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Abstract

In a previous paper, we introduced a heterotic standard model and discussed

its basic properties. This vacuum has the spectrum of the MSSM with one ad-

ditional pair of Higgs-Higgs conjugate fields and a small number of uncharged

moduli. In this paper, the requisite vector bundles are formulated; specifically,

stable, holomorphic bundles with structure group SU(N) on smooth Calabi-Yau

threefolds with Z3×Z3 fundamental group. A method for computing bundle coho-

mology is presented and used to evaluate the cohomology groups of the standard

model bundles. It is shown how to determine the Z3 ×Z3 action on these groups.

Finally, using an explicit method of “doublet-triplet splitting”, the low-energy

particle spectrum is computed.
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1 Introduction:

In [1], we presented a standard model within the context of the E8 × E8 heterotic

superstring. These vacua are N = 1 supersymmetric and have the following properties.

• The observable sector has gauge group SU(3)C×SU(2)L×U(1)Y ×U(1)B−L, three

families of quarks and leptons, each with a right-handed neutrino, and two Higgs-

Higgs conjugate pairs. There is no exotic matter. In addition, there are 6 geometric

moduli and a small number of vector bundle moduli. That is, the observable sector

has exactly the spectrum of the MSSM with one additional Higgs-Higgs conjugate

pair.

Within our context, the visible sector vector bundle is unique. All other bundles lead

to an observable sector spectrum that is not realistic, having large numbers of exotic

multiplets and Higgs-Higgs conjugate pairs.

• The structure of the hidden sector depends on whether one considers the weakly

or strongly coupled regime. In the strongly coupled context, we find a minimal

hidden sector with gauge group E7×U(6), and no matter fields. For weak coupling,

one finds a minimal hidden sector with gauge group Spin(12) and two matter

multiplets, each in the 12 of Spin(12). In both cases, there is a small number of

vector bundle moduli.

There is flexibility in choosing the hidden sector vector bundles since one can always

perform small instanton transitions, see [2–4]. However, those leading to the minimal

spectra just presented are, essentially, unique.

In [1] we presented the basic structure of the heterotic standard model, but only

briefly outlined the requisite technical results. The properties of the smooth compacti-

fication manifold, Calabi-Yau threefolds with Z3 ×Z3 fundamental group, as well as the

action of Z3×Z3 on the associated Wilson lines were discussed in detail in [5]. However,

the construction of the standard model vacua requires three other ingredients; first,

stable, holomorphic vector bundles with SU(N) structure groups over this threefold,

second, the cohomologies associated with these bundles and third, the explicit repre-

sentations of Z3 × Z3 on these cohomology groups. The low energy spectrum is then

identified with the subspace invariant under the product of these representations with

the action on the Wilson lines. In this paper, we will discuss these three ingredients in
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more detail. This will establish the technical basis for our results in [1] and provide the

context for assessing their uniqueness.

The standard model vector bundles are not constructed from spectral covers [6–14].

Rather, they are produced using a generalization of the method of “bundle extensions”

introduced in [15–21]. The techniques for explicitly computing bundle cohomologies,

and for finding the representations of a finite group on the cohomology groups, were

presented [22,23]. Standard model vacua require a significant extension of the methods

discussed in [24, 25]. Finally, we emphasize that our computation of the spectrum as

the invariant subspace under the action of Z3 × Z3 on the cohomology groups and

Wilson lines represents an explicit method of “doublet-triplet splitting” [26, 27]. It is

this technique which allows us to project out all exotic matter and to arrive at the

minimal MSSM spectrum with one additional pair of Higgs-Higgs conjugate fields.

In this paper, we present our computations and discuss the extensive search that led

to the heterotic standard model. However, the full technical details will be left to future

publications [28, 29]. For example, the computation of vector bundle moduli is more

involved than for other fields and will be presented elsewhere. In this paper, we simply

point out that the Z3 × Z3 projection greatly reduces the number of such moduli.

2 Requisite Data:

We begin with the E8 ×E8 heterotic string compactified on a smooth Calabi-Yau three-

fold X. This manifold admits stable, holomorphic vector bundles V in the observable

E8 sector and V ′ in the E ′

8 hidden sector.1 It follows that the four-dimensional effective

theory will exhibit N = 1 supersymmetry.

2.1 The Observable Sector Spectrum

Consider the minimal supersymmetric standard model, the MSSM. It is well-established

that neutrinos have a non-vanishing mass [30]. Since the MSSM has no exotic multiplets,

N = 1 supersymmetry will suppress any purely left-handed Majorana neutrino mass to

be too small by several orders of magnitude [31,32]. It follows that the MSSM must be

extended by adding a right-handed neutrino to each family of quarks/leptons.

1We will distinguish the E8 gauge group of the hidden sector by denoting it with a prime.
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We would like to find a vacuum of the E8 × E8 heterotic string whose observable

sector is as close to this extended MSSM as possible. To do this, it is useful to recall

that each generation of quarks/leptons with a right-handed neutrino fits exactly into the

16 spin representation of Spin(10). It is compelling, therefore, to try to spontaneously

break the E8 gauge group of the observable sector to Spin(10) as already suggested

in [26]. This can be accomplished if we choose V to have structure group SU(4). Then

E8 −→ Spin(10), (1)

as desired. With respect to the maximal subgroup SU(4) × Spin(10), the adjoint 248

of E8 decompose as

248 →
(
1, 45

)
⊕

(
15, 1

)
⊕

(
4, 16

)
⊕

(
4, 16

)
⊕

(
6, 10

)
. (2)

The
(
1, 45

)
contain the gauginos of Spin(10), the

(
15, 1

)
correspond to vector bundle

moduli and the remaining representations are the matter fields.

