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ABSTRACT 

 

  Meshless Local Petrov-Galerkin method based on Rankine source solution (MLPG_R) has 

been developed by Dr. Qingwei Ma (Ma, 2005b) and has been used to simulate the nonlinear 

water wave problems in 2D cases without the occurrence of the breaking waves. In this thesis, 

MLPG_R method has been further developed to numerically simulate breaking waves and the 

interactions between breaking waves and structures in 2D and 3D cases. The main difference 

between this meshless method and conventional mesh-based methods is that the governing 

equations are solved in terms of particle interaction models, without the need of 

computational meshes.  Therefore, this method avoids the time-consuming mesh generating 

and updating procedures which may be necessary and may need to be frequently performed in 

the mesh-based methods. Furthermore, in order to simulate the breaking waves well, several 

novel numerical techniques are developed and adopted. The numerical technique for 

implementing the solid boundary condition for meshless methods is proposed, which is more 

robust than others in terms of accuracy and efficiency. A technique for meshless interpolation 

(SFDI scheme) is adopted, which is as accurate as the more costly moving least square (MLS) 

method generally but requires much less computational time than the latter. A newly 

developed technique for identifying the free surface particles is presented, which is much 

more robust than those existing in literature. A semi-analytical method for numerical 

evaluation of integrals in a local domain and on its surface is presented to form the matrix for 

the algebraic equations, which makes it possible to modelling the 3D problems on personal 

computers.  

  The newly extended MLPG_R method is applied to simulate the waves generated by a 

wave maker and their propagations, overturning and breaking over flat and sloped seabed. 

And it is also applied to 2D and 3D dam breaking cases and violent sloshing cases. The 

convergence properties of this method in different cases are investigated.  Some of the 

results have been validated by experimental data and numerical results obtained by other 
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methods. Satisfactory agreements are achieved. Based on these numerical investigations, a 

number of conclusions have been made, including that the breaking waves can cause large 

pressure with several peaks when they impact on structures; the behaviour of pressure 

strongly depends on the relative locations of structures to the breaking point of breaking 

waves.  Breaking waves in a sloshing container can also cause more than one peaks, which 

is correlated with the direction change of water motion within the container. These 

investigations can give us better understanding of the impact pressure, breaking wave and 

interactions between breaking wave and structures. 
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1. INTRODUCTION 

1.1 Background 

Wave breaking (see, Fig.1.1.1) is a general phenomenon in nature. This phenomenon plays 

a vital role in air–sea interactions and wave-structure interactions. In addition, breaking waves 

may release huge amounts of energy, which may severely damage coastal structures, vehicles 

in the sea (see, Fig.1.1.2) and threaten the lives on them.  Therefore, breaking waves and 

their interactions with structures have been of a great concern in offshore/coastal engineering. 

 

 

Fig.1.1.1 wave breaking in sea 
www.waterencyclopedia.com 

 

 
Fig 1.1.2 breaking wave impacting on a ship 

www.answers.com 
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Many efforts have been made to achieve a good understanding of the phenomenon. 

Previous investigations on breaking waves mainly focused on the laboratory experiments or 

field observations. The experiments can produce very useful and reliable results for some 

cases but are generally very expensive. Furthermore, these results may be applicable only for 

particular cases. Alternatively, many numerical methods have been developed to address this 

issue. Accurate numerical simulation can provide detailed information on the hydrodynamics 

of breaking waves, which is not easily measured during physical experiments. Once the 

models have been validated, they can be employed to simulate more general and complicated 

cases. Thus, numerical modeling, instead of experimental study, may be preferred in the 

community. 

