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Abstract

This thesis investigates the price discovery in the foreign exchange market using

high frequency data. Traditional exchange rate models assume market

homogeneity and the sole existence of public information. However. recent

studies suggest such assumptions are not well founded and have generated the

'disconnection' puzzle of exchange rates deviating from their fundamentals in

the short and medium term. Using EFX tick-by-tick data, we find that

information is not always available to all and the actual price discovery process

is dynamic and asymmetric. It suggests that some market participants, trading

systems or even exchange rates may possess private information. which helps

them to lead others in finding the equilibrium prices. It further reveals the

importance of studying the microstructure of the foreign exchange market,

which may in the future solve the 'disconnection' puzzle that has baffled the

exchange rate theory for the past decades.
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Chapter 1

Introduction

Traditional models of exchange rate determination concentrate on relatively

long-run aspects by using low frequency data. Two important assumptions of

these models are that the market participants are homogeneous and only public

information is available to all. By assuming homogeneous expectations and the

non-existence of private information, the exchange rate could be discovered by

objective analysis of the participants. Such a price is hence considered intrinsic

value. However, Isard (1995) suggests that ' ... it is hardly conceivable that

rational market participants with complete information about macroeconomic

fundamentals could use that information to form precise expectations about the

future market-clearing levels of exchange rates.'

Indeed, traditional macro models based on such assumptions are not well

founded and lack empirical support. For instance, Meese and Rogoff (1983) test

the forecasting performance of monetary and portfolio balance models of the

1970s and find the forecasting power of regressions based on fundamentals to be

less good than that of the simple random walk. Furthermore, their results reveal



that the explanatory power of macroeconomic data for exchange rates is poor'.

The 'disconnection' puzzle, at least in the short and medium term, is

subsequently pointed out by Frankel and Rose (1995): 'To repeat a central fact

of life, there is remarkable little evidence that macroeconomic variables have

consistent strong effects on floating exchange rates, except during extraordinary

circumstances such as hyperinflations. '

On the assumption of market homogeneity, Flood (1991) argues that, 'at the

level of detail involved in microstructural studies, the homogeneity assumption

is not an excusable flaw; in a homogeneous market why - let alone how - would

anyone trade?' In real world, investors differ in key determinants of economic

behaviours: information, beliefs, preferences and wealth. Transaction costs also

influence their demand for and supply of assets" Surveys conducted in the

foreign exchange market suggest that traders' expectations are strongly

heterogeneous and the distribution of expectations becomes wider at longer

forecast horizons".

The assumption of only public information being available in the market is

also questionable. Numerous works suggest that information is not necessarily

available to all in the foreign exchange market. There are many factors that may

contribute to the existence of private information in the foreign exchange market.

These factors include private information on central bank interventions.

I Frankel and Rose (1995) and Cheung et al. (2005) also provide comprehensive
study on this issue and reach the same conclusion.
2 See Easley and O'Hara (2003).
3 Sec e.g. Allen and Taylor (1990), Taylor and Allen (1992), Cheung and Wong
(1999), Marsh. Cheung and Chinn (2004).
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information embedded in order flow, and better interpretation of public

information". As Frankel and Rose (1995) suggest, understanding the sources of

private information and how it is transmitted among dealers may help explain

some of the apparent anomalies in the foreign exchange market.

Newly found market heterogeneity and private information in the research

of the foreign exchange market generate increasing interest in the study of

exchange rate price discovery. Price discovery is first defined as the process by

which markets find equilibrium prices (Schreiber and Schwartz (1985)). In

economic terms, in a market where the demand curve is sloping, due to the

heterogeneous propensities of the traders to buy or sell securities, it needs to find

the clearing price that balances the aggregate demand and supply. This function

is key to the efficient operation of the markets, in terms of time and the cost of

the transactions. With the rapid development of microstructure theory during the

1990s, the investigation of price discovery has evolved away from such

stochastic nature of supply and demand to information aggregation properties of

prices.'. The definition of price discovery has been changed to the dynamic

process of incorporating information into the market prices in an efficient and

timely fashion", For instance, if an asset is traded in parallel trading venues, it is

of interest to investigate which market is the first to incorporate newly emerged

information. Other issues include how trading motivations, trading mechanisms,

4 See e.g. Ito, Lyons, and Melvin (1998), Melvin and Yin (2000), Sapp (2002). and
Covrig and Melvin (2002).
5 Sec O'Hara (1995).
6 Sec e.g. Lehmann (2002), and Yan and Zivot (2007).
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market liquidity and asymmetric information affect the efficacy of the pnce

discovery process. Particularly, the existence of private information stirs great

interest, as the microstructure models suggest that market dynamics will be

affected by the presence or absence of informed traders.

Since the last two decades, several intertwined factors have contributed to

the rapid development of price discovery study in the foreign exchange market.

One is the introduction of microstructure framework into the study of the foreign

exchange marker', which is partly due to the disappointing performance of the

traditional exchange rate theories. Another important factor is the gradually

increased availability of high frequency exchange rate data, especially those of

order flow 8. Other factors include the development of more advanced

econometrics models and diversified research approaches such as survey studies

on market participants.

This thesis studies the price discovery in the foreign exchange market by

using high frequency exchange rate data. It consists of three interrelated papers

that examine the dynamic price discovery process in different exchange rate

systems or markets at high frequency by applying various research approaches.

All empirical results suggest that at high frequency. the process of price

discovery in the foreign exchange market is dynamic and asymmetric, i.e. some

systems, market participants or markets possess more information, or acquire the

7 A first comprehensive introduction of microstructure theory into the foreign
exchange market is provided in Flood (1991).
8 See Lyons (1995) for the seminal work of testing microstructure hypotheses in the
foreign exchange market using order flow data.
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information earlier than others.

The first paper, Price discovery between indicative and transaction data.

investigates the price discovery in two sets of high frequency data, namely

02000-1 and EFX data. To study the heterogeneity in the foreign exchange

market, extra information is needed to separate the data by features such as

quoting banks and their geographic locations. EFX data used throughout the

thesis are unique in that they provide prices with a quoting bank's identity and

location. Such information is unavailable in other data sets due to mostly

commercial confidentiality concerns. Although EFX data, as indicative data, are

not associated with high information quality compared with transaction data and

firm quotes, there is no comprehensive study that investigates such an issue.

Hence, this paper serves such a purpose. Three months of OEMIUSO and

GBPIUSO exchange rates data from EFX data and 02000-1 transaction data are

studied and compared over the period. Several rigorous approaches are used to

study the statistical features of and price discovery between the two data sets.

Error Correction model (ECM) based information share techniques are used to

quantitatively measure the contributions of each data system in terms of market

information. Generalized impulse response analysis is employed to capture the

dynamic interactions among the prices and order flow. The empirical results

suggest that EFX data actually contain more information and lead the 02000-1

data in terms of price discovery. Compared to previous papers such as Goodhart

et al. (1996) and Danielsson and Payne (2002), it uses much larger sample data

5



and more diversified research methods. Since currently there are no data sets

containing more detailed information on exchange rate prices than the EFX data

set", such investigation confirms its unique value and calls for more future work

to be conducted upon it.

The second paper, Do top banks in FOREX business know more,

investigates directly how macro news is mapped into exchange rates through the

dynamic information sharing process between major trading banks and the rest

of the banks. Traditional asset market approach assumes exchange rates instantly

incorporate all publicly available information, making public information

useless for producing excess returns. However, in real world information may be

distributed asymmetrically among traders and the news can be digested in

prolonged time by the market. Even if all traders receive the same news in the

form of public announcement, they still may interpret it differently. As a matter

of fact, public announcements only rarely provide a direct statement of the value

of the asset. In most cases one has to make use of other information to figure out

the impact of the news on the asset value, which causes individual trader with

fragmented information to have different interpretations over the same public

announcement. Financial markets cannot be well understood unless the

asymmetries in the information dispersion and assimilation process are studied.

Employing ECM-based information share techniques invented separately by

Gonzalo and Granger (1995) and Hasbrouck (1995), the paper investigates the

9 Lyons (2001) offers a good survey on current available high frequency data in the
foreign exchange market.
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information sharing process of the foreign exchange dealers around the major

U.S. announcements. It is found that top trading banks take a dominant share of

market information throughout our sample period. Their information share

further expands during some major categories of U.S. news announcements.

Previous studies of private information in the foreign exchange market involve

factors such as the closer ties to the central bank of certain commercial banks

(Sapp (2002» and dealers' advantage of geographical location which helps them

in obtaining private information (Covrig and Melvin (2002». Our findings

suggest that market participants, differentiated by their sizes, are heterogeneous

in terms of their information collection and interpreting capability.

The third paper, Asymmetric linkages between high-frequency exchange

rates, extends the study of price discovery into cross-currency volatility linkages.

This study is motivated by the precursory findings that currency order flow

contains private information, Since DEM/USD generates far larger order flow

than GBP/uSD in global trading, it is hypothesized that more information is

contained in DEM/USD. It is also motivated by Lyons and Evans' (2000b)

portfolio shifts model in which information integration is important in multi

exchange rates price discovery. The pricing of exchange rates are interlinked by

information embedded in each of them. If more information is incorporated in

DEMIUSD than in GBP/USD, the volatility transmission between them should

be asymmetric, with more spillover from OEM ruso to GBP/uSO than the

reverse. Two multivariate GARCH models are employed to test the hypothesis



and the findings provide supportive evidence, One IS the

VARMA-GARCH-CCC (VGC) model, which IS a combination of the

VARMA-GARCH (Ling and Mcleer (2003)) and the constant conditional

correlation model (Bollerslev (1990)). It is a restricted-correlation model but

allows direct interpretation of the estimated parameters. However. it lacks the

full interaction of the elements of covariance matrix and error terms. Therefore

we add BEKK model to remedy the deficiency and use 'news impact surface'

(Kroner and Ng (1998)) to interpret the result. Our findings suggest that

information asymmetry not only exists at the micro level, such as among market

participants, it also exists among exchange rates. It is the first volatility linkage

study using high frequency exchange rate data, as far as we know.

Thus, the thesis is making two general contributions to the literature on

microstructure of finance. It finds that the homogeneity of market agents at

lower frequency, weekly or daily, disappears in high frequency foreign exchange

rate data,. This uncovered heterogeneity can be explained by the different risk

profiles, information sets, and institutional constraints of market players. For

instance, it suggests that the different size of market players could contribute to

their information advantage in both daily trading and interpretation of macro

announcements. The other contribution is the finding that the information is

distributed asymmetrically among markets or their participants. One piece of

supporting evidence is that, although exchange rates all carry important macro

information concerning the global and national economy, some exchange rates

8



contain more such information than others and the information could be

transmitted to other exchange rates through volatility linkage. More detailed

description of the contributions is however presented in each of the three papers

that form the three main chapters of the thesis.

The organization of the thesis is as follows. Chapter 2 gives an overview on

the features of the foreign exchange market and recent development of theories

and studies in the field. Chapter 3 investigates the price discovery between two

sets of data used by current studies and provides critical support for using EFX

data as this thesis does. Chapter 4 studies the information sharing between big

banks and the rest of the market and how it changes during twenty one

categories of U.S. macro news announcements. Chapter 5 tests the asymmetric

volatility linkage between two major exchange rates using multivariate GARCH

models. Chapter 6 summarizes the main findings and suggests future research

directions.

9
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Chapter 2

The Foreign Exchange Market

and Theory Development

2.1 Introduction

The foreign exchange market possesses many unique features that differentiate

itself from other financial markets such as bond and equity markets. And these

exact features make the study of the foreign exchange markets intriguing,

challenging and equally promising. For instance, although the foreign exchange

market is the most liquid market in terms of its colossal global turnover, the

significant deviations from uncovered interest rate parity make it difficult to be

termed as an efficient market under the traditional efficient market framework 10.

Another example is that the actual transactions are executed in parallel markets,

including inter-dealer and customer-dealer markets, making the foreign

exchange market largely a decentralized market, which is in stark contrast to

equity market where centralization takes dominant role.

Only by understanding the institutional features of the foreign exchange

10 See in Taylor (1995) and Sarno and Taylor (2002).
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market, could one establish realistic assumptions and approaches to the study of

this market. And this understanding of the market details is exactly the

foundation of new models that bridge the macro and micro approaches and

create innovative methods to tackle the 'disconnection' puzzle in the foreign

exchange market!'. As Frankel et al. (1996) correctly put it: 'it is only natural to

ask whether empirical problems of the standard exchange-rate models ... might

be solved if the structure of foreign exchange markets was to be specified in a

more realistic fashion. '

This chapter is hence divided into two parts. The first half gives an

overview of the institutional features of the foreign exchange market, while the

second half focuses on the current development of exchange rate theory.

2.2 Features of the Foreign Exchange Market

In this study, foreign exchange market mainly refers to traditional foreign

exchange market or spot market in particular. Although there are many

important market features to be discussed, only three aspects that are closely

related to the thesis are presented and analyzed, i.e., recent market activities.

decentralized market structure and market heterogeneity. However. for a

thorough review on the structure of the foreign exchange market, one could refer

to Lyons (2001), Sarno and Taylor (2002), and Sager and Taylor (2006).

II See e.g. Evans and Lyons (2002a. b). and Bacchetta and Wincoop (2006).
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2.2.1 Recent Activities of the Foreign Exchange Market

Compared to other markets, the turnover generated by the foreign exchange

market is huge. In April 2004, the average daily global turnover was estimated at

$1.9 trillion (Table 2.1). Of this total turnover, spot transactions. outright

forwards, and foreign exchange swaps take $621 billion, $208 billion and $944

respectively. As foreign exchange swaps do not generate order flow, hence

impose no significant effect on exchange rates 12, spot transactions are quite

important judged by its share in the remaining turnover.

The April 2004's global trading volume is a 57% increase over April 2001 's

figure of $1.2 trillion. BIS (2005) considers the strong surge is supported by

several factors. One is that between 2001 and 2004, the trendy exchange rates

and relatively high volatility cause the momentum strategy, i.e. buying

currencies that appreciate persistently, to be quite successful. Another strategy

called 'carry trade' is also widely taken by currency traders. It takes advantage

of the interest differentials between two currencies by borrowing low interest

rate currency to build position in high interest rate currency, hoping that the

latter does not depreciate significantly. As a matter of fact, such a strategy, if

applied by considerable portion of the dealers in the markets. can actually

depress the funding currency and push up the target currency. which make the

12 FX swap involves transactions with equal sized but opposite-direction transactions.
Sec Lyons (2001).



strategy even more profitable. With more asset managers and hedge funds

treating currency as an asset class, the search for yield also contributes to the

increase of trading activities in the foreign exchange market':'.

The decomposition of turnover by types of counterparties has changed

considerably (Table 2.2). The share of trading between reporting dealers

continue to fall from 59% in 2001 to 53% in 2004. The share decrease is first

caused by the ongoing consolidation in the banking industry. During 10 years of

the 1990s, the combined market share of the top ten dealers has risen from

around 40 percent to around 50 percent". The number of banks accounting for

75 percent of global turnover has also declined significantly for the past 10 years

since 199515
. Trading between banks and financial customers rose strongly from

28% to 33%, which could be mainly explained by the increased activity of

hedge funds and commodity trading advisers (eTA) and continuing growth of

trading by asset managers. The share of trading between banks and non-financial

customers also increased slightly to 14%. It reflects the fact that, with global

increasing profitability of firms, corporate treasurers follow the investment

strategies used by financial investors in their search of excess returns.

As the international money, the dollar is still the most traded currency,

taking one side of 890/0 of all transactions. Euro and yen are next two most

traded, with their shares of total turnover being 37% and 200/0 respectivcly, The

13 Galati and Melvin (2004).
14 SIS (1999a).
15 SIS C:~005).
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share of pound sterling increased from 13% to 17%, mainlv due to its

investment vehicle and valuation effects.

Similar to the decomposition by types of currencies, the geographical

distribution of the turnover did not change substantially. UK still attracted the

largest share of global trading, accounting for 31% of total turnover. US

increased its share from 17% to 19%. The remaining most active trading centres

are Japan (8%), Singapore (5%), Germany (5%), Hong Kong SAR (4%),

Australia (3%) and Switzerland (3%).

2.2.2 Decentralized Foreign Exchange Market

Decentralized market is defined as where 'prices are quoted and transactions are

concluded in private meetings among agents.' 16 In foreign exchange markets,

market-makers, brokers and customers are separated physically from each other,

and transactions are conducted through telephone, telex and computer network.

The actual transactions take place in a two-tier market where customers trade

with dealers in the first tier and then dealers trade with each other in the second

tier of interdealer market.

Nowadays, increasing portion of deals also goes through brokered markets,

which may be classified as quasi-centralized. Such a market system is different

from centralized market like most equity markets. Centralized market is believed

16 See Wollinsky (1990).
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to be more efficient by providing transparency and eliminating arbitrage

opportunities17. However, decentralized market is more stable and less likely to

crash, as Perraudin and Vitale (1996) suggest.

One direct effect of decentralized market is that the prices are fragmented,

I.e. transactions could occur simultaneously with different prices in different

trading venues, though the deviations should not be sufficiently large. Another

implicit effect is that the market lacks transparency. In the foreign exchange

market, there is no disclosure requirement on the transactions. Hence trade or

order flow is not fully observable to traders. As a consequence. order flow

contains less information than it would do in centralized market, and the speed

of information transmission can also be more slow.

Electronic brokers, such as Reuters Dealing 2000-2 system 18 and

Electronic Broking System (EBS) Spot Dealing system, are rapidly gaining

market share from traditional indirect interdealer market. Reuters Dealing

2000-2 service is an anonymous electronic matching application for the foreign

exchange spot market. More than 1,100 banks subscribe to the service and they

are distributed over 40 countries. EBS spot is an order-driven screen based

electronic FX trading system. In its April 2004 survey, Bank of England reports

that 66 percent of the inter-dealer spot business in the UK is executed through

EBS system. Regarding the trading decomposition of currency pairs. euro/U'Sl)

and USD/JPY are traded primarily on EBS, while GBPIUSO is traded primarily

17 Sec Garbade (1978), Glosten and Milgrorn (1985).
18 Now it has been updated to 03000.
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on Reuters Dealing 2000-2.

The changing structure of the foreign exchange market gives rise to new

challenge on the study of the market. As micro foundation becomes important

part of the modelling of the foreign exchange rates, it is imperative to correctly

capture the evolving institutional features of the market. It also requires future

studies to select data from more representative data source when electronic

trading systems shift their market dominance.

2.2.3 Heterogeneous Market Participants

An important flaw of traditional macro models is negligence of micro

foundation in the foreign exchange market. Newly established exchange rate

models however realize such a problem and begin to bring realistic market

behaviour into their innovative approaches. Therefore to understand the market

participants, such as their trading motivations, is imperative in correctly

modelling the price discovery process. In this section, different classifications of

market participants are introduced to help us understand the ultimate driving

force of exchange rates.

One simple classification of the market participants would be the dealers

and customers. In the interdealer market, dealers include market makers.

leverage traders, and proprietary traders. Market makers provide liquidity to

customers and improve market efficiency by executing customer orders with

18
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best available prices. Traditionally, market maker would adjust spread to protect

themselves from informed customers. The enhanced market competition

however forces market makers to focus on one side of the market at a time to

facilitate customer trades instead of seeking profits'". Leverage traders focus on

short term investment windows, such as hourly or daily, and mainly deal with

large trading banks orders. Proprietary traders share the same investment

horizon as leverage traders, however with more risk control concern from their

senior management. In general, risk control measures have been greatly

enhanced especially smce the Long-Term Capital Management cnsis, Risk

management practices like Value at Risk (VaR) have been widely applied to

limit the risk taken by dealers. Greater awareness of risk at the micro level in

some way contributes to the less opportunity of extreme event in the

marketplace.

