimating k∗, which avoids the evaluation of (8) and may serve as a practical alternative

to it, as demonstrated in section 4, is given next.

Using the fact that

E[L̃m] =

(
β

1+β

)m−1
1

1+β

(see for example Barrera et al. 2005) with
∑∞

m=1E[L̃m] = 1 as the sum of a geometric series, one

can find, k̂∗, such that

zp

∞∑
m=k̂∗+1

E[L̃m] = zp

1−
k̂∗∑

m=1

E[L̃m]

= zp

(
β

1+β

)k̂∗

≤ ϵ,

where zp is the 100p-th percentile of the Gamma(β,λi) distribution, i.e. zp = F−1
Gamma(β,λi)

(p). From

the last inequality, it follows that

k̂∗ ≥ ln (zp/ϵ)

ln(1/β+1)
. (9)
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Clearly, k̂∗ gives an estimate of the number of stochastically ordered elements in the list(
L̃1, L̃2, . . .

)
which determine the ‘large’ increments in the path of Gi (t;α,λi). A slightly different

approach of estimating k∗, can be described as follows. Assume ϵ > 0 and consider the number, k′,

of increments of Gi (t;α,λi) such that zpL̃m > ϵ, m= 1, . . . , k′, i.e. L̃m > ϵ′, m= 1, . . . , k′, ϵ′ = ϵ/zp.

Denote by Mϵ′ =
∑∞

m=1 1{L̃m>ϵ′} the random number of fragments L̃m greater than ϵ′. Following

Hirth (1997), the random variable Mϵ′ is approximately Poisson(δ) distributed, asymptotically

for ϵ′ ↓ 0, where δ = E[Mϵ′ ] =
∫ 1

ϵ′
β
y
(1− y)β−1dy. Therefore, having fixed ϵ > 0, one may calculate

δ=E[Mϵ′ ] and the estimate k̂′ can be set to be (greater then or) equal to the 100p-th percentile of

Poisson(δ) distribution, i.e.

k̂′ ≥ F−1
Poisson(δ)(p). (10)

Obviously, as an estimate of k∗, it is natural to take the smallest integer which satisfies either

(9) or (10). Our empirical tests show that both (9) and (10) yield reasonably close estimates of k∗,

(10) giving slightly higher values than (9) (see section 4). Thus, for a fixed number of time points

N , both N − k̂∗ and N − k̂′ represent good approximations to the number of jumps, N −k∗, of the

Gamma processes Gi (t;α,λi), i= 0,1, which need not be generated as being ‘nearly zero’, without

this having an effect on the final estimated price. Proposition 4 (or its alternatives given by (9) and

(10)), lead to a refinement of the DirBS method which results in its further substantial speed up

as will be shown in the next section. The pseudocode of the proposed Dirichlet Bridge method for

sampling of a VG process is given in Figure 1. Note that, in permuting the elements of the random

vector
(
L̃1, . . . , L̃k∗ ,0, . . . ,0

)
in order to obtain

(
L̃π1

, . . . , L̃πN

)
, there is no need to permute the

zero values. Different methods, which could be used in implementing this random permutation, are

to be found in Devroye (1986), Chapter 12, and Knuth (1997), p. 145 and p. 148.

4. Numerical study

In order to illustrate the performance of the DirBS method, we have applied it to pricing Asian,

barrier and lookback options. In this pricing exercise, the DirBS has been compared with the

(symmetrical) DGBS method of Avramidis and L’Ecuyer (2006), and with sequential Monte Carlo
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set Ε, p; Β ¬ T � Κ ; k* ¬ min kÎN 8FV Hk; ΕL ³ p<;
G+H0L¬ 0; G-H0L¬ 0; X H0L¬ 0;

Generate G+HTL~GammaHΒ, Λ0L;
Generate G-HTL~GammaHΒ, Λ1L;
For m = 1 to min HN - 1, k*L :

Generate U+ ~U H0, 1L; V+,m ¬ 1 - U+
1�Β

;

L
�

+,m ¬ä
j=1

m-1

I1 - V
�

+, jM V
�

+,m;

Generate U- ~U H0, 1L; V-,m ¬ 1 - U-
1�Β;