To numerically simulate these problems, there are mainly two classes of theoretical models 

for cases with finite water depth.  One is based on the general flow theory and the other is 

based on the potential theory.  In the first class of models, the Navier-Stokes and continuity 

equations together with proper boundary conditions are solved, while in the second class, the 

Laplace’s equation with fully nonlinear boundary conditions is dealt with.  For brevity, the first 

class models will be called NS models and the second called FNPT (fully nonlinear potential 

theory) models in this work.  Various numerical methods, such as finite element method and 

boundary element method have been adopted to solve the FNPT model to investigate the 

nonlinear water waves and their interaction with structures. However, due to ignoring the fluid 

viscosity and irrotational assumption, FNPT models usually can only model the overturning 

waves up to the jets hitting the free surface in front of it and can not model the post-breaking 

waves with which viscosity can be important.  Therefore, if the cases with post-breaking are 

of main concern, NS models should be employed. On the other hand, numerical methods for 

simulation of breaking wave can be divided into two groups. i.e. mesh-based methods and 

meshless methods. The mesh-based method for nonlinear water waves mainly include finite 

difference method (Miyata, 1986; Lin and Liu, 1998); the finite element method (Ma and Yan, 

2006), the boundary element method (Grilli, Guyenne and Dias, 2001; Biausser, et al, 2003, 

2004; Guignard, Grilli, Marcer, and Rey, 1999) and the finite volume method (Devrard, et al, 

2005a; Devrard, et al, 2005b). They all produce many impressive results. However, a limitation of 
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these methods is that a computational mesh/grid is required. Generally, those methods are based 

on either Eulerian description or Lagrangian description. For the methods based on Eulerian 

description, the computational mesh does not need to be updated but extra equations are required 

to identify the free surface. For the methods based on Lagrangian description, the mesh or grid 

may need to be updated repeatedly to follow the motion of the free surface, which is often a 

difficult and/or time-consuming task, particularly in case with breaking waves.  Whereas, in 

the meshless methods, the fluid domain is discretised as particles, instead of computational 

mesh/grid in mesh-based methods, and a Lagrangian form of governing equation or boundary 

condition is imposed on every particle. The particles follow the motions of the fluid without 

the need of being regenerated repeatedly. Hence, meshless methods have high potential in 

modelling breaking waves. By far, many meshless methods have been reported in the 

literatures, such as Meshless Local Petro-Galerkin (MLPG) (see, for example, Atluri and Zhu, 

1998, 2000; Atluri, and Shen, 2002; Batra & Ching, 2002; Lin and Atluri, 2000, 2001; Ma, 

2005a, 2005b, 2007; Li & Atluri, 2008; Avila & Atluri, 2009), Moving Particle Semi-implicit 

method (MPS) (see, for instance, Koshizuka and Oka, 1996; Gotoh and Sakai, 2006), the 

Smooth Particle Hydrodynamic (SPH) (e.g. Monaghan, 1994, Shao 2006), the finite point 

method (Onate, Idelsohn, Zienkiewicz, Taylor and Sacco, 1996), the element free Galerkin 

method (Belytschko, Lu and Gu, 1994), the diffusion element method (Nayroles, Touzot and 

Vilon, 1992).  Among them, the SPH, MPS and MLPG have been widely used to simulate 

nonlinear water waves by many authors.  Ma (2005a, b; 2007) simulated nonlinear water 

waves, sloshing waves and freak waves by using the MLPG method.  2D and 3D breaking 

waves and the interactions with offshore structure have been modelled by Ma & Zhou (2009), 

Zhou & Ma (2010) and Zhou, Ma, Zhang & Yan (2009).  The MPS method has been applied 

to simulate the collapse of a water column (Koshizuka and Oka, 1996), the shallow water 

sloshing waves (Naito and Sueyoshi, 2002), the breaking waves (Gotoh & Sakai, 1999, 

Khayyer & Gotoh, 2008a, 2008b and 2009) and the wave-body interaction (Gotoh and Sakai, 

2006). The SPH method has been successfully used to simulate waves propagating towards 

beaches (Monaghan 1994, Lo and Shao, 2002) and many other cases.  Although the MPS 

and SPH methods have produced many interesting and encouraging results, there are still 

some issues existing in these methods, such as, the oscillating of pressure (Sueyoshi & Naito, 
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2002, 2004a and Ma et al., 2009). Due to great flexibility of using different test functions, 

many others meshless methods can be considered to be special cases of the MLPG method 

(Ma, 2005b). Therefore the MLPG method is chosen in this study. 

