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Abstract

The study of credit derivatives is one of the most popular and controversial issues

that concerns the entire financial industry. Increases of defaults and bankruptcies

during the recent credit crunch has stipulated a heated debate about the adequacy

of the existing pricing and hedging methodologies for credit derivatives portfolios.

The main objective of this thesis is to propose and evaluate a treatable framework

that addresses many of the deferences of the standard market model for portfolios

of credit instruments.

After review and product introductions in CHAPTER 1 we first summarize the

common simulation methods for pricing portfolio credit derivatives, then we pro-

pose an alternative methodology that is based on an economical sense of the mod-

els and market observables in CHAPTER 2. Such simulation method provides

a testing environment which houses the asset value based models with reliable

assumptions. Meanwhile, a PCA analysis on CDO market spreads is performed

on market data in CHAPTER 3. In CHAPTER 4, we develop an old school dy-

namic model for credit derivative valuation, it match the market needs, fit quoted

spreads while providing time evolution using historical market observable mea-

sure. Finally, combining together the model and simulation framework, we are

able to construct hedging strategies based on simulation results in CHAPTER 5.

We mainly focus on the utilization of default probabilities in pricing techniques

and a close-form formula is provided to calculate probability of default from the

proposed growth rate factor.
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Chapter 1
Overview of Credit Derivatives

Credit risk is one of today’s heated topics in finance. Being in the center of a

financial crisis which is described as ‘once in a hundred year time.’ by Mr. Alan

Greenspan (formal Chairman of the Federal Reserve), banks are increasing their

attention on capital management and are hoping to adopt a refined approach to-

wards credit risk. In the meantime, insurance companies, reinsurance companies

and hedge funds are all big players in this market.

1.1 Introduction

Allowing protection buyers to hedge default and recovery risks, credit derivatives

give the protection sellers the flexibility to define credit exposure by different

risk appetites. The payoffs of these financial products depend on the occurrence

of certain credit events defined in the contract, and normally this occurrence is

described as a default of the referenced entity. Generally, a ‘default’ is meant to
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be a failure to make payments on due dates either through inability to maintain the

interest servicing or because of bankruptcy which leads to inability to repay the

principal received from investors, other credit events such as a change in credit

ratings are also widely used in the industry. In the year 1999, the International

Swaps and Derivatives Association (ISDA) released the standard documentation

which defined the credit obligations and events by six main categories as listed

below:

• Bankruptcy.

• Failure to Pay.

• Restructuring.

• Obligation Acceleration.

• Obligation Default.

• Repudiation/Moratorium.

Meanwhile, it is quite possible that during the credit event, the investor does not

lose the whole amount invested, instead, the loss is minimized by the recovery

amount, hence the reviewed and proposed models here will only focus on the

models that give the payoff of the financial product as a function of time of default

and recovery rates. And in most cases, we adopt the simplicity of assuming a fixed

and constant recovery rate and keep focusing on modelling the distribution of the

times of default(s).

On the modelling aspect of the products, there are basically two types of models

involved: the structural approach and reduced form approach. The former aims to

2



model micro finance structure of the firm and define the trigger of default using

the asset value and outstanding debt level, while the reduced form models try to

deal with the common default probability using Poisson-type processes driven by

market factors like LIBOR and in this case the default is not linked together with

inner company issues.

In the following sections we will review the main types of credit derivatives start-

ing with the very basic default-able corporate bonds, then the credit default swaps

(CDS) and the collateralized debt obligations (CDO). Related products such as

the CDS index, are also included to help understanding the working mechanics of

the other complex credit products.

1.2 Review of Credit Derivatives

In this section we will start from the underlying default-able bonds which is the

key credit-risk-embedded financial instrument, then move on to building bricks of

the whole credit derivatives world, through credit default swaps, including their

modelling and valuation, to finally conclude with a review of tranched portfolio

products. Simple examples will be given for each of the products to explain their

working mechanics in detail but for complex products like CDOs, the pricing

details will be shown in later chapters.

1.2.1 Credit-risky Corporate Bonds

A Corporate Bond is a bond issued by a corporation. The term is usually applied

to long maturity debt contracts. Sometimes, the term is used to include all bonds

3



except those issued by governments in their own currencies, however, in this thesis

the term corporate bond only applies to those issued by corporations.

Corporate bonds are often listed on major exchanges and the coupon is usually

taxable. Bonds with zero coupon but higher redemption value are called zero

coupon corporate bonds, there is no difference in pricing principle, i.e. the time-

value discounting structure. However, despite being listed on exchanges, the vast

majority of trading volume in corporate bonds in most developed markets takes

place in decentralized, dealer-based, over-the-counter markets.

Comparing to government bonds, corporate bonds comes with certain default risk

of the issuing company, thus corporate bonds generally have a higher risk of de-

fault. This risk depends on the particular bond issuing corporation, the current

market/rating/ranking conditions and the governments to which the bond issuer

is being compared. Corporate bond holders are compensated for this risk by re-

ceiving a higher yield than government bonds. To hedge the credit risk exposure

of investing in a corporate bond, one can obtain an unfunded synthetic exposure

matching the bond issuing company via credit default swaps.

The reverse also holds, i.e. we can use corporate bonds as hedging instruments to

cover credit exposure of selling CDS contracts. The bond used as hedging instru-

ment is the referenced underlying bond of the credit derivative. One of the main

attractions of choosing the bond hedging route is that, in case of a physical CDS

settlement, one may have the bonds delivered as payoff of CDS claim instead of

paying cash.

On the other hand, the hazard rate or the probability of default for the CDS con-

tract and the risky bond is the same as they refer to the same entity, in other words,

both securities move in parallel. So it is natural to have the referenced bonds as

4



the first choice of a hedging instrument. One disadvantage is that strategies built

with a long position of bonds might be expensive as the initial payment of bond

could be large. However, very similar to the use of options in the stock market,

this expense could be covered using options or futures on the underlying bonds.

Defaultable Bond Pricing

We know that the price of a CDS is given in the form of basis points standing for

a percentage of the referenced defaultable bond price. Consider a defaultable zero

coupon bond with face value £1 at T if it survives until maturity, in case there is a

default before T , we suppose the recovery rate is no larger than one and this rate

is greater than zero. We denote this recovery rate by R̂ ∈ (0, 1). With a constant

interest rate and recovery rate r, the difference of bond yield to maturity (YTM,

hereafter) and the risk free interest rate is denoted by a where r + a = YTM,

the defaultable bond price B′ at time zero1 is equal to the difference between a

risk-free bond and the time zero value of the loss at default:

B′ = e−rT − e−rT (1− R̂)(1− e−aT ) = e−(r+a)T + e−rT R̂(1− e−aT )

In case there is a loss of total investment, or say, zero recovery, we obtain:

B′ = e−(r+a)T (1.1)

Relaxing the constant interest rates, recovery rates assumption, the prices of default-

free and zero recovery defaultable bonds are given by: (see Schonbucher (1998)):

B = E
[
e−

∫ T
0 r(s) ds

]
and B′ = E

[
e−

∫ T
0 r(s)+a(s) ds

]
.

We illustrate below the case of having an offset cash-flow using a simple exam-

ple with a single name Credit Defautl Swap (CDS, hereafter) and its underlying
1Normally, quantities of defaultable bonds are denoted by the same notation for a risk-free

bond plus a dash(’).
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default-able bond.

Say we have a T -year corporate bond with face value of Nb, coupon is paid semi-

annually with rate c, and the present value of this risky bond is Vb. The CDS

contract has a notional of Ncds and the premium spread of this CDS contract is set

to be s over the life time of the contract. The interest rate is considered constant

and denoted with r. The recovery rate R is set the same for both the CDS and the

risky bond2.

Consider the cash-flow in the trading book, the example is demonstrated in the

following figure:

Figure 1.1: Hedging a single name CDS with the underlying bond.

In case there is no default until maturity, the value of portfolio, ∆V , is given by:

∆V = −Vb +Nbe
−rT +

2T∑
0

(cNb − sNcds)e
−rti

If the default arrive prior to the maturity of time T , the value of portfolio over the

whole time interval is given by:

∆V = −Vb + (RNb + (1−R)Ncds)e
−rτ +

τ∑
0

(cNb − sNcds)e
−rti

Here τ stands for the time of default in the above equation. The optimal hedging

aims to achieve a portfolio value which satisfies: E[∆V ] = 0, by changing the

2This is always true even in practice, as the recovery rate refers to the proportional value re-

covery of the referenced bond, details can be found in Rajan, McDermott & Roy (2006).
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bond notional against the CDS notional. In other words, the portfolio manager

may need to regularly adjust the position of longing bonds by active bond trading.

Note that for portfolio product hedging such as hedging strategy for CDOs, this

could be expensive if hedging is the only motive as there is a name match between

the bond portfolio and the CDO reference pool.

1.2.2 Credit Default Swaps and Baskets

Credit Default Swaps in the form of a single-name contract, simply allows an

investor to gain or sell risk exposure to a reference asset without using any funding

(which means we don’t have to buy or sell any underlying bond or loans of this

entity). Most of the CDSs are contracted on defaultable bonds such as corporate

bonds, and normally we can consider the default of the reference asset as the

default of a defaultable bond issued by the reference company.

Very similar to insurance contracts, a credit default swap provides protection

against the risk of one event of default of a reference company. We give the key

word explanations as following:

Reference entity: the particular company with the risk of default mentioned in

the financial agreement.

Credit event: the default of the reference entity.

For example, assume the protection buyer (or the insured) holds a bond issued by

the reference entity with a par value at maturity time T . If the company fail to

pay3 the par value at time T , the protection buyer (CDS holder) has the right to
3Other defaults like bankruptcy or sudden lose in stock market may be contracted differently
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sell4 the bond for its par value to the protection seller (or say, insurer) and in case

for a plain vanilla CDS, once it is exercised, it is knocked out; in the meantime,

the insured has to pay for the protection he got for the valid period of the contract

and a final accrual fee might be needed for the settlement (See Wilmott (1998),

Jarrow & Turnbull (2000) and Kolb (2003) for more about credit derivatives). We

further define three more key words below:

Reference obligation: the bond.

Notional principal: agreed total par value of the bond that can be sold in the

swap.

Basis points: the fee rate5 applied in the CDS, the payment is the product of Basis

points and Notional principal.

Continuing the example, we add more details to illustrate how a typical CDS

works and settled. Assume that a three-year CDS starts Jan 1st 2006 with notional

principal of £100 and the annual fee rate is 100BP. Then, the insurer receives

£100× 1%× 1year = £1 on Jan 1st of each of the years 2007, 2008 and 2009

if there is no default. In case there is a default on 1st Jun 2008, the CDS can be

settled either in physical or cash terms depending on the contract. The protection

buyer has the right to sel the bond for its par value to the insurer in physical

method of settlement. If cash settlement is required, then the cash payoff will be

the difference between the par value and the market price of the bond, that is to

say, if the value of the bond is £35 at default, the total difference is then £65

in different CDSs.
4Mainly there are two different ways of settlement when a credit event occurs, details will be

given later in this section.
5Basis Points (BP) rate, 100BP=1%.
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which is equal to the cash payoff in this case. Meanwhile, the final accrual fee is

calculated to be:

£100× 1%× 1

2
year = £0.5

which is the insurance fee for half a year.

Of all standard credit default swaps, the diversity exists mainly in the contract

terms. And here we give a short list of main differences of the most mentioned

standard CDSs:

• Binary: the indemnity payoff at default can be contracted to any amount.

• Basket: there is a list of specified reference entities in the contract and the

default payment is made only when the first name in the premised list de-

faults.

• Contingent: in this case, there is a additional condition to trigger the default

payment. This trigger can be stated in the contract as a default of another

reference entity or change of certain market variable values.

• Dynamic: the notional principal is set to be related to the market value of a

swap portfolio.

In the next sections, we will present first the basic valuation method of pricing a

regular credit default swap, and then we will extend the methodology for more

complex CDS contracts such as forward CDSs.

The Valuation of CDS

A corporate bond has either a higher interest rate than a similar Treasury bond or

it sells at a cheaper price. If we simply assume this is happening only because of

9



the probability of default, we can easily get that the present value of the cost of

default as the difference between the present value of the two bonds. Following

this idea, we may want to know something about the default probability before we

buy the bond or start thinking about the related CDS price.

The Default Probability

We start with a simple example. Say that the ‘credit-risk free’ bond rate of a three

year Treasury bond with par value £1 is 2% and of a zero coupon corporate bond

of the same face value and maturity date with zero recovery is 2.5%. The present

value of both bonds is e−0.02×3 and e−0.025×3 respectively, and the value of default

cost at present is therefore: e−0.02×3 − e−0.025×3 = 0.0141. (Here we assume that

the corporate bond can only default at maturity.)

Here we use p to denote the risk-neutral probability of default. In case of a default

under our assumed situation, it will cause a loss of full face value of £1 at matu-

rity, so the risk-neutral expected loss from this default is then: pe−0.02×3, in other

words:

pe−0.02×3 = 0.0141 = e−0.02×3 − e−0.025×3

so we have p = 1.49%. In general, let rB denote the cooperate bond rate while r

is the risk-free rate and denote the maturity by T . From the above equation, we

get:

p =
e−rT − e−rBT

e−rT

which follows that:

p = 1− e−(rB−r)T (1.2)

(See Hull & White (2000) for more details.)
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Extending to More Complicated Cases:

In the case the bond defaults not only at maturity but at any time during its life

time, the calculation of default probability becomes more complex and even if we

get it from the approach above the result will involve more variables.

Denote the credit-risky bond yield to maturity by Y , the difference between the

bond YTM and the risk-free interest rate r is calculated by (Y −r) and denoted by

a. With a slight abuse of terms, we name a as the risky YTM of a credit-risky bond.

Note that the corporate bond always has higher interest rates than Treasury bonds6

with similar maturity, so the risky YTM of our bond, a, is nonnegative. Now as

the bond can default at any time during the life of the contract, we can simply

imagine it is a combination of infinitely many bonds with different maturity dates

which are only default-able on their maturity. As the bond yield a and the non-

default contract time of the bond are independent, it follows that the bond yield

rates of the group of bonds with maturity dates in the time interval [0, T ] form a

stochastic process. It is not hard to get that the default is more likely to happen

on maturity dates of bonds with higher yield to maturity, and as the outcomes at

any time during the bond maturity is just default or not, the default dates form a

nonhomogeneous Poisson process7 in the interval [0, T ] which is characterized by

its stochastic intensity a.

Define the default probability by q(t), so the default probability between time

t > 0 and s > t seen from time t is q(t)× (s− t). Meanwhile, define the intensity

at time t as the hazard rate of time t which is denoted by a(t). Applying the non

homogeneous density function of Poisson process, the default intensity for time

6Cheaper selling prices can be converted into higher interest rates easily.
7Known as the default counting process or a Cox process. For more details or formal definition,

see Lando (1999).
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interval [0, t] is given by
∫ t

0
a(s) ds, for s ∈ [0, t], now suppose the default took

place on date τ , the related default probability for the default to take place within

time interval [0, t], i.e. 0 ≤ τ ≤ t, is:

q(t) = e−
∫ t
0 a(s) ds (1.3)

which lead us to the survival probability (no default over time interval, i.e. τ /∈

[0, T ]) as following:

1− e−
∫ T
0 a(s) ds (1.4)

(Similar results and details can be found in Bielecki & Rutkowski (2002).)

The expected risk-neutral survival probability over time interval [0, T ] condition-

ing on the hazard process a(t) is:∫ T

0

(1− q(t)) ds =

∫ T

0

(1− e−
∫ t
0 a(s) ds) dt.

CDS Pricing

Before we sign a CDS contract or an insurance contract, we are interested in

the compensation we can get in comparison we need to pay. So, looking to the

simple zero coupon bond example we had before equation (1.2) earlier in this

section, knowing that under the principle of no-arbitrage what we can get from

the indemnity is no more than the amount we lose. Thus, as our loss is 0.0141 in

the example, our best claim is exactly the same number 0.0141, and so is the price

of a CDS referencing the bond.

Suppose the CDS we mentioned above allows the bond to default at any time t

before T , but the indemnity payment is remained to be made at time T and there

is only one fee payment made by the CDS buyer. For no-arbitrage reasons, the fair

price of the fee payment should be the same as the discounted claim payment, this
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gives us the so called European-style zero recovery default put (assuming a par

value of £1). Denoting the value of such a claim by C, and the default probability

by q(t). On default, the value of claim is the discounted value of the underlying,

so the value of the default put can be easily found:

C = E [1− q(t)] e−
∫ T
0 r(s) ds = E

[
e−

∫ T
0 r(s) ds − e−

∫ T
0 r(s)+a(s) ds

]
= E

[
e−

∫ T
0 r(s) ds

]
− E

[
e−

∫ T
0 r(s)+a(s) ds

]
= B −B′

For a general but zero recovery CDS, the payment is made at default and the claim

at default will be the expected bond value at time t, calculated as of at time 0:

E
[
e−

∫ T
0 r(s) dsE

[
1− e−

∫ T
0 a(s) ds|a

]]
= E

[∫ T

0

a(t)e−
∫ t
0 a(s) dse−

∫ T
0 r(s) ds dt

]
which can be rewritten in the form:∫ T

0

E
[
a(t)e−

∫ t
0 a(s) dse−

∫ T
0 r(s) ds

]
dt =

∫ T

0

E
[
a(t)e−

∫ t
0 a(s) ds

]
B dt

=

∫ T

0

E [a(t)]B′ dt

where E [a(t)] is the associated forward rate of the spreads.

The cash flow in a CDS consists of two payment legs: fixed and floating. The cash

flow of the floating leg is the indemnity payment from the insurer while the cash

flow of the fixed leg is the payment fees for buying the CDS, and the principle of

CDS pricing is the equality of these two legs. The floating leg is the loss at default

we calculated above and the fixed leg is the sum of the periodical fee payments

until maturity if there is no default.

The periodical fee payment of each time length dt from time t to t + dt, is the

product of: the CDS spread rate s̄; and the value of the underlying bond over the

specified time interval [t, t+ dt], which can be calculated by B′t,t+dtdt. Hence the
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fee payment for this specified time period is s̄ ·B′t,t+dtdt. So the fixed leg over the

whole time interval is given by∫ T

0

s̄B′ dt =

∫ T

0

s̄E
[
e−

∫ T
0 r(s)+a(s) ds

]
dt = s̄

∫ T

0

E
[
e−

∫ T
0 r(s)+a(s) ds

]
dt

Now by applying the equality of the two legs, we have:∫ T

0

E
[
a(t)e−

∫ t
0 a(s) ds

]
B dt = s̄

∫ T

0

E
[
e−

∫ T
0 r(s)+a(s) ds

]
dt

Thus, the CDS spread s̄ is easily found as:

s̄ =

∫ T
0
E
[
a(t)e−

∫ t
0 a(s) ds

]
B dt∫ T

0
E
[
e−

∫ T
0 r(s)+a(s) ds

]
dt

=

∫ T
0
E [a(t)]B′ dt∫ T

0
B′ dt

In the case that the recovery rate is R̂, the new loss at default should be multiplied8

by (1− R̂), which gives us:

s̄ = (1− R̂)

∫ T
0
E [a(t)]B′ dt∫ T

0
B′ dt

(1.5)

Here notice that: as the default swap is knocked out at default, the fixed leg is

calculated with the defaultable bond price B′, but if the swap is not terminated at

default, the fixed leg value should be calculated using the default-free bond price

B. So, with different claim and stop strategies of the swap, the CDS spread can

vary.

8Note that there are different claim strategies resulting in different values in the pricing equa-

tion. An alternative claim strategy given in Hull & White (2000) is when the recovery rate is

effecting both the value of the bond and a final accrual payment A, that is to say the default should

be multiplied by 1− R̂(1 +A) under this strategy.
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1.2.3 CDS Index Tranches

Standard CDS indices are traded similar to a stock index on the request of liquidity

on a diversified set of credit products. But there is quite a difference for an index

with a tranched structure, as they are considered more as a class of Collateralized

Debt Obligations (CDOs). Typically, CDS index tranches are taken as a proxy for

common CDOs in both academic and business research.

There are two basic CDS index families, CDX for the North American market and

iTraxx for European market with subindices covering Japan and the rest of Asia.

The main indices are named CDX NA IG and iTraxx Europe and they contain

125 investment grade9 underlying names each, and the underlying companies are

equally weighted with same CDS notional. The number of tranches on trade is 5

for each index with a slight difference in the attach and detach point setting, and

the maturity of contracts is optional ranging between 3, 5, 7 or 10 years.

The settlement method on default and fair spread pricing for a CDS index tranche

is the same as in single name CDS contracts.

1.2.4 Collateralized Debt Obligations

The Collateralized Debt Obligations (CDO) is one of the most complex derivative

structures in the credit derivative family. The first trading of this product took

place in 1986 in the U.S. market and then heated in the 1990s.

The name CDO covers a wide range of products as a CDO can hold a variety

9i.e. with credit ratings above BBB in S&P ranking structure.
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of underlying assets such as bonds, loans, debts, asset backed securities (ABS)

or mortgage backed securities (MBS) and much more. These different classes of

financial products is called the ‘pool’ of the CDO, and a pool can be comprised of

more than one class of underlying assets and have multiple names under one class

of the assets.