If X is not simply connected, one can introduce, additionally, a Wilson line W to

further reduce the gauge group. It was shown in [5] that to break Spin(10) to a group

containing the standard model gauge group SU(3)C × SU(2)L × U(1)Y , the simplest

possibility is to require that X have first fundamental group

π1(X) = Z3 × Z3. (3)

Calabi-Yau threefolds with this property were explicitly constructed in [5]. On such

manifolds, one can choose Wilson lines with the property that their holonomy group is

hol(W ) = Z3 × Z3. It was shown in [5] that W will then spontaneously break

Spin(10) −→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L, (4)

where, in addition to the standard model gauge group, there is a gauged U(1)B−L

symmetry. With respect to this low energy gauge group, the Spin(10) matter fields

decompose as

16 →
(
3, 2, 1, 1

)
⊕

(
3, 1,−4,−1

)
⊕

(
3, 1, 2,−1

)
⊕

(
1, 2,−3,−3

)
⊕

⊕
(
1, 1, 6, 3

)
⊕

(
1, 1, 0, 3

)
,

10 →
(
3, 1,−2,−2

)
⊕

(
3, 1, 2, 2

)
⊕

(
1, 2, 3, 0

)
⊕

(
1, 2,−3, 0

)

(5)
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where we have displayed the quantum numbers 3Y and 3(B − L) for convenience. The

16 decomposition is obtained by conjugation. We see from eq. (5) that the standard

model fermions, including a right-handed neutrino, arise from the decomposition of the

16, as expected. Similarly, Higgs doublets occur in the 10 of Spin(10).

Note, however, that there may be extra, exotic matter multiplets in the spectrum.

These include all fields arising from the decomposition of a 16. Additionally, any of the

color triplets in the decomposition of a 10 are unobserved. Therefore, if one is to be

successful in finding a heterotic standard model, these exotic matter multiplets must be

projected out.

2.2 The Calabi-Yau Threefold X

The above discussion implies that one must construct Calabi-Yau threefolds X with

fundamental group Z3 × Z3. This was carried out in detail in [5]. Here, we simply

outline those properties of the construction that are required for the analysis in this

paper.

The requisite Calabi-Yau threefolds, X, are constructed as follows. We begin by

considering a simply connected Calabi-Yau threefold, X̃, which is an elliptic fibration

over a rational elliptic surface, dP9. It was shown in [5] that there are special dP9

surfaces which admit a Z3 × Z3 action. Furthermore, in a six-dimensional region of

moduli space, X̃ admits an induced Z3 ×Z3 group action which is fixed point free. The

quotient X = X̃/(Z3 × Z3) is a smooth Calabi-Yau threefold that is torus-fibered over

a singular dP9 and has non-trivial fundamental group Z3 × Z3, as desired.

Specifically, X̃ is a fiber product

X̃ = B1 ×P1 B2 (6)

of two dP9 special surfaces B1 and B2. Thus, X̃ is elliptically fibered over both surfaces

with the projections

π1 : X̃ → B1, π2 : X̃ → B2. (7)

The surfaces B1 and B2 are themselves elliptically fibered over P1 with maps

β1 : B1 → P
1, β2 : B2 → P

1. (8)

The invariant homology ring of each special dP9 surface is generated by two Z3 ×Z3
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invariant curve classes f and t with intersections

f 2 = 0, ft = 3t2. (9)

Using projections (7), these can be lifted to divisor classes

τ1 = π−1
1 (t1), τ2 = π−1

2 (t2), φ = π−1
1 (f1) = π−1

2 (f2) (10)

on X̃ satisfying the intersection relations

φ2 = τ 3
1 = τ 3

2 = 0, φτ1 = 3τ 2
1 , φτ2 = 3τ 2

2 . (11)

These three classes generate the invariant homology ring of X̃. For example,

spanC{φ, τ1, τ2} = H4(X̃, C)Z3×Z3 ≃ H1,1(X). (12)

It follows that h1,1(X) = 3. Similarly, one can show that h1,2(X) = 3. Hence, X has six

geometric moduli; three Kahler moduli and three complex structure moduli. Finally,

the Chern classes of X̃ can be shown to be

c1(TX̃) = c3(TX̃) = 0, c2(TX̃) = 12(τ 2
1 + τ 2

2 ). (13)

2.3 The Holomorphic SU(4) Bundle V

Next, we produce the requisite observable sector bundles V on X. This is accomplished

by constructing stable, holomorphic vector bundles Ṽ with structure group SU(4) over

X̃ that are equivariant under the action of Z3 × Z3. Then V = Ṽ /(Z3 × Z3).