 

1.2 Objectives of the study 

This study aims to extend the MLPG_R method based on the general flow theory to 

numerically simulate breaking waves and their interactions with 2D and 3D structures. The 

extended MLPG_R method is used to simulate 2D dam breaking cases, this case is for violent 

free surface flow similar to the green water or overtopping on floating bodies; a breaking 

wave over a step is investigated, this case is similar to the mitigation of tsunami effects or 

vertical breakwater to protect the coastal structures; violent sloshing waves in FPSO are 

simulated with different sloshing frequencies and different filling ratios and 3D violent wave 

impact on the wind energy structures are numerically simulated by MLPG_R method. The 

objectives of this study are centred on: 

1. Developing an efficient and robust numerical scheme to track the free surface 

during the simulation of violent breaking wave cases; 

2. Developing an efficient numerical method and procedure to simulate 2D and 3D 

breaking waves based on MLPG_R method; 

3. Applying the developed method to investigate the interaction between breaking 

waves and fixed structures. 

   

 

1.3 Outline of the thesis 

This chapter introduces the background as well as the aims and objectives of this study. 

Other chapters are outline below: Chapter 2 reviews the literatures related to the numerical 

methods. The mathematical model and numerical procedure used on this study are presented 

in Chapter 3, together with the numerical implementations of solid boundary conditions. 

Chapter 4 gives the numerical techniques for identifying free surface.  In Chapters 5-7, the 

developed method is validated using different cases and its convergence properties are 

discussed. Chapter 8 mainly focuses on a 3D application of the developed method, i.e. aiming 
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to investigating violent wave impact on offshore wind energy structure. Chapter 9 

summarizes the conclusions and recommendations on the future work. 
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2. LITERATURE REVIEW 

 

This chapter will review numerical methods regarding the modelling of breaking waves 

interacting with structures. Because the thesis focuses on the numerical simulation of 

breaking waves and their interactions with structures, only the related numerical methods are 

discussed below. These numerical methods may be split into two groups. One is mesh-based 

methods, in which the computational domains are discretized into meshes/grids; the other is 

the meshless methods where particles are used to represent the domains.  

 

2.1 Mesh-based methods  

In the mesh-based methods, the computational domain is discretised into many elements/grids. 

The computational mesh can be either fixed in space (the Eulerian formulation), follows the 

fluid flow (the Lagrangian formulation), or moves at an arbitrary velocity (the arbitrary 

Lagrangian - Eulerian fomulation). 

The mesh-based methods in Eulerian formulation have been widely used to model wave 

problems. However, there are some big challenges when dealing with the violent breaking 

waves cases. One of them is how to track the free surface, which need to be determined 

during the simulation. In order to simulate the breaking wave cases, some interface capturing 

technologies have been developed, for example, Marker and Cell method (MAC, Harlow and 

Welch, 1965); Volume of Fluid method (VOF, Hirt and Nichols, 1981) and Level Set Method 

(LSM, Osher and Sethian, 1988), (more details in Section 2.5). In the methods, extra 

equations need to be solved, which will definitely add extra computational cost.  

Furthermore the practical calculation domain must be bigger than necessary when deal with 

the large distortions of interfaces between two different materials. This is because the 

computed domain should cover the area where the fluid may reach. Another problem is that 

the meshes are fixed, not moving with the fluid. Consequently the convection terms will exist 

in the formulation, and thus the numerical diffusion will be inevitably caused. Due to the facts, 

the methods are not very suitable for simulating violent breaking waves. 
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For the mesh-based methods in Lagrangian formulation, it overcomes the problems caused 

by fixed meshes. The non-linear convective terms no longer appear and the meshes need only 

to be generated in the regions of space occupied by the fluid. However, if the motion of the 

fluid becomes geometrically complex, the mesh undergoes severe distortion, the accuracy of 

this method is highly affected and the numerical methods become unstable. So the 

computational meshes need to be updated repeatedly to follow the motion of the free surface 

and need to be maintained good quantity. This is often a difficult and time-consuming task, 

particularly in the 3D cases with breaking waves.  

