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Abstract

We approach string phenomenology from the perspective of computational algebraic

geometry, by providing new and efficient techniques for proving stability and calculating

particle spectra in heterotic compactifications. This is done in the context of complete

intersection Calabi-Yau manifolds in a single projective space where we classify positive

monad bundles. Using a combination of analytic methods and computer algebra we

prove stability for all such bundles and compute the complete particle spectrum, includ-

ing gauge singlets. In particular, we find that the number of anti-generations vanishes

for all our bundles and that the spectrum is manifestly moduli-dependent.
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1 Introduction

Compactification of the E8 × E8 heterotic string on Calabi-Yau three-folds [1, 2] is

one of the oldest approaches to particle phenomenology from string theory. Heterotic

models have a number of phenomenologically attractive features typically not shared

by alternative string constructions. Most notably, gauge unification is “automatic” and

standard model families originate from an underlying spinor-representation of SO(10).

However, despite its long history and substantial recent progress [3]–[8], heterotic model
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building is still a long way away from one of its major goals: finding an example which

does not merely have standard model spectrum but reproduces the standard model

exactly, including detailed properties such as, for example, Yukawa couplings.

One of the main obstacles in achieving this goal is the inherent mathematical diffi-

culty of heterotic models. In addition to a Calabi-Yau three-fold X, heterotic models

require two holomorphic (semi)-stable vector bundles V and Ṽ on X. Except for the

simple case of standard embedding, where V is taken to be the tangent bundle TX

of the Calabi-Yau space and Ṽ is trivial, construction of these vector bundles is often

not straightforward and the computation of their properties is usually involved. For

example, stability of these bundles, an essential property if the model is to preserve

supersymmetry, is notoriously difficult to prove. In addition, when searching for realis-

tic particle physics from heterotic string theory, these mathematical obstacles have to

be resolved for a large number of Calabi-Yau spaces and associated bundles, as every

single model (or even a small number of models) is highly likely to fail when confronted

with the detailed structure of the standard model. The main purpose of this paper is

to present an algorithmic approach to this problem by combining analytic methods and

computer algebra. By an algorithmic approach we mean a set of techniques which allow

us to construct classes of vector bundles on (certain) Calabi-Yau spaces systematically,

prove their stability and compute the resulting low-energy particle spectra completely.

In this paper we will focus on developing the necessary computational methods by con-

centrating on the five Calabi-Yau manifolds which can be obtained by intersections in

an ordinary projective space. A generalization of these methods to more general com-

plete intersection Calabi-Yau manifolds and a detailed analysis of the particle physics

properties of these models will be the subject of forthcoming publications [9].

Starting with the pioneering work in [10, 11], there has been continuing activity on

Calabi-Yau based non-standard embedding models over the years. Recently, there has

been significant progress both from the mathematical and the model-building viewpoint,

leading to models edging closer and closer towards the standard model [4, 5]. Two types

of constructions, one based on elliptically fibered Calabi-Yau spaces with bundles of

the Friedman-Morgan-Witten type [12] and generalizations [3]–[8], [13]–[15], the other

based on complete intersection Calabi-Yau spaces with monad bundles [11], [16]–[19],

have been pursued in the literature. In this paper, we will work within the context

of the second approach using complete intersection Calabi-Yau manifolds and monad

bundles. To explain our motivation for this choice we remind the reader of the usual

“two-step” symmetry breaking in heterotic models. In the first step, the E8 gauge

group is broken to one of the standard grand unified groups E6, SO(10) or SU(5) by

a bundle V with structure group SU(3), SU(4) or SU(5), respectively. Then a Wilson

line is introduced to break further to the standard model group (times possible U(1)

factors). This second breaking requires a non-trivial first fundamental group of the

Calabi-Yau space X which is normally achieved by dividing X by a discrete symmetry.

For complete intersection Calabi-Yau manifolds, this last procedure of dividing by a
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discrete symmetry group is greatly facilitated by the presence of an ambient projective

space. This is one of our main motivations for working with this class of manifolds,

although analyzing discrete symmetries and Wilson line breaking explicitly will be the

subject of a future publication [9]. Another major reason for our choice of models is

that all relevant objects can be readily described in the language of commutative algebra

and, therefore, lent themselves to an analysis based on computer algebra.

In this paper, we will construct all positive monad bundles of rank 3, 4 and 5 on

the five complete intersection Calabi-Yau spaces in a single projective space subject to

two additional constraints. First, the bundles should be such that heterotic anomaly

cancellation can be accomplished and second, their chiral asymmetry should be a (non-

zero) multiple of three. We find 37 examples in total. We then prove stability for

all these bundles using a variant of a simple criterion due to Hoppe [21]. Recently,

this criterion has been used [22], although in a slightly different way from the present

paper, to prove stability for a class of positive bundles on the quintic [19]. Further,

we compute the complete spectrum for all bundles, including gauge singlet fields. It

turns out that a common feature of our models is that they only lead to generations

but no anti-generations. While the present paper deals with a relatively small number

of examples, we have shown that the relevant methods can be applied in a systematic

and algorithmic way. We expect that a significantly larger class of complete intersection

Calabi-Yau spaces and bundles on them can be treated in a similar way (see [20] for a

recent constraint on classifying bundles in general). This generalization and the analysis

of the particle physics of the resulting models will be the subject of future work [9].

The plan of the paper is as follows. In the next section, we will briefly review the

main general features of E8×E8 heterotic compactifications. In Section 3, we discuss the

monad construction, its main properties and prove a number of general results for such

bundles. In Section 4, we classify the positive monad bundles on our five Calabi-Yau

spaces, prove their stability and compute the spectra. After our conclusions in Section 5,

Appendix A follows with a short summary of the relevant tools in commutative algebra

and how they are applied in the context of the Macaulay computer algebra package [23].

The final Appendices contain several useful technical results.

2 Heterotic Compactification and Physical Con-

straints

To set the scene, we would now like to briefly review the basic structure of E8 × E8

heterotic vacua on Calabi-Yau three-folds (see Ref. [28, 6, 8]).

In addition to a Calabi-Yau three-fold X with tangent bundle, TX, we need two

holomorphic vector bundles V and Ṽ with associated structure groups which are sub-

groups ofE8. In the present context, we will be interested in bundles with rank n = 3, 4, 5

and corresponding structure group G = SU(n). In general, heterotic vacua can also
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contain five-branes which appear as M five-branes in the 11-dimensional strong-coupling

limit and as NS 5-branes in the 10-dimensional weakly coupled theory. In either case, for

a supersymmetric compactification, the five-branes have to wrap a holomorphic curve

in the Calabi-Yau space X, whose second homology class we denote by W ∈ H2(X,Z).

Two additional conditions need to be imposed on this data if the associated com-

pactification is to preserve N = 1 supersymmetry in four dimensions. First, the two

bundles V and Ṽ need to be (semi-) stable bundles [29]. To introduce the notion of

stability, we define the slope

µ(F ) =
1

rk(F )

∫

X

c1(F ) ∧ J ∧ J (1)

of a (coherent) sheaf F on X, where J is the Kähler form on X and rk(F ) and c1(F )

are the rank and the first Chern class of the sheaf, respectively. A bundle V is now

called stable (resp. semi-stable) if for all sub-sheafs F ⊂ V with 0 < rk(F ) < rk(V )

the slope satisfies µ(F ) < µ(V ) (resp. µ(F ) ≤ µ(V )). It is worth mentioning that a

bundle V is semi-stable exactly if its dual V ∗ is and that h0(X,V ) = h3(X,V ) = 0 for a

stable bundle V . To preserve supersymmetry, semi-stability of the bundle is sufficient,

although in practice one often requires stability. For specific examples, either condition

is typically very hard to check and the stability proof for the bundles considered in this

paper, is one of our main results. In addition, for supersymmetry to be preserved, the

five-brane class W needs to be an effective class. This means that there indeed exists a

holomorphic curve with class W in X.

Finally, heterotic models need to satisfy a well-known anomaly condition. For the

case of bundles V and Ṽ with vanishing first Chern classes, c1(V ) = c1(Ṽ ) = 0, which

we consider in this paper this condition reads

c2(TX) − c2(V ) − c2(Ṽ ) = W . (2)

Next, we turn to the general structure of the low-energy particle spectrum. In

addition to the dilaton, h1,1(X) Kähler moduli and h2,1(X) complex structure moduli

of the Calabi-Yau space, each of the E8 gauge theories as well as the five-branes give rise

to a sector of particles in the low-energy theory. Here, we will focus on the “observable”

sector, associated to the first E8 gauge theory with vector bundle V and structure group

G. We will not explicitly consider the particle content in the other “hidden” sectors.

The low-energy gauge group H in the observable sector is given by the commutant

of the structure group G within E8. For G = SU(3), SU(4), SU(5) this implies the

standard grand unified groups H = E6, SO(10), SU(5), respectively. In order to find

the matter field representations, we have to decompose the adjoint 248 of E8 under

G×H. In general, this decomposition can be written as

248 → (1,Ad(H)) ⊕
⊕

i

(Ri, ri) (3)
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E8 → G × H Residual Group Structure

SU(3) × E6 248 → (1, 78) ⊕ (3, 27) ⊕ (3, 27) ⊕ (8, 1)

SU(4) × SO(10) 248 → (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)

SU(5) × SU(5) 248 → (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5) ⊕ (24, 1)

Table 1: Breaking patterns of E8 and decompositions of the 248 adjoint representation.