In fact, the CDO10 itself is also an asset backed security according to the under-

lying pool, and its name also differs for different classes of underlying assets. For

example, if the underlying is a bank debt then it is of course a collateralized debt

obligation - CDO, but for corporate or emerging market bonds, it is then called a

collateralized bond obligation - CBO, and similarly for a underlying pool of bank

loans, it is referred to as a collateralized loan obligation, or a CLO.

Based on the type of underlying assets, CDOs are commonly classified into ei-

ther synthetic or cash CDOs, where the reference pool of a cash CDO is made

up of cash assets, i.e, corporate bonds or loans, while in a synthetic CDO the

referenced portfolio consists of credit default swaps and the portfolio is not man-

aged. Meanwhile, the synthetic CDOs are unfunded transactions and the word

‘synthetic’ refers to the fact that exposure to credit risk is gained synthetically via

credit default swaps without buying any defaultable assets.

This main difference affects the origination of the CDO and can be described as

follows: for a cash CDO, the reference assets are transferred to a Special Purpose

Vehicle (SPV) and this SPV then issues tranches to meet the needs of investors. It

is the proceeds from the issuance of the tranches that are used to fund the purchase

of the collateral for the SPV. In case of a synthetic CDO, the roll of SPV is not

10For more details about the family of CDO products, please refer to Choudhry (2000), JPMor-

gan (2001), Gibson (2004) and Choudhry (2005).
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needed, which means the originator is acting as the protection seller. In the rest of

this paper, we will focus on modelling and pricing techniques of synthetic CDOs

for its simplicity in cash flow (only between the seller and buyer) and the static

character after issuance.

Upon creation of a CDO, the purposes of the issuing and choosing the CDO and

its assets are distinguished in two ways: If the holder of certain assets wants to

sell or transfer the risk associated with such assets, and a CDO is then created

to accomplish the goal or, in other cases, to reduce the regulatory/economic cap-

ital requirements, this type of CDO is classified as the balance sheet CDOs. In

contrast, if the goal is to achieve a leveraged return, such as the spread income

when equity trap excess interest proceeds11, these CDOs are referred to as arbi-

trage CDOs. Another main difference between the two kinds of CDOs is how

they are going to be accomplished, the key, at this point, is the how to close the

Equity tranche - the most risky portion. Normally, a balance sheet CDO is more

likely to close comparing to an arbitrage CDO, as balance sheet CDOs often has

a prepackaged investor for most of the equity tranches while asset manager for

arbitrage CDOs is only partly committed.

The defining feature of a CDO structure is the tranching of credit risk, by divid-

ing the risk of loss on the reference pool of assets into small tranchelets, different

classes of securities are created to meet specified risk exposure and return require-

ments of different investors.

According to the increasing seniority from the most vulnerable tranche to the

tranche which is rated highest against risk but with lowest return, the loss from

11Here, the term ‘equity trap’ is used to describe the fact that equity holders of an arbitrage

CDOs hope to capture the difference between the after-default yield on the assets and the financing

cost due debt tranches - normally the Equity tranche.
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credit events will affect and consume each of the tranches one by one. In most

CDOs, the most senior tranche provides the majority of the financing of the prod-

uct, while other tranches are sized around 5% to 10%.

For a synthetic CDO, its tranche structure is defined by the attachment and detach-

ment points, Ka and Kd, of the tranche, respectively. Let the final maturity date

be T and consider the following example: the total notional of the portfolio is 100

million, consisting of 100 CDSs with 1 million notional each and the tranches are

sized 0% - 3% for the equity tranche, 3% - 10% for mezzanine and the rest are

held as senior. Then the notional for these three tranches is 3 million, 7 million

and 90 million respectively, as shown below:

Figure 1.2: Example of synthetic CDO transaction. 100 underlying CDSs with a total of

£100m. And the three tranches are sized 0% ∼ 3%, 3% ∼ 10% and 10% ∼ 100%.

When a credit event occurs, the first subordinating tranche is the so called equity

tranche, and the second tranche - the mezzanine tranche is only affected if the

size of total loss exceeds the size of the equity tranche, and similarly, the senior

tranche is affected only if the first two tranches are all lost in the credit event.

In contrast, when it comes to payment, the investors on the senior tranche will be

paid first according to an agreed rate (it is known as the ‘coupon’ rate of a CDO)

on the current notional of the tranche, then the mezzanine tranche and those who
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invest in the equity tranche will get paid only if the senior tranche is not ‘worn

out’.

It is easy to see how risky the equity tranche is and how the senior tranche is

protected under such settings. It is common that a CDO is structured into more

than three tranches, for instance, a CDO could have two mezzanine tranches sized

3% ∼ 6% and 6% ∼ 9% and a senior tranche from 9% ∼ 12% then its first and

second super senior tranches from 12% ∼ 22% and 22% ∼ 100% respectively.

After the tranche structure is created for a CDO, the tranches are normally rated

for their protecting ability against the risks, and according to the inter-tranche

working procedure described above. Before the year 2007, according to the S&P

rating system, a senior tranche is normally rated above ‘Single - A’ and no lower

than ‘Double - B’ for the mezzanine tranche, but as the equity is always facing

the risk directly, this tranche is not rated. With reference to the structure in Figure

(1.2) the following stylized CDO example is given in the Table below:

Table 1.1: A stylized CDO example (Spreads in basis points)

Tranche Attach/Detach Points Notional Credit Rating Spread

Equity 0% - 3% £3m Not Rated 1000

Mezzanine 3% - 10% £7m A 300

Senior 10% - 100% £90m AAA 10

Whole Portfolio 0% - 100% £100m A 60

In order to lower the risk for itself and to offer better protection to the other more

senior debt tranches, the equity tranche typically holds stock or income notes as
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its underlying asset, hence the term ‘equity’. We can extend the example above to

see the possible cash flows that may occur in a CDO transaction.

Table 1.2: CDO notional and coupon payments

Year(End) Loss Notional Coupon

Equity Mezzanine Senior Equity Mezzanine Senior

0 0 3m 7m 90m 0 0 0

1 2m 1m 7m 90m 0.3m 0.21m 0.09m

2 3m 0 5m 90m 0.1m 0.21m 0.09m

3 0 0 5m 90m 0 0.15m 0.09m

Mathematically, the calculations in Table (1.2) are straight forward. Denote the

total loss until time t as Lt, then the loss incurred on a tranche is given by:

Ltrcht = (Lt −Ka)
+ − (Lt −Kd)

+

where Ka and Kd are the characterizing attachment/detachment points. The peri-

odic premium payments from buyer to the seller is the product of the fixed pre-

mium spread and the up-to-date outstanding tranche notional. If we denote the

original tranche notional by N trch, then the time t outstanding tranche notional is:

N trch − Ltrcht

As shown in Table (1.2), by the end of second year, the notional of mezzanine

tranche is written down to 5m, which is the result of:

7− [(5m− 3m)+ − (5m− 10m)+] = 7− [2− 0]
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In other words, 5m is the total loss of the first two years. And thereby the amount

paid by the end of the third year is 3%× 5m = 0.15m.

It is clear from the above example that the key problem in CDO pricing is to

find the spread rate which in turn is related with both the tranche settings and the

cumulative loss. The latter is associated with the cumulative joint default times of

all the underlying assets (CDSs for a synthetic CDO) that make up the referenced

portfolio. We will highlight the modelling details in later sections.

1.3 Review of Credit Default Models

Credit default models typically fall under two categories: structural and reduced

form. In this section, we provide a brief review of both of these two approaches

and give details of the copula models as well as the growth rate type of model.

The direction of mainstream model development by both academic researchers

and industry practitioners is moving from static models to dynamic ones. This is

due to the increasing demand for hedging techniques on credit derivatives which

prerequisite a time dependent framework. In the later chapters of this thesis we

will develop a dynamic model that fits well the market data, and tracks the credit

risk change of a structured portfolio over multiple time periods.
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1.3.1 Main Approaches of Credit Default Models

Structural Models

This approach is based on the credit model first proposed by Black & Scholes

(1973), Merton (1974) and then extended by Black & Cox (1976). Recently, Hull,

Predescu & White (2005) offered a further extension to price the default correla-

tion in tranches of structured securities. Common to all models of this type, the

basic idea is that the asset value of the company must stay above its debt, and

for this reason, structural models are also called firm-value models. Under the as-

sumption of stochastic company asset value and a default barrier of the minimum

asset value, a credit event is then defined to be triggered when the asset value

breaks the barrier.

Originally, Merton assumed that if the asset value exceeds the value of debt, then

it is always possible for the company to sell its value to make payments. In such

a model, a company can only default on the maturity of the debt and the relation-

ship of asset, debt and equity is simply described by: Asset = Debt + Equity. As

no extra payment will be demanded from the equity holders if the asset value is

insufficient to pay the debt in the case of bankruptcy, the equity value can never

go negative, so the value of equity at maturity T is defined to be the residual left

after the “asset” is consumed to pay off the debt: ET = (AT −D)+ where AT is

the asset value at T and D is the value of debt.

Then, the asset value is: AT = DT + (AT −D)+ which is assumed to follow a log

normal stochastic process:

dA(t) = µA(t)dt+ σA(t)dXt (1.6)
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where Xt follows a Brownian motion, and µ is the drift parameter of expected

growth rate of asset value of the ith company and σ is its volatility. Then it is

always possible to value this option style payment using the Black-Scholes option

pricing formula. The default is assumed to occur only on maturity if the asset value

lies below the face value of debt. If we assume a single period, the probability of

default at maturity is:

p =

D∫
−∞

φ[A(T )]dA[T ] = 1−N(d2) (1.7)

where φ(·) is the log normal density function and N(·) is the cumulative normal

probability function, the same as defined in Black-Scholes option pricing formula:

d2 =
lnA(0)− lnD + (µ− σ2/2)

σ
√
T

This probability is also the survival probability as it implies the in-the-money

probability in case for an option. Then the current value of the debt equals to the

value of a call option:

D(0) = A(0)[1−N(d1)] + e−µTDN(d2)

where d1 = d2 + σ
√
T .

Market experience of recent years12 showed that two assumptions in the model

are not realistic: first, it is hard to trade the assets with its present value any time

we need the cash; second, it is almost impossible to find the exact present value of

the asset at any time as the estimation of this value is based on the balance sheet

data which is not updated in real-time.

In the extended model by Hull et al. (2005), the number of companies is defined by

N ,Ai is the value of the ith (for 1 ≤ i ≤ N ) company at a given time t, 0 ≤ t ≤ T

12See Deacon (2003) and Caselli & Gatti (2005). For empirical of term structures, see Fons

(1994) and Helwege & Turner (1997).
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with T , the maturity. For simplicity of notations, we omit the time identifier of t

in the following equations. The asset value still follows the Geomitric Brownian

Motion process:

dAi = µiAidt+ σiAidXi

where Xi follows a Brownian motion, and µi is the drift parameter of expected

growth rate of asset value of the ith company and σi is the volatility.

If we define the default barrier for this company byCi, then the default is triggered

when the asset value falls below the barrier, i.e, company i defaults if Ai < Ci.

Solving the above equation for Ai by applying Ito formula, we obtain:

Ai = A(0) · exp[(µi −
σ2
i

2
)t+ σiXi] (1.8)

Since the asset value Ai is a log-normal process, it is easy to get:

Xi =
ln( Ai

A(0)
)− (µi − σ2

i

2
) · t

σi
(1.9)

where A(0) is the initial value of the process.

Further, if we substitute the default threshold Ci into the asset value process, the

equation we get is:

dCi = µiCidt+ σiCidX
∗
i

solving the equation for X∗i we get:

X∗i =
ln( Ci

C(0)
)− (µi − σ2

i

2
) · t

σi
(1.10)

Here C(0) = A(0) as both of them refer to the initial asset value, and the proba-

bility of company i to default at maturity T is:

P [Ai(T ) < D] = P [A(0) · exp[(µi −
σ2
i

2
)T + σi(Xi(T )−Xi(0))] < Ci]
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= P (Xi(T )−Xi(0) ≤ X∗i )

= P (Xi(T )−Xi(0) ≤
ln( Ci

A(0)
)− (µi − σ2

i

2
)T

σi
)

= Φ

 ln( Ci

A(0)
)− (µi − σ2

i

2
)T

σi
√
T

 (1.11)

where the function Φ(·) is the cumulative standard normal distribution function.

To model the default correlation, Hull et al. (2005) assumed that each Brownian

motion process Xi follows a two-component process which includes a common

Wiener process M for all N companies and a idiosyncratic Wiener process Zi for

each of the N companies:

dXi = aidM +
√

1− a2
i dZi, (1.12)

where ai is used to define the weight of the two i.i.d components. And the default

correlation between two companies i and j is given by: ai · aj .

Early Extensions to the Black-Scholes-Merton (BSM) model include the Black

& Cox (1976)version which views default as a knockout option when the asset

value falls down to the barrier and the Geske compound option model (see Geske

& Johnson (1984)) which considers defaults on a series of contingent events.

Some of the recent structural models have addressed many of the limitations and

assumptions of the original BSM model: Longstaff & Schwartz (1995) examined

the assumption of stochastic interest rates. Forward price based firm value mod-

els were introduced in Briys & de Varenne (1997) and the study of incorporat-

ing jumps into the Longstaff & Schwartz (1995) model was carried out by Zhou

(2001).

The typical criticism of structural models is that they are difficult to calibrate
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and are very computationally intensive. When it comes to a portfolio or basket of

credit securities, slight change of setting could result in a great amount of required

simultaneous valuation work.

Compare to the market standard model, the One Factor Gaussian Model first pro-

posed in Li (2000), which is considered a benchmark of other models, the struc-

tural model clearly has a better definition for the relationships of variables in an

economic sense, and more importantly, it is a dynamic model. However, the major

disadvantage with the structural models is, that in each case the asset value pro-

cess is a continuous process which means that for short time intervals as [0, t]→ 0,

the probability of default also moves close to zero, so sudden exposure to credit

events is unrealistically missed. And for this reason, models with jump diffusion13

asset value process were introduced as in this type of models there is always the

possibility that the asset value may drop below the default barrier at any time.

Reduced Form Models

Reduced form models directly model the default probability using Poisson type

processes and generally do not link the default with a generating process. This

approach was pioneered by many researchers including Jarrow & Turnbull (1995),

Lando (1999) and Duffie & Singleton (1999). The main idea of this approach is

that the risky bond value is the expected sum of value at default and the value if

there is no default.

A standard Poisson process is a right continuous integer valued stochastic count-

ing process Nt, for t ≥ 0 with independent increments: Nt − Ns, t ≥ s. The

13See Zhou (1997) and Zhou (2001).
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distribution parameter of a Poisson distribution is λ(t− s) where λ is used to de-

scribe the intensity of the process. The occurrence of default is set to be the first

jump of the process; whenever Nt −Ns > 0 the modeled firm defaults. It is easy

to see that the default times are totally unpredictable stopping times in reduced

form models.

The survival probability which indicates the probability of no jump in the Poisson

process during time interval [s, t], for s ≤ t, is given by:

P [(Nt −Ns) = 0] = e−
∫ t
s λ(u) du

As the parameter λ(t) is a time dependent parameter, the process is a time inho-

mogeneous Poisson process. In order to simulate its first jump time, for a standard

uniform random variable, V ∈ [0, 1], we have:

τ = inf{t : e−
∫ t
0 λ(u) du ≤ V }

Moreover, if the intensity parameter λ is also defined by another stochastic process

(which refers to the hazard process), then λ becomes a doubly stochastic process

depending on time and adapted to a certain filtration Ft under a probability mea-

sure. This is the so called Cox process, and the default time (first jump time of the

process) is now:

τ = inf{t : e−
∫ t
0 λ(u) du ≤ V |Ft}

Thus the survival probability is:

P [Nt −Ns = 0|Ft] = e−
∫ t
s λ(u) du,

which means the probability that the survival time of an underlying name until

time t is: P [τ > t|Ft] = E[e−
∫ t
s λ(u) du]. This result adapts to both interest and

credit spread models.
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As we did mention in Section 1.2.2, the price of a defaultable bond is:

B′ = e−rT − e−rT (1− R̂)(1− e−aT ) = e−(r+a)T + e−rT R̂(1− e−aT )

If we now assume that both the rates r and a depend on time t, then the risky bond

price can be expressed as:

B′ = E[e−
∫ T
0 r(u)+a(u)du + e−

∫ T
0 r(u) du ·

∫ T

0

R̂a(t)e−
∫ t
0 a(u) du dt],

where r(t) is the compounded spot interest rate process, a(t) is the intensity and

R̂ is the recovery rate. From previous discussion, the default probability density

of default time τ is given by:

a(t)e−
∫ t
0 a(u) du,

and the default time distribution is:

1− e−
∫ T
0 a(u) du for 0 ≤ τ ≤ T

Hence the probability of no default until time T is P [τ ≥ T ] = E[e−
∫ t
0 a(u) du] and

the probability of default during the time interval [t, t+dt] is: P [t ≤ τ ≤ t+dt] =

E[a(t)e−
∫ t
0 a(u) dudt].

Reduced form modelling can be traced back to Jarrow & Turnbull (1995) in which

they used a constant intensity and fixed recovery rate at maturity. With this as-

sumption, the modeler does not need to consider any dependency between the

bond price and the conditional default probability and enjoys the advantage of a

closed-form solution for the bond price. Yet this assumption is too far from real-

ity14 as: first, the recovery takes place soon after default and second, the recovery

rates randomly change over time. This is what Duffie & Singleton (1999) tried to
14Detailed spread analysis can be found in Jarrow, Lando & Turnbull (1997) and Chen & Huang

(2001).
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address. They assumed that the recovery could appear at any time15 during life

of the bond but the recovered amount at default is only a proportion of the non-

defaultable bond value at the same time.

One of the drawbacks is that the recovery rate of a given default must be spec-

ified exogenously, and this is the reason that most reduced form models mainly

distinguish from each other by different definitions of recovery rate and intensity

of the stochastic process. For instance, a significant difference lies between the

Duffie Singleton (DS) and the Jarrow Turnbull (JT) models, in the JT model, the

recovery assumption is separate from the default probability, but in the DS model,

the recovery and the default probability together form an instantaneous spread.

Stochastic Loss Distribution Approach

The Stochastic Loss Distribution Approach was originated by Heath, Jarrow &

Turnbull (1992), Jarrow & Turnbull (1995) and Jarrow et al. (1997). Distinguish-

ing this type of models as an individual category is controversial16 because these

models focus on the probability of the portfolio losses to take place or reach some

level in the future. Thus this approach is also referred to as the “top down” ap-

proach.

Recent research including extension of Heath et al. (1992) with a loss deduc-

tion assumption is provided by Sidenius, Piterbarg & Andersen (2004). Bennani

(2006) assumed that the instantaneous loss is a percentage of the remaining prin-

cipal. Errais, Gieseke & Goldberg (2007) suggest a model of default probability

with jumps while Longstaff & Rajan (2006) suggested that it is the loss that fol-

15Although when it comes to implementations, both default and recovery are often assumed to

occur at coupon times only.
16See Anson, Fabozzi, Choudhry & Chen (2004) and Choudhry (2005).
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lows a jump process and different types of jumps are tested. Schonbucher (2005)

and Walker (2007) considered the evolution of loss distribution in a Markov loss

model.

1.3.2 Static Copula Models

The current market model, also called the one-factor-Gaussian copula model. Was

approach is originally introduced by Vasicek (1986), Li (2000) and recently de-

veloped by Gregory & Laurent (2005). The working assumption is that the default

probability over the whole life of the contract is determined by the normally dis-

tributed asset value, in which case, if the asset value is high then the probability

of default is low, and vice versa. Default is defined as the first time the asset value

crosses a predefined value barrier17.

The model assumes a constant hazard rate and ignores the change of probability

of default (PD) over the whole time period. Considering only the loss distribu-

tion, many alternative copula and distribution functions to Gaussian copula have

been suggested18, including: the student t-copula, the double t-copula, the Archi-

median copula, the Clayton copula, the Marshall Olkin copula, and distributions

like Normal Inverse Gaussian and Variance Gamma.

The main takeaway from the model is the correlation does not change the expected

loss in the portfolio - it effectively only changes the shape of the loss distribution.

When correlation changes, it does not affect the asset but only the liabilities. Since

the assets are the same, the liabilities in total are unchanged as well. This means

17Normally the debt value of the company, or the face value in case of a bond.
18See Hull & White (2004), Burtschell, Gregory & Laurent (2005), Guegan & Houdain (2005)

and Kalemanova, Schmid & Werner (2005) for detailed discussions on copula functions.
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that when correlation changes, it essentially moves the value between the tranches

- some tranches lose value some tranches gain value. However, the total value is

unchanged - because the assets have not changed.

This type of model is, in general, static as it is not able to describe how the default

environment evolves. But the following two points are worth considering when

building asset value based or barrier credit default models:

1. The probability of default (PD) , which is conditioned on a market mo-

mentum of Y , is related to the default barrier K with a normal distribution

function, i.e.:

p(Y ) = Φ

(
K − ρ · Y√

1− ρ2

)
(1.13)

2. The relationship between the default probability and the asset value is ex-

pressed as:

A = Φ−1(1− p) (1.14)

We will move on from here to dynamic models and further discussion will be

given in the next chapter.