L
�

-,m ¬ä
j=1

m-1

I1 - V
�

-, jM V
�

-,m; >

IL� +,k*+1, ..., L
�

+,N M ¬ H0, ..., 0L;
IL� -,k*+1, ..., L

�
-,N M ¬ H0, ..., 0L;

IL� +,Π1
, ..., L

�
+,ΠN
M ¬ permute IL� +,1, ..., L

�
+,N M;

IL� -,Π1
, ..., L

�
-,ΠN
M ¬ permute IL� -,1, ..., L

�
-,N M;

For m = 1 to N - 1 9
G+HtmL¬ G+Htm-1L+ G+HTL L

�
+,Πm

;

G-HtmL¬ G-Htm-1L+ G-HTL L
�

-,Πm
;

X  HtmL¬ G+  HtmL- G-  HtmL; =

Figure 1 Dirichlet Bridge Sampling of a VG Process X(t) with parameters (1, κ,ϑ,σ) at a (finite) sequence of

equidistant time points 0 = t0 < t1 < · · ·< tN = T , (all generated variates are independent).

sampling of VG paths, based on Gamma Sequential Sampling (GSS). The reference set of parame-

ters, we use throughout this section, S(0) = 100, ϑ=−0.2859, σ= 0.1927, κ= 0.2505, T = 0.40504,

r = 0.0548, is taken from Hirsa and Madan (2004) and is the one used also by Avramidis and

L’Ecuyer (2006).

For the purpose of this comparison, the DirBS and the DGBS methods have been implemented

both in the plain MC and Randomized QMC environment. It is known, (see e.g., Moskowitz and

Caflisch 1996, L’Ecuyer and Lemieux 2002, Glasserman 2004, Avramidis and L’Ecuyer 2006), that

RQMC allows for a considerable variance reduction, compared to plain MC. This is achieved by

replacing the vectors of independent uniforms, generated in the MC simulation process, by so-

called low discrepancy sequences which cover the unit hypercube much more evenly than purely

random points. We have chosen to work with a d-dimensional Sobol’ sequence. The dimension of

the problem, d, is defined as the upper bound on the number of uniforms required to produce a
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simulation estimate. As is well known, methods which are characterized by a lower dimension are

more RQMC friendly in the sense that generally, they result in smaller errors in the estimate.

The dimension of the problem under the DGBS method is equal to twice the number of time

partition points at which values of VG paths are generated, i.e. d = 2N . However, the effective

dimension is relatively low, i.e. DGBS is highly QMC friendly, due to the fact that it concentrates

the variance on the first few sites of the dyadic partition, used by Avramidis and L’Ecuyer (2006)

to produce the gamma bridge points (for a formal definition of effective dimension and further

discussions see e.g. Caflisch et al. 1997).

In order to estimate the problem dimension under the DirBS method, we shall use (8) to find the

number of increments which need to be generated for each of the two gamma processes, Gi(t;α,λi),

i= 0,1, and therefore, the number of uniforms needed to simulate a trajectory from Gi(t;α,λi),

i= 0,1, (i.e., the r.v.s, Ṽm in (6)). For the chosen parameter set (κ,ϑ,σ), ϵ= 10−6 and p= 0.99998,

we have solved problem (7) and obtained k∗ = ⌈38.7357⌉= 39. One can check that the alternative

estimates (9) and (10) give k̂∗ = 39 and k̂′ = 42 for ϵ= 10−6 and p= 0.99, and for p= 0.99998, (9)

and (10) give 41 and 55, respectively. Bearing in mind that there are two gamma trajectories per

one VG path, each of them requiring 39 uniforms in order to generate the k∗-largest jumps, plus

another 39 uniforms to randomly locate them over the N time partition points, plus one uniform

used to simulate the terminal value of each gamma process, we arrive at d= 158 (or less if N < 39).