Decomposition Cohomologies

SU(3) × E6 n27 = h1(V ), n27 = h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)

SU(4) × SO(10) n16 = h1(V ), n16 = h2(V ), n10 = h1(∧2V ), n1 = h1(V ⊗ V ∗)

SU(5) × SU(5) n10 = h1(V ∗), n10 = h1(V ), n5 = h1(∧2V ), n5 = h1(∧2V ∗)

n1 = h1(V ⊗ V ∗)

Table 2: Computation of low-energy particle spectra.

where Ad(H) denotes the adjoint representation of H and {(Ri, ri)} is a set of represen-

tations of G×H. The adjoint representation of H corresponds to the low-energy gauge

fields while the low-energy matter fields transform in the representations ri ofH. For the

three relevant structure groups these matter field representations are explicitly listed in

Table 1. We may ask how many supermultiplets will occur in the low energy theory for

each representation ri? It turns out that this number is given by nri
= h1(X,VRi

), the

dimension of the cohomology group H1(X,VRi
) of the vector bundle V in the specific

G representation Ri which is paired up with the H representation ri in the decomposi-

tion (3). For G = SU(n), the relevant representations Ri can be obtained by appropriate

tensor products of the fundamental representation and one ends up having to compute

h1(X,V ⊗ V ∗), h1(X,V ), h1(X,V ∗), h1(X,∧2V ), and h1(X,∧2V ∗). Using Serre du-

ality, h1(X,V ∗) = h2(X,V ), the number the low-energy representations can then be

computed as summarized in Table 2. Further, the Atiyah-Singer index theorem [40],

applied to the case c1(TX) = c1(V ) = 0, tells us that the index of V can be expressed

as

ind(V ) =

3∑

p=0

(−1)p hp(X,V ) =
1

2

∫

X

c3(V ) , (4)

where c3(V ) is the third Chern class of V . For a stable bundle, we have h0(X,V ) =

h3(X,V ) = 0 and comparison with Table 2 shows that, in this case, the index counts

the chiral asymmetry, that is, the difference of the number of generations and anti-

generations. The index is usually easier to compute than individual cohomologies and

is useful to impose a physical constraint on the chiral asymmetry.

The heterotic models considered in this paper will be constructed as follows. After

choosing a Calabi-Yau space X (which we will take to be one of the five Calabi-Yau
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Intersection A Configuration χ(X) h1,1(X) h2,1(X) d(X) c̃2(TX)

Quintic P4 [4|5] −200 1 101 5 10

Quadric and quartic P5 [5|2 4] −176 1 89 8 7

Two cubics P5 [5|3 3] −144 1 73 9 6

Cubic and 2 quadrics P6 [6|3 2 2] −144 1 73 12 5

Four quadrics P7 [7|2 2 2 2] −128 1 65 16 4

Table 3: The five complete intersection Calabi-Yau manifolds in a single projective space.

Here, χ(X) is the Euler number, h1,1(X) and h2,1(X) are the Hodge numbers, d(X) is the

intersection number and c2(TX) = c̃2(TX)J2 is the second Chern class. The normalization

of the Kähler form J is defined in the main text.

spaces realized as intersections in a single ordinary projective space), we will scan over

a certain, well-defined class of (monad) bundles, V , on X. We will think of these

bundles as bundles in the observable sector and take the hidden bundle Ṽ to be trivial.

The anomaly condition (2) can then be satisfied by including five-branes as long as

c2(TX) − c2(V ) is an effective class on X. This is precisely what we will require. In

addition, we will only consider bundles V whose index is a (non-zero) multiple of three.

Only such bundles have a chance, after dividing out by a discrete symmetry, of producing

a model with chiral asymmetry three. We will then prove stability for all such bundles

and compute their complete low-energy spectrum.

3 Monad Construction of Vector Bundles

To begin our systematic construction of vector bundles for heterotic compactifications,

we will make use of a standard and powerful technique for defining bundles, known as

the monad construction. On complex projective varieties, this method of constructing

vector bundles dates back to the early works on P4 by [33] and systematic approaches

by [34] and [35]. This construction defines a vast class of vector bundles; in fact, every

bundle on Pn can be expressed as a monad [30, 33]. Bundles defined as monads have

been widely used in the mathematics and physics literature. The reader is referred to

[36] for the most general construction of monads and their properties. In this work we

will use a restricted form prevalent in the physics literature.

3.1 The Calabi-Yau Spaces

Our monad bundles will be constructed on complete intersection Calabi-Yau manifolds,

X, which are defined in a single projective ambient space A = Pm. There are five

such Calabi-Yau manifolds [31] and their properties are summarized in Table 3. They

are most conveniently described by the configurations [m|q1, . . . , qK ] listed in the Table,
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wherem refers to the dimension of the ambient space Pm and the numbers qa indicate the

degree of the defining polynomials. In this notation the Calabi-Yau condition c1(TX) =

0 translates to
∑K

a=1 qa = m+ 1. Furthermore, note that h1,1(X) = 1 for all five cases.

Hence, these manifolds have their Picard group, Pic(X), being isomorphic to Z. Such

manifolds are called cyclic [32]. The Kähler form J descends from the the ambient space

Pn and is normalized as ∫

Pn

Jm = 1 . (5)

Integrals over X of any three-form w, defined on A = Pm, can be reduced to integrals

over the ambient space using the formula

∫

X

w = d(X)

∫

Pm

w ∧ Jm−3 , (6)

where d(X) are the intersection numbers listed in Table 3. The second homology

H2(X,Z) is dual to the integer multiples of J ∧ J and the Mori cone of X corresponds

to all positive multiples of J ∧ J [25].

For our subsequent analysis it is useful to discuss some properties of line bundles on

the above Calabi-Yau manifolds. We denote by O(k) the kth power of the hyperplane

bundle, O(1), on the ambient space Pm and by OX(k) its restriction to the Calabi-Yau

space X. The normal bundle N of X in the ambient space is then given by

N =

K⊕

a=1

O(qa) . (7)

In general, one finds, for the Chern characters of line bundles on X,

ch1(OX (k)) = c1(OX(k)) = kJ , (8)

ch2(OX (k)) =
1

2
k2J2 , (9)

ch3(OX (k)) =
1

6
k3J3 . (10)

From the Atiyah-Singer index theorem the index of OX(k) is given by

ind(OX(k)) ≡
3∑

q=0

(−1)qhq(X,OX (k))

=

∫

X

[
ch3(OX(k)) +

1

12
c2(TX) ∧ c1(OX(k))

]

=
d(X)k

6

(
k2 +

1

2
c̃2(TX)

)
, (11)

where the numbers c̃2(TX) characterize the second Chern class of X and d(X) are the

intersection numbers. The values for these quantities can be read off from Table 3.

We recall that the Kodaira vanishing theorem [40] states that on a Kähler manifold

X, Hq(X,L ⊗ KX) vanishes for q > 0 and L a positive line bundle. Here, KX is the

canonical bundle on X. For Calabi-Yau manifolds KX is of course trivial and, hence,
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the only non-vanishing cohomology for positive line bundles on Calabi-Yau manifolds

is H0. The dimension of this cohomology group can then be computed from the index

theorem. In fact, inserting the values for the intersection numbers and the second Chern

class from Table 3 into Eq. (11) we explicitly find, for the five Calabi-Yau spaces and

for line bundles OX(k) with k > 0, that

h0([4|5],OX (k)) =
5

6
(k3 + 5k) , (12)

h0([5|2 4],OX (k)) =
2

3
(2k3 + 7k) , (13)

h0([5|3 3],OX (k)) =
3

2
(k3 + 3k) , (14)

h0([6|3 2 2],OX (k)) = 2k3 + 5k , (15)

h0([7|2 2 2 2],OX (k)) =
8

3
(k3 + 2k) . (16)

For negative line bundles L = OX(−k), where k > 0, it follows from Serre duality on the

Calabi-Yau three-fold X, hq(X,L) = h3−q(X,L∗), that only H3(L,X) can be non-zero

and that its dimension h3(X,OX(−k)) = h0(X,OX(k)) is given by one of the explicit

expressions (12)–(16). Finally, we have

h0(X,OX ) = h3(X,OX ) = 1 , h1(X,OX ) = h2(X,OX ) = 0 . (17)

Now we explicitly know the cohomology for all line bundles on the five Calabi-Yau man-

ifolds under consideration. In particular, we conclude that h0(X,OX (k)) > 0 precisely

for k ≥ 0 and, hence, that only the line bundles OX(k) with k ≥ 0 have a non-trivial

section. This is one of the underlying conditions for the validity of Hoppe’s criterion

which will play a central role in the stability proof for our bundles.

3.2 Constructing the Monad

Having discussed the manifold X and line bundles thereon, we now construct the requi-

site vector bundles V . Our construction proceeds as follows. On a Calabi-Yau manifold

X, a monad bundle V is defined by the short exact sequence

0 → V
f

−→ B
g

−→ C → 0 , (18)

where B and C are bundles on X. It is standard to take B and C to be direct sums of

line bundles over X, that is

B =

rB⊕

i=1

OX(bi) , C =

rC⊕

i=1

OX(ci) . (19)

Here, rB and rC are the ranks of the bundles B and C, respectively. The exactness of

(18) implies that ker(g) = im(f) and ker(f) = 0, so that the bundle V can be expressed

as

V = ker(g) .
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The map g is a morphism between bundles and can be defined as a rC×rB matrix whose

entries, (i, j), are sections of OX(ci − bj). As we have seen in the previous subsection,

such sections exist iff ci ≥ bj and so this is what we should require. In fact, if ci = bj

for an index pair (i, j) the two corresponding line bundles can simply be dropped from

B and C without changing the resulting bundle V . In the following, we will, therefore,

assume the stronger condition ci > bj for all i and j.

The Calabi-Yau manifolds discussed in this paper are complete intersections in a

single projective space Pm. We can, therefore, write down an analogous short exact

sequence

0 → V
f̃

−→ B
g̃

−→ C → 0 , (20)

on the ambient space where

B =

rB⊕

i=1

O(bi) , C =

rC⊕

i=1

O(ci) . (21)

The map g̃ can be viewed as a rC × rB matrix whose entries, (i, j), are homogeneous

polynomials of degree ci − bj. This sequence defines a vector bundle V on the ambient

space whose restriction to X is V . Further, the map g can be seen as the restriction of

its ambient space counterpart g̃ to X. Unless explicitly stated otherwise, we will assume

throughout that this map is generic.

It is natural to enquire whether V thus defined is always a bona fide bundle rather

than a sheaf. We are assured on this point by the following theorem [42].

