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Abstract

Motivated by a particular multinational cutting-tools manufacturer, we extend the

traditional economic order quantity (EOQ) model for maintenance-repair-and-overhaul

(MRO) customers under stochastic purchase price and use it to show how price variance

leads to bullwhip effect for the MRO manufacturer despite constant consumption by

the customer. Our extension of the EOQ model is based on two assumptions that

are reasonable for MRO customers: (a) customer consumption rate of the product is

constant; and (b) the customer places each order when the inventory level drops to a

pre-specified level (say, zero). We determine the customer’s optimal ordering quantity

in closed form expressions, which enables us to examine the impact of sales price

variance on the variance in the orders the customer places on the manufacturer, thus

creating a pricing-induced bullwhip effect. We then extend our analysis to multiple

products and multiple customer segments and discuss ways for the manufacturer to

mitigate the variance in the customer’s orders.
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1 Introduction

Pricing has typically been studied as a strategic topic in the operations literature and day-

to-day transactional pricing, say, by way of discounts in orders, has been largely ignored.

However, variable discounts across sales transactions is a common phenomenon in Business-

to-Business (B2B) transactions that is well documented in the practitioner literature (cf.

Marn and Rosiello, 1992; Marn, Roegner and Zawada, 2003; Sodhi and Sodhi, 2005; Kotler,

Rackham and Krishnaswamy 2006). Such variable price discounting, sometimes seen as

’hockey-stick’ unit sales whereby sales personnel seek to make their month-end sales quotas

by offering customers big discounts have been recognized as causing order variance (Lee,

Padmanabhan and Whang 1997); however, the impact of sales price fluctuations on the

variance in the customer’s orders has not been quantified analytically.

Although we are motivated by the setting at a particular multinational cutting-tools

manufacturer, we seek general results for the maintenance-repair-and-overhaul (MRO) sector.

Taking the setting to be of constant consumption, as with an MRO customer, we extend

the EOQ model for the customer’s orders incorporating stochastic price and show how this

implies order variance for the MRO manufacturer thus showing how price variance causes

bullwhip effect.

In this paper, we provide closed-form expressions capturing the impact of such transaction-

level varying sales prices on the variance in the customer’s orders even when the customer

has constant consumption. We start with the base case with a manufacturer having a single

product and one customer whose consumption rate is constant and who orders when inven-

tory goes to zero. These assumptions are reasonable for MRO customers in general including

cutting tools. The reader is referred to Erlenkotter (1990, 2013) and Khan et al. (2011) for

comprehensive reviews of the evolution of the EOQ model and analysis since Ford Whitman

Harris presented the EOQ model for the first time in 1913 (Harris, 1913). While the cus-

tomer seeks to determine her optimal order quantity so as to minimize long-run average costs

including the fixed ordering cost, we extend the traditional EOQ model to capture the fact

that the customer faces uncertain varying sales prices offered by the manufacturer through

variable discounts or surcharges. We then obtain closed-form expressions for “variance” of

the customer’s orders for this base case. Next we extend the results to the MRO manufac-

turer having multiple products and multiple customer segments. Moreover, we discuss the

managerial implications of our analysis and ways to mitigate the customer’s order variance.
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Our contribution is twofold: One, we add to the EOQ literature by extending the EOQ

model for a customer facing stochastic purchase price. Sana (2011) has analyzed the pro-

duction quantity and the selling price of a firm who faces price-dependent random demand

using the EOQ setting while Sana (2012) has examined a more general problem based on

the newsboy problem setting. In contrast to Sana’s (2011; 2012) customer demand as “ex-

ogenous”, we take customer’s demand on the manufacturer to be “endogenous” in that it

is derived from the customer’s rational purchasing behavior having observed varying prices

in the past. Netessine and Tang (2009) have compiled articles dealing with endogenous

customer demand in the operations management literature.

Two, we contribute to the bullwhip-effect literature by quantifying the impact of sales

price variance on the customer’s order variance (cf. Lee et al. 1997; Ozelkan and Cakany-

ildirim 2009; Hamister and Suresh 2008). In the business-to-consumer (B2C) literature pro-

motions of staple products like shampoo only increases the shampoo manufacturer’s bullwhip

effect without changing the consumer’s consumption of shampoo. In this context, Ho et al.

(1998) focused on mean effects pertaining to a shopper’s rational shopping behavior for a

single product by way of expected purchase quantity and expected shopping frequency. How-

ever, our focus is on the variance for the manufacturer (not the customer) and moreover, we

take into account multiple products and multiple customer segments.

Managerial implications of our work are as follows. (1) To reduce the customer’s order

variance, manufacturers should aim to reduce not only the variance in the transaction prices

but also the fixed ordering cost for its customers. (2) Even though increasing market share by

increasing the number of customers can reduce the coefficient of variation of the customer

orders, the marginal benefit of this effect diminishes quickly with increasing number of

customers. (3) Managers should avoid invoice-level discounting and choose new segments of

customers carefully because market heterogeneity increases the variance of customer orders.

This paper is organized as follows. Section 2 provides the details of the particular cutting

tools manufacturing company that motivates our work along with the MRO sector as a

whole. In Section 3, we present our base model that examines the rational purchasing

behavior minimizing long-term total of purchasing, holding and ordering costs of a single

customer with constant consumption, and ordering from a manufacturer who offers variable

prices. Section 4 extends the base model to the case when the manufacturer sells multiple

products. Section 5 extends the base model to multiple customer segments, each with its

own consumption rate. A discussion of the results to the company’s situation follows in
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Figure 1: Discounts across 776 transactions in a quarter on products in the same family

Section 6 and we conclude with some ideas for future research.

2 A Cutting-Tools Manufacturer and the MRO Sector

Our work is motivated by a global manufacturer of cutting tools whose customers include

original-equipment-manufacturer (OEM) auto companies at one extreme and small-scale

service shops at the other. The company has about 6,000 basic Stock Keeping Units (SKU)

of cutting tools. Moreover, customized tooling for particular customers increase the number

of products to over 30,000 SKUs at any given time.