1.3.3 Duffie-Singleton Discount Rate Approach

Duffie & Singleton (1999) proposed a Reduced Form model characterizing the

default exogenously by a jump process. The event of default is led by a hazard

rate and the losses at default are parameterized as a fractional reduction in pre-

default market value.
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Suppose we have a corporate bond payingX at maturity time T , denote the hazard

rate at time 0 ≤ t ≤ T by ht and the expected fractional loss at time t by Lt. Under

a risk-neutral environment, htLt stands for the ‘mean-loss rate’, thus if the risk

free interest rate r is replaced by an adjusted short rate R, where R = r + htLt,

then the market value of this bond at time zero is given by:

V0 = EQ
0

[
e−

∫ T
0 RtdtX

]
, (1.15)

where Q is the risk-neutral martingale measure.

As the mean-loss rate htLt does not depend on the bond value, if R is chosen

carefully, standard term-structure default-free debt models are directly applicable

to defaultable debts by replacing the risk-free rate r by R.

Under this set up, denote the unit recovery at time t+ 1 by ϕt+1. It is natural that

the contract value at time t consists of two parts: ht · e−rt ·EQ
t (ϕt+1) for the event

of default and (1 − ht) · e−rt · EQ
t (Vt+1) as the bond value continuous to evolve

to its value at time t + 1 in case of no default. Mathematically, the bond value at

time t is expressed as:

Vt = hte
−rtEQ

t (ϕt+1) + (1− ht)e−rtEQ
t (Vt+1) (1.16)

Meanwhile, the unit recovery of market value at time t + 1 is the difference be-

tween real market value at time t + 1 and the expected remaining value at time t,

i.e.

EQ
t (ϕt+1) = (1− Lt)EQ

t (Vt+1) (1.17)

Substituting equation (1.17) into equation (1.16), we can rewrite equation (1.16)

as:

Vt = (1− htLt)e−rtEQ
t (Vt+1) (1.18)
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In the default adjusted structure, the adjusted discount factor e−Rt at time t is given

by:

e−Rt = (1− htLt)e−rt (1.19)

It is known that for a small number ε, an estimation of eε is 1 + ε, similarly if

the contract time is observed in small length, we can approximately have: Rt
∼=

rt+htLt. Now if one recursively solve equation (1.18) for the whole time interval,

it is easy to show that:

Vt = EQ
t (e−

∑T−1
i=t RiX) (1.20)

And thus the financial contract is priced.

The authors derived the fair prices of securities which are embedded with de-

fault risk. This approach provides a default-able version of the Heath et al. (1992)

model, and the authors concluded that this default adjusted approach is not suit-

able when dealing with non-callable bonds, because ht and Lt must work together

as the ‘mean-loss rate’ and cannot be identified separately from data of default-

able bond prices alone.

We will follow the Duffie & Singleton (1999) approach and take their work as

a pre-cursor of our model as a main advantage is that it is possible to directly

calibrate model variables to market observable instrument prices such as corpo-

rate bonds. Further, it is possible to parameterize R directly as it is exogenous.

However, the downside of this type of model is, as the loss is priced with a default

adjusted ‘risk free’ rate, that the final value is expressed as an exponential function

and thus the model is not suitable for pricing financial contracts like CDS which

have no payoff at maturity.

In the next chapter, we will model the evolving environment of the underlying
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asset value using a default adjusted yield, in the model, default probability is con-

sidered against the risk-free appreciation of asset value along time to maturity,

after presenting the close-form formula of default probability, we will move on to

find the growth rate of asset value as well as the expected loss according to the

default adjusted yield.

1.3.4 Market Model

This approach was originally introduced in Li (2000). The general copula method-

ology uses a copula function to specify the joint distribution of survival times.

Copulas are handy because for any multivariate distribution, the univariate mar-

gins are defined independently.

Denote τi as the default time for the ith company, and Fi(τi) as the probability

function of default at time τi for the same company. The joint distribution of de-

fault times is given by:

p(τ1, τ2, . . . , τn) = C(F1(τ1), F2(τ2), . . . , Fn(τn)),

where C(·) is the copula function. (See Li (2000), Schlogl (2003) and Luescher

(2005) for details on copula and implementations.)

The copula approach does restrict the possible types of copula functions, so there

are many versions19 of it which involve various types of copula functions. But

copula approaches on bulk price the CDOs with the generated portfolio loss dis-

tribution.
19See Kalemanova et al. (2005) and Luescher (2005) for implementations with normal inverse

copulas, and Melchiori (2003) for further discussion on copula functions.
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Suppose there are n companies in the portfolio, each has its asset value process

with two controlling variables, M and Xi, the market momentum and a stochastic

factor, respectively. Further, it is assumed that the individual default probability

for each company is exponentially distributed over time, so we have:

pi = e−hit

The probability of not defaulting until time t in the equation above is: 1 − pi, for

1 ≤ i ≤ n. Then the asset value of each firm in the portfolio is:

Ai = ρi ·M +
√

1− ρ2
i ·Xi (1.21)

A closed-form solution of the default probability conditional on a value Y of the

market momentum can be given by:

pi(Y ) = P [Ai < Ci|M = Y ]

= P [ρi ·M +
√

1− ρ2
i ·Xi < Ci|M = Y ]

= P [Xi <
Ci − ρiM√

1− ρ2
i

|M = Y ]

= Φ

(
Ci − ρiY√

1− ρ2
i

)
(1.22)

The default in this model is defined to be the first time an asset value falls through

a default threshold, denoted Ci for the ith company, and this threshold is related

to the probability of default (PD) with a normal distribution function, i.e. Ci =

Φ−1
N (pi).
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1.4 Introduction to Hedging Sensitivities

Investing in a simple credit product such as the credit default swap or the more

complex structured portfolio products is like providing insurance on the financial

activities of the referenced counter-party. It is normal practice that single name

Credit Default Swaps (CDSs) are hedged using underlying bonds, but things be-

come more complicated when dealing with multi-underlying name contracts.

Before the market squeeze in early 2007, most players in the credit market took

the senior or super senior CDO tranches as a save investment that generates high

return with low risk. However everyone finds it unsecured in current market as in-

vestors are losing money from these ‘safe’ investments. Practitioners find it hard

to capture market movements and effectively carry out an optimal hedging strat-

egy. Part of the reason is that the market copula model relies on a certain type of

distribution and is not able to dynamically model the ‘surprises’ in the portfolio.

Another reason is that it is hard to make sure that the credit models are dynami-

cally congruent with the pricing models of the hedging instruments.

In this section we review dynamic strategies that hedge the embedded credit risk

within a portfolio of credit products; in other words, our aim is to find offsetting

cash-flows from related derivatives that covers the payouts of protection on the

underlying reference entities. We first introduce several sensitivity measures on

the credit instruments.

1.4.1 DV01

DV01 is also known as the Dollar Value per basis point, and is defined as the
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value change of a credit derivative when there is a shift with one basis point in the

credit curve. In principal, DV01 is the same as the Present Value per basis point

(PV01) for a bond, where PV01 describes the bond value change against 1bps

change in the interest rate, DV01 is the value change of the credit derivative when

the credit spread moves 1bps. DV01 for a default swap quantifies the credit risk of

an investor in the CDS market, similarly, the DV01 for a default swaption or risky

bond measures the security value change according to single basis point shift.

To actually carry out the calculation of CDS DV01, one needs the following mar-

ket observables as inputs: the Recovery Rate R, market CDS spread s, contract

term T , notional N and the risk free interest rate r.

Assuming both the spread and interest rate curve is reasonably flat for a default

swap. The value of the swap is the difference of its two payment legs: premium

and protection. Suppose default only happens at maturity and no recovery, we

have value of the two legs as:

premium = e−(r+h)TN

protection = N

For unit value DV01 calculation, N is set to be 1, and value of the swap is thus:

1− e−(r+h)T . By linear interpolation on spread curve interval [0, r+ h], the DV01

of a default swap under a static model20 is given by the equation below:

DV01 =
1− e−(r+h)T

r + h
(1.23)

In practice, the hazard rate h is replaced by using an approximation which is given

20Here ‘static’ comments only on the related hazard rate used in the equation, dynamic practice

will be illustrated in later section of this work.
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by:

h =
spread× 365

(1−R)× 360

Similar results can be found in Chaplin (2005).

Also, it is important to mention that in case of a credit swaption, the payoffs

depend on the DV01 of the referenced CDS as the option strike is in terms of

spread rather than price. So the swaption DV01 is converted into dollar value

from spread term upon expiry of option. Details and examples will be discussed

in next section.

DV01 - Example

Suppose we have a CDS with contracted maturity of 3 years, the market spread

on the observed day is 1500 bps, with interest rate at 5% and recovery rate 40%.

Applying equation (1.23) we have the DV01 for our CDS is £1.97, which means

that a 1 bps shift will cause a money change of 1.97 in the present value of the

contract. Similarly, DV01 for a CDS index or basket of CDS contracts can be

calculated using a unified hazard rate and the index average spread.

1.4.2 Credit Delta

Compare to DV01, the delta factor is more like a value change-per-default mea-

surement for a portfolio of credit embedded contracts. While DV01 measure the

value change according to 1bps move of spread curve, credit delta of portfolio

credit derivatives is normally marked to actual portfolio loss when a credit event

is triggered for one of the contracts in the portfolio.
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The principle is to examine the value change when a default takes place at an ob-

served time, thus calculation of the delta closely depends on the pricing techniques

chosen for the product valuation. In all cases, the delta is simply the difference be-

tween the two values of the product: with or with out the default.

Delta - Example

Assume we have a 5 year CDS index traded at the average spread of 220 bps,

and the present value of index is £4400. Meanwhile, the present value of the same

index with an extra simulated default is £4000. We can then calculate the delta

factor of the CDS index as 400.

Note that the value of a swap-like contract with two cash-flow legs, is given by

the difference between the two cash flows. For instance, a CDS contract value is

obtained by subtracting the protection leg value from the value of premium leg21.

1.4.3 Credit Gamma

Same as the Gamma factor of options and other financial derivatives, credit Gamma

describes the pace of change in credit Delta, thus it gives detail of changes in Delta

sensitivity from a more ‘micro’ scope.

Consider a binomial tree-type model for the simplest illustration of the idea. As

shown in Figure (1.3), to examine Γ(1, t + 1), the change of delta for time t + 1,

both ∆(1, t+ 2) and ∆(2, t+ 2) is needed, thus we need to obtain and perform a

21Here we assume that all the concerned contracts in this work are ‘old school vanilla’; For

more details on the valuation of CDS and forward CDS contracts, see Jabbour, El-Masri & Young

(2008).
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backward observation from the t+ 2 of the considered step t. S here in the figure

stands for the credit spread.

Figure 1.3: Credit Gamma Calculation for Binomial Tree Model.

Both concepts of Delta and Gamma are born naturally within every traded finan-

cial contract, in this thesis we consider both factors for the primary CDO against

the hedging instrument. In our Monte Carlo simulation framework, the portfolio

loss and default of one name in the CDO asset pool is handled together through

all the time steps till maturity. This way, the time dependent movements of CDO

spread, is illustrated according to time step and simulated defaults.

1.5 Summary

In this chapter, we briefly reviewed the most well known members of the credit

derivative family, the mainstream models of single/multi underlying credit risky

contracts and the related Greek factors. The first objective of this thesis is to de-

velop a dynamic structural model for credit risk embedded financial instruments,

especially structured portfolios such as CDO-type contracts, then, we will demon-
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strate calculations to obtain hedging factors based on the dynamic model.

For the rest of this thesis, we will define a Multi-step Monte Carlo simulation

framework which handles the structural model in CHAPTER 2, the framework is

designed to overcome static nature and default time conflict22 of copula models.

Then we examine the market data collected from before and after the current credit

crisis with Principal Component Analysis in CHAPTER 3, as a result we find the

current market model is under performing in intense markets. Later in CHAPTER

4 we introduce the Dynamic Growth Rate Model, together with numerical results

and possible extensions for further developments. We will also apply the simula-

tion framework with the model and try to estimate the market CDO spread curve

from our model. Finally in CHAPTER 5, we will illustrate simulation and calcula-

tion of credit sensitivities starting from raw market observables to the final results

of Greek factors, thus, application various hedging strategies are made possible

for structured portfolio of credit securities according to different underlying and

hedging instruments.

22As the copula models focus on the occurrence of default time τ , the simulation techniques

employed is not suitable to describe the evolve of default probability over life time of the contract.
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Chapter 2
Multi-step Monte Carlo Framework

In this chapter we present the conditional independence framework for pricing

structured synthetic CDO products. The advantage of such an approach is that it

allows semi-analytical pricing methodologies which are considerably more accu-

rate and faster than the traditional Monte Carlo method used for structural models.

Our first focus is the one factor Gaussian copula model. This model is generally

regarded as the market standard model for structured credit risk products. We try

to extend this model with a correlated stochastic process to describe the change in

the debt value over the life time of the contract. This type of extended model will

be also able to describe the multi state case for the underlyings. Our main contri-

butions are: First, we obtain a default threshold, from a model-free probability of

default for each name in the portfolio. Second, we develop a pricing methodology

for portfolio credit derivatives using a combination of the conditional indepen-

dence approach with stochastic control variables and Monte Carlo simulation.

42



2.1 Notations

Unless specified, these notations refer to the rest of this thesis.

T : contract maturity.

0 ≤ t ≤ T : a general time before maturity.

N : number of referenced companies.

0 ≤ i ≤ N : ith company in the portfolio.

n(t) : number of cumulative defaults at time t.

Ltn : cumulative loss on the portfolio at time t.

r : risk-free interest rate.

Ri : default-adjusted asset growth rate for company i.

ci : coupon rate of company i. Also defined as c for all underlying bonds in a

homogeneous portfolio.

eRt : default-adjusted unit asset value at time t.

p(t)i : default probability of company i at time t.

τi : time of default for company i.

s : premium spread.

A(t)i : asset value of company i at time t.

Ki : default threshold for company i.

x(t)i : stochastic growth rate of company i at time t.
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2.2 Fair Spread for Tranched Portfolio Products

In the following, we consider a pure CDS index or synthetic CDOs with reference

underlyings consisting of CDSs only.

The seller of a tranche of such a product receives periodic spread payments from

the protection buyer on preset payment dates, and in the case that the loss ex-

ceeds the tranched notional, compensation payments are made to buyers from the

protection sellers.

As described in Chapter 1, the cash flow is divided in two legs, same as in the

pricing of credit default swaps: premium payment leg and the protection payment

leg. We take a single tranche out of the whole as an example, under the assumption

that the time set before maturity is divided into n payment dates with: 0 ≤ t0 <

t1 < . . . < tn−1 < tn = T , where T is the maturity. Then the expected spread

payments of the premium leg is given by:

n∑
i=1

∆ti · ω · (1− ELti−1
) ·Bti−1

, (2.1)

where ω is the spread1 and ELti−1
is the Expected Loss of this certain tranche at

payment date ti−1, and Bti−1
is the price of a share of the government bond with

the same maturity.

On the other hand, the protection leg value is given by:

n∑
i=1

(ELti − ELti−1
) ·Bti (2.2)

Following the principle of no-arbitrage-pricing, the value of the two legs should

be the same under the risk neutral assumption.
1The contracted rate of premium payment, in percentage form of the underlying notional.
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Hence it is possible to solve for the spread value by equating the two cash-flows

in equations (2.1) and (2.2):

ω =

∑n
i=1 (ELti − ELti−1

) ·Bti∑n
i=1 ∆ti · (1− ELti−1

) ·Bti−1

(2.3)

The expected tranche loss at each time step for a given tranche is based on the

discrete time loss distribution Lti . If we denote the notional of defaulted names by

Nd
ti

and the total notional at the same time by Nti , we can then define Lti as:

Lti = (1−R)
Nd
ti

Nti

where R is the recovery rate which we can assume to be zero in the simplest case.

For the tranche starting with the attachment point Ka and detaching at point Kd,

the expected tranche loss is calculated by:

1

Kd −Ka

m∑
j=1

(min(Lj, Kd)−Ka)
+ · pj,

where m is the number of underlying names and pj indicates the default probabil-

ity of the jth asset. It is not hard to rewrite the above equation in a continuous-time

framework:

1

Kd −Ka

(

1∫
Ka

(x−K1) dF (x)−
1∫

Kd

(x−Kd) dF (x)) (2.4)

Thus, the goal now is to find out the portfolio loss denoted by F (x) in equation

(2.4). (For a detailed exposition, see Kalemanova et al. (2005).)

Further, consider an explicit recovery rate R, which is set as a constant of 40% in

many empirical applications2. The basic idea is as the loss of each default is now

2See Li (2000) and Wang, Rachev & Fabozzi (2006)
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smaller, more defaults are needed to fulfill each tranche. But since copula func-

tions give the loss using both the attachement/detachement levels and the default

threshold, it is the same if we just enlarge the tranche points by (1−R), so in case

with a constant recovery, the ‘new’ tranche is now defined as (
Ka

1−R
,

Kd

1−R
).

2.3 The Gaussian Factor Copula Model

In the following sub-sections, we will provide the details of calibrating the above

model within the standard market framework and we will also outline the mathe-

matical method of its implementation.

2.3.1 Market Standard Model in Details

The appeal of the one factor Gaussian model is that it is simple to understand and

easy to implement. Wang et al. (2006) discuss that the the various approximations

of the market model are all about the correlation of defaults. In its “standard”

version, the Factor Gaussian model is simplified by assuming the following:

• The recovery rate is fixed to 40%, i.e. R = 40%.

• An average CDS spread3 of names in the portfolio is used instead of single

CDS spreads for each name. This means the default barrier is set to be the

same for all companies, i.e. Ci = C.

• Same pairwise correlation for all the names in the portfolio, i.e., ρij = ρ.

3Or credit spread/risky bond spread, which are all related to the default probability.
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• Constant default intensity (hazard rate) over time, i.e., hi = h.

Within a homogeneous portfolio under the above framework with a pool of n

underlying names, the approximate asset value A is given by:

Ai = ρ ·M +
√

1− ρ2 ·Xi (2.5)

Here M is the market common factor, Xi for all companies, 1 ≤ i ≤ n, follows

the standard normal Gaussian distribution and under the homogeneous portfolio

assumption, we denote the uniform pairwise correlation between any two compa-

nies in the portfolio by ρ, i.e., ρij = ρ for i, j = 1, ..., 125, i 6= j.

The threshold C which indicates the default is implied by the market average

default probability p, that is:

C = Φ−1(p) (2.6)

Clearly, from equations (2.5) and (2.6), an underlying asset defaults if Ai ≤ C. In

turn, the default probability conditioned on the market factor M = Y is:

p(Y ) = Φ

(
C − ρ · Y√

1− ρ2

)
(2.7)

2.3.2 The large portfolio loss distribution approximation

Rearranging equation (2.7) we get:

Y =
Φ−1(p(Y ))

√
1− ρ2 − C

ρ

Then, the conditional probability of having exactly k defaults is given by the bi-

nomial distribution: (
n

k

)
p(Y )k(1− p(Y ))n−k
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The unconditional probability of having k defaults is the integral over the market

momentum:

p =

(
n

k

) ∞∫
−∞

Φ

(
C − ρ · Y√

1− ρ2

)k(
1− Φ(

C − ρ · Y√
1− ρ2

)

)n−k

dΦ(Y ) (2.8)

Substituting Y in the integrator function we get:

p =
(
n
k

) ∞∫
−∞

Φ

(
C − ρ · Y√

1− ρ2

)k(
1− Φ

(
C − ρ · Y√

1− ρ2

))n−k

·dΦ

(
Φ−1(p(Y ))

√
1− ρ2 − C

ρ

)

Further, according to the large portfolio limit approximation results given by Va-

sicek (1986) and Vasicek (1987), with the number of underling assets in the port-

folio infinitely large (i.e., n → ∞), the loss distribution in the above equation

becomes:

Fn(x) = lim
n→∞

[nx]∑
k=0

∞∫
−∞

(
n

k

)
p(Y )k(1− p(Y ))n−k dΦ

(
Φ−1(p(Y ))

√
1− ρ2 − C

ρ

)

where

p(Y ) = Φ

(
C − ρ · Y√

1− ρ2

)
Since

lim
n→∞

[nx]∑
k=0

(
n

k

)
p(Y )k(1− p(Y ))n−k =

 0, if x ≤ p(Y );

1, if x > p(Y ).

we can easily calculate the cumulative portfolio loss distribution as:

F∞(x) = Φ

(√
1− ρ2Φ−1(x)− C

ρ

)
(2.9)

Then the expected loss can be obtained by substituting the above equation into

equation (2.4) or by applying the bivariate distribution copula function. The ex-
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pected tranche loss is given analytically by:

EL =
ΦB(−Φ−1(Ka), C,−

√
1− ρ2)− ΦB(−Φ−1(Kd), C,−

√
1− ρ2)

Kd −Ka

(2.10)

where ΦB(·) stands for the binomial normal distribution function4.

2.3.3 Model Implementations

Given the default probability in equation (2.7), the expected loss of the portfolio

can be calculated either analytically with the large homogeneous portfolio approx-

imation as shown above or via Monte Carlo simulation methods. We illustrate the

latter in this section.

