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Abstract 

Photonic crystal fibre (PCF), a new kind of optical fibre, has many air-holes in 
their cross-section and has potential applications to new optical 
communication systems. The main objective of this research is the modelling 
of photonic crystal fibre to identify the fundamental and higher order quasi-TE 
and TM modes with square, rectangular and circular air holes in a square and 
hexagonal matrix, by using a rigorous full-vectorial H-field based finite element 
method (FEM). Besides the modal solutions of the effective indices, mode 
field profiles, spot sizes, modal hybrid ness, polarization beat length and group 
velocity dispersion values for equal and unequal air holes; research was 
carried out to optimize and design highly birefringent PCF. 

The variation of modal birefringence is shown through the effect of hole 
diameters, air hole arrangement, structural asymmetry, operating wavelength, 
and pitch-distance. Birefringence was enhanced by breaking the structural 
symmetry and this was verified by using unequal air holes. The diameter of 
two air holes and four air holes in the first ring was changed to break the 
rotational symmetry and a comparison between the two designs is made in 
this work. In this work, highly birefringent PCF is designed with higher 
operating wavelength, larger d2/A value, lower pitch length for a given 
structural asymmetry. It is identified that birefringence value increases rapidly 
when d2 is much larger than d. At lower pitch value, one of the highest 
birefringence values reported so far at wavelength of 1.55 ~m for an 
asymmetric PCF using circular air holes. A single polarization guide PCF 
structure is also achieved. In this study, it has been identified that for fixed d/A 
and d2/A value, as operating wavelength is increased, birefringence increases 
significantly. It can also be identified that for higher d/A values, birefringence 
changes rapidly with A as their corresponding cutoff condition also 
approaches. One important validation of this work is the existence of modal 
birefringence for PCF with six-fold rotational symmetry. It is shown that 
birefringence value of a simple PCF incorporating circular holes but of 
different diameters is high compared to polarization maintaining Panda or 
Bow-tie fibres. 

This research also aims to investigate the modal leakage losses of PCF, by 
using a semi-vectorial beam propagation method (BPM) based on the 
versatile FEM. The robust perfectly matched layer (PML) boundary condition 
has been introduced to the modal solution approach. The effects of d2/A., 
operating wavelength and number of air holes have been thoroughly detailed 
and explained. In this study, it has been identified that the confinement loss 
decreases significantly with the increased number of rings, lower operating 
wavelength and lower d2/A. value. For special case, PCF with large spot-size 
provides higher leakage loss. 
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Chapter 1 

Introduction of Optical Fibre 

1.1 Brief Introduction 

Over the last few years, fibre optic technology has advanced at a tremendous 

rate, driven by the need for higher bandwidths on long distance backbone 

links. In recent years, it has become apparent that fibre-optics are steadily 

replacing copper wire as an appropriate means of communication signal 

transmission. They span the long distances between local phone systems as 

well as providing the backbone for many network systems. Other system 

users include cable television services, university campuses, office buildings, 

industrial plants, and electric utility companies. 

Fibre optics is one of the newer buzzwords these days. Optical fibre has a 

number of advantages over the copper wire used to make connections 

electrically. For example, optical fibre is immune to electromagnetic 
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Chapter 1 Introduction of optical fibre 

interference, such as is caused by thunderstorms. Optical fibre has a wider 

bandwidth and can therefore carry more information at one time, because light 

has a much higher frequency than any radio signal we can generate. Optical 

fibre has two very simple advantages over copper: 

(a) The ability to transmit data at higher transmission rates with lower 

losses, and 

(b) The ability to do this at lower error rates. 

Although fibres can be made out of either transparent plastic or glass, the 

fibres used in long-distance telecommunications applications are always 

glass, because of the lower optical attenuation. Both multimode and single­

mode fibres are used in communications, with multimode fibre used mostly for 

short distances (up to 500 m), and single-mode fibre used for longer distance 

links. Single-mode transmitters, receivers, amplifiers and other components 

are generally more expensive than multimode components, because of the 

tighter tolerances required to couple light into and between single-mode 

fibres. 

A fibre-optic system is similar to the copper wire system that fibre-optics is 

replacing. The difference is that fibre-optics use light pulses to transmit 

information down fibre lines instead of using electronic pulses to transmit 

information down copper lines. Optical fibre is less susceptible to external 

noise than other transmission media, and is cheaper to make than copper 

wire, but it is much more difficult to connect. Optical fibres are difficult to 

tamper with (to monitor or inject data in the middle of a connection), making 

them appropriate for secure communications. 

1.2 Definition of Optical Fibre 

An optical fibre refers to the long, thin, and transparent medium that transmits 

information as light pulses along its axis by the process of total internal 

reflection. Optical fibre is usually made of very pure glass (silica) or plastic 

about the diameter of a human hair. Fibre optics is the branch of applied 

science and engineering concerned with such optical fibres. 
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Optical fibres consist of a denser core, in which light is confined, surrounded 

by a cladding or substrate layer. The core and the cladding layers are 

enclosed by a protective sheath or buffer coating. Light rays modulated into 

digital pulses with a laser or a light-emitting diode (as the carrier), move along 

the core without penetrating the cladding. To confine the optical signal in the 

core, the refractive index of the core must be greater than that of the cladding. 

The light stays confined to the core, because the cladding has a lower 

refractive index. 

Optical fibre carries much more information than conventional copper wire. 

The optical fibre can be used as a medium because it is flexible and can be 

bundled as cables called optical cables and used to transmit light signals over 

long distances. Optical fibres are connected to terminal equipment by optical 

fibre connectors. 

1.3 Optical Fibre Communication System 

Fig. 1.1 shows the basic point-to-point fibre optic transmission system 

consisting of three basic elements: the optical transmitter, the fibre optic cable 

and the optical receiver. 

Si gnal Input Fibre Optic Cable SignalOutpu 
Transmitter Receiver 

t 

Fig. 1.1: The basic point-to-point fibre optic transmission system. 

Fig. 1.2 shows fibre-optic relay systems, consisting of the following: 

• Transmitter - Produces and encodes the light signals. 

• Optical fibre cable- Conducts the light signals over a distance. 

• Optical regenerator or repeaters - Necessary to boost the light signal 

(for long distances). 

• Optical receiver - Receives and decodes the light signals 
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Light Source 

Electricity Light 

Introduction of optical fibre 
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Electricity ..... 

Fig. 1.2: Optical communication systems [Kolimbiris]. 

1.3.1 Transmitter 

The transmitter converts an electrical signal into a corresponding optical 

signal or light pulses. At one end of the fibre optic system is a transmitter. This 

is the place of origin for information coming on to fibre-optic lines. The 

transmitter accepts coded electronic pulse information coming from copper 

wire. It then processes and translates that information into equivalently coded 

light pulses. The transmitter is physically close to the optical fibre and may 

even have a lens to focus the light into the fibre. 

1.3.2 Optical Fibre Cable 

The cable consists of one or more glass fibres, which act as waveguides or 

functions as a light guide for the optical signal, guiding the light introduced at 

one end of the cable through to the other end. Fibre optic cable is similar to 

electrical cable in its construction, but provides special protection for the 

optical fibre within. For systems requiring transmission over distances of many 

kilometers, or where two or more fibre optic cables must be joined together, 

an optical splice is commonly used. The generally accepted splicing method is 

arc fusion splicing, which melts the fibre ends together with an electric arc. 

1.3.3 Optical Regenerator 

Some signal loss occurs when the light is transmitted through the fibre, 

especially over long distances such as the fibre optic cable under the Atlantic 

Ocean from U.K to U.S.A. Therefore, one or more light strengtheners, called 
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repeaters or regenerators, are spliced along the cable to boost and refresh the 

degraded light signals. 

1.3.4 Optical Receiver 

The receiver converts the optical (light) signal back into a replica of the 

original electrical signal. It takes the incoming digital light signals, decodes 

them and sends the electrical signal to the other user's computer, TV or 

telephone. The receiver uses a photocell or photodiode to detect the light. 

1.4 Historical Development of Fibre Optic Technology 

Optical communication systems date back two centuries, to the "optical 

telegraph", invented by French engineer Claude Chappe in 1790s. His system 

was a series of semaphores mounted on towers, where human operators 

relayed messages from one tower to the next. By the mid-19th century it was 

replaced by the electric telegraph, leaving a scattering of "Telegraph Hills" as 

its most visible legacy [Hecht]. 

The Nineteenth Century [1800-1899] 

In 1870, John Tyndall, using a jet of water that flowed from one container to 

another and a beam of sunlight, demonstrated that light used internal 

reflection to follow a specific path. The light followed a zigzag path inside the 

curved path of the water. 

In 1880, Alexander Graham Bell patented an optical telephone system, 

named Photophone, which used free-space light to carry the human voice 200 

meters. Bell believed this invention was superior to the telephone, his earlier 

invention, because photophone did not need wires to connect the transmitter 

and receiver. 

The Twentieth Century [1900-1999] 

Narinder Kapany, from the Imperial College of Science and Technology in 

London, first coined the term "fibre optics" in 1956 [Goff]. The development of 

fibre bundles for image transmission, with the primary application being the 

5 



Chapter 1 Introduction of optical fibre 

medical endoscope, was patented by Basil Hirschowitz, C. Wilbur Peters, and 

Lawrence E. Curtiss, researchers at the University of Michigan, in 1956. In the 

process of developing the endoscope, Curtiss produced the first glass-clad 

fibres. 

The development of laser technology was the next important step in the 

establishment of the industry of fibre optics. In 1957, Gordon Gould, as a 

graduate student at Columbia University, described the laser as an intense 

light source [Goff]. In 1965, Charles K. Kao and George A. Hockham of a 

British company the Standard Telecommunication Laboratory were the first to 

recognize that attenuation of contemporary fibres was caused by impurities, 

which could be removed, rather than fundamental physical effects such as 

scattering [Kao and Hockham,]. 

Intrigued by Kao and Hockham's proposal, glass researchers began to work 

on the problem of purifying glass. In 1970, the first practical optical fibre (with 

a loss of 17 dB/km by doping silica glass with titanium) for communications 

was invented by researchers Robert D. Maurer, Donald Keck, Peter Schultz, 

and Frank Zimar of the American based glass maker Corning. It was the 

purest glass ever made [Goff]. On 22 April, 1977, General Telephone and 

Electronics sent the first live telephone traffic through fibre optics, at 6 MbiUs, 

in Long Beach, California. 

In 1986, David Payne of the University of Southampton, and Emmanuel 

Desurvire at Bell Laboratories, invented the erbium-doped fibre amplifier, 

which reduced the cost of long-distance fibre systems by eliminating the need 

for repeaters. In 1991, the emerging field of photonic crystals led to the 

development of photonic crystal fibre [Russell, 2003]. In 1995, Prof. Philip 

Russell and his research team created the world's first working photonic 

crystal fibre, which became commercially available in 1996 [Knight, 1997]. 

The Twenty-First Century and Beyond [2000 and Beyond] 

As the demand for data bandwidth increases, driven by the phenomenal 

growth of the Internet, the move to optical networking is the focus of new 
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technologies. An important factor in these developments is the increase in 

fibre transmission capacity, which has grown by a factor of 200 in the last 

decade. 

There are extraordinary possibilities for future fibre optic applications because 

of fibre optic technology's immense potential bandwidth, 50 THz or greater. 

Today optical fibre cables are the backbone of the telecommunication system, 

which has lead to high speed broadband internet and affordable long distance 

telephone calls. Broadband service available to a mass market opens up a 

wide variety of interactive communications for both consumers and 

businesses, bringing to reality interactive video networks, interactive banking 

and shopping from the home, and interactive distance learning. 

1.5 Structure of Optical Fibre 

A single optical fibre has the following parts: 

• Core, 

• Cladding, 

• Buffer coating. 

Fig. 1.3 illustrates the structure of optical fibre. The innermost central region 

of the fibre, or core, is a narrow cylindrical strand of glass used to transmit the 

light. Cladding is the outer optical material (or glass coating) surrounding the 

core that reflects the light back into the core. Buffer coating is the plastic 

coating that protects the fibre from damage and moisture. 

I 
Core Cladding Coating 

Fig. 1.3: Structure of optical fibre [University of Arizona]. 
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Hundreds or thousands of these optical fibres are arranged in bundles, as 

shown in Fig. 1.4, in optical cables. The bundles are protected by the cable's 

outer covering, called a jacket. 

Fig. 1.4: A bundle of optical fibres [Coring Inc.] 

The fibre strands, as shown in Fig. 1.5, are being prepared for splicing in a 

wiring closet. These few strands can collectively transmit trillions of bits per 

second. Theoretically, using advanced techniques such as DWDM, the 

modest number of fibres seen here could have sufficient bandwidth to easily 

carry the sum of all types of current data transmission needs for the entire 

planet (-100 terabits per second per fibre). 
From Computer Desktop 81cyclopedia 
Reproduced with permission . 
@ 1996 Coming Incorpor.rted 

Fig. 1.5: Fibre strands [Coring Inc.] . 
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1.6 Types of Optical Fibre 

There are three types of optical fibre commonly used: single-mode fibre, multi­

mode fibre and plastic optical fibre (POF). Table 1.1 briefly shows the main 

characteristics of single-mode and multimode fibres. 

1.6.1 Single-Mode Fibre 

Fibre supporting only one mode is called single-mode or mono-mode fibre. 

Single-mode fibre is a single stand of glass fibre with a much smaller core 

than a multimode fibre. The small core virtually eliminates any distortion that 

could result from overlapping light pulses. In single-mode fibre, light energy 

carried by only one mode, so no intermodal dispersion. Therefore, single­

mode fibre provides the least signal attenuation and a higher transmission 

speed and up to 50 times more distance than a multimode fibre, but it also 

costs more. 

1.6.1.1 Characteristics of single-mode fibre 

• Single-mode fibre carries higher bandwidth than multimode fibre, but 

requires a light source with narrow spectral width. 

• The small core diameter necessitates the use of expensive laser diodes 

to enable efficient light coupling and pass sufficient light into the fibre. 

The small core diameter needs extremely precise connectors that are 

expensive. 

• The performance of single-mode fibre is so good that it is the only type 

of fibre used for long distance unrepeatered transmission up to around 

50 km. 

Based on the index profile (refractive index of the core material), single-mode 

fibre has only step index profile (fibre refracts the light sharply or abruptly at 

the point where the cladding meets the core material). Currently, there is no 

commercial single-mode graded index fibre where refractive index profile 

changes gradually from the core to the cladding. 
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1.6.1.1.1 Monomode Step-index Fibre 

Two principle types of step-index single-mode fibre exist: 

(a) Matched cladding fibre: cladding is pure fused silica; Germanium 

Oxide (Ge02) is added to core to increase its refractive index. 

(b) Depresses cladding fibre: The core is fused silica doped with less 

germanium oxide than is needed for a matched cladding fibre. 

In single-mode step-index fibre, the index of refraction between the core and 

the cladding changes less than it does for multimode fibres. Light thus travels 

parallel to the axis, creating little pulse dispersion. Telephone and cable 

television networks install millions of kilometers of this fibre every year. 

1.6.2 Multimode Fibre 

Fibre which supports more than one mode is called multimode fibre that only 

gives a reasonably high bandwidth over medium distances. Light waves are 

dispersed into numerous paths, or modes, as they travel through the cable's 

core. However, in long cable runs (greater than 3000 feet), multiple paths of 

light can cause signal distortion at the receiving end, resulting in an unclear 

and incomplete data transmission. 

1.6.2.1 Characteristics of Multimode Fibre 

• The fibre can capture light from the light source and pass light to the 

receiver with high efficiency, so can be used with low-cost light emitting 

diodes (LEOs). 

• High precision connectors are not required because the large core 

diameter allows wide-tolerance on mechanics. 

• Multimode fibres suffer from higher losses than single-mode fibres. 

Based on the index profile multimode fibre can be classified as step-index and 

graded index fibre: 
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1.6.2.1.1 Multimode Step-index Fibre 

In a multimode step-index fibre, rays of light are guided along the fibre core by 

total internal reflection. In multimode fibre, different modes propagate at 

different angle and therefore exhibit different transit times. Hence, results the 

pulse to spread out, phenomenon known as inter-modal dispersion, at times 

as it propagates along the fibre. This is the main disadvantage and it results in 

a limited bandwidth of this fibre. A ray, in the step-index fibre, will travel a 

longer distance than the actual length, because of its zig-zag path. This type 

of fibre is best suited for transmission over short distances, in an endoscope, 

for instance. 

1.6.2.1.2 Multimode Graded-index Fibre 

In a multimode graded-index fibre, light does not propagate by the means of 

total internal reflection, but by distributed diffraction. The core is composed of 

many different layers of glass, chosen with indices of refraction to produce a 

parabolic refractive index profile. The rays follow smooth curve rather than the 

zig-zags of step-index fibres, which reduces the inter-modal dispersion and 

travel distance in graded-index fibre. The shortened path and the higher 

speed allow light at the periphery to arrive at a receiver at about the same 

time as the slow but straight rays in the core axis. 

1.6.3 Plastic Optical Fibre (POF) 

POF is a newer plastic-based fibre which promises performance similar to 

glass cable on very short runs, but at a lower cost. Plastic optical fibre (POF) 

is commonly step-index multimode fibre, with core diameter of 1 mm or larger. 

POF typically has much higher attenuation than glass fibre, 1 dB/m or higher, 

and this high attenuation limits the range of POF-based systems. 
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Characteristics Single-Mode Fibre Multimode Fibre 

Core diameter (~m) 8 62.5 

Cladding diameter (~m) 125 125-400 

Number of propagation Only one More than one 

mode 

Dispersion path Only one Numerous dispersion 

paths 

Bandwidth Higher (up to 1000 GHzlkm) Lower (1 GHzlkm) 

Types Step-index (core 8-12 ~m, Step-index (core 50-

cladding 125 ~m) 200 ~m, cladding 

125-400 ~m)and 

Graded-index(core 

50-1 00 ~m, cladding 

125-140 ~m) 

Light Source Laser LED 

Wavelength (nm) 1300 or 1550 850 or 1300 

Transmission Rate Higher Lower 

Transmission Distance Long distance link (50 times Short or medium 

more distance than distance link 

multimode) 

Signal Quality Higher Lower 

Signal Attenuation Very low High 

Main Source of Chromatic Dispersion Inter-modal 

Attenuation Dispersion 

Cost More Expensive Expensive 

Applications Long Transmission/Higher Short 

Bandwidth Transmission/Lower 

(Telecommunications lines) Bandwidth (LAN I 

Backbone) 

Table 1.1: Characteristics of single-mode and multimode fibre [Jenkins and 
White]. 
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1.7 Physics of Total Internal Reflection 

In an optical fibre, the light travels through the core by constantly reflecting 

from the cladding. This phenomenon is known as total internal reflection (TIR). 

TIR is an important principle for optical fibres and is dependent on the 

refractive indices of the two materials- in this case, the core and the cladding. 

There are two rules for the total internal reflection: 

• Light ray must be travel from high optically dense (higher refractive 

index) medium (silica core) to low optically dense (lower refractive 

index) medium (silica cladding). 

• The angle of the light is always greater than the critical angle. 

Fig. 1.6 shows the behavior of the incident light rayon the interface between 

two dielectrics. 

(a) 

I 
I 
I 92 does not 

. t 

~:>~" 
'--I 

91 > 9c 1 

(c) 

Fig. 1.6: Light rays incident on high to low refractive index interface 

[Rensselaer Polytech.]. 

In Fig. 1.6 (a), when light passes from one medium with a higher index of 

refraction (n2) to another medium with a lower index of refraction (n1), it bends 

or refracts away from an imaginary line perpendicular to the surface (normal 

line). 

In Fig. 1.6 (b), as the incident angle (81) through n2 becomes greater with 

respect to the normal line, the refracted light through n1 bends further away 

from the line. At one particular angle (when 82= 900
), the refracted light will not 
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go into n1, but instead will travel along the surface between the two media. 

This particular angle is known as, critical angle (9c). In this case, 91= 9c. 

Fig. 1.6 (c) shows, when the incident angle through n2 is greater than the 

critical angle (91) 9c) then the light is reflected entirely back into the same 

medium (n2), even though n1 may be transparent. This is known as the total 

internal reflection. 

1.8 Fabrication of Optical Fibre 

An optical fibre is manufactured from silicon dioxide by either of two methods: 

(a) The first, the crucible method, in which powdered silica is melted, 

produces fatter, multimode fibres. 

(b) The second, the vapor deposition process, where optical fibre is made 

by first constructing a large-diameter preform, with a carefully controlled 

refractive index profile, and then pulling the preform to form the long, 

thin optical fibre. 

This section will focus on the vapor deposition process, where making optical 

fibre requires the following steps: 

• Making a preform glass cylinder 

• Drawing the fibres from the preform 

• Testing the fibres 

1.8.1 Making the Preform Blank 

The glass for the preform is generally made by a process called modified 

chemical vapor deposition (MCVD). This section will focus on the MCVD 

process, the most common manufacturing technique now in use. MCVD yields 

a low-loss fibre well-suited for long-distance cables. In MCVD, as shown in 

Fig. 1.7, oxygen is bubbled through solutions of silicon chloride (SiCI4), 

germanium chloride (GeCI4) and/or other chemicals. The precise mixture 

governs the various physical and optical properties (index of refraction, 

coefficient of expansion, melting point, etc.). The gas vapors are then 

conducted to the inside of a synthetic silica or quartz tube (cladding) in a 
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special lathe, as shown in Fig. 1.8. As the lathe turns, a torch is moved up and 

down on the outside of the tube. The extreme heat from the torch causes two 

things to happen: 

• The silicon and germanium react with oxygen, forming silicon dioxide 

(Si02) and germanium dioxide (Ge02). 

• The silicon dioxide and germanium dioxide deposit on the inside of the 

tube and fuse together to form glass. 

Gas Deposition System 

Prefonn Burner 

Fig. 1.7: MCVD process for making the preform blank [Fibercore Ltd.] . 

The torch is then traversed up and down the length of the tube to deposit the 

material evenly. After the torch has reached the end of the tube, it is then 

brought back to the beginning of the tube and the deposited particles are then 

melted to form a solid layer. This process is repeated until a sufficient amount 

of material has been deposited. For each layer, the composition can be varied 

by varying the gas composition, resulting in precise control of the finished 

fibre's optical properties. The process of making the preform blank is highly 

automated and takes several hours. After the preform blank cools, it is tested 

for quality control. A preform usually measures 10 to 25 millimeters in 

diameter and 600 to 1000 millimeters in length. 
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Fig. 1.8: Lathe used in preparing the preform blank [Fibrecore Ltd .]. 

1.8.2 Drawing Fibres from the Preform Blank 

The preform, however constructed, is then placed in a device known as a 

drawing tower, as shown in Fig. 1.9, where the preform tip is heated into a 

graphite furnace (1,900 to 2,200 degrees Celsius), and the tip gets melted 

until a molten glob falls down by gravity. As it drops, it cools and forms a 

thread. 

- Prefurm Feed 

--Prefurm 

- Laser Micrometer 

--Coating Cup 1 

- uv Curing Oven 1 

--Coating Cup 2 

--UV Curing Oven 2 

- Tractor 

Fig. 1.9: Diagram of a fibre drawing tower used to draw optical glass 

fibres from a preform blank [Corning Inc.]. 
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The operator threads the strand through a series of coating cups (buffer 

coatings) and ultraviolet light curing ovens onto a tractor-controlled spool. The 

tractor mechanism slowly pulls the fibre from the heated preform blank and is 

precisely controlled by using a laser micrometer to measure the diameter of 

the fibre and feed the information back to the tractor mechanism. Fibres are 

pulled from the blank at a rate of 10 to 20 m/s and the finished product is 

wound onto the spool. It is not uncommon for spools to contain more than 2.2 

km of optical fibre. Fig. 1.10 shows the finished spool of optical fibre . 

Fig. 1.10: Finished spool of optical fibre [Corning Inc.]. 

1.8.3 Testing the Finished Optical Fibre 

The finished optical fibre is tested for tensile strength, refractive index profile, 

fibre geometry, attenuation, information carrying capacity (bandwidth), 

chromatic dispersion, operating temperature/humidity range, temperature 

dependence of attenuation, and ability to conduct light underwater. Once the 

fibres have passed the quality control, they are sold to telephone companies, 

cable companies and network providers. 

1.9 Materials of Optical Fibre 

Both the core and the cladding of an optical fibre are made of highly purified 

silica glass (Si02). Normal glass window is transparent, but the thicker the 

glass gets, the less transparent it becomes due to impurities in the glass. 

However, the glass in an optical fibre has far fewer impurities than window-
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pane glass. Glass happens to be a very practical choice for optical fibre 

because it is reasonably strong, flexible, and has good light transmission 

characteristics. 

Silica-based optical fibres are the most important transmission medium for 

long-distance and large-capacity optical communication systems. The most 

distinguished feature of optical fibre is its low loss characteristics. Together 

with such low loss properties, low dispersion is also required for signal 

transmission. 

Glass optical fibres are almost always made from silica, but some other 

materials, such as fluorozirconate, fluoroaluminate, and chalcogenide glasses 

are used for longer-wavelength infrared applications. Like other glasses, these 

glasses have a refractive index of about 1.5. Typically the difference between 

core and cladding is less than one percent. Glasses with high fluoride content 

hold the most promise for improving optical fibre performance because they 

are transparent to almost the entire range of visible light frequencies. This 

makes them especially valuable for multimode optical fibres, which can 

transmit hundreds of discrete light wave signals concurrently. 

1.10 Advantages of Optical Fibre 

Fibre optic transmission systems offer a wide range of benefits not offered by 

traditional copper wire or coaxial cable. The small size and the fact that no 

electrical power is needed at the remote location give the fibre optic sensor 

advantages to conventional electrical sensor in certain applications. 

Optical fibre offers enormous bandwidth and it takes a lot less room. Anyone 

of the copper bundles, as shown in Fig. 1.11, can be replaced with one single 

fibre strand (centre of Fig. 1.11). 
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Ff""Ol'""Tl Co..-nput.er Desktop Enoy o l opedla 
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Fig. 1.11: Comparison between optical fibre and copper wire [Corning 

Inc.]. 

Fibre optics has several advantages [Keiser; Myabaev and Scheiner] over 

traditional metal communications lines, such as: 

Speed: Fibre optic networks operate at high speeds - up into the gigabits. 

Thinner: Optical fibres can be drawn to smaller diameters than copper wire. 

Higher data rates: Fibre optic cable can support much higher data rates, and 

at greater distances. It can carry much more information and deliver it with 

greater fidelity than either copper wire or coaxial cable. 

Maintenance: Fibre optic cables costs much less to maintain. 

Invulnerable: Optical fibre is totally immune to virtually all kinds of 

interference, including lightning, and will not conduct electricity. It can 

therefore come in direct contact with high voltage electrical equipment and 

power lines. 

Less expensive: Several miles of optical cable can be made cheaper than 

equivalent lengths of copper wire. 

Less signal degradation: The loss of signal in optical fibre is less than in 

copper wire. 

No light interference: Unlike electrical signals in copper wires, light signals 

from one fibre do not interfere with those of other fibres in the same cable. 

This means clearer phone conversations or TV reception. 

Bandwidth: Fibre optic cables have a much greater bandwidth than metal 

cables. Optical fibres are thinner than copper wires, more fibres can be 

bundled into a given-diameter cable than copper wires, as shown in Fig . 1.12. 

19 



Chapter 1 Introduction of optical fibre 

This allows more phone lines to go over the same cable. This means that fibre 

optic cables can carry more data. 

Fiber Opti: 

Fig. 1.12: Comparison between fibre optic cable and metal cable 

[Corning Inc.]. 

Low power: Signals in optical fibres degrade less; therefore, lower-power 

transmitters can be used instead of the high-voltage electrical transmitters 

needed for copper wires. Again, this saves the provider and its client's money. 

Digital signals: Data can be transmitted digitally (the natural form for 

computer data, useful in computer networks) rather than analogically. 

Non-flammable: There is no fire hazard, because no electricity is passed 

through optical fibres. Since the only carrier in the fibre is light, there is no 

possibility of a spark from a broken fibre. 

Lightweight: A fibre optic cable, even one that contains many fibres, is 

usually much smaller and lighter in weight than a copper wire or coaxial cable 

with similar information carrying capacity. It is easier to handle and install, and 

uses less channel space. 

Flexible: Fibre optics are very flexible to transmit and receive light. 

Resistance: Greater resistance to electromagnetic noise such as radios, 

motors or other nearby cables. 

Secure communication: Fibre optic cable is ideal for secure communications 

systems because it is very difficult to tap but very easy to monitor. In addition, 

there is absolutely no electrical radiation from a fibre. 

No chemical reaction: As the basic fibre is made of glass, it will not corrode 

and is unaffected by most chemicals. It can be buried directly in most kinds 
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of soil or exposed to most corrosive atmospheres in chemical plants without 

significant concern. 

Table 1.2 shows the comparison among different types of transmission media. 

Characteristics Optical Fibre Coaxial Pair Twisted Pair 

Typical distance 20 - 30 miles 2 - 3 miles Up to 1 mile. 

Typical data rate Often 400 - 500 10 Mbps is 1 - 2 Mbps for 1 

Mbps Common Mile. 

Susceptibility to Immune to Shielding Electrical 

Interference electrical eliminates much interference from 

interference of the electrical nearby wires or 

interference motors 

Applications Commonly used Often used as the Useful where 

in long distance primary space is limited 

phone lines. Also communication or where high 

popular as the medium in data rates are not 

main computer needed .i.e. 

communication networks. behind a wall 

medium in leading to a 

computer terminal. 

networks. 

Table 1.2: Comparison among different types of transmission media. 

1.11 Applications of Optical Fibre 

• The first commercial applications for fibre optics were medical. Bundled 

fibres can deliver illumination light to remote regions of the body, and 

carry understandable images back out to the doctor. 

• Optical fibres are used in many flexible digital cameras for medical 

imaging (in bronchoscopes, laparoscopes), mechanical imaging (to 
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inspect mechanical welds In pipes), and plumbing (to inspect sewer 

lines). 

• Industrial endoscopes are used for inspecting anything hard to reach, 

such as jet engine interiors. 

• Single fibres can be inserted into blocked arteries and the laser light 

used to burn away the blockage. 

• Telephone companies use optical fibre throughout their system as the 

backbone architecture and as the long-distance connection between 

city phone systems. The light transmitting fibre is immune to electronic 

noise, can carry thousands more conversations with better sound 

quality. 

• Cable television companies have also begun integrating fibre-optics 

into their cable systems. 

• Colleges, universities, office buildings, and industrial plants, just to 

name a few, all make use of optical fibre within their Local Area 

Network (LAN) systems. 

• Most power companies already have fibre-optic communication 

systems in use for monitoring their power grid systems. 

• An optical fibre doped with certain rare-earth elements such as erbium 

can be used as the gain medium of a laser or optical amplifier to 

provide signal amplification by splicing a short section of doped fibre 

into a regular (undoped) optical fibre line. 

• Optical fibres can be used as sensors to measure strain, temperature, 

pressure and other parameters. Another use of the optical fibre as a 

sensor is the optical gyroscope which is in use in the Boeing 767 and in 

some car models (for navigation purposes). 

• Optical fibres are used as hydrophones for seismic or SONAR 

applications. 

• Fibres are widely used in illumination applications. In some buildings, 

optical fibres are used to route sunlight from the roof to other parts of 

the building. Optical fibre illumination is also used for decorative 

applications, including signs, art, and artificial Christmas trees. 
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• A single-mode fibre is used to carry just one light wave over very long 

distances. Bundles of single-mode optical fibres are used in long­

distance telephone lines and undersea cables. Multimode optical fibres 

can carry hundreds of separate light wave signals over shorter 

distances and is used in urban systems where many signals must be 

carried to central switching stations for distribution. 

• Fibre-optic cable can be used for audio applications (specially tuned for 

accurate signal transfer), yielding distortion-free sound. 

• Silica fibre is typically used in applications involving high power lasers 

and sensors, such as medical laser-surgery. 

• All-plastic fibre is useful for very short data links within equipment 

because it may be used with relatively inexpensive LEDs. 

• Optical fibres are insensitive to Electro-Magnetism Interference and 

Radio-Frequency Interference (EMI\RFI), therefore, highly suitable for 

many military and communication applications where high signal 

quality, secure data transmission, and survivability are essential. 

1.12 Aims and Objectives of the Thesis 

The following chapters present the main aims and objectives of the research 

undertaken in this field which can be summarized as follows: 

(1) To further develop and investigate established work on the rigorous and 

efficient finite element method (FEM) based on the vector H-field variational 

formulation for the analysis of photonic crystal fibres (peF) to understand the 

basic properties of photonic crystal fibres. Sequential development stages of 

the project will be as follows: 

- Square lattice peF with square hole, 

- Square lattice peF with rectangular hole, and 

- Hexagonal lattice peF with circular hole. 

(2) To investigate several modal solution approaches for the analysis of 

photonic crystal fibres (peF) with different lattice peF. The main areas, which 
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will be discussed of the fundamental quasi-TE (HY11 ) mode, quasi-TM (H X
11 ) 

mode, and higher order modes for equal and unequal air hole dimension, are: 

(a) Variation of the silica index and the effective index of the 

fundamental and higher order modes with the mesh, operating 

wavelength (A), separation between two air holes (S), pitch (1\), and the 

normalized hole diameter d/A and d2/A. 

(b) Variation of the spot-size (0), power confinement factor (Ps), modal 

hybrid ness, and beat length with the operating wavelength, pitch, and 

the normalized hole diameter d/A and d2/A. 

(c) Variation of the group velocity dispersion (GVD) with the wavelength 

for HY11 and HX
11 modes for different d2 values and different meshes. 

(d) Characteristics of the two-dimensional (2-D) and three-dimensional 

(3-D) dominant and non-dominant field profiles of full structure and two­

fold structure of PCF at different operating wavelength for equal and 

unequal air hole dimension. 