To overcome this problem, the Arbitrary Lagrangian-Eulerian (ALE) approach was 

proposed (Hirt et al., 1974).  The ALE formulation is a hybrid approach, in which the 

computational mesh does not need to adhere to particles or to be fixed in space but can be 

arbitrarily moved. Based on this description, both the Eulerian and Lagrangian methods are 

special cases of the ALE method. Therefore, the ALE formulations combine the merits of both 

Eulerian and Lagrangian formulations and alleviate their shortcomings. Of course, the 

governing equations are made more complex to account for the moving velocities of the mesh.  

Nevertheless, it does not yield accurate results when dealing with large deformations (Li and 

Liu, 2002) or fragmentations (Gotoh et al., 2005). And the convective transport effects in ALE 

often lead to spurious oscillation that needs to be stabilized by an artificial diffusion. The ALE 

formulation has been discussed and used in many publications. Huerta & Liu (1988), Henning 

& Peter (2000), Teng, Zhao & Bai (2001), Souli & Zolisio (2001), Fabián, Raúl & Srinivasan 

(2004), et al and Tanaka & Kashiyama (2006) are some examples of applications of this 

method related to the free surface problems. 

 

2.2 Meshless methods 

In contrast to the commonly used mesh-based method, a new type of numerical methods 

has been given many concerns in research and offshore/coastal engineering. They are 

meshless methods or gridless methods, which are expected to become superior to the 

conventional mesh-based methods.  In meshless methods, the fluid domain is discretized 

into many particles without the need of any underlying mesh or nodal connectivity. Particles 

are used to represent the fluid and its motion; hence each particle has information about a set 
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of field variables such as mass, momentum and position. There is no mesh in the 

computational domain and so it does not need to deal with the meshes. As a result, it becomes 

easier to treat the large deformations, fluid fragmentation and coalescence compared to 

mesh-based methods.  In meshless methods, particles can either be fixed (the Eulerian 

formulation) or moveable (the Lagrangian formulation or ALE formulation). 

  For the meshless methods in the Eulerian formulation, such as a gridless Euler / 

Navier-Stokes solution algorithm (Batina, 1993), it is relatively easier to apply to complex 

geometry than the mesh-based methods, because this method allows to use points which are 

more appropriately located. However numerical diffusion is inevitable during the calculation 

of convection.  

For the meshless methods in the Lagrangian formulation (also called particle methods), 

particles move at the same velocity as the fluid velocity. Consequently, the free surface is 

tracked by following the free surface particles. Another advantage is that the convection term 

is not required in particle methods and, so, the numerical diffusion caused by it is avoided.  

Therefore, the difficulty in tracking free surface and the numerical diffusion due to the 

convection term in Eulerian form mesh-based method are overcome. Due to these facts, the 

particle methods are widely chosen to simulate the breaking waves and their interactions with 

structures. Yet, for some cases with the inflow and outflow, the particles initially located near 

the inlet or outlet of the domain may move away. If no special treatment is introduced, the 

particle methods may fail for such problems.  

To overcome the numerical difficulties regarding inflow and outflow problems, Yoon et al 

(1999, 2001) proposed an Arbitrary Lagrangian-Eulerian (ALE) method, namely, MPS with a 

Meshless-Advection using Flow-direction Local-grid (MPS-MAFL).  The method consists 

of two phases: the Lagrangian and the Eulerian phases.  For the Lagrangian phase, the 

particle interaction model of the MPS method was applied to the differential operators and the 

moving interface was traced through the Lagrangian motion of computational points using 

MPS method; while, for the Eulerian phase, a high-order finite difference scheme (MAFL) 

was utilized to deal with the convection of fluid. 