Hazard Rate Approach

According tot the standard assumptions listed above, the default times conditional

on a Gaussian distributed market momentum Y for a certain default probability

are normally distributed. It follows that the default probability can be calculated

using the survival function: Si(t) = 1 − pi = 1 − e−hit. We also know that the

ith company in the referenced portfolio will not default until time τi for a given

default probability pi = e−hiτi .

Hence, we have:

Φ(Ai) = 1− e−hiτi

and after rearranging, the default time τi is given by:

τi = − ln (1− Φ(Ai))

hi
(2.11)

4For more details, see Vasicek (1986) and Vasicek (1987).
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For a five-year contract, the hazard rate hi is calculated from the cumulative de-

fault probability for the next five years where this probability can be retrieved

from the credit curve. Hence hi = − ln pi/5.

For a portfolio with N referenced underlying companies, the simulation process

can be described in the following steps:

1. Generate a normally distributed market momentum factor M for the whole

portfolio, and a normally distributed5 random factor Xi for each i of the N

companies.

2. Generate the asset value for each of the underlying companies in the port-

folio using equation (2.5).

3. Calculate the default times τi for each of the companies in the portfolio

using equation (2.11).

4. Compare payment date and the default time τi for each company. If τi is

smaller than any payment date 0 ≤ j ≤ T , then the company is considered

to have defaulted by time j.

5. Calculate the loss and the two cash flow legs for this trial at each time using

equations (2.1) and (2.2).

• Steps 1-5 complete a single trial.

6. Repeat steps 1 ∼ 5 for a large number of times and take average value of

the two cash flow legs.
5We adopt the normal distribution setting of both M and X because we intend to test the mar-

ket standard model with our multi-step Monte Carlo framework; therefore, keeping the original

setting, we focus on the simulation rather than a different modelling approach.
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7. Finally, the air tranche spread for this structured product is calculated using

equation (2.3).

To compare with the market value, one may consider the common case of making

an upfront payment for the first tranche6 and take into account that the yearly

spread is set normally to 500bps for the equity tranche.

Cumulative Tranche Loss Approach

In this section we introduce the simulation method proposed by Loffler & Posch

(2007) which is relatively straight forward and fast in computation time.

Suppose we have all the information given in the previous section, i.e., size of

portfolio, the average single name default probability and a universal correlation,

recovery rate and notional.

Default takes place if the asset value in equation (2.5) is smaller than or equal to

the default barrier given by equation (2.6). Note that if the default probability is

used to describe the probability to default for the period of whole contract life, the

simulated loss in each trial is just the loss given default simulated from a single

big time step. We shall present below the simulation details of a single step, by

considering for simplicity just default at maturity.

1. Generate a normally distributed market momentum factor M for the whole

portfolio, and a normally distributed random factor Xi for each i of the N

companies.

2. Generate an asset value for each of the underlying companies in the portfo-

6This is done in order to comply with liquidity requirements.
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lio using equation (2.5).

3. Calculate the default barrier using equation (2.6).

4. Compare the results for the asset value and the barrier. If a company de-

faults, calculate its loss at default using (1 − R). Then calculate the total

loss for this trial.

5. For each tranche, if the total loss exceeds its attachment point, the default

probability of this tranche is increased by
1

number of trials
. On the other

hand, the expected loss for this tranche is increased by
percentage of loss on tranche

number of trials
.

• Steps 1-5 construct a single trial.

6. Repeat steps 1 ∼ 5 for a large number of times and with the tranche default

probability and expected loss, the tranche spread can be calculated as in

case of a single name CDS.

So far we have introduced two Monte Carlo based approaches to get the structured

portfolio tranche spread. The reason that simulation methods in general are more

favored is because the large homogeneous portfolio assumption is based on the

condition that the number of underlying assets goes to infinity. Whilst 125 under-

lying names of iTraxx Europe or CDX.NA.IG is large enough, most individually

traded sub indices contain only about 20 names. Researchers are still debating

about the accuracy of such pricing procedures for these subindices7.

7See the extension in Greenberg, O’Kane & Schlogl (2004), Moosbrucker (2006), and for a

discussion of limitations of large homogeneous portfolio assumption (LHP) see Schlogl (2004).
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2.4 The Multi-step Monte Carlo Simulation Framework

In this section we demonstrate the implementation of Monte Carlo simulation

within a discrete time step framework. The aim is to set up an all encompass-

ing simulation environment for many existing models with assumptions based on

market observables. Moreover, multi step implementations are straightforward to

carry out and modify, thus important modifications such as rating change8, ran-

dom recovery rate and random short term interest rate can be accommodated and

the various related problems could be fruitfully addressed.

2.4.1 PD, CPD and MPD

Recall that in the definition of a single name credit default swap (CDS), for a five-

year contract, the probability of default (PD) over the whole five years is called the

cumulative probability of default (CPD). Also note that with the help of a credit

curve, we can calculate the default probability and future default probability for

each year or each payment date over the whole period. This default probability is

given at each time step conditioned on survival of previous time steps and is called

the marginal default probability (MPD)9.

In the rest of this section, we use PD to denote the probability of default seen

today. The relationship between the variables is shown in Figure (2.1) below:

8Also called the multi-state problem which refers to change of credit rating during life time of

the contract.
9For details please refer to Anson et al. (2004), Bluhm & Overbeck (2007) and Loffler & Posch

(2007)
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Figure 2.1: PD seen from today, MPD and CPD

For the case of a single time step, we have PD = MPD = CPD. In a two-step

case, PD(1,2) is the PD seen at time 0 for period (1, 2), and is equal to:

PD(1,2) = CPD(0,2) − CPD(0,1) (2.12)

PD(1,2) = MPD(1,2) · (1− PD(0,1)) (2.13)

Hence:

CPD(0,2) = CPD(0,1) + MPD(1,2) · (1− CPD(0,1)) (2.14)

taking into account that CPD(0,1) = PD(0,1).
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2.4.2 Discrete Time Set-up

Using of the Law of Large Numbers10, the probability of default can be written

as:

p = Λ

(
barrier−mean

standard deviation

)
(2.15)

where Λ is an arbitrary distribution function, barrier is the pre-set asset value of

default, the expressions above refers to the mean and standard deviation of the

asset value.

We will apply first the barrier within the market model together with the widely

used structural models; we repeat the process for the barrier based model in Sec-

tion 2.4.3.

Suppose we have a 3-month PD backed out from the credit curve and it is 0.02%.

We assume that for every two steps, PD(t0,t1) = PD(t1,t2). Using equations (2.12),

(2.13) and (2.14), we can calculate the marginal default probability of the next 3

months as:

MPD(1,2) =
0.02%

1− 0.02%
= 0.020004%

MPD(2,3) =
0.020004%

1− 0.020004%
= 0.020008%

We can then obtain the MPD for the next 5 years with a 3 month step length.

Figure (2.2) gives the 20 time step results for a 5-year period:

10The Law of Large Numbers states that:

“Given a sample of independent and identically distributed random variables with a finite pop-

ulation mean and variance, the average of these observations will eventually approach and stay

close to the population mean.”

Therefore, the probability of occurrence of a trial outcome is fixed according to the sample distri-

bution. (See Jaynes (1996)) In our implementation, if the barrier value occurs with probability q,

it means that the default probability for this company is q.
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Figure 2.2: Step MPDs for a 5-year period.

By omitting the difference in seven digits after zero, we can see that the discrete

probabilities of default for each time step roughly remain the same over the whole

period.

On the other hand, consider a single step CDS contract with unit value notional.

The relationship between the probability of default and the CDS spread (fair price

of CDS) is spread = (1 − R) · PD. Although this may be viewed as a very

restrictive relationship between the two, we will relax it later.

Now, if we have a market-quoted 5-year CDS spread of 24 bps and recovery rate

of 40%, this simply means that the PD for this underlying company is 0.4%. If

we further consider that this CDS consists of twenty payment days, the marginal

default probability can be considered as constant over time almost surely.

2.4.3 Monte Carlo Simulation

We have now obtained all the building blocks for our model implementation. We

illustrate next the procedure of finding out the default barrier for each of the time

steps using the marginal default probability. We observe the scenarios in time

order, as the marginal default probabilities are conditioned on their own predeces-

sors, i.e, tomorrow’s PD is today’s marginal PD.
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The simulation process can be performed in the following steps:

1. Generate a normally distributed market momentum factor Mt for the whole

portfolio at time t, for 0 ≤ t ≤ T , and a normally distributed random factor

Xi,t for each ith of the N companies at the same time step.

2. Generate asset values for each of the underlying companies in the portfolio

using equation (2.5). Repeat for all companies over the whole time period

[0, T ].

3. Calculate the default barrier using equation (2.6) for each time step.

4. Compare the results for the asset value and the barrier. If a company defaults

at a time step, it is also knocked out for the rest of the contract life. We can

then calculate the cumulative loss at default using (1 − R) for the whole

portfolio over all time steps.

• Steps 1-4 carry out the simulation of the cumulative loss.

5. For each tranche, the expected loss at each time is given by the comparison

between tranche size and the tranched loss. We can use equation (2.1) and

equation (2.2) to get the value of premium and protection respectively.

6. Repeat steps 1 ∼ 5 for a large number of times and average the two cash

flow legs with the number of simulation trials. Then, the final fair tranche

spread can be calculated using equation (2.3).

The above procedure portrays the simulation process of a single factor Gaussian

model; in fact the simulation process adapts many models and assumptions, for ex-

ample the Merton (1974) structural model or the Hull and White structural model
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introduced in Hull et al. (2005). Meanwhile, in case the simulation process is

preformed using Microsoft Excel and VBA, as in each trial we have a table of

the number of underlying companies in rows and the number of time steps in

columns, if assumptions such as fixed recovery rate need to be relaxed, we can

accordingly simulate the change in recovery rates and ‘input’ the discrete rate into

each cell of the table. Furthermore a random interest rate test can be preformed in

the same way, but for the multi-state problems due to sharp change in credit rat-

ings (which can be shown as change in CDS spreads), we need to have the default

barrier modified to catch the rating change.

2.5 Numerical Results

In order to illustrate our approach, we use the most actively traded iTraxx Europe

tranches on a five-year maturity basis. The number of underlying names is 125,

the tranches are 0% ∼ 3%, 3% ∼ 6%, 6% ∼ 9%, 9% ∼ 12% and 12% ∼ 22%.

The payments are made quarterly and the recovery rate is set to 40%.

The market data is recorded on 12th April 2006 for iTraxx series four, the contract

started at 20th March 2006 and ends on 20 June 2011. The average CDS spread

quote on that day is 32 bps and the pairwise homogeneus correlation is 16% for

all underlyings. The market spreads and implied correlations are all quoted from

the Reuters’ CDS Views 300011.

We aim to compare the market quotes with the results from the two versions of

the market model as well as with the results from discrete Monte Carlo simulation

of the Gaussian and the Structural model.
11Note that market quotes may be different if quoted from other contributers.
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In each implementation, the annual interest rate is set to be 5%, the number of

simulations is 100, 000, and the volatility in the structural model is 0.3512. The

numerical results are presented in Table (2.1):

Table 2.1: Numerical Results of Simulation Based approaches for iTraxx

Tranche Market Gaussian Cum. Loss Disc. Gaussian Disc. Struc.

0% - 3% 23,00% 23,92% 21,67% 23,29% 24,08%

3% - 6% 60 bps 156,72 bps 43,8 bps 41,1 bps 85,16 bps

6% - 9% 14 bps 32,07 bps 18 bps 9,2 bps 21,27 bps

9% - 12% 6 bps 7,2 bps 12 bps 2,1 bps 4,29 bps

12% - 22% 2.5 bps 1,25 bps 0.6 bps 0.8 bps 0.9 bps

Abs. error 117,24 bps 28,1 bps 29,3 bps 35,74 bps

We can see13 from the Table (2.1) that the normal Gaussian hazard rate approach

gives a considerably larger spread for the three tranches after equity, whilst the

cumulative loss approach provides a better simulation overall, especially in the

second tranche, albeit it produces a spread for the fourth tranche twice as much as

the market quote.

As for the implementation results for the Gaussian and Structural models, with our

discrete Monte Carlo approach, the absolute error14 from both models is compara-
12Here the annual rate is the 5-year long term fixed rate, and the volatility of average underlying

CDSs is used instead of risky bond volatilities. For more explaination of parameter setting, see

Kalemanova et al. (2005), London (2006) and Loffler & Posch (2007).
13The absolute error cover the tranches except the equity tranche as it is normal practice that the

first tranche spread is quoted from market, see Kalemanova et al. (2005).
14The error is the cumulative difference between the simulation outcomes and the market quotes

over all tranches expect the equity.
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ble. Note that although the discrete structural model is over estimating the second

and third tranche spreads, it is providing better simulation results comparing to

the results from the market standard model listed under column name ‘Gaussian’

in Table (2.1).

Here we conclude that comparing to the static copula method, the Gaussian model

under a discrete setting is more effective in catching the market movements. And

as simulated results from different models are by and large similar and reasonable,

one could argue that the simulation framework is effectively housing assumptions

from different models. As far as the cumulative loss approach is concerned, our

results show that the method is powerful and fast in computation, yet this method-

ology has its limitations due to lack of economic sense in spread pricing when

dealing with multi-state or multi-factor problems.

60



Chapter 3
Analyzing the Sub-prime Impact on

Structured Credit Product Spreads with

the Method of Principal Component

The main motivation of this chapter is to better understand the effect of the sub-

prime financial crisis on structured credit product spreads. It is well known that

the standard market model is a correlation driven copula model, which means that

the trading of correlation - base and/or implied - plays a very important role in

the movements of multi-name structured credit products. Since the market slide

in 2007 and 2008 that resulted to a rounded loss of 3 trillion USD, one may easily

come to the conclusion that correlation trading became probably the most expen-

sive and dangerous game in finance - at least for the second half of the year 2007.

In the world of CDO modelling, researcher are observing various spread driving

factors. Given a debt related collateralized pool, the market model uses only one
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input factor, the correlation, to describe the spread variation. The purpose of this

chapter is to see if it is reliable to use an universal factor for all the tranches.

In the next Section we describe the data set. Then we introduce the empirical

methodology used in our present study, followed by output results. We summarize

our findings in the last Section of this Chapter.

3.1 Data Description

We have chosen to investigate the standard contracts of iTraxx credit default in-

dices. The product selection is narrowed to the most actively traded 5-year Euro-

pean contracts with tranches: 0 ∼ 3%, 3 ∼ 6%, 6 ∼ 9%, 9 ∼ 12% and 12 ∼ 22%

percentage components of the whole 125 name index. The tranches in turn are

named as Equity, 1st Mezzanian, 2nd Mezzanian, Senior and Super Senior re-

spectively.

Data are obtained from Reuter’s Credit Index Viewer and Markit. The data is

recorded weekly in two different series: the first covers the period before the sub-

prime crisis between the 09th Jun 2006 and 29th Dec 2006. The second spans the

sub-prime period and is dated from 02th Nov 2007 to 23rd May 2008.

Table (3.1) below depicts the pre-subprime period:

0%-3% 3%-6% 6%-9% 9%-12% 12%-22%

29/12/2006 1050 42.5 13 10 2.25

22/12/2006 1100 48 12.5 9.5 2

15/12/2006 1150 50.5 12.5 10.125 1.75

Continued on next page
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Table 3.1 – continued from previous page

0%-3% 3%-6% 6%-9% 9%-12% 12%-22%

08/12/2006 1187.5 55 12.625 11.5 1.875

01/12/2006 1150 58.5 13 12.625 1.625

24/11/2006 1175 57 13.375 10.875 1.5

17/11/2006 1300 55.75 14.125 11.125 1.5

10/11/2006 1200 54.5 14.625 10.5 1.625

03/11/2006 1150 55 15 9 1.5

27/10/2006 1425 60 15.125 9.5 1.375

20/10/2006 1612.5 62 15 9.125 1.25

13/10/2006 1600 70 14.875 8.75 1.125

06/10/2006 1875 76 14.9 7.75 1.375

29/09/2006 1912.5 74.5 15.125 7.125 1.625

22/09/2006 2000 73 15 6.875 1.5

15/09/2006 1550 47 15.125 6 1.375

08/09/2006 1450 53 15.75 6.25 1.5

01/09/2006 1675 50 15.5 7 1.75

25/08/2006 1700 55 15.625 7.625 1.625

18/08/2006 1710 56 17.625 8 1.75

11/08/2006 1912.5 64 19.375 8.5 2

04/08/2006 1975 69 21.125 9 1.875

28/07/2006 1912.5 78.5 23 9.625 2

21/07/2006 2150 77 23.125 10.375 2.125

14/07/2006 2175 80 23 11 2.375

07/07/2006 2000 71 22.5 10.875 2.625

30/06/2006 2512.5 83 22.75 10.5 2.5

Continued on next page
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Table 3.1 – continued from previous page

0%-3% 3%-6% 6%-9% 9%-12% 12%-22%

23/06/2006 2487.5 87.5 24 11 2.25

16/06/2006 2350 80.5 23.5 10.5 2.375

09/06/2006 2212.5 74.25 22.5 10 2.5

Table 3.1: Data(in basis points) covers the period 09/06/2006

to 29/12/2006.

In the table (3.2) below we continue the weekly data collected after the subprime

crisis erupted from late 2007 to mid 2008:

0%-3% 3%-6% 6%-9% 9%-12% 12%-22%

23/05/2008 3425 295 177 115 50

16/05/2008 2850 290 168 97 57

09/05/2008 3600 300 150.5 113 63

02/05/2008 3250 310 142 126 69

25/04/2008 3150 315 203 163 74

18/04/2008 3825 325 235 185 78

11/04/2008 3850 425 285 217 85

04/04/2008 3300 395 310 138 92

28/03/2008 3700 400 330 205 105

21/03/2008 5000 610 385 237 112

14/03/2008 5050 640 403 235 114

07/03/2008 4650 570 380 220 110

29/02/2008 3250 414 372 260 115

Continued on next page
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Table 3.2 – continued from previous page

0%-3% 3%-6% 6%-9% 9%-12% 12%-22%

22/02/2008 3300 470 360 280 109

15/02/2008 3200 485 290 235 97

08/02/2008 3100 395 220 190 85

01/02/2008 3300 295 197 145 78

25/01/2008 3950 320 215 131 66

18/01/2008 3400 326 194 115 58

11/01/2008 2650 250 173 100 57

04/01/2008 2550 197 152 92 55

28/12/2007 2425 195 130 80 50

21/12/2007 2350 190 109 71 47

14/12/2007 2325 184 88 62 44

07/12/2007 2412.5 180 85 56 43

30/11/2007 2587.5 178 78 50 41

23/11/2007 2950 172 70 41.75 40

16/11/2007 2675 168 63 35 37

09/11/2007 2350 155 55 28.25 35

02/11/2007 1950 144 49 21.5 32

Table 3.2: Data(in basis points) covers the period 02/11/2007

to 23/05/2008.

Looking at Table (3.2) it is worth mentioning that for the first three weeks, on

dates: 02/11/2007, 09/11/2007, and 16/11/2007, the market spreads of the ‘high
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yield and safe’ super senior 12%∼22% tranche is commanding a higher price than

the ‘not so safe’ senior 9%∼12%tranche. A possible reason of this overtake is the

larger tranche notional which is 10% in the super senior case, making this tranche

more risky in a low credit market condition.

Also, from the movements of market spreads after the crisis, one can observe from

Table (3.2) that there is a fatter tail effect in the spreads, especially in the last two

tranches. In other words, the whole spread figure is ‘raised’ to match a certain

distribution, in the case of the market standard model, the Gaussian one .

3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a variable reduction procedure which al-

lows for the development of a set of artificial variables - the so called principal

components - out of observed data, with the aim that these principal variables

will account for most of the variance in the original data.

This method of analysis is useful in our context because the aim is to further study

the correlation within the same pool, and PCA is one of the most effective ways

to examine the redundancy in a number of variables.

The principal component is a linear combination of optimal weight in the original

data. Normally, it is possible to calculate a score for every sub-set or subject of

the principle component, i.e. we are expecting 5 scores out from the analysis as

we have five tranches in the data set1.
1Detail and advanced studies of this procedure include extracting different numbers of com-

ponents, orthogonal and oblique (also known as uncorrelated and correlated) solutions of the
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The results given in the next section are produced using MatLab c©, based on the

data described in the previous section.

3.3 Output Results and Conclusion

In this section, we look into the details of results obtained using MatLab c© built-in

functions.

First of all we find the covariance matrix and correlation coefficients of the ob-

served spreads.

Table 3.3: Correlation Coefficients.
02/11/2007 — — 23/05/2008

1.0000 0.6624 0.3380 0.2406 0.0641

0.6624 1.0000 0.5389 0.3399 0.2464

0.3380 0.5389 1.0000 0.5382 0.6614

0.2406 0.3399 0.5382 1.0000 0.5734

0.0641 0.2464 0.6614 0.5734 1.0000

09/06/2006 — — 29/12/2006

1.0000 0.6492 0.0663 0.1822 0.0153

0.6492 1.0000 0.3505 0.3236 -0.1062

0.0663 0.3505 1.0000 0.2807 0.0114

0.1822 0.3236 0.2807 1.0000 0.0775

0.0153 -0.1062 0.0114 0.0775 1.0000

principal components and number of item loading on each component, but technical advancement

is not the aim of this study
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From Table (3.3), comparing with the pre-subprime correlation shown in the sec-

ond part of the table, we can see that the correlation between the 12%∼22% su-

per senior tranche and other four tranches are dramatically increased in the after-

subprime 2007-2008 period. Meanwhile, the correlation score shows that there is

an increase of correlation in between every two tranches within the period of the

crisis comparing to scores from before the crisis.