The vector bundles Ṽ are constructed using a generalization of the method of “bundle

extensions” introduced in [15–21]. Specifically, Ṽ is the extension

0 −→ V1 −→ Ṽ −→ V2 −→ 0 (14)

of two rank two bundles V1 and V2 on X̃. These bundles are of the form

Vi = Li ⊗ π∗

2Wi, i = 1, 2 (15)

for some line bundles Li on X̃ and rank 2 bundles Wi on B2. The rank two bundles Wi

are themselves extensions

0 −→ OB2
(aif2) −→ Wi −→ OB2

(bif2) ⊗ Iki
−→ 0, (16)
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where ai, bi are integers and Iki
is the ideal sheaf of some ki-tuple of points on B2. That

is, (16) gives us a prescription to build rank two bundles on B2, (15) to produce two

rank two bundles on X̃ and, finally, we use (14) to construct Ṽ .

One must specify not only the bundles Ṽ , but their transformations under Z3 × Z3

as well. To do this, first notice that for the Z3 ×Z3 action on the space of extensions to

be well-defined, the line bundles OB2
(aif2), OB2

(bif2) and Li must be equivariant under

the finite group action. In this case, the space of extensions will carry a representation of

Z3 ×Z3. An equivariant rank four vector bundle will be any Ṽ that does not transform

under this action. A Ṽ with this property will inherit an explicit equivariant structure

from the action of Z3 × Z3 on its constituent line bundles. Having found such a Ṽ , one

can construct V = Ṽ /(Z3 × Z3) on X, as required.

To proceed, therefore, one must consider the action of Z3 × Z3 on line bundles and

show how to construct line bundles that are equivariant. Two natural one-dimensional

representations of Z3 × Z3 are defined by

χ1(g1) = ω, χ1(g2) = 1; χ2(g1) = 1, χ2(g2) = ω, (17)

where g1,2 are the generators of the two Z3 factors, χ1,2 are two group characters of

Z3 ×Z3 and ω = e
2πi

3 is a third root of unity. All other one-dimensional representations

are products of (17) and, in any case, do not appear in our construction. Note that

none of these representations is faithful.

Let us consider an explicit example of a Z3 ×Z3 action on a line bundle. Recall that

O
X̃

≃ X̃ × C ∋ (p, v) is the trivial line bundle on X̃. The simplest action of a group

element g ∈ Z3 ×Z3 on O
X̃

is by translation of p to g(p), with no action on v. However,

for any representation χ we can define a twisted action on O
X̃

by

(p, v) 7→ (g(p), χ(g)v). (18)

In this paper, we denote O
X̃

carrying this twisted action by χO
X̃

. It is straightforward

to show that χO
X̃

is equivariant under Z3 × Z3, as desired. We may similarly define

line bundles χL on X̃, χOBi
(nf) on Bi and χOP1(n) on P

1.

Finally, having constructed equivariant holomorphic bundles Ṽ with structure group

SU(4) over X̃, one must ensure that they are stable. For an arbitrary holomorphic

vector bundle F , a complete proof of stability is extremely complicated. However, one

can show that a bundle F with vanishing first Chern class is stable only if

H0(X̃,F) = H0(X̃,F∗) = 0, H0(X̃,F ⊗F∗) = 1. (19)
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We will use these criteria as highly non-trivial checks on the stability of Ṽ , as well as

on the hidden sector bundle Ṽ ′.

2.4 Computing the Particle Spectrum

A method for computing the low-energy particle spectrum after compactification on

X with a holomorphic vector bundle V and possible Wilson line W was presented

in [22,23,33–39] and will be used in this paper. The spectrum is identified with the zero

modes of the Dirac operator on X “twisted” by the bundle V ⊕W . The zero modes are

the invariant elements of certain bundle cohomology groups. In this method, one does

not actually make use of X and V , all computations being performed on the covering

space X̃ with bundle Ṽ .

To be specific, let us consider the observable sector discussed above. In this case,

Ṽ has structure group SU(4) which breaks E8 to Spin(10). Furthermore, X̃ admits

a free Z3 × Z3 action and Ṽ is equivariant under this action. Let R be a representa-

tion of Spin(10) and denote the associated Ṽ bundle by UR(Ṽ ). One first constructs

H1(X̃, UR(Ṽ )) for all non-trivial bundles UR(Ṽ ). When UR(Ṽ ) is trivial, one consid-

ers H0(X̃,O
X̃

) which is always one-dimensional and carries the trivial representation

of Z3 × Z3. The next step is to find the representation of Z3 × Z3 on H1(X̃, UR(Ṽ )).

Choosing Ṽ to be equivariant guarantees that these actions exit. Finally, tensor each

such representation with the action of the Wilson line on R. The zero mode spectrum

is then the invariant subspace under this joint group action. In summary, the particle

spectrum is

ker(/D
Ṽ
) =

(
H0(X̃,O

X̃
) ⊗ 45

)Z3×Z3

⊕
(
H1

(
X̃, ad(Ṽ )

)
⊗ 1

)Z3×Z3

⊕

⊕
(
H1(X̃, Ṽ ) ⊗ 16

)Z3×Z3

⊕
(
H1(X̃, Ṽ ∗) ⊗ 16

)Z3×Z3

⊕
(
H1(X̃,∧2Ṽ ) ⊗ 10

)Z3×Z3

,

(20)

where the superscript indicates the Z3 × Z3 invariant subspace.

Although we have illustrated our method for the observable sector, it is completely

general, applying to the hidden sector as well. It follows that the computation of co-

homology groups, and the Z3 × Z3 action on these groups, is a major ingredient of our

construction.

7



2.5 Physical Constraints

Obtaining realistic particle physics in the observable sector requires the the following

additional constraints on Ṽ .