Customers are in the outer layer of the two-tier foreign exchange market

and they access the liquidity of the interdealer market via dealers. Customers in

the foreign exchange market include corporations, hedge funds, commodity

trading advisors (CTAs), central banks and individual investors. Customer

trading has been the key to the answer of the disconnection puzzle embedded in

the traditional macro models. as new micro models suggest. For instance, Evans

and Lyons (2004) find that customer order flow at Citibank forecasts up to half

of changes in the U.S. and German fundamental variables.

19 See e.g. in Daniclsson and Payne (2001).
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Customers can be categorized into different classes using different criteria.

For instance, Sager and Taylor (2006) differentiate them in three distinctive

ways. One is passive versus active customers, which mainly depends on their

trading strategies. Most financial customers, i.e. hedge funds and CTAs. fall into

active customer category. Active customers conduct profit seeking investment

and implement active portfolio investment strategies. Passive customers could

be multinationals that passively purchase or sell their currencies according to

their business needs such as dealing with international merges and acquisitions,

international revenue accruals and hedging demands. An alternative customer

classification would be informed and uninformed investors. Customers are

treated as informed if the information they possess help them better predict the

future move of exchange rates. Such investors could be large banks, central

banks, and possibly some hedge funds. Large banks are capable of generating

large customer order flow that could contain fundamental information. Major

central banks can directly influence the exchange rates by openly intervening the

foreign exchange markets. Nowadays, Sovereign Wealth Funds (SWFs) that

manage a nation's savings become another important source of customer order

flow that is closely watched by other market participants.

2.3 Development in the Exchange Rate Theory

The exchange rate theory has entered a new stage SInce the criticism of
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traditional macro models in the 1980s. The new micro approach that combines

traditional macro theory and micro foundation is one of the major theoretical

break-through that appears to be promising in solving the disconnection puzzle.

Some other approaches such as chaotic models also show alternative attempts to

tackle the challenge. In the first part of this section, new theories that tend to

correct the traditional macro models are introduced. Due to the critical

importance of the order flow in establishing hypotheses throughout the thesis,

the second part stresses the theoretical implications of order flow in the price

discovery process. In the last section, the literature on private information in the

foreign exchange market is reviewed to reveal academic efforts to correct one of

the fundamental flaws of the traditional macro models.

2.3.1 From Macro to Micro Approaches

The unsatisfactory performance of the traditional macro models prompts new

studies based on more realistic observation of the day-to-day running of the

foreign exchange market. Goodhart is one of the great pioneers that cast their

eyes into the microstructure of the market and raise fundamental challenges on

the traditional macro models. Based on his nearly two decades' experience in the

Bank of England, Goodhart finds that many assumptions of the 70s and 80s

macro models do not fit into the reality of the marketplace. For instance, in

challenging the homogeneity assumption. Goodhart (1988) remarks. 'the basic



information that speculators use can reasonably vary. As already noted, it is

perfectly rational for some to assume (the continuation of) random walks; others

may use fundamental analysis and predict some reversion to a long-term

equilibrium; others again may use even technical analysis (Chartism).' Such

observation is later confirmed by Allen and Taylor (1990).

Lyons (1995) is the first to formally test microstructure paradigm in the

foreign exchange market. In 1996, the NBER's publication of a collection of

essays on the microstructure of the foreign exchange market becomes a

milestone for the development of the new approach to the study of price

discovery in the foreign exchange market. The Microstructure Approach to

Exchange Rates (2001) is Lyons' invaluable attempt to synthesize contemporary

research to build a new hybrid model that bridge the gap between the macro and

micro models to better explain and forecast the exchange rate movements.

In the new micro model of the foreign exchange market (Evans and Lyons

(2005)), the key emphasis has been put on the information approach of the

microstructure theory, instead of the inventory and industrial organization

approaches that are also prevalent in other microstructure models. In contrast to

traditional macro modelling of exchange rates, new micro model admits that the

information needed to form equilibrium prices is dispersed at micro-level. Only

by aggregating the heterogeneous micro-level activity can the market produce

macro measures such as consumption. inflation, money demand and output.

Many papers have found that order flow performs such an information
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aggregating function, which would be introduced in the next section.

There are also other lines of research that aim at solving the same

disconnection problem but with different approaches. The new open-economy

macro approach establishes fully specified micro-foundations under a general

equilibrium framework, which also allows for rigorous welfare analysis20.

However, it inherits many assumptions from the traditional monetary models

such as continuous stock equilibrium in money markets and short-run PPP. It is

also sensitive to the particular specification of the micro-foundations and thin on

the information environments in which it operates.

Bacchetta and Wincoop (2003) explicitly introduce investor heterogeneity

into their model to explain the disconnection puzzle. Two types of

heterogeneous information are incorporated into the model. One type is the

dispersed information of investors about future fundamentals. And the other type

is non-fundamentals based heterogeneity that involves rational investors who

trade for liquidity or hedging demand. Based on the assumption of rational

expectation, their model suggests that greater dispersion of information across

investors can generate greater price impact from non-fundamental trades.

Although the conclusion is appealing, more work needs to improve the rational

expectation assumption and details of market heterogeneity such as different

types of investors. For instance, Bacchetta and Wincoop (2007) believe that

random walk expectations are common when using carry trade strategies. i.e..

20 For a thorough review of the new-open macro approach, see in Obstfeld and Rogo
(1996), Sarno (2000) and Lane (2001).



borrowing low interest rate currency to invest in currency with higher interest

rate without considering exchange rate movement". Another fact is that the

order flow generated by financial institutions introduces positive exchange rate

returns while order flow generated by corporate (non-financial) has opposite

effect on exchange rate22
.

Chaotic models of foreign exchange markets (Grauwe et al. (1993)) are

based on the criticism of impractical rational expectation assumption implicit in

the 'news' model (Mussa (1979)). In rational expectations literature, it is

customary to neglect the explosive speculative bubble which may be an

alternative answer to the disconnection puzzle. A simple market behaviour

model in foreign exchange market may consist of two types of market

participants, namely fundamentalists and chartists. Fundamentalists base their

expectation on their structural model of the economy, while chartists extrapolate

past movements of exchange rates. By ignoring the market impact of the

chartists, the fundamentalists do not qualify as having rational expectation. The

destabilizing influence of chartists can therefore lead to market chaos as

simulations show. It hence explains why the foreign exchange market deviates

from its underlying fundamentals. However, chaos models are highly sensitive

to the initial conditions and values of some of the parameters. Another problem

is that in order to prove the existence of chaos, a large number of observations

21 For more empirical evidence on carry trade, see Bazan et al. (2006), and Burnside
et al. (2006).
22 Sec e.u., Fan and Lyons (2003).
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over a long horizon are needed, which is difficult given the relatively short

floating experience of major exchange rates.

2.3.2 Order Flow and Fundamentals

However, all this rapid development in the study of the foreign exchange market

for the past two decades could have been unimaginable without the newly

emerged high frequency data, and those with order flow information. Order flow

is a measure of net buying pressure defined as the net of buyer- and

seller-initiated currency transactions (Lyons (2001)).

The standard macro models are based on one important assumption that

only public information matters, i.e. there is only common knowledge

macroeconomic information exists in the market place. However, models based

on such assumption fare poorly in forecasting short and medium term exchange

rate. Since Meese and Rogoff's (1983) seminal paper of testing the performance

of the traditional macro models, it has been widely accepted that the public

information approach is deficient. A thorough study of the market would suggest

that many variables that join the determination of the exchange rates are not

known to everyone, such as investors' individual risk preferences, money

demands, hedging demands and firms' productivities.

Therefore. in finding the equilibrium price, the foreign exchange market

needs to aggregate the dispersed information in a timely fashion. However, the



foreign exchange market lacks transparency due to its decentralized market

structure. Dealers can only gamer information from their own customer order

flow, while individual customer has no means to know each other's information.

Such information environment makes order flow the key to the determination of

exchange rates.

A series of studies by Lyons and Evans, among others. suggest that order

flow could be a key channel to aggregate the dispersed private information".

The dispersed information model/" consists of a two-stage trading mechanism

that first absorbs fundamental information from customer trading and then

translates it into equilibrium exchange rates through interdealer trading. The role

of customer order flow therefore is important as it allows dealers to aggregate

macro information that dispersed among customers that create real economic

activities. For instance, Payne (2003) finds that around 40% of information

incorporated in the interdealer system is transmitted through order flow.

Nonetheless information distilled from customer order flow largely depends on

the size of transactions a dealer could generate and it contains considerable

amount of noise.

2.3.3 Private Information in the Marketplace

Realizing the heterogeneity in the marketplace, one line of research starts to

23 See c.g. Covrig and Melvin (2002). Payne (2003). Evans and Lyons (2004) and
Rime, Sarno and Sojli (2007).
24 Sec e.g. Lyons (2001), Evans and Lyons (2002a, b). and Evans and Lyons (2007).
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focus on finding private information that has previously been ignored under

traditional macro economics framework in foreign exchange market. There are

several channels that could contribute to dealers' private information, such as

dealers' nationality, close relations with central banks, and large trading capacity.

especially with customers.

In the foreign exchange market, information, especially macro news, is

crucial to the pricing of exchange rates. However, public news is mostly

announced with fixed schedule and therefore only reflects the past state of the

economy. Dealers located in a certain economic zone have advantages of more

information sources for local economic activities, especially from customers.

Therefore they stand a better chance to correctly forecast the performance of the

economy. For instance, Covrig and Melvin (2002) investigate the USD/JPY

market. They find the quotes from Japanese traders lead the rest of the market

when the informed market participants are active. Price discovery test also

suggest that Japanese quotes contribute more than the rest-of-the-world during

such period.

Another line of studies directly investigate the central bank interventions'

effect on private information. Central bank intervention is a unique feature that

differentiates foreign exchange market from other financial markets. Central

bank's direct involvement in the trading of targeted currency sends signal to the

market and changes their expectation on the equilibrium prices. However,

central bank is also a customer in the foreign exchange market. Its selection of
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trading banks suggests that certain banks may have superior access to such

information and cause them to lead others in price discovery, For instance.

Peiers (1997) find that Deutschebank leads other banks in price quoting up to

one hour prior to Bundesbank intervention. Sapp (2002) also confirms that result.

Dominguez (2003) suggests that some traders know the Fed's intervention at

least one hour prior to its public release.

Survey studies on the dealers of the FX markets also shed some lights on

the issue
25

. For instance, in the survey conducted by Cheung and Chinn (2001),

fifty percent of the surveyed dealers believe that large players in the foreign

exchange markets possess a competitive advantage. Such an advantage derives

from better information and a large customer base. The latter is directly linked to

customer orders that contain dispersed information on the fundamentals. As

Goodhart (1988) suggests, 'A further source of informational advantage to the

traders is their access to, and trained interpretation of, the information contained

in the order flow.'

As the state of economies is revealed gradually and disparately to foreign

exchange dealers, with little information flow among each other due to large

portion of trades being carried out under the opaque decentralized interdealer

system, any information garnered or deduced from all possible non-public

sources could become private information. For example, large banks could

deduce information on trade balance from their customers that conduct

25 Sec, e.g.. Cheung and chinn (2001), and Cheung, Chinn and Marsh (2004).
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international trade long before the public announcement 26.

26 Lyons (1997) tested tradebalance's effect on traders trading. He found that the real
trade in goodsand services generates FX orders that provide information to dealers
about trade balances long beforepublished statistics are available.
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Table 2.1

Global foreign exchange market turnover

Daily average in April, in billions of US dollars

1989 1992 1995 1998 2001 2004
Spot transactions 317 394 494 568 387 621
Outright forwards 27 58 97 128 131 208
Foreign exchange swaps 190 324 546 734 656 944
Estimated gaps in reporting 56 44 53 60 26 107
Total turnover 590 820 1,190 1.490 1.200 1,880

Notes: The figures have been adjusted for local and cross-border double-counting. Non-L'S dollar

legs of foreign currency transaction were converted from current US dollar amounts into original

currency amounts at average exchange rates for April of each survey year and then reconverted into

US dollar amounts at average April 2004 exchange rates.

Table 2.2

Reported foreign exchange market turnover by counterparty

As a percentage of global turnover

1995 1998 2001

With reporting dealers 64 64 59

With other financial institutions 20 20 28

With non-financial customers 16 17 13

Loc~ 46 46 43

Cross-border 54 54 57

Notes: The figures have been adjusted for local and cross-border double-counting.

excludes estimated gaps.

2004

53

33

14

38

62
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Chapter 3

Price Discovery between Indicative and

Transaction Data

3.1 Introduction

With more quotes and transaction data being available the value of the indicative

data has gradually been downgraded. The excessive and sometimes irrelevant

quotes from aggressive banks that need to build up a market presence, and the

occasional quoting strategy of copying quotes from fellow banks has resulted in

indicative data being treated with caution when extracting information from

them.

However, formal and conclusive research on the issue has yet to be

provided. The few earlier papers are based on a very short sample period of

either one day, or one week. For example, Goodhart et al. (1996) compare one

day of OEM/USO EFX data with those from 02000-2. but with no time stamp

on the data. The two data sets are matched by maximising the correlation

between the transaction and indicative data. They find that at 10 minute

frequency the statistical discrepancy between the two data sets IS largely
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insignificant.

Danielsson and Payne (2002) extend the time window to five days (6th to

the io" of October, 1997), which is still too short for any meaningful conclusion.

They process the data at 20 seconds frequency as a compromise between the

different frequencies of the two series. Basic statistics, such as quote frequency.

spread and return moments are investigated and compared for the two data sets.

Using Hasbrouck's ECM based information share, they find that D2000-2 has a

dominant role in pricing the information except during midnight hours. However,

all these differences disappear when they aggregate the data into 5 and 10

minute frequency.

In our paper, we use indicative data from Reuters high-frequency EFX

quotes on the DEM/USD and GBP/USD. The corresponding transaction data are

D2000-1 inter-dealer transaction data on the same currency pairs.
27

Our sample

data span 82 trading days, increasing substantially the time window compared to

previous work, and making our empirical tests more reliable. Furthermore,

instead of only focusing on DEMlUSD, we also introduce GBP/uSD to make

the comparison of the two data sets more conclusive.

We employ various methods to compare the indicative data and their

corresponding transaction data. We conduct first cross correlation tests to

investigate the lead and lag relation between the indicative and transaction return

series. We find that both indicative currency pair data sets lead transaction data

27 The EFX and Reuters D2000-1 data sets are provided by Olsen & Associate and

Martin Evans respectively.



by around 5 to 10 minutes. We then use Hasbrouck's (1995) information share

technique to recover the information content of the two data sets, which further

suggests that indicative data have the dominant role in mapping the fundamental

information into the prices. We vary the data frequency of the data by using real

transaction time, 5 and 10-minute calendar time frequency to test the robustness

of our results. Furthermore, we perform our tests for different trading sessions

according to the opening and closing times of major foreign exchange markets

in order to eliminate the trading zone effect on the 24-hour global foreign

exchange trading.

Finally, due to the growing importance of order flow in exchange rate

theory, we investigate whether our indicative data are relevant to the relationship

between the order flow from the D2000-1 data and transaction prices. Order

flow is the difference between the volume of dollar buyers initiated trades and

that of the seller initiated trades. Micro-based foreign exchange models treat

order flow as an important channel to map the widely dispersed fundamental

information on to exchange rates. In Lyons and Evans' various models (see e.g.

Lyons 2001), the causality runs strictly from order flow to exchange rates. By

applying generalized impulse response method to both price series and order

flow, we first find that the D2000-1 prices take longer (up to 5 to 10 minutes) to

absorb one standard error of shock from the EFX price, compared to the time

that EFX price takes to absorb one standard error of shock from the D2QOO-l

price. This confirms the results of the cross-correlation test. Adding to these
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findings is that the shock from EFX data imposes similar impact on order flow

as the shock from D2000-1. However, we find that there is no significant impact

from the shock of order flow to prices at both 5 and 10 minutes frequency.

Though the prices and order flows display obvious co-movements during our

sample period, it seems that order flow has more of a latent response to changes

in prices, which is in contrast to Lyons' (2001) claim that order flow explains

exchange rates at lower frequencies (1 hour or daily frequency). Granger

causality tests confirm this result and cast doubt on the importance of order flow

as an important determinant of exchange rates at high frequency.

The paper is structured as follows. In section 3.2, we give a description of

our data sets and how we process them before we conduct our empirical tests. In

section 3.3, we carry out a simple lead-lag return analysis and then the routine

unit root and cointegration tests. In section 3.4, we estimate the Hasbrouck

information share for both prices. In section 3.5. we introduce the order flow to

the price data and perform generalized impulse response analysis and Granger

causality tests. In the final section, we briefly summarize the results and the

significance of our findings.

3.2 Data and Sample Details

3.2.1 Data

EFX indicative high-frequency data are collected from Reuters EFX page. These



tick-by-tick data are provided by different participating banks with each bid and

ask pair stamped with time down to the second and other information, such as

dealer's bank code and location. Indicative quotes are free from transaction

obligations and are considered more as an advertising method to maintain the

banks' market presence. However, one should also note that due to reputation

concern, the quote would not deviate too much from the market price. Another

important feature is that indicative data are not subjected to the consent from any

other party like transaction data and hence, are capable of instant update when

news hit the market.

Reuters 02000-1 data are inter-bank transaction data. An electronic record

is produced because quotes and trades are executed electronically. Each deal is

time stamped to seconds with transaction size and transaction signs". Unlike

EFX data, transaction data do not usually include detailed information on the

involved counterparties; therefore not allowing any investigation on the

existence of heterogeneous information.

3.2.2 Sample Details

Eight fields are included in EFX data: date, time, bid, ask, nation, city, bank and

filter. Reuters 02000-1 contains nine fields: month, day, hour, minute, seconds,

time index, transaction sign, price, and volume (see Table 3.1). At first glance,

28 If it is dollar buyer initiated trade, 1 is recorded. Otherwise 0 is tilled in.



EFX data provide more information on the quoting bank's identity, while

02000-1 offers umque record of the transaction signs and trading volume.

although the later figures lack accuracy'",

The sample data span from 1st of May to so" of August 1996. with a total

of 121 calendar days, including weekends and holidays. There are 313.845 and

612,260 quotes in GBP/USO and OEM/USO respectively in the EFX data set,

which are much larger than those of 02000-1, with corresponding 52.318 and

257,398 ticks of data. This difference is more obvious in GBPIUSD. with the

size of EFX data being nearly six times that of the 02000-1.

To check the basic statistical characteristics of both data sets, we first plot

the average intraday quote frequency of the data sets in both currency pairs in

Figures 3.1 and 3.2. Each half-hour session's total quotes (trades) are divided by

the daily total quotes (trades). The peaks and lows of the two data sets generally

coincide with each other throughout the day. However, the transaction data

reveal more concentrated trading activity during London and New York trading

hours. Indicative data instead display less dramatic rise and fall of quoting

activity during these sessions.