Table 3.4: Covariance Matrix.
02/11/2007 — — 23/05/2008

2.7052 0.2216 0.0534 0.0372 0.0022

0.2216 0.0414 0.0105 0.0065 0.0010

0.0534 0.0105 0.0092 0.0049 0.0013

0.0372 0.0065 0.0049 0.0088 0.0011

0.0022 0.0010 0.0013 0.0011 0.0004

09/06/2006 — — 29/12/2006

3.1679 0.0830 0.0009 0.0025 0.0000

0.0830 0.0052 0.0002 0.0002 -0.0000

0.0009 0.0002 0.0001 0.0000 0.0000

0.0025 0.0002 0.0000 0.0001 0.0000

0.0000 -0.0000 0.0000 0.0000 0.0000

From the covariance matrix given in Table (3.4) it is clear that the convergence

between tranches is slower in the period of crisis. For the period 09/06/2006-

29/12/2006, take the second tranche for instance: the score decreased from 0.0830
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to 0.0002 in the 9%∼12% tranche and simply vanished in the super senior 12%∼22%

tranche. However, the comparable score from the more current data converge from

0.2216 to 0.0010 in the last tranche.

Meanwhile, one may notice that the magnitude of the two set of scores has a

difference of 10 times, i.e., it is 1.0e+004 (or 104) for the period 09/06/2006-

29/12/2006, and 1.0e+005 (or 105) for the more recent period. This finding pro-

vides additional support for the slow convergence pattern of the covariance matrix

evidenced before.

Next, we list the principal components and PCA scores for the two data samples.

69



Table 3.5: PC and Score for 09/06/2006-29/12/2006.
Principal Components

PC = PC1 PC2 PC3 PC4 PC5

Tranche 1 -0.9997 0.0259 -0.0005 -0.0009 -0.0001

Tranche 2 -0.0260 -0.9979 0.0001 0.0587 0.0030

Tranche 3 -0.0003 -0.0497 -0.5289 -0.8463 0.0397

Tranche 4 -0.0008 -0.0309 0.8487 -0.5275 0.0221

Tranche 5 -0.0000 0.0057 0.0023 0.0451 0.0990

PCA Score

score = PC1 PC2 PC3 PC4 PC5

1.0e+004

Tranche 1 -2.5179 0.0001 -0.0000 -0.0000 0

Tranche 2 0.5680 -0.0022 0.0000 0.0000 0

Tranche 3 0.6502 0.0006 -0.0000 -0.0000 0

Tranche 4 0.6486 0.0007 0.0000 -0.0000 0

Tranche 5 0.6510 0.0008 -0.0000 0.0000 0
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Table 3.6: PC and Score for 02/11/2007-23/05/2008.
Principal Components

PC = PC1 PC2 PC3 PC4 PC5

Tranche 1 -0.9966 0.0808 0.0132 0.0027 -0.0014

Tranche 2 -0.0790 -0.9838 0.0831 -0.1372 -0.0085

Tranche 3 -0.0179 -0.1594 -0.5341 0.8234 0.1048

Tranche 4 -0.0121 0.0064 -0.8352 -0.5474 0.0518

Tranche 5 -0.0005 -0.0082 -0.1006 0.0595 -0.9931

PCA Score

score = PC1 PC2 PC3 PC4 PC5

1.0e+005

Tranche 1 -2.1083 0.0012 0.0000 0.0000 0

Tranche 2 0.3824 -0.0155 0.0009 -0.0006 0

Tranche 3 0.5525 0.0015 -0.0018 -0.0031 0

Tranche 4 0.5690 0.0049 -0.0033 -0.0022 0

Tranche 5 0.6045 0.0079 0.0042 -0.0003 0

It is evident from the PCA score Tables (3.5) and (3.6), that the score for the

period 02/11/2007-23/05/2008 is on bulk higher than the corresponding from the

year 2006.

It is well known that PCA test results describe the distance of the simulated trend

of movements from the original data. For example, the value -0.9997, the first

entry in Table (3.5) indicates a simulated point lower almost 1 in distance from

the real data point.
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Similarly, we can see that the score for the crisis period in Table (3.6) is larger

in absolute value than the score form the pre-crisis sample. This implies that the

movements of the spreads in 07/08 have a much bigger variance while the spreads

are bearing also a higher correlation.

Thus, we come to conclusion that although the market standard model is thought

to be powerful, easy to implement and can be adjusted using the implied corre-

lation to match fatter tail market situations, yet given extreme market condition,

the market standard model becomes less attractive as it fails to capture the time

dependent spread change. The reason is that whilst one may increase the implied

correlation to obtain a better spread according to a certain (Gaussian) distribution,

this is done at the expense of increased ‘noise’ that results from the fitting of a

higher spread in turbulent credit market.
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Chapter 4
Dynamic Growth Rate Model

4.1 A Dynamic Growth Rate Model

In this Chapter, we propose a dynamic credit risk model based on asset growth

rate. The model can be used to analyze and dynamically price a wide spectrum

of credit derivatives.Further, it is easy to calibrate and captures well both bullish

and bearish market movements. Further, our growth rate framework depends only

on an initial condition and extends the literature by covering zero face-value in-

struments as well. We study two specifications for default conditions and test our

findings for robustness.
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4.1.1 Model Setup

Suppose we have a portfolio of default-able zero coupon bonds which constitute

the only debt of the referenced names. Denote r as the risk-free interest rate and

c is the risky yield rate, assume that the portfolio is homogeneous, and each bond

pays a risky yield-to-maturity of (r + c), means the discrete asset growth factor

over a short time interval is: e(r+c).

As the collateral value of the debt evolves until maturity T , the default-able bond

losses its market value if its (time t) growth rate is lower than the risk-free Trea-

sury Bill interest rate. In other words, the bond is downgraded to junk in this case,

and a credit event is triggered.

We assume that the growth rate of a referenced company consists of two com-

ponents: the risk-free rate r and a stochastic growth rate x. The latter follows an

Ornstein-Uhlenbeck type process:

dx = −axdt+ σdz, (4.1)

where a is the drift, σ is volatility and z is a Brownian Motion. Solving equation

(4.1) we have:

x(t) = x(0)e−at + σ

∫ t

0

e−a(t−u)dwu (4.2)

Here dwu in above equation is the first order derivative of stochastic process wu

for t ∈ [0, . . . , t], in other words, it is the time dependent change of wu.

Assume that the time zero value of the underlying bond is 1, then the asset value

growth for time interval (0, t) is: ert+x(t) where x(t) is given by the equation

above. Then the value of default can be calculated and thus the probability of

default at each time t before maturity is found.
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We illustrate how to find the time t default probability p(t) with a simple numer-

ical example: Say that the yield of a risk-free, five-year, zero coupon Treasury

bond paying £100 at maturity is 3%. Also, the yield of a zero coupon, zero re-

covery corporate bond with the same face value and maturity is 4%. So r = 3%,

c = 1%, and as a result r + c = 4%Then, at present, the Treasury bond worths:

£100e−0.03×5 = 86.071 and the corporate: £100e−0.04×5 = 81.873. The value of

default is their difference, £4.198.

In case of default, the corporate bond will cause a loss of full face value of

£100 at maturity, so the risk-neutral expected loss from this default is simply:

100e−0.03×5p(0). Hence:

100e−0.03×5p(0) = 100e−0.03×5 − 100e−0.04×5

and thus:

p(0) =
e−0.03×5 − e−0.04×5

e−0.03×5
= 0.0488

At the end of the first year, the value of the Treasury bond is increased with the

risk-free rate 3% to: £86.071 × e0.03 = 88.692. As for the corporate bond, if the

growth of first year is lower than the promised 4%,say, 3.5% (this can be seen as

an addition of the 3% risk-free rate and x(1) = 0.5%), the value of the bond is

now: £81.873× e0.035 = 84.789.

Ideally, one would expect the corporate bond to grow with an average rate of 4%

every year during the five years and make it to the par value of £100 at maturity,

so the first year target should be: 81.873 × e0.04 = 85.214. Thus, with the value

of £84.789, it is more difficult to reach £100 and therefore a larger probability of

default (PD) is realized, calculated as:

100e−0.03×4p(1) = 100e−0.03×4 − 100e−0.04×5e0.035

75



⇒ 88.692p(1) = 88.692− 84.789

⇒ p(1) = 0.044

where 0.04 in above calculation is the result of r + c = 3% + 1% = 4%.

Mathematically, the general form equation of the probability of default is summa-

rized as following:

p(t) =
e−r(T−t) − e−(r+c)T+(rt+x(t))

e−r(T−t)
= 1− ex(t)−cT (4.3)

where the term e−(r+c)T+(rt+x(t)) is the one year compounding component with

regard to the risky growth rate rt+x(t), this is equivalent to the expanded product

of two compounding terms e−(r+c)T × ert+x(t).

It is easy to see from above equation (4.3) that for any time t, if x(t) < ct, then

we will alway have a probability of default based on the performance of the bond

for the first t years (as is 0.044 in our numerical example).

On the contrary, if x(t) ≥ ct, the corporate bond is doing well for the period (0, t],

and to obtain the probability for the rest of (t, T ) years, one may simply focus on

the promised yield r + c and the maturity time. So the probability of default is

now defined as:

p(t) =
e−r(T−t) − e−(r+c)(T−t)

e−r(T−t)
= 1− e−c(T−t) for x(t) ≥ ct. (4.4)

Continuing with the previous example, for any growth x(t) ≥ ct = 1%, for t = 1,

by the end of the first year, we obtain the default probability of the corporate bond

seen at time t = 1 for the remaining (5− 1) = 4 years:

p(1) =
88.692− 85.214

88.692
= 0.0392
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Summarizing our findings, the default probability dependent on the stochastic

growth rate x(t), is given by:

p(t) =

 x(t) ≥ ct : e−r(T−t)−e−(r+c)(T−t)

e−r(T−t) = 1− e−c(T−t);

x(t) < ct : e−r(T−t)−e−r(T−t)−cT+x(t)

e−r(T−t) = 1− ex(t)−cT ;
(4.5)

4.1.2 Trigger of Default

In this section we analyze two alternative specifications of default. We shall com-

pare the robustness of the two settings in the subsequent section.

Growth Rate Factor

Having obtained the default-adjusted asset growth rate from the previous section,

we observe that the asset growth is limited by a lower rate of ert; in other words,

the asset growth rate x(t) has to stay above 0 for the company to survive until time

t. In other words,having the company grown from time 0 to period t, its value is

given by: e−(r+c)T+(rt+0) = e−(r+c)T ert.

So the default condition can be specified as: xi(t) > 0 or x(t) > 0 for a homoge-

neous portfolio. In the context of the numerical example provided in the previous

section, the probability of default at x(1) = 0 is:

p(1) =
88.692− 100e−0.04×5+0.03

88.692
= 0.0488

for any x(1) < 0, the probability p(1) becomes larger than 0.0488.

In this setting, a practitioner does not need to worry about the time dependent

default probability given by equation (4.5), as the default is simply triggered when

x(t) falls below 0.
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As for the calculation of the c value used in equation (4.5), it is easy to obtain

it given the bond face value, but in case for a portfolio, we can have it from the

average default probability using equation (4.5). Details of calibration together

with numerical results will be given in a subsequent section.

Asset Value Approach

For the asset value approach, we may obtain c from market data, but, default

instead is calculated according to the default barrier used in the standard market

model.

As in Li (2000) and Kalemanova et al. (2005), default is triggered if the asset value

falls below a threshold. The barrier is given by equation (1.14): A = Φ−1(1− p),

using a static probability of default from the credit curve, i.e.:

K = Φ−1(1− pk) (4.6)

where K is the value of default barrier and Φ is the normal Gaussian distribution

function.

The variable pk is defined as the probability of default over the whole time interval

in the market model. Meanwhile, the threshold K is typically set to be a constant

for CDO type of contracts1.

Within our continuing example, with x(t) = 0, pk = 0.0488, thus, K = 1.6566.

Similarly, in the time-dependent case, we can have a time t ‘asset value’, A(t),

1For details see Anson et al. (2004), Bluhm & Overbeck (2007) and Loffler & Posch (2007).

78



using equation (1.14) as:

A(t) = Φ−1(1− p(t)) (4.7)

Use the same values of x(1) = 0.5% and p(1) = 0.044 we had earlier as example,

A(1) = 1.706. So the asset survives until A(t) < K = 1.6566.

In this case, default is triggered if the value A(t) falls below the default barrier K,

i.e., A(t) < K or equivalently:

Φ−1(1− p(t)) < Φ−1(1− pk) (4.8)

As the Φ−1 function value decreases with an increase of p(t), to hold true that

A(t) < K one will require that p(t) > pk. Subsequently, apply equation (4.3) and

one finds that x(t) < 0 from the above equation (4.8).

4.1.3 Simulation Tests

Following the previous results, the two conditions of default are summarized in

Figure (4.1):
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Figure 4.1: Model calibration procedure of two approaches.

As shown in the figure, we can see that the procedure of Growth Factor approach

shown on the right side is easier to program and superior in computation time due

to fewer calculations in case of simulation. Meanwhile, if the practitioner needs

to observe the change in time-value and carry out portfolio or match to name

hedging strategy based on asset value, the Asset Value approach is much more

reliable and works well with a variety of asset value models, because with the

simulation results in hand one may easily plug in a different barrier and obtain the

estimated defaults of the simulated data.

In order to examine the convergence and robustness of the two approaches, we

use a multi-step2 Monte Carlo simulation using the same results generated by the

random variable generating engine; the simulated default is shown in Figure (4.2)

below:
2Traditional Monte Carlo is known as static because time does not play a part in the process.

Multi-step Monte Carlo is suitable for dynamic discrete event simulation as it observes the behav-

ior of individual entities in a system over a period of time.
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Figure 4.2: Simulated trial default times.

It is obvious from Figure (4.2) that both approaches provide identical results,

in other words, the same company default/survive at the same time in both ap-

proaches:

∵ A(t) < K i.e. Φ−1(1− p(t)) < Φ−1(1− pk)

∴ p(t) > pk

∴ apply equation (4.5) 1− ex(t)−cT > 1− e−cT

∴ x(t) < 0

The figure below shows the computation time3 of the two default trigger ap-

proaches:

3 The test is performed under Microsoft Excel VBA environment, the computer we used has

Intel P4 3.6GHz CPU with 1G Memory.
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Figure 4.3: Computation time(in seconds) vs. number of simulations.

As shown above, the asset value approach is more time consuming; however, this

approach is more suitable when considering a time dependent underlying asset

value. Thus the additional time cost is bearable when calculating hedging param-

eters of the underlying portfolio.

We move on next to calibration and implementation using market data. The valu-

ation process is carried out using multi time-step Monte Carlo method.

4.2 Model Implementation: Valuation of a CDO

In this section we focus on a Collateralized debt obligation (CDO) contract.
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4.2.1 The Simulation Procedure

We follow the asset value approach in defining a credit event. The simulation

process is broken down into the following steps:

1. Generate x(t)4 using equation (4.1) and (4.2) for each underlying company

over the entire contract time.

2. Calculate the default adjusted asset growth factor e(r+c)t for each time 0 ≤

t ≤ T .

3. Calculate the time dependent default probability from equation (4.5) for all

companies over the whole time period.

4. Calculate the expected time t asset value for all companies using the default

probability from the above step.

5. Calculate the default barrier using equation (4.6).

6. Compare the expected asset value and the default barrier and determine the

credit event using equation (4.8). Defaulted companies are knocked out for

the remaining contract life.

7. Calculate the cumulative loss from default. The recovery rate is chosen to

be 40% inline with market standards.
4To find the drift, we assume that the stochastic variable is 0, then the credit risky yield c =∫ T

0
αdt, as we have both c (the risky yield, 1% in previous example) and the contract maturity time

T , the drift parameter α is then calculated using: α = c
nT , where n is the number of payments per

year (n = 4 in the numerical example as the payments are assumed quarterly.).
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8. For each tranche, the loss at each time is given by the comparison between

tranche size and the tranche loss. Fair spread is given by the component that

equals the tranche loss and the tranche notional.

9. Repeat above steps for a large number of times and average the fair spread

from all trials. Thus the fair spread is calculated for each tranche.

4.2.2 Numerical Results

The CDO-type contract we consider is the 5-year iTraxx Europe. Total underlying

names is 125, and the six structured tranches are sized: 0 ∼ 3%, 3 ∼ 6%,6 ∼

9%,9 ∼ 12%, 12 ∼ 22% and 22 ∼ 100%. The payment days are set quarterly and

the recovery rate is fixed to 40%.

Bearing in mind the on going tsunami in credit market we use two sets of market

data, one bearish and the other bullish5: (i) the first data set is the iTraxx series

five which started on 20th September 2006 and ends on 20th December 2011. The

market quote6 we use is recorded on the 31th of January of 2007, with compound

spread 23bps. (ii) The second data set is the latest on-the-run iTraxx series eight

version one with contract maturity the 20th December 2012. The quote date is

30st January 2008 with compound spread 123.75bps.

The interest rates from Bank of England (BoE) are 5.5% and 5% respectively,

and the σ factors are 0.0031 and 0.0072, respectively, the latter are the available

5Define the term bearish for low credit market condition, thus high credit risk and high credit

derivative spread, meanwhile bullish means high credit market and low derivative spread.
6All data is quoted from Markit and Reuters’ CDS Views. Note that different contributors may

submit different quotes.
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volatilities of average CDO spreads in the database.

The numerical results are summarized in Table (4.1) and (4.2):

Tranche Market Growth Rate

0% - 3% 10.34% 17.03%

3% - 6% 41.59 bps 64.36 bps

6% - 9% 11.95 bps 20.14 bps

9% - 12% 5.6 bps 2.7 bps

12% - 22% 2 bps 0.85 bps

Absolute Error 26.91 bps

Table 4.1: Numerical Results for iTraxx Tranches on 31th Jan 2007

Tranche Market Growth Rate

0% - 3% 30.98% 37.03%

3% - 6% 316.9 bps 360.15 bps

6% - 9% 212.4 bps 247.31 bps

9% - 12% 140.0 bps 172.64 bps

12% - 22% 73.6 bps 85.28 bps

Absolute Error 122.48 bps

Table 4.2: Numerical Results for iTraxx Tranches on 30th Jan 2008

We can observe from Table (4.1) which depicts, a bearish market, that our simu-

lation results differ by 50% or more compared with market data. Given that our

absolute error is 26.91 bps, we believe that the main reason for the large per-

centage differences is that for the 9%∼12% and 12%∼22% tranches, the market

spreads are low thus, 1.15bps difference in 12%∼22% tranche between our model

and the market results in 57.5% error. Note also that the overall absolute error7 that
7The error is the sum of absolute difference between simulation outcome and market data
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we experience for this period is reasonable comparing to result obtained from the

market standard model in Table (2.1), the overall absolute error 122.48 is at the

same level of pre-crisis error (117.24) given by the one factor Gaussian model,

therefore, one may find the error acceptable for an intensive market.

As for the intense post sub-prime market, we can see from Table (4.2) that sim-

ulated spreads are within a the percentage difference of 15% compared to the

market spreads. However, as evidenced in Table (4.1), the differences are larger

for the last two tranches. The absolute error we observe here from each simulation

outcome is about 5 times that of a good market, but if one bears in mind that the

tranche spread level in the turbulent period compared with similar readings from

a year before, for example, tranche 3%∼6% spread is about 8 times higher and

the super senior tranche is now 36 times more expensive, the simulated results are

still acceptable.

We may conclude that the growth rate model is useful in capturing both normal

and intense market movements and the multi-step Monte Carlo simulation proce-

dure that we implemented is effective when dealing with structural credit models.

4.2.3 Fitting Market Data

In this section, with the purpose of examining the “goodness” and capability of

capturing market movement, we extend the previous numerical example to fit-

ting more market data. As highlighted previously, the competition of static copula

models is very heated for benign and easy markets, yet as observed by Bystrom

excluding the equity tranche, as according to market rules, the equity tranche spread is locked to

500bps.
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(2009), almost everyone relics completely on market implied factors to better fit

the spreads during the recent credit crunch, allowing for even 30% differences.

For our present investigation, the data set is ambitiously selected to coincide with

the climax of the credit crunch, covering the period from November 2007 to May

2008, including fall of Bear Stearns and the slide of the share price of Lehman

Brothers.