(e) Comparison between the two-dimensional field profiles, with 

different wavelength, pitch and different d/I\. 

(f) Comparison results of a PCF structure with equal and unequal hole 

diameter. 

(h) Variations of dominant HY field for the HY11 (quasi-TE) mode along 

X and normalised X (Xl/\) direction. 

(3) To investigate the accuracy of an existing finite element package based on 

the vector H-field variational formulation for the analysis of modal 

birefringence of photonic crystal fibres. This will be carried out by performing a 

polarization study of different lattice photonic crystal fibres with the aim to 

achieve highly birefringent photonic crystal fibres. The main areas, which will 

be discussed, are: 

(a) Variations of the modal birefringence with the normalized diameter, 

d2/A at the different operating wavelengths and at different pitches. 

(b) Variations of the modal birefringence with the operating 

wavelengths at different pitches. 
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(c) Variations of the modal birefringence with the pitch at normalized 

diameter, d/ A. 

(d) Comparison results of two different structural asymmetry. 

(e) Comparison results of a modal birefringence of PCF. 

(4) To investigate the modal leakage losses of the photonic crystal fibres 

using a full-vectorial beam propagation method (BPM) based on the versatile 

FEM. The robust perfectly matched layer (PML) boundary condition will be 

introduced to the modal solution approach and polarization dependent 

leakage losses will be calculated, to design a single polarization PCF. The 

main areas, which will be discussed, are: 

(a) Variations of the confinement loss with the number of rings. 

(b) Variations of the confinement loss with the normalized diameter, 

d2/A at different operating wavelengths. 

(c) Variations of the confinement loss with operating wavelength. 

1.13 Structure of the Thesis 

The work presented in this thesis is based on the research carried out by the 

author in the use of the versatile finite element method (FEM) and the beam 

propagation method (BPM) with perfectly matched layer (PML) boundary 

condition, mainly devoted to the study of modal solutions, birefringence and 

losses in photonic crystal fibre. The thesis consists of nine chapters including 

this chapter. The subsequent discussion gives an outline of the carefully 

structured thesis, beginning with an introduction of optical fibre, presented in 

this chapter. A through understanding of the principles of the optical fibre is 

required to investigate and develop photonic crystal fibre. Therefore, this 

chapter describes the fundamental theoretical background of optical fibre. 

Chapter 2 describes the basic theoretical background of photonic crystal fibre. 

Chapter 3 presents various numerical methods such as indirect entire-domain 

methods, direct sub-domain or space domain discretization methods, and field 

tracking methods. Comparison of different methods has also been presented 

in this chapter. 
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Chapter 4 describes the theoretical formulation of the finite element method 

as a powerful numerical tool in analyzing photonic crystal fibres. 

Chapter 5 deals with the theoretical foundation of the beam propagation 

method. 

Chapter 6 describes square lattice PCF with square core than with rectangular 

core. Several modal solutions are then presented to analyse the square, and 

rectangular core PCF. In this chapter, a rigorous modal solution of photonic 

crystal fibre is presented, to understand the basic properties of photonic 

crystal fibres. 

Chapter 7 presents several modal solution results of the hexagonal lattice 

PCF with circular core for both equal and unequal air hole. 

Chapter 8 performs a polarization study of hexagonal lattice photonic crystal 

fibres with the aim to achieve highly birefringent photonic crystal fibres. It also 

presents the leakage loss properties of the photonic crystal fibre. 

Chapter 9 describes the conclusion and future research direction on photonic 

crystal fibre. A brief discussion is given on each chapter. 

Appendices are provided at the end together with a list of publications by the 

author relevant to this work as well as a list of references cited throughout the 

thesis. 
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Chapter 2 

Photonic crystal fibre (PCF) 

2.1 Brief Introduction 

Photonic crystal fibres (PCFs) are a completely brand new range of optical 

fibres [Mortensen et al.] or optical waveguides [Williamson]. The photonic 

crystal fibre (PCF) concept is ushering in a new and more versatile era of fibre 

optics, with a multitude of different applications spanning many areas of 

science and technology [Russell, 2002]. 

Photonic crystal fibre marks a milestone in photonic crystal research and 

presents a snapshot of a remarkably dynamic field considering issues such 

as, losses and useful bandwidth [Krauss and Saba] mainly with a view 

towards the significant applications in telecommunications. 
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The PCF has attracted growing attention owing to its many unique properties. 

Increasing interest is being shown in such PCFs for a range of applications in 

optical communications, sensing and signal processing due to their better 

control and guidance of light, including unique transmission characteristics, 

such as large effective mode area [Knight et al., 1998a], wide single-mode 

wavelength range [Birks et al.] with controllable spot sizes, anomalous 

dispersion at visible and near infrared wavelength [Gander et al.], enhanced 

modal birefringence [Hansen et al., 2001], and many other phenomena 

[Wolinski et al.]. The optical properties of standard fibres are mostly controlled 

by two key parameters, the radius and the index difference between the core 

and the cladding. Single-mode fibre (SMF) can be designed by balancing 

these two parameters for a range of different applications, for example in 

conventional low-loss telecommunication grade single-mode fibres (SMFs) or 

specialized fibres such as doped fibres with a smaller spot-size. However, the 

adjustment of the spot-size or the group velocity dispersion (GVD) properties 

of these silica fibres is severely limited. 

A wide range of potential applications is anticipated, exploiting the ability to 

adjust the spot-size, for example to create a large spot-size for high power 

applications and a smaller spot-size for improved nonlinear interactions and to 

tailor the GVD [Birks et al.] for various linear and nonlinear devices 

applications. PCF can also offer higher index contrast to facilitate their 

polarization maintaining properties which is useful for coherent optical 

communications, fibre optic sensor systems, and also to create PCFs with 

higher modal birefringence [Rahman et al., 2006b]. 

2.2 Definition of PCF 

Photonic crystal fibres (PCFs) may be defined as optical fibres in which the 

core and cladding regions consists of microstructure rather than 

homogeneous materials, as shown in Fig. 2.1. Therefore, PCF is also known 

as "Holey Fibre (HF)" [Knight et a/., 1996a; 1996b]. or "micro-structured optical 

fibre (MOF)" [Wolinski et a/.]. In lay terms it's called holey fibre because that's 
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exactly what it look like. To industry insiders it's called photonic crystal fibre 

(PCF), because it uses a two-dimensional (2D) crystal structure to keep light 

inside the fibre [Lindstorm, 2001 b]. 
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Fig. 2.1: Uniform cross-section of air-holes in a single material [Crystal­

Fibre]. 

Although PCF is apparently similar to a conventional optical fibre, the 

difference is that PCF consists of a periodic or regular array [Taylor et al.] of 

microscopic holes or channels [Monro and Larkin, 2001] which give them 

special advantages when it comes to transmitting data. Instead of the 

conventional core cladding structure, the fibre traps light in its core by means 

of an array of tiny air holes [Lindstorm, 2001 a] running along the waveguide 

length [Knight et al., 2002] or the axial direction [Wolinski et al.] of the entire 

fibre length [Ferrando et al., 1999]. 

The holes (known as cladding), as shown in Fig. 2.1, act as optical barriers or 

scatters, which is used to guide light within the central core. Each hole can be 

less than a micron in diameter. The positioning and size of the holes affect the 

way that light is transmitted by the fibre. 

A missing hole(s) forming a defect or core [Knight et al., 1996a] in the centre 

is either made of solid glass (as shown in Fig. 2.2a) or hollow (as shown in 

Fig. 2.2b) [Russell, 2002]. Cutting the fibre at any point and looking at its 

cross-section shows a solid core where the light guidance takes place [Taylor 

et al.], as shown earlier in Fig. 2.1, encircled by holes in the surrounding area 

(the cladding) [Monro et al., 2000a]. 

29 



Chapter 2 Photonic crystal fibre 

(a) (b) 

Fig. 2.2: (a) Solid-core photonic crystal fibre (b) Hollow-core photonic 

crystal fibre [Dettmer]. 

2.3 Historical Development of PCF 

Back in the 1920s, John Logie Baird had the idea of using hollow tubes to 

transmit images in an early incarnation of television. Recently the idea of 

transmitting light through hollow waveguides has become cutting-edge 

technology once again in the form of "Holey Fibres" [Williamson]. Today, 

optical fibre brought about revolutionary changes in the fibre optics world. 

Prof. Philip Russell spent the past 16 years designing so-called holey fibre. 

And about 11 years ago, while as staff at England's University of Bath, he and 

a team of fellow researchers built a prototype that proved that holey fibre 

could transmit light through a hollow, air-filled core [Lindstorm, 2001 b]. 

Research in the field of PCF was stimulated by the prediction of photonic 

bandgap [Yablonovitch] which was the only guiding mechanism considered for 

new class of optical fibres. Later, researchers discovered that by 

microstructuring and including airholes in the fibre, these devices could 

provide revolutionary features using the simpler and more conventional 

principle of total internal reflection [Broeng et a/.]. 

The beginning of research on PCF can be traced back over past decade that 

has seen PCF cut a large swath across a variety of disciplines. Many exciting 

phenomena have been reported since the first results on photonic crystal 
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fibres [Knight et a/., 1996a]. The most common type of PCF, which was first 

fabricated in 1996 by Prof. Philip Russel and his research Group, consists of 

pure silica core with an array of air holes running along the entire fibre length 

[Knight et a/., 1996b]. 

Over the past few years, photonic crystal fibre (PCF) technology has evolved 

from a strong research-oriented field to a commercial technology providing 

characteristics such as single-mode operation from the UV to IR spectral 

regions, large mode areas with core diameters larger than 20 J.lm, and highly 

nonlinear performance with optimized dispersion properties [Kristiansen]. 

A brief look at recent developments in holey fibre research 

1970s: Periodic optical structures- thin film filters. 

1974: Single-material fibre proposed by Kaiser et a/. 

1978: The Bragg fibre was proposed and analyzed by Yeh and Yariv. 

1987: Photonic crystal concept invented [Yablonovitch], world wide research 

followed thereafter. The really hot topic in optics was the photonic bandgap, 

originally predicted by Eli Yablonovitch [Yablonovitch] and Sajeev John [John]. 

1991: Prof. Philip Russell first proposed the concept of photonic-crystal fibres 

[Freeman]. 

1995: Prof. Philip Russell and his research team created the world's first 

working photonic-crystal fibre [Freeman] that confined light by modified total 

internal reflection. This was an extremely interesting development, but it didn't 

have a hollow core and it didn't rely on a photonic bandgap for optical 

confinement [Dettmer]. 

1996: Prof. Philip Russell moved his research group to the University of Bath 

and reported the first working example of endlessly single-mode fibre at OFC 

[Knight et a/., 1996b]. Results were published in Optics Letters in 1996 [Knight 

et a/., 1996a], and it was their most cited letter that year [Freeman]. 

1997: Proposed in 1992, the first endlessly single-mode Holey Fibre was 

fabricated [Russell, 2002]. 

1998: First bandgap guiding fibre was fabricated [Knight et a/., 1998b]. 

31 



Chapter 2 Photonic crystal fibre 

1999: Prof. Philip Russell and his research group reported a single-mode 

hollow core fibre in which confinement was by a full two-dimensional photonic 

bandgap [Cregan et al.]. First prediction and realization of novel optical 

properties in index-guiding HFs was proposed [Williamson]. 

2000: DTU (Denmark) and NKT (UK) established "Crystal Fibre AlS" [Crystal­

Fibre]. Prof. Philip Russell and two of his colleagues set up a spin-out 

business called BlazePhotonics [Freeman]. 

2001: BlazePhotonics spinning off from University of Bath (UK) and received 

$9 m in first-round funding in March 2001. The main emphasis was on 

research and development of new photonic crystal fibre technologies, 

although it did sell a few of its fibres to research institutions and companies 

worldwide [Freeman]. 

2002: Most interesting subject on any Optical Communication conference. 

Breakthrough losses of 13 dB/km were reported in hollow-core photonic 

bandgap fibre by a team from Corning. A record-breaking supercontinuum 

spectrum, extending out to 2300 nm, had been demonstrated in a SF6 glass 

fibre [Russell, 2002]. 

2003: Crystal Fibre AlS had launched four new air guiding photonic bandgap 

fibres (around 900 nm, 1070 nm, 1300 nm, and 1550 nm) where light was 

guided in the hollow core [Crystal-Fibre]. 

PCF is now leading to a range of new and interesting properties with a variety 

of applications. These are now being exploited by many companies and 

universities, including: Crystal Fibre AlS, INO, Alcatel, Bell Labs, and 

OmniGuide Communications Inc.; as well as the usual big fibre players like 

Corning Inc. PCF is one of the main research areas in the University of Bath 

and University of Southampton. Practical advances in index-guiding HFs such 

as improved fibre robustness, lower loss, longer lengths, device 

demonstrations, new materials etc. are now implementing [Williamson]. 
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2.4 Structure of PCF 

The transverse section of a photonic crystal fibre (PCF) consists basically of a 

two-dimensional (20) photonic crystal, which for some specific geometries 

shows photonic bandgaps [Andres et a/.]. By making a suitable geometry of 

the periodic dielectric medium, a photonic crystal can be used as an optical 

fibre [DeHaven]. 

The existence of a defect in the regular structure produces the transverse 

localization of light in its vicinity with the consequent generation of axial 

guiding modes [Andres et a/.]. A typical PCF has a 2-D cross-sectional 

structure in which the solid pure-silica core region is surrounded by a cladding 

region that contains air holes, as shown earlier in Fig. 2.1. These holes 

effectively lower the index of refraction, creating a step-index optical fibre. 

PCF structures vary according to its applications. The design flexibility is very 

large, and designers can use many different, fascinating, and odd air hole 

patterns to achieve specific PCF parameters. The triangular arrangement of 

round air holes in the cladding is typically used to create single-mode fibres. 

An elliptical core can create a highly birefringent fibre that is polarization 

maintaining. 

2.5 Light-guiding Mechanism of PCF 

Generally, two different kinds of PCFs exist, classified by their light-guiding 

mechanism, depending on its structure: 

• Waveguiding by total internal reflection (index guiding PCF) 

• Waveguiding by photonic bandgap effect. 

2.5.1 Index-guiding PCFs 

If the cladding, which is full of holes, has a lower average refractive index than 

the core, then light is guided by the Modified Total Internal Reflection (M-TIR) 
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principle which is similar to conventional fibres . Fig. 2.3 shows the high-index 

guiding fibres, where core has higher average refractive index than the holey 

cladding. 
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Fig. 2.3: High-index guiding fibre [Crystal-Fibre]. 

Some of the properties in the index-guiding case are as follows: 

• Flexibility in obtaining a desired dispersion property, 

• Possible to obtain single-mode operation for wide range of mode 

areas. 

2.5.2 Photonic Bandgap (PBG) Effect 

The second type of fibre provides guidance by the photonic bandgap effect 

where the index of the core is uncritical; it can be hollow or filled with material 

[Russell, 2003] such as liquids, gasses or particles [Crystal-Fibre]. A holey 

fibre can guide light even when the refractive index of the core is lower than 

that of the cladding (ncOre<ncladding) - if, for example, the core of the fibre 

comprises an air hole, as shown in Fig. 2.4. This phenomenon is known as 

photonic bandgap (PSG) effect. 

Photonic bandgap allows for novel features such as light confinement to a 

low-index core. There is no material with a refractive index less than air, so 

this structure would not support total internal reflection; instead, the light 

would be contained within the hollow core by the barrier of the two­

dimensional photonic bandgap formed by the array of air holes encircling the 

core [Dettmer]. 
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Fig. 2.4: Low-index guiding fibre [Crystal-Fibre] . 

Light can be controlled and transformed in these fibres with unprecedented 

freedom, allowing for example the guiding of light in a hollow core (as shown 

in Fig. 2.4), the creation of highly nonlinear solid cores with anomalous 

dispersion in the visible and the design of fibres that support only one 

transverse spatial mode at all wavelengths [Russell, 2002]. In PSG, the air 

holes that surround the light almost entirely eliminate dispersion, optical 

linearities, and reflections on the fibre. Typical applications for these fibres are 

high power delivery with reduced nonlinear effects and material damage, short 

pulse delivery, and low loss guidance in vacuum. 
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Table 2.1 summarizing some of the nomenclature encountered, specifically 

looking at the types of fibre that are formed from the different guidance 

methods. 

Guidance 

Mechanism 

Effective 

index 

guidance 

Bandgap 

guidance 

Types of Fibre Configuration of Fibre 

-Photonic crystal fibre (PC F) -Solid core 

-Microstructured 

(MOF) 

-Holey fibre (HF) 

fibre -Air holes act as cladding 

-Single material 

-Core has higher average 

refractive index than the 

cladding 

-Light is guided by total 

internal reflection. 

- Photonic bandgap fibre -Core can be hollow (air) or 

(PBG) filled with material (liquid, 

gas or particles) 

-Air holes define cladding 

-Core has lower average 

refractive index than the 

cladding 

-Light is guided by photonic 

bandgap effect. 

Table 2.1: Guidance mechanisms and holey fibre types. 

This thesis will focus on index-guiding PCFs, as these fibres are presently 

most common and have less stringent requirements on structural uniformity. 

2.6 Advantages over Conventional Fibre 

• Due to high effective index contrast between silica and air, a much 

broader range of dispersion behaviour is accessible with PCFs than 

with standard fibre. 
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• The existence of two different light guiding mechanisms is one of the 

reasons for the versatile nature of peFs. 

• The design flexibility of peF for tailoring a specific property is much 

better than that of conventional fibre. peF has more controllable 

fabrication parameters than standard single-mode fibre. 

• peF technology offers many new advantages over conventional fibres, 

such as: insensitivity to bending, reduced fibre loss, zero dispersion, 

nonlinearity, polarization stability, highly adjustable effective mode 

area, the engineerable dispersion at visible and near-infrared 

wavelength, high-power delivery and many more. 

• The number of holes, their sizes, shapes, orientations and placements 

in peF can provide an additional degree of freedom, which is not 

present for conventional fibre. 

• Increasing the air-hole diameter, the properties of the peF can be 

enhanced which is not possible in conventional fibre. 

• Single-mode operation over a wide range of wavelength [Birks et a/.], a 

property that is not attainable in standard fibres. 

• In conventional fibres, electromagnetic modes are guided by total 

internal reflection in a core region whose refractive index is raised by 

doping of the base materials. Where as, in peF modes are guided by 

modified total internal reflection (M-TIR) in a core region whose 

refractive index is higher than the holey cladding. 

• peF with high-index core and air-guiding peF (hollow core of fibre) is 

more flexible than conventional fibre [DeHaven], possible to make very 

large core area to send high power, and also possible to make very 

small core. 

2.7 Applications of PCFs 

Applications of the peFs are emerging in many diverse areas of science and 

technology. Within telecommunications, peFs have several potential 

applications that range from low-nonlinearity large-core transmission fibres to 

signal-processing fibres for terminal equipment components [Kristiansen]. This 
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novel fibre has a number of potential applications outside the pure 

transmission sphere. Some of the applications are as follows: 

• Dispersion behaviour is very important for signal transmission and in 

many applications of nonlinear effect. 

• PCF with zero dispersion at specific wavelength is used to eliminate 

dispersion compensation for long-haul transmission. 

• PCF with extremely negative dispersion at interested wavelength for 

dispersion compensation [Williamson]. 

• The large mode-area PCFs or large spot-size has a variety of potential 

applications including laser/amplifier development [Monro and Larkin, 

2001], transmission fibre, and low nonlinearity telecommunications 

[Williamson]. The large mode-are PCFs can also provide high-power 

delivery for applications In astronomy, lithography, materials 

processing, imaging, femtosecond pulse guidance [Kristiansen], 

general laser pigtailing [Kristiansen], and laser welding and machining 

[Monro and Larkin, 2001]. 

• The small mode area or smaller spot-size for improved nonlinear 

interactions, Brillouin lasers, second harmonic generation [Williamson, 

2002], four-wave mixing, and polarization maintaining PCFs with higher 

modal birefringence etc. 

• Highly birefringent PCF can be used to reduce the coupling between 

the orthogonal states of the fundamental mode if no higher order 

modes are supported. Highly birefringent PCF is also used in four-wave 

mixing-based applications [Watanabe and Futami], for ultrashort pulse 

propagation, and as polarization maintaining fibres (PMFs) etc. PMFs 

are essential for coherent optical communication systems and fibre 

sensor systems [Saitoh and Koshiba, 2003b]. 

• Highly nonlinear PCF with zero dispersion at wavelength, A= 1.55 J.lm is 

very attractive for a range of telecom applications such as: wavelength 

conversion [Lee et al.; Belardi et al.; Sharping et al.], Raman and 

parametric amplification [Hansryd et al.; Hansryd and Andrekson], 

pulse compression [Druon et al.], soliton generation [Sharping et al.], 

multiple clock recovery [Futami et al.], all optical-demultiplexing 
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[Oxenl0we et al.; Berg et al.], all optical switching [Williamson], and 

supercontinuum-based multi-channel processing [Watanabe and 

Futami] etc. 

• PCF with high Numerical Aperture (NA) is useful for collection and 

transmission of high powers in situations, where signal distortion is not 

a problem and for the fabrication of dual-clad fibre lasers and 

amplifiers. 

• Two-core PCF is used for strain measurement. PCF with more than 

one core is useful in shape-sensing applications [Russell et al., 

www.bath.ac.uk]. 

• PCF is used as: optical fibre sensors, device component, fibre lasers 

optical transportation of the micro particles, 2R regenerators 

[Petropoulos et al., 2001 a; 2001 b], optical parametric amplifiers, high­

speed telecom [Omenetto et al.], optical sampling and reduction gear in 

optical clock. 

• PCF is used in an optical interconnection system [Taylor et al.]. 

• Microstructured fibres can also be used to guide atoms [Monro and 

Larkin, 2001]. 

2.8 Fabrication of PCF 

Fabrication of PCFs has been a highly labor-intensive and time-consuming 

process. The typical starting point is an array of low-index hollow capillary 

silica tubes, as shown in Fig. 2.5, bundled around a high-index pure silica rod 

replacing the centre capillary. 

Low-index tubes are heated to melt onto high-index rod to form thicked solid 

rod or preform as shown in Fig. 2.6. Tubes are packed in a hexagonal shape 

with hollow, solid, birefringent, doped or tubular core elements. 
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Fig. 2.5: Array of hollow capillary silica tubes bundled around a pure 

silica rod replacing the centre capillary [Kristiansen]. 

core 

doped 
core 

core 

Fig. 2.6: Preform construction [DeHaven]. 

Fig. 2.7: Preform drawing down in furnace [DeHaven]. 
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In a fibre draw tower, a standard piece of equipment in fibre creation, the 

manufacturer heats the preform to around 2000°C and carefully pulls the 

preform, using gravity and pressure, into a fibre typically 125 ~m in diameter 

to produce a filament or fibre several kilometers long, as shown in Fig. 2.7. 

Finally, a protective polymer coating Uacket) applied to the outside improves 

handling characteristics [Kristiansen]. 

2.9 Novel Properties of PCF 

Photonic crystal fibres can exhibit some unusual novel and interesting optical 

properties not encountered in ordinary fibre. A wide range of novel optical 

properties are possible in holey fibres because of the following features: 

• The core/cladding index contrast can be large 

• Cladding design is flexible, with many different possible hole 

arrangements 

Some of the properties are: 

2.9.1 Birefringence Properties of PCF 

In the PCF, the lightwave are composed of two perpendicular polarized 

modes (TE and TM) which travel always simultaneously at different speed. 

Birefringence, also known as double refrection, is the separation of a ray of 

light into two unequally refracted polarized rays, occurring in crystals in which 

the velocity of light rays is not the same in all directions. The angle of light that 

enters a transparent medium depends on the refractive index. Therefore, 

birefringence is numerically quantified as the difference between the greater 

and lesser refractive indices of the anisotropic crystal. Birefringence usually 

results from two sources: 

(a) Stress birefringence, 

(b) Shape or form birefringence. 
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Stress birefringence is results from bends and twists in the fibre. Shape or 

form birefringence results from unintentional deformation during fabrication. 

Other sources of birefringence are fibre strain, fibre side pressure etc [Wilson 

and Hawkes]. 

Effects of small birefringence are observed in conventional fibres, such as 

pulse spreading due to differential group delay. Large birefringence restricts 

the pulse spreading effects and the modes are not coupled together by bends 

and twists in the fibre. In this case, the energy in each mode remains constant 

along the fibre length. Therefore, effects of large birefringence are an 

advantage [University of Bath] in peF. peF can be made highly birefringent 

by having different air-hole diameters along the two orthogonal axis or by 

asymmetric core design. peF had illustrated modal birefringence of an order 

of magnitude higher than that of the conventional fibres [Ju et a/.]. 

Research results [Nielsen et a/., 2001] had shown that the form birefringence 

increases with wavelength as the mode increases in size and thereby 

overlaps the nonsymmetrical air/glass boundary. 

2.9.2 Polarization Properties of PCF 

Polarization maintaining fibre has a unique characteristic with its shorter beat 

lengths, which make it a particularly useful medium for applications in which 

preserving the polarization state of light is important [Lindstorm, 2001 b]. 

Polarization maintaining peF has the properties of being highly birefringence 

fibre. The main application of this fibre is in sensors, gyroscopes, and 

interferometers. 

2.9.3 Dispersion of PCF 

As light rays travelling in each mode travel a different distance they arrive at 

the output at different times. This effect is called modal dispersion and is 

measured in picoseconds per nanometre per kilometer (ps/nm/km). 

Dispersion can be broken into two components: material dispersion and 
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waveguide dispersion. In terms of holey fibres, waveguide dispersion is due to 

the wavelength-dependent change in the refractive index induced by the air 

holes. This can be unusually large in holey fibres if either the air holes are 

large or the core is small [Williamson]. 

When designing a nonlinear fibre, the dispersion properties are very important 

as it has direct impact on pulse broadening, and bandwidth for the device in 

which the fibre is used. For most telecommunication applications, a zero­

dispersion wavelength at 1.55 ~m is required and a dispersion slope as low as 

possible is advantageous [Hansen et al., 2003]. The negative slope of the 

fibre is especially interesting in combination with standard nonlinear fibres with 

positive dispersion slope, which enables creation of nonlinear devices with 

near-zero slope and low dispersion in a large wavelength range [Hansen et 

al., 2002]. 

Ferrando et al. [Ferrando et al., 1999] reported the first dispersion 

characteristics of a photonic crystal fibre. Ferrando et al. [Ferrando et al., 

2000a] had established an original procedure to achieve PCF with 

ultraflattened positive or negative group velocity dispersion. For modern glass 

fibre, the maximum transmission distance is limited not by attenuation but by 

dispersion, or spreading of optical pulses as they travel along the fibre. 

Dispersion in glass fibres is caused by a variety of factors. Some of them are 

as follows: 

2.9.3.1 Intermodal Dispersion 

If a narrow pulse of radiation is launched into a fibre and all possible modes 

are excited, then after a given length, the pulse would broaded because of the 

different axial velocities of the various modes present. This phenomenon is 

known as intermodal dispersion [Williamson]. Intermodal dispersion limits the 

performance of multi-mode fibre. Single-mode fibre supports only one 

transverse mode, and therefore, intermodal dispersion is eliminated. 
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2.9.3.2 Chromatic Dispersion 

Chromatic dispersion, as shown in Fig. 2.8, is wavelength dependent and is 

caused by the core material itself and is actually negative at short 

wavelengths and moves positive at longer wavelengths. This creates 'magic' 

wavelength at which dispersion is actually zero. Single-mode fibre 

performance is limited by chromatic dispersion, which occurs because the 

index of the glass varies slightly depending on the wavelength of the light. 
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Fig. 2.8: Chromatic dispersion in single-mode fibre [Mercury Comm.]. 

2.9.3.3 Polarization Mode Dispersion 

It can limit the performance of single-mode systems, occurs because although 

the single-mode fibre can sustain only one transverse mode, it can carry this 

mode with two different polarizations, and slight imperfections or distortions in 

a fibre can alter the propagation velocities for the two polarizations. Dispersion 

limits the bandwidth of the fibre because the spreading optical pulse limits the 

rate that pulses can follow one another on the fibre and still be distinguishable 

at the receiver. 

2.9.4 Loss Mechanism 

The basic loss mechanisms in PCFs are absorption by impurities [Hansen et 

al., 2002], scattering on air/glass interfaces, structural nonuniformity, micro 

[Nielsen et al., 2003b] and macro-bending loss and confinement loss [Finazzi 

et al., 2002]. The confinement mechanisms can be thought of as being 
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produced by the existence of a homogeneous material with a specific average 

index [Knight et al., 1998c]. 

Producing low-loss holey fibres requires careful thought. The effect of the 

confinement loss can be reduced by doping the core region, which also 

increases nonlinear refractive index of the glass and reduces splice loss. In 

single-material holey fibres, light can always leak out to the cladding, as there 

are no truly bound modes, only leaky ones. Increasing the number of rings of 

holes is one way to reduce the confinement loss [Williamson]. 

2.9.5 Endless Single-mode (ESM) PCF 

Endlessly single-mode fibre is an unconventional property of photonic crystal 

fibres. In telecommunications the term 'endless single-mode' means that 

holey fibres can guide a single-mode over all wavelengths. Standard optical 

fibres become multimode as the size of the core increases relative to the 

wavelength. Some holey fibres can guide a single-mode regardless of the 

optical wavelength [Birks], referring to the absence of higher-order modes 

[Nielsen et al., 2003a]. The cladding effective index is very important design 

parameter for realizing a single-mode PCF. Light at shorter wavelengths is 

more tightly confined to the core, so the core/cladding refractive index 

difference is reduced with decreasing wavelength. This strong wavelength­

dependence of the cladding index can prevent the fibre from supporting more 

than one mode at short wavelengths [Koshiba, 2002]. 

Endlessly single-mode fibre [Knight, 1997] can handle many times more 

power than conventional single-mode fibre, according to Prof. Philip Russell. 

That may come in handy as vendors develop systems that can send more and 

more wavelengths into a fibre. Each wavelength is associated with a certain 

amount of power [Lindstorm, 2001 b]. An undersea telecommunications link 

needs a single-mode operation over a wide spectral range, large bandwidth, 

so that it can transmit a high data rate [Monro and Larkin, 2001]. 
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2.9.6 Nonlinear Properties of PCF 

The high index difference between the silica core and the air filled 

microstructure enables tight mode confinement resulting in a low effective 

area and thereby a high nonlinear coefficient [Hansen et al., 2002], as shown 

in Fig. 2.9. The nonlinearity of an optical fibre is proportional to the intrinsic 

nonlinearity of the material used to make the fibre and is also inversely 

proportional to the mode area of light guided by the fibre, as shown in Fig . 2.9. 

Therefore, nonlinearity can be minimized by increasing the mode area or by 

using a glass host with a low material nonlinearity, such as silica. In contrast, 

nonlinearity can be maximized by combining a small mode area with a high 

nonlinearity glass (typically found In high-index glasses such as 

chalcogenides) [Williamson]. 

Nonlinearity Tailoring 

Fig. 2.9: Nonlinearity tailoring of PCF [University of Southampton]. 

In the last few years, experiments in photonic crystal fibres have shown 

nonlinear phenomena such as supercontinuum generation, third harmonic 

generation and efficient Raman self-frequency shift [Aceves] which were 

found to contribute to the formation of the continuum (such as self-phase 

modulation, Raman scattering, four-wave mixing etc.) depending on the type 

of fibre used to generate the continuum [Genty et al., 2002a; 2002b]. 

2.10 Materials 

PCF can be made with parameters impossible to achieve in standard fibres , 

which has led some researchers to suggest that PCFs could become the 
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ultimate transmission waveguide for electromagnetic fields. peF can be made 

usually with fused silica or undoped pure silica (Si02), although dopants can 

be added to make active devices, just as with conventional fibre [Williamson]. 

peF, made of undoped pure Si02 , provides very low losses, sustains high 

powers and temperature levels, and withstands nuclear radiation [Kristiansen]. 

Si02 is not a good conductor of heat but proton bombardment changes the 

characteristics of the material, increasing its resistance and hence confining 

the current while still providing good heat conduction. Si02 provides superior 

fibre performance for most applications with wavelengths between 200 and 

2500 nm, but using other materials can enhance specific parameters like 

nonlinearity or waveguiding outside this spectral region. 

Pure doped Si02, where silica is doped with Germanium (Ge), can be used to 

increase refractive index of silica and Ge has very low absorption. Where as, 

Si02 doped with Flurine can be used to reduce the refractive index of core 

below that of pure silica. Doped silica is now used in a variety of fibre lasers 

and amplifiers. 

Although most peF is formed in pure undoped Si02 glass, it has also recently 

been made using polymers [van Eijkelenborg et a/.]. There are many other 

type of glasses (not Si02) have been used for peF, such as: GaAs, GaAIAs, 

InGaAs, and InGaAsP [Kumar et a/.]. 

2.11 Summary 

In this chapter, a brief introduction is given to the field of photonic crystal fibre. 

Historical background, applications, many new advantages beyond 

conventional fibre, fabrication techniques, and extraordinary novel properties 

of photonic crystal fibre are discussed in detail. 

In the next chapter, various numerical methods are discussed with their 

comparative advantages and disadvantages. 
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Numerical Methods 

3.1 Introduction 

The term numerical techniques describe the branch of mathematics 

concerned with methods of finding numerical solutions to problems. As optical 

technology has reached maturity, the associated devices have, themselves, 

become more complex. The optimization of such complex devices requires 

the accurate characterisation of their lightwave propagation characteristics. 