Fluctuating prices. As is common in most B2B transactions, the company allows

its salespeople to provide transaction-specific discounts on list prices to customers. It also

plans promotions and adjusts standard discounts for large customers on a regular basis. The

company knows that the “realized” prices (i.e., after the transaction discount) of its various

products, both at the SKU level and at the family level, vary considerably across transactions

as do SKU-specific unit sales. Based on our analysis for some SKUs, we find, for instance,

that when the coefficient of variation of prices across all customers for a week was 0.09, the

coefficient of variation of the unit sales was 0.46. Indeed, the variation in discounts for SKUs

in the same family varies from 2% to 80 % (Figure 1).

Transaction sales prices fluctuate due to multiple reasons: The marketing department

plans various promotions such as “buy three drills, get the sleeve free”generally for its smaller
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customers; similar volume-based price discounts apply for bigger customers as well globally.

There are also “local” promotional initiatives” at the country-level. Each salesperson can

offer different discounts and that too at the level of an individual transaction. System-

programmed rules for discounting also create price variations with the application of multiple

discounting rules: a customer gets a discount based on its category, with a larger customer

getting a larger discount. Sales personnel also used a quantity-specific discount schedule

for different product families. Customers negotiate further discounts on individual products

to try and have each cutting tool at the same per piece price even though list prices vary

quite a bit. There were also single-use transactional discounts offered at customers’ request

to close deals. In practice, there are price discounts at different levels: item-level, invoice

level, customer-level (Marn and Rosiello, 1992). Finally, dramatically fluctuating prices

of specialized steels and other raw materials require the company to occasionally impose

temporary surcharges (negative discounts) to pass at least some of the increased costs to

customers.

The impact of price fluctuations on manufacturing operations. According to the

director of Pricing in the company, these price fluctuations not only diluted profitability, but

also caused unit sales to fluctuate which in turn lead to scheduling problems in production,

with resulting delays leading to further discounts. Given the constant usage of the products,

unit sales fluctuation could result in longer replenishment intervals, which can trigger more

price discounts. Also, the variance of unit sales could lead to wrong pricing decisions. For

example, a downward trend across a few weeks raised arguments for lowering the price (or

do another promotion) despite the argument that customers who bought more in one week

would buy less in subsequent weeks.

As such, we were motivated to seek to quantify the impact of the price variance on the

variance of manufacturer’s orders (and hence on the manufacturer’s operations).

Assumptions. Given the nature of use of cutting tools by the manufacturer’s customers,

we sought empirically-justifiable simplifications by way of two modeling assumptions for the

customers, the same as those for the standard EOQ model:

1. Customer’s consumption is constant. Customers of this company such as auto OEMs

consume cutting tools at a constant rate regardless of the mix of car models they

are producing at any time. Their consumption of cutting tools is independent of the
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Figure 2: Price and quantity for a particular SKU over time, aggregated for transactions in

the week

purchasing price because the opportunity cost of a cutting tool being unavailable is

much higher than its purchase price.

2. Customers make “planned” purchases triggered by zero inventory. For the larger of the

manufacturer’s customers, the ERP systems create orders with ’standard’ quantities

based on zero inventory projection, assuming constant consumption. Hence, for our

model, we assume the purchase of cutting tools is triggered only by zero inventory.

(However, our analysis can be extended to the case when the re-order point is a constant

different from zero.)

Based on these two assumptions, customers could simply order pre-specified quantities on

a regular schedule using the EOQ calculation if prices were constant, and the manufacturer

would face stable orders from customers. But because prices are variable, and weekly prices

and weekly unit sales for the manufacturer are negatively correlated: for instance, -0.54 in

one case and -.52 in another. Figure 2 reflects this for a particular SKU. Therefore, we shall

extend the EOQ model to incorporate price variability by assuming that all customers are

’rational’ (and risk-neutral): they seek to minimize the long-run average cost including the

cost of purchasing, holding and ordering when determining the order size at the time of the

purchase.
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2.1 The MRO Sector

The above assumptions can be made for other customers of consumable MRO products

(except spare parts or manufacturing equipment). The first EOQ assumption of constant

consumption by MRO customers holds for the same reason as it does for the cutting tools

company. Customers of MRO products such as light bulbs in offices, lubricant cleaning

solution, and stationery do not vary their consumption rate and consume these products as

part of ongoing operations. The focus is to reduce the customer’s ordering and inventory

costs, while keeping availability high.

The wide variety of MRO products is why the second EOQ assumption of planned pur-

chases holds for customers of this sector as a whole. The assumption is justified because

customers do not, and indeed cannot, monitor prices continuously for all their MRO prod-

ucts, nor do they want to have more inventory than what they need given their predictable

consumption of these products.

Despite its size and significance, not much has been written in the operations literature

about the MRO industry as regards procurement (Gelderman et al. 2008) and even less

about pricing in this sector. The huge variety of products entailed in MRO purchasing as

well as the relatively small unit and dollar volumes distinguish MRO purchasing from direct

purchasing (van Weele, 2010: p.7-8). The MRO industry is significant in sales volume, and

by some estimates and depending on what is included, about US $ 800 million. The market

size of office stationeries in the US alone was $42 billion in 2011 according to industry research

firm Ibisworld, and the commercial airlines-focused MRO was $42 billion for 2011 worldwide

according to Oliver Wyman, a consultancy while the military aviation MRO spend was $52

billion that year according to Kaufmann et al. (2007).

The industry has more than five million product types (Sawhney 2004) sold by a huge

variety of sellers who are manufacturers or distributors or both. For one automotive OEM

alone, Lee and Blancas (2006) mention more than 1,200 MRO suppliers. W.W.Grainger sells

products ranging from adhesives (glues, tapes, etc.), electrical (cables, batteries, electrical

wires), fasteners (nails, screws, hooks, etc.), janitorial supplies (cleaning equipment and

cleaning supplies), lighting (light bulbs), and many other product types.

Manufacturers and distributors cater to wide-ranging customer segments. For instance,

W.W. Grainger’s customer base comprises facilities maintenance professionals from: (1) gov-

ernment offices, schools and correctional institutions; (2) heavy manufacturing customers in
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petro/chemicals, lumber, primary metals and rubber industries; (3) light manufacturing

customers in food and beverage processing plants and pharmaceutical companies; (4) re-

tail/wholesale customers such as grocery stores; and (5) contracting firms in maintaining

and repairing existing facilities.