The simulations are run in the context of two different approaches: (i) Mark-to-

date, i.e., observe the data first and then update the model inputs according to

latest market movements. For example, on the day of Christmas, we update the

weekly volatility for our model and set the simulation running to forecast spreads

on New Year’s day. (ii) The Dynamic8 approach, in which the inputs are only

updated at the beginning of the simulation. In our examination, the variables are

fixed from 02/11/2007 till 23/05/2008. The purpose here is to test the dynamic

ability to capture market movements, which is an impossible mission in static

models. Fixing inputs at the beginning during the most volatile credit market ever

experienced might be the last thing that any risk manager would do, and this is

certainly not recommended by this research. However, we are still interested in

the accuracy of estimating spreads for short periods, say for a three month term,

which is the normal time period between two payments for a CDO contract.

The simulated results are shown below, the ‘error’ column is the difference be-

tween simulated result and the market data, where positive error means a higher

simulated result and negative error suggests a lower result than market spread.

Detailed description and discussions are given in following subsections.

8Here Dynamic is the name of this approach as the model comes with dynamic growth rate,

but the inputs are rather ‘static as they are fixed since the beginning of simulation while the ‘mark-

to-date approach has the inputs updated weekly.
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Market

Data

Mark-to-

Date

error Dynamic error

23/05/2008 3425 3823.05 398.04 3228.62 -196.38

16/05/2008 2850 3633.07 783.067 3220.96 370.96

09/05/2008 3600 3507.81 -92.19 3232.98 -367.02

02/05/2008 3250 3768.79 518.79 3219.55 -30.45

25/04/2008 3150 4167.05 1017.05 3217.42 67.42

18/04/2008 3825 3800.09 -24.91 3218.11 -606.89

11/04/2008 3850 3967.92 117.92 3193.01 -656.98

04/04/2008 3300 3382.16 82.16 3164.14 -135.864

28/03/2008 3700 4290.92 590.92 3148.98 -551.02

21/03/2008 5000 5559.49 559.49 3130.47 -1869.53

14/03/2008 5050 5916.95 866.95 3035.83 -2014.17

07/03/2008 4650 4966.44 316.44 2928.55 -1721.45

29/02/2008 3250 4099.09 849.09 2830.99 -419.01

22/02/2008 3300 3176.07 -123.94 2804.11 -495.89

15/02/2008 3200 3125.04 -74.96 2777.56 -422.44

08/02/2008 3100 3401.51 301.51 2744.78 -355.22

01/02/2008 3300 3968.95 668.95 2713.01 -586.99

25/01/2008 3950 4129.44 179.44 2703.69 -1246.3

18/01/2008 3400 3734.58 334.58 2571.36 -828.63

11/01/2008 2650 3170.41 520.41 2488.11 -161.88

04/01/2008 2550 2672.04 122.04 2471.65 -78.34

28/12/2007 2425 2475.48 50.48 2461.27 36.27

21/12/2007 2350 2118.38 -231.61 2460.23 110.23

14/12/2007 2325 2805.44 480.44 2477.02 152.02

Continued on next page
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Table 4.3 – continued from previous page

Market

Data

Mark-to-

Date

error Dynamic error

07/12/2007 2412.5 2515.41 102.91 2428.84 16.34

30/11/2007 2587.5 3341.35 753.85 2324.08 -263.41

23/11/2007 2950 3518.01 568.01 2671.83 -278.16

16/11/2007 2675 3466.59 791.59 2626.89 -48.11

09/11/2007 2350 2256.29 -93.70 2549.54 199.54

02/11/2007 1950 1688.13 -261.86 1688.13 -261.86

Table 4.3: Fitting tranche spread 0-3% 02/11/2007-23/05/2008.

Figure 4.4: Fitting tranche spread 0-3% 02/11/2007-23/05/2008.
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Market

Data

Mark-to-

Date

error Dynamic error

23/05/2008 295 324.76 29.76 320.19 25.19

16/05/2008 290 279.05 -10.95 321.02 31.02

09/05/2008 300 382.58 82.58 322.14 22.14

02/05/2008 310 382.92 72.92 322.78 12.78

25/04/2008 315 334.83 19.83 323.17 8.17

18/04/2008 325 340.63 15.63 322.77 -2.23

11/04/2008 425 481.22 56.22 323.96 -101.03

04/04/2008 395 375.34 -19.65 318.80 -76.19

28/03/2008 400 411.04 11.04 312.38 -87.61

21/03/2008 610 432.95 -177.04 311.36 -298.63

14/03/2008 640 656.56 16.56 296.87 -343.13

07/03/2008 570 558.72 -11.28 278.77 -291.23

29/02/2008 414 365.27 -48.72 262.58 -151.41

22/02/2008 470 503.55 33.55 253.68 -216.311

15/02/2008 485 503.46 18.46 244.64 -240.35

08/02/2008 395 289.06 -105.94 224.43 -170.56

01/02/2008 295 351.57 56.57 211.08 -83.91

25/01/2008 320 347.61 27.61 205.33 -114.66

18/01/2008 326 357.81 31.81 196.86 -129.14

11/01/2008 250 242.32 -7.67 188.15 -61.84

04/01/2008 197 205.11 8.11 177.19 -19.80

28/12/2007 195 227.35 32.35 171.16 -23.83

21/12/2007 190 199.64 9.64 173.73 -16.26

14/12/2007 184 227.05 43.05 170.26 -13.73

Continued on next page
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Table 4.4 – continued from previous page

Market

Data

Mark-to-

Date

error Dynamic error

07/12/2007 180 195.56 15.56 167.56 -12.43

30/11/2007 178 156.16 -21.83 165.17 -12.82

23/11/2007 172 232.61 60.61 163.50 -8.49

16/11/2007 168 158.63 -9.36 162.17 -5.82

09/11/2007 155 179.18 24.18 161.81 6.81

02/11/2007 144 161.53 17.53 161.53 17.53

Table 4.4: Fitting tranche spread 3-6% 02/11/2007-23/05/2008.

Figure 4.5: Fitting tranche spread 3-6% 02/11/2007-23/05/2008.
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Market

Data

Mark-to-

Date

error Dynamic error

23/05/2008 177 207.07 30.07 205.16 28.16

16/05/2008 168 180.27 12.27 203.97 35.97

09/05/2008 150.5 183.49 32.99 205.23 54.73

02/05/2008 142 173.17 31.17 207.20 65.20

25/04/2008 203 292.27 89.27 209.63 6.63

18/04/2008 235 304.69 69.69 209.74 -25.25

11/04/2008 285 295.01 10.01 208.50 -76.49

04/04/2008 310 260.49 -49.50 205.01 -104.99

28/03/2008 330 332.99 2.99 200.56 -129.43

21/03/2008 385 352.53 -32.46 194.38 -190.61

14/03/2008 403 387.97 -15.02 184.97 -218.02

07/03/2008 380 461.71 81.71 173.50 -206.49

29/02/2008 372 447.39 75.39 162.12 -209.87

22/02/2008 360 305.69 -54.30 150.59 -209.40

15/02/2008 290 365.47 75.47 136.38 -153.61

08/02/2008 220 256.79 36.79 125.83 -94.16

01/02/2008 197 226.45 29.45 118.85 -78.14

25/01/2008 215 209.55 -5.44 115.83 -99.16

18/01/2008 194 193.66 -0.33 105.66 -88.33

11/01/2008 173 196.78 23.78 96.87 -76.12

04/01/2008 152 163.33 11.33 91.17 -60.82

28/12/2007 130 166.72 36.72 82.76 -47.23

21/12/2007 109 135.57 26.57 75.61 -33.38

14/12/2007 88 71.70 -16.29 70.27 -17.72

Continued on next page
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Table 4.5 – continued from previous page

Market

Data

Mark-to-

Date

error Dynamic error

07/12/2007 85 88.99 3.99 67.88 -17.11

30/11/2007 78 89.26 11.26 66.99 -11.01

23/11/2007 70 78.49 8.49 63.18 -6.81

16/11/2007 63 66.44 3.44 61.21 -1.78

09/11/2007 55 59.20 4.20 58.40 3.40

02/11/2007 49 44.71 -4.28 44.71 -4.28

Table 4.5: Fitting tranche spread 6-9% 02/11/2007-23/05/2008.

Figure 4.6: Fitting tranche spread 6-9% 02/11/2007-23/05/2008.
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Market

Data

Mark-to-

Date

error Dynamic error

23/05/2008 115 136.29 21.29 135.94 20.94

16/05/2008 97 111.45 14.45 136.11 39.11

09/05/2008 113 129.14 16.14 137.49 24.49

02/05/2008 126 153.98 27.98 138.37 12.37

25/04/2008 163 182.15 19.15 138.48 -24.51

18/04/2008 185 212.27 27.27 137.79 -47.20

11/04/2008 217 200.01 -16.98 135.84 -81.15

04/04/2008 138 159.01 21.01 132.25 -5.74

28/03/2008 205 250.59 45.59 131.68 -73.31

21/03/2008 237 242.25 5.25 128.39 -108.60

14/03/2008 235 275.11 40.11 122.94 -112.05

07/03/2008 220 278.75 58.75 116.79 -103.20

29/02/2008 260 310.53 50.53 110.67 -149.32

22/02/2008 280 268.95 -11.04 102.25 -177.74

15/02/2008 235 252.93 17.93 92.90 -142.09

08/02/2008 190 182.23 -7.76 84.18 -105.81

01/02/2008 145 153.09 8.09 73.70 -71.29

25/01/2008 131 158.50 27.50 68.61 -62.38

18/01/2008 115 132.91 17.91 62.89 -52.10

11/01/2008 100 89.85 -10.14 59.15 -40.84

04/01/2008 92 90.94 -1.05 54.43 -37.56

28/12/2007 80 99.47 19.47 50.40 -29.59

21/12/2007 71 65.94 -5.05 46.94 -24.05

14/12/2007 62 68.20 6.20 42.89 -19.10

Continued on next page
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Table 4.6 – continued from previous page

Market

Data

Mark-to-

Date

error Dynamic error

07/12/2007 56 55.76 -0.23 40.97 -15.02

30/11/2007 50 46.55 -3.44 37.30 -12.69

23/11/2007 41.75 46.22 4.47 35.50 -6.24

16/11/2007 35 31.22 -3.77 32.29 -2.70

09/11/2007 28.25 36.84 8.59 32.22 3.97

02/11/2007 21.5 22.14 0.64 22.14 0.64

Table 4.6: Fitting tranche spread 9-12% 02/11/2007-

23/05/2008.

Figure 4.7: Fitting tranche spread 9-12% 02/11/2007-23/05/2008.
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Market

Data

Mark-to-

Date

error Dynamic error

23/05/2008 50 56.69 6.69 70.31 20.31

16/05/2008 57 65.08 8.08 70.97 13.97

09/05/2008 63 65.41 2.41 71.47 8.47

02/05/2008 69 66.28 -2.71 71.76 2.76

25/04/2008 74 82.93 8.93 71.90 -2.09

18/04/2008 78 91.55 13.55 71.76 -6.23

11/04/2008 85 83.93 -1.06 71.48 -13.51

04/04/2008 92 91.88 -0.11 70.90 -21.09

28/03/2008 105 104.49 -0.50 69.94 -35.05

21/03/2008 112 128.92 16.92 68.27 -43.72

14/03/2008 114 128.51 14.51 66.03 -47.96

07/03/2008 110 111.14 1.14 63.37 -46.62

29/02/2008 115 123.77 8.76 60.93 -54.06

22/02/2008 109 118.62 9.62 57.63 -51.36

15/02/2008 97 91.90 -5.09 54.39 -42.60

08/02/2008 85 88.64 3.64 51.71 -33.28

01/02/2008 78 95.87 17.87 49.14 -28.85

25/01/2008 66 70.95 4.95 46.99 -19.00

18/01/2008 58 59.99 1.99 45.19 -12.80

11/01/2008 57 63.32 6.32 44.07 -12.92

04/01/2008 55 62.86 7.86 42.44 -12.56

28/12/2007 50 52.74 2.74 41.63 -8.36

21/12/2007 47 56.76 9.76 41.08 -5.91

14/12/2007 44 47.35 3.35 39.10 -4.89

Continued on next page
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Table 4.7 – continued from previous page

Market

Data

Mark-to-

Date

error Dynamic error

07/12/2007 43 45.93 2.93 38.61 -4.38

30/11/2007 41 45.62 4.62 37.40 -3.59

23/11/2007 40 40.29 0.29 38.24 -1.75

16/11/2007 37 32.56 -4.43 35.79 -1.20

09/11/2007 35 35.08 0.08 36.23 1.23

02/11/2007 32 39.14 7.14 39.14 7.14

Table 4.7: Fitting tranche spread 12-22% 02/11/2007-

23/05/2008.

Figure 4.8: Fitting tranche spread 12-22% 02/11/2007-23/05/2008.
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Long Term Fitting

It is evident from the Tables and Figures that the Mark-to-Date approach is giving

results inline with the market data curve for all five tranches. The largest errors

are occurring on dates: 25/04/2008 for the 0-3% tranche with error 1017.05 bps,

21/03/2008 for 3-6% tranche with error -177.04 bps, 25/04/2008 for the 6-9%

tranche with error 89.27 bps, 07/03/2008 for 9-12% tranche with error 58.75 bps,

and on the 01/02/2008 for the 12-22% tranche with error 17.87 bps.

Comparing with the market spread for the above dates, the percentage errors are:

32.29%, 29.02%, 43.97%, 26.71% and 22.91%, respectively. It is interesting to

note that the spread changes between these 5 days and the previous correspound-

ing ones are: 21.43%, 4.91%, 15.76%, 18.19% and 15.38%. Note also that the

market practice is to take the Equity tranch spread directly from market. Finally,

one has to take into account that the spread changes of all five tranches during the

entire considered time period from November 2007 to May 2008 are: 2.17 times

higher for the 0-3% Equity tranch, 4.44 times higher for the 3-6% Junior Mezza-

nine tranch, 8.23 times higher for the 6-9% Senior Mezzanine tranch, 13.02 times

higher for the 9-12% Senior tranch and 3.59 times higher for the 12-22% Super

Senior tranch. Bystrom (2009) concluds that the widly adopted copula models are

‘useless’ under extreme market condition, however, been granted a larger toller-

ance under extrame market conditions, Mark-to-Date approach distinguish itself

from the group of traditional copula models.

On the other hand, the Dynamic approach, seems to have a very tough ride. As

highlighted in the previous section, the main reason for the observed big gaps be-

tween simulation and market data is the fixed model input. As it is widely known

already, the pre-crisis market had only low spreads and very flat curves across
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all traded tranches, thus the fixed volatility input will never result in a sky high

spread like ten times the pre-crisis curve for the 9-12% tranche. Meanwhile, we

see from the Tables that the dates in which the tranche largest errors took place

for the dynamic approach are: 14/03/2008, 14/03/2008, 14/03/2008, 22/02/2008

and 29/02/2008. Incidentally, these dates are also the peaks for the market spread.

We can see that all these extreme values took place on or around the date of 14th

March 2008, the same day that the Wall Street giant Bear Stearns revealed the

news that it financial position had “significantly deteriorated in the last 24 hours”.

On the same day, the Fed stepped in by arranging for a rival bank, JP Morgan

Chase, to inject short-term capital for Bear Stearns rescue. Singling out the most

troublesome part of the credit market in our sample, we have to admit that it is

impossible for our model to comply with extreme events such as the default of the

5th largest investment bank of Wall Street.

Interestingly, none of the largest errors took place on the above dates according

to the Mark-to-Date approach. This slightly suggests that by updating the latest

market information really helps our model to capture the evolving spreads. To

better gauge the strengths and weaknesses of the Dynamic approach we turn our

attention next to examine its short term performance.

Short Term Fitting

Here we set the period of observation to a three-month interval, or 12 weeks (in

order to take into account the Christmas off-trading days), i.e. we only look at the

data from 02/11/2007 to 18/01/2008.

The 0-3% Equity tranch spread shows an error ranging from around 36 bps to
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-828 bps, the average error is -52.48 bps for 11 among the 12 observed dates,

excluding the 18/01/2008 where the numerous -828.63 caused by a jump of the

market by 28.3%./ For the 3-6% tranche, the market showed a jump of 30.4%

on 18/01/2008, while during the other 11 weeks starting from the 02/11/2007 it

showed an average error of -13.69 bps. The 6-9% tranche jumped 12.13% from

173 bps to 194 bps on 18/01/2008, whilst the average error for the other 11 weeks

was -24.81 bps. As for the 9-12% tranche, the average error in bps was found to be

-16.65bps while the jump on 18/01/2008 was 15%. For the last 12-22% tranche,

the average error before 18/01/2008 was -4.29 bps, while the jumps that the other

tranches experienced on 18/01/2008 seem not to affect the super senior tranche.

In a nutshell, the dynamic simulated tranche spreads for all the five tranches are all

underestimating the market volatility. This is due to the input from a considerably

flat curve at the beginning of the sample period whilst thereafter the market spread

was increasing to peak on the 14/03/2008.

Our results for a short-period indicate that the model works adequately in volatile

market and thus it is possible to construct fairly reliable hedging strategies based

on short term simulations. Our research will continue in the next Chapter by carry-

ing our simulations over three-month periods to develop dynamic hedging strate-

gies.

4.3 A Note on the Flexibility of our Framework

The assumptions that were utilized in the previous simulations were guided by the

standard market model. However, as the model was implemented with a multi-step

simulation, ‘richer’ assumptions can also be added in case one needs to analyze the
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market with the aid of more parameters, making the framework more consistent

with reality.

Dynamic Recovery Rate

Although, the market practice is to set a uniform recovery rate R to all classes of

credit derivatives, recent research outlines the benefits of stochastic recovery rates

as a superior fit to reality.

Yu (2003) and Herkommer (2007) have shown that the recovery rate can not be

disassociated from default probability. Moreover, Hu & Perraudin (2002), Carey

& Gordy (2003) and Altman, Brady, Resti & Sironi (2005) suggest that there is a

negative correlation between the default probability and the recovery rate.

In our dynamic asset growth rate model, for each observed time t, a negative

correlation between the derived default probability and the recovery rate is implied

by our default conditions. Thus, our model framework is compatible with recent

empirical findings regarding the impact of the recovery rate.

Match to Name Correlation

According to reviews by Deacon (2003) and Anson et al. (2004) most distribu-

tion and copula based credit models are correlation centered, and as practitioners

price the products with the market standard Gaussian copula model, discussions

on pairwise correlation between underlying companies will continue to be popular

in the future.
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To examine the effects of correlation factors within our model, we follow the

approach proposed by Hull et al. (2005). The correlation parameter ρ is set to be

embedded in the Brownian Motion process z, so we now have z as:

dzi = ρidM +
√

1− ρ2
i dZi

Here i indicates the ith company and M is a common Wiener process for all

underlying names. The above equation accommodates idiosyncratic correlation

assumptions for each of the individual companies, therefore one could extend it

by setting correlation assumptions for the companies’ growth rates.

Thus, the growth rate process is driven by the macro market momentum together

with an individual process. In this way, one may apply the match to name correla-

tion factors with our proposed dynamic structure model and observe the changes

due to difference in correlations. Further, for time dependent simulation processes,

our framework well houses the time dependent correlation assumption as asset

growth rate for each time step is distinguished from the previous steps.

Time Dependent Derivative Pricing

Since the 2007 credit crisis, the issue of hedging credit risk with other derivatives

is heated more than ever before. As a dynamic model, our approach, can be used

to perform continuous time cash flow analysis as well as valuation of option-type

securities.

Early structural models such as Merton (1974) and Black & Cox (1976) consider

credit default products as exotic options in which the default trigger condition is

set as the strike price which makes an option exercisable. In such a context, the

asset value is assumed to follow a log-normal process and the derivative is priced
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as follows. The well known solution of a vanilla call option is:

C = A(0)Φ(d1)−Ke−rTΦ(d2)

where A(0) is the asset value at time 0, K the option strike, r the risk-free interest

rate and T the maturity, with d1 and d2 defined by:

d1 =
lnA(0)− lnK + (r + σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T

Having the time dependent asset value A(t), one is able to derive the time t call

and/or put price for an option-type contract on credit default-able assets. Further-

more, calculations of the Greek factors are straight forward and time dependent

sensitivity analysis is made easy. Thus, time dependent hedging strategies can be

developed on expected cash flow and sensitivity analysis from the Greeks.

For exotic options written on credit derivatives, the referenced value is then the

credit spreads (or tranche spreads in the case of a structured credit portfolio). As

our pricing model is capable of providing dynamic spreads, the option value can

then be calculated using standard option pricing methodologies.

In this chapter we proposed a new dynamic approach for structural credit risk

modelling and we developed a time dependent pricing technique that we believe

is vital since the whole market is facing the challenge of actively managed and/or

replicated credit portfolios.

The growth rate model that we suggest is easy to calibrate as inputs are either

given directly or easily derived from market data. It turns out that our framework

can accommodate both bearish and bullish credit markets and fits market quotes

reasonably well.

Obviously, further extensions can be made to analyze the effects of many other
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factors which are exogenous to our model, such as the pairwise correlation and

interest rates. Our philosophy though was to keep everything relatively simple

and “old school”, since in the recent climate market practitioners are increasingly

returning to basics when facing credit risk exposures.
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Chapter 5
Dynamic Hedging Strategy

In this Chapter, we demonstrate how our Dynamic Growth Rate Model and the

multi-step simulation procedure may be used to generate the dynamic evolution

of the spreads for a CDO type product across tranches over the life time of the

contract. A full discussion based on numerical analysis of the results between

the CDO and basket CDS contract from the same pool of collateral is provided.