Another method to study the intensity of the quoting or transaction

activities is duration, which stands for the elapsed time (in seconds) in between

two neighbouring quotes or transactions. Following Engel and Russell (1997).

29 See Evans (2002). Due to lack of information on the exact size of each trade, he
aggregates the transaction signs of the trades. which took place during each time
interval as a proxy for the volume figure.



we eliminate the impact of automatic quoting by excluding those quotes with

price changes of less than 5 basis points in the indicative data. Both the EFX and

02000-1 data sets share the same highest clustering of duration under 10

seconds, nearly 17% of all quotes (see Figures 3.3 and 3.4). From 40 seconds on,

the duration patterns deviate from each other, with EFX experiencing a much

more gradual decline in density while 02000-1 swinging around EFX. One

significant feature of 02000-1 is its relative lack of transaction duration of near

50-60 seconds. There is no explanation for this distinct feature as far as we know.

However, transaction frequency clusters again between 60 and 120 seconds,

counting for over 300/0 of total transactions.

Such differences indicate an issue of unsynchronized data when comparing

these two data sets. Indicative data can be updated without any transaction

taking place, while transaction data are the result of a mutual agreement of a pair

of trading banks, and as a result take place at a lower frequency. Since it is

deemed that transaction data bear more information and take place at lower

frequency compared with their indicative counterpart, we use transaction data as

the benchmark to process our indicative data.

First, we filter indicative data using transaction data time stamp. For each

transaction price, we locate its nearest indicative data in terms of time and form

a matching transaction and indicative data pair. This procedure returns us with

highly simultaneous price series in both currency pairs. The two data sets in

GBP/USD have a time discrepancy of average 0.04 seconds and a standard
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deviation of 22 seconds, and the pairs in DE\1/USD differ with an average of

0.1 seconds and a standard deviation of 11 seconds. The differences between the

processed time stamps of the pairs of indicative and transaction data sets in both

exchange rates are insignificant.

Second, to reflect the bid and ask shift of the transaction data, we choose

the corresponding bid and ask price of the indicative data. This process is based

on the transaction sign of each trade. For instance, for a dollar buyer initiated

trade in D2000-1, the closest EFX bid is selected as the matching price.

After the above mentioned process, and excluding weekends and holidays,

we have 82 trading days, 51,741 pairs ofGBPIUSD prices and 255,481 pairs of

DEM/USD prices left. The 5 and 10-minute frequency data are obtained by

choosing the last pair of prices in each time slot. Such a method sacrifices more

available updated quotes in indicative data, but avoids comparing stale

transaction data with indicative data. Therefore, any subsequent empirical

comparison of these two data sets may underestimate the information content of

the indicative data.

The descriptive statistics of both data sets are displayed in Table 3.2. The

statistics on the first moments of the prices indicate that indicative data are

generally a couple of basis points lower than transaction data. There is no

documented explanation for such findings.
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3.3 Preliminary Data Analysis

In this section, we first provide tests on the cross correlations of the return series

using different data frequency and exploring the lead and lag pattern of the two

data sets. Lead and lag analysis gives us a preliminary picture of the relationship

between the returns of the prices by comparing the data at different leads and

lags. Any significant lead or lag pattern may suggest that one price leads the

other in mapping information on to its returns.

We then perform unit root tests for each price to investigate whether the

price series are nonstationary and integrated of order one, i.e.. a 1(1) process.

Subsequently, we conduct the Johansen (1988) test to investigate whether the

two sets of prices for each currency pair are cointegrated. By establishing the

unit root and cointegration relation in the prices, we can investigate the

information share between them, using a technique based on the Error

Correction Model.

3.3.1 Cross-correlations of Return Series

If two prices are based on the same fundamental asset, their return series should

be correlated due to the shared determinants. In frictionless and complete

markets, there should be complete simultaneity between the price movements.

However, at higher frequency, if one market processes new information faster

than the other market, it is possible for it to consistently lead the other market.



Even though previous papers (see e.g. Danielsson and Payne. 1997)

associate indicative data with stale or lagged quotes compared to transaction

data, we hold the opposite view. One reason is that indicative quotes are in

essence advertising signals to potential customers, and hence should contain

fresh information to inform the market. Furthermore, theoretically indicative

data could be updated in the absence of a transaction and therefore, should be

more efficient in delivering information. Cross-correlation tests of the return

series offers a means to prove our hypothesis.

In Figures 3.5 and 3.6, we present the cross-correlation results of the return

series of both data sets for the two currency pairs at 5-minute and 10-minute

frequency respectively. The 95% confidence levels are formed by calculating

+ 2/ JT ,with T being usable observations, which are the dotted lines in both

graphs. Positive lags at the X axis indicate that EFX quotes are in the lead. At

5 minute frequency, we find that EFX leading quotes show a significant positive

correlation with the lagged D2000-1 prices at lag 1 in GBP/uSD and at lags 1

and 2 in DEM/USD. The 10-minute frequency results confirm that EFX quotes

lead D2000-l prices by about 10 minutes.

The lead-lag analysis demonstrates an asymmetric relation between the

returns of the two data sets, with no significant correlation when D2000-l IS III

the lag. Such findings are in contrast to Danielsson and Payne's (1997). Based

on 20 seconds frequency. they find that D2000-2 returns lead EFX returns by 2

and 3 minutes. However, positive correlation also exists when EFX is the one in



the lag, which suggests that the cross-correlation is less asymmetric. In our case

the predictive power runs only from EFX data to D2000-1, with D2000- I 's

return imposing no predictive power on EFX's return at all.

3.3.2 Unit Root Tests

To investigate the cointegration between the two prices, as a routine, we first test

whether the time series contain unit root. Specifically, if two time series are both

nonstationary at their level, but become stationary after first differencing, we

denote them as 1(1) processes, or integrated of order one. Cointegration

becomes relevant if the linear combination ofboth 1(1) series is stationary.

The augmented Dickey-Fuller (1981) test is used in our unit root tests,

which extends the basic Dickey-Fuller test by including a parametric correction

for higher-order correlation by assuming that the time series follows an AR(p)

process and adding p lagged difference terms of the dependent variable to the

right-hand side of the regression. We select the lag length p by using Schwarz

Information Criterion (SIC) (see Schwarz (1978)). Three types of unit root tests,

including no intercept or trend, only intercept, and only trend, are conducted.

We only present the result with the intercept unless otherwise results are found.

Since our further empirical tests involve all three kinds of time frequency, i.e.,

transaction time, 5 and IO-minute frequency, unit root tests are conducted on

each one of them.
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In Table 3.3, we present both t-statistics and p -value of the unit root tests.

Overall, we conclude that all price series are 1(1) process.

3.3.3 Cointegration Tests

The object of the cointegration test is to determine whether two nonstationary

series are cointegrated. As pointed out by Engle and Granger (1987). if a linear

combination of two or more nonstationary series is stationary, then the series are

said to be cointegrated. The stationary linear combination is called the

cointegrating equation and may be interpreted as a long-run equilibrium

relationship among the variables. The cointegration relationship forms the basis

of the VEe specification.

The cointegration tests used are based on the methodology developed by

Johansen (1991, 1995a). We first consider a VAR of order p:

(1)

where Y
t

is a k -vector of non-stationary 1(1) variables, and e, is a vector

of innovations. We may rewrite this VAR as,

p-l

L1Yt = nYt_1 +I r jL1Yt-i + Ct
1=1

where

(2)

Granger's representation theorem asserts that if the coefficient matrix n



has reduced rank r < k, then there exist k x r matrix a and f3 each with

rank r that Il = af3' and /3' Yt is 1(0). And subsequently r is the number

of cointegrating relations and each column of f3 is the cointegrating "ector.

Johansen's method is to eliminate the Il matrix from an unrestricted VAR and

to test whether the restrictions implied by the reduced rank of Il could be

rejected. Cointegration tests establish the fact that there exists a long terrn

equilibrium relation between two nonstationary series, which form the basis for

the VEC (Vector Error Correction) model. In Equation (2), the elements of a

are known as the adjustment parameters in the VEC model.

Though there is no possible arbitrage to keep the long run equilibrium

relation between the indicative prices and transaction prices, as the former prices

have no binding obligation of actual transaction, reputation and commercial

concerns would drive dealers to quote on the fundamental market information.

As a consequence, the indicative and transaction prices are both based on the

same information related to the currency pair, and these two prices are expected

to be cointegrated.

We conduct the cointegration tests by choosing the lag interval that

minimizes the SIC. Based on the chosen lag length, we carry out the five

standard types of cointegration tests with the option of including or excluding

intercept or trend in the cointegration system. We determine the number of

cointegrating vectors by comparing the maximum eigenvalues with their

corresponding critical values, The (nonstandard) critical values are taken from

..p



Osterwald-Lenum (1992). In Table 3.4, we present the cointegration results. In

all of the tests, we can reject that there is no cointegrating relationship but

cannot reject that there is one cointegrating vector at the 5% significance level.

In the following section, we explore the information share between the

prices from the two data sets using the cointegration results.

3.4 Information Share

3.4.1 Error Correction Model and Fundamental Value

In economics, fundamental value is essentially an abstract concept that cannot

be observed directly. However, we can always assume that, in the long run, the

fundamental value would manifest itself and transient information would

disappear. In this specification, fundamental value could be identified as the

permanent component of a price series. Price discovery therefore describes how

one price series incorporates the permanent component into the price system,

either in a static or dynamic sense. We follow Lehmann (2002) to explain the

information share technique suggested by Hasbrouck (1995).

We start with one pair of cointegrated price series. For most microstructure

models, we assume that the efficient price follows a random walk, as stated in a

structural model:

p, =1m, +'" P, =(;:J 5, =(:::)=Y(L)V,. 1=(:)' (,)



where m l IS the underlying efficient pnce and 51 IS the transient

microstructure noise.

From (3) above, the first difference of PI has the moving average

representation

00

Sp, =\fI(L)ct = lu, + Ss, = lu, +(1- L)Y(L)vt • \fI(L) =I \fIjLi (5)
j=O

so that Ss, is a covariance stationary but noninvertible moving average. Since

4Y

00

\fI(L) =\fI(1) + (1- L)\fI *(L), \fIi* =- I \fIj'
j=i+!

P, and Sp, can be rewritten as

t

Pt = \fI(1)Ics + \fI*(L)c t ,

s=O

(6)

(7)

where \fI*(L)C t IS covanance stationary and its first difference

(1- L)\fI *(L)C t IS a stationary, noninvertible moving average. Since

I

Zt =(1 -1)PI IS stationary, it must omit the stochastic trend \fI(1)Ics
s=O

implying that (1 -1 )\fI(l) = 0 and thus \fI(1) = f(fIIl f112) which is intuitively

obvious since the two prices share the same implicit efficient price.

This representation underlies the Hasbrouck (1995) information shares

approach. The long run impact of e.. u., and vt on Sp, may be found by

evaluating both \fI(L) and (1- L)Y(L) in (5) at L = 1. yielding

\fI(l}ct = lUI (8)

and the resulting perfect correlation arising from the relation fil' £1 = u, implies



E[ll'u;] =E['¥(l)EtE;'¥(l)'] =E[IV/' e.e, 'vA'] ~ cr; = V/'''L£V/ . (9)

Hasbrouck's information shares involve decomposing V/'''L£V/ into

components attributed to price innovations in the two markets, where in our case

they are the two prices from the two data sets. This attribution is unique when

said price innovations are uncorrelated, in which case the decomposition is

given by:
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(10)

However, when the reduced form residuals are correlated, the decomposition is

(11)

and there is a range of possible attributions corresponding to different allocation

of the covariance form to each market. Hasbrouck suggests change the order of

the prices, hence the object of the Cholesky decomposition, till all possible

orderings are realized, and then calculate the average result. In our case, there

are only two price series and hence only two possible rotations ofthe orders.

3.4.2 Information Share Results

In order to circumvent the contemporaneous residual correlation problem and

the ambiguity produced by the reordering procedure, Hasbrouck used ultimate

high frequency price series, to reduce this side effect on the information share

formula. In our paper, the correlation issue is less serious due to the highly
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simultaneous data we process. Our analysis produces results with much tighter

bands than most previous studies, which use the information share technique. In

both currency pairs, we test the information share of the two data sets at the

transaction frequency. We test the robustness of our results using 5 and

10-minute frequency.

We first test for the information share in both currency pairs. We also

present the contemporaneous residual correlation in the VEe model. In

GBP/uSD the indicative and transaction data have a low residual correlation of

16.6% (see the last column of the third row in Table 3.5). The information share

attributed to the indicative data EFX is as high as 83%, with relatively tight

lower and upper bands of 77% and 89%, respectively. In DEMlUSD, with the

residual correlation as low as 4.2%, the information share attributes 85% of the

total information to the EFX data. The lower and upper bands, as predicted, are

only 1.5% away from the average result, indicating a much reliable

decomposition. These figures suggest that EFX data take a dominant role in the

price discovery process. Using 5 and 10-minute frequency, although the

information shares are reduced for EFX data, the conclusion is not

fundamentally changed.

We check whether the information share changes during the 24-hour

trading days, by separating the trading hours into 7 sessions, which correspond

to the opening and closing times of the major foreign exchange markets. The 7

sessions are: 1) 21:00 to 8:00, the period between New York and Tokyo closing
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times, representing the Asian trading hours; 2) 8:00-9:00, first hour of London

opening with inventory effects; 3) 9:00-12:00, the period until the opening of

New York; 4) 12:00-13:00, first hour of New York opening; 5) 13:00-15:00,

overlapping trading hours of two major markets; 6) 17:00-18:00, London closing

hour; 7) 18:00-21 :00, hours until New York closes.

The results are displayed in the middle columns of Table 3.5.30 We also

plot them in Figures 3.7 and 3.8. The information share ofEFX data peak during

London trading (session 3) and overlapping hours (session 5), with GBPIUSD

having a higher peak in London trading hours, and DEM/USD have a higher

peak in overlapping hours. During closing and opening hours, EFX price

experiences a drop in information share. These patterns suggest that during two

of the peak trading hours, EFX data actually possess higher information content

even though there is a substantial increase in the transaction frequency of

02000-1 data.

3.5 Generalized Impulse Response Analysis

In this section, we focus on the dynamic interaction between indicative and

transaction prices using impulse response analysis. Due to the importance of the

order flow in recent developments in exchange rate theory, we also include in

our analysis the order flow from the 02000-1 data set.

30 To calculate the information share of the each session, we use SUR (seemingly
unrelated regression) and delete any lagged returns that belong to last day in each

equation.



3.5.1 Order flow Analysis

Order flow is a measurement of the difference between buyer initiated trades and

seller initiated trades. It is a well investigated factor in microstructure research in

equity markets due to the much earlier availability of the data. However. in

foreign exchange markets it was introduced by Goodhart and Flood in the late

80s and early 90s. With the seminal paper by Lyons (1995) and the gradual

release of data from major trading banks and systems, order flow has become

the utmost key word in exchange rate theory.

In foreign exchange microstructure theory, order flow IS an important

channel for heterogeneously dispersed liquidity information and asymmetric

private information on exchange rates (see e.g. Lyons, 1995, Evans, 2002. and

Breedon and Vitale, 2005). In traditional canonical models (see e.g. Glosten and

Milgrom, 1985) there is two-way causality between price and order flow. In

Evans and Lyons (2002) model, the causality runs strictly from order flow to

price. A close investigation however reveals that they use hourly frequency and

prices are taken as the last price while order flow is the interim aggregate.

Therefore, if the actual causality happens at higher frequency, say at 5 to 10

minute frequency as in our case, the information contained in the order flow can

well lead the latent price at the end of an hour, even though the true lead and lag

pattern is the other way around. i.e.. from price to order flow. This mistake could
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be further amplified by using daily closing prices to compare intraday day

accumulated order flow, as in Killeen et al. (2006) where they find the same

conclusion of one way Granger causality from order flow to exchange rates. Our

impulse response tests indicate that it might not be the case when using higher

frequency data. Causality tests further confirm our findings.

3.5.2 Generalized Impulse Response Analysis

The order flow data in 02000-1 is the transaction sign counts of the inter-bank

deal, which does not reveal the exact size of the deal involved. Though the sign

of each trade itself could be random, the accumulated order flow could be

non-stationary for a given time window. AOF tests indicate that order flow data

in both exchange rates are I (l) processes at both 5 and 10 minute frequency

(see Table 3.6).

We first look at the movements of the three series, i.e. EFX, 02000-1 and

order flow, during our sample period (see Figures 3.9 and 3.10). In order to

demonstrate the positive correlation between order flow and the price levels

graphically, order flows of both currency pairs are defined as net dollar seller

initiated trades. Such a modification is applied in the following empirical tests.

The general co-movement between the order flow and prices is apparent.

especially in OEMIUSO. This suggests that prices and order flow form a system

and share the same fundamentals. We are more interested, however. in the
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dynamic interaction among the three variables.

We introduce Hasbrouck's (1991) vector autoregression (VAR) model to

investigate this issue,

~ ~ ~

/).PDL,I = La/iPDL,I_; + Lb;/).PEF,t-; +LC;AxI_; +el,1
;=1 ;=1 ;=1

~ ~ ~

/).PEF,I = La;/).PDL,I-i + Lb;/).PEF,I-; +LC;Axt - ; +e2,1

;=1 ;=1 ;=1

~ ~ ~

Axl = La;/).PDU-; + Lb;/).PEF,I-; +LC;AxI_; +e3,1
;=1 ;=1 ;=1

(12)

(13)

(14)

where /).pDL,I' /).PEF,I and Axl stand for D2000-1, EFX pnce change and

order flow change respectively."

As both prices PI and the order flow XI are 1(1) process, the

differenced variables at the left hand sides are stationary. The changes of the

order flow are divided by 1,000 to make them comparable to those of prices

changes. The estimations are corrected by White's heteroskedasticity consistent

standard errors. The optimum lag length is chosen by SIC.

Dynamic analysis of VAR models is routinely carried out using the

'orthogonalized' impulse responses. However, the involved Cholesky

decomposition is not invariant to the ordering of the variables in the VAR.

Therefore we use Pesaran and Shin's (1998) generalized impulse response

approach to analyze the interactions. The generalized impulse responses from an

innovation to the j-th variable are derived by applying a variable specific

J I It should be noted that we have not included an error correction term as the three
series have not been found to be cointegrated.
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Cholesky factor computed with the j-th variable at the top of the Cholesky

ordering. It only coincides with orthogonalized approach when the investigated

variable is put at the top of the ordering.

Figure 3.11 to 3.16 display the impulse response of both prices and order

flow in the two currency pairs. Due to space concern, we only present the results

at the 5-minute frequency. There is no qualitative difference in the results at the

10 minute frequency.

In GBP/USD currency pair, we find that the response of EFX price to one

standard error of D2000-1 price impulse becomes insignificant around lag 2 or

10 minutes (Figure 3.11). However, the effect of one standard error of EFX

impulse in D2000-1 disappear after around lag 6 or 30 minutes (Figure 3.12). In

both Figures 3.11 and 3.12, the responses of order flow to the shocks from the

two prices build up from lag 1 until lag 3, and then slide to insignificance at lag

4 or 20 minutes. In stark contrast, we could not find any significant response

from the two prices to the order flow shock (Figure 3.13).