The uniform variates, required for the GSS method and in the plain MC versions of DirBS and

DGBS, have been generated using the 64-bit universal random number generator of Marsaglia and

Tsang (2004). This generator provides numbers with a 1061 period which pass all the tests developed

by Marsaglia and Tsang (2002). We use the modified version of Joe and Kuo (2003) of the algorithm

of Bratley and Fox (1988) to generate Sobol’ sequences up to dimension d = 1111 which satisfy

Sobol’s so-called Property A (a C++ code written by John Burkardt is downloadable from http://

people.scs.fsu.edu/~burkardt/cpp_src/sobol/sobol.html). For the RQMC implementations

of DirBS and DGBS, we randomize the d-dimensional Sobol’ sequence by applying a random shift

modulo 1 (see e.g. Boyle et al. 1997 and Ökten and Eastman 2004).
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The gamma random variables, required to generate the terminal value of the VG process, have

been generated by inversion, based on the Newton algorithm. In the implementation of the DGBS

method, the fast generator of symmetrical beta random variables developed by L’Ecuyer and

Simard (2006) is employed.

In what follows, the DirBS method is tested and compared with the GSS and the DGBS methods

in terms of efficiency. The efficiency ratio is defined as

EA|B =
tBσ

2
B

tAσ2
A

, (11)

where σ2 is the variance of the estimate obtained in time t for the corresponding method. When

EA|B > 1 we say that method A is more efficient than (or should be preferred over) method B and

vice versa if EA|B < 1 (see e.g., Hammersley and Handscomb 1964). Since in our case there is an

estimation bias, in computing the efficiency ratio we have replaced variance by mean square error.

For a deeper study of efficiency we refer the interested reader to Glynn and Whitt (1992).

As in Avramidis and L’Ecuyer (2006), we consider the following three options. A floating strike

lookback call option with payoff

CT =

[
S (T )− inf

0≤t≤T
S (t)

]
.

A barrier option of the type up-and-in call with a payoff

CT = (S (T )−K)
+
1{sup0≤t≤T S(t)>b},

where b > S (0) is the activating barrier and K is the strike price of the European call option

underlying the barrier feature. Specifically, we fixK = S(0) = 100 and b= 120. And an Asian option

with a payoff

CT =

(
1

T

∫ T

0

S (t)dt−K

)+

,

where K is the given strike price. In this case, we consider K = S(0) = 100.

The three options are valued for different number of equally spaced time partitions, N =

26, . . . ,212, of the interval [0, T ]. For each of the options, in order to obtain an estimate of the price,
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following (3), and an estimate of its variance, we run 100 independent replications (randomizations

of the corresponding d-dimensional Sobol’ point sets) with M = 250,000 sample paths.

Both DirBS and DGBS are tested in plain MC environment and also with different number of

time points, n≤N , where stratification is applied using a QMC sequence. The results presented

here are for the following three cases: n= 0, i.e. the plain MC case; n= 2, when a (randomized)

2-dimensional Sobol’ sequence is used to stratify the terminal values of the two gamma processes,

Gi(tN ;α,λi), i = 0,1; and n = nmax, when a (randomized) nmax-dimensional Sobol’ sequence is

used for all (possible) uniforms. This means that, in the case of DGBS, nmax = 2min(N,29), due to

the upper bound of 1111 for the dimension of the Sobol’ sequence used, and in the case of DirBS,

nmax = 158.

In Figures 2, 3 and 4, the estimated absolute bias for different number of time points, for the

lookback, the barrier and the Asian options, respectively is presented in log-log scale. To calculate

the bias, we use the estimated exact values, with 95% confidence, of 9.39805± 0.00015, 2.1575±

0.0010 and 3.68538± 0.000048 for the lookback, the barrier and the Asian options, respectively,

obtained by Avramidis and L’Ecuyer (2006), using extrapolation. As can be seen from the left

panels of Figures 2, 3 and 4, without stratification the bias of the DirBS method is greater than

that for the GSS and the DGBS methods for small number of time points, e.g. N = 26,27,28.

However, for more refined partitions of [0, T ], e.g. N = 210,211,212, DirBS has smaller bias which

can be explained with the asymptotic nature of the method. In the case of full stratification, the

bias decreases with N at the same rate for both DirBS and DGBS, with DirBS behaving more

stably, as illustrated in the right panels of Figures 2, 3 and 4.