Unfortunately, analytical techniques are not adequate to model lightwave 

devices without significant approximations. Hence, there is a significant need 

for the development and use of numerical methods, in particular computer­

aided design techniques, to simulate complex structures in order to optimize 

existing designs and evaluate novel devices, either prior to or instead of 

fabrication and experimental testing, which is time consuming and expensive. 
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Numerical methods are used to solve difficult and sometimes intractable 

problems by approximating functions to the equations that describes a 

process or an approximation to the process and arrive at a meaningful 

solution. PCF has complex structure; therefore, it is useful and meaningful to 

use numerical methods for the simulation and modelling of PCF. In general, 

numerical methods do not usually give the exact answer for a given problem, 

but they tend to get closer and closer towards a solution with each iteration 

[Champion]. There are many different types of numerical methods used these 

days, some of them are: the effective index method [Knox and Toulois], the 

finite difference method [Schulz et al.], the finite element method [Rahman 

and Davies, 1984a] and the beam propagation method [Feit and Fleck, 1978], 

as being particularly important for the design process. 

The field of photonic crystal fibres has by now existed for almost a decade. To 

date, most of the research into photonic crystal fibres has had a strong 

experimental basis [Knight et al., 1996a], which has recently been 

complemented by various modal solution approaches to their characterization, 

but mostly using scalar formulations or being limited to specific types of 

structures. The strength of the scalar approach is that it is straight forward to 

implement and thus serve as an excellent starting point for researchers and 

students entering the field of micro-structured optical fibres. The scalar 

approach naturally gives rise to a much wider range in which the structure 

supports a confined mode. Although a scalar approach provides great insight 

to the basic physics of photonic bandgap fibres, it cannot reveal the complete 

picture [Riishede et al.]. 

3.2 Full-vectorial Solution 

Full-vectorial solution is considered as one of the most accurate and efficient 

techniques. Polarisation and lor degeneracies may only be fully revealed by a 

full-vectorial approach. From the pioneering work in early eighties, most of the 

formulations used today are based on H-field full-vectorial formulation. 
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A full-vectorial approach is necessary to characterize accurately the PCF and 

such an H-field based full-vectorial approach may be extended to obtain the 

modal solution of PCFs [Rajarajan et a/., 2004]. In the literature, it is often 

emphasized that in general a full-vectorial approach is required for 

quantitative modelling of micro-structured fibres [Riishede et a/.]. 

As many useful photonic crystal devices are designed around the PCFs, it is 

tremendously important to develop a model that is capable of accounting for 

the propagation mechanisms in PCFs. It is highly recognized that full-vectorial 

model should be adopted in the accurate analysis of propagation in PCFs 

[Obayya et a/., 2005]. 

3.3 Different Methods 

There are many different methods for modelling the behavior of photonic 

crystal fibres. Several full-vectorial [Ferrando et at. 1999] approaches have 

been reported, such as localized function method [Mogilevtsev et a/.; Monro et 

a/., 2000b], multipole method [White et a/., 2002; Kuhlmey, et a/.], plane wave 

method [Ferrando et a/., 1999; Johnson and Joannopoulos], finite element 

method [Koshiba and Saitoh, 2001].These methods can be classified as 

follows: 

• Indirect entire-domain techniques, 

• Direct sub-domain or space domain discretization techniques, and 

• Field tracking techniques. 

3.3.1 Indirect Entire-domain Techniques 

Indirect techniques, such as: Sinusoidal [Ferrando et a/., 1999], Hermite­

Gaussian [Mogilevtsev et a/.], or Cylindrical [Steel et a/.] basis functions, 

usually have limitations on the shape and/or arrangement of the holes. 

Therefore, this report will not discuss the indirect entire-domain techniques. 
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3.3.2 Direct Sub-domain or Space Domain Discretization 

Techniques 

Direct sUb-domain or space domain discretization techniques can efficiently 

deal with arbitrarily-shaped holes and arbitrary number and arrangement of 

holes. In particular, the possibility of incorporating robust boundary conditions 

with these direct space domain techniques is quite important in order to 

account for the leakage losses associated with the modes propagating in 

PCFs. Examples of direct sUb-domain or space domain discretization 

techniques are: Finite difference method (FDM) [Yu and Chang], Finite 

difference time domain (FDTD) [Lizier and Town], and Finite element method 

(FEM) [Cucinotta, et al.; Koshiba and Saitoh, 2003a]. 

3.3.3 Field Tracking Techniques 

Field tracking techniques works in both longitudinally variant and invariant 

optical waveguide chips [Obayya et al., 2005]. Examples of field tracking 

techniques are: Beam propagation method (BPM) [Feit and Fleck, 1978; Xu et 

al.; Fabrizio et al., 2002], FUll-vectorial finite element based beam propagation 

method (VFEBPM) [Obayya et al., 2000a], and Imaginary distance full­

vectorial finite element based beam propagation method (IDVFEBPM) 

[Obayya et al., 2005]. 

3.4 Comparison of Different Methods 

3.4.1 Effective Index Method 

One of the simplest methods used is the effective index method [Birks et al.; 

Knight et al., 1998c], which approximates the PCF as a step index fibre with 

the cladding index equal to the average or weighted average of the PCF in the 

cladding region. Although it can provide some insight into PCF operation, this 

reduced model is unable to predict accurately the fibre modal properties such 

as dispersion or birefringence, which depend critically on the arrangement and 

size of the air holes [Koshiba, 2002]. The effective index method is an 

analytical method applicable to complicated waveguides such as ridge 

waveguides and diffused waveguides in LiNb03 [Okamoto]. 
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3.4.2 Plane Wave Expansion (PWE) 

Commercial tools based on PWE are now becoming available to photonic­

crystal designers. Such tools can simplify the design process for photonic 

crystals at multiple stages, from the initial layout and visualization of complex 

structures using graphical CAD interfaces to the automatic generation of band 

structures appropriate for the class of crystal lattice. At some point in photonic­

crystal modelling, in addition to propagation studies, knowledge of the 

photonic band structure is indispensable. The PWE technique is ideal for this 

problem because it is accurate, relatively fast, and can be applied to any type 

of crystal structure, including irregular crystals [Kristiansen]. The plane wave 

method [Broeng et al.; Arriaga et al.], employing field expansion with 

sinusoidal basis functions, can be used for any refractive index profile if 

enough basis functions are used, and this is versatile, but not especially 

efficient and has limitation in defining PCF. Fourier transform coefficients can 

also be applied within a plane wave expansion method. 

3.4.3 Localized Function Method 

Monro et al. have considered vectorial approach employing the localized 

expansion to represent the transverse magnetic field by using Hermite­

Gaussian orthogonal basis function [Monro et al., 1999]. Mogilevtsev et al. 

applied localized function method as an effective tool for calculating the vector 

and scalar modes supported by photonic crystal fibres with localized defect. 

The basis of the localized function method is to expand the modal field by 

Hermite-Gaussian functions and to solve the governing wave equations 

analytically with the aid of a Fourier series representation of the refractive 

index profile. The principal advantage of the proposed technique is that the 

Fourier coefficients are found analytically that can be used directly for 

calculation at different wavelengths [Mogilevtsev et al.]. Fourier coefficients 

can be presented in a form that allows different materials and material 

dispersion to be studied without recalculation of the coefficients. Bekker et al. , 

demonstrated the extension of the method to holey fibre cross-sections with 

arbitrary polygon shaped holes and general hole shapes that are 
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approximated by linear segments [Bekker et al.] localized mode expansion is 

fast but suffers from non-uniform convergence [Kristiansen]. 

3.4.4 Multipole Method 

White et al. [White et al., 2002; 2001 a; 2001 b] have used the multipole 

method which involves expansion of the modal field or the dielectric 

constants. This method is generally inefficient in either of the following factors­

computational time, defining infinite lattice or modal solution near cutoff 

region. This method has the limitation that it can treat only perfect circular 

holes [Kristiansen]. 

3.4.5 Supercell Lattice Method 

Wang et al. [Wang et al.] used supercell lattice method which involves 

expansion of the modal field or the dielectric constants. This method is 

generally inefficient in either of the following factors: computational time, 

defining infinite lattice or modal solution near cutoff region. 

3.4.6 Finite Difference Method (FDM) 

Riishede et al., applied the scalar Helmholtz equation and the finite difference 

approximation in index-guiding micro-structured optical fibres as well as air­

core photonic bandgap fibres. The strength of this approach lies in its very 

simple numerical implementation and its ability to find eigenmodes at a 

specific eigenvalue, which is of great interest, when modelling defect modes in 

photonic bandgap fibres [Riishede et al.]. 

3.4.7 Finite Difference Time Domain (FDTD) Method 

Finite difference time domain (FOTO) method, was originally proposed by Vee 

(Yee algorithm), also known as the Order-N method [Chan et al.]. The FOTO 

method works with the discretized Maxwell's equations [Bjarklev et al.]. The 

FOTO method is widely used numerical technique, which is universal, robust, 

methodologically simple and descriptive. FOTO is a powerful technique to 

analyse PCF in order to design complex structures. This straightforward 

method has the disadvantage of being numerically heavy and thus time 
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consuming since it calculates all n2 eigenvalues. There is no simple way of 

calculating the position of the photonic bandgaps using the finite-difference. A 

full-vectorial planewave method with periodic boundary condition [Johnson 

and Joannopoulos] is an alternate method to calculate the bandgaps 

[Riishede et a/.]. The main shortcoming of the FOTO method is its 

computational requirements. Consideration of three-dimensional problems 

requires large volumes of data to be stored and processed, which makes 

calculation very lengthy [Taflov]. 

3.4.8 Transfer-Matrix Method (TMM) 

In a manner similarly to that of the FOTO method, the transfer-matrix method 

works with the discretized Maxwell's equations. Also in similarity with the 

FOTO method, proper boundary conditions should be used. The transfer­

matrix method is less universal; however, it is more computationally effective 

than the FOTO method. Nevertheless, it suffers the same problem of drastic 

increase in required computational resources, when dealing with three­

dimensional problems, especially with fields localized within defects. The 

methods can be used to model infinite periodic structures, and to find the 

eigenmodes and eigen frequencies, as well as transmission properties 

[8jarklev et a/.]. 

3.4.9 Finite Element Method (FEM) 

The modal solution approach, based on the powerful finite element method 

[Rahman et al., 1984a; 2005a] is more flexible, can represent any arbitrary 

cross-section of an optical waveguide more accurately and has been widely 

exploited to find the modal solutions of a wide range of such waveguides. In 

the finite element method, by using a larger number of triangular elements, 

which may have different shapes and sizes, any complex optical waveguide 

cross-section can be accurately represented [Cucinotta et al.]. The flexibility of 

the FEM to represent a cross-section of a holey fibre [Koshiba and Saitoh, 

2001], with arbitrary hole sizes and placements, makes it a powerful approach 

where many other simpler and semi-analytical methods would otherwise be 
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unsatisfactory. The FEM method can be used to obtain the modal solutions of 

the optical waveguides with self-focusing or de-focusing nonlinerity [Rahman 

et al., 1993] using a simple iteration loop and this approach is employed here 

to find the modal solutions for several photonic crystal fibres. 

3.4.10 Beam Propagation Method (BPM) 

The beam propagation method (BPM) is most widely used for modelling of 

integrated and fibre-optic photonic devices, and it has been developed to the 

stage of a commercial software product for this purpose. It is computationally 

optimal, and methodologically even simpler than FDTD [Bjarklev et al.]. BPM 

has been widely used in the last two decades as a "field tracking" technique. 

BPM can be three types, such as: FFT based BPM, FDM based BPM, and 

FEM based BPM. Since the very early pioneer work of Feit and Fleck [Feit 

and Fleck, 1978] in developing an FFT based BPM algorithm so many 

improved versions using the finite difference method and based upon scalar, 

semi-vector and full-vector BPM formulation have been proposed [Xu et al.]. 

BPM [Obayya, et al., 2000a] can be employed to simulate the propagation of 

the initial field along a waveguide and more recently the imaginary axis BPM 

has been used [He et al.] to extract limited individual modes, but this approach 

is more computationally intensive, and time consuming. For photonic bandgap 

device computations, the beam propagation solutions are generally 

inadequate. Moreover, a major problem is the quick succession of 

discontinuities in a photonic crystal. BPM is generally based on slow changes, 

and the nature of a photonic crystal implies a large change in waveguide 

profile within one period, and that over and over again [Bjarklev et al.]. 

3.4.11 Full-vectorial Finite Element Based Beam Propagation 

Method (VFEBPM) 

The full-vectorial finite element based beam propagation method (VFEBPM) 

[Obayya, et al., 2000b] has been considered as one of the most accurate and 

yet efficient BPM techniques. Being formulated in terms of the transverse 

magnetic field components only makes it more numerically efficient [Selleri et 
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al.]. By imposing the divH=O and the interface boundary conditions using an 

elegant line integral approach [Obayya, et al., 2000a], the possibility of the 

spurious modes to appear in the solution spectrum is totally eliminated. 

3.4.12 Imaginary Distance Full-vectorial Finite Element Based 

Beam Propagation Method (IDVFEBPM) 

Recently, a combination of the imaginary distance algorithm and the full­

vectorial finite element based beam propagation method (IOVFEBPM) [Saitoh 

and Koshiba, 2002] has been successfully applied to the modal solution of 

linear [Obayya, et al., 2002a] and nonlinear [Obayya, et al., 2002b] optical 

waveguides. In order to perform an accurate modal solution of peF, the 

Imaginary distance full-vectorial finite element based beam propagation 

method (IOVFEBPM) can be used with the robust Perfectly Matched Layer 

(PML) boundary condition. PML is employed at the edges of the 

computational window in order to account for the leakage property of the 

modes [Obayya et al., 2005]. 

3.5 Summary 

Research over the last decade has generated a wide variety of numerical 

algorithms for modelling peFs, such as BPM, FOTM, FEM, PWE, localized 

mode expansion, and multipole methods. Each method has advantages and 

disadvantages. For example, multipole expansion produces results accurate 

to eight significant figures in seconds but can treat only perfect circular holes; 

localized mode expansion is fast but suffers from non-uniform convergence 

[Kristiansen]. Most of the aforementioned methods are suitable for 2-D 

calculations. However, the full-vectorial FEM is suitable for modal solution of 

peF and full-vectorial FE-BPM is suitable for calculating the loss of the peF. 

Electric and magnetic field boundary conditions and perfect match layer (PML) 

boundary conditions are used for FEM and BPM method, respectively. The 

next two chapters will describe how FEM and BPM are used in numerical 

methods. 
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The Finite Element Method 

4.1 Introduction 

Of the different numerical approaches considered so far earlier in the previous 

chapter, the finite element method (FEM) [Rahman and Davies, 1984a] is now 

established as one of the most powerful and versatile methods in many 

branches of engineering. Many practical problems in engineering are either 

extremely difficult or impossible to solve by conventional analytical methods. 

The FEM is one class of numerical methods used today by many engineers to 

solve complicated problems. FEM is a numerical approach by which general 

equations can be solved in an approximate manner. 

In the finite element approach, the problem domain is suitably divided into a 

patchwork of a finite number of subregions called elements. These elements 
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could be of one, two or even three-dimensions for planar waveguides, 

waveguides with a two-dimensional cross-section or three-dimensional 

guided-wave structures, respectively. For a practical optical waveguide with 

two-dimensional elements which are often triangular in shape and of different 

sizes and using many such elements, a complex waveguide cross-section can 

be accurately represented [Rahman et al., 2005b]. 

The FEM are widely used for modal solutions of a wide range of optical 

waveguides and is able to represent any random cross-section area 

accurately. The flexibility and accuracy of FEM to illustrate cross-section of 

optical waveguides with random hole sizes makes it powerful approach to 

where other approach could be unsatisfactory [Rahman, et al., 2004]. 

To accurately characterize the polarization properties of optical waveguides, a 

full-vectorial approach is necessary and a H-field based full-vectorial FEM has 

recently been extended to find the modal solutions of a wide range of optical 

waveguides [Rahman and Davies, 1984a] including PCFs [Koshiba and 

Saitoh, 2001]. Full-vectorial FEM is used by many authors [Montanari et al.; 

Koshiba, 2002; Obayya et al., 2002b; Rahman et al., 2006b] with finite cross 

sections [Koshiba and Saitoh, 2003c]. Saitoh et al. used a full-vectorial FEM 

with anisotropic perfectly matched layers (PML) to analyze the dispersion 

properties and the confinement losses in a PCF with a finite number of air 

holes [Saitoh et al., 2003]. 

4.2 Historical Background 

The name "finite element" was first introduced by Clough in 1960 [Clough] to 

describe the new technique for plane stress analysis. However, the use of 

piecewise continuous functions defined over a subdomain to approximate the 

unknown function dates back to the work of Courant (1943) [Courant], who 

used an assemblage of triangular elements as a way to get approximate 

numerical solutions. Although certain key features of the finite element can be 

found in the work of Courant (1943) [Courant], the formal presentation of the 

FEM is attributed to Turner, Clough, Martin and Topp (1956) at the Boeing 
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Aircraft Company [Turner et al.]. They used FEM to calculate the stress-strain 

relations for complicated aircraft structures for which no known solutions 

existed. With this piece of work, together with many others, an explosive 

development of the FEM in engineering applications began. The method was 

soon recognised as a general method of solution for partial differential 

equations, and its applicability to non-linear and dynamic structural problems 

was amply demonstrated. Subsequent development has been rapid, and the 

techniques are now extended in many other domains, such as, soil 

mechanics, fluid mechanics, thermodynamics, electromagnetism, biomedical 

engineering, etc. 

4.3 The Basic Idea of the FEM 

The basic idea of the FEM is that it is a numerical technique which solves the 

governing equations of a complicated system through a discretisation 

process. The governing equations can be given in differential form or be 

expressed in terms of variational integrals. The basic idea of the FEM is the 

piecewise approximation of a smooth function by means of simple 

polynomials, each of which is defined over a small region (element) of the 

domain of the function. Instead of expressing the value of the function as a 

whole, it is expressed in terms of the values of the functions at several points 

of the domain called element nodes. 

The FEM can be considered as an extension to the variational methods such 

as the Rayleigh-Ritz and Galerkin methods or the weighted residual 

techniques [Zienkiewicz; Desai]. The earliest mathematical formulations for 

finite element models were based on variational techniques. These 

techniques have been applied to yield approximate solutions for variationally 

formulated problems in many areas in physics and engineering such as solid 

mechanics and fluid mechanics. The approximate solution is assumed to be a 

combination of given approximation functions called trial functions. The 

weighted residual techniques are important in the solution of differential 

equations and other non-structural applications. It starts with the governing 
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differential equation and assumes an approximate solution which in turn is 

substituted into the differential equation. However, these methods suffer from 

disadvantages which prevent them from being used in wider class of 

problems. The main disadvantage of the variational methods is that there is 

no specific way of choosing the trial functions used in the approximation and, 

it is difficult to construct the approximate functions for problems with arbitrary 

domains with changes in material properties. On the other hand, there are 

other difficulties suffered by the variational techniques, since the 

approximation is applied over the whole domain. As a result, very high degree 

polynomials have to be used in order to describe the unknown function 

accurately. This creates a more complicated problem if the domain consists of 

interfaces which have abrupt material changes. Also for irregular shaped 

boundaries, it can be really difficult to impose the boundary conditions on the 

complicated trial functions. 

The FEM overcomes the above mentioned difficulties with two basic features 

which account for its superiority over other competing methods. Such as: 

(i) First, a geometrically complex domain of the problem is represented 

as a collection of geometrically simple sub domains, called finite elements, 

avoiding the difficulties associated with the 'whole domain' techniques. 

(ii) Second, over each finite element the approximation functions are 

derived using the basic idea that any continuous function can be represented 

by a linear combination of algebraic polynomials. 

In order to implement the finite element analysis, the primary variables are 

replaced by a system of discretised variable over the domain of consideration. 

This is generally done by dividing the entire waveguide cross section into a 

patchwork of sub regions, called 'elements' usually triangles or quadrilaterals. 

The finite element mesh (discretisation) consists of elements of various 

shapes, such as triangles or rectangles of different sizes that are connected to 

each other at nodal points on the boundaries of the elements. However, the 

triangular elements are the basic and much preferred element when analysing 

electromagnetic waveguide problems, as they are easily adapted to complex 

shapes. Using many elements, any continuum with a complex boundary and 
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with an arbitrary index distribution can be approximated to such a degree that 

an accurate analysis can be carried out. The simplest triangular element 

imposes a linear interpolation between the field values of the vertices of the 

triangle. However the higher order polynomial interpolation functions can also 

be used, but the drawback is that the programming effort for those higher 

order elements is quite large. The unknown field functions at a nodal point are 

defined by a set of algebraic polynomials over each element, and the field 

over the guide will be determined by those nodal field values and assumed 

shape functions. By expressing the fields in terms of nodal values, the 

resulting field components can be continuous over the whole domain. 

To obtain the nodal field values, the usual Rayleigh-Ritz procedure is 

employed for the stationary solution of the functions with respect to each of 

the nodal variables. This can be written in a matrix eigenvalue equation: 

[A] {x} - A[B] {x} = 0 [4.1 ] 

Where, [A] and [8] are real symmetric matrices, and [8] is also positive 

definite matrix. The eigenvalue A may be ko2 or tl depending on the 

variational formulation and {x} is the eigenvectors representing the unknown 

nodal field values. It is most desirable for the resulting matrix equation to be of 

this canonical form, to allow for an efficient and robust solution. This equation 

[4.1] can be solved by one of various standard subroutines to obtain different 

eigenvectors and eigenvalues. 

4.4 Characteristics of FEM 

Several important characteristics and advantageous properties of the finite 

element method have contributed to its extensive use. Some of them are 

listed below: 

• The FEM is more flexible, can represent any arbitrary cross-section 

more accurately. Any structure can be represented using FEM which is 

important for polarization issues. 
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• The FEM approach is a very versatile method and its strength has been 

the easy change of the position and size of any of the air holes, as they 

are required. 

• In the FEM the structural and waveguide cross-section is subdivided 

into a finite number of elements. 

• The material properties of adjacent elements need not be the same, 

allowing the application to bodies composed of several types of 

materials. 

• Irregular shaped boundaries can be approximated using elements of 

straight edges or matched exactly using elements with cu rved 

boundaries. 

• Boundary conditions such as discontinuous surface loading and mixed 

boundary conditions can be handled easily in a natural way. 

• The size of the elements can be made smaller and consequently the 

mesh can be refined in regions where the unknown parameter is 

expected to vary rapidly. 

• Various shapes, sizes, and types of elements can be used within the 

same region allowing the method to make optimal use of the finite 

elements available. 

• The technique can easily lend itself to computer implementation as it 

involves a large number of repetitive steps. 

4.5 Applications of FEM 

Generality and versatility are perhaps the most outstanding features of the 

finite element method (FEM). The present day application of the method 

includes almost all physical problems that are governed by differential 

equations. FEM is suitable for mode analysis of optical waveguides having 

arbitrary refractive-index profiles and complicated waveguide structures 

[Okamoto]. 

Although this method was first developed for applications in structural 

mechanics, now it is widely used in many branches of science and 
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engineering. The FEM has been used to characterize accurately lightwave 

propagation through a wide range of practical optical waveguides, such as 

semiconductor ridge [Rahman, and Davies, 1985], titanium diffused LiNb03 

[Rahman, and Davies, 1984a], and ion exchanged glass waveguides, 

nonlinear waveguides, MQW waveguides [Rahman, et al., 1993], surface 

plasmon waveguides [Themistos, et al.], and highly-birefringent silica fibres 

[Liu, et al., 1994]. Besides, the modal solutions of optical waveguides, over 

the last two decades this method has also been used to model devices based 

on directional couplers [Wongcharoen, et al.], or multimode interference 

couplers [Rajarajan, et al., 1996.], electrooptic modulators [Rahman, et al., 

2002], and nonlinear optical devices [Rahman, et al., 1993]. 

4.6 Application of FEM to Optical Waveguides 

4.6.1 One and Two Dimensional Optical Waveguides 

According to the cross-sectional shape of the optical waveguide, the 

electromagnetic waveguide problems can be classified into two groups: 

(a) One-dimensional waveguide 

(b) Two-dimensional waveguide 

(a) One-dimensional planar waveguide (b)Two-dimensional waveguide 

Fig. 4.1: Optical waveguide (a) one-dimensional planar waveguide (b) 

two-dimensional waveguide. 

A planar one-dimensional waveguide or an axially symmetrical waveguide 

which can be treated as a one dimensional problem is shown in Fig. 4.1 a. 

Two-dimensional waveguide is shown in Fig. 4.1 b. 

63 



Chapter 4 The finite element method 

The eigenmode property of the waveguide is the key factor for choosing the 

waveguide analysis method as either scalar or vector. The scalar analysis can 

be employed in both one and two dimensional problems. However, for a 

planar structure, the scalar analysis will be sufficient, whereas, for two­

dimensional problem, vector analysis is more accurate. Since, the waveguide 

with two-dimensional confinement supports the hybrid modes; more rigorous 

vector wave analysis is necessary for the precise evaluation of their 

polarization issues and their propagation characteristics. 

4.6.2 Arbitrary Cross-sectional Shaped Optical Waveguide 

Fig. 4.2 shows the arbitrary-shaped optical waveguide, composed of several 

different materials. These materials can be described as having arbitrary 

permittivity and permeability tensors & and j.1, respectively. These materials 

could be linear, nonlinear, isotropic, anisotropic, or loss less. The waveguide 

is assumed to be uniform along the z-axis or propagation direction. Consider 

light with angular frequency, OJ, and propagation constant, [3, propagated by 

such a waveguide whose structure and refractive index are constant in the 

direction of propagation, i.e. in the positive z direction. Assuming the time (t) 

and z variation are given by exp(jOJt) and exp( -j[3z) functions, respectively, the 

electric field E and the magnetic field H can be expressed in the form: 

E(x,Y,z, t) = E(x,Y) exp[j( OJt-[3z)1 

H(x,Y,z, t) = H(x,Y) exp[j( OJt-[3z)] 

[4.2] 

[4.3] 

The spatial variations of the electric and ma etic fields are E(x,Y) and H(x,Y) , 

respectively. 

Fig. 4.2: Optical waveguide with arbitrary-shaped, with different materials. 
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4.7 Fundamental Electromagnetic Field Equations 

The fundamental electromagnetic field equations, such as Maxwell's 

equations and the boundary conditions, which govern the optical waveguide 

phenomenon are discusses in this section. The consideration of above 

mentioned equations is needed to make use of the finite element method in 

the optical waveguide analysis problems. 

4.7.1 Maxwell's Equations 

Light propagation through an optical waveguide is an electromagnetic wave 

phenomenon which can be expressed by the Maxwell's equations. Its 

magnetic field is represented by four electromagnetic field vectors. These 

equations form a basic set of equations of the electromagnetic field theory. 

The equations can be written in both differential and integral forms. The 

differential forms of the equations are the most suitable form to be used by the 

finite element method. Therefore, in this thesis equations are presented only 

in differential form. 

The differential form of Maxwell's equations in general time-varying 

electromagnetic fields can be exposed as: 

Ampere's law 

Faraday's law 

Gauss's law 

Gauss's law for magnetics 

aD 
\lxH=-+J at 

\lxE = -aB 

\l·D=p 

\l·B=O 

at 

Where, H= Magnetic field intensity (amperes/meter) 

E= Electric field intensity (volts/meter) 

D= Electric flux density (coulombs/meter) 

B= Magnetic flux density (webers/meter) 

J= Electric current density (amperes/meter) 

p= Electric charge density (coulombs/meter3
) 
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The conservation of charge equation or the current continuity equation (holds 

for J and the charge density, p) can be exposed as: 

v.J= -ap 
at [4.8] 

The associated constitutive relations for the medium can be exposed as: 

D = &E [4.9] 

B = JLH 

Where, £ = The permittivity of the medium 

JL = The permeability of the medium. 

For convenience lets assume the time dependence to be expUmt). 

Where, j= The imaginary unit, 

(0= The radian (angular) frequency, and 

t= The time. 

[4.10] 

Then with this assumption, all the time derivatives may be replaced by jm and 

the factor exp(jmt) will not be included as this factor always occurs as a 

common factor in all terms. Hence the differential form of Maxwell's equations 

becomes: 

VxH = jmD+J 

VxE =-jmB 

V·D=p 

V·B=O 

Therefore the continuity equation can be exposed as: 

V·J =-jmp 

4.7.2 Boundary Conditions 

[4.11 ] 

[4.12] 

[4.13] 

[4.14] 

[4.15] 

Boundary conditions are the certain conditions that must be performed at the 

boundary between two media with different material parameters. It is 

necessary to focus the Maxwell's equations, as exposed above, to boundary 

conditions at surfaces where the refractive indices change abruptly. Fig. 4.3 

shows a sketch of such a boundary between two media distinguished by the 
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indices 1 and 2, with the unit normal vector n directed from medium 1 to 

medium 2. n 

medium 2 

medium 1 

Fig. 4.3: Sketch of a boundary between two media. 

In the absence of surface charges (p = 0) and surface currents (J = 0), the 

boundary conditions are given as below: 

i) The tangential components of the electric field must be continuous. 

n x (E 1 - E 2) = 0 [4. 16] 

ii) The tangential components of the magnetic field must be 

continuous. 

[4.17] 

iii) The normal components of the electric flux density must be 

continuous. 

[4.18a] 

[4.18b] 

iv) The normal components of the magnetic flux density must be 

continuous. 
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[4.19a] 

When, J.11 and J.12 are the relative permeabilities in medium 1 and 2, 

respectively for most of the optical waveguides, J.11 = J.12 = 1. 

[4.19b] 

It implies equality of the magnetic field vectors at the boundary. 

There is another boundary condition, which is often used in the idealised case 

of a perfect electric conductor. This can be considered as an 'electric wall' 

boundary condition: 

nxE =0 or n·H=O [4.20] 

This boundary condition requires that the magnetic field vector, H, must 

vanish, and ensures the continuity of the electric field vector, E, at the 

boundary. 

When one of the two media becomes a perfect magnetic conductor, a 

'magnetic wall' condition is imposed as: 

n x H = 0 or n . E = 0 [4.21 ] 

This condition will ensure the continuity of the magnetic field component, H, at 

the boundary and it vanishes the electric field vector, E. 

4.8 Finite Element Formulations 

Variational [Harrington] and weighted residual approaches are the two major 

factors for formulating the finite element. Variational formulation has been 

widely used to a large variety of electromagnetic field problems, in particular 

to the problem of wave propagation along the arbitrary shaped waveguides 

with anisotropic material. Despite the fact that the weighted residual approach 

is more straightforward, the variational approach is more advantageous. In 
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variational approach, only one global parameter such as the propagation 

constant is needed. Moreover, most of the solutions for a wide variety of 

electromagnetic field problems reported in the literature have been based on 

the variational approach. Therefore, in this thesis only variational formulation 

will be discussed. 

4.8.1 Types of Variational Formulation 

There are mainly two types of variational formulations, which can be utilised in 

finite element method, such as: 

(a) Scalar formulation [Koshiba et al., 1982], and 

(b) Vector formulations [Morishita and Kumagai; Rahman and Davies, 

1984b; Koshiba et al., 1985a]. 

Depending on the waveguide structure, however, there are quite a few cases 

in which practically acceptable solutions are obtained through the HY mm mode 

approximation and the HX
mm mode approximation. On the basis of these 

observations, the scalar FEM has been developed for the analysis of two or 

three-dimensional optical waveguides. With this method, the number of matrix 

elements to be solved is reduced to 1/3 compared to the vector finite-element 

method [Koshiba, 1992]. For vector wave FEM analyses, complicated 

mathematical procedures and programming techniques are required. In 

contrast, spurious solutions do not appear in scalar wave FEM analyses for 

two or three-dimensional waveguides. Since the matrix size for scalar wave 

analysis is one-third smaller than that for vectorial wave analysis, required 

memory and CPU (central processing unit) time very small. By comparing 

vector and scalar wave FEM analyses, it is confirmed that a sufficiently 

accurate solution can be obtained via scalar wave analysis [Okamoto]. 

4.8.2 Characteristics of the Scalar Finite Element Method 

Scalar finite element method has been applied to problems of electromagnetic 

wave propagation in homogenous, isotropic media, where a single potential or 

only one field component has been considered. It is the simplest form of the 

differential variational formulations. In this method, its validity becomes 
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apparent only in situations where the modes can be described predominantly 

as TE and TM modes. Koshiba et al. [Koshiba et al., 1982] described an 

approximate scalar finite-element program for the analysis of anisotropic 

waveguides. According to Mabaya et al., [Mabaya et al.] the scalar 

approximation for the TE modes is based on the following functional: 

[4.22] 

Where ~, n, and ko are propagation constant, refractive index profile, and free­

space wavenumber, respectively. 

Here, n represents the cross sectional domain over which the integration is 

carried out. A finite element program based on the above mentioned 

functional yields Ii as the eigenvalue of the matrix equation for a given ko. 

The eigenvector, ¢(x,y) is the transverse field distribution, i.e. Ex component 

for the TE modes. 

The scalar approximation for the TM modes IS based on the following 

functional: 

[4.23] 

IjI(X,y) is the transverse field distribution, i.e. Hx field component for the quasi­

TM modes. A finite element program based on this functional yields ki as the 

eigenvalue of the matrix equation for a given propagation constant, fl. 

4.8.3 Characteristics of the Vector Finite Element Method 

Since the guided mode of the two or three-dimensional optical waveguide is a 

hybrid mode, only vector wave analysis is required so that precise and 

rigorous evaluation of their propagation characteristics and the dispersion 

characteristics can be examined. Therefore, in this thesis only vectorial 

formulation will be discussed in detail. In this case, the scalar formulation is 

inappropriate to solve and handle hybrid modes of anisotropic or 

inhomogeneous optical waveguide problems, vector wave analysis IS 
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important for an accurate evaluation of the propagation characteristics. 

Important advantage of vector finite element method is that it offers a better 

solution convergence for some modal types as compared to corresponding 

scalar formulations. One disadvantage of any vector finite element method is 

the appearance of the spurious solutions or non-physical solutions, which 

appear mixed with the correct solutions. 