The MRO sector is also distinct from the broad B2B sector in that ‘fixed’ order costs are

important to reduce (Gunasekaran et al. 2009). Although individual product families are a

miniscule part, a customer may still view the total MRO spend as being problematically high.

With tens of thousands of products, ordering costs and inventory costs become significant.

Indeed, the advent of the Internet and e-commerce in the late 1990s fueled electronic ordering

to reduce ordering costs (Croom, 2000; Kaplan and Sawhney, 2000; Gelderman et al., 2008).

Kaplan and Sawhney (2000) describe different types of B2B e-marketplaces including ‘MRO

hubs’ such as Grainger.com and BizBuyer.com. Muylle and Croon (2004) describe the efforts

of a distributor of mechanical supplies, the Baudaoin Group; Sawhney (2004) discusses the

efforts of an MRO manufacturer, a division of Rockwell; Mukund and Radhika (2003) do so

for an MRO customer, motorcycle manufacturer Harley Davidson.

3 Base Model

Our base model captures the purchasing behavior of a risk-neutral customer, say, someone

from the purchasing department who has to order the single consumable MRO product (as

assumed) that his company consumes at a known constant rate r per period. He orders

when the inventory drops to zero, incurring a fixed ordering cost K > 0 for order-specific

activities such as issuing the order, receiving against it, and processing the payment.

While the customer has the knowledge about the distribution of discounts from past

experience, he learns about or negotiates the product price p only at the time of purchase,

a reasonable assumption for MRO products. Upon observing p, he decides on the purchase

quantity Q(p). (Even if the order is created by the customer’s ERP system as may be

the case for larger customers, the order quantity can be modified subsequently.) For ease

of exposition, we assume the manufacturer fulfills the order instantly from inventory. The

customer continues to consume the product at rate r and orders again when the product runs

out. The customer’s decision is therefore a variant of the EOQ model with price uncertainty.

The observed price is modeled as one of S (discounted) pricing ‘scenarios’, where each
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price scenario s is realized with probability πs. For each scenario s, the (discounted) price is

ps. Taking µ to be the average price and σ2 to be the variance of the (discounted) transaction

price, we have

µ =
S∑

s=1

πs ps,

σ2 =
S∑

s=1

πs(ps − µ)2 (3.1)

For the cutting-tools manufacturer, the mean discount for the product family in Figure

1 is 32.76 %, and the standard deviation is 13.85 % (in the same customer category). Multi-

plying these with the respective list prices of the different SKUs in this family provides the

values of µ and σ for these SKUs.

3.1 Notation

For the remainder of this paper, we shall use the following notation for the base model. For

various extensions of the base model, the notation is the same or extends that of the base

model.

Parameters r: customer consumption rate per unit time

h: unit holding cost per unit time

s: price scenario, s = 1, · · · , S

µ: expected selling price

σ2: variance of selling price

K: fixed ordering cost

K̂: adjusted ordering cost, where K̂ = K − r
2h
σ2

Variables

Q∗
s: optimal purchase quantity under price scenario s

t∗s: elapsed time until next purchase incident

Di: manufacturer’s unit sales in period i
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3.2 The Customer’s Order

The customer seeks to minimize his long-term average “relevant” cost per unit time. The

customer’s purchases Qs units when the observed price is ps incurring a fixed ordering cost

K and paying a unit holding cost h per unit time (e.g., warehouse storage fee). Because

his consumption rate is r, his next purchase incident will occur when the inventory runs out

after time ts = Qs/r, with r being constant.

The customer’s total relevant cost associated with an order at any time period under price

scenario s comprises: (1) the fixed ordering cost K; (2) the purchasing cost psQs associated

with purchase quantity Qs; and (3) the inventory cost h(Qs

2
)(Qs

r
). Because the next order

will occur after time ts = Qs/r, the average relevant cost per unit time until the next order

is given by
K + psQs + h(Qs

2
)(Qs

r
)

(Qs

r
)

By modeling each purchasing incident as a renewal, we can apply renewal theory (e.g., Ross

1980) to show that the expected relevant cost per unit time R(Q1, . . . , QS), for any given

purchasing policy (Q1, . . . , QS), satisfies:

R(Q1, . . . , QS) =
K +

∑S
s=1[πspsQs + πshs

Q2
s

2·r ]∑S
s=1[πs

Qs

r
]

. (3.2)

Ho et al. (1998) show that the function R(Q1, .., Qs, ..., QS) is jointly pseudo-convex

(Avriel 1976) in (Q1, .., Qs, .., QS) and thus obtain the optimal purchase policy (Q∗
1, .., Q

∗
s, ..., , Q

∗
S)

that minimizes the expected relevant cost per unit time R(Q1, .., Qs, ..., QS). Also, Ho et al.

(1998) proved the following proposition:

Proposition 1 The customer’s optimal purchasing policy (Q∗
1, .., Q

∗
s, ..., , Q

∗
S) can be ex-

pressed as:

Q∗
s =

√
2K̂r

h
− r

h
(ps − µ). (3.3)

and the minimum expected relevant cost per unit time R
∗

= R(Q∗
1, .., Q

∗
s, ..., , Q

∗
S) is given by:

R∗ = µr +
√

2K̂rh (3.4)

where K̂ is the ‘adjusted’ ordering cost:

K̂ = K − r

2h
σ2. (3.5)
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Thus, a rational customer will buy more than (or less than) the reference purchase quantity√
2K̂r/h when the observed price ps is lower than (or higher than) the average price µ.1

This helps explain the (discounted) price-quantity relationship we observe in Figure 2. Fur-

thermore, K̂ increases in K and decreases in σ2, so Proposition 1 reveals that the optimal

purchasing quantity Q∗
s and the minimum expected relevant cost R

∗
increase with the fixed

ordering cost K and decrease with increasing price variability σ2.

3.3 Order Variance for the Manufacturer

Upon observing the transaction price ps, the customer purchases Q∗
s units. Hence, by using

(3.3) and by noting the “elapsed time until next purchase incident” (or length of the ordering

cycle) is t∗s = Q∗
s

r
. we get:

Lemma 1 The optimal order cycle of a rational customer satisfies the following properties:

t∗s =

√
2K̂

hr
− 1

h
· (ps − µ), (3.6)

t∗ = E(t∗s) =

√
2K̂

hr
, (3.7)

V ar(t∗s) =
σ2

h2
, (3.8)

E([t∗s]
2) = V ar(t∗s) + [E(t∗s)]

2 =
2K

hr
(3.9)

Proof: See Appendix for all proofs.