The variance reduction achieved by using the DirBS method compared to the GSS and the

DGBS method is illustrated in Figures 5, 6 and 7 in log-log scale for the lookback, the barrier and

the Asian options, respectively. We see that stratifying the DirBS and the DGBS method at the

terminal time, tN = T , only, leads to similar reduction in the variance for both estimators, with

DirBS being slightly better and more stable. However, the fully stratified version of DGBS leads

to slightly greater reduction in the variance, compared to the fully stratified DirBS method. One
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Figure 2 Lookback option example. Estimated absolute bias: n = 0, plain MC (left panel); n = nmax, RQMC

points used for all uniforms (right panel).
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Figure 3 Barrier option example. Estimated absolute bias: n= 0, plain MC (left panel); n= nmax, RQMC points

used for all uniforms (right panel).
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(dotted lines); n = 2, RQMC points used to generate Gi (T,α,λi), i = 0,1 (dashed lines); n = nmax,

RQMC points used for all uniforms (solid lines).

reason for this is because, in DGBS, stratification is applied at a larger number of points than

in DirBS. Thus, in the case of DGBS, the values of the two gamma processes Gi(t;α,λi), i= 0,1

are stratified at the first nmax = 2min(N,29) time points of the dyadic partition used. Whereas,

for DirBS stratification is applied only in generating Gi(tN ;α,λi), i= 0,1, and the sizes and the

positions of the k̂∗ = 39-largest increments of each of the two processes Gi(t;α,λi), i= 0,1, which

leads to nmax = 158. However, it has to be noted that using a different low discrepancy sequence,

for example Korobov lattice rules, may lead to different variance reduction factors for the DirBS

and DGBS methods. For the DGBS method this has been illustrated in Table 1 of Avramidis et al.

(2003).

The efficiency gains for the three methods, compared with one another, are presented in Tables

1, 2 and 3. As can be seen, for all three option pricing examples presented here, the two bridge

methods, DirBS and DGBS, provide significant efficiency gains compared to the plain MC sequen-

tial gamma sampling method, GSS. Similar results have been observed also by Ribeiro and Webber

(2004) and Avramidis et al. (2003). The efficiency gain of the DirBS method compared to DGBS

ranges between 3.2 and 31.2 for the lookback example, 4.0 and 32.5 for the barrier option, and 1.8

and 27.3 for the Asian option example.
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In Figure 8, we give the time for a single run with M = 250,000 sample paths for the lookback

option example with full stratification for DirBS and DGBS (the PC used for the calculations

has AMD Athlon64FX–55 processor, 2.61GHz and 2.00GB RAM). The computation times for the

other two examples are very similar and therefore, are omitted. As can be seen from Figure 8,

DirBS is much faster compared to GSS and DGBS. In particular, for N = 26, it finishes in 12.27 sec,

and is 3.68 times faster than GSS and 7.74 times faster than DGBS; for N = 212, its computation
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Table 1 Lookback option example. Efficiency gains: (a) n= 0, plain MC; (b) n= 2, RQMC points used to

generate Gi (T,α,λi), i= 0,1 for DirBS and DGBS; (c) n= nmax, RQMC points used for all uniforms for DirBS

and DGBS.

N = 26 27 28 29 210 211 212

(a) 0.5 0.5 0.4 0.5 0.5 0.5 0.7
EDGBS|GSS (b) 0.5 0.5 0.6 1.3 2.5 3.6 4.0

(c) 0.5 0.5 0.7 1.4 4.0 14.3 44.1

(a) 1.6 2.5 4.1 8.2 13.6 16.0 19.7
EDirBS|GSS (b) 1.6 2.5 4.2 10.7 30.4 65.3 116.7

(c) 1.6 2.5 4.5 12.1 40.4 133.2 393.0

(a) 3.3 5.4 9.8 15.2 29.2 31.2 28.4
EDirBS|DGBS (b) 3.3 4.9 6.7 8.3 12.0 18.2 29.0

(c) 3.2 4.8 6.5 8.4 10.1 9.3 8.9

Table 2 Barrier option example. Efficiency gains: (a) n= 0, plain MC; (b) n= 2, RQMC points used to generate

Gi (T,α,λi), i= 0,1 for DirBS and DGBS; (c) n= nmax, RQMC points used for all uniforms for DirBS and DGBS.