In DEM/USD currency pair the impulse response profiles are slightly

different. Again, the response of EFX price to the D2000-1 impulse dies out at

lag 2 to 3 (Figure 3.14). However, the response of D2000-1 to the impulse of

EFX takes 15 minutes (at lag 3) to reach insignificance. In both Figures 3.14 and

3.15, the responses of order flow to the price shocks quickly slide to near zero

around 10 minutes. and then reach their peaks after another 5 minutes. The

impacts of the prices' shocks on the order flow continue to exist even oyer 30
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minutes, which is different from those profiles in GBPIUSD currency pair,

Finally, there is no significant response of prices to the order flow shock.

To summarize, the impulse response analysis in both currency parrs

indicates that the shocks from EFX have much longer impact on D2000-l data

than vice versa. EFX data' impulses also have similar significant impact like

those of D2000-1 on order flow. And order flow imposes no impact on prices, in

contrast to the claims that order flow contains private information that is not

revealed in prices.

In Tables 3.7 and 3.8, we present the Granger causality tests on order flow

with indicative and transaction data at both frequencies 32 . The causality is

unambiguously one direction from prices to order flow, with literally no

causality from order flow to prices. The results are more obvious at 10 minute

frequency than 5 minute frequency. Combined with the impulse response

analysis, order flow is a latent and passive response to prices at high frequency.

Even if order flow does carry dispersed information among dealers, it can not

happen at such high frequency, as opaque de-centralized market institution stops

individuals from quickly aggregating information from disintegrated order

flows.

32 Since there is no cointegration between prices and order flow as we have tested,
the Granger causality test is not affected by the complicated issues caused by ECM
(see Toda and Phillips, 1993).



3.6 Conclusion

By comparing various statistical features of the EFX and D2000-1 data sets, we

find that, contrary to previous studies, the indicative data are not inferior in

terms of quality of information. More precisely, both lead-lag and impulse

response analyses conclude that the indicative data lead the transaction data by 5

to 10 minutes. Furthermore, information share technique indicates a dominant

role for the indicative data in mapping information. By adding order flow in the

trivariate generalized impulse response analysis, we find that EFX price has a

similar impact on order flow as D2000-1 price. The finding that order flow has

no significant impact on prices may be due to that, at high frequency, the

information embedded in the order flow is difficult to be aggregated by traders.

These findings are supportive of studies using indicative data, since the

quality of their data has never been formally tested. The different merits of

indicative and transaction data in reflecting market information suggest that we

should combine both types of data to reveal the hidden picture of the

heterogeneously distributed information in foreign exchange markets.
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Table 3.1

Two ticks of sample data

EFX I Date Time Bid Ask Nation City Bank Filter

1996-5-1 0:00: 12 1.5 1.506 392 1 532

D2000-l I Month Day Hour Minute Sec T indo B/S Price Vol

5 1 1 15 35 501.05 0 1.5047 0

Note: These two ticks of data relate to GBP/uSD. In the rows of EFX data, the codes for the nation, city and bank are assigned by the Reuters system. Filter column

checks whether the price is an outlier, with number 1 indicating a good data and 0 otherwise. In the rows of D2000-1 data, T_index is converted time index of the

transaction time. B/S stands buyer or seller initiated trade. Vol is the volume. The corresponding DEM/USD data have the same format.



Table 3.2

Properties of processed data sets with transaction time

GBPIUSD Median Max
Std.

Min SkewMean D. Kurtosis
D2000-1 1.5397 1.5450 1.5650 1.4895 0.0167 -1.013'""' 2.9501
EFX 1.5393 1.5445 1.5682 1.4895 0.0167 -1.0136 2.q512

DEM/USD Median
Std.

Max Min Skew
Mean D. Kurtosis

D2000-1 1.5090 1.5182 1.5510 1.4638 0.0237 -0.1285 1.4205

EFX 1.5087 1.5180 1.5488 1.4635 0.0237 -0.1282 1.4198

Notes: The statistical results include all sample data of 82 trading days. There are in total of 51,741

pairs of GBPIUSD prices and 255,481 pairs of DEMIUSO prices. We use 02000-1 's time stamp as

the benchmark time to locate the nearest EFX data. The bid-ask selection for EFX data is also based

on the D2000-1 order flow sign.

Table 3.3

Results of unit-root tests

Transaction Time 5-Minute 10-Minute

GBPIUSD EFX D2000-1 EFX D2000-1 EFX D2000-1

t-Sta. -2.01 -1.97 -2.39 -2.37 -1.94 -1.95

Prob. 0.28 0.30 0.14 0.15 0.31 0.31

DEMIUSD EFX D2000-1 EFX 02000-1 EFX D2000-1

t-Sta. -1.13 -1.05 -1.08 -1.09 -1.09 -1.08

Prob. 0.71 0.74 0.73 0.72 0.72 0.73

Note: The two currency pairs from the two data sets are converted into the three frequencies before

testing for unit-root. Both t-statistics and p-values are presented.
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Table 3.4

Results of cointegration tests

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen
5% 1%

No.ofCE(s)
Eigenvalue Critical Critical

Sta.
Value Value

GBPIUSD - Transaction Frequency

None * 0.07 3931.83 11.22 0.00

At most 1 0.00 1.18 4.13 0.32

GBPIUSD - 5-minute Frequency

None * 0.24 2264.14 15.89 1.00

At most 1 0.00 6.90 9.16 0.13

GBPIUSD - 1a-minute Frequency

None * 0.24 1930.19 15.89 1.00

At most 1 0.00 4.89 9.16 0.30

DEMIUSD - Transaction Frequency

None * 0.03 6907.16 15.89 1.00

At most 1 0.00 2.09 9.16 0.76

DEMIUSD - 5-minute Frequency

None * 0.24 4877.84 15.89 1.00

At most 1 0.00 2.01 9.16 0.78

DEMIUSD - 1a-minute Frequency

None * 0.24 2831.07 11.22 0.00

At most 1 0.00 0.82 4.13 0.42

Notes: The methodology is based on Johansen (1991 and 1995a). The optimum lag is chosen by

Schwarz Information Criterion. The critical values are taken from Osterwald-Lenum (1992).
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Table 3.5

Information share results of EFX data

GBP/USD EFX Information Share

1 2 3 4 5 6
Resid

7 ALL
Corr

Trans. 61% 78% 90% 78% 93% 89% 74°0 83% po, °

5-Min 49% 62% 83% 70% 81% 78% 65% 1"0 50°0j a

10-Min 42% 54% 74% 64% 67% 62% 60% 67% 60°0

DEMIUSD EFX Information Share

1 2 3 4
Resid

5 6 7 ALL
Corr

Trans. 71% 79% 90% 82% 87% 82% 80% 85% 4'10_ °

5-Min 67% 76% 84% 69% 81% 77% 75% 81% 34°o

10-Min 53% 71% 78% 61% 70% 66% 64°o 76% 540
0

Notes: The information share of the EFX data is calculated using ECM based Hasbrouck's (1995)

technique. The columns numbered from 1 to 7 stand for the different trading zones of a complete

trading day. The last two columns are the information share of the EFX data of the whole sample

period and the residual correlation of the ECM, respectively.

Table 3.6

Unit-root test on order flow

Null Hypothesis: Order flow has a unit root

Exogenous: Constant and trend

Lag Length: Automatic based on SIC

GBP/uSD DEM/USD

t-Sta.

Prob.

5-Minute

-1.49709

0.8309

10-Minute

0.461431

0.9854

5-Minute

-1.66038

0.7687

10-Minute

-1.58001

0.8011

Notes: The order flow data are the accumulated transaction signs of each 5 or 10 minutes, depending

on the converted frequency. The test includes a constant and a trend. Both t-statistics and p-value are

displayed.
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Table 3.7

Granger causality test of order flow and prices at 5-m frequency

5-Minute

GBPIUSD

Obs: 8034

DEM/USD

Obs: 17178

Null Hypothesis: F-Sta. Prob.

Order flow does not Granger Cause EFX 1.18 0.10

EFX does not Granger Cause Order Flow 4.63 2.40E-46

Order flow does not Granger Cause D2000-1 1.16 0.13

D2000-1 does not Granger Cause Order Flow 4.21 1.50E-39

Order Flow does not Granger Cause EFX 1.08 0.22

EFX does not Granger Cause Order Flow 10.71 2.00E-299

Order flow does not Granger Cause D2000-1 1.12 0.13

D2000-l does not Granger Cause Order Flow 8.73 5.00E-230

Notes: The two-way causality tests are conducted on the order flow and the two currency pairs from

the two 5-minute data sets. Both F-statistics and p-value are displayed in the last two columns.

Table 3.8

Granger causality test of order flow and prices at lO-m frequency

10-Minute

GBPIUSD

Obs: 7206

DEMIUSD

Obs:

10132

Null Hypothesis:

Order flow does not Granger Cause EFX

EFX does not Granger Cause Order Flow

Order flow does not Granger Cause D2000-1

D2000-1 does not Granger Cause Order Flow

Order Flow does not Granger Cause EFX

EFX does not Granger Cause Order Flow

Order flow does not Granger Cause D2000-1

D2000-1 does not Granger Cause Order Flow

F-Sta.

0.94

5.90

1.03

4.41

0.93

17.00

1.16

12.99

Prob.

0.66

5.20E-67

0.39

1.60E-42

0.69

1.00E-263

0.13

3.00E-193

Notes: The two-way causality tests are conducted on the order flow and the two currency pairs from

the two lO-minute data sets. Both F-statistics and p-value are displayed in the last two columns.
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Figure 3.1

GBP/uSD intraday quote (trade) frequency
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Notes: The intraday GBPIUSD quote (trade) frequency is calculated by counting each half hour's

prices and then dividing it by the total number of the sample average daily counts. Along the x-axis

is the time index of each half hour starting from GMT 00:00,

Figure 3.2

DEM/USD intraday quote (trade) frequency
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Notes: The intraday DEMIUSD quote (trade) frequency is calculated by counting each half hour's

prices and then dividing it by the total number of the sample average daily counts. Along the x-axis

is the time index. ofeach half hour starting from GMT 00:00.
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Figure 3.3

Duration distribution of GBPIUSD
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Figure 3.4

Duration distribution of DEMIUSD
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Figure 3.5

Cross-correlation of EFX and D2000-1 data at 5-m frequency
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observations, which are the dotted lines in both graphs. Positive lag at the X axis indicate that

EFX quotes are at the lead and vice versa.
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Figure 3.6

Cross-correlation of EFX and D2000-1 data at lO-m frequency
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Figure 3.7

GBP/uSD - information share ofEFX during trading sessions
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Notes: We separate the trading hours into 7 sessions that corresponds to major FX markets' openings

and closings. The 7 sessions are 1) 21:00 to 8:00, New York closes till Tokyo closes, representing

Asian trading hours; 2) 8:00-9:00, first hour of London opening with inventory effects; 3)

9:00-12:00, hours till New York opens; 4) 12:00-13:00, first hour of New York opening; 5)

13:00-15:00, overlapping trading hours of two major markets; 6) 17:00-18:00, London closing hour;

7) 18:00-21:00, hours till New York closes.
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Figure 3.8

DEM/USD - information share of EFX during trading sessions
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Notes: We separate the trading hours into 7 sessions that corresponds to major FX markets' openings

and closings. The 7 sessions are 1) 21:00 to 8:00, New York closes till Tokyo closes, representing

Asian trading hours; 2) 8:00-9:00, first hour of London opening with inventory effects; 3)

9:00-12:00, hours till New York opens; 4) 12:00-13:00, first hour of New York opening; 5)

13:00-15:00, overlapping trading hours of two major markets; 6) 17:00-18:00, London closing hour;

7) 18:00-21:00, hours till New York closes.
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Figure 3.9

Order flow and prices in GBP/USD (lO-M)
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price level.
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Figure 3.10

Order flow and prices in OEM/USO (lO-M)

600 1.56

200

-400

-200

1.48

1.44

- 1.54

- 1.46

'J.rI..
~f

.<

O
.»
P"t,---

"'"j • ,

~ I ~ ;

~ 't!:: ".I";' ,; .. ,:
'4'

400 -

-800

-600

-1000

-1200 1.42

1-· -_. Order Flow - 02000-1 - - - EFX I

Notes: Order flow is the cumulative transaction signs for each 10 minute session during our sample

period. The 10-minute frequency prices of the two data sets literally overlap each other due to long

time window. The primary Y-axis measures the order flow while the secondary Y-axis is for the

price level.



74

Figure 3.11

Generalized impulse response to D2000-1 shock (GBP/USD)
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Notes: These are the generalized impulse responses to one S.E. ofD2000-1 shock in GBP/uSD

currencypair. Each lag stands for 5 minute.

Figure 3.12
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Figure 3.13

Generalized impulse response to order flow shock (GBPIUSD)
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Figure 3.14

Generalized impulse response to D2000-1 shock (DEM/USD)
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Figure 3.15

Generalized impulse response to EFX shock (DEMlUSD)
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Figure 3.16

Generalized impulse response to order flow shock (DEMlUSD)
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Chapter 4

Do Top Banks in FOREX Business Know

More?

4.1 Introduction

Though the foreign exchange market is the largest financial market with a daily

turnover of $US 1.9 trillion 33, it is not necessarily a market of perfect

competition. According to Euromoney (May, 1995). the largest 10 foreign

exchange banks accounted for 450/0 of global foreign exchange business in 1994.

Consolidation in the banking sector since then brought further concentration in

the foreign exchange market. The BIS triennial survey (2005) reports a

substantial decline since 1995 in the number of banks accounting for 75% of

local turnover. In the U.S., there were only 11 banks conducting 75% of foreign

exchange market transactions in 2004. compared to 13 banks in 2001. and to 20

banks in both 1998 and 1995. The same trend is found in the UK foreign

exchange market. Such concentration suggests that top banks in foreign

exchange business may exert greater impact on the price formation process than

33 BIS triennial survey 2005.
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the relatively smaller banks. Supportive evidence for that is found in Cheung

and Chinn's (2001) survey of the US market where 50% of currency traders

agreed that there are dominant players in the GBP/uSD market.

Such findings motivate our investigation on the information asymmetry in

the spot foreign exchange market and its implications for the existence of private

information. We test the hypothesis that top trading banks in the foreign

exchange business have more information on the macro economy. The dominant

banks' information advantage over their rivalries can be interpreted under a

microstructure framework, where transactions playa central, causal role in price

determination. 34 In the foreign exchange market prices are determined

collectively by macro economic factors, such as economic growth, consumption,

unemployment and interest rates. Information about them is not directly

observable on a real-time base, but dispersed widely among heterogeneous

market players pnor to public announcements. Even after the actual

announcements, their interpretation is subject to the individual market

participant's judgment. One needs to jigsaw together the dispersed partial

information in order to form a complete picture of the macro economy. In

foreign exchange markets customer order flow is one of the potential sources,

which helps trading banks to aggregate this dispersed information and 'feel' the

general movements of the economy." For example, Lyons (1997) finds that

34 See, e.g., Glosten and Milgrom (1985) and Kyle (1985).
35 See, e.g., Lyons (1995), Bjonnes and Rime (2005), Rime (2001), Payne (2003) and

Evans and Lyons (2oo5a).
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foreign exchange order flows generated by international trades and services help

dealers to 'know' the trade balance figures long before the statistics are

published. One hence may expect that the more order flow a trader processes,

the more information she could garner from it. Therefore, the dominant role of

major banks in the global foreign exchange transactions may cause them in turn

to have a dominant share ofmarket information.

We test this hypothesis by examining the information share of the top

trading banks relative to that of the rest of the banks in the GBPIUSD market."

We also test whether this information advantage is prevalent during general

scheduled macro news.

Our paper relates to previous work, which has studied the existence of

private information and the effects of news in the foreign exchange market. A

number of studies have examined the possible existence of private information

by looking at the price leadership amongst trading banks around central bank

interventions. For example, Piers (1997) examines the quoting behaviour of

dealers in the DEM/USD market around Bundesbank interventions from

October 1992 to September 1993 and finds evidence of price leadership by

Deutsche Bank before the announcement of interventions. However, when de

Jong, Mahieu, Schotman, and van Leeuwen (1999) repeated the analysis and

Dominguez and Panthaki (2003) expanded it to include Federal Reserve

intervention activities no specific bank was found to act as price leader. In

36 The top 10 banks are selected by Euromoney's biennial survey.
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contrast, Sapp (2002) using a bigger sample of DEM/USD quotes from the

Reuters' FXFX system from January 1991 to September 1993, finds that

Chemical Bank's quotes are the first to contain new information. However, in

the periods of uncertainty around central bank intervention, evidence suggests

Deutsche Bank is the price leader. Thus, the results found in the above studies

regarding price leadership amongst banks around central bank interventions as a

public news item are mixed.

Another group of studies has investigated the impact of macroeconomic

news on exchange rates in isolation from quantities. For example, Almeida et al.

(1998) study the different reactions of DEMIUSD to German and U.S. macro

announcements. Andersen and Bollerslev (1998) examine the impact of

macroeconomic announcements on the volatility of DEMlUSD, while Andersen,

Bollerslev, Diebold and Vega (2003) expand the number of exchange rates to

five and find significant and asymmetric response to good and bad U.S.

scheduled news. Bauwens et al. (2005) investigate both scheduled and

unscheduled news announcements on the EURIUSD volatility and find the

volatility increases before the announcements. Finally, Dominguez and Panthaki

(2006) further expand the news selections into those related to fundamental,

technical analysis and order flow, and their effects on the EURIUSD and

GBPIUSD exchange rates. Their results suggest other non-scheduled news also

matters in foreign exchange markets.

Finally, another group of studies has investigated the impact of
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macroeconomic news as a joint quantity and price response. They examined

whether macro announcement surprises have a systematic and significant effect

on both order flows and prices. For example, Carlson and Lo (2006) apply a

case-study approach and analyse the impact of a single macro announcement.

They find that market characteristics were affected for hours following the

announcement. Evans and Lyons (2003), Love and Payne (2007), Rime, Sarno

and Sojli (2007) examine several news arrivals but over a few months and find

that macroeconomic information releases have systematic effects on order flow

and as established in earlier studies on exchange rate transaction prices.

However, their results show that a substantial amount of the transmission of

macroeconomic news to prices is incorporated via the trading process, i.e. order

flow significantly increases the explanatory power of exchange rate fluctuations

as compared to news alone. 37

Our work has a number of novel features compared to previous research in

this area. First, our study is one of the first to test general macro news effects

under the heterogeneity market assumption, in contrast to previous work, which

either implies the market homogeneity assumption, or only tests for the central

bank intervention as public news under the heterogeneity assumption. Due to

commercial confidentiality reasons, the data on prices and order flows are

aggregated at certain lower frequency with no information on the identity of the

37 Evans and Lyons (2003) use DEMIUSD over 4 months, form 1
st

of May to the
31It August 1999; Love and Payne (2007) use transaction data on E~SD,
GBPIEUR and GBPIUSD over 10 months, from the 1st December to the 24 of July
2000; and Rime, Sarno and Sojli (2007) examine EURlUSD, GBPIUSD and

USD/JPY from the 13th Feb 2004 -14
th

Feb 2005.



trading banks. Some studies, however, do find that at least different types of

dealers exert a different impact on prices because of their different trading

motivations (see e.g. Fan and Lyons, 2003, and Evans and Lyons, 2005b).38

Second, our focus is on the top trading banks in the GBP/uSD market as a

group versus the rest of the market players, as opposed to the behaviour of

individual dealer's quotes in earlier studies. We call the latter tests 'individual

tests' compared to our approach, which we refer to as 'group tests'. Our

grouping method, i.e. top trading banks compared to the rest of the market

players grouped as another entity called non-top group, catches the major factors

that contribute to market heterogeneity. We use a unique GBP/uSD database,

which identifies the quoting banks and enables us to group the top banks

according to the Euromoney survey. Our group approach is more appropriate for

studying the impact of general macro announcements on the price discovery.