When the price variance is zero, the order-cycle variance is also zero and we are back

to the standard EOQ situation. When price variance is not zero, each purchase incident is

a “renewal” of a stochastic process (Ross, 1980) because the purchase incident occurs only

when the inventory drops to zero. Also, we can view the elapsed time t∗s as the “‘length of

the renewal cycle” after the customer observed the realized price is ps during the purchasing

1In the event when

√
2·K̂·r

h − r
h · (ps − µ) < 0, Q∗

s could be negative. However, because the function R

given in (3.2) is pseudo-convex in (Q1, · · · , QS), it is optimal to truncate those negative Q∗
s to a minimal

positive level, say, 1. We assume that K is sufficiently large so that K̂ > 0 and Q∗
s > 0.
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incident. By applying a well-known result in renewal theory (Feller (1968)), the steady state

probability that a purchase incident occurs during any time period is given by

1

E(t∗s)
=

1

t∗

The unit time period can be taken as being small enough that a purchasing incident

either occurs once or not all in this period – indeed this is the case when the unit of time is

a week for the manufacturer in question – so that the average time t∗ given in (3.7) between

successive orders is greater than 1; i.e.,

t∗ = E(t∗s) =

√
2K̂

hr
≥ 1

Hence, for any given time period i and given price ps, the unit sales Di for the manufacturer

are:

Di =

{
0 with prob. (1− 1

t∗
)

Q∗
s with prob. 1

t∗

(3.10)

where t∗ is given in (3.7). By considering (3.10) along with Lemma 1, we get:

Proposition 2 In steady state, the expected sales and the variance of the sales observed by

the manufacturer in any time period i are:

E(Di) = r,

V ar(Di) = r2(
V ar([t∗s])

t∗
+ t∗ − 1). (3.11)

Therefore, when t∗ ≥ 1, and V ar([t∗s]) > 0, then the manufacturer will suffer order

variance, i.e., V ar(Di) > 0 even though the customer’s consumption is constant. Note

however that V ar(Di) 6= 0 even when price variance is zero. This is because orders are

lumpy in discrete time – some periods have positive sales other periods are zero whenever t∗

exceeds one. So we must consider the incremental increase in variance of unit sales caused

by the price variance. By considering Proposition 2, we get:

Corollary 1 In steady state, the variance of the sales V ar(Di) is decreasing in K for K ∈
( r
2h
σ2, 2 r

2h
σ2] and increasing in K for K ∈ (2 · r

2h
σ2,∞). Moreover, V ar(Di) is convex in

K over the range ( r
2h
σ2, 4 r

2h
σ2) and concave in K over the range [4 r

2h
σ2,∞).
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Figure 3: Unit-sales variance and the fixed ordering cost K with h = 1, r = 1.5, and σ = 5

We know from the standard EOQ model, and hence its extension here, that the customer

will purchase more in any time period as K increases, i.e., Q∗
s given in (3.3) and t∗s are

increasing in K), the sales variance V ar(Di) increases in K when the effect of the latter

dominates the transaction price variance. However, Corollary 1 reveals an unexpected result

when the transaction price variance dominates the fixed cost, the sales variance V ar(Di)

would actually decrease as the fixed ordering cost K is increasing over the range ( r
2h
σ2, 2 r

2h
σ2)

(Figure 3).

This is because when the ordering costK is small, the effect of price variance σ2 dominates

the unit sales variance V ar(Di). Because t∗ = E(t∗s) =
√

2K̂
hr
≥ 1, one can check from (3.5)

that K ≥ r
2h
σ2 + hr

2
. In this case, when price variance is sufficiently high, say, when σ2 > h2,

r
2h
σ2 + hr

2
< 2 r

2h
σ2. Therefore, for any K ∈ ( r

2h
σ2 + hr

2
, 2 r

2h
σ2], Corollary 1 reveals that

the variance of unit sales V ar(Di) is decreasing in K when K lies within this interval. This

suggests that, when the price variance is high, the manufacturer can decrease the unit sales

variance by actually increasing the customer’s ordering cost K. However, for most of the

range of reasonable values for the various parameters, σ2 is small relative to K and V ar(Di)

is increasing and concave in K while K ≥ r
2h
σ2 + hr

2
.

To isolate the effect of ordering cost K and price variance σ2 on the order variance

V ar(Di), consider the case with constant prices so that σ2 = 0. It is easy to check from

(3.11) that V ar(Di|σ2 = 0) = r2(
√

2K
hr
−1). Essentially, V ar(Di|σ2 = 0) is the sales variation

caused by the ordering cost K alone that causes lumpiness in the orders for the manufacturer.

Formally, we have:
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Figure 4: Incremental variance and the fixed ordering cost K when h = 1, r = 1.5, and

σ = 5.

Corollary 2 For any given price variance σ2, the incremental sales variance ∆(K, σ2)

caused by the price variance decreases in K and ∆(K, σ2) = 0 as K →∞, where

∆(K, σ2) = V ar(Di)− V ar(Di|σ2 = 0) = r2
√

2K

hr

(√
K

K − r
2h
σ2
− 1

)
≥ 0, (3.12)

Corollary 2 has the following implications. When K is small, price variance σ2 plays a

significant role in the order variance V ar(Di) so that it is much higher than the order variance

V ar(Di|σ2 = 0); i.e., ∆(K, σ2) is large. However, as the ordering cost K increases, the effect

of K dominates the effect of σ2 so that the gap between V ar(Di) and V ar(Di|σ2 = 0)

becomes smaller as K increases. Therefore, when K is small – as both manufacturers and

other sellers seek to have for their customers – the firm should consider reducing price

variance σ2 to reduce the variance of unit sales V ar(Di). However, when K is large, the firm

should focus on reducing K instead of price variance σ2 (Figure 4).

4 Extending to Multiple Products

We now extend our base model by including multiple products, especially as many MRO

manufacturers like our cutting-tools manufacturer have thousands or even tens of thousands

of SKUs. Suppose the manufacturer sells two MRO products – this is easily extended to

any number of products – that the customer consumes at a constant rate ri, for i = 1, 2.
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When selling two products under varying prices, we specify the retail price of each product

in each time period according to a set of S pricing ‘scenarios’, where each price scenario

s occurs with probability πs so that the unit price of the products is (p1s, p2s). Obviously,∑S
s=1 πs = 1. Let µi be the average price and let σ2

i be the variance of the price for product

i as per (3.1).