N = 26 27 28 29 210 211 212

(a) 0.5 0.5 0.3 0.5 0.5 0.6 0.6
EDGBS|GSS (b) 0.7 1.5 2.1 5.1 7.2 9.7 7.2

(c) 0.7 1.8 4.5 11.8 15.5 19.8 17.3

(a) 2.3 5.0 7.8 14.2 15.1 16.4 13.2
EDirBS|GSS (b) 3.1 10.4 35.2 124.7 207.5 262.7 232.4

(c) 2.9 9.6 32.1 136.3 271.6 398.8 382.3

(a) 4.3 10.5 24.9 29.2 28.1 27.8 23.8
EDirBS|DGBS (b) 4.3 6.9 16.6 24.5 28.8 27.1 32.5

(c) 4.0 5.2 7.1 11.5 17.5 20.1 22.1

time is 115.95 sec, and it is 15.41 and 25.28 times faster than GSS and DGBS, respectively. The

method becomes more time efficient as the number of time partition points increases. This makes

it especially suitable for pricing contingent claims when observations over large (possibly infinite)

number of time points are needed.

5. Comments and conclusions

It is not difficult to see that the proposed Dirichlet bridge method for sampling the gamma process

can be readily applied to compute the upper and lower bounds, Lm(t) and Um(t), on the path of the
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Table 3 Asian option example. Efficiency gains: (a) n= 0, plain MC; (b) n= 2, RQMC points used to generate

Gi (T,α,λi), i= 0,1 for DirBS and DGBS; (c) n= nmax, RQMC points used for all uniforms for DirBS and DGBS.

N = 26 27 28 29 210 211 212

(a) 0.6 0.5 0.4 0.5 0.6 0.7 0.8
EDGBS|GSS (b) 0.8 1.2 1.3 1.8 2.6 2.4 2.2

(c) 0.9 1.7 5.0 16.7 45.6 71.3 107.7

(a) 1.7 3.7 7.3 12.3 15.2 16.5 21.2
EDirBS|GSS (b) 1.8 5.0 14.8 39.4 58.7 67.3 84.3

(c) 1.7 4.5 16.9 71.8 203.4 353.4 537.0

(a) 3.0 8.0 19.3 24.6 25.3 23.1 25.3
EDirBS|DGBS (b) 2.4 4.2 11.2 21.8 23.0 28.4 39.0

(c) 1.9 2.6 3.4 4.3 4.5 5.0 5.0
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Figure 8 Lookback option example. Computation time for one estimate of the price based on M = 100,000

sample paths.

process S(t), developed by Avramidis and L’Ecuyer (2006) and calculate option price estimators,

based on truncated DirBS and (Richardson) extrapolation (see section 4 of Avramidis and L’Ecuyer

2006). As noted by these authors, this is a valid approach only for options which obey a certain

monotonicity condition imposed on the payoff as a function of the path of S(t). Examining the

properties and the behavior of such estimators involving the Dirichlet bridge are beyond the scope

of this paper. Here, our purpose has been to introduce the Dirichlet bridge sampling of a gamma

process as a multivariate generalization of the gamma bridge sampling technique and examine its

relative performance.
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An interesting insight, which results from our work, is the enlightening interpretation of the

generation of the increments of a gamma process at equally spaced time points, given its value at

the terminal time, as partitioning of the unit interval into fragments, whose distribution, under

the Kingman limit, is GEM(β). Based on this interpretation, we have developed a very efficient

method, named DirBS, for simulating trajectories from a VG process, and estimating the price of

path-dependent options under the VG model.

A nice feature of the DirBS method is that the related dimension is relatively low and does

not increase with the number of time partition points, N . This and the observation that we can

simulate L̃m by inverting analytically the cdf of Ṽm (see (6) and Figure 1) makes DirBS very fast

and leads to consistent efficiency gains. The latter is due more to considerable computation time

saving (of growing relevance as N increase) rather than to greater variance reduction.

A further direction of research would be to explore the performance of DirBS under alternative

choices of low discrepancy sequences (e.g. Korobov lattice rules) and alternative ways of random-

izing the QMC (e.g. affine linear scrambling). It would not be surprising to find out that there

might be a combination of these alternatives which is more favorable to the performance of DirBS

than the chosen Sobol’ sequence and a random shift as the QMC randomization algorithm.
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