1. Three Generations: To ensure that there are three generations of quarks and lep-

tons in the low-energy spectrum, one must require that

h1(X, V ) − h1(X, V ∗) = 3. (21)

Using Serre duality, and assuming Ṽ satisfies eq. (19), the Atiyah-Singer index

theorem implies

−h1(X, V ) + h1(X, V ∗) =

∫

X

ch(V )td(TX) =
1

2

∫

X

c3(V ) = −3. (22)

Therefore, one must demand c3(V ) = −6 or, equivalently, that

c3

(
Ṽ

)
= −6 × |Z3 × Z3| = −54. (23)

2. No Exotic Matter in the Observable Sector: The previous constraint ensures

that there are precisely three chiral generations descending from the 16 representa-

tions. However, there remains, in general, a large number of additional low energy

multiplets which descend from vector-like 16−16 pairs. These “exotic multiplets”

are unobserved. Therefore, we place a very strong restriction on Ṽ and demand

that there be no exotic multiplets in its low-energy spectrum. Referring to (20),

we see that the simplest way to ensure this is to require

h1(X̃, Ṽ ∗) = 0. (24)

To our knowledge, this has never been accomplished in any other phenomenological

string vacua. These typically have exotic multiplets in vector-like pairs which, it

is hoped, acquire heavy masses. In our work, we constrain our spectrum to be as

close to the MSSM as possible.

3. Small Number of Higgs Doublets: The number of 10 zero modes is given by

h1(X̃,∧2Ṽ ). Since the Higgs fields arise from the decomposition of the 10, we

must not set the associated cohomology to zero. Rather, we restrict Ṽ so that

h1(X̃,∧2Ṽ ) is minimal, (25)

but non-vanishing.
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4. Doublet-Triplet Splitting: Inspecting (5), we see that the decomposition of the

10 representation contains, in addition to Higgs fields, unwanted “exotic” color

triplet multiplets. We require, therefore, that (H1(X̃,∧2Ṽ )⊗10)Z3×Z3 contain only

the Higgs-doublets
(
1, 2, 3, 0

)
⊕

(
1, 2,−3, 0

)
, thus projecting out the color triplets

at low energy. This provides a natural solution to the doublet-triplet splitting

problem. Note that this mechanism is not confined to doublets/triplets. It applies

to the components of any multiplet, greatly reducing the spectrum after taking

the Z3 × Z3 quotient.

The vector bundle Ṽ ′ of the hidden sector must also obey the following constraint.

5. Anomaly Cancellation: For the theory to be consistent, one must require the can-

cellation of all anomalies. Through the Green-Schwarz mechanism, this require-

ment relates the observable and hidden sector bundles, imposing the constraint on

the second Chern classes that

[W5] = c2

(
TX̃

)
− c2

(
Ṽ

)
− c2

(
Ṽ ′

)
(26)

be an effective class. In the strongly coupled heterotic string, [W5] is the class of

the holomorphic curve around which a bulk space five-brane is wrapped. In the

weakly coupled case, [W5] must vanish. In either case, c2(TX̃) and c2(Ṽ ) are fixed

by previous considerations. Therefore, (26) becomes a constraint on the second

Chern class of Ṽ ′.

3 The Solution:

In this section, explicit bundles Ṽ and Ṽ ′ satisfying the requisite data outlined above

are constructed. We begin by considering the observable sector bundle.

3.1 The Observable Sector Bundle Ṽ

After an extensive search, we found a unique solution for Ṽ that is compatible with all

of our constraints. It is constructed as follows. First consider the rank two bundles Wi

for i = 1, 2 on B2. Take W1 to be

W1 = OB2
⊕OB2

. (27)
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Note that this is the trivial extension of (16) with a1 = b1 = k1 = 0. Now let W2 be an

equivariant bundle in the extension space of

0 −→ OB2
(−2f2) −→ W2 −→ χ2OB2

(2f2) ⊗ I9 −→ 0, (28)

where for the ideal sheaf I9 of 9 points we take a generic Z3 × Z3 orbit. Second, choose

the two line bundles Li for i = 1, 2 on X̃ to be

L1 = χ2OX̃
(−τ1 + τ2) (29)

and

L2 = O
X̃

(τ1 − τ2) (30)

respectively. Then, the two rank 2 bundles V1,2 defined in eq. (15) are given by

V1 = χ2OX̃
(−τ1 + τ2) ⊕ χ2OX̃

(−τ1 + τ2)

V2 = O
X̃

(τ1 − τ2) ⊗ π∗

2W2. (31)

Note that V1 is of a special form, having no ideal sheaves and being itself the trivial

extension, namely, a direct sum of two line bundles. The observable sector bundle Ṽ is

then defined as an equivariant element of the space of extensions (14). We now show

that Ṽ , so-defined, satisfies all of the requisite constraints.

Let us begin with the three generation condition. Computing the Chern classes of

Ṽ , we find that

c1(Ṽ ) = 0, c2(Ṽ ) = −2τ 2
1 + 7τ 2

2 + 4τ1τ2, c3(Ṽ ) = −54. (32)

Note that c3(Ṽ ) = −54, as required by the three generation condition (23).