4.B.3.1 Types of Vector Finite Element Method 

There are many types of finite element methods for such vector wave 

analyses, depending on which electromagnetic (E and H) field components 

(Ez and Hz) is used for formulation. Such as: 

(1) FEM using longitudinal or axial electromagnetic field components (Ez 

and Hz), 

(2) FEM using the three magnetic field components (H), 

(3) FEM using the three electric field components (E), 

(4) FEM using the six electromagnetic field components (E and H), 

(5) FEM using transverse electromagnetic field components (Et and Ht), 

(6) FEM using transverse electric field components(Et), 

(7) FEM using transverse magnetic field components (Ht) , 

(B) FEM using transverse electric field components and longitudinal 

magnetic field components (Et and Hz), and 

(9) FEM using transverse magnetic field components and longitudinal 

electric field components (Ht and Ez) [Okamoto; Koshiba, 1992]. 

4.B.3.2 Comparison among Vector Finite Element Methods 

The validity, appropriateness, and effectiveness of each of these methods 

have been verified and confirmed. Methods 1 (FEM using longitudinal or axial 

electromagnetic field components) and 2 (FEM using the three magnetic field 

components), in particular, are widely used for analysis and design of three­

dimensional optical waveguides of almost any structure [Koshiba, 1992]. 

Finite element method using longitudinal electromagnetic field components is 

based on the axial field components (Ez and Hz), which are the least important 

of the E and H fields. The Ez and Hz formulation is one of the first formulations 
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used in finite element analysis [Yeh et a/., 1975; 1979; Mabaya et a/.; 

Csendes and Silvester] and is used to solve many different types of guiding 

structures problems [Ahmed and Daly, 1969; Ikeuchi et a/., 1981; Wu and 

Chen, 1985]. The Ez and Hz formulation cannot treat general anisotropic 

problems without destroying the canonical form of the eigenvalue equation 

[4.1], and also some problems arise in enforcing boundary conditions for a 

waveguide with an arbitrary dielectric distribution. 

The finite element method using transverse electric field components (Et) and 

magnetic field components (Ht) is computationally costly as this involves 

additional differentiation [Ohtaka et a/.], which in turn would be particularly 

disadvantageous with finite element approach. 

A vector E-field formulation, applied by English and Young [English and 

Young], is valid for general anisotropic loss-less waveguide problems and has 

also been applied for the solution of various types of optical waveguides 

[Koshiba et a/., 1986; Hano]. One of the limits of the E-field formulation is that 

it needs special consideration to enforce the continuity of the tangential field 

components at the dielectric interface. For such a formulation, the natural 

boundary conditions correspond to a magnetic wall, and therefore it is 

essential to enforce the electric wall (n x E = 0) as a boundary condition which 

is difficult to implement for irregular shaped structures. 

This vector H-field formulation [Koshiba et a/., 1985b; Rahman and Davies, 

1984b; 1984c] is valid for general anisotropic problems with a non-diagonal 

permittivity tensor. It has the advantage over all other formulations. It is more 

suitable for dielectric waveguide problems, because the magnetic field is 

continuous everywhere, and the natural boundary conditions correspond to 

those of the electric wall (n x E = 0, n . H = 0), therefore no forced boundary 

conditions at the boundaries are required. 

The total vector E+H formulation [Svedin] does not have much advantage 

over the vector H-field formulation since all the six components are needed for 

the formulation giving rise to a complicated problem. 
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4.8.4 The Vector H-field Formulation 

The vector H-field formulation appears to be the most accurate and versatile 

method [Rahman and Davies, 1984b] in the case for general optical 

waveguide problems, where the modes are hybrid, the transverse 

components are the dominant and the materials have general anisotropy. The 

full-vector H-field formulation can be written as [Rahman and Davies, 1984a; 

Berk, 1956]: 

1\ -1 

oi = f CV x H)* . £ . (V x H) dQ 

fH* '~.HdQ 
[4.24] 

1\ 

Where, £ = general anisotropic permittivity of the loss-free medium, 
1\ 

JL =general anisotropic permeability of the loss-free medium, and 

Q= waveguide cross section. 

For an abrupt discontinuity in the permittivity in an inhomogeneous medium 

there is an abrupt change in the electric field, E. In such cases, it is 

advantageous to solve for the values of H at the nodal points. This formulation 

is also very important and useful when analysing various active and passive 

integrated optic structures. 

The E-field as well as the H-field formulation, yields spurious solutions, 

because the divergence condition [div H=O] is not satisfied. Various ways of 

suppressing or eliminating spurious solutions have been discovered for this 

method. Penalty coefficient method [Rahman and Davies 1984c; Koshiba et 

al., 1985b] have been proposed to eliminate these non-physical solutions, 

which will be discussed in later section. 

For the solution of optical waveguide problems [Silveira and Gopinath; Lu and 

Fernandez 1993a; Hayata et al., 1986b], most recently a variational 

formulation in terms of the E-field or H-field components has been proposed. 

In this approach, the minimum number of field components (two) is used, and 

the divergence condition is satisfied. It can handle accurately lossy structures 

[Cheung et al.; Lu and Fernandez 1993b], but it can lead to large sparse, 
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complex, non-symmetric matrices in the eigenvalue equation, which increase 

computation time, therefore effort has been made to develop efficient sparse 

matrix solvers [Fernandez et a/.] in order to solve such problems. 

4.8.5 Natural and Forced Boundary Conditions 

The boundary condition, which is automatically satisfied in the variational 

procedure, is called the 'natural boundary condition'. In the case of natural 

boundary condition, the field decays at the boundary, therefore they can be 

left free. The scalar functional defined in equation [4.22] has the continuity of 

m[: ] where m=1, as the natural boundary condition, and the functional 

[4.23] has the continuity m[~:J where m = 1/n2, as the natural boundary 

condition, and n is the outward normal unit vector. The vector H-field 

formulation described in equation [4.24], has the electric wall as the natural 

boundary condition expressed as n . H = O. Therefore there is no need to 

force any boundary condition on conducting guide walls. 

In some other cases, specially for regular shaped waveguides, and at the 

symmetric walls, the natural boundary condition needs to be forced to reduce 

the matrix problem size. However, it may be necessary to analyse the 

structure with complementary symmetry conditions to obtain all the modes, 

although the exploitation of the symmetry greatly reduces the computational 

cost. 

4.9 Finite Element Method Formulation 

To find the solution of a complicated problem by replacing it by a simpler one 

is the basic idea of the finite element method formulation. 

4.9.1 Finite Element Discretisation 

The first step in the finite element method is the discretisation of the domain 

into sub-regions, called elements. There are various types of elements such 

as one, two and three dimensional elements available for use in finite element 
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formulations. When the geometry and material properties can be described in 

terms of only one spatial coordinate, then the one-dimensional element can 

be used. However, when the configuration and other details of the problem 

can be described in terms of two independent spatial coordinates, the two­

dimensional elements, as shown in Fig. 4.4, can be used. 

2 2 3 

1--------3 1--------4 

Triangle Rectangle 

2 3 

1 

1 4 
4 

Quadrilateral Parallelogram 

Fig. 4.4: Two dimensional finite elements. 

Each element is essentially a simple unit within which the unknown can be 

described in a simple manner. The basic and the simplest element useful for 

two-dimensional analysis is the triangular element. The smaller the size of the 

element, the more accurate is the final solution. 

Finite element discretisation of an irregular waveguide, using triangular 

elements is shown in Fig. 4.5. The shapes, sizes, number and configurations 

of the elements have to be chosen carefully such that the original body or 

domain is simulated as closely as possible without increasing the 

computational effort needed for the solution. 

By dividing the waveguide cross section into triangular elements, the unknown 

H is also considered as to be discretised into corresponding sub-regions. 
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These elements are easier to analyse rather than analysing the distribution 

over the whole cross section. 

y 

element 

x 

Fig. 4.5: Waveguide cross-section is subdivided into a finite number of 

triangular elements showing its nodes. 

As shown in Fig. 4.5, the transverse plane is covered with a grid of discrete 

nodes which are the vertices of each triangular element. The values of H at 

these nodal points are the basic unknowns. The intersections of the sides of 

the triangular elements are called the nodal lines. 

4.9.2 Shape Functions 

The shape functions are a set of interpolation functions, defined in terms of 

complete polynomials and which are normalized over each element. For a 

typical element, the shape function is chosen so that it uniquely defines the 

field within the element under consideration. 

In two-dimensional problems, the element assumes a linear interpolation 

between the field values at the vertices of the triangle. Within each element 

the unknown field H, is approximated by means of suitably chosen set of 

polynomials. These functions are called "shape functions". For the simplest 

triangular element the interpolation polynomial should include terms 
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containing both x and y. In order to achieve the 'geometric isotropy', the 

polynomial should complete according to the Pascal's triangle, as shown in 

Fig. 4.6. 

1 Degree of No. of terms Element 

/ \ Polynomial in the polynomials with nodes 

X - Y 1 3 
/ \ 

x2 _ xy y2 2 6 

/ \ 
x3 _ x2y - xy2 / 3 10 

/ \ 
x4 x3y - x2y2 - xy3 _ y4 4 15 

Fig. 4.6: Pascal's triangle for complete polynomials in two dimensions. 

The final consideration in selecting the order of the interpolation polynomial is 

to make the total number of terms involved in the polynomial equal to the 

number of nodal degrees of freedom of the element. For example, the first 

degree polynomial involves three coefficients and so can be expressed in 

terms of three nodal values at the triangle vertices. The second degree 

polynomial needs six coefficients and can similarly be expressed in terms of 

values of six nodes as shown in Fig. 4.6. 

The continuous field function ¢(x,y) in the problem domain may be replaced by 

a set of discrete values (¢i, i = 1,2,3, .. .. ,m), where m is the total number of 

nodes. This function will be continuous across the adjacent triangles. 

A typical first order triangular element is shown in Fig. 4.7. Inside each first 

order triangular element ¢ is interpolated continuously. This can be achieved 

by introducing the interpolation functions, Ni(x,y). Let ¢e(x,y) is the field inside 

an element. Using these interpolation functions, for i = 3, it can be written as: 

3 

¢e(x,y) = LNi(x,y)'¢i [4.25] 
i=l 

Where, ¢i are the nodal field values. 
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As eq. [4.25] describes the shape of an element, and therefore, the Nlx,Y) are 

called 'shape functions'. Eq. [4.25] can also be written in matrix form: 

¢,(x,y) = [N\ N2 N31!::1 [4.26] 

¢ e (x, y) = [N] {¢ e } [4.27] 

Where, [N] is the shape function matrix and the column vector {¢e} is the 

vector corresponding to the field values at the 3 vertices of the triangular 

element (i.e. the nodal field values). 

¢e(x,y) 

~--~----4-~------~------. Y 

x 1 (XI,YI) 
Fig. 4.7: Coordinates and node numbers of first order triangular 

element. 

In order to obtain the shape functions, Nlx,Y) , i = 1,2,3, first a linear 

approximation of the field inside an element is considered: 

¢e (x, y) = a 1 +a2 x+a3y 

Where, a1, a2, a3 are constants. 
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By rewriting the approximation [4.28], such that it satisfies the conditions: 

i = 1,2,3 [4.29] 

Where, (Xi,Yi) (i = 1,2,3) are the (global) coordinates of the three vertices of the 

triangle. 

Then, the nodal field values (Pi can be expressed as: 

¢l := ¢e(xPYI) = a l + a 2xI + a 3YI 

¢3 := ¢e(X3'Y3) = a l +a2x3 +a3Y3 

In matrix form: 

[4.30] 

[4.31] 

By solving the above matrix, the constants a1, a2, a3 can be determined in 

terms of ¢i, i = 1,2,3: 

a
l 

=_1_[¢Jx2Y3 -X3Y2)+¢2(X3YI -XIY3)+¢3(XIY2 -X2YI)] 
2Ae 

a 2 = 2~ [¢I(Y2 - Y3)+¢2(Y3 - YI)+¢3(YI - yJ] 
e 

a 3 = _1_ [¢l (X3 - xJ + ¢2 (Xl - X3) + ¢3 (X2 - Xl)] 
2Ae 

Where, Ae is the area of the triangular element given by, 

1 Xl 

A =~1 x 2 e 2 
1 X3 

[4.32] 

Substituting for ai from eq. [4.32] into eq. [4.28] and rearranging yields the 

following equation: 

or 
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[4.34] 

Which is exactly the same matrix equation given by eq. [4.27], and Nlx,y), i = 

1,2,3, are shape functions given by the matrix notation [Reddy; Davies, 1989]: 

[4.35] 

Where, T denotes the transpose. This shape function matrix can also be 

written as: 

[4.36] 

and a;, b;, C; (i = 1,2,3) are the constants calculated as: 

[4.37] 

[4.38] 

[4.39] 

Similarly, a2, b2, C2, a3, b3, and C3 can be calculated by cyclic exchange of 1 ~ 

2 ~ 3 in equations [4.37] to [4.39]. 

Consider a typical point P(x,y) inside the triangular element as shown in 

Fig. 4.7. By carefully considering the eq. [4.35], the shape functions N; can 

also be denoted by using the areas of the triangles as below: 

N = area of the sub triangle P23 

1 area of the full traingle 123 
[ 4.40] 

Similarly N2 and N3 can be defined, and immediately it follows that Ni has the 

following property: 

[4.41 ] 
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4.9.3 Assembly of Element and Global Matrices 

The next stage in the finite element method is the assembly of the element 

matrices [A]e and [8]e into global matrices [A] and [8], respectively. An 

appropriate matrix solver is used to obtain the eigenvalues and eigenvectors 

of the equation. This section explains the derivation of the element and global 

matrices based on the full-vectorial H-field variational expression eq. [4.24]. 

Within each triangular element, the three unknown H-field components, Hx, Hy 

and Hz of the magnetic field can be written as: 

[4.42a] 

HYI 

Hy(x,y) = [NI N2 N 3] HY2 [4.42b] 

HY3 

[4.42c] 

where, H xi, Hyi and Hzi ; i = 1,2,3, represents the x, yand z components of the 

nodal magnetic fields. Hence, the element magnetic field vector [H]e can be 

expressed by combining equations [4.42a]-[4.42c]: 

HXI 

Hx2 

HX3 

H,(X'Y)] [Nl N2 N3 0 0 0 0 0 

jJ 
HYI 

[Hl = Hy(x,y) = 0 0 0 NI N2 N3 0 0 HY2 

Hz(x,y) 0 0 0 0 0 0 NI N2 Hy3 

[4.43] 

Hzl 

Hz2 

H z3 

Equation [4.43] can also be written as: 

[4.44] 
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Where, {H}e is the column vector representing the three components of the 

nodal field values in the element and [N] is the shape function matrix. 

Also by substituting [4.44], the (V x H)e factor within the element can be 

written as: 

0 -a a 
-az ay 

(VxHt = Vx [N]{Ht = a 0 -a [N]{Ht = [Q]{Ht [4.45] az ax 
-a a 0 -
ay ax 

Where, the matrix [Q] can be written as: 

[0 ] -a[N] a[N] [0 ] ip[N] a[N] 
az ay ay 

[Q]= a[N] [0 ] -a[N] 
= - ip[N] [0 ] -a[N] 

[4.46] 

-grN] 
ax ax a[N] -a[N] a[N] [0] [0 ] ay ax ay ax 

Where, [0] = [0 0 0] [4.47] 

[N]= [N1 Nz NJ [4.48] 

The following arises by using the differentiations of equation [4.36]: 

a[N] = [b 
ax 1 

bz b3 ] [4.49] 

a[N] = [c 
ay 1 

Cz c3 ] [4.50] 

The values of the constants b1, b2, b3, C1, C2 and C3 were given in equations 

[4.38] and [4.39]. 

By substituting the terms in equations [4.44] and [4.45] into the equation 

[4.24], the vector H-field formulation functional for an element can be obtained 

as: 
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-1 

J e = f{H}~[Q]*; [Q]{HLdn-m 2 f{H}~[NY ~[N]{HLdn [4.51] 
~ ~ 

D. represents the integration over the triangular element domain. T and * 

denote the transpose and the complex conjugate transpose, respectively. E is 

a scalar value for the permittivity when the material is isotropic. If E is a tensor, 

then it should be represented by a 3 x 3 matrix and the inverse of the matrix 

should be implemented. 

The total function, J, associated with the whole cross section of the waveguide 

can be obtained by summing Je of all the individual elements, 

[4.52] 

Where, n is the number of elements. 

The minimisation of the functional given in equation [4.52] is achieved by 

differentiating with respect to the field nodal values and equating it to zero as 

below: 

8J =0 
8{H}e 

e = 1,2, ..... .. ,n 

This minimisation leads to the following eigenvalue equation: 

Where, [A] = i]A]e = I f£-I[Q]*[Q] dn 
e=1 e=1 ~ 

[B]= I[Bt = I fp[NY[N] dn 
e=1 e=1 ~ 

[4.53] 

[4.54] 

[4.55] 

[4.56] 

Matrix {H} contains all the H-field nodal values over the whole cross section of 

the waveguide considered. [A]e and [B]e represent the element matrices. The 

assemblage of all the element matrices [A]e and [8]e over the whole cross 

section result in the so called global matrices of the eigenvalue equation, 
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given by [A] and [8], respectively. The calculations of the element matrices , 
[A]e and [8]e, are implemented in Appendix 2. 

When solving waveguide problems by using finite elements, the key factor 

affecting storage requirements and computational effort is the choice of 

algorithm to solve the matrix equation. The global matrices [A] and [8] shown 

in equation [4.55] and [4.56] are highly sparse. The sparsity increases with the 

order of the matrices and decreases with the polynomial order of the shape 

functions. The main advantage of using the higher order basis functions for 

the fields is that they give a more accurate solution for a given matrix order, 

but involves an increased programming effort, particularly when considering 

anisotropic materials, infinite elements and penalty functions. Another 

disadvantage when using higher order polynomials for a given matrix order is 

the increase in the density of the matrix. 

4.10 Spurious Solution 

In vector wave analysis of optical waveguides using the finite element method, 

spurious solutions, the most serious problems, are generated to a greater or 

lesser degree that prevents the applicability of FEM and creates a serious 

obstacle to the use of the finite-element method. The reason for the 

appearance of spurious modes is probably the fact that the functional is not 

positive definite [Csendes and Silvester]. Spurious solutions are found to 

spread all over the eigenvalue spectrum, some of them appearing below any 

true modes and some between the physical modes. A spurious solution is 

generated because the functional does not satisfy the boundary conditions in 

the original waveguide problem, although it satisfies the original vector wave 

equation. Some other factors that cause the appearance of spurious modes 

are: the positive definiteness of the operator or possibly due to the non zero 

divergence of the trial fields [Rahman and Davies, 1984a; 1984b]. Then a new 

term that compensates for the missing boundary condition must be added in 

the functional to eliminate the spurious solutions. Various kinds of techniques 

have been developed to suppress and eliminate the spurious solutions and to 
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contribute to the renewed appreciation of the effectiveness of the finite­

element method. No effective method of suppressing or eliminating spurious 

solutions has been found to date for method 1 (FEM using longitudinal or axial 

electromagnetic field components). Furthermore, this method may be applied 

to an anisotropic optical waveguide whose permittivity tensor has only 

diagonal components, but not for nondiagonal components. On the other 

hand, method 2 (FEM using the three magnetic field components) was 

developed after method 1 and is suitable for analyzing arbitrary anisotropic 

optical waveguides. Various ways of suppressing or eliminating spurious 

solutions have been discovered for method 2. The method has recently been 

used as a solver for an optical waveguide analysis package and is 

establishing its position as a standard finite element method for vector wave 

analysis of optical waveguides [Okamoto; Koshiba, 1992]. 

The appearance of these spurious modes does not affect the calculation of 

the lowest propagating mode, since the lowest order mode usually 

corresponds to the first positive eigenvalue of the matrix equation. However, 

to compute higher order modes, it becomes more difficult and very 

cumbersome to distinguish between the spurious and the physical modes of 

the guide. In electromagnetic waveguide problems [Konrad; Mabaya et al.] 

spurious modes do not arise if the trial field precisely satisfies divergence-free 

condition (div B = 0). In the conventional H-field finite element formulation, the 

variational functional [4.24] is consistent with the two curl Maxwell's equations 

[4.11] and [4.12], but do not satisfy the V· B = o. 

In the full-vector formulation it has been found [Davies et al., 1982; Rahman 

and Davies, 1984b] that these spurious modes occur because this 

divergence-free condition (div B = 0) is neither implied nor forced. Rahman 

and Davies [Rahman and Davies, 1984c] have utilised the 'penalty function 

method' in order to eliminate these spurious solutions. Mathematically, a 

phYSical mode satisfies its eigenvector condition V.H = 0, which gives very 

easy identification of a solution as being either a physical or spurious solution 

by calculating the V.H for each solution over the waveguide cross section. The 
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solution with low values of V'.H is the real modes whilst those with high values 

are the spurious modes. 

In the penalty function method [Rahman and Davies, 1984c], an additional 

integral is added to the original functional [4.24] which satisfies div H = O. The 

variational formulation then becomes as: 

OJ' = ((\7XH)' .;-l.(\7x H)dO+( ~)('V. Hj' .(\7 'H) )ao 
fH*. ~.H dQ 

Where, a= dimensionless penalty coefficient. 

[4.57] 

A separate subroutine can be introduced in order to implement the addition of 

the penalty term in the numerator of equation [4.57]. The value of penalty 

coefficient, a can be estimated to be around 1/ &g, where &g is the dielectric 

constant of the core guide. Here, the divergence-free constraint is imposed in 

a least-squares sense, and larger the value of the penalty number the more 

heavily the constraint is imposed, giving a further reduction of the spurious 

modes from the spectrum. 

The penalty function method can be used more effectively, in conjunction with 

the infinite elements, resulting in the reduction of some unwanted field values 

along the boundaries by using appropriate decay parameters and 

considerably improves the quality of the field eigenvectors [Rahman and 

Davies, 1984c]. The advantage of using the penalty term is that it does not 

increase the matrix order of the eigenvalue problem, does not need additional 

storage and additional computational time is negligible. The penalty function 

method [Rahman and Davies, 1984c; Koshiba et al., 1984; 1985b; Young] is a 

useful way of imposing certain constraints on solution variables; and it has 

been used in structural engineering problems to impose specific boundary 

conditions [Bathe] in order to improve the quality of the field. 

The scalar approximation does not suffer from the spurious modes difficulty, 

since the two scalar functionals are positive definite and therefore all the 

eigenvalues are positive, each one corresponding to a physical mode of the 
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guide. The technique of working with scalars can reduce the amount of 

computation and eliminate spurious modes, but at the expense of accuracy. A 

number of alternative ways of eliminating spurious modes from vector 

approximation have been suggested. A formulation in terms of the transverse 

H-field, known as the Ht , has been advanced [Hayata et al., 1986a] which 

completely eliminates spurious modes. In this formulation, any artificial 

parameters such as the penalty coefficient are not included. 

4.11 Infinite Element Representation 

An infinite element is an element that indeed extends to infinity. The shape 

functions of such an element, substitutes the shape functions of the outer 

boundary of the orthodox elements and should decay exponentially in the 

direction, which the field extends to infinity. 

y 

Orthodox ---II. 
element 

Infinite 
element 

x 

Fig. 4.8: Two-fold symmetry of rectangular dielectric waveguide cross 

section discretised into orthodox and infinite elements. 

One common problem of the open-type optical waveguide is that finite field 

value exists in the region outside the guide and sometimes its decay extends 

to infinity in an exponential manner. The modelling of such structures, may 

cause problem for solutions near cut-off, where the field decays slowly and 

the region of significant field value can be arbitrary large. In the orthodox 

finite-element discretization, as shown in Fig. 4.8, the cross-section of the 

waveguide cannot be extended to infinity. 
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An artificial electric or magnetic wall boundary condition is the simplest 

approximation to this problem [Mabaya et a/.], but this either introduces a 

significant error or needs to consider a large active domain to minimize this 

perturbation error. Another technique [Ikeuchi et a/.] involves shifting the 

virtual boundary wall to satisfy a given criterion for the maximum field strength 

at that wall. Yeh et a/. [Yeh et a/., 1979] have considered an exponential 

decay outside the core by using some boundary elements. However, because 

of the mixture of coordinate systems, their method lacks continuity of field over 

the problem domain. 

An infinite element approach is developed by Rahman and Davies [Rahman 

and Davies, 1984b], which is found to be very useful when extending the 

domain of interest to infinity. In this approach, infinite elements are added 

along the outer boundary of the orthodox finite elements, as shown in Fig. 4.8, 

where for a typical rectangular dielectric waveguide problem, a quarter of the 

structure is discretized into orthodox and infinite elements, by assuming two 

fold symmetry. This method is quite simple to implement, and it does not 

increase the order of the matrices. 

4.12 Summary 

The finite element method based on the variational principle has been 

presented in this chapter, for the analysis of optical waveguiding problems. 

The history and the importance of the method are also described briefly. 

Various aspects, including different scalar and vector formulations, domain 

discretisation, natural boundary conditions, shape functions, element and 

global matrices have been discussed. Finally, the analysis of infinite elements 

was considered and also the important penalty function method was utilised to 

eliminate the spurious or non-physical solutions. 
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The Beam Propagation Method 

5.1 Introduction 

The beam propagation method (BPM) is one of the most commonly and 

widely used powerful methods or modelling tools for analysis and simulation 

of guided-wave propagation in inhomogeneous media to investigate linear and 

nonlinear lightwave propagation phenomena in longitudinally or axially varying 

waveguides, such as: S-shaped bent waveguides, tapered waveguides, 

curvilinear directional couplers, branching and combining waveguides 

[Okamoto]. The term BPM is used extensively in the optics literature. The 

BPM describes the evolution of the total field propagating along a waveguide 

and is particular useful for structures experiencing radiation waves such as 

leaky-mode and can show the progression of a field through a guide. 

In a case, where the guided-wave structure is not uniform, but its cross­

section depends on the axial distance, the modal solution approach, such as 

FEM, is no longer valid [Rahman et al., 2005b]. Therefore, it is very important 
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to develop powerful computer-aided modelling and simulation tools. 

Commercial simulation tools and software have become available and are 

popular in the market amongst researchers, engineers and manufacturers. 

These tools have to be versatile, accurate, fast, robust, easy-to-use with 

minimum computation and memory requirement as far as possible. 

Researchers have developed various methods. For the case in point, the BPM 

has been developed. BPM is a step-by-step method which allows tracking the 

optical field at any point as the passing of light propagates along the guiding 

structures where calculations are repeated for each step in a manner of step 

like calculation of the propagating field. 

Nowadays, BPM is considered as the most popularly used technique for 

modelling different three-dimensional photonic devices. Based on different 

numerical techniques, like fast Fourier transform (FFT), finite difference (FD), 

and finite element (FE), several scalar, semi-vectorial, and full-vectorial BPM 

approaches have been reported in the literature. The standard BPM is derived 

from the slowly varying envelope approximation (SVEA) [Chui and Lu]. In this 

thesis, for the study of leakage losses of PCF, FEM-based semi-vectorial BPM 

has been used, with the perfectly-matched layer (PML) boundary condition 

incorporated in order to effectively absorb the unwanted radiations. 

5.2 Historical Background of BPM 

Feit and Fleck [Feit and Fleck, 1978] first introduced the BPM in 1978, based 

on the Fast Fourier Transform (FFT) technique to study fibre optic devices. 

The BPM was first applied to a waveguide problem in 1980 [Feit and Fleck, 

1980]. The early versions of BPM were only able to show the propagation of 

plain waves in homogeneous media with a paraxial wave equation. 

Hermansson et al. [Hermansson et al.] analysed tapers in 1983 with a 

parabolic graded index transverse profile and various longitudinal profiles with 

the aid of the BPM. In 1984, Danielsen [Danielsen] succeeded in reducing the 

three-dimensional problem of calculating the field distribution in an integrated 

optic circuit to a two-dimensional problem, by applying the BPM. 
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One of the most critical problems with regard to guided waves occurs when 

the optical field spreads in half-space. For the first time, this problem was 

analysed by Fraunhofer, and Fresnel [Marz]. They tried to estimate the 

diffraction guided waves in their theory. Sommerfeld, in the early 1900's, 

presented his theory according to the diffraction in a metallic half-plane. 

Currently, the propagation of guided wave can be calculated numerically by 

BPM. The early application of this algorithm was in acoustic problems. 

FFT-BPM is not suitable for commonly used semiconductor optical 

waveguides. Since then, many scalar, sem-ivectorial, and full-vectorial BPM 

approaches have been reported based upon the finite deference method 

[Chung and Oagli; Liu and Li, 1992; Huang et al., 1992]. Recently, the 

versatility of the FEM has been utilized in developing BPM approaches based 

on the scalar and full-vectorial formulations [Hayata et al., 1990; Montanari et 

al.]. Although the scalar BPM approaches are numerically efficient as it solves 

only one field component, however, it cannot accurately model three­

dimensional waveguide with hybrid fields where polarization effect is clear and 

polarization coupling is possible. Hence, a truly vector BPM approach is 

needed to rigorously characterize three-dimensional photonic devices with 

arbitrary index variations in all directions. 

Recently, to simulate the propagation of optical waves through a z-dependent 

linear or nonlinear structure, the finite element based beam propagation 

method (FE-BPM) has been developed [Obayya et al., 2000a] using a full­

vectorial approach with a difference scheme along the axial directions 

[Rahman et al., 2005b]. 

5.3 Applications of BPM 

The BPM based on a full-vectorial FEM is used by many research groups 

[Tsuji and Koshiba; Obayya et al., 2000b]. Being fully-vectorial, this approach 

is used to characterise nonlinear optical devices [Obayya et al., 2000b] such 

as nonlinear directional couplers [Thylen et al.], to calculate polarization 

conversion along a periodically loaded semiconductor optical waveguides 
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[Obayya et a/., 2000c] and also to characterise compact bends [Rajarajan et 

a/., 2000; Baets and Lagasse]. Such an approach is particularly useful in the 

characterisation of tapered sections [Rahman et a/., 2003], Y- [Okamoto] and 

X- [Neyer et a/.] junctions, gratings [Yevick and Thylen, 1982] and fibre 

couplers [Kaczmarski et a/.; Lamouroux and Prade]. The method has also 

been utilized to accurately analyse, design, and optimize the performance of 

different three-dimensional photonic devices, such as leaky-mode waveguide 

[Obayya et a/., 2005]. 

5.4 Modelling Techniques of BPM 

Modelling techniques may be classified as semi-analytical or numerical in 

nature, such as the effective index method, the variational method, and the 

coupled mode analysis. These semi-analytical methods work well for uniform 

optical waveguides or with coupled waveguides carrying few modes. Non­

uniform structure is difficult to model accurately with such approaches and it 

becomes inevitable to use numerical methods [Sharma]. 

Modelling techniques can be vectorial, semi-vectorial or scalar in its 

formulation. In a dielectric waveguide, in which quasi-TE or quasi-TM modes 

are possible, the scalar approaches neglect the polarization effects, and the 

derivative of the relative permittivity with respect to the transverse directions 

are assumed to be negligible. In the semi-vectorial approach, the two 

transverse components are not coupled via the boundary through the 

derivative with respect to the transverse directions. Finally, in the vectorial 

approach, the transverse components are coupled due to the effect of the 

boundary and the full polarization effects are taken into consideration. 

In the scalar BPM method, Holmholtz equation is the basis to solve the 

problems with waveguides. However, another perspective to design in the 

structure of modern BPM algorithms, based on the paraxial apprOXimation, is 

considered. This method is called Vectorial FE-BPM Propagation Method. 

Since VBPM is used to solve the problems related to three-dimensional field, 

it requires high memory and lots of time computer to solve the problem [Marz]. 
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5.5 Numerical Techniques of BPM 

Various numerical techniques have been developed for modelling of optical 

waveguides, which treat the total field, including the guided and the radiation 

modes together. The BPM is classified according to the following algorithms: 

(i) Fast-Fourier transform beam propagation method (FFT-BPM) 

(ii) Finite difference beam propagation method (FD-BPM) 

(iii) Modal propagation based beam propagation method 

(iv) Finite element beam propagation method (FE-BPM) 

5.5.1 Fast-Fourier Transform Beam Propagation Method (FFT­

BPM) 

FFT -BPM was the first method developed for beam propagation through 

optical waveguiding structures and was simply called the beam propagation 

method. The basic idea of FFT -BPM is to represent the electromagnetic field 

by a superposition of plane wave propagating in homogeneous media. The 

wave propagation in homogeneous media is modelled as an integral of these 

plane waves in the spectral domain and the effect of inhomogeneity of the 

media is accounted for as a phase correction in the spatial domain at the each 

propagation step. 

The FFT is used to provide the link between the spatial and the spectral 

domains. Therefore, this method is sometimes called Split-Operator FFT -BPM 

and can be expressed mathematically as: 

IjI(X, y, z + ~ z) = PQPIjI(x, y, z) [5.1] 

Where P is the propagator and Q corrects the phase, ljI(x,y,z) and 

ljI(x, y, z + &) are field representation in two steps [Marz]. 

In FFT-BPM two concepts are considered: 

• The algorithm is used by structures with an arbitrary geometry in their 

cross-secti 0 n. 

• FFT -BPM has an analytical view not only to guided waves but also to 

the radiated waves. 
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5.5.1.1 Advantages of FFT ·BPM 

• FFT-BPM formulations are straightforward. 

• It applies to a structure with an arbitrary cross-section. 

• In FFT-BPM, as long as input field is given, it is capable of tracing the 

wave propagation in the given structure. In this analysis, both the 

guided and the radiation waves are included. 

5.5.1.2 Limitations of FFT ·BPM 

• The FFT-BPM only solves the simpler and less accurate scalar wave 

equations under paraxial approximation. Therefore, this method was 

only developed for the case of weakly guiding structures, neglecting the 

vectorial properties of the field. 