The individual tests relate mainly to German central bank intervention as in

Peiers (1997) and Sapp (2002). For German central bank interventions, certain

banks have an advantage compared to other banks in detecting and interpreting

the interventions. For example, Deutschebank traded a significant portion of the

intervention related market order of the Bundesbank, the German central bank.

As a result, it could garner private information on the future movements of the

exchange rate from these orders (see Covrig and Melvin (2002)). This, however,

38 Both studies use customer trade data, which span over 6 years. on a daily
frequency and relate to Citibank, whose market share in major customer business is
about 10-15 percent. However, the data are split into three customer-type categories,
hedge funds, mutual funds and non-financial corporations, which allow the authors to
examine the differential impact of news.



might not necessarily be the case with forecasting and interpreting general

macro announcements. The information on these announcements is widely

dispersed amongst traders and customers, hence no order flows containing

information on any category of macro news are directed to, or monopolized by a

specific bank, However, if order flow does contain information, the aggregation

of large banks could be expected to collectively process much more order flow

than any individual bank. Therefore, private information should be detected by

the group method as we have defined it above. This allows us to test whether

size is an important factor which contributes to the information advantage of the

trading banks during normal times, and in particular during times of public

news.

Furthermore, our approach is more appropriate for our sample of 5 years,

which is used to derive robust results, as opposed to the short horizons of earlier

studies. Due to the natural market evolution, some banks may not possess

informational advantage after a year or two, and in some cases even discontinue

their market presence. In addition, the competition among electronic trading

systems also changes the availability of some banks' quotes. These factors

impose a challenge to long horizon tests of 5 to 10 years. In contrast, a group is a

portfolio and hence is subject to continuous update of its components limiting

the negative impact of the above mentioned factors.

Another feature of our work is the focus on GBPIUSD. Most of the earlier

work has been on DEMIUSD, for short periods when using high frequency datu
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and covering a few dealers. We use indicative GBP/USD data, which include all

market players, over the period of January 1994 to December 1998, and

calculate the information shares using both the Hasbrouck (1995) information

share (IS) technique, and the Gonzalo and Granger (1995) common component

(PT) method. Previous related work has relied on one of these methods.

Our results show that the top 10 banks, out of one hundred quoting banks,

have a dominant share (monthly average of over 700/0) of the price information

in the Reuters EFX system. Furthermore, when testing 21 categories and 1035

items of U.S. announcements, we find that during some categories of news

announcements, the top 10 banks' information share is further expanded to

around 80%. The results indicate that size is an important factor, which

contributes to the information advantage of trading banks. They also indicate

that top trading banks might have either more private information over public

news, or might be better at interpreting macro news. We further explore this

view by examining the relationship between the top trading group's information

share and the volatility of GBPIUSD. We find a positive association, which

according to Admati and Pfleiderer (1988) is an indication of informed trading

as informed traders are prone to transact during periods of high volatility.

The structure of the remainder of the paper is as follows. Section 4.2, looks

at the selection of the top trading banks, exchange rate data and macro

announcements used in our tests. Section 4.3, describes our methodology.

Section 4.4, reports the empirical results and discusses the implications. Section



4.5, concludes the paper.

4.2 Data

4.2.1 Selection of the Top Trading Banks

We use Euromoney's biennial foreign exchange market polls as a guide for our

selection of top banks. We include the voted top 10 banks in GBPIUSD market

into the top group, and leave the rest of the banks in what we call the non-top

group. All the quotes from the top group will be treated as being from one entity,

and the same applies to the non-top group. Using such a method, we investigate

whether the top group takes up more information share during normal intraday

trading time and whether scheduled macro news impact on their information

share.

The first 5 criteria used by Euromoney to rank the banks are reported in

Table 4.1.39 Those are price and quote speed, which are directly related to

information (see Melvin and Yin (2000)); customer relationship, i.e. better

relationship suggests more efficient information flow between banks and their

customer; and higher credit rating and liquidity, which also suggest greater

market trading capability, which enables banks to infer more private information

from customer order flow. The top ten banks in GBPIUSD market from 1994 to

1998 voted in the survey are displayed in Table 4.2.

39 Sec Euromonev, May 1995.
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4.2.2 Exchange Rate Data

Our data are EFX tick-by-tick GBPIUSD spot quotes, as posted on the Reuters

'FXFX' screen, which have subsequently been collected and filtered by the

Olsen and Associates (O&A) over the period January of 1994 to December of

1998. It should be noted that our paper is the first one to use GBPIUSD data,

which identify the banks that made the quotes.

The EFX data are indicative quotes, which means that even though the

dealers may intend to trade at their quoted prices they have no commitment to do

so. Goodhart, Ito and Payne (1996) and Danielsson and Payne (2002) find that

the basic characteristics of 5-minute foreign exchange returns constructed from

quotes closely match those calculated from transactions prices. Phylaktis and

Chen (2006) compare four months (inside this paper's time window) of EFX

data to D2000-1 transaction data, and find that EFX data are in fact superior to

the latter data set by measuring the embedded information. Since around this

sample period Reuters' trading system takes more than 900/0 of the world's direct

inter-dealer transactionsl'', this finding is supportive of the quality of the data

used in this study.

There are also other reasons why indicative data are more suitable than

transaction data in conducting our empirical tests. For example, Goodhart and

40 See in Evans (2002).
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O'Hara (1997) suggest that indicative quotes are better than transaction prices in

demonstrating traders' heterogeneous price interpretation, as transaction price

needs agreement between two parties, while the indicative quotes are not so

restrictive. Hasbrouck (1995) indicates that an analysis of a stock. if based on

last sale prices, would have problems of autocorrelation induced by infrequent

trading. Though this issue is less severe in foreign exchange markets. the last

sale prices would be less informative. Indicative quotes, on the other hand. could

be updated in the absence of trades. Finally, an empirical investigation using

transaction data may tum out to be biased because it ignores the informational

content of non-trading intervals. This sampling bias is reduced when using

bid-ask quote series, which are continuously updated by the market makers.

In Table 4.2, we can find that the voted top 10 banks in GBP/USD are

roughly the same during the years 1994-95, 1996-97, and 1998. Thus, we form

three different top groups for those three time periods. The rest of the banks in

each period are allocated to the non-top group.

After setting up the two groups, we count the quotes for each group during

our sample period. Figure 4.1 shows that from October 1995 onwards, the total

quotes appearing on the FXFX have more than doubled. The Olsen & Associates.

which provide our data, explain that this is due to the different data delivery

method of Reuters before and after October 1995. The data fed into the system

since then have been significantly increased. However, the quotes from the top

group are relatively stable at 25% of total quotes. As we show later. the
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information shares of both groups experience no fundamental change following

the quote frequency jump."

Figure 4.2 presents the intraday quotes distribution of both groups. As the

top group is composed of only European and U.S. banks, its quoting activitv is

heavily concentrated during London and New York trading hours. Non-top

group's quoting distribution reflects Asian trading banks' presence during Tokyo

trading hours. 42

We investigate only trading hours between 8:00 to 16:00 GMT, when

London and New York markets are active to avoid sparse trading. We exclude

weekends and holidays for the same reason. There are in total 1,214 valid

trading days during our sample period. Following general practice, we convert

our data into 5-minute frequency.

4.2.3 Macro Announcement Data

In our analysis, we test the effects of 21 categories of US government macro

41 The increased data fed into the Reuters system decrease the average quote duration
from around 6 seconds to 3 seconds, which have no big impact on the data we
selected at a 5 minute frequency.
42 The 24-hour trading day is usually separated into 7 sessions that correspond to the
opening and closing times of major foreign exchange markets. The 7 sessions are: 1)
21 :00 to 8:00, the period between the closing time of New York and the closing time
of Tokyo, which represents the Asian trading hours; 2) 8:00-9:00, first hour of London
opening with inventory effects; 3) 9:00-12:00, the hours until New York opens; 4)
12:00-13:00, the first hours of New York opening; 5) 13:00-15:00, the overlapping
trading hours of the two major markets; 6) 17:00-18:00, London closing hour; 7)
18:00-21 :00, the hours till New York closes.
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announcements, as listed in Table 4.3. 43 We exclude 8 categories of

announcements from the 29 categories of major lJS macro announcements,

because of either the high frequency of announcements (e.g. initial claim is

announced weekly), or because they overlap with other announcements, e.g.

civilian unemployment rate is announced at the same time as the non-farm

payroll, Except for GDP related announcements, which are quarterly. and Fed

funds rate announcements, which are on a six-week base, all remaining items of

news are announced monthly.

The news effect is investigated during a 4-hour time window, 2 hours

before and 2 hours after a specific announcement. The concern is that the

information over the public news could be revealed after as well as before the

announcement, if there is asymmetric information. Private information should

cause the price to adjust itself before the announcements, and then to continue to

affect the news interpretation.

Though some announcements, e.g. the target federal funds rate

announcements from FOMe, are announced outside our daily GMT window, we

still include them due to their importance." In our sample period, we have a

total of 1035 items of valid announcements.

4J The scheduled announcement time data are provided by Francis X. Diebold.
44 We assume that the announcement takes place at 14.00 GMT. The information
share over this news category is therefore mainly a measurement of the top group's
capability of forecasting the actual result, and not of their news interpreting power
after the announcement.
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4.3 Methodology

4.3.1 Measures of Information Share

IS and PT models are the two most prevalent common factor models. They are

directly related and the results of both models are primarily derived from the

vector error correction model (VECM). They provide similar results if the

VECM residuals are uncorrelated. However, if substantial contemporaneous

correlations exist the two models usually provide different results. Hasbrouck

(1995) handles this correlation by using Cholesky factorization. Therefore. the

IS results are variable order dependent. Hasbrouck (1995) suggests that different

orders may be used and upper and lower information share bounds be averaged

to arrive at a final information share result. However, the bounds are often very

much apart since high frequency exchange rate data have a high residual

correlation. Therefore in our paper, we use both IS and PT models as

complementary methods. The following estimation approaches for both models

are mainly adapted from Baillie et al. (2002).

We consider the two price quotes from the two groups of banks to be I(l)

processes, P, = (PII' P21)' with the differential being the error correction term

d = fJ' P =P - P where fJ is the cointegration vector. Both models start
I I 11 21 '

from the estimation of the following VECM:

k

~ =afJ' P'-I + LA j sr:j + et ,

j=1

(1)

where a is the error correction vector and e, is a zero-mean vector of serially



uncorrelated innovations with covariance matrix n
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(2)

The VECM has two parts: the first part, afJ' ~_I , represents the long-run or

k

equilibrium dynamics between the price series, and the second part. I Aj~_j ,

j=1

shows the short-term deviation induced by market imperfections.

Hasbrouck (1995) transforms Eq. (1) into a vector moving average (VMA)

in an integrated form

t

~ = Y/(1)Ies + y/*(L)ep

s=1

(3)

where lfI(L) and lfI *(L) are matrix polynomials in the lag operator, L. Ifwe

denote Y/ = (Y/I'Y/2) as the common row vector in lfI(1). Eq. (3) becomes

t

~ =lY/(Les ) + y/*(L)et ,

s=1

where 1 = (1,1)' is a column vector of ones.

(4)

Hasbrouck (1995) states that the increment y/et In Eq. (4) is the

component of the price change that is permanently impounded into the price and

is presumably due to new information. If price innovations are significantly

correlated across prices, Hasbrouck (1995) uses Cholesky factorization

n = MM' to eliminate the contemporaneous correlation, where:

(5)

If we further denote a..l= (rl' r.v ,which is also the r in Gonzalo and

Granger (1995)'s PT model, then the information shares of the two prices arc:



(6)

(7)
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In order to get the information share of each group, the order of them is

changed and the calculation process is repeated. The average of the two results is

suggested by Hasbrouck to be the information share.

Gonzalo and Granger (1995) define the common factor to be a combination

of the variables ~, such that h, = r~, where r is the common factor

coefficient vector. The information shares of the two prices according to the PI

model are as follows:

S - Yzz - r. + r,

(8)

(9)

Thus, the Granger and Gonzalo's (1995) approach is concerned with only

the error correction process, which involves only permanent as opposed to

transitory shocks that result in a disequilibrium. It ignores the correlation among

the two prices and measures each price's contribution to the common factor on

the basis of its error term. The price, which adjusts the least to the other price

movements has the leading role in the price discovery process. In contrast.

Hasbrouck (1995) defines price discovery in terms of the variance of the

innovations to the common factor assuming that price volatility reflects the flow

of information. Information share in this model is each price's relative
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contribution to the variance.45

We conduct the usual procedures of unit root and cointegration tests before

the information shares of each group are estimated. Unless otherwise stated, the

price series in our empirical tests satisfy both conditions.

4.3.2 Estimation Process and Confidence Bands

We measure information shares of prices quoted between 8:00 to 16:00 GMT.

when London and New York markets are active. As a result, a directly estimated

ECM would cause lagged returns to contain the overnight price jump and the

previous trading day's price changes. We thus use return series that exclude

overnight and previous trading day's returns and apply Seemingly Unrelated

Regression (SUR) method.

SUR, also known as the Zellner's method, estimates the parameters of the

system while taking heteroskedasiticity and contemporaneous correlation in the

errors across equations into consideration. The ECM is expressed in the SUR

form with the cointegration vector restricted to be (l -1). The optimum lag

order is specified by minimizing Schwarz-Bayesian criterion (BIC). Lagged

45 According to Baillie et a1. (2002) the two models complement each other and
provide different views of the price discovery process between markets. On the
other hand, de long (2002) concludes that Hasbrouck's measure is a more proper
measure of the amount of information generated by each market. Harris et a1. (200~)

have different view and employ Granger and Gonzalo (1995) to estimate and test
common factor components attributable to each market. The market with the highest
normalised factor weight has the biggest contribution to revelation of the innovations
underlying the common stochastic trend in that stocks.



overnight and previous trading day's returns and price levels are accordingly

purged when the regressions are estimated.

We employ the bootstrapping method to find the confidence bands of the

information share. Following Li and Maddala's (1997) suggestion, we use the

stationary bootstrap method to resample the residuals, i.e. the bootstrapped

residual block length follows a geometric distribution. Specifically. let e; be

1\

the first randomly resampled observation from estimated Ts.j(r = 1, .... n) so that

1\

{e; =e j} for 1::; j ::; n . Then the adjacent {e;} has the following distribution
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1\ 1\

Pr({e; =ej+l})=l-p and Pr({e; =ed)=p, (10)

where p (0 ::; p ::; 1) is the probability of the geometric distribution of the

random block length, and 1::; i ::; n .

The stationary bootstrap method keeps the stationary nature of the

resampled residuals compared to the moving block method. It IS also less

sensitive to the selection of the probability p.

We first estimate the ECM with optimum lag with the purged return series.

The estimated parameters and residuals are stored. The resampled residuals are

then inserted back into the estimated ECM. With the new Sp, constructed from

the resampled residuals, the ECM is estimated again and the information shares

recalculated. All of the ECM estimation is corrected for heteroskedasticity. We

repeat the process by 200 times and the 950/0 and 5% confidence bands of the

information shares are hence obtained.
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4.4 Empirical Results

4.4.1 Preliminary Analysis

Before estimating the information shares of our two groups of trading banks, we

examine the lead-lag relationships between them. This is a preliminary analysis.

which tests the speed of the information embedded in the return of the two

prices." If the top group's quotes are faster in incorporating trading information

into the price, its return should lead the non-top group's return, i.e. the top

group's return could predict the non-top group's return.

We estimate the cross correlations between two series p and q as follows

where l = 0, ±1, ± 2, ... and

(11)

T-I

L«PI - p)(qt+1 -q))/T
1=1
T+1

L«qt -q)(PI_1 - p))/T
1=1

l = 0, 1. 2....

l = 0, 1,2, ...

(10)

Figure 4.3 shows the lead lag relationship between the returns of the two

groups. The contemporaneous correlation between the two return series is

understandably high at 0.27. When the top group's return is in the lag, the

correlation is around 0.1 and statistically significant. However, when the non-top

group's return is in the lag, there is no significant correlation, which suggests

that the predictability runs only in one direction, from the top group to the rest of

46 Many studies have investigated the lead and lag relationships between cash and
futures markets, sec e.g. Chan (1992); de long and Nigman (1997).



the trading banks.

4.4.2 Information Shares

We subsequently estimate the top group's monthly information share during the

60 months of our sample period. Since we only consider the London and New

York trading hours, we eliminate overnight lag returns to avoid overnight price

jumps generating excessive noise and use seemingly unrelated regression (SUR)

to estimate our models. Throughout this paper, we only present the top group's

result, since the top and non-top groups' information shares add up to 100%
•

Thus, the non-top group's information share is 100% minus the top group's

information share.
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In Figures 4.4 and 4.5, we present the information share of the top group

using the PT and IS methods respectively. As it can be seen the top group's

information share fluctuates around 70% in most of the months. The only

months that deviate from the average are at the beginning and end of our period.

During the five years, the top group's informational share as a percent of total

market information is 730/0 by PT model (71% by IS model) (see Table 4.4).

Over the 60 months, only once the top group's information share drops below

500/0 according to both models. In Table 4.5 we present the yearly results in

order to see the trend more clearly. The top group starts with a relatively small

share in 1994, then experiences a rise in 1995 and once again a fall in 1996. For



the next two years its share jumps significantly and reaches around 800/0 in 1998.

The general upward trend of the top group's information share is in line with the

increased market concentration in the global foreign exchange business.

We test the robustness of the grouping method and estimate the information

share of the top 5 banks instead of the top 10. The top 5 banks in the Euromoney

survey are unchanged during our five year sample period, though a few of them

went through merger and acquisition. In Figure 4.6, we find that the information

share of the top 5 banks is less stable than that of the top 10 banks. The average

monthly information share drops to 62% (PT) and to 60% (IS) of the total

market information. The number of months during which the top 5 banks

information drops below 50% has increased to 8 months (PT) and 10 months

(IS). Although the top 5 banks still take the dominant share of the market

information, this advantage is not as strong as before. This could be due to the

strengthening of the rivalry group.

4.4.3 Market Volatility and Information Share

In this section, we explore whether the fluctuations of the top group's

information share could be linked to market volatility. Admati and Pfleiderer

(1988) suggest that volatility is associated with private information. To

maximize their potential profit from their private information, informed traders

are prone to transact during periods of high trading activity. Thus, the informed
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transactions are linked with increased volatility. In the context of our paper, the

above implies that we should expect the information share of the top group to be

positively correlated with the market volatility.

Figure 4.7 shows the scatter plot of the monthly GBPIUSD volatility. as

proxied by the standard deviation, against the information share of the top group

(PT). The positive correlation between the market volatility and information

share is indicated by the fitted regression line. More specifically. the regression

suggests that a 100/0 increase in the top group's information share corresponds to

0.2% rise of market volatility (see Table 4.6). Given that the average monthly

market volatility is 3%, this positive link is relatively strong. This provides

supporting evidence on the private information content of the top group's

information share.