Furthermore, we develop a formula for calculating the hedge ratio of a ‘non-credit

risk’ hedge. Finally, for the first time in the literature, a time and default dependent

portfolio loss ratio is derived to fit diverse hedging needs.

5.1 Default Model

The credit risk for structured CDO-type products is modeled using the growth rate

factor model, where the default-adjusted rate x(t) is defined to follow a generic
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short process:

dx = −axdt+ σdz (5.1)

where a is the drift and σ the volatility, as introduced in Chapter 4.

The correlation is handled following the approach suggested by Hull et al. (2005),

and we further define the Brownian Motion process z with correlation factor ρ:

dzi = ρidM +
√

1− ρ2
i dZi (5.2)

Here M is the generalized market momentum factor for all the names in the ref-

erence pool and Zi is the idiosyncratic Wienner process marked to each of the ith

underlying names. Here the correlation between underlying company i and j is

given by ρij , if the assumption of a homogeneous portfolio is applied, i.e. Zi = Z

and ρi = ρ, one may easily have zi = z with the pairwise correlation ρ.

Other factors involved in the model including the interest rate r and the credit

risky coupon rate c. The model growth rate output for time t unit asset value is

then: ert+x(t), note that x(t) is time dependent and so does the growth rate factor.

Finally, the time dependent default probability can be obtained from the following

equation:

p(t) =

 x(t) ≥ ct : e−r(T−t)−e−(r+c)(T−t)

e−r(T−t) = 1− e−c(T−t);

x(t) < ct : e−r(T−t)−e−r(T−t)−cT+x(t)

e−r(T−t) = 1− ex(t)−cT ;
(5.3)

Where x(t) is the default risk adjusted rate defined for the default model in Chap-

ter 4.

Note that we assume the actual loss is only determined by the recovery rate R

upon default, i.e. in case of zero recovery zero coupon risky bond the investor
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losses the par value. For further extensions covering a stochastic loss process,

one may change the assumption of fixed recovery with a stochastic version in the

model setup.

5.2 Simulated Dynamic Portfolio Loss for CDOs

In order to estimate the time dependent movements of the spreads over the life

time of the CDO contract, multi time-step spread simulation is probably the only

way that this could be achieved with the further aim to develop hedging strategies.

In general, we need to calculate both the loss and remaining notional to obtain the

final spread.

One may argue that for the calculation of the remaining notional, possible ques-

tions come from two main fronts: the first one is whether we should use the whole

notional on each tranche or the notional left after defaults over time; the second

one is more complex and worth a lot more work in further research, that is how

one should weight the remaining notional against the aggregate loss under the

random recovery/interest-rate assumption.

Here we focus on developing a dynamic hedging technique within a vanilla frame-

work. Meanwhile, considering the trading needs for hedging and risk reducing

purposes, we calculate the spreads and the basis of a ratio of aggregate future loss

on the remaining notional at each time step. Both the recovery and risk-free rates

are fixed in this study. In other words, pricing a CDO future is not that different

than pricing a normal CDO; the difference is that when it comes to each time step

we consider only forward loss and notional, excluding the deductions due to prior

defaults. For example, a 125-name standard 5-year CDO type index may become
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a 100-name 3-year CDO by the end of the second year.

Mathematically, for a contract ending at time T with n payment steps, one can

define the premium leg1 as following:

n∑
i=1

∆ti · ω · (1− ELti−1
) ·Bti−1

, (5.4)

ti refers to the n payment steps, i = 1, . . . , n, ω is the spread and ELti−1
is the

expected future loss of the tranche at current payment date while Bti−1
can be

seen as the price of a risk-free government bond or simply the discount rate at

time ti−1.

Similarly, the protection leg value is given by:

n∑
i=1

(ELti − ELti−1
) ·Bti (5.5)

Hence, the spread of a normal CDO product is given by:

ω =

n∑
i=1

(ELti − ELti−1
) ·Bti

n∑
i=1

∆ti · (1− ELti−1
) ·Bti−1

(5.6)

The tranche loss and notional of future time steps can be calculated in the same

way. For time step tj where j ≤ i and 0 < t1 ≤ . . . ≤ tj ≤ ti ≤ . . . ≤ tn−1 ≤

tn = T , we have:

premiumtj
=

n∑
i=j

∆ti · ωti · (1− ELti−1
) ·Bti−1

(5.7)

1Premium Leg is the cash-flow of periodic payments from the contract holder to the issuer.

Protection Leg is the one off payment at time of default from the contract issuer to the holder.
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and future value for the protection leg is:

protecttj =
n∑
i=j

(ELti − ELti−1
) ·Bti (5.8)

Finally, we are able to obtain the future prices of the CDO contract for j ∈ (0, T ]:

ωtj =

n∑
i=j

(ELti − ELti−1
) ·Bti

n∑
i=j

∆ti · (1− ELti−1
) ·Bti−1

(5.9)

Having obtained the time dependent prices of the CDO portfolio, we are now able

to consider its changes overtime, and thus the Greeks2.

5.3 Simulated Dynamic Portfolio Loss for CDS Baskets

As for basket type CDS indices, the spread is calculated as the sum of each of the

included individual CDSs. The technique of pricing a single name CDS with fixed

recovery and flat interest rate is simple and easy for us to start with. We consider

the discrete case at this early stage.

Say we have a single name CDS with fixed recovery rate R, the notional is given

by N , the contract is knocked out on default and the claim is adjusted according

to recovery, the life of contract starts at time 0 and the time interval contain n

payment dates, i.e., 0 < t1 ≤ . . . ≤ ti ≤ . . . ≤ tn−1 ≤ tn = T . Given no default

until maturity, the premium leg is3:

s · (1− p) ·N · (e−rt1 + . . .+ e−rti + . . .+ e−rtn) (5.10)
2Only Delta and Gamma factors are derived and discussed.
3Here we suppose the credit spread is fixed at the initial purchase price.
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As for the protection leg of the same contract, we have:

p · (1−R)N · (e−rt1 + . . .+ e−rti + . . .+ e−rtn) (5.11)

The credit spread for this CDS is given by:

s =
p · (1−R)N · (e−rt1 + . . .+ e−rti + . . .+ e−rtn)

(1− p) ·N · (e−rt1 + . . .+ e−rti + . . .+ e−rtn)
= (1−R) · p

1− p
(5.12)

The variable p in the above equations is the probability of default, here for sim-

plicity, we treat it as fixed. In our dynamic environment, the spot probability of

default is available from the simulations and if the default time tτ is given, denote

the time of default by τ , the premium leg is found as:

s ·N ·
τ∑
i=1

(1− pi) · e−rti (5.13)

Meanwhile, the protection leg is:

(1−R)N ·
τ∑
i=1

pi · e−rti (5.14)

The credit spread is straightforward to calculated:

s =

(1−R)N ·
τ∑
i=1

pi · e−rti

N ·
τ∑
i=1

(1− pi) · e−rti
= (1−R) ·

τ∑
i=1

pi · e−rti

τ∑
i=1

(1− pi) · e−rti
(5.15)

Further, for the CDS spreads in future payment date along the time line, for any

payment date tj , 0 < j ≤ i ≤ n, the CDS spread can be obtained from the

following:

sj = (1−R) ·

τ∑
i=j

pi · e−rti

τ∑
i=j

(1− pi) · e−rti
(5.16)
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We are able now to calculate the spread of the whole CDS basket. Note that every

single name CDS is knocked out once the referenced underlying defaults, and the

name is subtracted from the basket name list as well as the notional. One may

record the basket spread Greeks and evaluate the hedging effect using the CDS

basket against the CDO.

Furthermore, corporate bonds which match the names included in the CDO con-

tract, in principle can also be used as a hedging instrument for the CDO held.

However, if one take into account the cheap initial payment for a CDS basket,

hedging using a basket of CDS might be more preferable for market players. In

this study we will simply consider a portfolio consisting of a CDO and a CDS

basket both sharing the same underlying name list. The idea and the development

of the hedging technique according to the simulated results can be easily adopted

to other complex combinations.

5.4 Implementation with Monte Carlo

Here we illustrate the Monte Carlo simulation environment used to implement the

model, and more importantly, we provide details as tohow the hedge is calculated.

First we describe the simulation process in steps:

1. Generate value x(t) using equation (5.1) and (5.2) for each underlying com-

pany over the whole contract time.

2. Calculate the default adjusted asset value growth rate factor ert+x(t) for each

time 0 ≤ t ≤ T .
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3. Calculate the time dependent default probability from equation (5.3) for all

companies over the whole time period.

4. Calculate the expected time t asset value for all companies using the default

probability from above step.

5. Calculate the default barrier using equation:

K = Φ−1(1− pk).

Here K is the default condition discussed in Li (2000), and pk is the proba-

bility of default over the whole time interval in the market model.

6. Compare the expected asset value and the default barrier and determine a

credit event under condition:

Φ−1(1− pt) < Φ−1(1− pk).

Defaulted companies are knocked out from the contract.

7. Repeat and indicate all the defaults in the portfolio and the loss given default

is mapped for this trial.

We illustrate the idea behind the detailed calculations of Delta and Gamma cure

with a simple example.

As shown in Table (5.1), we start with a homogeneous portfolio of three compa-

nies A1, A2 and A3. The number of time steps we have in this example is four, the

cumulative number of defaults given in the entry of Lt, and the adjusted default is

indicated by L′t. Here the adjusted default stands only for the manually adjusted

‘imaginary’ defaults happened to the portfolio, so that the portfolio delta can be

calculated after the spread is calculated using both expected losses.
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Table 5.1: Trial Example of Portfolio with Three Companies over Four Periods

T1 T2 T3 T4

A1 1

A2

A3 1

Lt 1 1 2 2

L′t 2 2 3 3

It is obvious that for any given default probability and observed payment time, the

calculation of spread is straightforward. To observe the spread change using a new

plug in of default probability driver will cause inconsistencies in the model itself.

Meanwhile, suppose we arrive to just one step before the five year maturity of a

CDO, the spread one may agree to pay is only the expected loss during this one

quarter against the remaining portfolio value. No one would rationally care about

the default time of previous defaults as long as the defaulted names are kicked out

of the CDO.

Coming back to the simulation procedure described previously, we add this ‘ex-

tra’ default to the existing simulation result and finish this trial, then repeat until

the collected simulation sample size is large enough, in this study, the simulation

standard error is customized to be 1%, and the relative number of simulation trials

can be calculated using: standard error= σs√
n

, where n is the number of trials and

σs is the sample standard deviation of the CDO tranche spreads.

8. Track the defaults at each time step, then given the default and value write

down of the whole portfolio, re-calculate aggregated loss over remaining

time from this extra default.
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9. Calculate the expected time t asset value for all companies after loss from

extra default is deducted.

10. Find out the spread for each tranche and store data for further use (gamma,

hedge ratio, etc.).

11. Repeat the above process for a large number of times and average the final

tranche spread to find out the spread change over time.

As for hedging instruments, we use the CDS basket containing the same names

covered by the CDO portfolio. The CDS contracts are priced by equalizing the

two cash-flow legs in line with the default probability over the whole time interval.

Similarly, ‘imaginary’ defaults are adjusted according to each name at each time

step.

As we now have the value and default-adjusted value of both our CDO and CDS

products, we can derive the time dependent deltas by finding the difference be-

tween the two values at each time step, thus obtaining the hedge ratio.

In this framework, the probability of default and loss on tranches are all available

to us, both products can then be valued on the predetermined payment dates, and

the Greeks are finally calculated. Meanwhile, the framework allows for multiple

defaults on each payment day, and as an open specification of a dynamic structural

model, extra assumptions can be easily incorporated to finally obtain the spread

distribution of either each individual tranche or the CDO product on bulk.
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5.5 Numerical Results

In this secion, we demonstrate the calibration of a five-year iTraxx Europe CDO

contract. The total number of underlying names is 125 and the five considered

tranches are: 0-3% Equity, 3%∼6% Junior Mezzanine, 6%∼9% Senior Mezza-

nine, 9%∼12% Senior and 12%∼22% Super Senior. The observed payment dates

are set quarterly and the risk-free interest rate is flat on 5% while the revoery rate

is fixed at 40%.

5.5.1 Credit Spread

For the simulation needs, the coupon rate c is set to be homogeneous for all under-

lying companies at 1.6% based on market data for 31st Aug 2008, the drift factor

a and volatility σ are set 1.25% and 0.85% respectively, using the same dataset

as for the coupon rate c. The total number of simulation trials is 100, 000, and the

final spread is calculated as the average of all occuring tranche spreads.

The time dependent result for the CDO spread is given in basis point in the table

below:

Quarters 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Q1 2440.31 369.13 225.49 160.19 118.84

Q2 2971.89 552.41 285.29 188.53 130.71

Q3 1526.71 787.19 390.16 229.29 145.09

Q4 351.90 794.17 567.02 294.07 162.91

Q5 51.38 454.51 733.76 405.50 185.67

Continued on next page
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Table 5.2 – continued from previous page

Quarters 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Q6 6.13 161.60 682.89 563.98 215.60

Q7 0.94 41.88 423.01 670.17 254.48

Q8 0.30 8.66 183.65 606.31 301.10

Q9 0.07 1.98 63.29 399.89 352.63

Q10 0 0.38 18.71 202.81 409.62

Q11 0 0.08 5.91 88.54 475.39

Q12 0 0.03 1.75 35.87 554.06

Q13 0 0.01 0.48 14.36 642.72

Q14 0 0 0.19 5.52 717.76

Q15 0 0 0.06 1.93 729.88

Q16 0 0 0.03 0.84 645.25

Q17 0 0 0.0148 0.27 501.17

Q18 0 0 0.0113 0.11 345.24

Q19 0 0 0.0043 0.0502 213.91

Q20 0 0 0.0019 0.0241 120.81

Table 5.2: Discrete CDO Spreads on Payment Dates.

We can see from above Table (5.2) that the Equity tranche vanishes around the

middle of the third year of the contract. The Junior Mezzanine tranche vanishes

around mid-fourth year, while the remaining tranches have a bigger chance to

survive through out the contract life time.
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To better understand the simulation results, we take some snap shots of the spreads

in scatter output as shown in Figure (5.1) below:

Figure 5.1: Trading spread at the beginning of contract.

Next, we put the spreads from Table (5.2) of the five observed tranches during the

contract time together, to obtain Figure (5.2):

Figure 5.2: Simulated Tranche Spreads Till Maturity.
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It is easy to see that the tranche prices over time are skewed, and the ‘peaks’ of the

first four tranches take place about every half a year. As our results are obtained

via simulation, the spreads are calculated as the ratio of the expected cumulative

loss from the observed payment period and the tranche notional outstanding for

the same period.

In the meantime, as we are also trying to observe the change of spreads at each

time step on a spread-per-default basis, the time ti CDO spread of each tranche

with an extra default added on the payment date is given in Table (5.3). This would

enable us to obtain the Delta factor of the CDO spread.

Quarters 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Q1 2766.64 409.01 240.83 168.19 123.36

Q2 2866.63 628.89 310.33 199.62 136.09

Q3 990.23 844.96 436.09 245.91 151.64

Q4 167.16 721.13 631.64 321.97 171.07

Q5 19.29 334.56 760.79 452.41 196.18

Q6 1.99 100.33 618.87 616.06 229.46

Q7 0.34 21.98 332.71 679.97 272.16

Q8 0.06 4.29 126.68 554.14 322.05

Q9 0 0.87 39.64 327.01 376.51

Q10 0 0.16 11.14 149.92 437.82

Q11 0 0.0443 3.53 61.85 509.23

Q12 0 0.0369 0.8872 23.91 592.88

Q13 0 0.0063 0.2143 9.08 682.32

Q14 0 0 0.0884 3.18 738.68

Q15 0 0 0.0435 1.33 715.98

Continued on next page
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Table 5.3 – continued from previous page

Quarters 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Q16 0 0 0.0362 0.4275 597.52

Q17 0 0 0.0161 0.1685 434.42

Q18 0 0 0.0039 0.0665 283.98

Q19 0 0 0.0019 0.0269 167.47

Q20 0 0 0.0008 0.0035 92.13

Table 5.3: Spreads with Added Default.

Comparing the numerical results given in Tables (5.2) and (5.3), we observe a sig-

nificant increase in spreads of the same tranche at the same time. In other words,

one could expect in Table (5.3) that the loss will be larger and the extra defaults

‘consume’ more of the notional value in the tranche. The numerical results given

in above Table (5.3) are plotted in the figure below:

Figure 5.3: Default Adjusted Tranche Spreads for CDO Delta.

Comparing the ‘peak’ positions of the spreads over time, we may see that there

is a sharper decrease in the Equity tranche. Here we see that the value of the
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highest spread of each tranche over contract time is higher than the results in the

previous Table (5.2), yet the time when these highest spreads occur is earlier or at

least remain the same. This results a sharper decrease in the spreads which greatly

affect the value of the hedging factors.

For simulations on ‘extra defaults’, we move on along the tree branch and observe

the default-able nodes. The spreads in Table (5.4) below are calculated using same

model and structure as before:

Quarters 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Q1 3072.51 457.84 258.29 176.94 128.05

Q2 2484.21 712.91 340.04 211.97 141.72

Q3 536.09 874.91 490.51 264.98 158.54

Q4 67.11 611.57 696.37 354.98 179.78

Q5 5.86 228.17 759.38 504.82 207.56

Q6 0.53 58.01 534.38 662.24 244.52

Q7 0.1619 10.89 247.28 670.71 291.04

Q8 0.036 1.87 84.99 484.72 344.04

Q9 0 0.4257 23.48 254.21 401.72

Q10 0 0.0394 6.07 106.71 468.23

Q11 0 0.0143 1.92 41.46 545.27

Q12 0 0.0024 0.4581 15.27 633.48

Q13 0 0 0.1277 5.59 715.67

Q14 0 0 0.0467 2.01 746.27

Q15 0 0 0.0382 0.6816 686.26

Q16 0 0 0.0168 0.2162 539.24

Q17 0 0 0.0052 0.0963 366.81

Continued on next page
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Table 5.4 – continued from previous page

Quarters 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Q18 0 0 0.0039 0.0518 227.72

Q19 0 0 0.0012 0.0046 129.51

Q20 0 0 0.0009 0.0034 69.49

Table 5.4: Spreads with Added Default for Gamma.

One may observe that when extra defaults are occurring at each time step, the

left-moving (right-skewing) effect continues. The spread of the Equity tranche

column in Table (5.4) is strictly decreasing this time, and is wiped out during the

same payment period, i.e., by the end of 2nd year, but with a lower ending spread.

Similar results are found for the higher tranches as well. Therefore, it is safe to

conclude that the left-moving (right-skewing) effect continues, here for Junior

Mezzanine, Senior Mezzanine, Senior and Super Senior tranches, with the ‘peaks’

occuring at the 3rd, 5th, 7th and 14th quarters respectively.

Figure 5.4: Default Adjusted Tranche Spreads for CDO Gamma.
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One may notice that in Tables4 (5.3) and (5.4), the highest spreads for tranches

from Junior Mezzanine to Super Senior are found at the same payment period and

further we observe that on the left tail5 the extra default results to a larger spread

due to larger loss, but on the right tail until the end of contract, the spread in Table

(5.4) is lower than that in Table (5.3).

5.5.2 Hedging Factors

Before we move on to the hedging factors, we first observe the time and default de-

pendent spread change by tranche-wisely graphing the default based spread curves

together, figures (5.5) - (5.9) plot the evolution of the 5 tranche spreads.

Figure 5.5: Equity Tranche Spread.

4Data plots shown in Figures (5.3) and (5.4)
5on the earlier payment dates.
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Figure 5.6: Junior Mezzanine Tranche Spread.

Figure 5.7: Senior Mezzanine Tranche Spread.
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Figure 5.8: Senior Tranche Spread.

Figure 5.9: Super Senior Tranche Spread.

CDO Delta

For the Equity tranche the difference between the ‘Equity’ curve and ‘Equity -

Delta’ curve is first increasing and then converge to zero. A similar pattern can

be found also in the right tail of all the other 4 tranches as shown in Figure (5.6)

to Figure (5.9). The largest gap between the original and ‘Delta’ curves is in the

shoulder part, where one can conclude an up-then-down movement in ‘Delta’ on

the right hand side of the ‘peaks’.
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For the Equity tranche, only a right tail is evidenced in Figure (5.5). Furthermore,

there is a sharp drop within one year from the time that the highest spread occurs.

In this case, the larger default probability will result to a sharper decrease of the

tranche spread over time. Thus, one may expect a big delta change during the

extreme market conditions that we examine.

As for the left tails of the tranches except the Equity tranche, as shown in Fig-

ure (5.6) to Figure (5.9), the largest gap takes place in the shoulder part as well,

the difference this time is obtained in negative values due to the lower position

of the original curve. Thus, we see a negative to positive sign change in CDO

Delta which is coincide with the position of highest spreads - the ‘peaks’. In other

words, the first positive change in spread indicates the ‘head’ while the largest

difference on the shoulders is positioned within half a year’s time for each of the

four tranches respectively.