• The FFT-BPM cannot describe the vectorial properties such as the 

polarisation coupling and polarisation dependence of guided-wave 

devices as it can only trace the scalar wave propagation. 

• In FFT-BPM design method, refractive index difference in the 

transverse direction is considered very small. Therefore, it cannot be 

applied to structures with large index discontinuities which are a 

common feature in modern optoelectronic devices based on 

semiconductor materials. 

• The FFT -BPM is accurate only when the beam propagates in the 

direction with a small angle to the z-axis. This is due to the reason that 

a paraxial approximation has been made in the derivation. 

• Due to the inefficient discretisation, more demand of computational 

resources, and inaccurate description of interface boundary conditions 

between different dielectric media, the FFT -BPM is of limited use. 

5.5.2 Finite Difference Beam Propagation Method (FD-BPM) 

The beam propagation method that solves the paraxial form of the scalar 

wave equation in inhomogeneous medium using the finite difference method 

is called the finite-difference beam propagation method (FD-BPM). The early 

FFT-BPM was designed for analysis of structures with weakly guiding 

characteristics. In order to overcome the limitations of the conventional FFT-
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BPM, some efforts has been made to adapt BPM to treat strongly guided 

waveguides [Lagasse and Bates; Yevick and Glasner, 1989; Rolland et al.; 

and Splett et al.]. For instance, a split-step FD-BPM has been developed by 

Yevick and Hermanson to stimulate strongly guiding semiconductor-based rib 

waveguides [Yevick and Hermansson, 1989; 1990] and to solve the 

propagator by the finite difference method. 

In order to improve the efficiency and flexibility, a FD-BPM has been 

developed by Hedow and Shakir [Hendow and Shakir] to solve the paraxial 

wave equation. The original application of the FD-BPM has been limited to 

cylindrically symmetric structures. Chung and Dagli introduced the FD-BPM to 

the Cartesian coordinate system [Chung and Dagli]. 

5.5.2.1 Advantages of FD-BPM 

• FD-BPM formulations are straightforward. It is more accurate especially 

in modelling structures with large discontinuities in the refractive index. 

• The advantages of FD-BPM algorithms compared to FFT -BPM become 

apparent, when FD-BPM uses larger propagation step size. 

• Furthermore, in each step of propagation, compare to FFT-BPM the 

time used for calculation is reduced significantly in FD-BPM. 

• The possibility of integrating wide-angle propagation and fUll-vector 

algorithms [Hadley 1992a; AI Salamed and Owais] is an additional 

advantage of FD-BPM. 

• When computational window is reduced and the optical field reaches 

the computational boundaries, it is necessary to implement additional 

algorithms. Otherwise, the simUlation of the optical devices will not be 

correct, because the optical field will reflect at the boundaries and will 

re-enter the computational window. FD-BPM can solve this problem 

effectively, but is cumbersome when using FFT-BPM. 

5.5.2.2 Limitations of FD-BPM 

• For the discretisation of the waveguide cross section, the finite 

difference method is inefficient. Most of the finite difference schemes 
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rely on uniform grids which results in high computational effort, and for 

curved boundaries, they present very crude approximation. 

• The BPM algorithms based on FD is of limited use. This is due to the 

inefficient discretisation and inaccurate description of interface 

boundary conditions between different dielectric media. 

• For vectorial propagation algorithms based on the finite differences, 

some authors have noticed that if an arbitrary input field is used, some 

unphysical gain [Kriezis et al.] is observed during the propagation. 

5.5.3 Modal Propagation Based Beam Propagation Method 

The early FD-BPM was designed for analysis of wave propagation in optical 

devices, but it needs a large computational effort. In order to overcome the 

limitations of the conventional FD-BPM, some analytical approaches have 

been proposed to describe the wave propagation in optical devices. One of 

approaches is the Least Squares Boundary Residuals (LSBR) [Rahman and 

Davies, 1988; EI-Mikati and Davies]. The LSBR method has been used to 

study discontinuity parameters [Razaz and Davies; Jansen; Oraizi and Perini]. 

In LSBR method, the magnetic and electric field components are matched at 

the interface of a junction between two different sides. 

The LSBR method was introduced as an alternative to point-matching (and 

Galerkin) methods, satisfying the boundary conditions in the usual least-quare 

sense over the interface. The method is rigorously convergent, the error 

minimization being global rather than sampled, and has the flexibility of 

introducing an electric/magnetic-weighing factor. Other very similar 

approaches to LSBR have also been proposed [Reed et al.; Suchoski and 

Ramaswamy], which depend on the same principle of matching the transverse 

electric and magnetic field components using the conventional mode matching 

technique to treat problems of one and two-dimensional dielectric waveguide 

discontinuities. This technique can also be named Modal Propagation Method, 

since these approaches depend on expanding the field components in terms 

of the guided and/or radiation modes. 
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5.5.3.1 Advantages of Modal Propagation Based BPM 

• Since this method of calculation requires less time and memory, it is 

more computationally efficient compared to FD-BPM. 

• Another advantage is its capability to find the reflected rays [Hayata et 

al., 1990], not available in most of the current FD-BPM algorithms. 

5.5.3.2 Limitations of Modal Propagation Based BPM 

• Modal propagation method faces problems while calculating radiation 

modes. Accurate characterisation of optical devices using the modal 

propagation methods needs the determination of all guided and 

radiation modes. If the problem is one-dimensional, calculations for 

radiation modes can be obtained by numerical methods. However, it is 

time consuming and labour intensive. Now if the problem expands to 

more than one dimension, the calculation will be very complicated. 

5.5.4 Finite Element Beam Propagation Method (FE-BPM) 

Recent research efforts have been directed towards the development of BPM 

algorithm based upon the efficient finite element method (FE-BPM). Koch and 

Davies introduced the first version FE-BPM [Koch et al., 1989; 1991]. They 

used a variational method to find a solution to the scalar wave equation, using 

paraxial approximation. In this method, FEM is responsible for calculation in 

the transverse cross-section and the finite difference Crank Nicholson method 

is used for the longitudinal axis. Another version of FEM was presented by 

Hayata et al. [Hayata et al., 1990]. The scalar wave equation is calculated by 

Galerkin's procedure. Special boundary conditions are required in order to 

avoid unphysical reflections of the guided waves from the edges of 

computational domain. 

FE-BPM methods are not capable of determination polarisation characteristics 

accuracy. They also have problems in analysing and measuring the coupling 

property in strongly guided optical devices. FE-BPM is solved by paraxial 

Holmholtz equation [Marz]. It is believed that a full-vector FE-BPM approach is 

needed to accurately model 3-D photonic devices with fields of hybrid nature. 
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Recently, a unified FE-BPM has been reported [Tsuji and Koshiba] for both 

TE and TM waves propagating in strongly guiding longitudinally varying 

optical waveguides. Obayya et al. [Obayya et al., 2000b] has reported a full­

vectorial FE-BPM to characterise 3-D optical guided-wave devices. 

5.5.4.1 Advantages of FE-BPM 

• In some aspects, FE-BPM algorithm is superior to FD-BPM. For 

example, non-uniform discretisation ability to estimate curved boundary 

conditions accurately and uses them carefully. 

• It solves only the transverse components of the magnetic field; hence it 

minimizes the computational effort and the storage requirements. 

• The FEM combined with first-order Pade approximation is applied to 

the longitudinal direction in order to get an accurate wide-angle 

propagation algorithm; hence it is capable of tracing guided waves 

propagating off the propagation axis. 

5.6 Boundary Condition of BPM 

Since the computational domain in BPM calculations cannot have an infinite 

dimension, one of the most important parameters in implementing any BPM 

approach is the specification of the boundary condition. Boundary conditions 

must be chosen in such a way that the effect of the boundaries does not 

introduce errors in the propagation description of the optical field. 

In the conventional FFT-BPM, the Absorbing Boundary Condition (ABC) 

[Lagasse and Baets; Feit and Fleck, 1978, 1980] has often been used. The 

idea is to artificially place a lossy medium or special material at the edges of 

the computational domain to absorb the possible undesired reflections at the 

boundary. In this case, fields at the boundary have to be zero. The major 

disadvantage of ABC is that it is problem dependent. ABC requires a high 

memory for calculations in a computer. For a specific structure, many 

parameters of the ABC have to be chosen carefully, such as the thickness of 

the lossy region and the strength of the artificial loss. Another boundary 

condition, called Transparent Boundary Conditions (TBC) has been proposed 
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[Hadley, 1992b; 1991]. Contrary to ABC, in TBC the output waves pass a 

specific incident angle and it does not require a high memory to carry out 

calculations. TBC is more robust and problem independent than the 

conventional ABC. In TBC, the idea is to approximate the wave near the 

boundary of the computational domain as a plane wave which satisfies: 

o¢ = _ jk¢ 
op [5.2] 

Where, k is the transverse wave-vector, ¢ is the field near the boundary, and 

p is the distance in the direction normal to the boundary. 

However, for TBC, the plane wave approximation of the outgoing wave near 

the boundary is not sufficient to suppress large radiation. Moreover, when 

many field values inside the computational domain are involved in estimating 

k, some numerical instabilities has been observed [Vassallo and van der Keur, 

Vassallo and Collino]. 

5.6.1 The Perfectly Matched Layer (PML) Boundary Condition 

The Perfectly Matched Layer (PML) is the latest version of boundary 

conditions that have shown their high efficiency and has proved to be more 

robust compared to the ABC and TBC. An imaginary electrical layer enables 

the PML boundary condition to effectively absorb the unwanted radiation 

waves without reflection and to attenuate the output wave at different angles 

and frequencies [Marz]. By adjusting of the PML parameters so as to have a 

wave impedance of exactly the same as inside the computational domain, the 

PML can offer a reflection less boundary to the outgoing radiation whatever its 

strength or angle it hits the PML-computational domain interface. 

Berenger [Berenger] first introduced the concept of the PML as an alternative 

to the ABC or TBC, in order to synthesise an absorbing layer for the Finite 

Difference Time Domain (FOTD) method. The PML concept has been 

successfully applied in one-dimensional FD-BPM [Huang et al., 1996] and 

needs the splitting of the field components into two SUb-components. When 

this happens, it leads to non-Maxwell's equations, which is not the desired 
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form for the application of finite elements. Pekel and Mittra [Pekel and Mittra, 

1995a; 1995b] had introduced a new form of the PML, for treating free space 

scattering problems, which does not involve the field splitting, maintaining the 

desired form of the Maxwell's equation for the finite element application. 

Recently Obayya, Rahman and EI-Mikati [Obayya et a/., 2000a], incorporated 

the robust PML boundary condition into the finite element-based BPM 

formulations, which considers all the three field components. The main 

advantage of the present formulation is that the sparsity of the global matrices 

is retained. Therefore, a numerically efficient sparse matrix solver is used. 
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Fig. 5.1: Optical waveguide cross-section with different PML regions. 

Fig. 5.1 shows the optical waveguide cross-section with different PML regions, 

where x and yare the transverse directions, z is the direction of propagation, 

regions 01 and 02 are the PML regions normally faced with x and y directions, 

100 



~ -

Chapter 5 The beam propagation method 

respectively, regions 0 3 corresponds to the four corners of the PML, n 
corresponds to the computational domain region, W is the width or height of 

the PML, and Lx and Ly are the width and height of the computational domain 

in the x and y directions, respectively. 

Starting with new PML form, Maxwell's curl equations can be taken the form: 

aE 
VxH=&-+J at 

aH 
VxE =-j.1-at 

[5.3] 

[5.4] 

Where, E and H are the electric and magnetic field vectors, respectively. 

Assuming the time dependence to be exp UOJt) , where t is the time, OJ is the 

radian or angular frequency, and, j is the imaginary part, for convenience 

purposes. Thus the differential form of Maxwell's equations can be written as: 

[5.5] 

[5.6] 

Where, n is the refractive index, and V is the modified differential operator 

defined as: 

a a a 
V=xa -+ya -+z-

x ax Y ay az [5.7] 

Where, x, y, and z are the unit vectors In the x, y and z directions, 

respectively, and ax, ay and az are the parameters associated with the PML 

boundary conditions imposed at the edges of the computational window. 

Since the wave propagation is assumed to be along z direction, az will be set 

unity. On the other hand, ax and ay has to be set in such a way that the 

radiation waves can freely leave the computational window with almost no 

reflection by taking the following profile [Obayya et al., 2000a]: 

1 1 
at(t =xor y)=----=---

1- j (Je 2 1- J_(J_m_ 

OJ& on OJfLo 

[5.8] 

In this case, (Je and (J m are the electric and magnetic conductivities of the 

PML, respectively. The equation [5.8] shows that the PML satisfies the 
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impedance matching condition with an adjacent medium in the computational 

domain with refractive index n and wave impedance ~ fL, 2 • 

&on 

The values of the parameters ax and ay are defined in the different regions as: 

(i) region 0 (computational domain) : ax = 1 and ay = 1 

(ii) region 01 : ax = at and ay = 1 

(iii) region 02 : ax = 1 and ay = at 

(iv) region 03 : ax = at and ay = at 

In the PML regions, the electric conductivity profile can be assumed as: 

[5.9] 

Where, (Jmax is the maximum value of the electric conductivity, p is the 

distance inside the PML which is measured from the interface of the 

computational domain and the PML, and m is the power of the conductivity 

profile and will be taken as 2. For this conductivity profile, the theoretical 

reflection coefficient, R, at the interface between the PML and the 

computational domain is [Berenger]: 

R = exJ -2 O'm~ J(12J2 3p l l cn&o 0 W J 
[5.10] 

Where, c is the velocity of light in free space. Performing the integrating in 

equation [5.10], (Jmax can be shown as: 

(J = 3cn&o In(~J 
max 2d R 

[5.11 ] 

Where, R is the value of the theoretical reflection coefficient. 

In the case, when R is set to very small value, the maximum electric 

conductivity (Jmax) is calculated using the equation [5.11]. Therefore, the PML 

parameters ax and ay and the electric conductivity profile a(p) will be 

determined for the different PML areas. Such PML arrangements will force 

any non-physical radiation wave leave freely the computational domain 

whatever the angle and/or the strength it hits the boundary of the 

computational domain. 
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5.7 Summary 

The vectorial BPM combined with the powerful FEM has been presented in 

this chapter. The history and the application of the method are described 

briefly. Various aspects, including modelling technique, numerical technique, 

and boundary conditions have been discussed. The incorporation of the 

rigorous perfectly-matched layer (PML) boundary condition into the vectorial 

wave equations, as shown in Appendix 3, has been presented along with the 

implementation of divergence condition to eliminate the spurious or non­

physical solutions. The proposed propagation is based upon the H-field 

components. This chapter, together with the discussion of the finite element 

method presented in the previous chapter, forms the basis for the work in 

Chapter 9 for study the leakage losses of PCF. 
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Chapter 6 

Modal Solutions of Square lattice Photonic 
Crystal Fibre 

6.1 Introduction 

Modal solutions of square lattice planar photonic crystal fibre with square, 

rectangular, and circular core have been investigated and presented in detail 

using a rigorous H-field based full-vectorial finite element method. Finite 

element based approach is particularly advantageous and is a versatile 

approach, which can be used to represent any arbitrary-shaped PCF with 

arbitrary hole shapes, sizes, orientations, materials, placement, and arbitrary 

refractive index profiles. The effective indices, mode field profiles, spot-sizes, 

power confinements, modal hybridness, beat lengths and group velocity 

dispersions are shown for the fundamental and higher order modes of the 

quasi-TE and TM polarizations. Also, with the material dispersion included, 

the modal chromatic dispersion has been calculated and the possibility of 

tailoring the PCF structure so as to achieve zero dispersion at the desired 
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wavelength has been shown. The influence of the hole diameter, and 

operating wavelength, are investigated in detail. The effects of the 2-fold 

symmetry and full structure are also identified. The existing two-fold symmetry 

has been exploited with the electric and magnetic field boundary conditions at 

the symmetry planes in order to reduce the computational cost and also to 

achieve adequate mesh refinement in the core region. 

Planar optical waveguides are the key devices to construct integrated optical 

circuits and semiconductor lasers. Generally, rectangular waveguides consists 

of a square or rectangular core surrounded by a cladding with a lower 

refractive index than that of the core. Three-dimensional analysis is necessary 

to investigate the transmission characteristics of rectangular waveguides 

[Okamoto]. Therefore, this chapter first describes square lattice PCF with 

square core than with rectangular core. Several modal solutions are then 

presented to analyse the three-dimensional square, and rectangular core 

PCF. 

6.2 Modelling of PCF 

Sequential development stages of the project are as follows: 

• Square lattice PCF with square hole 

• Square lattice PCF with rectangular hole 

• Hexagonal lattice PCF with circular hole 

In this chapter, rigorous modal solutions of square lattice PCF with square, 

and rectangular hole are investigated and presented in detail. Initially, the 

modal properties of a square lattice PCF with an array of square holes are 

studied. Followed by, a PCF with rectangular holes, instead of the square 

holes is considered and then modal solutions are presented here. 

6.2.1 Why Rectangular Hole rather than Square Hole is better? 

PCF with square holes would have degenerate modes and such a waveguide 

would not be able to maintain a specific polarization state, due to any 
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structural non-uniformity or bends or stresses being present. However, when 

the hole shapes are not square, but rectangular in shape, the propagation 

constants (13) for the quasi-TE and TM modes would be different and 

waveguide would have a finite form birefringence. 

6.3 Structure of the PCF 

6.3.1 Square Lattice PCF with Square Air Holes 

A schematic diagram of the planar PCF structure with the square size 

air hole in a homogeneous silica background is shown in Fig. 6.1. This silica 

area is used with its higher index value compared to the lower equivalent 

index in the cladding, to guide the light as does the core of a typical optical 

waveguide. The cladding can be another material with low index, and in this 

case air is considered for numerical simulations. The reason for taking air 

holes in a homogeneous silica background is that photonic crystal fibres work 

in one of two ways. In "index-guided" crystal fibres, one or more holes are 

missing at the centre of the array of homogeneous silica background. In this 

figure, a finite air cladding region (5 ~m) is considered for numerical 

simulation, beyond which field did not extend. 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~i.r:: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ....................... , ............... , ... . 

Air hole 

_2"rn 
· ..................................... ) .... . · ........................................ , . · ......................................... . · ... " ......................... , ........... . · .......................................... . · ......................................... . 

Fig. 6.1: Structure of the square size air hole in a homogeneous silica 

background. 
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A schematic diagram of the square lattice PCF with missing core at the 

centre surrounded by air-holes in a homogeneous silica background is shown 

in Fig. 6.2. Missing hole at the centre can be used to guide the light as the 

core of a typical optical waveguide does and the outer air holes (known as 

cladding), having lower refractive index than that of core, act as an optical 

barriers. 

·:::::::::::::::::::::::::::::::::::::::~.i!.::::::::::::::::::::::::::::::::::::::::.": 

I 
. , , . .. " 

•.• I 

:::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::: ::::::::::::::::::::::\ 
.' ....... :.: ................................ : ............. ·····························1 

Fig. 6.2: Square lattice PCF with missing core at the centre surrounded 

by air-holes in a homogeneous silica background. 

6.3.2 Square Lattice PCF with Rectangular Air Holes 

Next, the square lattice PCF with rectangular air holes is designed in 

order to achieve a highly birefringent PCF. A typical planar photonic crystal 

waveguide with rectangular air holes in a regular periodic configuration is 

shown in Fig. 6.3. As mentioned earlier, rectangular air holes are arranged in 

a silica background. Similar to a typical PCF with circular air-holes, a missing 

hole at the centre can guide the light as the core of a typical optical waveguide 

and for integrated optical structures, holes of a square or rectangular shape 

would be easier to fabricate [Rahman et al., 2005a] in integrated optics 

platform. For a regular array of holes of equal size, the hole height and width 

are taken as Hand W, respectively with the separation between them being S 

in both the transverse directions. In this case the value of AH and Av as shown 
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in Fig. 6.3, are the horizontal and vertical pitches respectively. Infinite 

elements are also used to consider the rapidly decaying field outside the PCF 

structure. 

Air 

Holes DDDD 
DD~D 

DD IAV~ l I IH 
~ nDD D 

Missing Hole 

Silica 

S 

T u ,9sP ~ D 
.. 

Fig. 6.3: Schematic diagram of a integrated optic PCF with rectangular 

air-holes where central hole is missing. 

6.4 Results of Square Lattice PCF with Square Air 

Holes 

6.4.1 Effect of Mesh Refinement In Both Full Structure and 

Two-Fold Symmetry 

For a specific waveguide dimension, when W = H = 10 /lm, and 

S = 5 /lm, the effect of mesh refinement is studied. In this case, the silica and 

air indices are simply taken as 1.50 and 1.00, respectively, at the operating 

wavelength 1.55 /lm. For this numerical investigation, FEM representation of 

both the complete peF cross-section and its reduced one-quarter 

representation by exploiting two-fold symmetry, are undertaken. Variations of 

the effective indices with the transverse mesh refinement for both the cases 

for the first three modes are shown in Fig . 6.4. In this case, identical mesh 

refinements have been used in both the vertical and horizontal directions to 

avoid structural anisotropy. Here the mesh number identifies the total number 
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of mesh divisions (irregular mesh discretization is used here) in each of the 

transverse directions. 
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Fig. 6.4: variation of the effective indices with mesh. 

It can be observed in all the cases, as the mesh refinement is increased the 

effective index value increases and stabilizes to their final values. It can be 

noted that, when the full structure is modeled, the effective indices increases 

slowly as the mesh is increased. However, it can also be clearly observed that 

when, only the quarter of the structure is used, as shown by dashed lines, 

effective index solutions are much more accurate compared to the full 

structure, for the same number of mesh divisions used in both the cases. It 

can be observed that the errors for higher order modes are larger for the 

same order of mesh refinement. 

6.4.2 Effects of Operating Wavelength 

Variation of the effective indices of the fundamental and higher order 

quasi-TE modes with the operating wavelength, A, for a square-hole peF is 

shown in Fig. 6.5. In this case, the areas of the holes are kept constant at 4.0 

Jlm2, the width to height aspect ratio is 1:1 and the separation between two 

nearest air holes is 1 Jlm. Refractive index of silica (ng) at different operating 

wavelengths is calculated using Sellmeier's equation [Agrawal], shown in 

Appendix 1. From Fig. 6.5 it can be noticed that due to material dispersion 

[Agrawal], the refractive index of silica reduces monotonically with the 
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wavelength, which is shown as a solid line, labeled as ng. It can be observed 

that the effective indices of the higher order (HY21 ) modes are lower than that 

of the fundamental (HY11 ) modes. As mentioned earlier, a PCF with square 

holes would have degenerate modes and such a waveguide would not be 

able to maintain a specific polarization state, due to any structural non­

uniformity or bends or stresses being present. Therefore, the effective indices 

and modal field profiles for the quasi-TM (HX
mn) modes are very similar 

compared to the corresponding quasi-TE (HYmn) modes for a given wavelength 

which are not shown here. 
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Fig. 6.5: Variation of the effective indices with the operating 

wavelength for a square-hole PCF. 

6.4.3 Effect of Separation 

Next, the effect of the separation, S, between the holes is studied. 

Variations of the effective indices for the fundamental and higher order quasi­

TM (HX mn) modes with the waveguide dimensions are shown in Fig. 6.6. In 

general, the waveguide dimensions, width, W, height, H, and/or the separation 

between the holes, S, are varied to study the waveguide dispersion. In the first 

example, its overall cross-section profile is kept constant, with its height (H) 

and width (W) equal and the separation (S) between the holes is made one­

half of these values. The silica and air indices are taken as 1.50 and 1.00, 
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respectively at the operating wavelength of 1.55 jlm. It can be noted that as 

the waveguide dimension is increased, the effective index values for all the 

modes increase and reach the core index value asymptotically. However, as 

the waveguide dimension is reduced, the modal cutoff points reached rapidly 

for all the modes. These dispersion (waveguide) curves are similar to typical 

integrated optical waveguides. It can be observed that the structure is 

multimoded when its separation is greater than 1.25 jlm. 

The structure with square holes, as shown in Fig. 6.3, has a 90 degrees 

rotational symmetry and hence the TE and TM modes were degenerate. The 

effective indices for the quasi-TE (not shown here) modes are the same as 

those of the quasi-TM modes. However, in the numerical simUlation since a 

two-fold symmetry is used with the electric and the magnetic field boundary 

conditions at the symmetry planes, these degenerate modes can be easily 

separated and the numerical interference between the degenerate modes is 

avoided. 
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Fig. 6.6: Variation of the effective indices of quasi-TM modes with the 

separation between the air-holes for a square-hole PCF. 
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Modes in optical waveguides with two-dimensional confinement are not 

truly TE or TM, but hybrid in nature. For the quasi-TE (HYmn) modes, the Hy 

field component is dominant, however, the non-dominant field, Hx is not zero. 

Modal hybrid ness is an important parameter in the design and operation of 

many optical systems, particularly to identify polarization-dependent 

performance, the modal losses, and possible polarization conversion 

[Rahman et a/., 2005a]. The modal hybrid ness can be defined as the ratio of 

the non-dominant to the dominant field values. For the quasi-TE (HYmn) 

modes, the hybrid ness is defined as the ratio of the non-dominant Hx field 

over the dominant Hy field. The variations of the vector field components for 

the quasi-TE mode are shown in Fig. 6.7. It can be observed that as the 

waveguide dimension is reduced, the modal hybrid ness increases as the 

modes approach their modal cutoff. It can also be observed that as the 

waveguide dimension is reduced, the non-dominant Hx field is increased 

quickly and the dominant Hy field is decreased. As a consequence the modal 

hybridness, which is the HxfHy ratio, also increases with the waveguide 

dimension. 1.2 0.03 
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Fig. 6.7: Variation of the modal hybrid ness and vector field components 

with the separation between the air-holes. 

Variations of the modal hybridness with the waveguide dimension are 

shown in Fig. 6.8. For the quasi-TM (HX
mn) modes, the hybrid ness is defined 

as the ratio of the non-dominant Hy field over the dominant Hx field. It can be 
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observed that as the waveguide dimension is reduced, the modal hybrid ness 

increases as the modes approach their modal cutoff. It can also be noted that 

the modal hybrid ness for the HY11 and HX
11 modes are identical and shown by 

a solid line and the modal hybrid ness is larger for the higher order modes than 

for the fundamental modes. 
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Fig. 6.8: Variation of the modal hybridness with the separation 

between the air-holes. 

At 'A= 1.55 ~m, the dominant Hy field profile of the fundamental quasi­

TE (HY11) mode when separation between the holes, S= 1 ~m and S= 5 ~m 

are shown in Fig. 6.9a and Fig. 6.9b, respectively. In Fig. 6.9a, the height and 

width of the holes are kept fixed at 2 ~m, where as in Fig. 6.9b, the height and 

width of the holes are kept fixed at 1 0 ~m. Compared to Fig. 6.9b, as the 

separation and waveguide dimensions are lower in Fig. 6.9a, mode is well 

confined in the smaller core region. In Fig. 6.9a, the field extends in the silica 

bridge area (in-between the holes) in both x-axis and y-axis to nearly 2.2 Ilm 

from the centre. In this case, the field expands a bit in the air hole region. 

Where as, in Fig. 6.9b, the field extends in the silica bridge area in both x-axis 

and y-axis to nearly 10.0 Ilm from the centre. In this case, the field hardly 

extends inside the air hole. Since W, H, and S are increased, modal 

confinement is higher. In both figures, the mode is symmetrical and in this 

case, the presence of 90 degree rotational symmetry is clearly visible which 
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means fundamental quasi-TE (HY11) and quasi-TM (HX
11 ) mode will 

degenerate. Fundamental quasi-TM (HX
11 ) mode is not shown here. 
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Fig. 6.9: The dominant Hy field profile of the fundamental quasi-TE 

(HY11) mode at A= 1.55 J.1m, when separation between the holes (a) S= 

1 J.1m and (b) S= 5 J.1m. 

Variations of the effective indices with the separation are shown in Fig. 

6.10. In this case, the height and width of the holes are kept fixed at 10 J.1m, 

but only their separation, S, is varied. It can be noted that as the separation 

(S) is increased, the effective indices are increased. This arises because, with 

the fixed hole size (of air), an increase in the spacing between them (made 

from silica) increases the fill factor, and so the equivalent index of the cladding 

increases. However, as the equivalent index of the cladding increases, the 

core index value remains constant, the index contrast between the core and 

cladding is reduced progressively, as the separation between the holes is 

increased. It can be observed that the fundamental HX
11 mode reaches its 

cutoff value when the separation (S) is 22 J.1m, however for the HY21 mode, this 

cutoff condition is reached when the S = 17 J.1m. In a qualitative way, it can be 

argued that at the cutoff point the spacing between the holes are too large to 

confine the modes inside the core region. It should be noted that for the same 

waveguide dimensions, a higher index contrast is needed for the higher order 

modes to be guided and hence for a PCF, the higher order mode reach their 

cutoff values at the smaller values of the S. 
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Fig.6. 10: Variation of the effective indices with separation between the 

air-holes. 

The dominant Hy field profile and its 3-D view for the fundamental HY11 

mode are shown in Figs. 6.11 a and 6.11 b, respectively when separation 

between the two nearest holes is 5 J-lm at wavelength A= 1.55 J-lm. In this 

case, full structure of the field is considered. It can be clearly visible from 

these figures that core is created exactly at the centre of the structure. The 

optical field is well confined in the core region for a smaller value of S. 

Fig. 6.11b has one peak. 
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Fig. 6.11: (a) The dominant Hy field profile and (b) the 3-D view of the 

dominant Hy field profile of the fundamental quasi-TE (HY11) mode when 

separation between the holes, S= 5 J-lm at A= 1.55 J-lm. 
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The effect of higher separation (S = 12.0 ~m) is shown in Figs. 6.12a 

and 6.12b for the dominant Hy field profile and its 3-D view of the fundamental 

HY11 mode, respectively. Compared to Figs. 6.11 a and 6.11 b, it can be clearly 

noticed that the dimension of the dominant Hy field profile for the fundamental 

HY11 mode is well confined when S = 5.0 ~m. It can be observed that as the 

separation between the holes is increased, the optical fields are allowed to 

leak thorough these silica bridges. The encroachment of the field in the silica 

bridge, away from the core, is clearly visible in these figures. 
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Fig. 6.12: (a) The dominant Hy field profile and (b) the 3-D view of the 

dominant Hy field profile of the fundamental quasi-TE (HY11) mode when 

separation between the holes, S= 12 ~m at 'A= 1.55 ~m. 

Variation of the modal hybrid ness with the separation between the air­

holes for the fundamental quasi-TE (HY11) and quasi-TM (H
X
11) modes is 

shown in Fig. 6.13. In this case, the height and width of the holes are kept 

fixed at 1 0 ~m, but their separation, S, is varied. It can be noted that as the 

separation (S) is increased up to 6 ~m, modal hybrid ness (non-dominant 

field/dominant field) is also increased. When the separation (S) is increased 

from 6 ~m to 21 ~m, modal hybrid ness is decreased. It can also be noted that 

both fundamental quasi-TE (HY11) and quasi-TM ((H
X
11) modes reach their 

cutoff value when S= 21 ~m. Because of structural symmetry, as shown in 

Fig. 6.3, fundamental quasi-TE (HY11) and quasi-TM (HX11) mode degenerates. 
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Therefore, fundamental quasi-TE (HY11) and quasi-TM «HX
11 ) modes show 

similar characteristics. 
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Fig. 6.13: Variation of the modal hybrid ness with the separation 

between the air-holes 

6.5 Results of Square Lattice PCF with Rectangular Air 

Holes 

6.5.1 Effects of Operating Wavelength 

Next, the effect of square lattice PCF with rectangular air holes is 

studied. The variations of the effective indices with the operating wavelength, 

A, are shown in Fig. 6.14. In this case, the height, width, and the separation of 

the holes are kept fixed at 1 IJm, 4 IJm, and 1 IJm, respectively. Due to 

material dispersion [Agrawal], the refractive index of silica reduces 

monotonically with the wavelength, which is shown a dashed line, labeled as 

ng. The variations of the fundamental and higher order quasi-TE and TM 

modes are also shown in Fig. 6.14. It can be observed that the effective 

indices of the higher order modes are lower than that of the fundamental 

modes. It can also be noted that the effective indices for the quasi-TM (HX mn) 
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modes are slightly lower than the corresponding quasi-TE (HYmn) modes for a 

given wavelength, as the width is larger than its height. 
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Fig. 6.14: Variation of the effective indices with the wavelength for the 

rectangular air-holes PCF. 

The variations of the spot-size with the wavelength, for the fundamental 

and higher-order quasi-TM modes, are shown in Fig. 6.15. In this case, the 

spot-size is defined as the area where the field intensity is greater than 1/eth of 

the maximum field intensity (power intensity is 1/e2
). It can be observed that 

as the operating wavelength is increased, the waveguide dimensions are 

reduced compared to the operating wavelength and the spot-size also 

increases since mode approaches its cutoff condition and so expands. It can 

be observed that the spot-size for the higher order modes, at a given 

wavelength, are larger than that of the fundamental mode, as they are less 

confined as the mode order is incerased. 
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Fig. 6.15: Variation of the spot-size with the operating wavelength. 

The variations of the power confinements (expressed as a percentage) 

in the silica region with the wavelength for the quasi-TM modes are shown in 

Fig. 6.16. It can be noted that as the wavelength is increased and the modes 

are expanded, more optical energy extends into the air-hole regions and as a 

consequence the modal confinement in silica is reduced. It can be observed 

that the power confinement for the higher order modes is smaller, compared 

to that of the fundamental mode as they are less confined. 
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Fig. 6.16: Variation of the power confinement with the operating 

wavelength. 
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The variations of the modal hybrid ness with the wavelength are shown 

in Fig. 6.17 for the fundamental and higher order quasi-TE and TM modes. It 

can be noted that the modal hybrid ness increases as the operating 

wavelength is increased, since in this case the modal confinement is reduced 

and the modal field is more affected by the higher field strength at the 

core/cladding interfaces. It can be seen that the modal hybrid ness of the 

quasi-TM modes is higher than that of the quasi-TE modes. It can also be 

observed that the modal hybrid ness of the higher order modes are larger, as 

these modes are more extended in the air-hole regions. 
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Fig. 6.17: Variation of the modal hybrid ness with the wavelengths. 