The customer needs to decide on a purchase policy over time, given the ‘joint’ ordering

cost K is independent of the purchase quantity of either product or indeed the number of

products, While there are different types of purchase policies that the customer may adopt,

we examine two extremes, an “uncoordinated” policy and a “coordinated” one. (We shall

use the superscript (u) to denote the uncoordinated purchase policy and superscript (c) to

denote the coordinated purchase policy.)

Both policies apply to varying degree for the customers of the manufacturer in our con-

text. A large number of MRO products are typically purchased in “an uncoordinated and

decentralized manner” (Croom, 2000). On the other hand, for cutting tools in particular,

orders may be coordinated by large customers’ ERP systems.

4.1 Uncoordinated Policy

Under the uncoordinated purchase policy, the customer purchases either product indepen-

dently of each other, i.e., determines the optimal order cycle for one product without taking

the order cycle of the other product into consideration. This allows us to use the same

analysis presented for the base case with one product to determine the optimal order cycle

t
(u)
is for each product i. Specifically, we can apply (3.6) to show that

t
(u)
is =

√
2K̂

hri
− 1

h
(pis − µi), for i = 1, 2. (4.1)

Given the optimal order cycle under the uncoordinated policy, we can retrieve the optimal

purchase quantity for each product i by letting Qis = ri · t(u)is for i = 1, 2.

Because the purchase behavior of each product is independent of the other product, we

can apply the expression given in (3.11) to show that, the total sales variance in any time

period i under the ‘uncoordinated’ policy denoted by V aru(Di1 +Di2), can be expressed as:

V ar(u)(Di) = r21(

√
2K2

hr1(K − r1
2h
σ2
1)
− 1) + r22(

√
2K2

hr2(K − r2
2h
σ2
2)
− 1) (4.2)
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The total sales variance V ar(u)(Di) given in (4.2) possesses the same structure as the

sales variance V ar(Di) given in (3.11) as in the single product case so the total sales variance

V ar(u)(D) exhibits the same properties as presented in Proposition 2.

4.2 Coordinated Policy

Under the coordinated policy, the customer purchases all products during each purchasing

incident so that both products’ inventory must “run out at the same time”. This “equal

runout time” policy, proposed by Karmarkar (1981) has been used as a heuristic for schedul-

ing multiple items on a single machine (cf. Karmarkar, 1981; Federgruen, 1984).2 However,

Karmarkar (1981) used this concept for scheduling production of different products with

fixed selling price while we use this concept to determine the purchasing cycle of different

products with uncertain purchasing prices. More importantly, we are examining how price

variance and covariance across multiple products affect their unit sales. To our knowledge,

the joint impact of pricing of multiple products on their respective unit sales has not been

examined thus far in the operations management literature.

Under the coordinated policy, the order cycle at each purchase incident depends only on

the observed price scenario s when the observed unit price is (p1s, p2s). Therefore, the cus-

tomer must purchase quantities of both products ensuring they will run out simultaneously

at time ts so that Qis = rits for i = 1, 2.

By using the fact that Qis = rits under the coordinated policy, we can determine the

customer’s total relevant cost associated with a purchase incident under price scenario s in

terms of the order cycle ts. Considering again the fixed cost K, the purchasing cost, and the

inventory cost as part of the total relevant cost incurred once for an order cycle of length

ts, the average relevant cost per unit time for the customer under the coordinated policy

Rc(t1, t2, · · · , tS) is:

Rc(t1, . . . , tS) =
K +

∑S
s=1[πs(p1sr1 + p2sr2)ts + πsh( r1ts

2
r1ts
r1

+ r2ts
2

r2ts
r2

)]∑S
s=1[πsts]

(4.3)

2Besides the coordinated policy, one could consider a “nested” policy so that the order cycle of a product

is a ‘power of 2’ of the order cycle of the other product. The power-of-2 policy has been examined by Roundy

(1989) as a heuristic for solving the classic multi-item lot sizing problem.
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The function Rc being jointly pseudo-convex in (t1, · · · , tS), we can determine the opti-

mal order cycle policy (t∗1, . . . , t
∗
S) that minimizes the expected relevant cost per unit time

Rc(t1, . . . tS). Once we determine the optimal order cycle t∗s, we can retrieve the correspond-

ing optimal purchase quantity Q∗
is = rit

∗
s for i = 1, 2, and s = 1, · · · , S. In preparation,

let

as = p1sr1 + p2sr2, for s = 1, · · · , S, (4.4)

b = h

(
r1 + r2

2

)
Also, let ρ be the correlation between the price of product 1 and product 2 over time so that

the covariance between p1s and p2s is equal to ρσ1σ2. By using (4.4), we can define:

a = Es(as) = r1µ1 + r2µ2, (4.5)

σ2
m = V ar(as) = r21σ

2
1 + r22σ

2
2 + 2ρr1r2σ1σ2, and (4.6)

K̂m = K − σ2
m

4b
. (4.7)

We now present the optimal order cycle t∗s that minimizes the customer’s average relevant

cost per unit time under the coordinated policy Rc(t1, t2, · · · , tS) as given in (4.3).

Proposition 3 Under the coordinated policy with equal runout time for both products at

each purchase incident, the customer’s optimal order cycle t
(c)
s satisfies:

t(c)s =

√
K̂m

b
− 1

2b
(as − a) (4.8)

where as and b are given in (4.4), a is given in (4.5), and K̂m is given in (4.7).

By using the optimal order cycle t∗s given in Proposition 3, we can retrieve the optimal

purchase quantity for each product as:

Q
(c)
is = ri · t∗s = ri

√K̂m

b
− 1

2b
· (as − a)

 , for i = 1, 2. (4.9)

The optimal purchase quantity Q
(c)
is possesses the same structure as the optimal purchase

order quantity Q∗
s in the base model as shown in (3.3) as can be seen from (4.4), (4.5),
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and (4.7). Similarly, the optimal order cycle under the coordinated policy t
(c
s ) has the same

structure as the optimal order cycle t∗s in the base model as shown in (3.6). By using (4.5),

(4.6), and (4.7), we can prove the following result.