For the evaluation of the CDO Delta, we calculate the difference between the

tranche spreads and adjusted tranche-delta spreads over the entire observed time

period of 20 Quarters, denote the CDO Delta for the ith quarter as ∆i for i =

1, . . . , 20, as given in Table (5.5).

∆ 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

∆1 105.27 -76.48 -25.04 -11.09 -5.38

∆2 536.47 -57.77 -45.93 -16.62 -6.54

∆3 184.75 73.03 -64.62 -27.90 -8.16

∆4 32.09 119.95 -27.03 -46.91 -10.51

∆5 4.13 61.28 64.03 -52.07 -13.86

∆6 0.60 19.91 90.29 -9.81 -17.68

∆7 0.27 4.37 56.96 52.17 -20.95

Continued on next page
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Table 5.5 – continued from previous page

∆ 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

∆8 0.072 1.11 23.66 72.87 -23.87

∆9 0 0.2214 7.61 52.89 -28.19

∆10 0 0.0295 2.38 26.69 -33.84

∆11 0 -0.0048 0.8578 11.96 -38.82

∆12 0 -0.0060 0.2703 5.27 -39.61

∆13 0 0.0024 0.1042 2.33 -20.91

∆14 0 0 0.0192 0.5961 13.89

∆15 0 0 -0.0031 0.4092 47.73

∆16 0 0 -0.0047 0.1025 66.75

∆17 0 0 0.0011 0.0473 61.25

∆18 0 0 -0.0016 0.0233 46.44

∆19 0 0 -0.0033 -0.0011 28.68

Table 5.5: Delta for CDO Product.

As shown in Table (5.5), the 0 ∼ 3% Equity tranche vanished between quarter 8

and quarter 9 with a positive Delta. For the 3 ∼ 6% Junior Mezzanine tranche,

we observe two negative values at quarters 11 and 12, then the tranche is wiped

out between quarters 13 and 14 with a positive Delta of 0.0024 at Q13. For the

6 ∼ 9% Senior Mezzanine tranche, the delta value is negative from Q15 to Q20

except Q17. The negative Deltas of the two Mezzanine tranches before maturity

are obtained due to the fat-tail effect. The two positive ‘noises’: ∆13 of Junior

Mezzanine tranche and ∆17 of Senior Mezzanine tranche mentioned above could

possibly obtained due to simulation error. This error is no longer found after appli-
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cation of variance reduction technique6, considering that the error reduction in the

simulated scenarios has a square root convergence, we also increased the number

of sample paths to 500,000 to meet the requirement of large sample paths in order

to obtain an accurate estimation.

For the Junior Mezzanine tranche spread in Figure (5.6), the spreads given for the

first quarter of the contract time are on the left ‘Torso’ of the curve, thus the large

negative delta in the beginning of Junior Mezzanine column. In the meantime,

we observe from Figure (5.9) that there is hardly a right tail for the Super Senior

tranche, hence we obtained a series of negative value before the fourteenth quarter.

The CDO Delta values are summarized as:

Figure 5.10: Delta for CDO Product.

We see that the peak values of the different tranches vary, yet there is a positive

relationship between the number of defaults at the observed time period and the

high spreads over contract time.

6The Antithetic Variates method in particular. The random numberZt generated for x(t) is con-

sidered as ‖Zt‖, thus the absolute value is used twice as Zt and −Zt for generating two different

x(t)s.
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CDO-Gamma

In order to depict how delta is evolving before maturity, we look into the Gamma

value of the spreads, Gamma is defined as the difference in Deltas:

Γt = ∆T−∆
t+1 −∆∆−Γ

t+1

where:

∆T−∆
t = STt+1 − S∆

t+1

and

∆∆−Γ
t = S∆

t+1 − SΓ
t+1

The results for the same observation period used for the Delta calculations are

presented in the Table (5.6) below:

Γ 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Γ1 82.33 -27.82 8.50 2.45 0.3613

Γ2 84.70 -36.53 0.1035 5.11 0.5540

Γ3 18.65 13.55 -28.44 5.50 0.8721

Γ4 2.66 18.96 -20.46 -5.88 1.21

Γ5 0.4219 8.83 4.87 -19.07 1.20

Γ6 0.2673 1.98 15.28 -17.25 1.04

Γ7 0.072 0.6739 7.51 0.0713 1.34

Γ8 0 0.0999 2.57 9.68 2.21

Γ9 0 0.0264 0.7646 6.29 2.20

Γ10 0 -0.0178 0.4286 3.32 1.78

Γ11 0 -0.0420 0.1837 1.77 -6.25

Γ12 0 0.0024 0.0625 1.15 -13.32

Γ13 0 0 0.0138 -0.0549 -15.84

Continued on next page
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Table 5.6 – continued from previous page

Γ 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Γ14 0 0 -0.0224 0.1978 -10.55

Γ15 0 0 -0.0156 0.0304 -0.8635

Γ16 0 0 0.0009 0.0326 4.99

Γ17 0 0 -0.0016 0.0010 8.48

Γ18 0 0 -0.0033 0.0018 6.03

Table 5.6: Gamma for CDO Product.

Figure 5.11: Gamma for CDO Product.
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For the CDO Gamma, one may conclude that as the default probability increases,

the sharper is the rise and fall in the spreads and thus a faster movement of the

whole curve to the left hand side is observed. Further, as shown in Figure (5.11),

the direction of movement and the position of ‘peak’ values again coincide with

those of the CDO Delta and the spread curves.

CDS Basket Delta

In order to obtain the hedging ratio, the last step is to calculate the Delta factor of

the hedging instrument, the CDS basket in our analysis. The basket CDS delta is

calculated by taking the difference of the averaged values of the single name CDS

spreads with and without the adjusted extra default on payment dates.

The average CDS spread and CDS delta are given in Table (5.7) below:

Quarters Spreads CDS∆

Q1 332.28 26.86

Q2 305.42 25.53

Q3 279.89 24.16

Q4 255.73 22.55

Q5 233.18 20.43

Q6 212.75 17.89

Q7 194.87 15.11

Q8 179.75 13.32

Q9 166.43 12.41

Q10 154.02 11.09

Q11 142.92 9.65

Q12 133.27 7.66

Continued on next page
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Table 5.7 – continued from previous page

Quarters Spreads CDS - ∆

Q13 125.61 6.46

Q14 119.15 5.53

Q15 113.62 4.14

Q16 109.48 3.04

Q17 106.44 1.91

Q18 104.54 0.91

Q19 103.63 0.33

Q20 103.30 –

Table 5.7: Discrete CDS Spread and Delta on Payment Dates.

Note that the spreads in this section are calculated for hedging purposes only. Thus

the spreads in the figures are the simulated trading spreads of a 5-year contract

traded at a generic time t with maturity still fixed at five years as seen from time 0.

For instance, in Figure (5.12) below, the spread value of 154.02 for Q10 represents

the value of a 5-year CDS contract with only two and half years left to maturity.
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Figure 5.12: Average single CDS spread.

Figure 5.13: Average single name spread delta of the basket.

With the CDS Delta shown in Figure (5.13), we are now able to calculate the

hedging ratio of the entire portfolio, in similar ways as the widely recognized

portfolio Delta and Gamma for equity derivatives. The hedging ratio is given by:

∆P =
∆CDO

∆CDS

while ΓP =
ΓCDO
∆2
CDS

(5.17)
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Numerical results are shown below:

∆(×10−3) 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

∆1
P 1045.1 -759.3 -248.6 -110.1 -16

∆2
P 5326.1 -573.5 -455.9 -165 -19.4

∆3
P 1834.2 725 -641.6 -276.9 -24.3

∆4
P 318.6 1190.8 -268.3 -465.7 -31.3

∆5
P 41 608.4 635.7 -517.9 -41.28

∆6
P 5.9 197.6 896.4 -97.4 -52.6

∆7
P 2.7 43.4 565.5 517.9 -62.4

∆8
P 0.7 11 234.9 723.4 -71.1

∆9
P 0 2.1 75.6 525.1 -83.9

∆10
P 0 0.3 23.7 264.9 -100.7

∆11
P 0 -0.05 8.5 118.7 -115

∆12
P 0 -0.06 2.68 052.3 -117.9

∆13
P 0 0.023 1.03 23.13 -62.28

∆14
P 0 0 0.19 5.9 41.37

∆15
P 0 0 -0.03 4.06 142.16

∆16
P 0 0 -0.047 1.018 198.8

∆17
P 0 0 0.011 0.473 182.4

∆18
P 0 0 -0.016 0.23 138.3

∆19
P 0 0 -0.033 -0.011 85.4

Table 5.8: Delta-hedge Ratio for CDO Product. (Ratio in 10−3)
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∆(×10−3) 0%∼3% 3%∼6% 6%∼9% 9%∼12% 12%∼22%

Γ1
P 304 -102 31.4 9.1 0.4

Γ2
P 313.1 -135 0.38 18.9 0.6

Γ3
P 68.9 50.1 -105.1 20.33 0.96

Γ4
P 9.83 70.1 -75.6 -21.7 1.34

Γ5
P 1.55 32.6 18 -70.5 1.33

Γ6
P 0.98 7.3 56.5 -63.8 1.15

Γ7
P 0.266 2.5 27.8 0.264 1.48

Γ8
P 0 0.369 9.5 35.8 2.45

Γ9
P 0 0.0976 2.8 23.3 2.4

Γ10
P 0 -0.066 1.6 12.3 1.97

Γ11
P 0 -0.16 0.68 6.54 -6.9

Γ12
P 0 0.0088 0.23 4.3 -14.8

Γ13
P 0 0 0.051 -0.2 -17.6

Γ14
P 0 0 -0.083 0.73 -11.69

Γ15
P 0 0 -0.058 0.11 -0.958

Γ16
P 0 0 0.003 0.12 5.53

Γ17
P 0 0 -0.0059 0.0037 9.4

Γ18
P 0 0 -0.012 0.0066 6.69

Table 5.9: Gamma-hedge Ratio for CDO Product.(Ratio in

10−4)

The plots of the hedging ratios (CDO Delta and CDO Gamma) are depicted in

Figure (5.14) and (5.15):
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Figure 5.14: Hedge Ratio Plot for CDO Delta.

Figure 5.15: Hedge Ratio Plot for CDO Gamma.

The hedging ratios in Tables (5.8) and (5.9) are expressed in the same way as

Delta/Gamma hedging ratio of traditional derivatives such as options. In other

words, a portfolio Delta hedge ratio of 5326.1×10−3 on 0%∼3% tranche at the

2nd quarter means the price of the hedging derivative (CDS basket in this case)

will rise about 5.3% if the price of the underlying CDO increases. Therefore, with
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the time dependent Delta and Gamma hedge ratios obtained, portfolio managers

are now able to actively adjust the proportion of CDS basket in the whole portfolio

to reach a ‘Delta Neutral position. Considering the fact that current market stan-

dard model is not able to provide the time evolution of spread, here we finally have

an approach to attempt dynamic portfolio management for portfolios of complex

credit derivatives.

To conclude, a novel contribution of our analytic and computational methodology

is that with the hedging parameters in hand, one may construct efficient hedging

strategies based on different risk exposure and tolerance of possible loss. This

significantly advances the relevant literature and provides flexibility in the man-

agement of structured portfolios of credit products.
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Chapter 6
Summary, Conclusions and

Suggestions for Further Research

6.1 Synopsis of the Thesis

In chapter 2 we reviewed major credit default products and structured portfolio

credit products in detail and proposed a new Monte Carlo simulation framework

for the pricing of Collateralized Debt Obligations (CDOs).

We first provided an overview of the structure of the main building blocks which

come in the form of Credit Default Swaps (CDSs) and how they work as a risk

transferring tool in the finance industry. Two other types of credit portfolio prod-

ucts were subsequently reviewed and the introduction of main stream credit risk

models was provided. We carried on by summarizing the common simulation

methods for pricing CDOs, and then we proposed an alternative methodology

that is based on an economical sense of the models and market observables. Such
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simulation method provides a testing environment which houses the asset value

based models with reliable assumptions. In later sections of Chapter 2, detailed

implementation procedures were listed together with numerical results compared

to market data.

We mainly focus on the utilization of default probabilities and recovery rates

through our simulation framework. One important conclusion is that dynamic

models can be discretely simulated using marginal default probabilities and struc-

tural models thus can be calibrated as a barrier based model.

It is well known that static models of credit risk are inadequate to meet the in-

creasing demand for hedging credit derivatives since they fail to track the credit

risk profile of a structured portfolio over multiple time periods. Chapter 3 provided

an overview of the credit market together with the Principal Component Analysis

(PCA). Our findings suggest that although the market standard model is powerful

in many aspects, it is not performing well during extreme market conditions such

as the current credit crunch. The reason is that although one can always increase

the implied correlation to obtain a more accurate spread according to a particular

distribution, the concomitant result is in increase in the “noise”.

In chapter 4, we proposed a dynamic credit risk model based on asset growth rate.

The model is easy to calibrate as inputs are either obtained directly or easily de-

rived from market data. It turns out that our framework can accommodate both

bearish and bullish credit markets and fits market quotes reasonably well. We pro-

vide two alternative candidates for default conditions and we evaluated them. We

illustrated our model with a CDO-type contract. As a dynamic structural model,

our approach does not rely on certain types of distributions. Notably, further ex-

tensions can be made to assess the effects of exogenous factors such that pairwise
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correlation and interest rate.

Following the recent market slide and the ongoing credit crunch, our belief is that

an “old school” - type intuitive approach will be valuable for market practitioners

who are increasingly focusing on new routes to mitigate and hedge risk expo-

sure. Thus, we test drive our model in chapter 5 with the multi-step simulation

framework to demonstrate the time evolution of spread tranches for a CDO type

product. The numerical results suggested the presence of a unified spread change

for all tranches and a ‘right tailing’ effect on per default basis. We believe that for

the first time in the literature the time evolution of the hedge ratio between a bas-

ket of simple CDS contracts and a CDO from a dynamic model is provided. This

type of information, in analogy to the expected future cash-flow/interest rate for

fixed income derivatives is crucial since players in the credit field will be able to

combine simple instruments with portfolio credit products for hedging purposes.

6.2 Summary of our Contributions

In order to improve the dynamic aspect of portfolio credit models, our very first

idea of development has been inspired by interest rate models: In the early 1990s,

the Heath-Jarrow-Merton (HJM) framework was developed under the principle of

taking the market forward rate term structure as given, and eventually model the

no-arbitrage evolution of entire forward yield curve. As it is well known today,

the HJM framework is widely used to price exotic interest rate derivatives.

During the last decade, new credit portfolio products have been developed where

the payoff depends not only on the times of default but also on the credit spread

levels. One such product is an European option on a single tranche CDO. In order
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to address complex credit derivative products, a totally different to the standard

market model approach should be developed that takes into account the time evo-

lution of tranche spreads.

Our primary efforts in this thesis focus on the development of a valuation and

hedging framework that meets the following requirements:

• Fit all quoted tranche spreads across both the term and capital structure.

• Offer an unified time evolution of tranche spreads.

• Explain tranche spreads using historical movements.

• Take into account how defaults in the future are likely to affect tranche

spreads and the volatility of spreads.

• Most importantly, develop a relatively simple and intuitive model which is

realistic in its parameterization and efficient from a computational perspec-

tive.

In this thesis, our first goal was to create a discrete multi-step Monte Carlo sim-

ulation framework which houses different assumptions from the main incumbent

models. The framework was designed to work with cumulative asset loss models

such as the Merton (1974) asset value model. However, one of our main contri-

bution is that through the discrete steps of the simulation one may construct the

loss distribution in a manner similar in nature but more pragmatic than the Gaus-

sian copula model. Detailed analysis of the nature of this framework shows that

the simulation process is capable of handling computation tasks under multi-state

assumptions, hence the time evolution of both spreads and spread based ratings

are captured.
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Second, we proposed in Chapter 4 a new approach for modelling portfolio credit

risk under the Dynamic Growth Rate Model. The novelty of our attempt is that,

this model is constructed using the expected asset growth rate. From the princi-

pal component analysis in Chapter 3, we observed that the market is generally

underestimating the risk embedded in complex portfolio credit derivatives. While

the popular copula models focus on correlation and types of copula functions, we

chose instead to model default probabilities. For example, for a CDO type prod-

uct, the market standard one factor Gaussian copula model implies one correlation

factor to price five tranches. Wagner, Bluhm & Overbeck (2003) has shown that

changing the implied correlation parameter results in different default distribution

for each of the individual tranches. However, the expected loss of the entire un-

derlying pool of the CDO is not affected. A further yet more important problem

of taking dynamic correlation as input in factor models is that the cumulative loss

distribution under changing correlation might decrease in certain cases, thus the

model is logically violated and encounters arbitrage issues.

We derived a close-form formula for the probability of default. We further carried

out a numerical test based on input parameters we retrieved from market data.

This time we compared the simulation results with market spreads only, and the

analysis proved that our model is capable of capturing market spreads in both

bullish and bearish markets, although results suggest a slightly higher tolerable

spread compared to the recorded market data at the time of this study.

The Strength of our framework is shown in Chapter 5 where we combine the

multi-step Monte Carlo simulation process with the dynamic growth rate model

to generate tranche spreads for any tenor across the life of the contract.
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6.3 Conclusions

In the thesis we demonstrated that our multi-step Monte Carlo simulation frame-

work together with the dynamic growth rate model is capable to address time

dimension of the modeled product, in other words, one may now observe the time

evolution of tranche spreads in the case of pricing a CDO type portfolio credit

derivative.

The numerical delta and gamma analysis of the hedging strategy using a basket of

CDS contracts shows that the tranche spread change is well captured in the case

of unexpected defaults.

Stochastic growth rate and the resulted stochastic default threshold allow the port-

folio loss to increase in times of market depression while allowing idiosyncratic

risk to determine the health of a firm in times of market prosperity. The model

produced CDO tranche spreads that were very close to those observed in the CDO

market. An explicit expression for the stochastic default probability was found

and a closed form solution was derived for the portfolio loss distribution for a

large homogeneous portfolio. Closed form expressions were also found for the

expected loss on a tranche that allows rapid pricing of CDO tranches.

The growth rate model presented in this thesis is, in theory, capable of pricing

any portfolio credit derivative where the payoff is a function of the default times

and default probability, with recovery rate and risk free rates as model inputs. It

is always possible to enrich our model with more complex assumptions such as

time depending stochastic recovery rates or interest rates. We opted not to do this

in our work because we believe that simpler and tractable models better suit to

address the credit derivatives market.
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6.4 Future Research

Our research points to a number of interesting issues that can be addressed in the

future. One possible extension is related to the scope of optimization. As discussed

in Chapter 1 section (1.4), hedging a credit risky CDS with a bond would result a

change in wealth in one’s trading book as:

V = −Vb + (RNb + (1−R)Ncds)e
−rτ +

τ∑
t=0

(cNb − sNcds)e
−rt

where V is the value of portfolio, Vb is the value of bond, Nb is the bond notional,

Ncds the CDS notional, R is the rate of recovery at the default time τ , c here is the

bond coupon rate and s is the CDS spread.

Meanwhile, choosing CDS or CDS index contracts as hedging instruments will

end up having the change of wealth as a periodic difference in the ‘premium’.

Furthermore, hedging strategies using CDS options one need to deduct the cost of

option from the premium as well.

For example, if the portfolio consists of a long position in a risky bond with no-

tional Nb, the hedge will be composed by shorting a CDS with notional Ncds and

longing a CDS option with notional Nop, where Ncds = Nb + Nop. The amount

of Nb is fully covered, and the notional of Nop is exposed to credit risk subject

to the CDS spread. The investor will benefit from a tightening spread but has his

loss limited in a bearish market. However, the cost of hedging with CDS options

is conditioned on the exercise time and option maturity, more importantly, long-

ing and shorting CDS options may eventually turn the portfolio into an actively

managed credit market position, and thus the total change in wealth for a credit

portfolio involving CDS options can only be examined according to assumptions

on options.
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Suppose that defaults take place on payment days1:

0 < t1 < t2 < . . . < τ < . . . < T

Here τ is the time of default. For simplicity assume that at-the-money call options

are purchased on the payment days with maturity of one fee period, i.e., Top =

ti+1 − ti. The change in wealth for the above portfolio is:

V = −Vb + (RNb − (1−R)Ncds +RNop)e
−rτ

+
τ−1∑

0

(cNb + sNcds − stiNop)e
−rti

+(cNb + sNcds − sτ−1Nop)e
−rτ

Here Vb is the initial payment for risky bond, R is the recovery rate, V the total

change in wealth of the portfolio, r the risk-free interest rate and s is the spread of

the CDS contract we sold.

For a multi-name credit default risky product such as CDO, one may hedge using

a combination of the underlying bond and/or the underlying CDS and/or options

on underlying CDS. If we write down the final expected change in wealth of the

whole portfolio, it is possible to perform an optimization search by aiming:

E[V ] = 0 or Ncdo = Ncds +Nb +Nop

The conditions can be set on the change in wealth equation together with:
Ncds ≥ 0;

Nb ≥ 0;

Nop ≥ 0;

The line of research, possible combined with optimal value-at-risk measures, as

the credit exposure might be covered only partially by aiming E[V ] = 0, directly

extends our findings and can be carried out in the future.
1Equations including accrual payments can be derived accordingly.
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