The variation of the beat length with the operating wavelength is shown 

in Fig. 6.18. In this case the beat length, La is defined as: 

7r 
L----

B -\fiy - fix \ 
[6.1 ] 

Where, ~y and ~x are the propagation constants of the corresponding quasi-TE 

and TM modes, respectively. It should be noted that as the operating 

wavelength increases, the effective indices (ne) for both the TE and TM modes 

reduce but ~ne increases, where ~ne is the difference between their effective 

indices. It can be observed that with increasing operating wavelength, the 
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beat length is reduced. This is due to the reason that beat length is inversely 

proportionate to the ~ne. 
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Fig. 6.18: Variation of the beat length with the operating wavelength. 

6.6 Comparison Results of Square and Rectangular 

Air Holes 

The variations of the effective indices with the operating wavelength for 

both square and rectangular air-holes PCF are shown in Fig. 6.19. As 

mentioned earlier, due to material dispersion [Agrawal], the refractive index of 

silica reduces monotonically with the wavelength, which is shown as dashed 

line, labeled as ng. The variations of the fundamental and higher order quasi­

TE modes are shown in Fig. 6.19. In this case, area of the air holes were 

same 4 lJm2 and separation between the air holes fixed at 1 lJm. It can be 

observed that the effective indices of the higher order modes are lower than 

that of the fundamental modes for both square and rectangular air-holes PCF. 

It can also be noted that the effective indices of the quasi-TE (HY11) mode for 

rectangular air-holes PCF are slightly lower than the corresponding quasi-TE 

(HY11 ) modes square air-holes PCF for a given wavelength, as in rectangular 

air-holes the width is larger than its height. 
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Fig. 6.19: Variation of the effective indices with the wavelength for the 

square and rectangular air-holes PCF. 

The group velocity dispersion (GVO) is one of the most important 

modal properties of an optical waveguide and this parameter can be defined 

as: 

[6.2] 

Where, ne is the effective index of a given mode, c is the speed of light in a 

vacuum, A. is operating wavelength [Rahman et a/., 2005b]. 

Variations of the GVO with the wavelength for a square hole and a 

rectangular hole, but both with 4 ~m2 hole areas, are shown in Fig. 6.20 for 

the dominant HY11 mode. It can be noted that the variations of the GVO with 

the wavelength are almost similar for the both cases, since they had exactly 

the same cross-sectional areas and the slight difference observed is probably 

due to their shapes, which are different. It can be further seen that for both 

cases, GOV is positive over the wavelength range 0.95 and 1.5 ~m, with a 

maximum value of 120 ps/nm.km at A = 1.25 ~m. 
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Fig. 6.20: Variation of the GVD with the wavelength for square-hole 

and rectangular-hole PCFs. 

6.7 Summary 

In this chapter, a rigorous analysis of photonic crystal fibre is presented, to 

understand the basic properties of planar photonic crystal fibres. Important 

design parameters, such as the effective indices, the modal field profile, the 

spot-sizes, the power confinement, the modal hybridness, beat length and the 

GVD are shown for planar photonic crystal fibre with square, and rectangular 

air holes in a square lattice, by using rigorous full-vectorial finite element 

based approach. The variation of the GVD, an important optical parameter, 

shows the effect of the hole dimension and it may be possible to design a 

planar PCF with a specific GVD, or other optical properties, by adjusting 

different fabrication parameters. 

In the following chapter, the modal properties of a hexagonal lattice PCF with 

circular hole are studied. 
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Chapter 7 

Characterization of Hexagonal lattice PCF 

7.1 Introduction 

Modal solutions of photonic crystal fibre (peF) with symmetrical and 

asymmetrical circular air holes in a hexagonal matrix are presented by using a 

rigorous full-vectorial finite element-based approach, to understand the basic 

properties of photonic crystal fibres. The effective indices, mode field profiles, 

spot-sizes, modal hybridness, power confinements, and group velocity 

dispersion values have been determined and are shown and discussed. 

Moreover, the variations of the modal fields (Hy) in the normalized x direction 

are also obtained and reported in this chapter. 

This research simulated a realistic photonic crystal fibre characterized by a 

hexagonal distriburion of air holes with a central defect. The hole diameter (d), 

the centre-to-centre distance between two nearest air-holes or pitch (A), and 

the wavelength (A) of light are free parameters that have changed as required. 
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In this case, the available two-fold symmetry has been exploited and only a 

quarter of the structure is shown. In this chapter, more than 28000 first order 

irregular size triangular elements have been used to represent only one-fourth 

of the PCF cross-section and a typical computational time on a 2 GHz PC is 

less than one minute. 

7.2 Modelling of Hexagonal Lattice PCF with Circular 

Air Holes 

Hexagonal-lattice photonic crystal fibre is designed first with symmetry air­

holes then with asymmetry air-holes in order to get highly birefringence PCF. 

7.2.1 Symmetry Air Holes 

A typical PCF structure with holes in a hexagonal honeycomb 

configuration is shown in Fig. 7.1. For a regular array of holes of equal size, 

the hole diameter is taken as d /-lm with A, as the pitch length. A missing hole 

at the centre, with its higher index value compared to the lower equivalent 

index in the cladding region, can guide the light as does the core of a typical 

optical waveguide. 
Missing hole 

Fig. 7.1: Schematic diagram of a PCF with hexagonal array of air-holes 

where the middle hole is missing. 

The distance between the two nearest holes from their centres is 

shown in Fig. 7.2. The hexagon (all sides being the same length) has taken 
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out from hexagonal honeycomb, as shown in Fig. 7.1, to illustrate the distance 

between the air-holes from their centre. In this case, the coordinates of the 

centre is 0, O. First air hole on the right, with its x and y coordinates are A, O. 
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Fig. 7.2: Shows the distance between the air-holes from their centre. 

7.2.1.1 Representation of Hole by Triangles 

In Fig. 7.3, it is shown that a circular hole is represented by a number of 

triangles to form a circle. For a smaller number of mesh used, it is clear that 

the rectangular triangle is not adequately representing a circle. 

Fig. 7.3: Representation of circular hole by number of triangles. 

However, when more triangles are used to represent the circle, the 

result improves as shown in Fig. 7.4. The representation of the circle is still 

approximate, however if more fine mesh size is used than the representation 

would get better. In the computer program, totalling in the x and y direction 

have been used the fine mesh of the order 120 x 120. 
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Fig. 7.4: Representation of holes by rectangular blocks (each with two 

triangles) using a very fine mesh. 

7.2.2 Asymmetry Air Holes 

The two-fold symmetry of the whole PCF structure, with its 

corresponding distances on both x and y directions, is shown in Fig. 7.5. In 

this case, all the air-holes have diameter d1, but only air-hole numbered 4 has 

diameter d2. 
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Fig. 7.5: Illustrates the two-fold symmetry of the structure of the 

waveguide and its corresponding distances on the x and y axis. 

The difference in the hole diameter of this type of PCF have been reported 

[Saitoh and Koshiba, 2003b] to yield higher birefringence in these 

waveguides. Consequently, a similar structure is investigated later in this 
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project. The following x and y coordinates are introduced in the computer 

code to produce a hexagonal waveguide structure: 

xo= 0, yo= ° 
3A AJ3 

xs= 2' ys= -2-
5A AJ3 

X6= 2' y6= -2-

xs= 0, ys= AJ3 Xg= A, yg= AJ3 X10= 2A, Y10= AJ3 

A 3.\J3 
X12= - y12= --

2' 2 
3.\ 3.\f3 

X13=- y13=--
2 ' 2 

5A 3Af3 
X14= - Y14=--

2 ' 2 

7A 3Af3 
X15= 2' y15= 2 

7.3 Numerical Results of Identical Hole PCF 

7.3.1 Results of a PCF when d/A is Varying 

Initially, the effect of the hole diameter, d, on the modal properties is 

investigated and the variations of the effective index and the spot-size for the 

fundamental quasi-TE (HY11) mode with the normalized d/A dimension are 

shown in Fig. 7.6. Here the pitch length, A, has been kept fixed at 2.2 ~m. 
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Fig. 7.6: The variation of the effective index and spot-size with the 

normalized hole diameter d/A. 
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In Fig. 7.6, the refractive index of the silica is taken as 1.46232 at the 

operating wavelength of 0.5 Ilm. With the pitch, A, fixed at 2.2 Ilm, as the hole 

diameter, d, is increased the equivalent index of the air-hole cladding region is 

reduced, which increases the index contrast between the effective cladding 

and the homogeneous silica core. Although the lowered cladding index also 

reduces the modal effective indices, the increased index difference makes the 

mode better confined. In this figure, it can also be observed that as the hole 

diameter is increased, the spot-size (cr) is reduced. This arises because the 

enlargement of the holes restricts the escape of the modal field out of the core 

area. 

The dominant Hy field profile of the fundamental quasi-TE (HY11) mode 

for values of d/A = 0.3 and 0.7 at the operating wavelength of 0.5 Ilm are 

shown in Figs. 7.7a and 7.7b, respectively. In Fig. 7.7a, it can be clearly seen 

that for lower values of the air-hole diameter, the field extends in the silica 

bridge area (in-between the holes). In this case, the presence of 60 degrees 

rotational symmetry is clearly visible. On the other hand, for the larger air­

holes, as shown in Fig. 7.7b, the field is more confined in the core, as it is 

restricted from the low-index air regions. 
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Fig. 7.7: The dominant Hy field profile of the fundamental quasi-TE 

mode for (a) d/A = 0.3 and (b) d/A =0.7. 
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Very close observation of Fig. 7.7 reveals that the field expansion in the 

vertical (y) direction is larger than that in the horizontal (x) direction, which 

indicates that the 90 degrees rotational symmetry does not exist. The effect of 

the hole diameter on the spot-size is clearly visible, and its variation has been 

shown in Fig. 7.6. 

7.3.2 Results of a PCF when Wavelength is Varying 

7.3.2.1 Results of a PCF when d/A= 0.50 

The effect of mesh refinement is shown in Fig. 7.8. In this figure, the 

variation of the effective indices (ne) for 120*120 and 80*80 meshes of the 

fundamental quasi-TE (HY11) mode with the operating wavelength are shown 

by a solid line and a dashed line, respectively. It can be noted that the 

effective index (ne) for both 120*120 (28800 elements) and 80*80 (12800 

elements) meshes reduce with the wavelength as shown in Fig. 7.8, and then 

approaches the modal cutoff value. It can also be noted that the effective 

index of 80*80 mesh is lower (with the operating wavelength) than that of the 

effective index of 120*120 mesh, which yield slightly more accurate results. 

That means 120*120 mesh gives better modal solution results compared to 

80*80 mesh. However, results are reasonably stable with mesh refinements. 

For 120*120 and 80*80 mesh, a typical computational time on a 2 GHz PC is 

less than one minute and around 30 seconds, respectively. 
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with the wavelength for 120*120 and 80*80 meshes. 
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Next, a PCF with identical holes with a pitch, A = 2.2 ~m and identical 

hole diameter 1.1 ~m yielding d/A ratio of 0.50 has been investigated. The 

variation of the silica index (ng) and the effective index (ne) of the fundamental 

quasi-TE (HY11) and the second-order HY21 modes with the operating 

wavelength are shown in Fig. 7.9 by a solid line, a dashed line, and a dashed­

dotted line, respectively. It can be noted that the silica index (ng), as shown by 

a solid line, reduces monotonically with the wavelength due to material 

dispersion [Agrawal], as mentioned earlier. It can also be noted that the 

effective index (ne) also reduces with the wavelength, which is due to both the 

material and waveguide dispersions and if the rate is larger then it approaches 

the modal cutoff value . 
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Fig. 1.9: Variation of the effective indices of the fundamental and higher 

order modes with the wavelength for a circular air-hole PCF. 

The dominant Hy and the non-dominant Hx field profile for the 

fundamental quasi-TE (HY11) modes are shown in Figs. 7.10a and 7.10b, 

respectively, for operating wavelength of 0.5 ~m and for d/A = 0.5. It can be 

seen from Fig. 7.1 Oa that the field expands in both x and y directions, but 

slightly more in y direction (around 2.3 Jlm) than that of x direction (around 1.9 

Jlm). The field profile in Fig. 7.1 Ob is clearly shown to be lower in the core 

area. It has two peaks, and they are of opposite sign. 
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Fig. 7.10: (a) The dominant Hy and (b) non-dominant Hx field profiles of 

the fundamental quasi-TE mode at operating wavelength, 'A= 0.50 )lm. 

Next, the effect of operating wavelength is studied. The dominant Hy 

field profile for the fundamental HY11 mode is shown for operating wavelengths 

of 0.5 )lm and 1.55 )lm, in Figs. 7.11 a and 7.11 b, respectively for d/A = 0.5. 
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Fig. 7.11: The dominant Hy field profiles of the fundamental quasi-TE 
mode at operating wavelength of (a) 'A= 0.5 )lm and (b) 'A=1.55)lm. 

It can be seen in Fig. 7.11 a, that at 'A = 0.5 )lm for d/A = 0.5, the field expands 

more than that for d/A = 0.7 as shown earlier in Fig. 7.7b but less than that for 

d/A = 0.3 as shown in Fig. 7.7a. However, it can be observed that for a larger 

operating wavelength (in this case 'A = 1.55 )lm), the modal field profile 
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extends further into the air hole cladding region as the guide becomes more 

weakly confined. In this case, the field expands in both x and y directions 

more than that of at "A = 0.50 ~m as shown in Fig. 7.11 a. It can also be 

observed that in both Fig. 7.10a and Fig. 7.11 a for equal operating 

wavelength ("A = 0.5 ~m), the modal field profile extends in both x and y 

directions similarly into the air-hole cladding region. In both cases, modal field 

is more confined. 

The variation of the spot-size with the wavelength, for the fundamental 

quasi-TE (HY11 ) mode, is shown in Fig. 7.12 when d/A = 0.50. In this case, it 

can be observed that as the operating wavelength increases, the waveguide 

dimensions reduce compared to the operating wavelength and the spot-size 

also increases since the mode approaches its cutoff condition. 
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Fig. 7.12: Variation of the spot-size with the operating wavelength 

when d/A = 0.50. 

The modal hybrid ness has been defined as the ratio of the non­

dominant to the dominant field values. For the quasi-TE (HYmn) modes, the 

hybrid ness is the ratio of the non-dominant Hx field to the dominant Hy field. 

The variation of the field magnitude and modal hybridness with the 

wavelength of the fundamental quasi-TE mode is shown in Fig. 7.13, when 

d/A = 0.50. From this figure, it can be observed that as the wavelength 
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increases, the dominant Hy field reduces slightly (as the mode expands) but 

the non-dominant Hx field increases. As a consequence the modal hybrid ness, 

which is the HxfHy ratio, also increases with the operating wavelength. This 

occurs because in this case, as the modal confinement is reduced, the modal 

field is affected by the higher field strength at the air/silica interfaces. 
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Fig. 7.13: The variation of the field magnitude and modal hybridness 

with the operating wavelength for d/A = 0.50. 

As the mode expands, modal field encounters more onto the air-hole 

regions and the power leaking into the air-hole areas increases. This has 

significant effect of the modal leakage properties and also in the design of 

evanescent sensors, where modal properties can be influenced by introducing 

the sensing medium in these air-hole regions. The variation of the optical 

power in the silica region, Ps , with the operating wavelength is shown in 

Fig. 7.14 for the quasi-TE (HY11) mode when d/A = 0.50. It can be clearly 

observed that as the operating wavelength increases, the modal field 

expands, the spot-size increases, so the power in the air-holes increases and 

that in the silica region decreases. It should be noted that for the design of an 

evanescent sensor, the operating wavelength would be an important 

parameter for design optimization. 
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Fig. 7.14: The variation of the power confinement factor with the 

operating wavelength when d/A = 0.50. 

7.3.2.2 Comparison Results of PCF when d/A= 0.50 and d/A= 0.30 

The variation of the silica index and the effective index for the 

fundamental quasi-TE modes with the operating wavelengths are shown in 

Fig. 7.15. As mentioned earlier, due to the material dispersion [Agrawal], the 

refractive index of silica reduces monotonically with the wavelength, which is 

shown in this figure by a solid line and labeled as ng . In this case the pitch, A, 

is taken as 2.2 J.lm, with the diameter of the equal-size air holes either 0.66 Ilm 

or 1.1 J.lm, yielding a normalized d/A ratio of 0.30 or 0.50, respectively. The 

variation of the effective index (ne) of the fundamental quasi-TE (HY11) mode 

for d/A equal to 0.30 and 0.50 is shown by a dotted line and a dashed line, 

respectively. It can be noted that the reduction of the effective index is more 

rapid (with the operating wavelength) than that of the material index of silica, 

ng, due to the additional modal dispersion besides the material dispersion 

(already shown by a solid line) [Rahman et a/., 2006b]. 

It can also be noted that the effective index also reduces with the wavelength, 

and the rate is larger and then approaches the modal cutoff value. It can be 

noted that when the hole diameters are larger, the effective index value is 
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lower, as in this case the equivalent cladding index is also lower with low 

silica/air fill factor due to the presence of larger size air holes. 
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Fig. 7.15: Variation of the silica index and the effective indices with the 

wavelength for d/A = 0.50 and 0.30. 

As illustrated in Fig. 7.16 the variation of the modal hybrid ness (ratio of 

HX and HY) with wavelength, it can be observed that as the wavelength 

increases, modal hybrid ness also increases for both d/A= 0.30 and d/A= 0.50. 

As index contrast is higher for d/A= 0.50, hybrid ness is slightly higher than 

that of for d/A= 0.30. From Fig. 7.13 (for d/A= 0.50) in can be noticed that the 

value of HY for dominant field decreases and the value of the HX
, which is a 

non-dominant field increases as the operating wavelength increases. 

However, at the same time it is also noticeable that the difference in the HY 

and HX decreases as the wavelength increases. As a results the modal 

hybrid ness, which is Hx/Hy ratio, increases with the operating wavelength. For 

lower A, hybrid ness for d/A= 0.30 is larger and for higher A, hybrid ness for 

d/A= 0.50 is higher. For d/A= 0.50, hybrid ness is expected to be higher as 

index contrast is higher. However, for a given A, modal confinement is also 

higher due to large index contrast. So, overall hybrid ness is higher for d/A= 

0.50, when approaches modal cutoff. 
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Similar study of the quasi-TM, HX
11 mode was also carried out, but not shown 

here. 
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Fig. 7.16: The variation of the hybrid ness with the operating 

wavelength for HY11 mode when d/A= 0.30 and d/A= 0.50. 

The variations of the spot-size with the wavelength, for the fundamental 

quasi-TE mode, for d/A = 0.30 and 0.50 are shown by a dashed line and a 

solid line, respectively, in Fig. 7.17. It can be observed that as the operating 

wavelength increases, the waveguide dimensions reduce compared to the 

operating wavelength and the spot-size also increases since the mode 

approaches its cutoff condition, in a similar way to what was observed 

experimentally by Baggett et a/. [Baggett et a/.]. It can also be observed that 

for a peF with a larger d/A value, the resulting spot-size is smaller as bigger 

air-holes restrict the expansion of the modal field. 
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7.3.3 Results of a PCF when 1\ is Varying 

Earlier, the variations of the optical parameters with the operating 

wavelength and normalized hole diameter were shown only for a fixed pitch 

length, 1\= 2.2 IJm. The pitch length, 1\, the operating wavelength, A., and the 

normalized hole diameter dll\, all play key roles in the modal properties and 

additionally the asymmetry d211\ for the birefringence properties. So, next the 

effect of the crystal period, 1\, is studied. For a fixed operating wavelength, the 

pitch length, 1\, can be used as the key controlling parameter. 

The variation of the effective indices for the quasi-TE modes with the 

period, 1\, are shown in Fig. 7.18, when the operating wavelength is fixed at 

A. =1.55 IJm. The effective index values for dll\= 0.50, 0.70 and 0.90 IJm are 

shown in this figure by solid, dashed and dashed-dotted lines, respectively. It 

can be observed that the effective indices reduce as the period is reduced and 

the fundamental HY 11 modes reach it cutoff condition for each case. It can also 
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be observed that the fundamental HY 11 mode reaches it cutoff condition early 

when d//\= 0.50, compared to d//\ = 0.70 and 0.90. It should also be noted 

that for higher d//\ values, the effective index values are smaller due to their 

lower equivalent cladding index values and it can support a mode for a lower 

pitch length values due to increased index contrast. 
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Fig. 7.18: The variation of the effective indices with the pitch when d//\ 

= 0.50, 0.70, and 0.90. 

The variations of the effective indices and spot-sizes of the 

fundamental quasi-TE mode with the pitch length, /\, for different normalised 

hole diameters d//\= 0.50 and 0.90 are shown in Fig. 7.19 by a solid line and 

dashed-dotted line, respectively when the operating wavelength is 1.55 ~m. In 

this case, when the waveguide dimension is reduced compared to the 

wavelength, the modal field is extended further into the cladding region. In 

both the cases, the modal effective indices reduce monotonically as the pitch 

length, /\, is reduced. It can be observed that the effective index values are 

lower for PCFs with larger d//\ values, since in these cases the equivalent 

cladding indices were also lower. It should also be noted that, since for a 

larger d//\ value the index contrast is higher, the cutoff value of the pitch 

length, /\, is also smaller, as is shown here. 
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Fig. 7.19: The variation of the effective index and spot-size with the 

pitch when d/A = 0.50 and d/A = 0.90. 

It can also be seen as the pitch length is reduced, initially the spot-size 

reduces and reaches a minimum value but subsequently increases sharply as 

the modes approach their cutoff conditions. This is due to the reason that as 

the pitch length, A, is decreased, the waveguide dimension is reduced 

compared to the operating wavelength, the mode approaches its cutoff 

condition, the modal field expands and as a consequence the spot-size also 

increases, in a way similar to what was observed experimentally by Baggett et 

al. [Baggett et a/.]. It should be noted that with a larger d/A value, the hole 

diameters are large, which restricts the mode in a narrower silica region and 

so the spot-size is smaller. For a higher d/A value, the location of its smallest 

spot-size is also be lower. The minimum spot-size value of 3.42 jJm2 can be 

achieved for d/A value 0.5, when the A = 1.14 jJm at the operating wavelength 

of 1.55 J.,Jm. On the other hand, if the d/A value is increased to 0.90, the 

minimum spot-size could be as low as 1.20 J.,Jm2 at A = 0.90 jJm, one of the 

lowest reported so far. It should be noted that by appropriate design 

combinations of the d/A and A values spot-size can be reduced below 1 jJm2
. 

For many nonlinear applications, the reduction of the spot-size is a key issue, 

where an example of this is the usage of sub-micron guides in 

supercontinuum generation [Leon-Saval et al.; Foster and Gaeta]. It can be 
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noted that for a larger dll\. value, the cutoff condition approaches at a lower 

value of 1\., but more rapidly due to the larger index contrast between the silica 

core and the effective cladding. The higher air hole size restricts the optical 

field into a smaller core area. 

Variations of the modal hybrid ness with the pitch length, 1\, for the 

fundamental HY11 mode are shown in Fig. 7.20 for dll\. = 0.4, 0.5 and 0.6, by 

dashed-dotted, dashed and solid lines, respectively. The modal hybrid ness 

increases as I\. is reduced and reaches a maximum value when the spot-size 

is near to its minimum value. After reaching their peak values these values are 

reduced as the modes approaches their modal cutoff. For a higher dll\. value, 

the location of its smallest spot-size would also be lower. It can also be noted 

that for a higher dll\. value, the maximum hybrid ness value is also higher due 

to the associated higher index contrast in this case. It was also observed that 

for the quasi-TM modes, the patterns of the hybrid ness variations were similar 

but are not shown here. 
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Fig, 7.20: Variations of the modal hybrid ness with the pitch length, 1\ 

when dll\. = 0.40, dll\. = 0.50, and dll\. = 0.60. 

Earlier two-dimensional contour plots of the dominant field were shown 

in Figs. 7.7 a and 7.7 b. However, as the optical mode approaches cutoff, the 

field expands into the air-hole regions and to illustrate their evolutions, their 

variation along the x-axis is shown in Fig. 7.21. The variation of the dominant 
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HY field for the HY11 (quasi-TE) mode along the normalized (X//\) direction for /\ 

= 2.2 IJm, 1.1 IJm and 0.90 IJm are shown by dashed, solid and dashed-dotted 

line, respectively. In this case, since the horizontal distance is normalized 

(x//\) , the locations of the air-holes for all the /\ values appear at the same 

position. In these cases, the normalised hole diameter is kept constant at d//\ 

= 0.5 and the operating wavelength at 1.55 IJm. In this normalized field, the 

maximum magnitude of one and three rings were considered. It can be 

observed that the field decays away from the PCF core and reduces 

substantially in the air hole region and increases locally beyond the air holes. 

It can also be noticed that the dashed line reduces smoothly compared to 

solid and dotted line. When /\= 0.90 IJm, 2nd and 3rd minima are clearly visible, 

as mode was more weakly confined and the mode being close to its cutoff, in 

this case the field magnitude in the cladding region is significantly large. 

Although, in this figure for /\= 2.2 IJm, the normalized field spread appears to 

be the smallest, but actually the spot-size is much larger as the pitch length is 

much longer. 
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In the following section, a PCF structure where hole diameters are not 

identical is studied. 
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7.4 Numerical Results of a PCF Structure with Unequal 

Hole Diameter 

Initially, a PCF structure was studied with regular hexagonal hole 

arrangement with all the holes with identical diameter as illustrated in Fig. 7.1. 

In this hexagonal hole arrangement (as illustrated in Fig. 7.5), the diameter of 

the 4th hole is taken as d2/1\=0.95 ~m and the diameter of the rest of the holes 

remained the same as before, d1/1\=0.5 jJm, where 1\=2.2 jJm. The following 

results illustrate the comparison between the H
X

11 mode and HY11 modes using 

the structure shown in Fig. 7.5. 

7.4.1 Results of a PCF when Wavelength is Varying 

The variations of the silica index and the effective index for the 

fundamental quasi-TE and quasi-TM modes with the operating wavelengths 

are shown in Fig. 7.22. As mentioned earlier, the refractive index of silica 

reduces monotonically with the wavelength due to the material dispersion 

[Agrawal], which is shown in this figure by a solid line and labeled as ng . In this 

case the pitch, A, is taken as 2.2 ~m, with the diameter of the equal-size air 

holes 1.1 ~m and four unequal-size air holes 2.09 ~m, yielding a normalized 

d1/A and d2/A ratio of 0.50 and 0.95, respectively. The variations of the 

effective index (ne) for the fundamental quasi-TE (HY11 ) and quasi-TM (HX
11 ) 

modes are shown by a dashed line and dash-doted line, respectively. It can 

be noted that the reduction of the effective index (ne) is more rapid (with the 

operating wavelength) than that of the material index of silica, ng, due to the 

additional waveguide dispersion besides the material dispersion [Rahman et 

al.,2006b]. 

As the operating wavelength increases, the waveguide dimension reduces, 

compared to its wavelength and the mode approaches its modal cutoff and 

with that the effective index value also reduces. It can also be noted that for 

quasi-TM (HX
11 ) mode, the effective index value is lower. As the wavelength is 

increased, the refractive index difference (n/- n/) between the HY11 and HX
11 

143 



Chapter 7 Characterization of Hexagonal lattice PCF 

modes are also increased due to the unequal air hole near the core region. As 

a result, birefringence is larger for larger wavelength. 
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Fig. 7.22: Variation of the effective index with the wavelength for a 

circular air-hole PCF when dr;t: d2 . 

The dominant HX field profile of the fundamental HX
11 mode and the 

dominant HY field profile of the fundamental HY11 mode are shown in Fig. 7.23a 

and Fig. 7.23b, respectively for 'A= 0.50 ~m. From these figures, it can be 

observed that the field is not symmetrical; however its spread along the x-axis 

is slightly larger. From Fig. 7.23a, it can be observed that last contour line 

crossed the x-axis at roughly 1.7 ~m and along the y-axis it is approximately 

1.26 ~m. This is due to the reason that the diameter of the 4th air hole, as 

shown in Fig. 7.5, near core region is bigger (in this case d2= 2.09 ~m) 

compared to the other identical air holes (in this case d1 = 1.1 ~m). Fig. 7.23b 

is very identical compared with the dominant HX field profile of the fundamental 

HX
11 mode shown in Fig. 7.23a. However, it can be noticed from this figure 

that its spread along x-axis is slightly smaller (in this case 1.65 ~m). 
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Fig. 7.23: (a) The dominant HX field profile of HX
11 mode and (b) the 

dominant HY field profile of the fundamental HY11 mode at A = 0.50 \-1 m. 

Next, the effect of longer wavelength, A, is shown. The dominant HX 

field profile of the fundamental HX
11 mode and the dominant HY field profile of 

the fundamental HY11 mode are shown in Figs. 7.24a and 7.24b, respectively 

for a longer wavelength of A= 1.55 \-1m. Compared to Fig. 7.24a, it can also be 

clearly noticed that when wavelength is increasing from 0.5 \-1m to 1.55 \-1m 

mode becomes weakly confined, field spreads along both x-axis and y-axis 

from 1.7 \-1m to 1.9 \-1m and 1.26 \-1m to 1.5 \-1m, respectively. This is due to the 

reason that for smaller wavelength mode is well confined and for larger 

wavelength mode is weakly confined. Fig. 7.24b is very identical compared 

with the dominant HX field profile of the fundamental HX
11 mode shown in 

Fig. 7.24a. However, it can be noticed from this figure that its spread along y­

axis is slightly larger (in this case 1.55 \-1m). However, it should be noted that 

in this case the modes are better confined as shown in Fig. 7.24a for quasi­

TM (HX
11 ), compared to Fig. 7.24b for quasi-TE (HY11 ). As a result, for quasi­

TM (HX
11 ) mode, the effective index value is lower than that of quasi-TE (HY11 ) 

as shown in Fig. 7.22. 
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Fig. 7.24: (a) The dominant HX field profile of HX
11 mode and (b) the 

dominant HY field profile of the fundamental HY11 mode at" = 1.55 IJm. 

7.4.2 Results of a PCF when d2/A is Varying 

Next, the effect of shorter wavelength (A= 0.50 !J.m) is shown to 

compare with the effect of longer wavelength (A= 1.55 !J.m). The FEM 

approach is very versatile and it allows for the modelling of designs showing 

change of the position and size of any of the holes, as required. The modal 

properties of a PCF are investigated for a situation where the sizes of four air­

holes in the first ring are different from that of the others. However, since the 

two-fold symmetry has been taken, only one air-hole, d2 , near the core region 

is considered. Such a PCF would be able to maintain a specific input 

polarization state and the corresponding modal birefringence would also be 

high. In this case, the pitch, A, was fixed at 2.2 j.lm, and the diameter of one 

air-hole (d2) is varied and all the other hole diameters are kept fixed at 1.1 j.lm 

(d/A =0.5). In this case, the operating wavelength is taken as 0.5 j.lm. The 

variation of the effective indices for the fundamental quasi-TE (HY11 ) and 

quasi-TM (HX
11 ) modes are shown in Fig. 7.25. 
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Fig. 7.25: The variation of the modal indices with the normalized 

diameter, d2/A. 

It can be observed that as the diameter of only one air-hole, d2, is 

increased, the effective index values decrease. This is due to the fact that with 

an increased air-hole size (even if only one is changed), the equivalent 

cladding index is reduced. It can be clearly observed that as the value of d2 is 

increased, the modal index difference between the two fundamental TE and 

TM polarized mode increases. This is because of the increased d2 diameter 

makes the PCF structure more asymmetric. An increased d2 makes the 

vertical dimension of the effective core smaller than that of the width and as a 

consequence the effective index of the quasi-TE mode is higher than that of 

the quasi-TM mode. 

The variation of the spot-size and the modal hybrid ness for the fundamental 

quasi-TE and quasi-TM modes are shown in Fig. 7.26. It can be observed that 

the spot-size reduces as the value of the diameter d2 is increased. This 

increased air-hole diameter (even of a single hole) restricts the optical field in 

that air-hole region and consequently reduces the spot-size. The modal 

hybrid ness increases with the enlargement of the d2 value, which is due to the 

increased interaction of the modal field with the air/silica boundaries of the air­

holes, which is now closer to the core. 
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As the mode expands, modal field also encounters the air-hole regions 

and the power leaking into the air-hole areas increases. The variation of the 

optical power in the silica region, Ps , with the air-hole diameter d2 is shown in 

Fig. 7.27 for both the quasi-TE and TM modes. It can be clearly observed that 

as the air-hole diameter increases, the modal field expands, the spot-size 

increases, and so the power in the silica region decreases. It should be noted 

that for the design of an evanescent sensor, the air-hole diameter would be an 

important parameter for design optimization. 
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Fig. 7.27: The variation of the power confinement factor with the value 

of d2/A. 
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7.5 Group Velocity Dispersion (GVD) of PCF 

7.5.1 Effect of Mesh Division when Wavelength is Varying 

Variations of the GVD factor, D(A), of HY11 mode with wavelength for 

120*120 mesh and 80*80 mesh are shown in Fig. 7.28 for the identical holes 

with a 2.2 }lm pitch distance (A). It can be noted that the variations of the GVD 

with wavelength are similar for both cases. It can be further observed that in 

both cases, GVD is positive over the wavelength range 0.9 and 1.4 jJm, with a 

maximum value of approximately 60 ps/nm.km at A = 1.2 jJm. 
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Fig. 7.28: Variation of the GVD of the HY11 mode with the wavelength 

for d/A= 0.5 when mesh= 120*120 and 80*80. 