To count the number of exotic multiplets in the observable sector, it follows from (20)

that one must compute h1(X̃, Ṽ ∗). We find it more convenient to calculate h2(X̃, Ṽ )

and then use Serre duality to find h1(X̃, Ṽ ∗). Furthermore, to discuss the stability

of Ṽ as well as the number of 16 representations, we see from (19) and (20) that we

need to know hi(X̃, Ṽ ) for i = 0, 1, 3 as well. To do this, recall that Ṽ is in the short

exact bundle sequence (14). This induces a long exact sequence involving the desired

cohomology groups H i(X̃, Ṽ ) for i = 0, 1, 2, 3. These groups can be calculated if we can

compute the adjacent terms in the long exact sequence, namely H i(X̃,F) where F = V1

and V2. This can indeed be accomplished using Leray spectral sequences. Exploiting

10



the fact that X̃ is “doubly” elliptic, with πi in (7) projecting X̃ to Bi and βi in (8)

mapping Bi to P1, the spectral sequence for any sheaf F simplifies to

H0(X̃,F) = H0(P1, βi∗πi∗F) (33)

and

0

��

H0(P1, R1βi∗πi∗F)

��

H0(P1, βi∗R
1πi∗F)

0 // H1(Bi, πi∗F)

��

// H1(X̃,F) // H0(Bi, R
1πi∗F) // H2(Bi, πi∗F) // · · ·

H1(P1, βi∗πi∗F)

��

0

(34)

where we have boxed the term we wish to compute in (34). By R1π∗ and R1β∗ we mean

the first higher images of the push-down maps π∗ and β∗ respectively. To calculate

the cohomology spaces H i for i = 2, 3 one can simply use Serre duality which, on a

Calabi-Yau threefold, X̃ states that

H i(X̃,F) ≃ H3−i(X̃,F∗)∗, i = 0, 1, 2, 3. (35)

Equations (33) and (34) reduce the computation of H i(X̃,F) for i = 0, 1, 2, 3 to

the evaluation of certain cohomology spaces on P1. In the present case, F = V1, V2.

Using (31) and the expressions for the push-downs given by

OBi
(nf) = β∗

i OP1(n) , n ∈ Z

βi∗OBi
(2t) = 6OP1 βi∗OBi

(−2t) = 0 R1βi∗OBi
(2t) = 0

βi∗OBi
(t) = 3OP1 βi∗OBi

(−t) = 0 R1βi∗OBi
(t) = 0

R1β1∗OB1
(−t) = 3χ1OP1(−1) R1β1∗OB1

(−2t) = 6χ1OP1(−1)

R1β2∗OB2
(−t) = 3OP1(−1) R1β2∗OB2

(−2t) = 6OP1(−1) ,

(36)

the cohomology spaces on P1 can easily be computed.
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Putting everything together, we find that

h0(X̃, Ṽ ) = h3(X̃, Ṽ ∗) = 0

h1(X̃, Ṽ ) = h2(X̃, Ṽ ∗) = 27

h2(X̃, Ṽ ) = h1(X̃, Ṽ ∗) = 0

h3(X̃, Ṽ ) = h0(X̃, Ṽ ∗) = 0. (37)

Note that these results are consistent with equation (24) for the absence of exotic multi-

plets arising from vector-like 16− 16 pairs. They also satisfy the necessary conditions,

given in (19), for Ṽ to be a stable bundle. Finally, cohomology (37) is consistent with

the Atiyah-Singer index theorem for Ṽ on X̃ and the three generation condition (23).

Next, consider the 10 representations of Spin(10) which, from (5), give rise to Higgs

doublets. It follows from (25) that one must compute h1(X̃,∧2Ṽ ) and show it to be

minimal, but non-vanishing. To do this, note that ∧2Ṽ lies in the intertwined sequences

0

��

∧2V2

��

0 // ∧2V1
// ∧2Ṽ // Q

��

// 0 ,

V1 ⊗ V2

��

0

(38)

where Q is the quotient of the map ∧2V2 → ∧2Ṽ . Since V1,2 are rank 2, ∧2V1,2 are line

bundles and, using (31), are given by

∧2V1 = χ2
2OX̃

(−2τ1 + 2τ2), ∧2V2 = O
X̃

(2τ1 − 2τ2). (39)

The bundle sequences (38) give rise to two long exact cohomology sequences. To compute

H i(X̃,∧2Ṽ ) for i = 0, 1, 2, 3, one must compute the adjacent terms in these sequences,

namely, H i(X̃,F) for F = ∧2V1, ∧
2V2 and V1 ⊗ V2. This can be accomplished using

the Leray spectral sequences given in (33) and (34). We find, happily, that the entire

cohomology of both ∧2V1,2 vanish. It follows that

H i(X̃,∧2Ṽ ) ≃ H i(X̃, V1 ⊗ V2), i = 0, 1, 2, 3. (40)

Finally, setting F = V1 ⊗ V2 in (33) and (34), we find

h0(X̃,∧2Ṽ ) = h3(X̃,∧2Ṽ ) = 0, h1(X̃,∧2Ṽ ) = h2(X̃,∧2Ṽ ) = 14. (41)
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Although not immediately apparent, an exhaustive search reveals that

h1(X̃,∧2Ṽ ) = 14 (42)

is the minimal number of 10 representations within our context.

As discussed previously, knowledge of the bundle cohomology groups corresponding

to the 16 and 10 representations is not sufficient to determine the low energy spectrum.