THEOREM 3.1 Over any smooth variety X, if g : B → C is a morphism between locally

free sheaves B and C, then ker(g) is locally free.

Now, by definition, a locally free sheaf of constant rank is a vector bundle. Therefore,

by the above theorem, it only remains to check whether ker(g) has constant rank on X.

Indeed, g could be less than maximal rank on a singular (sometimes called ‘degeneracy’)

locus. We note that exactness of the sequence, that is coker(g) = 0, is equivalent to this

degeneracy locus being empty.

To show that the degeneracy locus is empty for our bundles, it turns out to be

convenient to consider the dual bundle V ∗ defined by the dual sequence

0 → C∗ gT

−→ B∗ −→ V ∗ → 0 , (22)

where

V ∗ = coker(gT ) . (23)

We can now apply the following theorem [22, 45].

THEOREM 3.2 Let φ : E → F be a morphism of vector bundles on a variety of dimen-

sion N and let e = rk(E), f = rk(F ) and e ≤ f . If E∗ ⊗ F is globally generated and

f − e+ 1 > N , then generic maps φ have a vanishing degeneracy locus.
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Therefore, take φ = gT , E = C∗ and F = B∗. For all our bundles of interest, N = 3

and e < f . In fact, f − e is the rank of V , which is 3, 4, or 5 for the bundles of interest

in heterotic compactifications. Finally, E∗ ⊗ F is globally generated because B and C

are direct sums of line bundles with ci > bj for all i, j. Hence, all the conditions in the

theorem are obeyed and we see that the degeneracy locus of gT , and hence the one for

g, is vanishing for the bundles of interest on the Calabi-Yau. However, one should note

that this criterion will not always be satisfied when writing monad sequences on the

higher dimensional ambient spaces, as in Eq. (20). (Such issues will be discussed further

in section 4.4). For more on the degeneracy locus of bundle maps, and why Theorem

3.2 guarantees its vanishing in the dual monad, see e.g. [43, 44].)

For later reference we present the formulae for the Chern classes of V (see Ref. [31]).

Simplifying the expressions for c2(V ) and c3(V ) by imposing the vanishing of the first

Chern class, we have

rk(V ) = rB − rC , (24)

c1(V ) =

(
rB∑

i=1

bi −
rC∑

i=1

ci

)
J ≡ 0 , (25)

c2(V ) = −
1

2

(
rB∑

i=1

b2i −

rC∑

i=1

c2i

)
J2 , (26)

c3(V ) =
1

3

(
rB∑

i=1

b3i −
rC∑

i=1

c3i

)
J3 . (27)

Hence, from Eq. (4) and the above expression for the third Chern class, the index of V

is explicitly given by

ind(V ) =

3∑

p=0

(−1)p hp(X,V ) =
d(X)

6

(
rB∑

i=1

b3i −

rC∑

i=1

c3i

)
. (28)

Within this paper, we will make extensive use of the computer algebra system [23]

in analyzing the monads in (18). Utilizing this powerful tool we are able to catalog

efficiently bundle cohomologies previously too difficult to be calculated. Indeed, com-

puting particle spectra, that is, sheaf cohomology, is ordinarily a tremendous task even

for a single bundle, and it would be unthinkable to attempt to calculate by hand the

hundreds of such cohomologies necessary in a systematic study of monad bundles. How-

ever, the recent advances in algorithmic algebraic geometry allow us to explicitly and

efficiently compute the requisite cohomology groups for a certain class of bundles. For

the first time, we describe in detail how to use this technology in the context of string

compactification.

With this approach in mind, we recall that in computational algebraic geometry

[38], sheafs are expressed in the language of graded modules over polynomial rings. If

X is embedded in Pm with homogeneous coordinates [x0 : x1 : . . . : xm], we can let

R be the coordinate ring C[x0, x1, . . . , xm]/(X) where (X) is the ideal associated with

X. The bundles B and C are then described by free-modules of R with appropriate

11



degrees (grading). We leave to the Appendix a detailed tutorial of the sheaf-module

correspondence and the construction and relevant computation of monad bundles using

computer algebra.

3.3 Stability of Monad Bundles

As mentioned in the previous section, (semi-)stability of the vector bundle is of central

importance to heterotic compactifications. In general, proving stability is an overwhelm-

ing technical obstacle and a systematic analysis has so far been elusive. However, for a

class of manifolds, a sufficient but by no means necessary condition is of great utility;

this is the so-called Hoppe’s criterion [21, 37]:

THEOREM 3.3 [Hoppe’s Criterion] Over a projective manifold X with Picard group

Pic(X) ≃ Z (i.e., X is cyclic), let V be a vector bundle with c1(V ) = 0. If H0(X,
∧p V ) =

0 for all p = 1, 2, . . . , rk(V ) − 1, then V is stable.

We also recall that for the Calabi-Yau manifolds used in this paper all positive line

bundles have a section, an underlying assumption for the validity of Hoppe’s theorem

which is, hence, satisfied.

The strategy is therefore clear. To prove stability for the monad bundles (18) over

cyclic manifoldsX using Hoppe’s criterion, we need to show the vanishing ofH0(X,∧pV )

for p = 1, . . . , rk(V ) − 1. In the following paragraphs, we will outline the basis for this

stability proof and make note of certain results and properties that are of particular use.

One additional assumption which we will make is that all line bundles involved in

the definition of the bundles V are positive, that is, for all i,

bi > 0 and ci > 0 . (29)

We will refer to this property as “positivity” of the bundle V . While this is not required

for a consistent definition of the bundle or the associated heterotic model, it turns out

to be a crucial technical assumption which facilitates the stability proof. The essential

point is that positivity of V allows one to use Kodaira vanishing when applying Hoppe’s

criterion to the dual bundle V ∗. To see how this works, recall that the dual bundle is

defined by the sequence 0 → C∗ −→ B∗ −→ V ∗ → 0 and that its stability is equivalent

to that of V . The associated long exact sequence in cohomology is

0 → H0(X,C∗) → H0(X,B∗) → H0(X,V ∗)

→ H1(X,C∗) → H1(X,B∗) → H1(X,V ∗)

→ H2(X,C∗) → H2(X,B∗) → H2(X,V ∗)

→ H3(X,C∗) → H3(X,B∗) → H3(X,V ∗) → 0 . (30)

Given that we are dealing with positive bundles V , it follows that B∗ and C∗ are sums

of negative line bundles and, hence, H0(X,B∗) and H1(X,C∗) in the above sequence

are zero due to Kodaira vanishing. This means the “boxed” cohomology H0(X,V ∗)

12



also vanishes. (For later considerations we note that Kodaira vanishing also implies

H1(X,B∗) = H2(X,C∗) = 0 and, hence, H1(X,V ∗) ≃ H2(X,V ) = 0.) In order to prove

stability of V ∗ by applying Hoppe’s criterion we have to show that H0(X,∧pV ∗) = 0

for p = 1, . . . , rk(V ) − 1 and we have just completed the first step for p = 1.

Next, we need to compute the cohomologies H0X,∧pV ∗) for p > 1. However, a

further simplification occurs because we are dealing with unitary bundles. In fact, for

an SU(n) bundle V , we have

∧n−1 V ∗ ≃ V (31)

(see, for example Ref. [41]) . Therefore, to cover the case p = n− 1, the highest exterior

power relevant to Hoppe’s criterion, we only need to show that H0(X,V ) = 0. This is

indeed the case for all bundles considered in this paper and the explicit proof, which is

somewhat lengthy, is presented in Appendix B.2. This completes the stability proof for

the rank 3 bundles.

For rank 4 and 5 bundles we have to look at further exterior powers of V ∗, namely

ΛpV ∗ for p = 2, . . . , rk(V ) − 2. To deal with those we consider the standard long exact

(“exterior power”) sequence [22, 40] for ΛpV ∗

0 → SpC∗ → Sp−1C∗ ⊗B∗ → Sp−2C∗ ⊗ ∧2B∗ → . . .

→ A⊗∧p−1B∗ → ∧pB∗ → ∧pV ∗ → 0 , (32)

which is induced by the short exact sequence (22). Here Si is the i-th symmetrised

tensor power of a bundle. Such a sequence does not itself induce a long exact sequence

in cohomology; we need to slice it up into groups of three. In other words, we introduce

co-kernels Ki such that (32) becomes the following set of short exact sequences

0 → SpC∗ → Sp−1C∗ ⊗B∗ → K1 → 0 ,

0 → K1 → Sp−2C∗ ⊗ ∧2B∗ → K2 → 0 ,
...

0 → Kp−1 → ∧pB∗ → ∧pV ∗ → 0 . (33)

Each of the above now induces a long exact sequence in cohomology in analogy to (30):

0 → H0(X,SpC∗) → H0(X,Sp−1C∗ ⊗B∗) → H0(X,K1) → H1(X,SpC∗) → . . .→ 0 ,

0 → H0(X,K1) → H0(X,Sp−2C∗ ⊗ ∧2B∗) → H0(X,K2) → H1(X,K1) → . . .→ 0 ,
...

0 → H0(X,Kp−1) → H0(X,∧pB∗) → H0(X,∧pV ∗) → H1(X,Kp−1) → . . .→ 0 .

(34)

The term we need is boxed and we need to trace through the various sequences, using

the readily computed cohomologies of the symmetric and antisymmetric powers of B∗

and C∗, to arrive at the answer. Let us now do this explicitly for the case p = 2, that

is, H0(X,Λ2V ∗). The long exact sequence (32) then specializes to

0 → S2C∗ → C∗ ⊗B∗ → Λ2B∗ → Λ2V ∗ → 0 , (35)
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which needs to be broken up into the two short exact sequences

0 → S2C∗ → C∗ ⊗B∗ → K → 0 (36)

0 → K → Λ2B∗ → Λ2V ∗ → 0 . (37)

From the first of these we have the long exact sequence

0 → H0(X,S2C∗) → H0(X,C∗ ⊗B∗) → H0(X,K)

→ H1(X,S2C∗) → H1(X,C∗ ⊗B∗) → H1(X,K)

→ H1(X,S2C∗) → . . . . (38)

Since B∗ and C∗ are sums negative line bundles, so are their various tensor products

which appear in the above sequences. From Kodaira vanishing all cohomologies of such

bundles vanish except for the third. Applying this to (38) we immediately deduce that

H0(X,K) = H1(X,K) = 0. Using this information in the long exact sequence

0 → H0(X,K) → H0(X,Λ2B∗) → H0(X,Λ2V ∗) → H1(X,K) → . . . (39)

which follows from (37) we find H0(X,Λ2V ∗) = 0, as desired. This completes the

stability proof for rank 4 bundles 1.