Corollary 3 Under the coordinated policy, the optimal order cycle t
(c)
s given in (4.8) satis-

fies:

t(c) = E(t(c)s ) =

√
K̂m

b
, (4.10)

V ar(t(c)s ) =
σ2
m

4b2
, and (4.11)

E([t(c)s ]2) = V ar(t(c)s ) + [E(t(c)s )]2 =
K

b
. (4.12)

We can use Corollary 3 to determine the manufacturer’s sales variance under the co-

ordinated policy. Because the purchase incident occurs only when the inventory of both

products drops to zero, each purchase incident is a “renewal”. Under the coordinated policy,

the length of each renewal cycle after the customer observed the realized price is (p1s, p2s) is

equal to t
(c)
s that is given in (4.8). As in the base model, the steady state probability that a

purchase incident occurs during any time period is given by 1/E[t
(c)
s ] = 1/t(c) following from

(4.10). Hence, for any given time period i and particular price scenario s, the total sales Di

observed by the manufacturer is given by:

Di =

{
0 with prob. (1− 1

t(c)
),

Q
(c)
1s +Q

(c)
2s with prob. 1

t(c)
,

where Q
(c)
is is given in (4.9). By considering the total sales Di as stated above, we get:

Proposition 4 In steady state, the expected value and the variance of the manufacturer’s

total unit sales in any time period i is:

E(c)(Di) = (r1 + r2),

V ar(c)(Di) = (r1 + r2)
2 · (E([t

(c)
s ]2)

t(c)
− 1) = (r1 + r2)

2(

√
K2

K̂m · b
− 1) (4.13)

We can make three observations. First, from (4.13) it follows that the total sales variance

V ar(c)(Di) possesses the same functional form as the sales variance V ar(Di) given in (3.11)
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Figure 5: Variance of the total unit sales (across both products) with coordinated and

uncoordinated policies against correlation of the prices of the two products for specific values

of r = 2.5, K = 20, h = 1.5, and σ = 3.5.

as in the single product case. Therefore, the total sales variance V ar(c)(Di) satisfies the same

properties as those for the single product case presented in Section 3.

Second, it follows from (4.7) that K̂m = K−σ2
m/4b decreases with increasing σ2

m and from

(4.6) σ2
m increases with increasing ρ. Therefore, Proposition 4 implies that the manufacturer’s

order variance V ar(c)(Di) also increases with increasing ρ. This in turn implies that the

manufacturer can reduce the sales variance by ‘coordinating’ the pricing between products 1

and 2 so that the resulting correlation coefficient is as low as possible, say, ρ < 0. Therefore,

even when the individuals products’ prices vary so that σ2
1 > 0 and σ2

2 > 0, the manufacturer

should ‘coordinate’ the prices between products 1 and 2 with ρ < 0 to lower the variance of

total unit sales.

Finally, we compare the total sales variance under the coordinated policy and under the

uncoordinated policy. By comparing V ar(c)(Di) and V ar(u)(Di) given in (4.13) and (4.2),

we obtain the following result:

Corollary 4 When r1 = r2 = r and σ2
1 = σ2

2 = σ2, V ar(c)(Di) > V ar(u)(Di) if and only if

K > (1− ρ) r
2h
σ2.

Corollary 4 suggests that, when the ordering cost K is sufficiently large or when ρ > 0,
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Figure 6: Distribution of logarithm of unit sales of a product to 489 different customers in

a particular quarter

the total sales is more ‘lumpy’ under the coordinated policy (because the customer purchases

both products each time). Consequently, total order variance is higher under the coordinated

policy. However, when K is sufficiently small or when ρ < 0, the opposite is true. In other

words, when the pricing between the two products are negatively correlated, the total order

quantity evens out because the purchase quantity of one product is low while that of the

other is (likely) high. Hence, the total sales is less ‘lumpy’ under the coordinated policy

when the pricing across products is negatively correlated. This observation implies that the

manufacturer can reduce the variance of total unit sales by keeping the correlation of prices

across products low, preferably negative even when it cannot reduce the individual product’s

price variance (see Figure 5).

5 Extending to Heteregenous Customer Segments

The cutting tools manufacturer, and indeed any MRO manufacturer, has a wide range of

customers. Unit sales for individual products vary dramatically across these customers as can

be seen from the example in Figure 6 pertaining to total quarterly unit sales of a particular

product family to 489 different customers; we took the logarithm because of the enormously

wide range from 1 to 18,000 units sold.
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As such, we need to extend our base model to the case of multiple customer segments j =

1, 2, ... with different consumption rates rj and different ordering costs Kj. Each customer

segment has Nj customers. As with the base case, there is only a single product. For

notational convenience, we present the two-segment case. Let us first examine the purchasing

behavior of a customer in segment j. Using the same approach as that in Sections 2.1 and

2.2, we can show that Proposition 1 and Lemma 1 continue to hold. Specifically, during a

purchasing incident, each customer in segment j will purchase Qjs upon observing price ps

and will order again after his inventory drops to zero. Hence, the purchase quantity Q∗
js can

be obtained from (3.3) by substituting r with rj and K̂ from (3.5) with K̂j so that

Q∗
js =

√
2K̂jrj
h
− rj
h

(ps − µ), (5.1)

where

K̂j = Kj −
rj
2h
σ2, for j = 1, 2. (5.2)

By noting that the time until the next purchase is equal to t∗js , where t∗js = Q∗
js/rj, we

can apply Lemma 1 to show that:

t∗j = E(t∗js) =

√
2K̂j

hrj
, (5.3)

E([t∗js]
2) = V ar(t∗js) + [E(t∗js)]

2 =
2Kj

hrj
. (5.4)

By using the renewal theory as described in Section 3.1, the steady state probability

that each customer in segment j will order in any time period is given by 1
E(t∗js)

= 1
t∗j

. By

assuming that the purchasing behavior of a customer is independent of other customers, the

total number of customers in segment j who place an order at any time period i, denoted

by nij, follows a binomial distribution; i.e., nij ∼ Binomial(Nj,
1
t∗j

). Hence, for any given

price ps and given number of customers from each segment nij, the sales Di observed by the

manufacturer in any time period i is given as:

(Di | ps, ni1, ni2) =
2∑

j=1

nijQ
∗
js, (5.5)

where nij ∼ Binomial(Nj,
1
t∗j

), t∗j is given in (5.3), and Q∗
js is given in (5.1).