One must also evaluate the explicit action of Z3×Z3 on these spaces. First consider the

cohomology space H1(X̃, Ṽ ) associated with the 16 representation. In this case, one

can determine the Z3 × Z3 action using a simple argument. Note from (37) that

h1(X̃, Ṽ ) = 27. (43)

Furthermore, (37) specifies that h1(X̃, Ṽ ∗) vanishes and, hence, h1(X, V ∗) = 0. Then (22)

becomes

h1(X, V ) = 3. (44)

Comparing (43) to (44), it follows that the invariant subspace of the Z3 × Z3 action on

H1(X̃, Ṽ ) must be three-dimensional. That is,

h1(X̃, Ṽ )Z3×Z3 = 3. (45)

Now, Ṽ is equivariant under the explicit action of Z3×Z3 discussed earlier. However, as

far as cohomology is concerned, one can consider nine equivariant actions specified by the

characters χ1
pχ2

q for p, q = 0, 1, 2, on Ṽ . Since the bundle is the same, H1(X̃, Ṽ ), (43)

and (44) remain unchanged. However, the action of Z3×Z3 on H1(X̃, Ṽ ) will be altered

for each choice of χ1
pχ2

q. Specifically, the original representation will be multiplied by

the character. Since (43) and (44) remain unchanged, we conclude that

h1(X̃, χ1
pχ2

qṼ )Z3×Z3 = 3 (46)

for each choice of p, q = 0, 1, 2. The only way this can be true is if the original Z3 × Z3

action is

H1(X̃, Ṽ ) = Reg(Z3 × Z3)
⊕3, (47)

where the regular representation of Z3 × Z3 is given by

Reg(Z3 × Z3) = 1 ⊕ χ1 ⊕ χ2 ⊕ χ1
2 ⊕ χ1χ2 ⊕ χ2

2 ⊕ χ1
2χ2 ⊕ χ1χ2

2 ⊕ χ1
2χ2

2. (48)

Note that (48) contains all of the irreducible representations of Z3 × Z3.

13



Now consider the the cohomology space H1(X̃,∧2Ṽ ) associated with the 10 repre-

sentation. We know from (42) that h1(X̃,∧2Ṽ ) = 14. One can find the Z3 × Z3 action

on this space as follows. Recall from (40) that

H1(X̃,∧2Ṽ ) ≃ H1(X̃, V1 ⊗ V2). (49)

It follows from (31) that

V1 ⊗ V2 = (π∗

2(χ2W2))
⊕2, (50)

where W2 is defined by (28). Note that the χ2 action on the line bundles in (31) modifies

the equivariant structure of W2, which we indicate by χ2W2. Then

H1(X̃, V1 ⊗ V2) ≃ H1(X̃, π∗

2(χ2W2))
⊕2. (51)

For ease of notation, we will, henceforth, denote χ2W2 simply as W2. To proceed, one

must calculate H1(X̃, π∗

2W2). This can be accomplished using (34) with i = 2 and

F = π∗

2W2, as well as the push-down formulas

β2∗W2 = χ2OP1(−2) ⊕ χ2
2OP1(−1),

R1β2∗W2 = χ2
2OP1(1) ⊕ χ2OP1 ⊕

3⊕

i=1

Oβ2(pk), (52)

where pk are points in B2 associated with the ideal sheaf I9 in the definition of W2.

Using (52), we find that the terms adjacent to H1(X̃, π∗

2W2) in (34) are

H0(P1, β2∗R
1π2∗(π

∗

2W2)) = 0 (53)

and

H1(P1, β2∗W2) = χ2
1χ2

H0(P1, R1β2∗W2) = (χ2
2 ⊕ χ1χ

2
2) ⊕ χ2 ⊕ (1 ⊕ χ1 ⊕ χ2

1). (54)

Expression (53) cuts off the horizontal sequence in (34), yielding

H1(X̃, π∗

2W2) ≃ H1(B2, W2). (55)

On the other hand, (54) inserted into the vertical sequence of (34) implies, using (55),

that

H1(X̃, π∗

2W2) = 1 ⊕ χ1 ⊕ χ2 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2. (56)
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Putting (49), (51) and (56) together, we find that the Z3 ×Z3 action on H1(X̃,∧2Ṽ ) is

H1(X̃,∧2Ṽ ) = 2 ⊕ 2χ1 ⊕ 2χ2 ⊕ 2χ2
1 ⊕ 2χ2

2 ⊕ 2χ1χ
2
2 ⊕ 2χ2

1χ2. (57)

Having determined Ṽ , the cohomology groups H i(X̃, UR(Ṽ )) and the action of Z3 ×

Z3 on these spaces, it remains to compute the low energy spectrum of the observable

sector. To do this, one must give the representation of hol(W ) = Z3 × Z3 on each

multiplet R. We can choose the Wilson line W to have the following actions.

First consider R = 16. Then

16 =
(
χ2

1χ2(3, 2) ⊕ χ2
1χ

2
2(3, 1) ⊕ χ2

1(1, 1)
)
⊕

(
χ2

2(3, 1) ⊕ (1, 2)
)
⊕ (1, 1). (58)

The terms are grouped according to the 10⊕5⊕1 decomposition of 16 under SU(5). For

simplicity, we have only given the SU(3)C×SU(2)L quantum numbers in (58). Tensoring

this with the action (47), (48) of Z3×Z3 on H1(X̃, Ṽ ), we find that the invariant subspace

is spanned by three families of quarks/leptons, each family transforming as

(
3, 2, 1, 1

)
,

(
3, 1,−4,−1

)
,

(
3, 1, 2,−1

)
(59)

and
(
1, 2,−3,−3

)
,

(
1, 1, 6, 3

)
,

(
1, 1, 0, 3

)
(60)

under SU(3)C × SU(2)L ×U(1)Y ×U(1)B−L. We have displayed the quantum numbers

3Y and 3(B − L) for convenience. Note from eq. (60) that each family contains a

right-handed neutrino, as desired.