Finally, for rank 5 bundles, we still need to compute H0(X,Λ3V ∗). Repeating the

above steps for this case one finds that Kodaira vanishing on X alone does not quite

provide sufficient information to conclude that H0(X,Λ3V ∗) = 0. In this case, we

need to employ the additional technique of Koszul sequences [31, 40] which rely on the

embedding of the Calabi-Yau manifold in an ambient space A. Specifically, for a vector

bundle W on A the Koszul sequence reads

0 → ∧KN ∗ ⊗W → ...→ ∧2N ∗ ⊗W → N ∗ ⊗W → W
ρ
→ W|X → 0 , (40)

where W|X denotes the restriction of W to X and ρ is the associated restriction map.

Here N ∗ is the dual of the Calabi-Yau normal bundle, defined in Eq. (7). As will be

shown in the next section, the Koszul sequence can be used to compute the relevant co-

homologies directly from the ambient space. This will allow us to complete the stability

proof for rank 5 bundles.

4 Classification and Examples

Armed with the general information about the five Calabi-Yau manifolds and monad

bundles we can now proceed to classify such bundles, prove their stability and compute

their spectrum.

1Together with H0(X,V ∗) = 0, which we have shown earlier, it also provides an independent argument

for the stability of rank 3 bundles.
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4.1 Classification of Configurations

For the monad bundles defined by the short exact sequence (18), we can immediately

formulate a classification scheme. Recall that, taking the bundles B and C to be direct

sums of line-bundles over the manifold X, we have

0 → V →
rB⊕

i=1

OX(bi)
g

−→
rC⊕

i=1

OX(ci) → 0 , V ≃ ker(g) . (41)

From our discussion so far these bundles are subject to a number of physical and math-

ematical constraints which can be summarised as follows:

1. As discussed earlier we require all bi and ci to be positive; this is a technical

assumption which will significantly simplify our computations.

2. We furthermore require that bi < cj for all i and j; this is to ensure that the map

g, which consists of sections of OX(cj −bi), has no zero entries. Further, we require

the map g to be generic. Then, all conditions of Theorem (3.2) are met and we

are guaranteed that V , as defined by the sequence (41), is indeed a bundle.

3. Since we are dealing with special unitary bundles we impose c1(V ) = 0.

4. For a given Calabi-Yau spaceX and a bundle V we need to ensure that the anomaly

condition (2) can be satisfied. To do this we impose the condition that c2(TX) −

c2(V ) must be effective. Then, we can choose a trivial hidden bundle Ṽ and a

five-brane wrapping a holomorphic curve with homology class c2(TX)− c2(V ). In

practice, this condition simply means that the coefficient of J2 in c2(TX)− c2(V )

must be non-negative 2 .

5. We require that the index of V is a non-zero multiple of three. Only such models

may lead to three generations after dividing by a discrete symmetry.

6. Since we are interested in low-energy grand unified groups we consider bundles V

with structure group SU(n), where n = rk(V ) = 3, 4, 5.

Therefore, an integer partitioning problem immediately presents itself to us: find parti-

tions {bi}i=1,...,rC+n and {cj}i=1,...,rC
of positive integers bi > 0, ci > 0 satisfying bi < cj

for all i, j and subject to the condition
rB∑
i=1

bi −
rC∑
i=1

ci = 0 for vanishing first Chern class

of V (see Eq. (25)). Further, we demand that the index of V , Eq. (28), is non-zero and

divisible by three and that the coefficient of J2 in c2(TX) − c2(V ) be non-negative, in

order to ensure the existence of a holomorphic five-brane curve. From Eq. (26) the last

constraint can be explicitly written as

0 ≤ −
1

2
(

rC+n∑

i=1

bi −

rC∑

i=1

ci) ≤ c̃2(TX) , (42)

2However, for a given example there may well be other ways to satisfy the anomaly condition which involve

a non-trivial hidden bundle Ṽ .
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where the numbers c̃2(TX) for the second Chern class of X are given in Table 3. Since

bi < cj for all i, j it is clear that this constraint implies an upper bound on bi and cj

and, hence, that the number of vector bundles in our class is finite 3. To derive this

bound explicitly we slightly modify an argument from Appendix B of Ref. [19]. Define

the quantity

S =

rC+n∑

i=1

bi =

rC∑

i=1

ci , (43)

and consider the following chain of inequalities

2 c̃2(TX) ≥

rC∑

i=1

c2i −

rC+n∑

i=1

b2i ≥ (bmax + 1)

rC∑

i=1

ci −

rC+n∑

i=1

b2i

= S +

rC+n∑

i=1

bmaxbi −

rC+n∑

i=1

b2i ≥ S .

From Table 3, c̃2(TX) is at most 10 and, hence, the sum S cannot exceed 20, thereby

placing an upper bound on our partitioning problem.

Given the finiteness of the problem, the classification of all positive monad bundles

subject to the above constraints is now easily computerisable. Given these conditions,

we found 37 bundles on the five Calabi-Yau manifolds in question, 20 for rank 3, 10 for

rank 4 and 7 for rank 5. Had we relaxed the condition that c3 should be divisible by 3,

we would have found 43, 15, 10, 6, and 3 bundles, respectively on the 5 cyclic manifolds,

for a total of 77. A complete list of all such bundles for the five Calabi-Yau manifolds

of concern is given in the Tables 4–8.

4.2 E6-GUT Theories

The first case we shall analyse is E6-GUT theories which arise from SU(3) bundles. We

have already seen in Section 3.3 that all such bundles are indeed stable. This result

has been explicitly confirmed by a computer algebra computation of H0(X,V ∗) and

H0(X,Λ2V ∗) along the lines described in Appendix A. We can, therefore, directly turn

to a computation of their particle spectrum.

4.2.1 Particle Content

The number of 27 and 27 representation of E6 is easy to obtain. Since V is stable

we already know that H0(X,V ) = H3(X,V ) = 0. From the long exact sequence (30)

we have deduced earlier that H2(X,V ) ≃ H1(X,V ∗) = 0 so that H1(X,V ) is the only

non-vanishing cohomology. Its dimension can be directly computed from the index (28),

so that

n27 = h1(X,V ) = − ind(V ) , n
27

= h2(X,V ) = 0 . (44)

3The constraint (42) arises because we require N = 1 supersymmetry in four dimensions. If we relaxed this

condition and allowed for anti-five branes there would be no immediate bound on the number of vector bundles.

However, in this case, the stability of such non-supersymmetric models has to be analyzed carefully [27].
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Rank {bi} {ci} c2(V )/J2 ind(V )

3 (2, 2, 1, 1, 1) (4, 3) 7 -60

3 (2, 2, 2, 1, 1) (5, 3) 10 -105

3 (3, 2, 1, 1, 1) (4, 4) 8 -75

3 (1, 1, 1, 1, 1, 1) (2, 2, 2) 3 -15

3 (2, 2, 2, 1, 1, 1) (3, 3, 3) 6 -45

3 (3, 3, 3, 1, 1, 1) (4, 4, 4) 9 -90

3 (2, 2, 2, 2, 2, 2, 2, 2) (4, 3, 3, 3, 3) 10 -90

3 (2, 2, 2, 2, 2, 2, 2, 2, 2) (3, 3, 3, 3, 3, 3) 9 -75

4 (2, 2, 1, 1, 1, 1) (4, 4) 10 -90

4 (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 5 -30

4 (2, 2, 2, 1, 1, 1, 1) (4, 3, 3) 9 -75

4 (2, 2, 2, 2, 1, 1, 1, 1) (3, 3, 3, 3) 8 -60

5 (1, 1, 1, 1, 1, 1, 1, 1) (3, 3, 2) 7 -45

5 (1, 1, 1, 1, 1, 1, 1, 1) (4, 2, 2) 8 -60

5 (2, 2, 2, 2, 2, 1, 1, 1, 1, 1) (3, 3, 3, 3, 3) 10 -75

Table 4: Positive monad bundles on the quintic, [4|5].

Rank {bi} {ci} c2(V )/J2 ind(V )

3 (2, 2, 1, 1, 1) (4, 3) 7 -96

3 (1, 1, 1, 1, 1, 1) (2, 2, 2) 3 -24

3 (2, 2, 2, 1, 1, 1) (3, 3, 3) 6 -72

4 (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 5 -48

5 (1, 1, 1, 1, 1, 1, 1, 1) (3, 3, 2) 7 -72

Table 5: Positive monad bundles on [5|2 4].
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Rank {bi} {ci} c2(V )/J2 ind(V )

3 (1, 1, 1, 1) (4) 6 -90

3 (1, 1, 1, 1, 1) (3, 2) 4 -45

3 (2, 1, 1, 1, 1) (3, 3) 5 -63

3 (1, 1, 1, 1, 1, 1) (2, 2, 2) 3 -27

3 (2, 2, 2, 1, 1, 1) (3, 3, 3) 6 -81

4 (1, 1, 1, 1, 1, 1) (3, 3) 6 -72

4 (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 5 -54

4 (1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 4 -36

5 (1, 1, 1, 1, 1, 1, 1, 1, 1) (3, 2, 2, 2) 6 -63

5 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2, 2) 5 -45

Table 6: Positive monad bundles on [5|3 3].