4.4.4 Information Share during Macro Announcements

To test whether macro announcements have any impact on the information share

of the top banks, we import 21 U.S. news announcements and estimate the

information share of the top banks during these announcement days for each

type of news separately. More specifically, the prices quoted in between the four

hours around the announcement, 2 hours before and 2 hours after, are collected

first. Then all the prices from the two groups are compiled into two time series

and the SUR method is applied. Though UK macro announcements may have an
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impact on the information share of the banks, we assume that these effects are

. iznifi 47msigrn icant.

The results are reported in Tables 4.7 and 4.8 and displayed in Figure 4.8.

Among the 21 announcements, the two GDP announcements and the Fed funds

rate produce the largest information shares (over 80% according to the PT model)

for the top 10 banks. This is an interesting finding compared to Evans and Lyons

(2005b) result. In their paper, GDP preliminary and Fed funds rate

announcements are the only two announcements that have a significant impact

on order flow for just one day, while their other 16 announcements have

relatively longer effects. It may suggest that these two announcements cause

more concentrated and intensive reaction from market players, which forces the

top banks to release their information advantage in only a few hours, instead of

spreading the advantage over several days like in the case of other

announcements. Another interesting finding is that the trade balance, which is an

important determinant in traditional exchange rate theory, contributes very little

to the information advantage of the top banks. This may be explained by the

relatively easy predictability of the trade balance figure by the market players.

Therefore, top banks are less likely to know more than their rivalries.

We are also interested in the news effect by allocating macro

announcements into different categories. Following Andersen et al (2003), we

allocate news into 8 different groups, such as real activity, forward looking and

47 As reported in Andersen et al. (200~), the impact of most non-US announcements
is insignificant on the level of major exchange rates.
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net export etc. Table 4.9 reports the result. As we can see, FOMC, i.e. Fed funds

rate, is related with the highest information share from the top banks. Given the

importance of the interest rates in the foreign exchange market. this is a

reasonable result. GDP announcements are the category of news that are linked

to the next highest information share. As an indicator of economic growth. GDP

has long been one of the important determinants of exchange rates. Treasury

budget, as the only category in the Government purchase category, has the next

highest information share together with prices. It may have an impact on

exchange rates through its effect on interest rates. An expanded treasury budget

deficit would indicate an increase in interest rates, increased capital flows and an

effect on the exchange rate.

4.5 Conclusion

This study is one of the first papers to tackle directly the information asymmetry

issue in the foreign exchange market. Traditional exchange rate theory assumes

that the agents in a given market are homogeneous and therefore, the price

formation process is only determined by public information. However, when we

cast our eyes in the foreign exchange market the assumption of market players'

homogeneity is unsound and misleading. Correctly assessing and depicting the

picture of market participants' heterogeneity in an information sense may help us

solve and explain the exchange rate determination puzzle.
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We investigate this information asymmetry by testing the hypothesis that

major trading banks in the foreign exchange market have more information on

the macro economy garnered from the larger order flow they process.

According to Evans (2002) trading banks collect information from the customer

trading, inter-dealer trading, and from after-announcement news interpretation,

or non-common-knowledge. Using indicative GBPIUSD data oyer the period

of January 1994 to December 1998, we indeed find that the top 10 trading

banks," out of one hundred quoting banks, have a dominant share (monthly

average of over 70%) of the price information in the Reuters EFX system. We

also test whether this information advantage is prevalent during general

scheduled macro news. After testing 21 categories and 1035 items of U.S.

announcements, we find that during some categories of news announcements,

the top 10 banks' information share is further expanded to around 80%. This

suggests that top trading banks might have either more private information over

public news, or might be better at interpreting macro news. This view is also

supported by the positive association between the information share of the top

trading group and the volatility of GBPIUSD for according to Admanti and

Pfleiderer (1998) informed traders are prone to transact during periods of high

trading activity. It should be noted that this is the first study to test general

scheduled macro news effects under the heterogeneity market assumption. in

contrast to previous work. which either implies the assumption of market

48 The top 10 banks are selected by Euromoney's biennial survey.
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homogeneity, or only tests the impact of central bank intervention as public

news under the heterogeneity market assumption.

Further research could focus on examining other contributing factors to

the information asymmetry in the foreign exchange market apart from the size of

the order flow. For example, does geographic location contribute to traders'

private information?
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Table 4.1

Euromoney survey's criteria of top banks

Corporations Institutions Banks Others Total

1. Relationship 100 10 48 -; 165

2. Price alone 91 14 49 10 lA4

3. Quote speed 74 12 50 9 145

4. Credit rating 66 10 27 7 110

5. Liquidity 41 11 38 7 97

Source: Euromoney research, Euromoney May 1995. There were in total 16 criteria listed in the

original table. The ftrst column displays the most important 5 criteria judged by the total votes

(given in the last column) from the customers of currency trading banks. The votes from each

business type of customers are listed separately in the columns in the middle.



Table 4.2

Top ten banks in GBPIUSD

99 98 97 96 95 94

HSBC 1 4 HSBC Midland 1 1= NatWest Markets

2 2 Citibank 2 1 Chase 2 4 HSBC Mkts/Midland

3 3 Chase Mahattan 3 3 BZW 3 3 Barc1ays

4 4 NatWest Global 4 2 NatWest 4 1= Citibank

5 5 Barc1ays Capital 5 5 Citibank 5 5 Chase Mahattan

6 6 Deutsche Bank 6 - Royal Bank of Canada 6 9 Chemical

7 7 Royal Bank of Canada 7 6 Standard Chartered 7 10 Bank of America

8 - Warburg Dillon Read 8 7 Bank of America 8 - Lloyds

9 9 Bank of America 9 - SBC Warburg 9 - Standard Chartered

10 12 ABN Amro 10 9 Deutsche Morgan Grenfell 10 6 Indosuez

Source: Euromoney, May of 1995, 1997, and 1999.



Table 4.3

U.S. announcements

Item Frequency EST =~

1 GDP Advanced QTR 8:30 13
2 GDP Preliminary QTR 8:30 16
3 GDP Final QTR 8:30 13
4 Fed Funds Rate 6WK 14:20 38
5 Personal Income MTH 8:30 4"
6 Factory Orders MTH 10:00 51
7 Consumer Confidence MTH 10:00 53

8 Index of Leading Indicators MTH 8:30 55

9 Housing Starts MTH 8:30 57

10 Durable Goods Orders MTH *8:30 57

11 Construction Spending MTH 10:00 57

12 Retail Sales MTH 8:30 58

13 Treasury Budget MTH 14:00 58

14 Consumer Price Index MTH 8:30 58

15 Business Inventories MTH *10:00 58

16 Nonfarm Payrolls MTH 8:30 58

17 Consumer Credit MTH 15:30 58

18 Industrial Production MTH 9:15 58

19 NAPM MTH 10:00 58

20 Capacity Utilization MTH 9: 15 58

21 Merchandise Trade Balance MTH 8:30 58

Total#N 1035

Notes: '" The announcement time were irregular or changed during our sample period.

The third column reports the scheduled announcements frequency, where QTR, MTH and 6WK

stand for quarterly, monthly and 6 weeks respectively. EST is the U.S. Eastern Standard Time.

Last column reports the total number of the corresponding announcements during our sample

period
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Table 4.4

Statistics of top group's monthly information share

Std.
Mean Kurtosis Skewness Min ~lax Count

D.

PT 73.1% 10.5% 0.29 0.09 45.7% 98.'00 60

IS 71.2% 8.4% 1.01 0.41 49.1% 94.6% 60

Table 4.5

Yearly information share of top group

1994 1995 1996 1997 1998

PT 67.5% 72.1% 68.4% 76.3% 81.0%

IS 68.2% 69.8% 68.6% 72.3% 77.2%

Table 4.6

Market volatility and information share

Coefficient

c

f3

Obs.60

Estimate

0.01

0.02

Std. Error

0.01

0.01

R-squared 0.08

t-Statistic

1.55

2.28

Prob.

0.13

0.03

Notes: VI is the monthly GBP-$US volatility, and PI; is the monthly top group's information

share. Estimation is done by the ordinary least square.
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Table 4.7

Macro news and top-group's information share - PT approach

Bootstrap 5%News PT Bootstrap 95%

GDP Preliminary 87.8% 95.9%

GDPFinal 83.4% 89.9%

Fed Funds 82.5% 88.9%

Retail Sales 81.0% 88.4%

Consumer Confidence 79.8% 86.3%

Government Budget Deficit 78.2% 82.3%

CPI 78.2% 83.1%

Business Inventories 76.1% 81.0%

Housing Start 75.7% 79.1%

NAPM 75.0% 82.8%

Durables 74.8% 80.5%

Non-farm Employment 74.5% 79.8%

Unemployment 74.5% 79.2%

Capacity Utility 74.2% 79.7%

Industrial Production 74.2% 80.1%

Factroy Orders 74.1% 78.0%

Personal Income 73.5% 82.1%

Consumer Credit 72.1% 77.8%

Trade Balance 71.3% 75.9%

Leading 71.0% 77.7%

GDP Advanced 67.8% 86.4%

71.0%

76.1%

77.0%

75.1%

74.3%

73.1%

73.9%

70.5%

71.4%

59.8%

69.3%

69.6%

69.0%

70.7%

69.8%

70.1%

66.4%

66.7%

67.8%

64.3%

58.3%

Construction Spending 59.3% 75.6% 46.1%

Notes: The information share of the top group is estimated by creating time series of prices quoted

in between the 4 hours around the announcement, with 2 hours before and 2 hours after the news.

Then all the prices from the two groups are compiled into two time series and the

aforementioned SUR method is applied. The results only shows PT approach, and those from IS

are qualitatively no different.
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Table 4.8

Macro news and top-group's information share - IS approach

News IS Bootstrap 95% Bootstrap 5%
GDP Preliminary 85.8% 91.9% 71.7%
Fed Funds 80.3% 83.3% 75.6%
GDP Final 79.7% 85.4% 72.9%
Retail Sales 77.4% 82.6% 73.2%
Consumer Confidence 76.4% 81.5% 72.0%
CPI 76.2% 80.4% 72.8%
Government Budget Deficit 76.2% 79.5% 71.9%
Factroy Orders 73.3% 76.7% 69.5%
Business Inventory 73.1% 77.3% 68.3%

Capacity Utility 72.3% 77.7% 69.0%

Industrial Production 72.3% 77.9% 68.3%

Non-farm Employment 72.3% 75.7% 69.2%

Unemployment 72.3% 75.6% 68.5%

Housing Start 72.1% 75.7% 68.2%

Durables 71.9% 76.0% 67.6%

Personal Income 71.5% 78.1% 65.5%

Trade Balance 70.1% 74.7% 66.5%

Consumer Credit 69.6% 73.1% 65.5%

NAPM 69.1% 77.0% 59.8%

Leading 68.4% 73.6% 62.8%

GDP Advanced 67.2% 79.1% 58.2%

Construction Spending 61.6% 74.8% 49.4%

Table 4.9

News effect by category

Category #N PT IS

1 FOMC 38 82.5% 80.3%

2 GDP 42 79.6% 77.6%

3 Government Purchase 58 78.2% 76.2%

4 Prices 58 78.2% 76.2%

5 Forward Looking 223 75.4% 71.5%

6 Real Activity 277 74.9% 72.6%

7 Net export 58 71.3% 70.1%

8 Investment 223 71.1% 70.0%
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Figure 4.1

Monthly quotes from top group
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Notes: The column stands for the number of quotes from the top ten banks, as the top group, in each

month. The line stands for the percent of the top group's quotes compared to that of total quotes

from all the banks in the same month.
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Figure 4.2

Dailyquotes distribution ofboth groups
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Notes: Each half hour's quotes are aggregated and presented as the percentage of total quotes of

individual group. The intraday result is the average of the sample period. The 24-hour trading day

can usually be separated into 7 sessions that corresponds to major FX markets' openings and

closings. The 7 sessions are 1) 21:00 to 8:00, New York closes till Tokyo closes, representing Asian

trading hours; 2) 8:00-9:00, first hour of London opening with inventory effects; 3) 9:00-12:00,

hours till New York opens; 4) 12:00-13:00, first hour of New York opening; 5) 13:00-15:00,

overlapping trading hours of two major markets; 6) 17:00-18:00, London closing hour; 7)

18:00-21:00,hours till New York closes.
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Figure 4.3

Cross correlations of the top and non-top group's return
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Notes: The positive figure on the x-axis means that top group's return is in the lag. Each lag stands

for 5 minute. The upper and lower bounds of the cross correlogram are the approximate two

standard error bounds computed as +2/ JT ,where T is the available number of observations.
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Figure 4.4

Top group's monthly information share - PT method
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Notes: The 95% and 5% confidence bands are calculated by stationary bootstrapping the ECM by

200 times and then the 10th and 190th largest re-estimated information share values are chosen.

Figure 4.5

Top group's monthly information share - IS method
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Figure 4.6

Top 5 banks' monthly information share
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Figure 4.7

Scatter diagram of market volatility against PT with regression
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Notes: The GBPIUSD exchange rate monthly volatilities are plotted against the monthly PT results

of the top group. The fitted line is the slope of the OLS regression of the volatilities against the PTs.



Figure 4.8

Macro announcements and top group's information share
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Chapter 5

Asymmetric Linkages between

High-frequency Exchange Rates

5.1 Introduction

The traditional asset market approach to the pncmg of exchange rates

incorporates all available public information and hence is speculative efficient.

However, from the 1990s onwards, new studies suggest that not all exchange

rate relevant information is publicly available. For instance. order flow could be

one source for private information in the foreign exchange market''". Such

findings lead us to investigate whether global imbalance in the size of order flow

among the major exchange rates introduces asymmetric linkages between them.

In our paper we test the above hypothesis for DEM/USD and GBPfUSD

since the difference between the sizes of the global order flow of these two

exchange rates is significantly large. Although there are no formal data on the

global order flow during our sample period, data from the U.S. Treasury

49 See, e.g., Lyons (1995), Yao (1998). Bjonnes and Rime ~2000), Rime (2001),

Payne (2003) and Evans and Lyons (2005).
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collected by Rime (2001) suggest that weekly average net purchase of mark

against the U.S. dollar is roughly three times that of the pound against the U.S.

dollar from July 1995 to September 1999. The ratio is in line with that of the

global turnover of the two exchange rates in 1995 and 1998. BIS (2005)

estimates that in 1998 DEMIUSD took around 20% of global market turnover,

while GBPIUSD took around 8%. The figures are very similar to the 1995

results. If order flows convey private information, we hypothesize that

DEMIUSD incorporates more private information relevant to the equilibrium

exchange rates than GBPIUSD, and this asymmetric information reveals itself in

the volatility transmission process, with the greater spillover effects from

DEMIUSD to GBPIUSD.

One novel feature, which differentiates our study from previous work, is

that the extant literature fails to consider the cross-currency linkages at high

frequency. There are findings that indicate that the foreign exchange market may

process information at a much faster speed than on a weekly or daily basis used

in most studies. For example, Cheung and Chinn (2001) report that predominant

surveyed foreign exchange traders from U.S. hold the view that currency adjusts

to major macro news within minutes. Andersen et aI. (2003) find that the

currency volatility adjusts to macro news within an hour's time. Therefore, it is

imperative to study the volatility linkages using high frequency data.

We estimate two complementary multivariate GARCH models. The first

model is the VARMAR-GARCH-CCC (YGC) model which is a combination of

121
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the VARMAR-GARCH model (see Ling and McAleer, 2003) and the constant

conditional correlation model (Bollerslev, 1990). The VGC allows direct

interpretation of the parameters and Wald tests are conducted to verify the

volatility transmission between the exchange rates. The second model is BEKK

(see Engle and Kroner, 1995) model, which is extended to include asymmetric

terms (ABEKK). Although BEKK model does not allow direct interpretation of

the parameters, we use news impact surface (see Kroner and Ng, 1998) to

visually depict the asymmetric volatility linkage. We use two years of 10-min

frequency indicative data on DEM/USD and GBP/uSD provided by Olsen &

Associates. Our results suggest the linkage is significant and asymmetric, with

DEM/USD imposing much larger impact on GBP/uSD.

The rest of this paper is organized as follows. Section 5.2, provides a

review of the literature on the volatility linkage in the foreign exchange market.

Section 5.3, describes the data and seasonal adjustment procedures. Section 5.4,

introduces the two multivariate GARCH models, estimation and diagnostic tests.

The empirical results are presented and discussed in Section 5.5. Finally, Section

5.6 concludes the paper.

5.2 Literature Review

The issue of volatility linkages in the foreign exchange market has been studied

from various perspectives. In this section, we group the previous work into three

122
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areas, differentiated by their distinctive rationale for volatility transmission in

the foreign exchange market. Those are meteor shower, economic integration

and information integration theories.

Volatility linkages in the foreign exchange market start to draw attention

when Engel et a1. (1990) report the evidence of volatility spillover in USD/JPY

across the markets ofTokyo and New York. Meteor shower is the meteorological

analogy used by Engle et a1. to describe the volatility transmission across the

foreign exchange markets that open sequentially when the globe turns. Using a

GARCH model on daily USD/JPY exchange rate, they find the news impact

across terrestrial geography to be significant. Subsequent studies suggest that

volatility spillover across the markets could be caused by market behaviour,

stochastic policy coordination, or market inefficiency. For instance, stochastic

policy coordination induced volatility spillover could be best illustrated by the

events of currency intervention.", If the Bank of Japan begins intervening in the

market in support of the U.S. dollar, the uncertainty of the Fed's policy response

to either approving or disapproving the appreciation of the U.S. dollar will

increase the volatility across the markets. Intervention can also drive away

destabilizing speculators who may reappear in other foreign exchange markets,

and increase the volatility of these markets".

Another related line of research starts to look at the volatility spillover

across exchange rates instead of across geographic markets. Baillie and

50 See e.g., Ito et ale (1992).
51 SeeWesterhoffandWieland (2004).
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Bollerslev (1991) investigate the Granger causality of the variance across the

exchange rates using hourly observations over four major currencies against the

u.s. dollar. They find strong evidence for volatility spillover from sterling to

yen during the opening hours of the Asian market. Baillie et a1. (1993) study the

floating period of 1920s when the 'bear squeeze' episodes occurred in the

foreign exchange market. Using weekly exchange rates over six currencies

against the U.S. dollar, they conclude that some volatility spillover across a few

of the exchange rates could be found. Speight and McMillan (2001) look at the

daily currencies of the six formerly socialist countries of Eastern Europe for the

period of mid 1950s to 1990. There is evidence of volatility spillover across

these exchange rates. Although the above papers extend the previous studies to

multivariate exchange rates, they still consider policy coordination to be the

major cause of volatility spillover. This is partly due to the fact that the sample

periods examined are dominated by such a factor.

Studies employing more recent data suggest economic integration as a new

line of enquiry into the research of volatility spillover across the exchange rates.

Economic integration increases the interactions among regional economies

through the flows of international trades and capital. It also leads to financial

integration that strengthens the links among the regional financial markets
s2

•

Exchange rates of the integrated economies would be driven by the common

regional economic and financial shocks. For instance, Black and McMillan

52 See e.g, in Dooley and Mathieson (1994), Phylaktis (1999) and Phylaktis and
Ravazzolo (2002).
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(2004) use a component-GARCH model (CGARCH) to decompose conditional

volatility into a long-run trend component and a short-run transitory component,

where the long-run component drives the time-dependent movement. Notable

volatility spillover is found among the European currencies, which indicates a

strong convergence among these economies.