7.5.2 Effect of d/A when Wavelength is Varying 

Variation of the GVD with wavelength for H
X

11 mode and HY11 mode is 

shown in Fig. 7.29. It can be noted that the variations of the GVD with 

wavelength are similar for both cases and they are almost indistinguishable. 

In this case, the structure being almost symmetric, two polarized modes (HX
11 

and HY11 ) were nearly identical and similarly their GVD were also almost 

identical. It can be further observed that in both cases, GVD is positive over 

the wavelength range 1.0 and 1.4 J.,Jm, with a maximum value of approximately 

80 ps/nm.km at A = 1.2 J.,Jm. 
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Fig. 7.29: Variation of the GVD with wavelength for H
X

11 mode and HY11 

mode. 

Next, two different hole diameters have been considered, where 

d = 0.66 I-lm and 1.1 I-lm, corresponding to d/A ratios of 0.3 and 0.5, 

respectively. Variations of the GVD with the operating wavelength are shown 

in Fig. 7.30. It can be observed that a low anomalous GVD can be achieved 

over a given operating wavelength range, and similar adjustable GVD 

properties cannot be achieved in the design of the less flexible 

telecommunication grade SMF. By adjusting the diameters of the holes, 

unequal air-holes within a single ring or between the rings, the range of 

anomalous dispersion, its maximum value and the dispersion slopes can be 

adjusted for a specific application. 
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7.5.3 Effect of d2/A when Wavelength is Varying 

In Fig. 7.5, the modal properties of a PCF were investigated for a 

situation where the 90 degree rotational symmetry does not exist. In this case, 

the size of one of the air-holes, d2, is different from the others. Variations of 

the GVD for this PCF structure are shown in Fig. 7.31. For comparison, the 

GVD of the degenerate PCF with d1 = d2 = 1.1 ~m, is also shown in this figure. 

Again, it can be observed that by adjusting the hole dimensions of a specific 

group of holes, the GVD properties can be modified. It can be noted that the 

GVD is positive over wavelength range from 0.9 to 1.45 lJm and from 0.95 to 

1.4 lJm for unequal and equal holes, respectively. This means unequal air 

holes give more positive GVD. It can also be noticed that both unequal and 

equal holes have a maximum value of approximately 100 ps/nm.km and 

75 ps/nm.km at A = 1.2 lJm, respectively. 
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Fig. 7.31: Variation of the GVD of the HY11 mode with the wavelength 

for d2/A= 0.50 ~m and d2/A= 0.95 ~m and mesh= 120*120. 

The variations of the GVD with the operating wavelength for both 

fundamental HY11 and HX
11 modes are shown in Fig. 7.32 when d1:t:d2 . It can 

be observed that for such a highly birefringent PCF, the fundamental HY11 

modes have a lower positive GVD than that of the fundamental H
X 

11 modes. It 
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should be noted that the GVD properties of polarization maintaining peFs are 

different for the TE and TM polarizations. 
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Fig. 7.32: Variation of the GVD with the wavelength for H
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when d1/ 1\=0.5 and d2/1\= 0.95. 

The variation of the GVD for polarization maintaining peFs with various 

d2 diameters is shown in Fig. 7.33. By comparison, the GVD of the degenerate 

peF with d1=d2 = 1.1 ~m, is also shown in this figure. Again, it can be 

observed that by adjusting the hole dimensions of a specific group of holes, 

the GVD properties can be modified. 

200 

A= 2.2 JLm 
100 HY

11 mode 

--. 
E 

.:::£ 0 

E 
c -en 
0- -100 --0 

-300L--I---.....l.---~--"---~"":""-"-_:' 
1.0 1.6 0.6 0.8 

Wavelength (JLm) 

Fig. 7.33: Variation of the GVD with the wavelength for HY11 modes for 
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7.6 Summary 

In this chapter, a rigorous analysis of hexagonal-lattice photonic crystal fibre 

with symmetrical and asymmetrical circular air-holes is presented, to 

understand the basic properties of photonic crystal fibres. 

Important design parameters, such as the effective indices, modal field profile, 

spot-sizes, modal hybridness, power confinements, and the GVD are 

determined for equal and unequal and circular hole PCFs, by using a rigorous 

full-vectorial finite element-based approach. The variation of the GVD, an 

important optical parameter, is shown through the effect of the hole diameters 

and asymmetry and with the use of this modelling approach it may be possible 

to design a PCF with a specific GVD, or other optical properties, by adjusting 

the different fabrication parameters. 

In the following chapter, a PCF structure where hole diameters are not 

identical is studied for calculating modal birefringence. Initially, four air-holes 

in the first ring (4th air-hole in Fig. 7.5) is enlarged to break the symmetry of 

the structure, so that modal birefringence can be increased. Later on, only two 

air-holes in the first ring (only ~ air-hole on the x-axis) are enlarged to get 

birefringence. Comparisons of both of the results are discussed in next 

chapter. 
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Chapter 8 

Birefringence Study of Photonic Crystal 
Fibre 

8.1 Introduction 

Modal solutions of photonic crystal fibres with equal and unequal circular air 

holes in a hexagonal matrix are presented in Chapter 7, by using a rigorous 

full-vectorial H-field based finite element method. The effective indices, mode 

field profiles, spot-sizes, modal hybridness, power confinements, and group 

velocity dispersion values have been determined and presented in the 

previous chapter. In this chapter, modal solutions are further explored and 

presented. Besides the modal solutions of the effective indices, spot sizes, 

modal hybridness, beat length, and group velocity dispersion values; research 

was carried out to optimize and design highly birefringent PCF. The effects of 

the pitch-distance, hole diameter, structural asymmetry, air hole arrangement 

and the operating wavelength on the modal birefringence are also reported. It 

is shown that a significant value of birefringence can be achieved by using 
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only circular air holes, which would be easy to fabricate, and operating it close 

to its modal cutoff. 

Holey fibres can be made from a single material, such as pure silica. 

Therefore, the core refractive index is the same as the index beyond the finite 

cladding region [Finazzi et a/., 2002]. The cladding region is enclosed within a 

circular silica jacket with a complex refractive index, which allows the jacket to 

absorb the portion of the mode that leaks [Finazzi et a/., 2003]. So every 

propagating mode is inherently leaky, and consequently experiences 

confinement loss. A variety of reasons causes the loss in holey fibres [White 

et a/., 2001 b]: intrinsic material absorption, additional losses (water 

contamination, absorption due to impurities, scattering, etc.) arising during the 

fabrication process, and confinement [Saitoh and Koshiba, 2003a] or leakage 

loss [Saitoh and Koshiba, 2003c]. 

In this chapter, leakage loss in polarization maintaining photonic crystal fibres 

is also investigated and presented. Leakage loss is varying with different 

parameters. Comparisons of the numerical results are also discussed in detail. 

8.2 Modal Birefringence of PCF 

Birefringent fibres, the two orthogonally polarized modes guided in a single­

mode fibre propagate at different velocities, are used to maintain polarization 

states in optical devices and sub-systems. By tweaking the hole geometries, 

as shown in Fig. 8.1, it's possible to produce level of birefringence that exceed 

the performance of conventional birefringent fibre by an order of magnitude. 

155 



Chapter 8 Birefringence study of photonic crystal fibre 

Fig. 8.1: Birefringent fibre [Dettmer, 2001]. 

In the axially symmetric single-mode fibre, there exist two orthogonally 

polarized modes, known as HX
11 and HY11 modes in accordance with their 

polarization directions. If the fibre waveguide structure is truly axially 

symmetric, these orthogonally polarized modes have the same propagation 

constants and thus they are degenerate. In practical fibres, however, an axial 

nonsymmetry is generated by the core deformation and/or core eccentricity to 

the outer diameter, and it causes a slight difference in the propagation 

constants of the two polarizations. The difference of the propagation constants 

between HX 
11 and HY 11 modes are intentionally made large in birefringent fibres 

and such fibres are also called 'polarization-maintaining ' fibres [Okamoto] . 

Index contrast of PCFs is higher than that of conventional fibre as a result 

PCFs have higher birefringence than that of conventional fibre . Highly 

birefringent PCFs can be used as polarization maintaining fibres (PMFs) 

[Saitoh and Koshiba, 2003b]. 

8.3 Way of Making Highly Birefringent PCF 

PCF can be made highly birefringent for the following reasons: 

• Due to a larger index-contrast between air and silica [Hwang et a/. ]. 

• If polarization maintaining fibres (PMFs) employ asymmetric air hole 

distributions near the fibre core [Hwang et a/.] . 
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• By selectively filling the air holes with polymer to obtain an asymmetric 

structure [Kerbage et al.] 

• By introducing two-size air holes around the fibre core [Hansen et al., 

2001]. 

• By introducing non-circular, such as elliptical air-hole [Nielsen et al., 

2001 ]. 

• By changing the shape of the holes or the size of some selected air 

holes [Rahman et al., 2006a]. 

• By reducing the air-hole pitch, A [Rahman et al., 2006a]. 

8.4 Modelling of Highly Birefringent PCF 

Fig. 8.2 shows a full structure of a hexagonal lattice PCF where hole 

diameters are identical. In order to make highly birefringent PCF, two different 

size air holes around the fibre core [Hansen et al., 2001] are needed. During 

the simulation, only two-fold symmetry has been taken. 

Fig. 8.2: Regular array of equal circular holes in a hexagonal lattice. 

By changing the shape of the holes or the size of some selected air 

holes, the structural symmetry can be avoided and this yields important modal 
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property, the modal birefringence. Initially, two air holes are enlarged, as 

shown in Fig. 8.3, to get birefringence. In this case, area shown as effectively, 

height is greater than width, so that n/ > n/. 

Fig. 8.3: Array of unequal circular holes in a hexagonal lattice where 

diameter of two air holes are increased. 

Later on, four air holes, as shown in Fig. 8.4a, are enlarged to break 

the symmetry of the structure. Fig. 8.4a and Fig. 8.4b show full structure and 

quarter of full structure, respectively of a hexagonal lattice PCF where hole 

diameters are not identical. In Fig. 8.4b, when four air holes are enlarged, 

area shown as effectively, height is smaller than width, so that n/> n/. 
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o 

(a) (b) 

Fig. 8.4: Array of unequal circular holes of (a) full structure, and (b) 

quarter of a full structure in a hexagonal lattice where four air holes are 

increased. 

8.5 Simulation Results for Birefringence 

8.5.1 Results of a PCF when d/A is Varying 

Birefringence can be controlled by introducing structural asymmetry 

and by changing the air-hole diameters. So, first the effect of air-hole diameter 

on the modal properties is studied for symmetrical PCFs. The variations of the 

effective index and the spot-size for the fundamental quasi-TE (HY 11) mode 

with the normalized d/A dimension are shown in Fig. 8.5. The pitch length, A, 

either 2.2 ~m or 2.0 ~m is shown as solid and dashed line, respectively. In this 

case, the refractive index of the silica is taken as 1.444 at the operating 

wavelength of 1.55 ~m. As the hole diameter, d, is increased, the equivalent 

index of the air hole cladding region is reduced, which increases the index 

contrast between the effective cladding and the homogeneous silica core. 

Although the reduced cladding index reduces the modal effective indices, the 

increased index contrast also makes the mode better confined as shown 

earlier in Figs. 7.7b. 
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Fig. 8.5: Variations of the effective index and spot-size with the 

normalized hole diameter d/A when A= 2.0 jJm and 2.2 jJm. 

As the hole diameter is increased, the effective index (ne) is reduced for both 

pitch 2.2 /-lm and 2.0 /-lm. The difference between the effective index of pitch 

2.2 /-lm and 2.0 /-lm are higher when hole diameter are increased. The ne for 

pitch 2.0 /-lm reaches early cutoff condition than that of for pitch 2.2 /-lm. As 

pitch increases, effective index also increases. This is due to the reason that 

as N)" is larger, waveguide dimension is larger compared to wavelength. For 

larger pitch length, mode is well confined which is not shown here. 

In this figure, it can also be observed that as the hole diameter is increased, 

the spot-size (cr) is reduced for both pitch 2.2 /-lm and 2.0 /-lm. This is because 

the enlargement of the holes restricts the expansion of the modal field from 

the core area as shown earlier in Figs. 7.7a and 7.7b. The effect of the hole 

diameter on the spot-size is clearly visible, and its variation is shown in 

Fig. 8.5. Initially, the spot size for both pitch 2.2 /-lm and 2.0 /-lm are very 

identical. As the hole diameter is increased, the spot-size (0-) is reduced for 

both pitch 2.2 /-lm and 2.0 /-lm. At A= 2.2 jJm, the value of the spot-size 

reduces from around 3.5 /-lm2 to 2.0 /-lm2. Whereas, at A= 2.0 jJm, spot-size 

reduces from around 3.4 /-lm2 to 1.6 /-lm2. In this case, at A= 2.0 jJm, the value 
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of the spot-size reduces more quickly. As pitch Increases, spot-size also 

increases as waveguide dimension increases. 

For a PCF with a regular hexagonal hole arrangement of fixed diameter, a 60 

degree rotational symmetry exists, which makes the modes degenerate. 

However, strictly speaking the TE and TM modes are not degenerate as the 

required 90 degree rotational symmetry does not exist. For this structure with 

identical holes, in practice, the modal birefringence is very small and the 

modal properties of the fundamental quasi-TM (HX
11 ) mode are not shown for 

this structure. 

8.5.2 Results of a PCF when d2/A is Varying 

8.5.2.1 Results of a PCF where Height is Greater than Width 

The birefringence of a PCF structure can be significantly increased by 

breaking the structural symmetry. This can be achieved by using non identical 

air holes in the first ring around the core. Asymmetry of the PCF can be 

introduced in different ways. In this case, diameters of the two air holes in the 

first ring, as shown in Fig. 8.6, are increased to break the rotational symmetry. 

The asymmetry arrangement considered here is similar as in [Kubota et al.], 

where the diameters (d1) of the two air holes in the first ring are different from 

that of the other diameters (d). Since, the influence of the air holes in the first 

ring would be dominant; to break the structural symmetry, modification of the 

air hole dimensions in this ring would be more effective. For the simulation 

results, only a quarter of the structure is considered by exploiting the available 

two-fold symmetry. 
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Fig. 8.6: Schematic diagram of the hexagonal lattice PCF with unequal 

hole sizes in the first ring where two air holes are increased. 

Fig. 8.7a shows a hexagonal lattice PCF structure with circular air 

holes. In the hexagonal arrangements, air holes are placed in concentric rings 

around the core. Fig. 8.7b shows two circular air holes are increased in size. 

As two air holes are increased in size in the first ring, it can be clearly visible 

that the air region in this structure is increased. In Fig. 8.7b, it can be noticed 

that the height of the silica index is greater than that of width, so that n/> n/. 

Therefore, birefringence is expected to be lower for this structural asymmetry. 

(a) (b) 

Fig. 8.7: (a) Array of hexagonal lattice, where (b) two circular air-holes 

are increased. 
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The variation of the effective indices with the normalized asymmetric air 

holes, d1/A, is shown in Fig. 8.8 for the quasi-TE and quasi-TM modes for 

d/A= 0.5 and A= 1.1 11m. It can be observed that for lower values of d
1

, the 

effective indices for the quasi-TE modes are higher than those of the quasi­

TM modes, as the effective height of the PCF would be smaller than their 

width in these cases. On the other hand when the d1 values are higher, the 

effective index values of the quasi-TE modes are lower, since the effective 

widths are now smaller than their heights. The effective index curves cross 

each other when the d1 value is similar to that of other air hole diameters, d/A 

~ 0.5, in this case. 
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Fig. 8.8: Variation of the effective indices with the normalized d1/A 

when A= 1.1 11m. 

The variation of the spot-size with the d1/A is shown in Fig. 8.9 for the 

quasi-TE and quasi-TM modes as a solid line and dashed line, respectively for 

d/A = 0.5 and A = 1.1 11m. It can be noted that for the polarization states, 

initially the spot-size is reduced for both the quasi-TE and quasi-TM modes as 

d1/A is increased. However, when for a larger value of the d1/A, the effective 

cross section of PCF is very small, it is unable to support the mode and the 

cutoff condition approaches. In this case, as the mode field expands, the spot­

size rapidly increases. However, it can be noted that the quasi-TE mode 
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approaches its cutoff for a slightly lower value of the d1/A as compared to the 

quasi-TM mode. This would allow the design of a single polarization PCF by 

fixing the d1/A value between these two cutoff conditions. 
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Fig. 8.9: The variation of the spot sizes with the normalized d1/A when 

A= 1.1 ~m. 

8.5.2.2 Results of a PCF where Width is Greater than Height 

Fig. 8.10 shows the schematic diagram of the polarization maintaining 

hexagonal lattice PCF with expanded unequal air holes. In this case, 

diameters of the four air holes in the first ring are increased to break the 

rotational symmetry. The asymmetry arrangement considered here is similar 

as in [Saitoh and Koshiba, 2003b], where the diameters (d2) of the four air 

holes in the first ring are different from that of the other diameters (d). 

2 

Fig. 8.10: Schematic diagram of the hexagonal lattice PCF with 

unequal hole sizes in the first ring where four air holes are increased. 
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Fig. 8.11 a shows a hexagonal lattice PCF structure with equal circular 

air-holes and Fig. 8.11 b shows four unequal circular holes. As the sizes of 

four air holes are increased in the first ring, it can be clearly visible that the air 

region in this structure is increased. Compared with Fig. 8.7b, it can be 

noticed from Fig. 8.11 b that the width of the silica index is greater than that of 

height [n/> ne Xl. 

o 
(a) (b) 

Fig. 8.11: (a) Array of hexagonal lattice, where (b) four unequal circular 

holes are increased. 

The variations of the effective indices for the fundamental quasi-TE 

(HY11) and quasi-TM (HX
11 ) and the second quasi-TE (HY21 ) modes with the 

normalized asymmetry (d 2/A) are shown in Fig. 8.12. An inset in Fig. 8.12 

shows only a single air hole in a quarter of the cross-section used in the 

numerical simulations. Such an asymmetric PCF would be able to maintain a 

specific input polarization state and the corresponding modal birefringence is 

expected to be high. In this case, initially the pitch is taken as 2.2 /lm with the 

operating wavelength as 0.5 /lm. In this case, since pitch is much larger than 

wavelength, modes are well confined. The diameter of asymmetric air hole 

(d2) is varied and the diameters of all the other holes are kept fixed at 1.1 /lm 

(d/A =0.5). It can be observed that as the diameter of the air hole, d2, is 

increased, the effective index values decrease. This is due to the fact that with 

the increased air hole size, the equivalent cladding index is reduced. It can be 
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clearly observed that as d2 is increased, the modal index difference between 

the two fundamental TE and TM polarized modes increases. This arises 

because the increased d2 diameter makes the peF structure more 

asymmetric. An increased d2 value makes the height of the effective core 

smaller than that of the width (as shown in Fig. 8.11) and as a consequence 

the effective index of the quasi-TE mode is higher than that of the quasi-TM 

mode. For comparison, the effective index variation of the HY21 mode is also 

shown in this figure. It was also observed, but not shown here, that the spot­

size reduces as the d2 diameter is increased as the increased air hole 

diameter restricts the optical field further in the core region. 
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Fig. 8.12: Variation of the modal indices with the normalized diameter, 

d2/A. 

The variation of the modal birefringence, B, and beat length, LB, at the 

operating wavelength A=O.50 ~m, are shown in Fig. 8.13. In this case the 

modal birefringence is defined as: 

B=ny-nx [8.1] 

where ny and nx are the effective indices of the fundamental HY
11 and H

X

11 

modes, respectively. 

The polarization beat length, LB, is a measure of the birefringence and is 

defined as: 
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Ls = 2n /(~y - ~x) = A/B [8.2] 

Where, ~y and ~x are the propagation constants of the HY11 and HX modes 
11 , 

respectively. 

It can be clearly observed that the birefringence value, as shown by a dashed 

line, increases as the value of d2 is increased, since the symmetry of the PCF 

structure is progressively destroyed. The beat length, Ls, reduces 

monotonically with the d2 hole diameter with a value of 1500 ~m and a 

birefringence value of 1.6x1 0-4 when d2/A =0.95. 
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Fig. 8.13: The variation of the beat length and modal birefringence with 

the normalized diameter, d2/A at the operating wavelength, A=0.50 ~m. 

Next, the effect of the operating wavelength, A, is studied, keeping the 

A= 2.2 jJm, d/A= 0.50, same as the previous example. As the operating 

wavelength increases, the modal confinement is reduced, the optical field 

expands, and interacts with the silica/air interfaces around the air/hole 

circumferences and hence the modal birefringence increases. The variation of 

the birefringence, B, is shown in Fig. 8.14, by a dashed line at the operating 

wavelength, ),=1.55 J.lm. For comparison, the modal birefringence variation at 

A= 0.50 ~m, which was shown in Fig. 8.13, is also shown here by a solid line. 

It can be clearly observed that at the wavelength A=1.55 ~m, the maximum 

birefringence increases significantly to a value of 0.0039 compared to its 

maximum value of only 0.00016 at the wavelength A= 0.50 ~m. 
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Fig. 8.14: The variation of the modal birefringence with the normalized 

diameter, d2/A at the operating wavelength, "-=1.55 Jlm and A=0.50 Jlm. 

It is expected that a lower pitch length, A, would produce a higher 

birefringence for a given structural asymmetry. To achieve a higher 

birefringence value, next, a smaller pitch length, A = 1.1 Jlm is considered. In 

this case, only one of the air hole diameters (d2) (in the quarter cross-section) 

is enlarged to increase the modal birefringence, while keeping all other 

normalized air hole diameters fixed at d/A= 0.50. The variation of the effective 

indices with the normalized asymmetric air holes, d2/A, is shown in Fig. 8.15 

for the quasi-TE and quasi-TM modes. It can be observed that for lower 

values of d2, the effective indices for the quasi-TE modes are lower than those 

of the quasi-TM modes, as the effective width of the PCF would be smaller 

than their heights in these cases. On the other hand when the d2 values are 

larger, the effective index values of the quasi-TE modes are higher, since the 

effective widths are now larger than their heights. The effective index curves 

cross each other when the d2 value is similar to that of other air hole 

diameters, d/A ~ 0.5, in this case. 
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Fig. 8.15: Variation of the effective indices with the normalized d2/A 

when A= 1.1 /lm. 

The variation of the spot-size with the d2/A is shown in Fig. 8.16 for the 

quasi-TE and quasi-TM modes for d/A = 0.5 and A = 1.1 /lm. It can be noted 

that for the polarization states, initially the spot-size is reduced as d2/A is 

increased. However, when for a larger value of the d2/A, the effective cross 

section of PCF is very small, it is unable to support the mode and the cutoff 

condition approaches. In this case, the spot-size increases rapidly as the 

mode field expands. However, it can be noted that the quasi-TM mode 

approaches its cutoff for a slightly lower value of the d2/A as compared to the 

quasi-TE mode. This is due to the reason that compared to Fig. 8.9 near 

cutoff region nx < ny, so HX
11 mode approaches cutoff earlier. 

169 



Chapter 8 

35 

30 

-N 25 
E 
::1-
'-' 
b 20 
CIi' 

.!::! 15 U) -0 
Q. 10 tn 

5 

0 
0.0 

Birefringence study of photonic crystal fibre 

A= 1.1 ~m 
d/A= 0.50 
A= 1.55 ~m 

-- HY11 mode 
x 

----- H 11 mode 

0.2 0.4 

d2/A 

0.6 

• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I ., 

0.8 1.0 

Fig. 8.16: The variation of the spot sizes with the normalized d2/A when 

A= 1.1 ~m. 

The modal birefringence, B, depends strongly on the symmetry of the 

structure such as arises from unequal hole diameters and noncircular shapes 

and also on the modal confinement. Since the modal confinement is low for 

smaller value of the pitch, to achieve a higher birefringence value, a smaller 

pitch length, A = 1.1 a ~m is considered. The variation of the birefringence with 

the normalized air hole diameter (d2/A), is shown in Fig. 8.17, as a solid line, 

when A = 1.1 ~m at the operating wavelength A = 1.55 /-lm. For reference, the 

variation of the birefringence when A = 2.2 ~m is also shown by a dashed line. 

It can be clearly observed that as d2 > d, the birefringence is positive as the 

effective index value of the quasi-TE mode is higher than that of the quasi-TM 

mode and similarly when d2 < d, the birefringence values are negative as the 

effective index value of the quasi-TM mode is higher than that of the quasi-TE 

mode. When the asymmetry is negligible, i.e. the d2/A is smaller to the other 

air hole, which in this case d2/A :::: 0.50, the modal birefringence is very small. 

Birefringence value increases rapidly when d2 is much larger than d, as both 

the TE and TM modes approach their cutoff values and their difference 

increases. For A= 1.1 ~m, when the d2/A value is larger than 0.85, this 

particular PCF cannot guide the HX
11 mode and the PCF structure becomes a 

single polarization guide. It can also be clearly observed that at A = 1.1 ~m, 

170 



Chapter 8 Birefringence study of photonic crystal fibre 

the maximum birefringence increases significantly to a value of 0.00735 at 

d2/A = 0.85, compared to its maximum value of only 0.0039 at A = 2.2 Ilm. 

This is one of the highest birefringence value reported so far at wavelength of 

1.55 ~m for an asymmetric PCF using the circular air holes. As the hole­

spacing period, A, reduces, the spot-size initially reduces, but near A=1.1 0 Ilm 

the fundamental mode approaches its cutoff condition, the optical field 

expands and extends more around the silica/air interfaces around the air/hole 

circumferences and as a result the modal birefringence increases. It is 

significant that the birefringence value of such a simple peF with circular 

holes is high, compared to the polarization maintaining Panda or Bow-tie 

fibres [Liu et a/., 1994] and thus useful for many practical applications in 

optical communications and sensing. 
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Fig. 8.17: Variation of the modal birefringence with the normalized d2/A 

for A= 1.1 !-lm and 2.2 !-lm. 

8.5.2.3 Comparison Results of Two Different Structural Asymmetry 

It was mentioned earlier that diameters of either two air holes [Kubota 

et a/.] or four air holes [Saitoh and Koshiba, 2003b] in the first ring could be 

changed to break the rotational symmetry. Although both cases have been 

considered separately, a comparison between the two designs is made in this 

work. The variations of the birefringence (8) with the normalized air hole 
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diameter, are shown in Fig. 8.18 for the two-hole and four-hole cases by a 

solid line and a dashed line, respectively when A = 1.1 /-lm and the operating 

wavelength A = 1.55 /-lm. Hole arrangements are also shown in this figure as 

an inset. It can be clearly observed that for four-hole arrangements, shown by 

dashed line as d2 > d, the birefringence is positive and similarly when d2 < d, 

the birefringence values are negative. It can be noted that for a higher d2/A 

values, the effective index value of the quasi-TE mode is higher than that of 

the quasi-TM mode, as in this case the equivalent core width is larger than its 

height. Similarly, when the d2/A value is lower; the effective index value of the 

quasi-TM mode is higher as in this case the equivalent width is smaller than 

its equivalent height. This birefringence value increases rapidly when d2 is 

much larger than d, as both the TE and TM modes approach their cutoff 

values. It can be noted that in this case the maximum birefringence value is 

significantly higher, reaching a value of 0.00735, one of the highest reported 

so far at this wavelength for an asymmetric peF using the circular air holes. 

When the d2/A value is larger than 0.85, this particular peF supports only the 

quasi-TE mode and cannot guide the HX
11 mode. Therefore, the peF structure 

becomes a single polarization guide. 
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Fig. 8.18: Variation of the birefringence with two different structural 

asymmetry, d/A, i = 1,2. 

On the other hand, for the two-hole arrangement as shown by a solid line, 

when d1 < d, the birefringence is positive as the effective width is larger than 
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its height. However, when d1 is much larger than d, although the birefringence 

is negative, this value does not increase significantly. In this case, since the 

equivalent cross section is reduced only slightly, modal cutoff conditions of the 

two fundamental modes are not reached. It should be noted that the 

experimental results can be obtained for similar air hole asymmetry and modal 

confinement, but enlarging only two air holes [Kubota et al.] yielded a much 

lower birefringence and a value of B = 0.00258 was reported in the literature 

[Kakarantzas et al.] which agrees well with the result from this work. 

8.5.3 Results of a PCF when Wavelength is Varying 

The variation of the modal birefringence, B, with the operating 

wavelength, A, is shown in Fig. 8.19. In this case the d/A value is kept 

constant at 0.5 and the asymmetric air holes with their normalized diameter 

d2/A = 0.95. For a fixed pitch length, A = 2.2 11m, as the operating wavelength, 

A, is increased, the modes become more weakly confined and modal field 

extends more into the air hole regions. Therefore, the difference between the 

fundamental quasi-TE and quasi-TM modes also increases. 
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Fig. 8.19: Variation of the modal birefringence and log-log plot with the 

operating wavelength when 1\= 2.2 ~m, d/A= 0.50, and d2/A = 0.95. 
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It can be observed that as the operating wavelength is increased to 2.0 11m, 

the birefringence is increased significantly to a value of 0.0071 with the 

corresponding beat length, Ls, reduced to 281 /-lm (which is not shown here). 

This result agrees well with the numerically simulated result reported by 

Saitoh and Koshiba [Saitoh and Koshiba, 2003b] of B = 0.00327 at a 

wavelength of 1.45 /-lm. 

It can be observed that the birefringence value increases rapidly with the 

operating wavelength. Earlier it has been reported that the birefringence and 

the operating wavelength could be related by: 

[8.3] 

To obtain the K dependence, a log-log plot is also shown in Fig. 8.19 as an 

inset. The nearly straight line relationship demonstrates a fixed value of K and 

from the slope of this line, the value of K has been calculated as 1.6. It should 

be noted that the K value depends on the specific design parameters of the 

PCF and values of 1.38 [Ortigosa-Blanch et a/.] and 2.7 [Suzuki et a/.] have 

been reported. 

Variations of the GVD with the operating wavelength for the quasi-TE 

(HY11) and quasi-TM (HX
11 ) modes for the asymmetric structure with 

d2/A = 0.95 are shown in Fig. 8.20 by a dashed line and a solid line, 

respectively. Chromatic dispersion of the silica has been taken into account by 

calculating the refractive index of silica through the Sell meier equation 

[Agrawal], as shown in Appendix 1. For comparison, the GVD of a degenerate 

PCF with identical air holes, d/A = d2/A = 0.5, is also shown in this figure by a 

dashed-dotted line. It can be observed that by controlling the diameters of the 

air holes, the range of anomalous dispersion, the maximum value of the GVD 

and its slopes, and the locations of the zero GVD value can be adjusted and 

similar adjustable GVD properties cannot be achieved in the design of a less 

flexible telecommunication grade SMF. It can also be mentioned that when 

the structure being symmetric (d1/A =d2/A = 0.50), the two polarized modes 
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(HX11 and HY11) were nearly identical and similarly their GVD were also almost 

identical, as shown earlier in Fig. 7.29. The polarization dependence of the 

asymmetric PCF can be clearly observed and so various polarization 

dependent linear and nonlinear devices can be designed, optimized, and 

fabricated by using such birefringent PCFs. 

200,----_______ --, 

E 
~ 0 
E 
c: 
iii 
E; -100 
C 

-200 A=2.2Ilm 
d/A=O.50 

-300 ~~--'--~~--'--~_"_ ........... ---J 
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

Wavelength (11m) 

Fig. 8.20: Variation of the GVD with the operating wavelength for equal 

and unequal hole. 

8.5.4 Results of a PCF when A is Varying 

Earlier, the variations of the optical parameters with the operating 

wavelength and the normalized hole diameter were shown only for a fixed 

pitch length, A= 2.2 ~m, and 1.1 ~m. The pitch length, A, the operating 

wavelength, A, and the normalized hole diameter dlA, all play key roles in the 

modal properties and additionally the asymmetry d21 A for the birefringence 

properties. So, next the effect of the crystal period, A, is studied. For a fixed 

operating wavelength, the pitch length, A, can be used as the key controlling 

parameter. 

For a PCF with a regular hexagonal hole arrangement of a fixed diameter, a 

six-fold or 60 degree rotational symmetry exists, which makes the modes 

degenerate. There will be degenerate modes with the polarization directions 

rotated 60 degrees from each other. However, strictly speaking the vertically 

polarized TE and horizontally polarized TM modes would not degenerate as 

the required 90 degrees rotational symmetry does not exist. Despite very 
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good hexagonal symmetry in the fabricated PCFs, the existence of high 

birefringence in such PCFs has been measured by several groups [Peyrilloux 

et a/.; Hansen et a/., 2004; Palavcini et a/.; Eggleton et a/., 1999] but this has 

often been attributed to possible internal stress or to slight asymmetry, due to 

variations in the positioning and the diameters of the air holes. In several 

numerical studies, the structural representations have been systematically 

refined by using the finite element method [Peyrilloux et a/., 2003; Koshiba 

and Saitoh, 2001] and the plane wave method [Hwang et a/.]. In all of these 

cases, a small residual birefringence remained, again probably incorrectly 

attributed to the intrinsic calculation error of the computational approach. 

However, from these reports [Peyrilloux et a/., Hwang et a/.] it could be clearly 

observed that this residual birefringence value is larger for smaller A/A values. 

Variations of the birefringence with the pitch length, A, for a PCF with 60 

degree rotational symmetry for two normalised air hole dimensions d/A = 0.5 

and 0.4 have been studied and are shown in Fig. 8.21 by a solid line and 

dashed line, respectively. In this case the operating wavelength is fixed at 

1.55 ~m. 
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Fig. 8.21: Variation of the modal birefringence with the pitch. 
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For a PCF with a larger AlA value, the birefringence is very small but it can 

also be observed that as the pitch length, A, is reduced, the birefringence 

value is increased. This is due to the reason that for lower dlA, field spreads 

more in the air hole region. For lower dlA, cutoff approaches slowly, and so 

birefringence increases slowly. In these cases, the overall birefringence 

values are small since PCF with identical circular air holes in hexagonal hole 

arrangement has a six-fold rotational symmetry, which produces degenerative 

modes. However, strictly speaking 90 degree rotational symmetry is not 

available so the propagation constants for the quasi-TE and quasi-TM modes 

are slightly different. 