Rank {bi} {ci} c2(V )/J2 ind(V )

3 (1, 1, 1, 1, 1) (3, 2) 4 -60

3 (2, 1, 1, 1, 1) (3, 3) 5 -84

3 (1, 1, 1, 1, 1, 1) (2, 2, 2) 3 -36

4 (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 5 -72

4 (1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 4 -48

5 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2, 2) 5 -60

Table 7: Positive monad bundles on [6|2 2 3].

Rank {bi} {ci} c2(V )/J2 ind(V )

3 (1, 1, 1, 1, 1, 1) (2, 2, 2) 3 -48

Table 8: Positive monad bundles on [7|2 2 2 2].

18



Therefore, for the rank 3 bundles in Tables 4–8, the (negative of the) right-most column

gives the number of 27 representations. This result also provides the first example

of what is a general feature of positive monad bundles, namely the absence of anti-

generations. The numbers n27 have been independently verified by computer algebra.

What about the E6 singlets? These correspond to the cohomology H1(X, ad(V )) =

H1(X,V ⊗ V ∗). We begin by tensoring the defining sequence (22) for V ∗ by V . This

leads to a new short exact sequence

0 → C∗ ⊗ V → B∗ ⊗ V → V ∗ ⊗ V → 0 . (45)

One can produce two more short exact sequences by multiplying (22) with B and C.

Likewise, three short exact sequences can be obtained by multiplying the original se-

quence (18) for V with V ∗, B∗ and C∗. The resulting six sequences can then be arranged

into the following web of three horizontal sequences hI , hII , hIII and three vertical ones

vI , vII , vIII .

0 0 0

↓ ↓ ↓

0 → C∗ ⊗ V → B∗ ⊗ V → V ∗ ⊗ V → 0 hI

↓ ↓ ↓

0 → C∗ ⊗B → B∗ ⊗B → V ∗ ⊗B → 0 hII

↓ ↓ ↓

0 → C∗ ⊗ C → B∗ ⊗ C → V ∗ ⊗ C → 0 hIII

↓ ↓ ↓

0 0 0

vI vII vIII

(46)

The long exact sequence in cohomology induced by hI reads

0 → H0(X,C∗ ⊗ V ) → H0(X,B∗ ⊗ V ) → H0(X,V ∗ ⊗ V )

→ H1(X,C∗ ⊗ V ) → H1(X,B∗ ⊗ V ) → H1(X,V ∗ ⊗ V )

→ H2(X,C∗ ⊗ V ) → . . . (47)

and we have boxed the term which we would like to compute. We will also need the

long exact sequences which follow from vI and vII . They are given by

0 → H0(X,C∗ ⊗ V ) → H0(X,C∗ ⊗B) → H0(X,C∗ ⊗ C)

→ H1(X,C∗ ⊗ V ) → H1(X,C∗ ⊗B) → H1(X,C∗ ⊗ C)

→ H2(X,C∗ ⊗ V ) → H2(X,C∗ ⊗B) → H2(X,C∗ ⊗ C) → . . . (48)

0 → H0(X,B∗ ⊗ V ) → H0(X,B∗ ⊗B) → H0(X,B∗ ⊗ C)

→ H1(X,B∗ ⊗ V ) → H1(X,B∗ ⊗B) → H1(X,B∗ ⊗ C)

→ H2(X,B∗ ⊗ V ) → H2(X,B∗ ⊗B) → H2(X,B∗ ⊗ C) → . . . (49)
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Now, because of the integers defining B and C satisfy bi < cj , the tensor product C∗⊗B

is a direct sum of negative line bundles and, hence, all its cohomology groups vanish

except the third. Further, the middle cohomologies H1 and H2 of B∗ ⊗B and C∗ ⊗ C

vanish. From the sequence (48) this implies

H0(X,C∗ ⊗ V ) = H2(X,C∗ ⊗ V ) = 0 , H1(X,C∗ ⊗ V ) = H0(X,C∗ ⊗ C) . (50)

Vanishing of H2(X,C∗ ⊗ V ) means that the long exact sequence (47) breaks after the

second line and we get

h1(X,V ∗⊗V ) = h1(X,B∗⊗V )−h1(X,C∗⊗V )+h0(X,V ∗⊗V )−h0(X,B∗⊗V ) . (51)

Using the additional information

h1(X,B∗ ⊗ V ) − h0(X,B∗ ⊗ V ) = h0(X,B∗ ⊗C) − h0(X,B∗ ⊗B) . (52)

which follows from the sequence (49) and the fact that h0(X,V ∗⊗V ) = 1 (see Theorem

B.1 of Ref. [31]) Eq. (51) can be re-written as

h1(X,V ∗ ⊗ V ) = h0(X,B∗ ⊗ C) − h0(B∗ ⊗B) − h0(C∗ ⊗ C) + 1 . (53)

This equation, together with Eqs. (12)–(16) and (17), allows us to directly compute the

number n1 of E6-singlets and the results are given in Table 9. For reference, we have

also included the number of 27-representations (the number of 27 particles, we recall,

is zero). In addition, the results for h1(X,V ∗ ⊗ V ) have been independently confirmed

using Macaulay [23], following the procedure outlined in Appendix A. We note that

the above derivation of Eq. (53) is independent of the rank of the vector bundle V and,

hence, it remains valid for rank 4 and 5 bundles.

4.3 SO(10)-GUT Theories

Grand Unified theories with gauge group SO(10) are obtained from rank 4 bundles

with structure group SU(4). We have already shown the stability of positive rank 4

monad bundles V in Section 3.3. As before, we have explicitly confirmed this general

result for the rank 4 bundles in our classification with Macaulay [23], by showing that

H0(X,ΛpV ∗) for p = 1, 2, 3 vanishes. We proceed to analyze the particle content of

SO(10) GUT theories.

4.3.1 Particle Content

Recall from Table 2, that for SO(10)-GUT theories we need to compute n16 = h1(X,V ),

n
16

= h1(X,V ∗) = h2(X,V ), n10 = h1(X,∧2V ) and n1 = h1(X,V ⊗ V ∗).

Let us begin with the generations and anti-generations in 16 and 16. As in the case

of rank 3 bundles, stability implies that H0(X,V ) = H3(X,V ) = 0 and, further, from

the sequence (30), also H2(X,V ) = H1(X,V ∗) is zero. Hence, as before, the number
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X {bi} {ci} n27 n1

[4|5] (2, 2, 1, 1, 1) (4, 3) 60 141

(2,2,2,1,1) (5, 3) 105 231

(3, 2, 1, 1, 1) (4, 4) 75 171

(1, 1, 1, 1, 1, 1) (2, 2, 2) 15 46

(2, 2, 2, 1, 1, 1) (3, 3, 3) 45 109

(3, 3, 3, 1, 1, 1) (4, 4, 4) 90 199

(2, 2, 2, 2, 2, 2, 2, 2) (4, 3, 3, 3, 3) 90 180

(2, 2, 2, 2, 2, 2, 2, 2, 2) (3, 3, 3, 3, 3, 3) 75 154

[5|2 4] (2, 2, 1, 1, 1) (4, 3) 96 206

(1, 1, 1, 1, 1, 1) (2, 2, 2) 24 64

(2, 2, 2, 1, 1, 1) (3, 3, 3) 72 154

[5|3 3] (1, 1, 1, 1) (4) 90 200

(1, 1, 1, 1, 1) (3, 2) 45 103

(2, 1, 1, 1, 1) (3, 3) 63 136

(1, 1, 1, 1, 1, 1) (2, 2, 2) 27 64

(2, 2, 2, 1, 1, 1) (3, 3, 3) 81 163

[6|2 2 3] (1, 1, 1, 1, 1) (3, 2) 60 132

(2, 1, 1, 1, 1) (3, 3) 84 174

(1, 1, 1, 1, 1, 1) (2, 2, 2) 36 82

[7|2 2 2 2] (1, 1, 1, 1, 1, 1) (2, 2, 2) 48 100

Table 9: The particle content for the E6-GUT theories arising from our classification of

stable, positive SU(3) monad bundles V on the Calabi-Yau threefold X. The number n27 of

anti-generations vanishes.

of anti-generations vanishes and the number of generations can be computed from the

index, so that

n16 = h1(X,V ) = − ind(V ) , n
16

= 0 . (54)

Thus, for the rank 4 bundles in Tables 4–8, the (negative) of the right-most column

gives the number of 16 representations.

Next, we need to compute the Higgs content which is given by n10 = h1(X,∧2V ). It

can be shown in general that for generic maps g : B → C the number of 10 representa-

tions always vanishes, that is

n10 = 0 . (55)

The proof is somewhat technical and can be found in Appendix B.2. Again, this result

can be readily verified using computer algebra.
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Finally, we need to compute the number n1 of SO(10) singlets which is easily obtained

from Eq. (53). The results for the spectrum from rank 4 bundles are summarized in

Table 10.

A vanishing number, n10, of Higgs particles is not desirable from a particle physics

viewpoint. One might, therefore, wonder whether more specific choices of the map g

in (18) could produce a non-zero value for n10. This problem has been encountered

in Ref. [5, 24, 6] where the spectrum of compactification was shown to depend on the

region of moduli space. Specifically, it was shown that the spectrum takes a generic form

with possible enhancements in special regions of the moduli space; this was dubbed the

“jumping phenomenon” in [24, 6].

To see that a similar phenomenon can arise for monad bundles, let is consider the

following SU(4) bundle on the quintic, [4|5].

0 → V → O⊕2

X (2) ⊕O⊕4

X (1)
g

−→ O⊕2

X (4) → 0 . (56)

This bundle and its particle content for a generic map g is given in the first line of

Table 10. Now we explicitly define the map g by

g =

(
4x2

3 9x2
0 + x2

2 8x3
2 2x3

3 4x3
1 9x3

1

x2
0 + 10x2

2 x2
1 9x3

2 7x3
3 9x3

1 + x3
2 x3

1 + 7x3
4

)
. (57)

where x0, . . . , x4 are the homogeneous coordinates of P4. This choice for g is no longer

completely generic, although the sequence (56) is still exact. Following the steps in

Appendix A.4, we can use Macaulay to calculate the spectrum for this case. We find

n16 = 90 , n16 = 0 , n10 = 13 , n1 = 277 . (58)

This is identical to the generic result in Table 10, except for the number of 10 represen-

tations which has changed from 0 to 13.