By taking conditional expectation and conditional variance and by using the same ap-

proach as presented in the proof of Proposition 2, we obtain:
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Proposition 5 In steady state, the expected value and the variance of unit sales observed

by the manufacturer in any time period are as follows:

E(Di) =
2∑

j=1

Njrj

V ar(Di) =
2∑

j=1

[(
Nj

t∗j

)2 r2jσ
2

h2
+Nj r

2
j (

1

t∗j
)

(
1− 1

t∗j

)
2Kj

hrj

]

=
2∑

j=1

[
N2

j r
3
jσ

2

2K̂jh
+Njr

2
j

(√
2K2

j

hrjK̂j

− Kj

K̂j

)]
(5.6)

where K̂j is given in (5.2).

To verify that the multiple customer-segment model generalizes the base model, consider

the case when there is only 1 customer (i.e., j = 1, Nj = 1, rj = r, and K̂j = K̂). Then, we

can show that V ar(Di) given in (5.6) can be simplified to the equivalent expression in (3.11).

Consequently, V ar(Di) is increasing in the price variance σ2 and that the general properties

as exhibited in Corollaries 1 and 2 continue to hold. Specifically, by differentiating V ar(Di)

given in (5.6) with respect to K, we can show that the variance of the manufacturer’s unit

sales is decreasing in K when K is below a certain threshold but increasing in K beyond

this threshold.

To examine the impact of the j’th segment size Nj, it is easy to check from (5.6) that

V ar(Di) is increasing in Nj when

√
2K2

j

hrjK̂j
>

Kj

K̂j
, i.e., when Kj >

rj
2h
σ2 +

hrj
2

. Hence, we can

conclude that the manufacturer’s sales variance is increasing in Nj when K is sufficiently

large or when the consumption rate rj is sufficiently small.

In addition, consider a special case with equal number of customers in each segment, i.e.,

N1 = N2 = N . Then we can show that, when the ordering cost Kj >
rj
2h
σ2 +

hrj
2

for the

customer segments j = 1, 2, the manufacturer’s order variance increases with segment size

N , while the coefficient of variation

√
V ar(Di)

E(Di)
decreases with N . The fact that the coefficient

of variation decreases implies there is some benefit to be gained growing sales or capturing

market share.

With different-sized segments, consider N1 = (1 − α)N and N2 = (1 + α)N where

α ∈ (0, 1) represents a measure of segment-size heterogeneity, given some “typical” size N .

In similar vein, consider r1 = (1−β)r and r2 = (1+β)r with β ∈ (0, 1) as a consumption-rate
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Figure 7: Coefficient of variation (CV) for unit sales against segment-size heterogeneity (α)

and consumption-rate heterogeneity (β) for selected values ofN = 15, r = 1.6, h = 1, K = 50,

and σ = 2.5.

heterogeneity for some “typical” consumption rate r. Then we can consider the coefficient

of variation
√
V ar(Di)/E[Di] as a function of α, β and N respectively for some particular

values of r, h, K and σ. Figure 7 shows how the coefficient of variation (CV) varies with

segment-size heterogeneity α and consumption-rate heterogeneity β for certain values of the

other parameters, suggesting that the CV is more sensitive to consumption-rate heterogeneity

(β) than to segment-size heterogeneity (α) at least for this example. The example also shows

how the CV decreases with increasing average segment size N (Figure 7).

We also observe asymptotic behavior of CV with increasing number of customers in each

segment, at least for specific values of α = β = 0.5 (Figure 8). This suggests the benefits in

terms of the reduction of CV with increasing number of customers in each market segment

taper off. Therefore, to reduce the CV, the manufacturer would eventually have to target

price variance to reduce the variance of unit sales.

6 Conclusions

We extended MRO customer’s use of EOQ ordering – quite suitable given the constant

consumption and ordering when the inventory goes below a threshold level – to incorporate
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Figure 8: Coefficient of variation against the “base” customer size segment N , with specific

values of α = 0.5, β = 0.5, r = 1.6, K = 50, h = 1 and σ = 2.5.

stochastic purchase price. Using this for the customer’s orders, and motivated by the setting

at a particular cutting tools manufacturer, we examined how MRO manufacturers’ unit sales

are affected by the variance in the transactional prices they charge their customers. The

customers determine both the order size and the order interval endogenously to minimize

the long-run average cost of purchasing, holding and ordering. We provided closed-ended

analytical results and also take into account the company’s multiple products and multiple

consumer segments.

To position our paper in the literature, unlike traditional EOQ models focusing on the

purchasing/production quantities for one entity, we considered both the customer who sat-

isfies the EOQ assumptions as well as the manufacturer who supplies this customer, given

stochastic prices. For the customer’s decision, we extended the EOQ model to deal with

stochastic purchase price and obtained closed-form expressions (Proposition 1 and Lemma

1). We were then able to analyze the impact of variable transaction prices on the orders

that the manufacturer gets (Proposition 2). By doing so, we examined the implications

of an MRO manufacturer’s pricing on its unit sales (in terms of expected value and vari-

ance) determined “endogenously” by the customer’s rational purchasing behavior seeking to

minimize long-term average cost of purchasing, holding inventory, and ordering.

The closed-form expressions we obtain by extending the EOQ model for the MRO cus-

tomer to include the variance of the procurement price allows us to infer the following for

the MRO manufacturer : (1) The manufacturer’s price variance has a significant impact
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on the variance of the manufacturer’s unit sales even though the customer’s consumption

is constant. (2) For multiple products, discounts or other promotional pricing should be

uncoordinated or, even better, be negatively correlated so that when the effective price of

one product is low, that for the other should remain high. Invoice-level discounts, i.e., all

products being discounted by the same amount in any transaction are therefore a bad idea.

(3) Market heterogeneity increases unit-sales variance for the manufacturer, both by way of

different number of customers in the different market segments and by way of the market

segments having different consumption rates. This reinforces that idea that greater variety

for the same volume may be expected to lead to greater process inefficiency. (4) Although

gaining market share decreases the coefficient of variation of these unit sales, however, the

effect tapers off rather quickly. (5) The ordering cost aquires a special significance; indeed,

the manufacturer can decrease its own unit-sales variance in all of these cases by reducing

the customer’s ordering cost.