It should be noted that for some special cases the birefringence could be zero 

but in general this is not true for all the regular PCF structures with a six-fold 

symmetry, and more particularly when operating close to their cutoff points. It 

can be noted that for higher dlA values, the birefringence changes rapidly with 

A as their corresponding cutoff condition also approaches rapidly. However, 

this figure indicates that even with the apparent symmetry, the birefringence 

value can be maximised when operating close to their cutoff conditions with a 

smaller pitch length. One important validation of this work is the existence of 

the modal birefringence for PCFs with six-fold rotational symmetry. 

8.6 Simulation Results for Leakage Loss 

A schematic diagram of the two rings, consisting of 18 air holes, PCF is 

shown in Fig. 8.22. In this figure, air holes are arranged in silica background 

whose index of refraction is taken as 1.444 at the wavelength of 1.55 ~m and 

where d is the hole diameter and A is the hole pitch. In all simulations, the 

computational window area Lxl2 x Ly/2 has been taken as 1 0 ~m x 1 0 ~m, 

which has been terminated by a PML whose width, W, is 5.0 ~m and divided 

into 5 divisions. 
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Fig. 8.22: Schematic diagram of a PCF of two rings of 18 air holes 

[Obayya et al., 2005]. 

8.6.1 Result of Leakage Loss when Number of Ring is Varying 

The variations of the confinement losses of a three-ring and two-ring 

PCF in dB/m for the fundamental quasi-TE modes in the logarithmic scale as 

a function of operating wavelength, A are shown in Fig. 8.23 by a solid line 

and dashed line, respectively when d/I\= 0.50, d2/1\= 0.95 and 1\= 2.2 IJm. It 

can be noticed from this figure that for three-ring (36 air holes) PCF, the 

confinement loss is lowered compared to that of two-ring (18 air holes) PCF. 

This is due to the reason that more air holes improve the confinement value, 

as more air holes provide well confined modes as well as smaller spot-size 

values. PCF with small spot-size provides smaller leakage loss. This 

confinement feature of the mode to the core region is directly linked to how 

much the mode is "leaking" into the outer air holes region. This effect can be 

more clearly visible by quantitatively looking at the variation of the 

confinement loss with the wavelength for different number of air holes as 

shown in Fig. 8.23. At A= 1.30 IJm, the confinement loss drops from the value 

of around 83 dB/m to small value nearly 10 dB/m for two-rings and three-rings 

PCF, respectively. 
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Fig. 8.23: Confinement loss of a three-ring and two-ring PCF of HY11 

mode in dB/m with the wavelength, 'A when d//\= 0.50 and d2/A= 0.95 at 

/\= 2.2 ~m. 

8.6.2 Result of Leakage Loss when d2/A is Varying 

The variations of the confinement losses of a three-ring PCF in dB/m 

for the fundamental quasi-TE modes in the logarithmic scale as a function of 

d2//\ at the operating wavelength 'A= 1.55 ~m, 1.35 ~m, and 1.15 ~m are 

shown in Fig. 8.24 by a solid line, dashed line, and dashed-dotted line, 

respectively when d//\= 0.50 and /\= 1.1 ~m. It can be noticed that the 

confinement loss for the lower operating wavelength (in this case, 'A= 1.15 ~m) 

is minimum compared to that of higher operating wavelength ('A= 1.55 IJm, and 

1.35 IJm). This is due to the reason that at smaller wavelength mode is well 

confined, as shown earlier in Fig. 7.11 a, which leads to improving the 

confinement loss. For all 'A values, the confinement losses decrease rapidly 

with the decrease in d2//\. Smaller d2//\ value improves the confinement value, 

as smaller d2//\ value provides well confined modes as well as smaller spot­

size values. PCF with large spot-size provides higher leakage loss. When 

d2//\= 0.40, the confinement losses drop from the value of around 9261 dB/m 

at 'A= 1.55 ~m to small value nearly 4195 dB/m and 598 dB/m at 'A= 1.35 IJm 

and 'A= 1.15 ~m, respectively. 
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Fig. 8.24: Confinement loss of a three-ring PCF of HY11 mode in dB/m 

with the d2//\ when d//\= 0.50 at A= 1.55 jJm, 1.35 jJm, and 1.15 jJm. 

8.6.3 Result of Leakage Loss when Wavelength is Varying 

Finally, the confinement loss of a three-ring PCF in dB/m for the 

fundamental quasi-TE (HY11 ) and the fundamental quasi-TM (HX
11 ) modes with 

the operating wavelength, A at d//\= 0.50 and d2//\= 0.80 is demonstrated in 

Fig. 8.25 when /\= 1.1 jJm. It can be clearly noticed that the confinement loss 

decreases significantly for both HY11 and HX
11 modes with the lower operating 

wavelength. This is due to the reason that for a larger operating wavelength 

(exposed in Fig. 7.11b), the guide becomes more weakly confined. As a result 

the confinement loss is increased. On the other hand, at smaller wavelength 

mode is well confined, as shown earlier in Fig. 7.11 a, which leads to 

improving the confinement loss. The confinement loss for the fundamental 

quasi-TE (HY11 ) mode drops from a value of nearly 90155 dB/m at A= 1.55jJm 

to a very small value around 3101 dB/m at A= 1.1 jJm. Similarly, the 

confinement loss for the fundamental quasi-TM mode drops from a value of 

nearly 28069 dB/m at A= 1.55 jJm to a very small value around 127 dB/m at A= 

1.1 jJm. Which indicates, the fundamental quasi-TM (HX11) mode provides 24 

times smaller confinement loss value than that of the fundamental quasi-TE 

(HY11 ) mode at A= 1.1 jJm. 
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Fig. 8.25: Confinement loss of a three-ring PCF for HY11 and H X
11 

modes with the operating wavelength, A at d/A= 0.50 and d2/1\= 0.80. 

8.7 Summary 

In this chapter, a rigorous analysis of hexagonal lattice photonic crystal fibre 

with symmetrical and asymmetrical circular air holes is presented, to 

understand the basic properties of photonic crystal fibres. Important design 

parameters, such as the effective indices, spot-sizes, modal hybrid ness, beat 

length, modal birefringence, and group velocity dispersion values are 

determined for equal and unequal and circular hole PCFs, by using a rigorous 

full-vectorial finite element based approach. The variation of the modal 

birefringence, an important optical parameter, is shown through the effect of 

the hole diameters, air hole arrangement, structural asymmetry, the operating 

wavelength, the pitch-distance, and with the use of this modelling approach it 

was possible to design a highly birefringence PCF by adjusting the different 

fabrication parameters. 

Birefringence was enhanced by breaking the structural symmetry and this was 

verified by using unequal air holes. The diameter of two air holes and four air 

holes in the first ring was changed to break the rotational symmetry. Although 
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both cases have been considered separately, a comparison between the two 

designs is made in this work. In this work, highly birefringent PCF is designed 

with the higher operating wavelength, larger d2/A value, lower pitch length for 

a given structural asymmetry. It is identified that at the wavelength A=1.55 Ilm 

the maximum birefringence increases Significantly to a value of 0.0039 

compared to its maximum value of only 0.00016 at the wavelength A=0.50 Ilm. 

Birefringence value increases rapidly when d2 is much larger than d. It can 

also be clearly observed that at A = 1.1 Jlm, the maximum birefringence 

increases significantly to a value of 0.00735 at d2/A = 0.85, compared to its 

maximum value of only 0.0039 at A = 2.2 Jlm. This is one of the highest 

birefringence value reported so far at wavelength of 1.55 /Jm for an 

asymmetric PCF using the circular air holes. A single polarization guide PCF 

structure is achieved, as this particular PCF supports only the quasi-TE mode 

at d2/A = 0.85. In this study, it is identified that for the fixed d/A value kept 

constant at 0.5 and the asymmetric air holes with their normalized diameter 

d2/A = 0.95, as the operating wavelength is increased to 2.0 Jlm, the 

birefringence is increases significantly to a value of 0.0071. It can also be 

identified that for higher d/A values, the birefringence changes rapidly with A 

as their corresponding cutoff condition also approaches rapidly. 

One important validation of this work is the existence of the modal 

birefringence for PCFs with six-fold rotational symmetry. It is shown that the 

birefringence value of a simple PCF with circular holes is high, compared to 

the polarization maintaining Panda or Bow-tie fibre [Liu et al., 1994]. 

In this chapter, leakage properties of photonic crystal fibres are also 

presented. The semi-vectorial finite element based beam propagation method 

has been successfully applied to perform the accurate modal analysis of 

PCFs. The effects of the number of air holes, d2/1\, operating wavelength, and 

the geometrical parameters of the holes on the modal properties such as the 

confinement loss due to the leakage nature of the modes have been 

thoroughly studied and explained. 
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9.1 Conclusion 

Progressing from the copper wire of a century ago to today's fibre optic cable, 

increasing ability to transmit more information, more quickly and over longer 

distances has expanded the boundaries of the technological development in 

all areas. Optical fibres now play important role in almost everyone's life. 

These hair-thin strands of glass guide light from one place to another, 

conveying voice or data signals at the speed of light over the global networks. 

When optical fibres were developed in the 1970s, it opened new doors to the 

world of communications. The advantages of using optical fibres over 

conventional methods such as copper wires has led the ability of transmitting 

and receiving more and more data at lower cost. Fibre optics has several 

advantages over traditional metal communications lines which were described 

earlier in section 1.10. While fibre optic cable itself has become cheaper over 
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time, an equivalent length of copper cable cost less per foot but not in 

capacity. 

The main drawback of optical fibre is dispersion, which limits its bandwidth 

and signal transmission on optical fibre wire over long distance requires 

expensive repeaters at distance intervals. Fibre optic cable connectors and 

the equipment needed to install them are still more expensive than their 

copper counterparts. In addition, they are more fragile than wire and are 

difficult to splice. The glass fibre requires more protection within an outer 

cable than copper. For these reasons and because the installation of any new 

wiring is labor-intensive, few communities yet have optical fibre wires or 

cables from the phone company's branch office to local customers. Despite 

these facts, in the long term it may be more cost effective to invest in 

conversion to fibre optics. This is due to the relative ease of upgrading fibre 

optics to higher speed and performance. 

A new type of optical fibre, known as photonic crystal fibre, is one of the new 

possibilities, which may have the special properties to revolutionise the 

telecommunication industry and which can overcome the problems associated 

with conventional fibre. Although the principles are the same as a 

conventional optical fibre but photonic crystal fibre offers many advantages 

over conventional fibre, such as controllable dispersion and a greater 

bandwidth. The photonic crystal fibre can outperform conventional fibre optics 

in several respects. Conventional optical fibres are formed using two different 

sorts of glass, which have slightly different refractive indices. A higher-index 

core region is embedded within a lower-index cladding, so that light can 

become trapped within the core by total internal reflection from the 

core/cladding interface. In contrast, photonic crystal fibres use just a single 

material, such as pure silica, which has a regular pattern of tiny air holes 

running along its length and can transmit a wide range of wavelengths without 

suffering from dispersion, specially the type of PCF that was designed for this 

research. Photonic crystal fibre was discussed in Chapter 2. 
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Depending on the transverse structure design photonic crystal fibres have 

very different properties, including single-mode propagation regime in a broad 

band spectral range, large/small mode area to reduce/increase nonlinear 

effects, low or high bending losses, high nonlinearity for harmonic and 

supercontinuum generation, highly controllable polarization and group-velocity 

dispersion, transmission spectra, and birefringence. 

The objectives set out at the beginning of the study have been successfully 

achieved with a detailed analysis of results during the course of the entire 

work. In this work, a numerical method based on the full-vectorial finite 

element formulation and the rigorous beam propagation method with PML 

boundary condition have been extensively used in order to accurately 

characterise the photonic crystal fibres and to study their birefringence and 

leakage loss properties. This thesis consists of nine chapters. 

Chapter 1 had reviewed the fundamental of optical fibre, and described the 

ray theory. This chapter had presented information about optical fibre in areas 

such as: definition, optical communication system, historical background, 

structure, types, fabrication mechanism, light guidance mechanisms, 

advantages, and applications. 

Chapter 2 had described the basic of photonic crystal fibre. This chapter had 

provided information about the definition of PCF, historical background, 

structure and types of PCF, advantages and applications of PCF, fabrication 

of PCF, and finally the novel properties of PCF. 

Chapter 3 had presented the numerous types of numerical solutions for PCF 

analysis and had dealt with the basic principles and theory of the numerical 

methods. In this chapter, it had been mentioned that full-vectorial approach 

was necessary to characterize accurately the PCF. Comparison of different 

numerical methods had also been presented and finally defined why finite 

element method was one of the most appropriate methods for the modal 

solutions of PCF. 
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Chapter 4 had introduced the finite element method which is known as the 

general-purpose numerical approach for optical waveguides and is gradually 

being used by more researchers. In this chapter, the fundamental concepts 

such as the electromagnetic field equations, boundary condition, finite 

element formulation, discretisation of the domain, shape functions, spurious 

solution, the element matrices, and infinite element analysis were explained in 

detail. The vector H-field variational formulation has been implemented. 

However with this H-field formulation, the appearance of the spurious modes 

along with the physical modes had been a main drawback. The penalty 

function method was introduced in order to eliminate these spurious modes by 

imposing the constraint yr·H = O. The research work had clearly shown that the 

finite element method has emerged as one of the most powerful, versatile, 

and accurate methods to accurately characterize the modal solutions of PCF 

as well as in analyzing the birefringence properties of PCF which can be used 

to represent any arbitrary-shaped peF with arbitrary hole shapes, sizes, 

orientations and placement. The infinite elements can represent accurately 

the exponentially decaying optical field outside the core region. Although, if 

perfectly matched layers (PMLs) were used, another important parameter, the 

leakage loss, could be obtained but the eigenvalue equation would be 

complex and storage and computational time would be at least double. 

Chapter 5 had reviewed the fundamental of the beam propagation method 

which is used to calculate the leakage loss of the PCF. This chapter had 

presented basic information about beam propagation method in areas, such 

as: historical background, underlying mathematical theory, applications, 

numerical techniques, and boundary conditions. This approach had been 

used extensively in this thesis to calculate the leakage loss of the PCF. 

Chapters 6 to 8 were dealt with the numerical results, carried out during the 

entire research work. Chapter 6 first described square lattice planar PCF 

initially with square core followed by rectangular core. Modal solutions were 

then presented to understand the basic properties of photonic crystal fibres 

and to analyse the two and three-dimensional square, and rectangular core 

PCF. Modal solutions for the fundamental and higher order quasi-TE and 
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quasi-TM modes had been obtained in this work. Important design 

parameters, such as the effective indices, modal field profiles, variation of 

their spot-sizes, modal hybridism, and GVD properties had been calculated 

using a rigorous full-vectorial finite element based approach. In order to 

reduce the computational cost and also to achieve adequate mesh refinement 

in the core region, the existing two-fold symmetry had been exploited. 

Photonic crystal fibres with a hexagonal array of holes have been widely 

studied by many authors and a similar structure was also considered in 

Chapter 7 for the further investigation. Initially, a PCF with identical holes with 

a 2.2 Ilm pitch had been investigated. Two different hole diameters had been 

considered here, for d = 0.66 Ilm and 1.1 Ilm, yielding a d/A ratio of 0.3 and 

0.5, respectively. Important design parameters, such as effective indices, field 

profiles, spot-sizes, hybridism, power confinement factor, and the GVD 

properties had also been calculated in this chapter for equal and unequal 

circular hole PCFs. The variation of the GVD was shown through the effect of 

the hole diameters and asymmetry and with the use of this modelling 

approach it might be possible to design a PCF with a specific GVD, or other 

optical properties, by adjusting the different fabrication parameters. For a PCF 

with a regular hexagonal hole arrangement of a fixed diameter, a six-fold or 60 

degree rotational symmetry exists, which makes the modes degenerate. 

However, strictly speaking the TE and TM modes are not degenerate as the 

required 90 degree rotational symmetry does not exist. For this structure with 

identical holes, in practice, the modal birefringence is very small. The 

dominant HY field profiles of the fundamental quasi-TE (HY11 ) mode for d/A= 

0.30 and d/A= 0.70 were shown earlier in Figs. 7.7a and 7.7b, respectively. It 

was clearly seen that for lower value of the air hole diameter, the field 

extended in the silica bridging area (in-between the air holes). On the other 

hand for the larger air holes with narrow bridging area, the field was more 

confined in the core, as they were restricted from the low-index air regions. 

The effect of the hole diameter on the spot-size was clearly visible, and its 

variation was shown in Fig. 7.6. 
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Next in Chapter 8, the modal birefringence properties of a PCF were 

investigated for a situation where the 90 degree rotational symmetry does not 

exist. In this case, the size of one of the air-holes, d2 , was different from the 

others which was ideal for calculating modal birefringence. Initially, two air 

holes are enlarged, as shown in Fig. 8.3, to break the symmetry of the 

structure, so that modal birefringence can be calculated. Later on, four air 

holes, as shown in Fig. 8.4a, are enlarged to break the symmetry of the 

structure. Comparisons of both of the results were also discussed in section 

8.5.2.3. The wave guiding properties of PCFs, such as modal index, spot-size, 

group velocity dispersion, and modal birefringence value strongly depend on 

the hole diameter and the period, for a given operating wavelength. Therefore, 

the variations of the modal solutions with the hole period, were shown in 

section 8.5.4. It was expected that a lower pitch length would produce a 

higher birefringence for a given structural asymmetry. To achieve a higher 

birefringence value, next, a smaller pitch length, A = 1.1 Ilm was considered. 

In that case, only one of the air hole diameters (d2) was enlarged to increase 

the modal birefringence, while keeping all other normalized air hole diameters 

fixed at d/A= 0.50. The variation of the birefringence (8) with the normalized 

air hole diameter (d 2/A), was shown in Fig. 8.17, when A = 1.1 Ilm and the 

operating wavelength A = 1.55 Ilm. It could be noted that the modal 

birefringence was much higher than could be achieved by simply adjusting the 

waveguide parameters of a SMF. So far, the highest value of the 

birefringence, B = 0.00735 at wavelength of 1.55 \-1m, for any asymmetric PCF 

with circular air-holes is reported [Rahman, et al., 2006b]. Finally, Chapter 8 

was designed to calculate the leakage loss of photonic crystal fibre using the 

finite element based beam propagation method (BPM) with PML boundary 

condition. In this chapter, the effects of the d2/A, number of holes and the 

geometrical parameters of the PCF on the effective index, the confinement 

losses, the effective mode area and the effects of the wavelengths had been 

thoroughly studied for the fundamental mode. 

It seems clear from the great diversity and the recent progress in the area of 

photonic crystal fibre that this will be an important, rapidly growing and 
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intellectually stimulating field for many years to come. The demand for holey 

fibres from industry is clear. It looks likely that within the next few years they 

will be making a whole world of difference. There are tremendous possibilities 

to use this fibre to simplify the design of optical networks and do things that 

are very difficult or expensive today, if companies working to produce peF 

can overcome the obstacles standing in the way of commercially 

manufacturing peF. The cost savings potential of such an achievement is 

enormous, but so is difficult [Lindstorm, 2001 b]. 

9.2 Future Research Directions 

Ferrando et al. had shown that how the birefringence profile of the fibre can 

be tailored with large degree of freedom and had shown that the ordinary 

honeycomb and triangular [Ferrando et al., 2000b] peF had negligible 

birefringence. Hansen et al. [Hansen et al., 2002] designed the 

microstructured region slightly elliptical (2.80/0), as a result an ellipticity of the 

core region was giving rise to birefringence that made the fibre polarization 

maintaining. 

It is well known that the form birefringence of silica fibre is smaller due to the 

smaller index contrast and additional birefringence may be introduced using 

stress-applying parts, with different thermal expansion coefficients, as in the 

design of Panda type fibres. On the other hand, the form birefringence of a 

peF can be significantly higher than that of the Panda fibres because of their 

higher air/silica index contrasts. In Panda type fibres, due to thermal stress, 

both the ordinary and extraordinary indices changes, but their spatial 

variations are nonuniform [Liu et al., 1994] and their difference, although 

larger than the form birefringence of solid silica fibre, are smaller relatively 

than the form birefringence of asymmetric peFs. Folkenberg et al. have 

designed a polarization maintaining [Falkenberg et al., 2005] and a single 

polarization [[Folkenberg et al., 2004] peF with the stress applying parts to 

increase the birefringence. Since the designs used identical air holes, with low 

form birefringence, the increased birefringence values due to the stress 

present were between 1 x 10-4 [Kubota et al.] and 3 x 10-4 [Folkenberg et al., 
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2005], which is of a similar order to that in a Panda or Bow-tie silica fibre [Liu 

et al., 1994]. 

The air holes of a PCF can also be selectively filled up with other materials 

having different refractive index values, such as polymer [Kerbage], to create 

a structural asymmetry. Besides obtaining a moderate birefringence value, of 

the order of 10-
3

, this parameter can also be tuned with the temperature 

adjustment. When the refractive index change of the polymer, an/aT, is taken 

as -4 x 10-
4

/
o C, this yields a birefringence change of the order of aB/aT ~ 3 x 

10-
6
/ DC. It has also been shown that twisting or bending of the fibres also 

introduces additional birefringence. Under external force, a waveguide 

deforms and due to the elasto-optic effect, both the profiles of the ordinary 

and extraordinary refractive indices change. However, these birefringence 

changes have been modest and Zhu and Brown [Zhu and Brown] have 

reported of a birefringence change of 10-4
, for an applied force of 1000 N-m. 

Although, the effects of stress applying zones, temperature changes, and 

applied pressure on the enhancement of the birefringence in such highly 

birefringent PCFs appear to have been limited, these physical parameters can 

however be used to tune the modal birefringence or to control the polarization 

degeneration of the light wave for important communications and sensor 

applications. The powerful finite element method can be used to represent 

such a complex structure accurately, and this approach is also versatile and 

effective specially when combined with other physical models, such as the 

acousto-optic, thermo-optic, elasto-optic, and electro-optic models. As a result 

it is extremely useful to optimize various novel PCF based components for 

future applications in communications and sensing in particular. 

For PCFs with larger cores and positive dispersion at telecom wavelengths, 

the confinement loss is negligible and very low transmission loss below 0.6 

dB/km has been demonstrated [Farr et al.]. By improvement of fabrication 

process, at wavelength 1.55 ~m, Tajima et al. [Tajima et al.] developed low­

loss (0.37 dB/km) photonic crystal fibre. Hansen et al. [Hansen et al., 2003] 
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showed that the PCF with nonuniform hole-distribution over the cross section 

of the fibre has higher confinement loss compared to the PCF with uniform 

hole-distribution. 

Researchers from the University of Sydney, Australia, have fabricated 

photonic crystal fibre based on polymer optical fibre (PC-POF), which they 

claim is easier to manufacture than glass photonic crystal fibre [Martijin, et a/.], 

as only one polymer is involved and no dopants are required, which makes it 

more suitable for mass-production. They have created hundreds of meters of 

easy-to-make polymer based photonic crystal fibre. Conventional POF is 

usually multimode and has high losses. PC-POF can not only be made single 

mode but also with reduced losses. Polymers are also known to maintain their 

structural uniformity throughout the fibre, whereas a collapse of internal 

structure is sometimes observed in a glass PC fibre [fibers.org]. 

Pure silica HFs can exhibit effective nonlinearities more than 50 times higher 

than conventional fibres, and that the confinement loss can be lowered below 

the loss of standard fibre types [Finazz et a/., 2003]. Ferrando et al. [Ferrando 

et a/., 2000a] showed that the tailorability of the cladding structure enables 

high flexibility in the design of the dispersion profile facilitating different 

nonlinear effects, especially by the choice of zero-dispersion wavelength 

(ZOW). White et a/. [White et a/., 2001 b] designed PCF with Ge-doped centre 

region core to increase the nonlinear refractive index of the core, create 

smaller mode field diameter and to reduce confinement loss. The novel and 

very flexible dispersion properties and possibility for very tight mode 

confinement of photonic crystal fibres makes this fibre type highly attractive as 

nonlinear medium. The most important parameters for nonlinear fibres are the 

zero-dispersion wavelength, AD, and the dispersion slope. The nonlinear 

photonic crystal fibre with AD at 1.55 J.!m has a many unique properties, which 

are different from standard nonlinear fibres [Hansen et a/., 2003]. Research 

group from Crystal Fibre AlS demonstrated a highly nonlinear PCF with zero­

dispersion at 1.55 l-lm [Hansen et a/., 2002]. 
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Chapter 9 Conclusion and future research direction 

New PCF types, such as: elliptical hole PCF [WU and Chao], double-core PCF 

[Buczynski et a/.; Mangan et a/.; Zhang et a/.] in different lattice can be 

examined in future for comparing with existing research work. Transmision 

properties of double-core square and hexagonal lattice photonic crystal fibres, 

fabricated from multi-component glass, are measured, inter-core coupling 

mechanism and possible applications are discussed [Buczynski et a/.]. 

Transmission properties of a double-core hexagonal lattice PCF is 

experimentally verified by Mangan et a/., [Mangan et a/.]. Highly birefringent 

hexagonal lattice double-core PCF was also used as polarization splitters 

[Zhang et a/.]. Taylor et at. [Taylor et a/.] modelled the multi-core PCF 

structures using an equivalent step-index fibre model [Birks et a/.] and coupled 

model theory [Ghatak and Thyagarajan]. Therefore, the demonstration of 

feasible multichannel communication with acceptably low crosstalk has been 

successfully achieved [Taylor et a/.]. 

The air-holes of the microstructured optical fibres (MOFs) can be filled with 

various liquids to modify their optical properties. By changing the properties of 

the liquid, it is possible to modify the propagation properties of the fibre and 

hence to obtain tunable fibre devices [Wolinski et a/.]. Eggleton et at. 

demonstrated the first fibre device with tunable transmission, where a high­

index liquid was dynamically positioned in a tapered solid fibre. Liquid crystals 

(LCs) seem to be especially interesting substances to infiltrate MOFs, since 

their refractive indices can be relatively easily modified by temperature or by 

external fields. The PCFs with LC inclusions open up a wide range of new 

possibilities for light propagation tuning properties. In this way, a novel class 

of micro-structured fibres that can be called 'photonic-liquid crystal fibres 

(PLCFs), can be obtained [Eggleton et a/., 2000]. 

Filling the hollow fibre core with gas or other materials to see the impact on 

light is another possibility researchers are thinking about. Beaming laser light 

through air has many advantages over beaming it through erbium-doped 

silica, according to Russell. In the first place, using air as the transport 

medium almost entirely eliminates optical non-linearities, dispersion and 

Fresnel reflections [Lindstorm, 2001 b]. 
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Appendix 1 

Calculation of Material (Si02) Dispersion 

Using Sellmeier's equation from G P Agrawal [Agrawal], the refractive index of 

silica (ng) at different A can be calculated. 

Sell meier's Equation: 

+ 

n(x) can be obtained 

Where, 

A = 1 

G1= 0.69617 

G2= 0.40794 

G3= 0.89748 

A1 = 0.0684 

A2 = 0.1162 

A3 = 9.8962 

A12 = 0.00467856 

Al = 0.01350244 

Al = 97.93477444 

G1 = 0.69617 

G2 =0.40794 

G3= 0.89748 
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Appendix 1 Calculation of Material (Si02) Dispersion 

To avoid all the long calculation, a small program is written to calculate ng at 

different A 

IMPLICIT REAL *8(A-H,O-Z) 

A1=0.0684dO 
A2=0.1162dO 
A3=9.8962dO 

A1S=A1*A1 
A2S=A2*A2 
A3S=A3*A3 

G1 =0.69617dO 
G2=0.40794dO 
G3=0.89748dO 
ZERO=O.OdO 

110 write (6,101) 
101 FORMAT(,GIVE LAMDA') 

READ(5,*)AL 
IF(AL.LE.ZERO)GOTO 150 

G11 =G1*AL*AL/(AL*AL-A1 S) 
G22=G2* AL *AL/(AL * AL-A2S) 
G33=G3* AL* AL/(AL * AL-A3S) 

ANSQ=1 +G11 +G22+G33 
AN=DSQRT(ANSQ) 
write(6,102)AL,AN 

102 FORMAT('LAMDA=',F10.5,'n=',F10.7) 
goto 110 

150 continue 
stop 
end 
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Appendix 2 

Calculation of the Element Matrices 

From equation [4.55]: 

[A le = &-1 f[QJ* [Q] dO. 
I'!. 

_ jJ2[NY[N]+ a[NY a[N] 
ay ay 

a[NY a[N] 
ay ax 

-1 
=& 

a[NYa[N] 
ax ay 

_ jJ2 [NY [N]+ a[NY a[N] 
ax ax 

jfJ a[~y [NJ jfJ a[~y [NJ 

From equation [4.56]: 

[Bt = f1 f[NY[N] dO. 
I'!. 

[NY[N] [oy[o] [oy[o] 
= f1 [0 Y [0] [N Y [N ] [0 Y [0] dO. 

I'!. [oy[O] [oy[o] [NY[N] 

jjJ[NY a[N] 
ax 

j,B[NY a[N] 
ay 

a[NY a[N] a[NY a[N] 
+ -ay ay ax ax 

[A 1.1] 

[A 1.2] 

The integrations of the shape functions in equations [A 1.1] and [A 1.2] can be 

evaluated by using the following relation for a triangular element: 

"' "'k'2' fNi Nj Nk dO. = l.J... A 
1 2 3 ( " " + k 2) , e 

I'!. l+J +. 
[A 1.3] 

Where, Ae is the area of the triangular element. 
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Appendix 2 Calculation of the Element Matrices 

Hence the following integrals can be achieved: 

JN I
2 dO = IN; dO = IN; dO = Ae 

t;. t;. t;. 6 
[A 1.4] 

[A 1.5] 

[A 1.6] 

Therefore from equation [A1.1], some of the elements of the 9 x 9 [A]e matrix 

can be calculated as: 

[A 1.7] 

[A1.8] 

[] -~ J- aNI aNI dO = - ~ b A 
A e(1,4) - & t;. By ax & CI 1 e 

[A 1.9] 

Matrix [B]e is also a 9 x 9 matrix and some of the elements are calculated as: 

A 
[B] JN2 dO = lI_e 

e(l,l) = f.1 1 r 6 
[A 1.1] 

t;. 

A 
[B] IN N dO = lI_e 

e(1,2) = f.1 1 2 r 12 
[A1.11] 

t;. 

[B t(I,4) = 0 
[A 1.12] 
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Appendix 3 

Calculation of the Wave Equations 

Starting with Maxwell's curl equations [5.5] and using equation [5.6] yields 

[Obayya et a/., 2005; 2000a], the vector wave equation for the magnetic field 

vector, H, can be derived as: 

[5.12] 

Where n is the refractive index and ko is the free space wavenumber and is 

given as: 

ko = OJ~l1o&o = ~ 

Where, A is the free space wavelength. 

[5.13] 

Equation [5.12], known as full-vectorial wave equation, contains the three 

components of the magnetic (H) field vector. This wave equation can be 

reduced to only the two transverse (Hx or Hy) components using the zero 

divergence condition: 

8H 8Hy 8H a __ X+a __ +_Z=O 
x8x Yay 8z 

[5.14] 

Substituting [5.14] into [5.12] gives the following two coupled wave equations: 

~(n-2 8Hx)+a ~(n-2a 8HxJ+n-2ax~(ax 8Hx)+ 
8z 8z y ay y ay ax ax 

8 ( 8H J 8 (-2 8H y J k 2H +n-2a - a --Y -a - n a -- =0 Ox Xax Yay Yay Xax 
[5.15] 
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Appendix 3 
Calculation of the Wave Equations 

~( -2 aHy J a (-2 aHy J -2 a ( aH J n +a - n a -- +n a a y + az az x ax x ax y ay y ay-

o y +n a y - a x --
x -a

x
- n-2 a __ x =0 k2 H -2 a ( aH J a ( aH J 

ay ax ax y ay [5.16] 

In deriving the wave equations [5.15] and [5.16], the refractive index is slowly 

varying in the direction of propagation (~2) = 0, has been considered. 

Equations [5.15] and [5.16] have less number of unknown components and 

also the zero divergence condition is automatically satisfied through the 

derivation, and hence, there is no possibility for spurious solutions to 

propagate. Therefore, solving equations [5.15] and [5.16] is more suitable 

than equation [5.12]. 

The fields can be separated as slowly varying envelopes and a fast-oscillating 

phase term by assuming the wave travels along the +z direction: 

{Z:} = {~: }exp(- jnokoz) [5.17] 

Where, no is a reference index of refraction which should be chosen such that 

the envelope varies very slowly in the +z direction and If/x and If/y are the 

slowly-varying envelopes of the Hx and Hy components, respectively. For this 

purpose, no should be chosen very close to the effective index of the guided 

modes of the concerned structures. For monomode waveguides, no can be set 

equal to the effective index of the fundamental mode. But, for multimode 

waveguides, the situation will be complicated, as the effective indices of a" 

guided modes have to be determined in order to set no to the proper value. In 

this situation, a better approximation is to set no as the average of the guide 

and substrate refractive indices. 

When substituting equation [5.17] into equations [5.15] and [5.16], the 

following two coupled unidirectional wave equations can be obtained: 
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Appendix 3 Calculation of the Wave Equations 

_28
2
lf/x 2' k -2

8lf/x 8( -2 8lf/x) -2 8( 8lf/xJ n - In n --+ a - n a -- + n a - a -- + 
82 Z2 0 0 8z Y 8y Y ay x ax x ax 

[5.18] 
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