4.4 SU(5)-GUT Theories

Finally, we should consider SU(5) GUT theories which originate from rank 5 bundles

with structure group SU(5). To demonstrate their stability from Hoppe’s criterion we

have to show that H0(X,ΛpV ∗) for p = 1, 2, 3, 4 vanish. For p = 1, 2, 4 this has already

been accomplished in Section 3.3, so it remains to deal with the case p = 3.

Unfortunately, for p = 3 the long exterior power sequences (34) together with Ko-

daira vanishing are not quite sufficient to prove that H0(X,Λ3V ∗) = 0. Indeed, writing

down (33) for p = 3 we find

0 → S3C∗ → S2C∗ ⊗B∗ → K1 → 0 ,

0 → K1 → C∗ ⊗ ∧2B∗ → K2 → 0 , (59)

0 → K2 → ∧3B∗ → ∧3V ∗ → 0 .
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X {bi} {ci} n16 n1

[4|5] (2, 2, 1, 1, 1, 1) (4, 4) 90 277

(1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 30 112

(2, 2, 2, 1, 1, 1, 1) (4, 3, 3) 75 236

(2, 2, 2, 2, 1, 1, 1, 1) (3, 3, 3, 3) 60 193

[5|2 4] (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 48 159

[5|3 3] (1, 1, 1, 1, 1, 1) (3, 3) 72 213

(1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 54 166

(1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 36 113

[6|2 2 3] (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 72 213

(1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 48 145

Table 10: The particle content for the SO(10)-GUT theories arising from our classification of

stable, positive, SU(4) monad bundles V on the Calabi-Yau threefold X. The number n16 of

anti-generations vanishes. The number n10 vanishes for generic choices of the map g in the

monad sequence (18), but can be made non-vanishing with particular choices of g.

Now, using the 3 intertwined long exact sequences in cohomology induced by the above

3 sequences, together with Kodaira vanishing for the negative bundles formed from the

symmetric and anti-symmetric powers of B∗ and C∗, we can only conclude that

H0(X,∧3V ∗) ≃ H2(X,K1) . (60)

We will now show that the stability proof can be completed by applying Koszul resolu-

tions to our rank 5 bundles. This technique makes explicit use of the embedding in the

ambient space A = Pm and its complexity grows with the number of co-dimensions of the

Calabi-Yau manifold X in A. We, therefore, start with the quintic, X = [4|5], the only

co-dimension one example among the five Calabi-Yau manifolds under consideration,

before we proceed to the more complicated examples.

4.4.1 Stability for Rank 5 Bundles on the Quintic

For the quintic, the normal bundle is simply given by N = O(5) and the Koszul se-

quence (40), applied to W = Λ3V∗, explicitly reads

0 → N ∗ ⊗ ∧3V∗ → ∧3V∗ → ∧3V ∗ → 0 . (61)

From this, we have the long exact sequence in cohomology,

0 → H0(A,N ∗ ⊗ ∧3V∗) → H0(A,∧3V∗) → H0(X,∧3V ∗) → H1(A,N ∗ ⊗ ∧3V∗) → ...

(62)

Thus, if we knew H0(A,∧3V∗) and H1(A, N∗ ⊗ ∧3V∗), we could hope to determine

H0(X,∧3V ∗) itself. In fact, we can show that H0(A,∧3V∗) = H1(A, N∗⊗∧3V∗) = 0 by
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writing down the ambient space version of the exterior power sequences (59) tensored

by N ∗.

0 → N ∗ ⊗ S3C∗ h
→ N ∗ ⊗ S2C∗ ⊗ B∗ → K1 → 0 ,

0 → N ∗ ⊗K1 → N ∗ ⊗ C∗ ⊗ ∧2B∗ → K2 → 0 , (63)

0 → K2 → N ∗ ⊗ ∧3B∗ → N ∗ ⊗∧3V∗ → 0 .

Since B∗, C∗ and N ∗ are all negative bundles, it follows that H0(A,∧3V∗) = 0 and

h1(A,N ∗ ⊗ ∧3V∗) = h3(A,K1) = ker(h′), where h′ : H4(A,N ∗ ⊗ S3C∗) → H4(A,N ∗ ⊗

S2C∗ ⊗B∗) is the map induced from h above. Now, we note that since the ranks of the

maps in the defining monads were chosen, by construction, to be maximal rank, it follows

that the induced map h in the exterior power sequence is also maximal rank. To proceed

further, we finally observe that for any generic, maximal rank map h : U → W between

two ambient space bundles U and W the induced map h̃ : H0(A,U) → H0(A,W) is

also maximal rank (see Appendix B.2). Since the sequences above are all defined over

the ambient space and h is maximal rank, it follows from the above argument that h′ is

maximal rank and ker(h′) = 0. Therefore,

h1(A,N ∗ ⊗ ∧3V∗) = 0. (64)

Thus, returning to (62), we find that H0(X,∧3V ∗) = 0 and by Hoppe’s criterion, all

generic, positive SU(5) bundles are stable on the quintic.

4.4.2 The Co-dimension 2 and 3 Manifolds

The stability proof for our remaining rank 5 bundles is similar in approach, but slightly

more lengthy than that given in the previous subsection. In the interests of space, we

will only give an overview of it here. We recall from Subsection 4.1 that the remaining

Calabi-Yau manifolds with rank 5 bundles are defined by two and three constraints in

P5 and P6 respectively. We first look at the co-dimension two case.

For co-dimension two, the normal bundle takes the form N = O(q1) ⊕ O(q2) with

q1, q2 > 0. This time the Koszul sequence (40) is no longer short-exact, but reads

0 → ∧2N ∗ ⊗ ∧3V∗ → N ∗ ⊗ ∧3V∗ → ∧3V∗ ρ
→ ∧3V ∗ → 0 . (65)

It can be split into two short exact sequences,

0 → ∧2N ∗ ⊗ ∧3V∗ → N ∗ ⊗ ∧3V∗ → K → 0 ,

0 → K → ∧3V∗ ρ
→ ∧3V ∗ → 0 . (66)

From the long cohomology sequences of these two resolutions, we find thatH0(X,∧3V ∗) ≃

H2(A,∧2N ∗ ⊗ ∧3V∗) (since H0(A,∧3V∗) = H0(A,N ∗ ⊗ ∧3V∗) = 0 by the same argu-

ments as before). Next, the exterior power sequence (32), multiplied by Λ2N ∗ and
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written over P5 yields,

0 → ∧2N ∗ ⊗ S3C∗ h
→ ∧2N ∗ ⊗ S2C∗ ⊗ B∗ → K1 → 0 ,

0 → K1 → ∧2N ∗ ⊗ C∗ ⊗ ∧2B∗ → K2 → 0 ,

0 → K2 → ∧2N ∗ ⊗ ∧3B∗ → ∧2N ∗ ⊗∧3V∗ → 0 . (67)

Once again, we find that H2(A,∧2N ∗ ⊗ ∧3V∗) ≃ H4(A,K1) and h4(A,K1) = ker(h′)

where h′ : H5(A,∧2N ∗⊗S3C∗) → H5(A,∧2N ∗⊗S2C∗⊗B∗). As before, it follows from

our definition of the monad that h′ is maximal rank and ker(h′) = 0. Therefore, all

positive rank 5 bundles on the manifolds [5|2 4] and [5|3 3] are stable.

With this analysis complete, we are left with only one rank 5 bundle on the co-

dimension 3 manifold, [6|2 2 3], to consider. In this case, we could directly apply the

Koszul resolution techniques as above, with a normal bundle, N = O(2)⊕O(2)⊕O(3),

and higher antisymmetric powers in the Koszul resolution (40). Note, however, that in

this case we are not assured that the dual sequence (22) is well defined on the ambient

space, since the numeric criteria in Theorem 3.2 are not satisfied on P6. However, we can

still compute the cohomology of the relevant sheaves on P6. The calculation is lengthy,

but straightforward.

It is worth noting that there is an alternative approach to this case. Instead of

viewing the Koszul resolution as describing the restriction of objects on Pm to the

Calabi-Yau, we may view X = [6|2 2 3] as a sub-variety in the 4-fold Y = [6|2 2]. Then

we may apply the Koszul techniques exactly as before, viewing the normal bundle to

the Calabi-Yau as a line bundle, OY (3) in [6|2 2]. The analysis then reduces to that

described for the co-dimension 1 case (61) (that is, that of the rank 5 bundles on the

quintic). A straightforward calculation shows that H0(X,∧3V ∗) = 0 and the final rank

5 bundle is stable.

4.4.3 Particle Content

We have shown, using the Koszul sequence, that all positive rank 5 bundles in our

classification are stable. Let us now analyze their particle spectrum. From Table 2,

we need to compute n10 = h1(X,V ), n
10

= h1(X,V ∗) = h2(X,V ), n5 = h1(X,∧2V ),

n5 = h1(X,∧2V ∗) = h2(X,∧2V ), and n1 = h1(X,V ⊗ V ∗). As for rank 4 and 5

bundles, we have h0(X,V ) = h3(X,V ) = 0 from stability and h2(X,V ) = 2 from the

sequence (30). Consequently, we find

n10 = h1(X,V ) = − ind(V ) , n
10

= 0 . (68)

As before, we have no anti-generations and the (negative) of the index, listed in right-

most column of Tables 4–7, gives the number n10 for all rank 5 bundles. We include

these in Table 11 for reference.