Now consider R = 10. We find that

10 =
(
χ2

1(1, 2) ⊕ χ2
1χ

2
2(3, 1)

)
⊕

(
χ1(1, 2) ⊕ χ1χ2(3, 1)

)
. (61)

where we have grouped the terms in the 5 ⊕ 5 decomposition of 10 under SU(5).

Tensoring this with the the action (57) of Z3 × Z3 on H1(X̃,∧2Ṽ ), one finds that the

invariant subspace consists of two copies of the vector-like pair

(1, 2, 3, 0) ,
(
1, 2,−3, 0

)
. (62)

That is, there are two Higgs-Higgs conjugate pairs occurring as zero modes in the ob-

servable sector. Note that the unobserved color triplet multiplets have been projected

out, as desired. This is an explicit mechanism for “doublet-triplet” splitting.
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We conclude that the zero mode spectrum of the observable sector 1) has gauge group

SU(3)C×SU(2)L×U(1)Y ×U(1)B−L, 2) contains three families of quarks and leptons each

with a right-handed neutrino, 3) has two Higgs-Higgs conjugate pairs and 4) contains

no exotic fields of of any kind. Additionally, there are 5) a small number of uncharged

vector bundle moduli. These arise from the invariant subspace of H1
(
X̃, Ṽ ⊗ Ṽ ∗

)
under

the action of Z3 × Z3 and will be computed elsewhere.

3.2 The Hidden Sector Bundle Ṽ ′

The vacuum also contains a stable, holomorphic vector bundle, V ′, on X whose structure

group is in the E ′

8 of the hidden sector. Additionally, there can be a Wilson line W ′ on X

whose Z3 ×Z3 holonomy group is contained in E ′

8. However, to allow for spontaneously

breaking of the N = 1 supersymmetry via gaugino condensation in the hidden sector,

it is expedient to reduce E ′

8 as little as possible. With this in mind, we will choose W ′

to be trivial.

As for V , we construct V ′ by building stable, holomorphic vector bundles Ṽ ′ over

X̃ which are equivariant under Z3 ×Z3 using the method of “bundle extensions”. V ′ is

then obtained as the quotient of Ṽ ′ by Z3 × Z3. This bundle must satisfy the anomaly

cancellation condition (26). The simplest possibility is that Ṽ ′ is the trivial bundle.

However, in this case, we find that [W5] is not effective. Instead, we find the following

minimal solutions, depending on whether one works in the strongly or the weakly coupled

regime of the heterotic string.

3.2.1 Strong Coupling: Bulk Five-branes

The minimal vector bundle Ṽ ′ that is consistent with anomaly constraint (26) is found

to have structure group SU(2). For this bundle,

[W5] 6= 0 (63)

and, hence, this hidden sector is compatible only with the strongly coupled heterotic

string. Ṽ ′ spontaneously breaks the hidden sector E ′

8 gauge symmetry to

E ′

8 −→ E7. (64)

With respect to SU(2) × E7, the adjoint representation of E ′

8 decomposes as

248′ =
(
1, 133

)
⊕

(
3, 1

)
⊕

(
2, 56

)
. (65)
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The
(
1, 133

)
contain the gauginos of E7, the

(
3, 1

)
correspond to vector bundle moduli

and
(
2, 56

)
represent charged exotic matter fields. In addition to demanding that Ṽ ′

satisfy the stability conditions (19), we require that there be no exotic matter in the

hidden sector. This is most easily accomplished by imposing the constraint that

h1(X̃, Ṽ ′) = 0 . (66)

The requisite SU(2) bundle Ṽ ′ is any element of the space of extensions

0 −→ O
X̃

(2τ1 + τ2 − φ) −→ Ṽ ′ −→ O
X̃

(−2τ1 − τ2 + φ) −→ 0. (67)

One can easily show that the entire cohomology ring vanishes. That is

hi(X̃, Ṽ ′) = 0, i = 0, 1, 2, 3. (68)

Note that this result is consistent with the necessary conditions (19) that Ṽ ′ be stable.

Furthermore, it follows that (66) is satisfied and, hence, there is no exotic matter in the

hidden sector.

The five-brane wrapped on a holomorphic curve associated with [W5] contributes

non-Abelian gauge fields, but no matter fields, to the hidden sector. Following the

results in [40,41], we find that the five-brane gauge group is U(6). Moving in the moduli

space of the holomorphic curve, this group can be maximally broken to U(1)6.

We conclude that, within the context of the strongly coupled heterotic string, our

observable sector is consistent with a hidden sector 1) with gauge group E7 ×U(6) and

2) no exotic matter. In addition, 3) there is a small number of vector bundle moduli

arising from the invariant subspace of H1(X̃, Ṽ ′ ⊗ Ṽ
′
∗) under the action of Z3 × Z3, as

well as some five-brane moduli. These will be computed elsewhere.