Evans and Lyons (2002b) suggest a third factor, namely information

integration, to explain the linkages among exchange rates. Although their model

is not directly linked to the study of volatility spillovers, Evans and Lyons

develop a multi-currency portfolio shifts model which demonstrates that

information integrationf implies a link between a given exchange rate and

order flows in markets for other exchange rates. In this three-round

multi-currency trading model, dealers set prices for each currency in round 1 on

the basis of available information and attract customer orders that represent

liquidity demand shocks" and are not publicly observable. In round 2 of

interdealer trading, dealers redistribute their inventories from trading round 1

according to their speculative demand. In round 3, dealers share overnight risk

with their customers and end the day with no net position. In this last round,

non-dealer public trades against the dealers with purely speculative motives and

dealers need to set prices that attract the customers to absorb their inventory

imbalances. In this framework, the optimum quoting strategy of the dealers

53 Evans and Lyons (2002b) suggest that there are three categories of integration, i.e.,
~ative, geographic and information integration.

They are hence independent ofpublic-information induced return shocks.
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depends on the public-information induced payoff increments and order flows,

the only two channels that convey information. The customers' currency demand

is influenced by their portfolio allocation decision that redistributes wealth

optimally across all currencies. However, the customers' decision to rebalance

and the actual quantity of the foreign currency are private information. Order

flow contains private information of the stochastic portfolio rebalancing that

could be motivated by time-varying risk preferences, hedging demands and

changed expectations of future economic performance. Although the information

is dispersed among all the private agents, it is gradually aggregated and revealed

through the medium of order flow. And since other currency markets

participants need to absorb the demand change due to the rebalancing, the order

flow impact of one currency is persistent on the prices of the other currencies.

For instance, Evans and Lyons (2000b), using daily data, find that the order

flows of DEM/USD and CHFIUSD enter significantly into the price

determination ofother six European currencies against U.S. dollar.

In this study, we follow the theory of the information integration as the

rationale behind the hypothesis of asymmetric linkage between DEM/USD and

GBP/uSD exchange rates. Given that they are among the major exchange rates,

there should exist strong portfolio balance effect that generates a dynamic

volatility linkage between them. At the same time, the private information

embedded in each exchange rate may be asymmetric due to the notable global

imbalance of order flow generated by these two markets. It is expected that
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volatility transmission would reveal such asymmetric information dispersion.

5.3 Data

5.3.1 Exchange Rate Data

The tick-by-tick indicative quotes data are provided by the Olsen and Associate.

Previous studies (see Goodhart et a1. (1996), Danielsson and Payne (2002) and

Phylaktis and Chen (2006» suggest that when the indicative data are aggregated

to 5 and 10-min frequency, the statistical difference between these and

transaction data (D2000-1 and D2000-2) is negligible. In this study, we use

10-min frequency instead of 5 to accommodate the relatively sparse quotes in

early mornings and late evenings. Data employed in this study are generated by

taking the average of the closest two quotes immediately before and after each

10-min spaced GMT time. As each quote contains a pair ofbid and ask price, the

mid price is taken and converted into log price subsequently. The mid log prices

of each currency pair are the prices of mark and pound in terms of the U.S.

dollar. Returns are calculated as the difference between the log-mid price at

times t -1 to t, excluding the first return of Monday for lack ofquotes during

weekends. To avoid small values and enhance the estimation of volatility, all

returns are multiplied by 10,000.

The sample period in this study is from January 2 of 1997 to December 30

of 1998. Several international financial events drove up the volatility of the
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foreign exchange markets during this period. In 1997, large currency

depreciation spread across East Asia and beyond. In 1998, another crisis hit

Russia and led to the bankruptcy of LTCM. The expected launch of euro also

added some uncertainty to the markets. Therefore, it would be of interests to

look at cross-currency linkages when markets are rich in macro information.

The daily price movements of the two currencies during the sample period

are displayed in Figure 5.1. The dollar started in 1997 on an appreciating trend

against both mark and pound as a result of market expectations of monetary

tightening in the U.S. and no change of monetary policy stance in Germany and

the UK. From May to July the dollar moved in opposite directions against the

mark and the pound. The further appreciation of dollar against the mark was due

to the consensus that the euro would be introduced on schedule. The rise in the

value of the pound was due to the enlarged interest rate differential between U.S.

and UK. During the summer of 1997, the different price movements came to an

end as the optimism in the UK economy waned. From August to November of

1997, the dollar started to depreciate, reflecting the market view that the Asian

crisis would have a greater economic impact on the U.S. than on Europe. By

January of 1998, market participants were coming to realize that Europe would

be more exposed to the Asian crisis than previously thought. Mark was further

depressed by the official declarations about interest rate convergence in Europe.

From January till August of 1998, both currencies fluctuated between narrow

bands against the dollar. In September of 1998, the Russian crisis started to bit
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the market and pushed the dollar down until October. For the remaining two

months, markets digested the shock and began to normalize.

5.3.2 Intraday Seasonal Adjustment

The foreign exchange market is traded on a global continuity, with active trading

centres opening and closing at different times of the day. Such a global trading

causes seasonality in the intraday return volatilities. Therefore, there is a need to

adjust the returns before considering any modelling.

We adopt the seasonal adjustment procedure suggested by Bauwens et al.

(2005) and divide each return by its intraday volatility index. Specifically,

10-min average volatilities for each week day are estimated and each return is

divided by its corresponding weekday average volatilities'". For example, to

adjust the 10-min return at 12:00 of Monday for a specific date, we divided the

return by the average 10-min volatility at 12:00 of all Mondays in the sample.

This practice standardizes the return series and hence facilitates direct

estimations of the empirical tests without further introducing seasonal dummies.

The weekday average 10-min volatility is presented in Figures 5.2-6. The

general intraday volatility pattern is obvious throughout the weekdays. Except

on Friday, volatility starts to rise from GMT 22 and 23 onwards, when Tokyo

and Sydney markets open consecutively with one hour gap in between. After

55 British summer time and U.S. daylight saving (OST) are dealt with by correcting
the 1hour gap.
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Hong Kong and Singapore join the trading around midnight, volatility drops

temporarily during Tokyo market lunch break around GMT 4. One hour later the

volatility climbs gradually to its morning peak after London and Frankfurt

markets open at GMT 8. High volatility drops again at mid day when European

markets take their lunch break. From GMT 12 on, the volatility starts to rally

again when New York market opens. Between GMT 14 and 16, the volatility is

generally at its highest peak when both European and New York markets are

active. At around GMT 17 there is a spike when European traders close their

positions and leave the markets. Similarly, New York market close causes

another jump ofvolatility at GMT 21.

Some weekday specific features also exist. The highest weekday average

volatilities for the two peaks of European and New York trading hours take place

on Monday morning (around GMT 8) and Friday afternoon (around GMT 16)

respectively. Given that Monday morning is the time for the market to build

trading positions with not much trading information to rely on, and Friday

afternoon to unwind positions when all previous weekdays' unpriced

information needs to be incorporated into prices, such volatility peaks are

expected. The lowest volatility levels in the early morning and late night also

happens on Monday morning and Friday night respectively, when trades are

least likely to be executed. Such distinctive trading and information environment

make the volatility patterns of Monday and Friday to be significantly different

from those ofthe other weekdays.
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In Table 5.1, the descriptive statistics of the returns of the two exchange

rates both before and after seasonal adjustment are presented. As the seasonal

adjustment is in effect a return standardization practice, means of both adjusted

exchange rates are much closer to zero, and standard deviations of both

exchange rates are reduced from around 6 to nearly 1. Skewness and kurtosis are

decreased towards normal distribution of 0 and 3 respectively. The slightly

higher kurtosis of standardized GBP/uSD returns compared to those of

DEM/USD indicates a relatively wider distribution of GBP/uSD returns in our

sample period. Jarque-Bera statistics indicates a significant drop of value

towards normal distribution. Although the Ljung-Box Q statistics have been

reduced by the standardization, there is still a strong presence of ARCH structure

in the adjusted data series.

5.4 Methodology

We employ two different multivariate GARCH (MGARCH) models to study the

volatility linkage between the two exchange rates. One of the MGARCH model

is the VARMA-GARCH-CCC (VGC) model. VGC model is a combination of

the VARMA-GARCH model (Ling and McAleer(2003» and the constant

conditional correlation model (Bollerslev (1990». And the other is BEKK model

(Engle and Kroner (1995», which uses quadratic forms to ensure positive

definiteness of the conditional variance under weak conditions. The reason for
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using two models is that VGC model allows direct interpretation of the

estimated parameters, which is difficult in the case of BEKK model. However,

VGC is based on univariate GARCH models, and hence lacks the fully dynamic

interaction of the BEKK model. Therefore, it is necessary to use both models to

avoid the shortcomings caused by employing only one of them.

Specifically, VGC model allows lagged shocks from one GARCH model to

affect the conditional variance of the other GARCH model. The interpretation of

the estimated parameters is straightforward. However, as a restricted correlation

model, VGC model is estimated as separate univariate GARCH models, i.e. the

actual estimation is based on two parallel univariate GARCH models estimated

at a common range and therefore lacks the full interaction of the elements of

covariance matrix and error terms. In contrast, BEKK model allows for volatility

transmission and dynamic conditional covariance and correlation structure and

hence captures better the volatility linkage between the return series. As the

parameters of the BEKK model do not allow direct interpretation due to its

quadratic form, we use the 'news impact surface' (see Engle and Ng (1993) and

Kroner and Ng (1998» to graphically depict the volatility transmission between

the exchange rates.

5.4.1 VGC Model

diti al .anees ofVGC model allows shocks of one market to affect the con bon van
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the other markets in a multivariate system, while assuming the conditional

correlations to be constant. The approach is a nonlinear combination of

univariate GARCH models, which requires fewer parameters than the BEKK

models. However the theoretical results on stationarity, ergodicity and moments

are not as straightforward as in other multivariate GARCH models.

To incorporate the interaction of mean returns of both exchange rates into

the MGARCH models, we use a VAR system as the mean equation, which also

applies to the BEKK model's mean specifications. The specification of a VAR

with lag length of 6 for the mean equation is chosen on the basis of the Akaike

Information Criterion (AIC)56:

6 6

Rl,t = COl +L (}1,I,pRl,t-p +L f}l,2,pR2,t-p +1l1,t
p=l p=l

6 6

R 2,t = CO2 + L (}2,I,pRl,t-p + L f}2,2,pR2,t-p +1l2,t
p=l p=l

(1)

where Rl and R2 are deseasoned returns of DEM/USD and GBPIUSD

ti I () d II (II ) are the constant and error terms forrespec ve y, COl CO2 an '-1 '-2

DEM/USD (GBP/USD) respectively. (}l,l,p is the coefficient of DEMIUSD

returns at lag p in the equation for DEM/USD returns, while the 81,2.p is the

coefficient for returns of GBP/uSD at lag p in the DEMfUSD equation. A

similar interpretation applies to the coefficients of the equation for GBPIUSD.

The variance terms take the form:

56 The Schwartz Bayesian Criterion (SBC) suggests a smaller lag length at 2, but the
estimated residuals still contain serial correlation.
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2 2 2

hii,t =C; +L aijllj,t_t
2
+ L bijhjj,t-I +I dij17 j.t-! 2, i = 1,2

j~ j~ j~

hij,t = Pij (~hii,t ~hjj,t ), i "* }
(2)

where h is the conditional covariance matrix, 11 is the vector of residuals from

the mean equation. 17 is a 2x1 vector of asymmetric GJR terms (Glosten, et

ale (1993)), i.e. 17t =min[O,llt]' P is the constant conditional correlation. The

conditional covariance of equation (2) is constrained by the product of

conditional standard deviations. Although at lower frequency, i.e. daily or

weekly, the correlation across currency markets is found to be time varying",

we assume at high frequency the correlation to be constanr". i and j refer to

DEMIUSD and GBPIUSD respectively. Specifically, when i = 1, hll refers to

the conditional variance of DEM/USD. When i =1 and) = 2, hl 2 refers to the

conditional covariance of the two exchange rates.

To test the volatility spillover, Wald tests of the joint significance of

parameters are conducted. Specifically, it tests whether the coefficients of the

residual shock, asymmetric terms and conditional variance of one exchange rate

are jointly statistically significant in the determination of the other exchange

rate's conditional variance. If the joint tests fail to reject the null hypothesis that

the three parameters are zero, then there is evidence of volatility spillover in the

exchange rates. Formally, the null hypothesis for testing the spillover effect in

the conditional variance ofone exchange rate hi; is:

57 See Sheedy (1998), and Chang and Kim(2001).
58 To check the possibility ofdynamic conditional correlations (Engle (2002), nec
model is tested and found to produce statistically insignificant results.
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H o : a .. = b.. = d .. = 0, where r e J'IJ IJ IJ r. (3)

One should note that the volatility transmission could also occur indirectly

through conditional covariance. However, given the assumption of constant

correlation and the lack of full interaction in the conditional covariance, we only

study the direct impact of conditional variance interactions.

5.4.2 BEKK Model

BEKK model is a special case of the VEe model (Bollerslev et ale (1988». VEC

model allows full interaction among the elements. In the general VEC model,

the conditional variances and conditional covariances depend on the lagged

values of all of the conditional variances of, and conditional covariances

between, all of the returns in the series, as well as the lagged squared errors and

the error cross-products. One practical shortcoming of the VEC is that the model

might not yield a positive definite covariance matrix. BEKK model ensures the

positivity of conditional variance by introducing a quadratic form. It can be

shown that in the bivariate case the BEKK model is as general as the VEC

model. Kroner and Ng (1998) extend the model to allow for asymmetry

(ABEKK). Fonnally, BEKK model with added asymmetric terms is expressed

as:

(4)

where C'C is symmetric and positively definite, H is the conditional
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covariance matrix and f.L IS the innovation vector, and 17 is a 2x I

asymmetric GJR terms, i.e. 17t = min[O,f.Lt ] · In our bivariate case, H is a

symmetric 2 X 2 matrix. H(1, 1), H(2,2) and H(1,2) are the conditional variance

of DEMlUSD, GBP/uSD and conditional covariance of the two respectively.

Engle and Kroner (1995) prove that the eigenvalues of A + B being less than

one is the sufficient condition for volatility to decay over time. Without the

asymmetric terms, BEKK model requires the estimation of k(5k+ 1)/ 2

parameters, where k is the number of return series. The mean equations of the

BEKK model is an AR(6) process as presented in the VGC model (see equation

(1».

The parameters of A and B in Equation (4) do not have direct

interpretations concerning the lagged values of volatilities or shocks. To help us

explain the asymmetric effects in the conditional volatility, we employ news

impact surface technique to depict the volatility transmission between the

exchange rates.

The term 'news impact surface' is first coined by Kroner and Ng (1998),

which is based on univariate method of 'news impact curve' by Engle and Ng

(1993). Similar to the univariate application, the multivariate generalization of

news impact surface plots the one series' conditional variance and covariance

against the lagged shocks from the other, while holding the lagged conditional

variances and covariances constant at unconditional sample mean levels.

Following Kroner and Ng (1998), we denote the lagged vector of inputs at
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time t -1 for the determination of conditional variance or covarian hce ij as

<I> t-l , excluding lagged innovations. We further denote cI> as the unconditional

mean of cI> t-l • The news impact surface for hij can be therefore expressed as:

(5)

where p, is the innovation.

5.4.3 Maximum Likelihood Estimation

Both MGARCH models employed in our study are estimated using quasi

maximum likelihood (QML) method of Bollerslev and Wooldridge (1992).

Suppose the vector stochastic process R, with T observations is a realization

of a DGP whose conditional mean and covariance matrix are approximated by a

vector ofparameters (). The optimization is conducted as:

T

max logLT (8) = Lit (8) ,
(J t=1

(6)

where L is sample likelihood function. For a bivariate normally distributed

variable, the conditional log-likelihood function is:

It(8) = -(Tlog(21f) / 2) - (1/ lnlHI) - .!.logP,'H-1
p"

2

where H and J.l follow Equation (1), (2) and (4).

(7)

By assuming Gaussian innovations, the QML approach yields persistent

estimation under the condition that the conditional mean and covariance matrix

are correctly specified. Robust errors are computed that are valid under

non-normality (see White, 1982). The BFGS algorithm with a convergence
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criterion of0.00001 is applied to achieve the convergence.

5.4.4 Diagnostic Tests

In this study we employ a multivariate extension of univariate ARCH detecting

diagnostics of Ljung-Box portmanteau tests. The multivariate Ljung-Box Q

(MLBQ) test of Hosking (1980) gives the test statistics as:

p

MLBQ = T 2 I(T - j)-l tr{C~,l (O)CR, (j)C~,l (O)CR, '(j)}
j=l

(8)

where R, is the vector of returns and CR (j) is the sample autocovariance
I

matrix of lag order p. The null hypothesis is no ARCH effects and the statistic

is distributed asymptotically as %2 with 22 (p - 2) degrees of freedom. The

test is applied to both the standardized residuals and squared standardized

residuals. The lag lengths are set to 6 and 12, representing serial correlation up

to one and two hours respectively.

5.5 Empirical Results

5.5.1 Results for VGC Model

The estimated results ofVGC (Equation (1) and (2» are presented in Table 5.2.

Panel A of Table 5.2 displays the coefficient estimation for the mean

equation of the VAR(6) system in Equation (1). COl is the constant tenn in the

fmlJltinn for the return of exchange rate it where i =1 indicates DEMlUSD,
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and 2 indicates GBP/uSD. f}j,j,p is the coefficient of the lagged return of

exchange ratej at lagp in equation for exchange rate i.

In the mean equation for DEMlUSD, the autoregressive tenns «() )
l.1.p are

significant in 3 out of the 6 lags at 5% level. The lagged GBPIUSD returns

(Bl,2,P) fail to produce any significant impact on DEMIUSD except at lag 5. In

the mean equation for GBP/uSD, the autoregressive tenns «() ) are
2.2.p

significant at all lags, indicating a strong persistent autocorrelation. The lagged

DEMIUSD returns ({}2,l,P) enter significantly in GBPIUSD equation at 1% level,

with 3 out of 6 being significant and the sizes of the coefficient being relatively

large. The larger impact of DEMIUSD returns on GBPIUSD compared to

GBP/uSD on DEMIUSD provides evidence of asymmetric linkage at return

level.

Panel B of Table 5.2 presents the empirical results of the conditional

variance equation of VGC model. The 15 estimated parameters are significant at

5% with only two exceptions. The statistically significant and positive values of

ail and btl with sums less than 1 suggest that there is positive persistence of

the conditional variances in both exchange rates.

More important findings are the significant cross terms, namely au' bl}

and d IJ' in each conditional variance equation. The Wald tests of volatility

spillover effect presented in Panel C indicate that the volatility transmission is

highly significant between the two exchange rates. The test statistics of one

CUlTency's volatility spillover into the other are all significant at 1%.
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Furthermore, the volatility transmission is asymmetric between the two

exchange rates. The absolute value of coefficient of lagged residual of

GBPIUSD in the conditional variance equation of DEMIUSD (a ) is h
12 1 muc

smaller than the coefficient a21 , suggesting that the lagged DEM/USD

innovations have greater effect on the conditional variance of GBP/uSD than

the reverse. Similarly, the lagged conditional variance of GBP/uSD (b
12

)

imposes less impact on the conditional variance of DEMIUSD than the reverse

The significant GJR terms of d jj indicates that negative return shocks

have notable impact on the exchange rates' conditional variance. The

asymmetric effect in DEMIUSD (dll ) is much smaller than that in GBP/uSD

(d22) in terms of their absolute value. The negative return shocks tend to

decrease very slightly the conditional variance in the case of DEMIUSD while

increase it in the case of GBPIUSD. And the negative DEMIUSD return shocks

have significant effect (d21 ) on the conditional variance of GBPIUSD, while

those of GBP/uSD (d
12

) have literally no effect on the conditional variance of

DEMIUSD.