Next, we need to compute the H1(X,∧2V ) and H2(X,∧2V ). From the above ar-

guments we know that V is stable; hence ∧2V is also stable and thus H0(X,∧2V ) and
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X {bi} {ci} n10 n1

[4|5] (1, 1, 1, 1, 1, 1, 1, 1) (3, 3, 2) 45 202

(1, 1, 1, 1, 1, 1, 1, 1) (4, 2, 2) 60 262

(2, 2, 2, 2, 2, 1, 1, 1, 1, 1) (3, 3, 3, 3, 3) 75 301

[5|2 4] (1, 1, 1, 1, 1, 1, 1, 1) (3, 3, 2) 72 288

[5|3 3] (1, 1, 1, 1, 1, 1, 1, 1, 1) (3, 2, 2, 2) 63 243

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2, 2) 45 176

[6|2 2 3] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2, 2) 60 226

Table 11: The particle content for the SU(5)-GUT theories arising from our classification

of stable, positive, SU(5) monad bundles V on the Calabi-Yau threefold X. The number of

anti-generations, n10, vanishes. Further, n5 = n10. Moreover, n5 = 0 for generic choices of

the map g in Eq. (18), and can be made non-vanishing in special regions of moduli space.

H3(X,∧2V ) both vanish (recall that we have already shown explicitly thatH0(X,∧2V ∗) =

H3(X,∧2V ) vanishes). Therefore, applying the index theorem (4) to Λ2V we have

− h1(X,∧2V ) + h2(X,X,∧2V ) = ind(∧2V ) =
1

2

∫

X

c3(∧
2V ) . (69)

For SU(n) bundles one has (see Eq. (339) of Ref. [6]),

c3(∧
2V ) = (n− 4)c3(V ) . (70)

Hence, combining (69) and (70), we find the relation

− n5 + n5 = ind(V ) = −n10 . (71)

We still need to compute one of the numbers n5 and n
5
. Macaulay [23] can very easily

calculate n5 = h1(X,∧2V ∗) = h2(X,∧2V ). It turns out that

n5 = 0 (72)

for all rank 5 bundles and generic choices 4 of the map g. From Eq. (71) this implies

n5 = n10 , (73)

and, hence, the complete spectrum is determined by n10 and n1. We have listed these

numbers in Table 11.

5 Conclusion

In this paper, we have presented a classification of positive SU(n) monad bundles on the

five Calabi-Yau manifolds defined by complete intersections in a single projective space.

4Presumably, n
5

can be different from zero for non-generic choices of the map g, similar to the case of n
10

for rank 4 bundles.
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We have required that these bundles can be incorporated into a consistent heterotic

compactification where the heterotic anomaly cancellation condition can be satisfied

by including an appropriately wrapped five-brane. In addition, we have imposed two

“physical” conditions, namely that the rank of bundle be n = 3, 4, 5 (in order to obtain

a suitable grand unification group) and that the index of the bundle (that is, the chiral

asymmetry) is a non-zero multiple of three. Given these conditions, we found 37 bundles

on the five Calabi-Yau manifolds in question, 20 for rank 3, 10 for rank 4 and 7 for rank

5. Using a simple criterion due to Hoppe, we have shown that all these bundles are

stable and, hence, lead to supersymmetric compactifications. We have also computed

the full particle spectrum for all 37 cases, including the number of gauge singlets. A

generic feature of all our bundles is that the number of anti-generations vanishes.

These results show that a combination of analytic computations and computer al-

gebra can be used to analyze a class of models algorithmically. In particular, we have

seen that the notoriously difficult problem of proving stability can be addressed sys-

tematically and that the full particle spectra can be obtained for all cases. Although

the final number of models is still relatively small we expect that these methods can be

extended to much larger classes of Calabi-Yau manifolds, such as complete intersections

in products of projective spaces and in weighted projective spaces. Such a large-scale

analysis which is currently underway [9] will lead to a substantial number of examples

with broadly the right physical properties. This class of models can then be used to

implement more detailed particle physics requirements and to systematically search for

examples close to the standard model.
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A Monads, Sheaf Cohomology and Computa-

tional Algebraic Geometry

In this Appendix, we briefly outline some basics of commutative algebra as relevant for

computing sheaf cohomology (see Refs. [38, 40]). In most computer algebra packages

such as Macaulay2 [23], of which we make extensive use in this paper, these techniques

are essential. Computational algebraic geometry has also been recently used in string
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phenomenology in [26] and the reader is referred to tutorials in these papers as well for

a quick introduction.

A.1 The Sheaf-Module Correspondence

Since we are concerned with compact manifolds, we will focus on projective varieties in

Pm. A projective algebraic variety is the zero locus of a set of homogeneous polynomials

in Pm with coordinates [x0 : x1 : . . . : xm]. In the language of commutative algebra,

projective varieties correspond to homogeneous ideals, I, in the polynomial ring RPn =

C[x0, . . . , xm]. An ideal I ⊂ RPn , associated to a variety, is generated by the defining

polynomials of the variety and consists of all polynomials which vanish on this variety.

The quotient ring A = RPn/I is called the coordinate ring of the variety.

In general, a ring R is called graded if

R =
⊕

i∈Z

Ri, such that ri ∈ Ri, rj ∈ Rj ⇒ rirj ∈ Ri+j .

For the polynomial ring RPn the Ri consists of the homogeneous polynomials of degree

i. In analogy to vector spaces over a field, one can introduce R-modules M over the

ring R. In practice, one can think of M as consisting of vectors with polynomial entries

with R acting by polynomial multiplication. A module is called graded if

M =
⊕

i∈Z

Mi, such that ri ∈ Ri,mj ∈Mj ⇒ rimj ∈Mi+j .

The graded ring R is itself a graded R-module, M(R). Similarly, an ideal I in a graded

ring R is a graded R-module and a submodule of M(R). Another important example

of a graded R module is R(k) which denotes the ring R with degrees shifted by −k. For

example, x2y ∈ RPn is of degree 3, but seen as an element of the module RPn(−2), its

degree is 3 + 2 = 5.

Sheafs over a (projective) variety can also be described as a module by virtue of

the sheaf-module correspondence. Given the graded ring R and a finitely generated

graded R-module M , one defines an associated sheaf M̃ as follows. On an open set

Ug, given by the complement of the zero locus of g ∈ R, the sections over Ug are

M̃(Ug) = {m/gn|m ∈ M ,degree(m) = degree(gn)}. On Pm, this looks concretely as

follows. A sufficiently fine open cover of Pm is provided by Uxi
, the open sets where

xi 6= 0. Let us first consider the module M(RPn), that is, the ring RPn seen as a module.

Then M̃(RPn)(Uxi
) = {f/xm

i , f homogeneous of degree n} and, hence, M̃(RPn) = OPm,

where OPm is the trivial sheaf on Pn. Similarly, for the modules RPn(k) one has

OPm(k) ≃ R̃Pn(k) .

For projective varieties X ⊂ Pm and associated ideal I, the story is similar. Now, one

needs to consider the graded modules over the coordinate ring A = R/I. In particular,

for line bundles OX(k) on X one has

OX(k) = Ã(k) .
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A.2 Constructing Monads using Computer Algebra

Recall from (41), that we wish to construct bundles V defined by

0 → V
f

−→

rB⊕

i=1

OX(bi)
g

−→

rC⊕

i=1

OX(ci) −→ 0 , (74)

over the manifold X. In this subsection, we outline how one may proceed with this

construction using commutative algebra packages such as [23] and applying the Sheaf-

Module correspondence discussed above. Let A be the coordinate ring of X. For exam-

ple, for the quintic, [4|5] we can write

A = C[x0, . . . , x4]/

(
5∑

i=0

x5
i + ψx0x1x2x3x4

)
. (75)

where the round brackets denote the ideal generated by the enclosed polynomial. In

practice, we will randomize ψ, the complex structure and in fact work over the ground

field Z/pZ for some large prime p instead of C in order to speed up computation. The

free modules corresponding to the bundles B, C are given by ⊕rB

i=1
A(bi), ⊕

rB

i=1
A(ci) with

grading {b1, b2, . . . , brB
}, {c1, c2, . . . , crC

} and ranks rB , rC
5. At the level of modules,

the map g can then be specified by an rC×rB matrix whose entries, gij are homogeneous

polynomials of degree ci−bj , that is gij ∈ OX(ci−bj). Indeed, the degrees of the entries

of g are so as preserve the gradings of B and C and our choice ci ≥ bj ensures that such

polynomials indeed exist. Moreover, we choose these polynomials to be random; this

corresponds to the genericity assumption for g used repeatedly in the main text.

A.3 Algorithms for Sheaf Cohomology

We shall not delve into the technicalities of this vast subject and will only mention that

for commutative algebra packages such as [23], there are built-in routines for computing

cohomology groups of sheafs (modules). The standard algorithm is based on the so-

called Bernstein-Gel’fand-Gel’fand correspondence and on Tate resolutions of exterior

algebras. The interested reader is referred to the books [38] and [39] for details.

A.4 A Tutorial

Let us explicitly present a Macaulay2 code [23] for one of the examples from our classi-

fication. This will serve to illustrate the power and relative ease with which computer

algebra assists in the proof of stability and the calculation of the particle spectrum.

Let us take the first rank 4 example for X = [4|5] in Table 10, which was further

discussed around Eq. (56). It is defined by

B = O⊕2

X (2) ⊕O⊕4

X (1) , C = O⊕2

X (4) . (76)

5 In most computer packages, the convention is to actually take the grading to be negative, viz.,

{−b1,−b2, . . . ,−brB
}.