3.2.2 Weak Coupling: No Five-branes

We now exhibit a hidden sector, consistent with our observable sector, that has no

five-branes; that is, for which

[W5] = 0. (69)

This hidden sector is compatible with both the weakly and strongly coupled heterotic

string. We are unable to satisfy (69) for any bundle with an SU(2) structure group.

From the results in [42,43], we expect that the appropriate structure group may be the
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product of two non-Abelian groups, the simplest choice being SU(2) × SU(2). This

bundle, which is the sum of two SU(2) factors, Ṽ ′ = Ṽ ′

1 ⊕ Ṽ ′

2 , spontaneously breaks

E ′

8 −→ Spin(12). (70)

With respect to SU(2)×SU(2)×Spin(12), the adjoint representation of E ′

8 decomposes

as

248′ =
(
1, 1, 66

)
⊕

(
3, 1, 1

)
⊕

(
1, 3, 1

)
⊕

(
2, 1, 32

)
⊕

(
1, 2, 32

)
⊕

(
2, 2, 12

)
. (71)

Representations
(
1, 1, 66

)
and

(
3, 1, 1

)
⊕

(
1, 3, 1

)
contain the Spin(12) gauginos and

vector bundle moduli. Exotic matter in the hidden sector can arise from
(
2, 1, 32

)
,

(
1, 2, 32

)
, and

(
2, 2, 12

)
, corresponding to the cohomology spaces H1(X̃, Ṽ ′

1), H1(X̃, Ṽ ′

2),

and H1(X̃, Ṽ ′

1 ⊗ Ṽ ′

2) respectively. Unlike the case in the strong coupling regime, subject

to (69) and the stability conditions eq. (19) applied to Ṽ ′

1,2, we are unable to find a

hidden sector bundle for which all exotic matter is absent.

However, relaxing the constraints so that a small amount of hidden exotic matter

may exist, one finds the following minimal solution. It turns out that Ṽ ′

1 is the bundle

Ṽ ′ introduced in eq. (67) and Ṽ ′

2 is the pullback of an extension on B1. Specifically,

Ṽ ′

2 = π∗

1SB, where

0 −→ OB1
(−2f1) −→ SB −→ OB1

(2f1) ⊗ I6 −→ 0. (72)

Here, I6 is the ideal sheaf of 6 points on B1 which are a single orbit of g2 ∈ Z3 ×Z3 with

multiplicity 2.

Recall from eq. (68) that hi(X̃, Ṽ ′

1) for i = 0, 1, 2, 3 vanish. Therefore, Ṽ ′

1 satisfies

the stability conditions (19) and there is no matter in the
(
2, 1, 32

)
representation. For

Ṽ ′

2 , we find that

h0(X̃, Ṽ ′

2) = h3(X̃, Ṽ ′

2) = 0, h1(X̃, Ṽ ′

2) = h2(X̃, Ṽ ′

2) = 4. (73)

Furthermore, for Ṽ ′

1 ⊗ Ṽ ′

2 one can show

h0
(
X̃, Ṽ ′

1 ⊗ Ṽ ′

2

)
= h3

(
X̃, Ṽ ′

1 ⊗ Ṽ ′

2

)
= 0 (74)

and

h1
(
X̃, Ṽ ′

1 ⊗ Ṽ ′

2

)
= h2

(
X̃, Ṽ ′

1 ⊗ Ṽ ′

2

)
= 18. (75)

18



If follows from (73) that Ṽ ′

2 also satisfies the stability constraints (19). However,

h1(X̃, Ṽ ′

2) and h1
(
X̃, Ṽ ′

1 ⊗ Ṽ ′

2

)
do not vanish and may give rise to hidden sector ex-

otic matter in the representations
(
1, 2, 32

)
and

(
2, 2, 12

)
respectively.

To analyze this, it is necessary to explicitly compute the action of Z3 × Z3 on these

cohomology spaces. This can be accomplished using methods similar to those discussed

previously. Here, we simply state the results. The action of Z3 × Z3 on H1(X̃, Ṽ ′

1) and

H1
(
X̃, Ṽ ′

1 ⊗ Ṽ ′

2

)
is found to be

H1(X̃, Ṽ ′

1) = 2χ1 ⊕ 2χ2
1 (76)

and

H1
(
X̃, Ṽ ′

1 ⊗ Ṽ ′

2

)
= Reg(Z3 × Z3)

⊕2 (77)

respectively. It follows from (76) that H1
(
X̃, Ṽ ′

2

)
has no invariant subspace. Since there

is no Wilson line in the hidden sector, all
(
1, 2, 32

)
exotic matter fields are projected

out of the low energy spectrum. Unfortunately, this is not the case for H1
(
X̃, Ṽ ′

1 ⊗

Ṽ ′

2

)
. Action (77) implies that there remain two exotic 12 multiplets of Spin(12) after

projection.

We conclude that, for vacua with no five-branes, our observable sector is consistent

with a hidden sector 1) with gauge group Spin(12) and 2) two 12 multiplets. We

emphasize that these are not charged under the observable sector gauge group. There are

also vector bundle moduli arising from the Z3×Z3 invariant subspace of H1(X̃, Ṽ ′⊗Ṽ
′
∗),

which will be computed elsewhere. These vacua can occur in the context of both the

weakly and strongly coupled heterotic string.
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