The value and significance of constant correlation Pl2 of 0.3 indicates a

low but highly statistically significant contemporaneous correlation between the

two exchange rates. In Figure 5.7 we display the constant correlationagainst the

sample correlation with an arbitrary moving window of 120 observations

alongside the conditional standardized residuals for both currencies.
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In Panel D the model's fitness is good in terms of th I"e mu tIvanate

Ljung-Box Q statistics. The diagnostic tests on the standardized residuals and

their squared values are all insignificant. It suggests that there is no

autocorrelation in the lagged standardized residuals and ARCH effect in the

squared standardized residuals.

5.5.2 Results for BEKK Model

InTable 5.3 the estimation results ofBEKK. model are displayed. The estimation

of mean equation of BEKK. is the same as estimated in the VGC model and

hence is not displayed. Among the 15 estimated parameters of the conditional

variance equation, 14 of them are significant at 5% level. The model diagnostics

suggest relatively a good fit of the model with only the multivariate Ljung-box

Qstatistics for the squared standardised residuals at lag 12 not significant at 5%

level. Since the parameters of the BEKK. model are in the quadratic forms and

difficult to interpret, we rely on the news impact surface approach to depict the

volatility transmission. As the asymmetric terms of the BEKK model add

complicated effect on the news impact surface, we first present the graphs

without asymmetric terms in Figure 5.8. The graphs with added asymmetric

terms are presented in the subsequent Figure 5.9.

The magnitudes of innovation shocks on the conditional variance and

covariance are in the range of -2 to 2. Since the return series of both exchange
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rates are standardized, such a shock range amounts to a range of -2 to 2 standard

deviations of shocks. The labels of DEM and GBP for Y and X axis stand for the

source of shocks, with DEM being DEMIUSD and GBP being GBPIUSD

exchange rate returns respectively. In each figure, three subplots of news impact

surface of corresponding conditional variances and covariance are presented.

Figure 5.8 presents the news impact surface without the asymmetric terms.

In subplot (a), the surface of the conditional variance ofDEMlUSD is displayed.

The conditional variance of DEMIUSD is sensitive to the shocks from itself,

displaying a 'U' shape impact curve. It suggests that the conditional variance

responds more strongly to large shocks than small ones. However the impact of

GBP/uSD on DEM/USD is less obvious as the straight and relatively horizontal

parallel lines suggest.

The news impact surface of GBP/uSD's conditional variance displays a

different pattern (subplot (bj), The conditional variance of GBP/uSD not only

responds to its own past shocks, but is also very sensitive to those from

DEMIUSD. The highest conditional variance of GBP/uSD occurs when shocks

from both currencies have opposite signs.

The subplot (c) of Figure 5.8 summarizes the impact surface of conditional

covariance of the two exchange rates. The lowest covariance occurs when the

shocks from both currencies take opposite signs, as expected. When both shocks

are either positive or negative, the conditional variance reaches higher values.

The conditional covariance is however slightly more sensitive to those shocks

142



---------------------- '..3

from DEM/USD as the arched curve over the DEM/USD axis suggests.

In sum, Figure 5.8 indicates that the there is volatility linkage between the

two exchange rates, as each responds to the shocks from the other. without

taking asymmetric terms into consideration. However, the volatility transmission

is also asymmetric since the conditional variance of GBP/uSD is much more

sensitive to the shocks from DEM/USD than the reverse, which is in line with

the findings from the VGC model.

Figure 5.9 presents the news impact surface with asymmetric terms, i.e.

negative return shocks are differentiated from positive ones. The news impact

surface of conditional variance of DEMIUSD with asymmetric terms is

presented in subplot (a) of Figure 5.9. The response of DEMIUSD is largely

unchanged when the shocks from DEM/USD and GBP/uSD are both positive.

When both exchange rates produce negative shocks, the conditional variance of

DEMIUSD drops. As the VGC model (dll ) suggests, the asymmetric terms of

DEMIUSD lowers its conditional variance. When negative shocks from

GBPIUSD combine with positive DEM/USD shocks, the conditional varianceof

DEMIUSD only responds to those large negative GBPIUSD shocks with values

less than minus 1. VGC model suggest that negative GBP/uSD shocks (dI2 )

tend to raise conditional variance of DEMlUSD, which is also reflected in the

impact surface.

In subplot (b) of Figure 5.9, the news impact surface of GBP/uSD with

asymmetric tenns is displayed. The conditional variance of GBPIUSD is
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sensitive to shocks from both exchange rates when the shock fr ths om em are

positive. As suggested by the VGC model, the effects from the negative shocks

from GBP/uSD (d22 ) and DEM/USD (d21 ) are mixed, with the former raising

the conditional variance and the later lowering it. Therefore the conditional

variance of GBP/uSD continues the decreasing trend in the DEMIUSD shock

range of [0,-1], and then rises swiftly in the shock range of [-1,-2]. Compared to

the conditional variance without the asymmetric terms (subplot (b) of Figure

5.8), GBP/uSD is now very sensitive to negative shocks from both exchange

rates.

The news impact surface of conditional covariance (Figure 5.9, subplot (c)

is changed correspondingly. The surface is also the same when the shocks from

DEM/USD are positive. However, when the shocks from DEM/USD become

negative, the conditional covariance starts to rise significantly, especially when

the negative DEM/USD shocks exceed minus 1. It suggests that asymmetric

terms, particularly those of DEMlUSD, significantly change the conditional

covariance into a more dynamic pattern. The raised conditional covariance

alongside the axis of GBP/uSD suggests that the volatility transmission from

GBP/uSD is partly compensated through the channel of conditional covariance.

In sum, the Figure 5.9 indicates that the asymmetric terms enhance the

dynamic volatility linkage between the two exchange rates. The conditional

variance of DEM/USD becomes sensitive to large negative GBPIUSD shocks.

At the same time the conditional variance of GBPIUSD becomes more sensitive
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to negative DEM/USD shocks. Although the volatility transmi "ssion patterns

become more complex and dynamic, the conclusion of asymm-..; I ·1"
,",u IC vo all ity

transmission, i.e., that DEMIUSD imposes much larger impact on the

conditional volatility of GBP/uSD than the reverse, is largely unchanged from

the previous analysis of Figure 5.8.

5.6 Conclusion

This study investigates the dynamic linkages between the DEMIUSD and

GBPIUSD exchange rates in terms of volatility transmission, using high

frequency data. We employ two multivariate GARCH models on two years of

high frequency exchange rate data to provide evidence on our hypothesis. The

empirical results suggest that such linkages are significant and asymmetric, with

DEMIUSD imposing stronger impact on GBPIUSD than the reverse.

Such findings provide further evidence on the possible existence of private

information in the foreign markets. As volatilities are linked to information, the

asymmetric volatility transmission of the two exchange rates suggests the

information may be distributed asymmetrically between them. We hypothesize

that, based on the portfolio shift theory of Evans and Lyons (2002b), the

different size of global order flow generated by the two exchange rates as a

source of private information, and a possible cause of such an asymmetry·

Further study therefore needs to introduce the order flows into the analysis to
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confinn such a hypothesis.
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Table 5.1

Moments of the DEM/USD and GBPIUSD IO-min returns

DEMIUSD GBPtUSD
Returns SAretums Returns SA returns

Mean -0.01113 -0.00412 -0.00410 -0.00032
Std. Dev. 5.899 1.003 6.729 0.998
Skewness 0.397 0.033 0.018 0.010

Kurtosis 31.357 5.052 49.091 5.811

Jarque-Bera 2,486,876* 12,886* 6,565,097* 24,153·

Autocorrelation of order
-0.138* -0.105* -0.225* -0.196·

1
Autocorrelation of order

-0.003 -0.007 -0.021· -0.014·
2

Autocorrelation of order
0.001 0.001 -0.005 -0.006

3

LBQsq(4) 4,728* 2,863* 3,614· 1,906·

Notes: The SA returns are the seasonally adjusted returns by dividing the returns by their intraday

average volatility index. Jarque-Bera test statistics indicate the degree of normality. LBQsq(4) is the

univariate Ljung-Box Q statistics for serial correlation in squared returns up to lag 4. All the returns

havebeen pre-multiplied by 10,000. * denotes significance at 1% level.
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Table 5.2
VGC model estimation

Panel A Meanequations

Equation for DEMIUSD returns

Coefficients Estimation
Std.
error r-stat. Significance

COl -0.005 0.004 -2.35 0.01

91,1,1 -0.067 0.005 -13.33 0.00

91,1,2 -0.027 0.005 -5.40 0.00

91,1,3 0.007 0.005 1.36 0.09

91,1,4 0.006 0.005 1.21 0.11

91,1,5 0.013 0.005 2.63 0.00

91,1,6 0.003 0.005 0.55 0.29

91,2,1 0.004 0.005 0.83 0.20

91,2,2 0.000 0.005 0.08 0.47

91,2,3 -0.001 0.005 -0.19 0.42

91,2,4 -0.003 0.005 -0.56 0.29

91,2,5 -0.011 0.005 -2.22 0.01

91,2,6 0.000 0.005 0.01 0.49

Equation for GBP/uSD returns

Coefficients Estimation
Std.

t-stat. Significance
error

CO2 0.013 0.005 2.43 0.01

92,1,1 0.067 0.005 13.30 0.00

92,1,2 0.016 0.005 3.09 0.00

92,1,3 0.022 0.005 4.35 0.00

92,1,4 0.000 0.005 -0.07 0.47

92,1,5 0.006 0.005 1.09 0.14

92,1,6 0.001 0.005 0.27 0.39

92,2,1 -0.067 0.005 -13.40 0.00

92,2,2 -0.036 0.005 -7.19 0.00

92,2,3 -0.016 0.005 -3.25 0.00

92,2,4 -0.015 0.005 -2.90 0.00

82,2,5 -0.016 0.005 -3.19 0.00

92,2,6 -0.014 0.005 -2.88 0.00
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Panel B: Conditional variance equation
Coefficients Estimation
Panel B. Conditional variance

Std. error r-stat. Significance

C1

C2

all

a12

a21

an
bll

b12

b21

bn
dll

d12

d21

d22

P 12

-0.0063
0.1127
0.0486

-0.0086
-0.0430
0.1291
0.8514
0.3650
1.2062
0.4153

-0.0056
0.0100

-0.0524
0.0969
0.3083

0.0048
0.0222
0.0058
0.0028
0.0047
0.0105
0.0314
0.1003
0.2687
0.1054
0.0026
0.0059
0.0000
0.0000
0.0052

-1.30
5.08
8.42

-3.12
-9.14
12.34
27.07
3.64
4.49
3.94

-2.22
1.66
6.30
8.94

59.06

0.19
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.10
0.00
0.00
0.00

Panel C: Volatility spillover test
Volatility spilloverfrom GBP/USD to DEMIUSD

Wald (Ho: a12= b12= d12=O) X2
= 86.70 (0.00)

Volatility spilloverfrom DEMIUSD to GBP/USD

Wald (Ho: a21= b21= d21=0) X2
= 19.00 (0.00)

Panel D. Model diagnostics
MLBG(6)
MLBG(12)

MLBG2 (6)

MLBG2 (12)
LR

5.04 (0.96)
28.11 (0.82)

13.91 (0.73)

59.98 (0.12)
-124,334.53

Notes: For the specification of the VGC model refer to equations (1) and (2). 8 Oi stands for the
constant. e iJ.k stands for the coefficient of the return of the same currency pair at lag k when i = j .

Otherwise it is the coefficient of the return from other currency pair. MLBG(/c) and MLBG 2 (Ie) is the
multivariate Ljung-Box Q statistics of Hosking (1980) for the standardized and squared
standardized residuals with lag k. p-value of each statistic is presented in the brackets. LR is the
likelihood ratio. The volatility spillover test is a joint test ofwhether the coefficients ofone currency
pair's residual shock, conditional variance and asymmetric shock are significantly.
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Table 5.3
BEICK estimation

Coefficients Estimation Std. error t-stat.
Panel A. Conditional variance Significance

Cll 0.2802 0.0161 17.38 0.00
C21 0.0304 0.0090 3.38 0.00
C22 0.0080 0.0038 2.08 0.04
011 0.2681 0.0106 25.31 0.00
012 0.0073 0.0075 0.97 0.33
021 -0.1137 0.0103 -11.00 0.00
022 0.1650 0.0065 25.21 0.00bll -0.8000 0.0083 -96.57 0.00
b12 0.2623 0.0020 116.87 0.00
b21 0.7736 0.0092 83.65 0.00
b22 0.8682 0.0018 469.57 0.00
dll 0.0426 0.0220 1.93 0.05
d12 -0.1175 0.0097 -12.10 0.00
d21 0.1655 0.0143 11.63 0.00
d22 0.0942 0.0117 8.02 0.00

Panel B. Model diagnostics

MLBG(6)
MLBG(12)

MLBG 2 (6)

MLBG 2 (12)

LR

6.33 (0.90)
31.35 (0.69)

11.05 (0.44)

52.21 (0.03)

-124,538.16

Notes: For the specification of the BEKK. model refer to equations (4). The mean equation

estimation is omitted from the table as it is similar to that presented in VGC model. MLBG(Jc) and

MLBG 2 (k). is the multivariate Ljung-Box Q statistics of Hosking (1980) for the standardized and

squared standardized residuals with lag k. p-value of each statistic is presented in the brackets. LR is

the likelihood ratio.
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Figure 5.1
Daily price levels of two currencies (1997-98)
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Figure 5.2
Intraday volatility - Monday
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Figure 5.3
Intraday volatility - Tuesday
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Figure 5.4
Intraday volatility - Wednesday
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Figure 5.5
Intraday volatility - Thursday
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Figure 5.6
Intraday Volatility - Friday
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Figure 5.7
Standardized residuals and moving correlation from VGC model
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Chapter 6

Conclusion

This last chapter concludes the thesis. It starts by reiterating the state of present

exchange rate theory and what motivates the thesis. It then goes on to summarize

the main findings of the three studies. In the final section we suggest some

future research directions based on our research.

6.1 Origins of the Thesis

This thesis aims at finding the market heterogeneity and private information in

the foreign exchange market. It is partly motivated by the poor performance of

traditional macro models in explaining and forecasting exchange rates in the

short and medium term. The two key pillars of the traditional models are market

homogeneity and non-existence of private information. Both of them are

unrealistic assumptions that do not fit into the real marketplace. Another

motivation is the rapid development of the microstructure theory in the study of

the foreign exchange market. It correctly acknowledges that market participants,

infonnation and trading arrangement have considerable effects on the price
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discovery of exchange rates. It is important to study the mi 1 1 ficro eve 0 the

foreign exchange market which may lead to major progress in the exchange rate

theory.

One important medium that connects the macro and micro studies in the

foreign exchange market is order flow. Order flow is the net currency purchase

and differentiates itself from traditional aggregate demand by stressing the

trading initiative. In the foreign exchange market, macro information can rarely

be translated directly into a specific price change and decentralized market

institutions further makes the information flow opaque. In such information

environment, order flow becomes the key channel for individual dealers to

collect information from customers that link to the real economic activities in

real time. The capability of garnering information becomes a possible criterion

ofjudging whether private information is possessed by the dealers.

Such a chain of reasoning leads us to establish several hypotheses to be

tested in the foreign exchange market. For instance, we directly hypothesize that

large banks should have more information due to considerably larger customer

order flow generated by their global trading than their smaller rivalry banks.

Another extension of our hypothesis is to test whether there is asymmetric

information linkage between major exchange rates, if a certain exchange rate is

much more heavily traded than others.
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6.2 Major Findings and Contributions

Employing vanous econometrics methods such as ECM and Multi .nvanate

GARCH models, we find positive evidence of information asymmetry in the

foreign exchange market. And the degree of information asymmetry is

significantly high and should not be ignored.

Firstly, we find that EFX data actually contain more information than

02000-1 data, contrary to most preconceptions held by academics. The

approaches are rigorous and results are robust as we endeavour to diversify our

methods and time windows. It may be due to the trading frictions and transaction

record procedures that slow down the information incorporating speed of the

transaction data. No matter what might be the cause, due to the fact that the

availability of high frequency exchange rate data is still considerably low till this

day, the EFX data can well be a reasonable resource for academics to work on in

the future.

In the second paper, the hypothesis that big market players are superior in

finding private information and interpreting macro news than others is tested.

The big banks are selected by surveys done by Euromoney magazine on a

biennial base. To test the hypothesis, we use five years of high frequency data

and divide the banks into big banks group and other banks group. Employing

two related information sharing techniques, we find that big banks group takes a

dominant share of information during our sample period. Although the monthly

infonnation share during the five years is fluctuating, it however follows an
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uptrend that reflects the increasing market concentration thr gh thou out e years.

We also hypothesize that that big banks group is better at C .lorecastmg and

interpreting macro news if they have better information set than other banks. We

subsequently calculate the information share of the big banks group during the

time of over one thousand items of U.S. macro announcements and find its

information share significantly expands during announcements of some major

categories of economic news. It is contrary to traditional macro models' belief

that all market participants form the same rational expectation and the only

information source of public news directly causes instant price adjustment. Our

findings suggest that market participants actually have different information sets

and interpret news with different accuracy and speed. The price discovery

process in the foreign exchange market is hence dynamic and asymmetric.

In the third paper, we extend our experiment into larger context of

cross-currency information linkage. This paper is also motivated by the portfolio

shift model that connects the pricing of individual exchange rates into an

interdependent system by order flow information. Setting the stage in global

currency market, we find that DEM/USD generates far larger order flow than

GBP/uSD. Therefore we directly hypothesize that the former exchange rate

should contain more market information than the later. And since the price

discovery of one exchange rate is influenced by the other, we further

hypothesize that DEMIUSD imposes much larger impact on GBPIUSD than the

reverse in terms of volatility linkage. We introduce two complementary
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multivariate GARCH models to test our hypothesis on two years of high

frequency exchange rate data. The results indicate such a speculation is indeed

the case. It is the first paper to test the asymmetric volatility linkage at high

frequency in the foreign exchange market, as far as we know. As market

participants hold the dominant view that market digests news in minutes instead

of days, our findings may reflect a more realistic picture of the price discovery

in the foreign exchange market than previous studies.

The robust results from the three papers indicate that market homogeneity

and the only existence of public information are two unsound assumptions taken

by traditional macro models. It is in support of new studies that give more

attention to the microstructure of the marketplace. And many researches have

already shown promising results produced by these approaches.

6.3 Future Research Directions

As market heterogeneity and private information are strongly interrelated, to

extend the study of private information, future studies need to find more ways to

define market heterogeneity and hence capture the private information in a

specific form. For instance, dealers' geographic location could well be a source

for private information due to being closer to economic activities of a certain

I ed ~_r. tion Due to the rapidarea that may generate more exchange rate re at lIllorma .

fu di could also examine thedevelopment of electronic trading system, ture stu es
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different market designs and their impact on the price discovery of exchange

rates.
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