29



We work over the polynomial Ring RP4 with variables x0, . . . , x4 and the ground field

Z/27449. The (projective) coordinate ring A of a smooth quintic X is then defined

following Eq. (75). In Macaulay this reads

R = ZZ/27449[x {0}..x {4}];

A = Proj( R/ideal(x {0}^5 + x {1}^5 + x {2}^5 + x {3}^5 + x {4}^5 +

2*x {0}*x {1}*x {2}*x {3}*x {4}));

Next, we define o, the trivial sheaf (line-bundle) over A, and the A-modules associated

to the bundles B and C.

o = OO (A);

B = module (o^2 (2) ++ o^4 (1));

C = module (o^2 (4));

Subsequently, a random, generic map, gmap, can be constructed between B and C (note

that in Macaulay, maps are defined backwards):

gmap = map(C, B, random(C, B));

Finally, we can define V ∗ as the co-kernel of the transpose of fmap:

Vdual = sheaf coker transpose fmap;

We can check that V ∗ has the expected rank 4 using the command

print rank Vdual;

The cohomologies of Vdual are easily obtained, for example,

print rank HHˆ2 Vdual;

produces 90, precisely as expected. Likewise, one can verify that HH^0 Vdual gives 0,

as is required by stability. To compute n10 = h1(X,∧2V ∗), one only needs the following

command

print rank HHˆ1 exteriorPower(2, Vdual);

which gives 0, as indicated in Table 10. For the non-generic map (57), one can define

gmap = map (C, B, matrix{{4*x {3}ˆ 2, 9*x {0}ˆ 2 + x {2}ˆ 2, 8*x {2}ˆ 3,

2*x {3}ˆ 3,4*x {1}ˆ 3,9*x {1}ˆ 3}, {x {0}ˆ 2 + 10*x {2}ˆ 2, x {1}ˆ 2,

9*x {2}ˆ 3, 7*x {3}ˆ 3,9*x {1}ˆ 3 + x {2}ˆ 3, x {1}ˆ 3 +7*x {4}ˆ 3 } } );

One can then check that the cohomologies of V ∗ remain unchanged with respect to the

generic case, that is, h0(X,V ∗) = h1(X,V ∗) = h3(X,V ∗) = 0 and h2(X,V ∗) = 90 while

rank HHˆ1 exteriorPower(2, Vdual) now results in n10 = h1(X,Λ2V ∗) = 13.

The singlets are also easy to compute. The group H1(X,V ⊗ V ∗) can be thought of

as the global Ext-group Ext1(V, V ) ≃ Ext1(V ∗, V ∗); this is, again, implemented in [23].

The command “print rank Extˆ1(Vdual, Vdual);” will give us 277.
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B Some useful technical results

B.1 Genericity of Maps

We first state a helpful fact regarding the genericity of maps in the ambient space.

Consider a morphism h : B → C between two sums of line bundles B = ⊕rB

i=1
O(bi) and

C = ⊕rC

i=1
O(ci) on A = Pm. The map h can explicitly be specified by a rC × rB matrix

hij ∈ O(ci − bj) and it induces a map h̃ : H0(A,B) → H0(A, C). The induced map h̃

is also described by hij acting on the sections of B and, hence, if the matrix (hij) has

maximal rank (almost everywhere) then h̃ has maximal rank.

B.2 Proof of H0(X, V ) = 0

In this section we will provide a proof that H0(X,V ) = 0 for all the bundles defined

by positive monads on cyclic complete intersection Calabi-Yau manifolds. The proof is

similar in spirit to the stability proof of Section 4.5 in that we approach the problem from

the point of view of an embedding space and use Koszul sequences (40) to determine

the necessary cohomology.

Because the Koszul resolutions depend on the normal bundle to the Calabi-Yau,

the length of the calculation increases with the co-dimension of the embedded Calabi-

Yau. For conciseness, we will only provide the proof for the co-dimension 1 case (the

quintic) here, however the higher co-dimension cases follow by an entirely analogous

construction. Consider a positive bundle defined by (18) on the quintic (X = [4|5]).

Clearly, the normal bundle is simply N = O(5), and from (40) we just obtain the short

exact sequence,

0 → N ∗ ⊗ V → V → V → 0 . (77)

As before, we have the long exact sequence in cohomology,

0 → H0(A,N ∗ ⊗ V) → H0(A,V) → H0(X,V ) → H1(A,N ∗ ⊗ V) → ... (78)

So, in order to compute H0(X,V ), we must first find H0(A,V) and H1(A,N ∗ ⊗V). To

do this, we will define the following short exact sequences on the ambient space:

0 → V → B
g
→ C → 0 , (79)

and the same sequence tensored with the dual of the normal bundle,

0 → N ∗ ⊗ V → N ∗ ⊗B
h
→ N ∗ ⊗ C → 0 . (80)

From the Bott Vanishing formula [40] we have the following formula for the cohomology

of line bundles on the ambient space.

hq(Pn,OPn(k)) =





(
k+n

n

)
q = 0 k > −1

1 q = n k = −n− 1(
−k−1

−k−n−1

)
q = n k < −n− 1

0 otherwise

. (81)
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Using this to compute elements of the various long exact cohomology sequences corre-

sponding to (79) and (80) we find the following

0 → H0(A,V) → H0(A,B)
g′

→ H0(A, C) → H1(A,V) → 0 , (82)

0 → H0(A,N ∗ ⊗ V) → H0(A,N ∗ ⊗ B)
h′

→ H0(A,N ∗ ⊗ C) → H1(A,N ∗ ⊗ V) → 0 .

Now, we note that since the maps in (79) and (80) were chosen to be maximal rank on

A (that is, the sequences were constructed to be exact) it follows from the arguments

in Appendix B.1 that the induced cohomology maps g′ and h′ on the ambient space are

also maximal rank. With these results in hand, we then find that

h0(Pn,V) = h0(Pn,B) − rk(g′) ,

h1(Pn,N ∗ ⊗ V) = h0(Pn,N ∗ ⊗ C) − rk(h′) . (83)

Clearly, we will have h0(Pn,V) = 0 and h1(Pn,N ∗ ⊗V) = 0 if g′ and h′ are maximal

rank and if

h0(Pn,B) ≤ h0(Pn, C) ,

h1(Pn,N ∗ ⊗ C) ≤ h1(Pn,N ∗ ⊗ B) . (84)

However, using (81) and the defining sums of line bundles on the ambient space (18) we

find by direct calculation that (84) is satisfied for all the rank 4 bundles on the quintic.

Therefore, we find that h0(X,V ) = 0 for all rank 4 bundles on the quintic.

The analysis for all the other ranks is similar in construction (with additional wedge

powers of the normal bundle in (77)) as long as Theorem 3.2 is satisfied and we can

consistently define our monads on the ambient space. That is, we must be able to write

the short exact sequences (18) on the ambient space with maps whose degeneracy loci

vanish. Thus, the technique above can only be applied directly to rank 4 and 5 bundles

on P4 and rank 5 bundles on P5. For all the other rank 4 and 5 bundles in the list, we

again apply the techniques of Koszul sequences, but to a 4-fold in the embedding space

rather than Pm itself. For the rank 3 bundles in our list we cannot apply these methods,

nor do we make use of h0(X,V ) = 0 in those stability proofs, however we can verify

that the identity holds for all the rank 3 bundles as well by computer calculation. Thus,

we find that h0(X,V ) = 0 for all the bundles in our list and verify this by computer

algebra using [23].

B.3 Proof that n1 = h1(X,∧2V ∗) = 0 for the SO(10) Models

For simplicity, we provide here the argument for rank 4 bundles on the quintic. As in

the previous discussion, the proof is easily extended to the other cases. We begin once

again with the Koszul sequence in the co-dimension 1 case, this time for ∧2V ∗:

0 → N ∗ ⊗ ∧2V∗ → ∧2V∗ → ∧2V ∗ → 0 . (85)

32



From this, we have the long exact sequence in cohomology,

...→ H1(A,N ∗ ⊗ ∧2V∗) → H1(A,∧2V∗) → H1(X,∧2V ∗) → H2(A,N ∗ ⊗ ∧2V∗) → ...

(86)

We will show that h1(X,∧2V ∗) = 0 by proving that h1(A,∧2V∗) and h2(A,N ∗ ⊗∧2V∗)

both vanish.

We begin with h1(A,∧2V∗). To proceed, we have the exterior power sequences

0 → S2C∗ → C∗ ⊗ B∗ → Λ2B∗ → Λ2V∗ → 0 , (87)

0 → N ∗ ⊗ S2C∗ → N ∗ ⊗ C∗ ⊗ B∗ → N ∗ ⊗ Λ2B∗ → N ∗ ⊗ Λ2V∗ → 0 , (88)

which we can split into the short exact sequences:

0 → S2C∗ → C∗ ⊗ B∗ → K1 → 0 ,

0 → K1 → Λ2B∗ → Λ2V∗ → 0 , (89)

and similarly,

0 → N ∗ ⊗ S2C∗ → N ∗ ⊗ C∗ ⊗ B∗ → K2 → 0 ,

0 → K2 → N ∗ ⊗ Λ2B∗ → N∗ ⊗ Λ2V∗ → 0 . (90)

Each of these generates a long exact sequence in cohomology. Using the familiar results

for the cohomologies of positive and negative line bundles on the ambient space, from

(89) we immediately obtain h1(A,Λ2V∗) = h2(K1) = 0. Likewise, the cohomology

sequence of (90) leads us to h2(A,N ∗ ⊗ Λ2V∗) = h3(K2) = 0 and

0 → H3(A,K2) → H4(A,N ∗ ⊗ S2C∗)
f

−→ H4(A,N ∗ ⊗ C∗ ⊗ B∗) → H4(A,K2) → 0 . (91)

Combining these results we find

h2(A,N ∗ ⊗ ∧2V∗) = h4(A,N ∗ ⊗ S2C∗) − rk(f) . (92)

Now, as before we note that by maximal rank arguments of B.1 and Serre duality,

rk(f) = min(h4(A,N ∗ ⊗ S2C∗), h4(A,N ∗ ⊗ C∗ ⊗ B∗)) (93)

By direct computation using [23] we find that h4(A,N ∗ ⊗S2C∗) < h4(A,N ∗ ⊗C∗ ⊗B∗)

for all the bundles in our list. Thus, h2(A,N ∗ ⊗ ∧2V∗) = 0 and we may conclude that

h1(A,∧2V∗) = 0 . (94)

The argument is the same in spirit for the other manifolds in our list. The only key

difference being the length of the starting Koszul sequence (which will containing higher

wedge powers of N ∗). The resulting cohomology analysis follows straightforwardly.
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