Here are some ideas for future work: (1) We could extend this work to the manufacturer’s

rate of production. For instance, we could consider the situation where production can be

assumed to be constant as for instance in the process industry. (2) We could introduce a

competing manufacturer in the situation we considered in this paper especially in relation

to the tradeoffs of increasing unit sales versus increasing the variance (while decreasing the

coefficient of variation as discussed above). (3) Holding costs play an important role as we

can see from the closed-end expressions we have obtained. However, we have not tied these to

either the purchase price or to the different ordering schemes like VMI that the manufacturer

may offer the customer, with implications for the customer. (4) Although the results are

motivated by the MRO sector, our results may provide the incremental variance due to price

variance for the broad B2B sector, over and above the variance due to fluctuations in the

customers’ own demand that we had assumed constant in this paper – see Sodhi and Tang

(2011) in this regard.
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7 Appendix: Proofs

Proof of Lemma 1: These results follow immediately from Proposition 1. We omit the

details.

Proof of Proposition 2: First, observe that Qs = rt∗s under any scenario s with price ps.

Hence, E(Di|ps) = Q∗
s

t∗
= r t

∗
s

t∗
, and the first statement follows immediately. Next, compute

the conditional variance of Di

V ar(Di|ps) = (0− r t
∗
s

t∗
)2(1− 1

t∗
) + (rt∗s − r

t∗s
t∗

)2
1

t∗

= r2t∗s
2 1

t∗
(1− 1

t∗
)

By using the conditional variance formula, V ar(Di) = Es(V ar(Di|ps))+V ars(E(Di|ps)) and

by applying (3.7) and (3.9), we obtain the second statement after some algebra.

Proof of Corollary 1: We prove the first statement by differentiating V ar(Di) given

in (3.11) with respect to K. By considering (3.8) and (3.7) along with the fact that

K̂ = K − r
2h
σ2, it can be shown after some algebra that:

dV ar(Di)

dK
= r2

√
2

hr

(√
1

(K − r
2h
σ2)

)
(K − 2 · r

2h
σ2)

2(K − r
2h
σ2)2

Similarly, we can prove the second statement by considering second derivatives of V ar(Di)

with respect to K. We omit the details.

Proof of Corollary 2: By considering (3.11), (3.8) and (3.7) and by simplifying the terms,

it can be shown that (after some algebra):

V ar(Di)− V ar(Di|σ2 = 0) = r2(
V ar([t∗s])

t∗
+ t∗ − 1)− r2(

√
2K

hr
− 1)

= r2
√

2K

hr
· (
√
K

K̂
− 1)

Because ∆(K, σ2) = V ar(Di)−V ar(Di|σ2 = 0) = r2 ·
√

2K
hr
·(
√

K

K̂
−1), it suffices to show that

f(K) is decreasing in K and converges to 0 as K →∞, where f(K) = K0.5(K0.5K̂−0.5− 1).

Differentiating f(K) with respect to K, we obtain

df(K)

dK
= 0.5K−0.5K̂−1.5(K0.5 − K̂0.5)(K̂ −K −K0.5K̂0.5)
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after some algebra. As K̂ < K for any σ2 > 0, we can conclude that df(K)
dK

< 0. Second, by

noting that f(K) converges to 0 as K →∞, we have proven our result.

Proof of Proposition 3: Use (4.4) to rewrite the objective function Rc(t1, · · · , tS) given

in (4.3) as:

Rc(t1, · · · , tS) =
K +

∑S
s=1[πs(asts + bt2s)]∑S

s=1 πsts

We can obtain the optimal t∗s by considering the first-order condition and using the fact that

Rc is jointly pseudo-convex in (t1, · · · , tS). First, we differentiate Rc given above with respect

to ts and consider the first-order conditions associated with ts, for all scenarios s = 1, ..., S.

It is easy to show that under the first order conditions ts satisfies:

ts = t1 +
1

2b
(a1 − as), for s = 1, · · · , S

where a1, as and b are given in (4.4). Next, substituting ts into Rc, we can rewrite Rc as a

function of t1. By letting x = t1+ 1
2b

(a1−a), where a is given in (4.5) and by transforming the

decision variable t1 to x, we can simplify Rc further as a function of x, After some algebra,

one can show Rc can be simplified as:

Rc(x) =
K̂m + ax+ bx2

x

where K̂m is given in (4.7). In this case, the optimal x∗ that minimizes Rc(x) is given as:

x∗ =

√
K̂m/b. Because x = t1 + 1

2b
(a1 − a), we can retrieve the optimal t1. Given t1, we can

use ts given above to obtain (4.8).

Proof of Corollary 3: The proof follows from (4.5), (4.6), and (4.7) and we omit the

details.

Proof of Proposition 4: The proof follows the same approach as that for Proposition 2

by taking the conditional expectation and using the conditional variance formula.

Proof of Corollary 4: When r1 = r2 = r and σ2
1 = σ2

2 = σ2, we can apply (4.7), (4.13)

and (4.2) to show that V ar(c)(Di) under coordination and V ar(u)(Di) without coordination

can be simplified as

V ar(c)(Di) = 2r2(

√
4K2

hr
(
K − r

2h
σ2(1 + ρ)

) − 1)

V ar(u)(Di) = 2r2(

√
2K2

hr(K − r
2h
σ2)
− 1)
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Hence, V ar(c)(Di) > V ar(u)(Di) if and only if 2/(K − r
2h
σ2(1 + ρ)) > 1/(K − r

2h
σ2). We

obtain the desirable result by rearranging the terms.

Proof of Proposition 5: First, observe that Qjs = rjt
∗
js under any realized price ps. Hence,

by taking the conditional expectation of (Di|ps, ni1, ni2) given in (5.5), we get E(Di) =∑2
j=1 Nj

1
t∗j
· rjt∗j and we obtain the first statement. Next, by using the conditional variance

formula, V ar(Di) = Es(V arnij
(Di|ps, nij)) + V ars(Enij

(Di|ps, nij)) and by applying (5.3)

and (5.4), we obtain the second statement after some algebra.
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