  Many meshless methods have been developed and reported in the public, in which SPH, 

MPS and MLPG are most widely employed to simulate breaking waves and their interactions 
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with structures. The following reviews mainly emphasize on these three meshless methods. 

 

2.2.1 Smooth Particle Hydrodynamic method (SPH) 

Gingold & Monaghan (1977) and Lucy (1977) initially developed SPH for simulation of 

astrophysics problems. Their breakthrough was a method for the calculation of derivatives 

that did not require a structured computational mesh. In the SPH method, the spatial 

discretisation of state variables is provided by a set of points; SPH uses a kernel interpolation 

to approximate the field variables at any point in a domain. For example, an arbitrary function 

f(x) is approximated in a continuous form by an integral of the product of the function and a 

kernel function W(x,h) as follows: 

  xdhxxWxfxf ),()()(                                           (2.2.1) 

where the angle brackets   denote a kernel approximation, h is the smoothing length; x and 

x  are the position vectors, respectively.  The numerical equivalent to Eq. (2.2.1) can be 

obtained by approximating the integral  
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where N is the number of total neighbour particles of a particle located at x, j  and jm  are 

the density and mass of particle j located at xj, respectively. Furthermore, the spatial derivative 

such as the gradient and divergence can be similarly evaluated by 
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where ),( hxxW j denotes the kernel gradient. One may notice that the gradient of a scalar 

field is only a function of the kernel gradient which is analytically known. The following 

symmetric gradient form with higher accuracy has been widely used (Monaghan, 1992; Liu & 

Liu, 2003; Liu & Liu, 2006): 
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Using the afore-mentioned function approximation techniques, it is possible to derive SPH 
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formulations for partial differential equations governing the fluid flows. The main 

applications of the SPH are summarized below. 

Libersky et al (1993) and Randles & Libersky (1996) extended this method to study the 

solid mechanics problems. Monaghan (1994) extended it to simulate complicated free surface 

flows including the water wave propagation on beach, followed by Dalrymple & Rogers 

(2006) and others, Tulin & Landrini (2000) investigated plunging breakers. Solid bodies 

impacting on the water was modelled by Monaghan et al., (2003) and dam breaking 

simulations by Monaghan (1994) and Violeau & Issa (2007). In the original application of 

SPH in water wave, the fluid was assumed to be weakly compressible and an equation of state 

was introduced to calculate the pressure. Later, an incompressible SPH model has been put 

forward by Shao and Lo (2003), in which the pressure was calculated through a pressure 

Poisson equation derived from combinations of the mass and momentum equations. The 

turbulence model was considered in their model to simulate the breaking and overtopping 

waves. In Shao (2006), the widely used two-equation k-ε model was chosen as the turbulence 

model to be coupled with the incompressible SPH scheme. Shao (2006) reproduced cnoidal 

wave breaking on a slope under two different conditions: spilling and plunging. Good 

agreements were obtained between the numerical results and the experimental data. In 

Violeau & Issa (2007), a review of recently developed turbulent models adapted to the SPH 

method was presented, from a one-equation model involving mixing length to more 

sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models 

(EARSM) or large eddy simulation (LES). The authors successfully applied mixing length 

and k–ε models to a turbulent free-surface channel. A 3D large eddy simulation (LES) model 

was also applied to the collapse of a water column in a tank.  A sub-particle scaling 

technique using the Large Eddy Simulation method (LES) approach was introduced by 

Dalrymple & Rogers (2006) into SPH viscosity formulations to model breaking waves on 

beaches in two and three dimensions, green water overtopping of decks, and wave–structure 

interaction. 

  Although the SPH methods have been widely used in many different fields, there are some 

issues in the development of the methods. For example, the problem of free surface particle 

judgment (the discuss will be given in Section 2.5); the problem of big computational burden; 
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just as Dalrymple et al. (2010) and Issa et al. (2010) pointed out that “the requirement of high 

resolution in SPH needs very small time steps (O (10-5 s))” and since SPH is very time 

consuming, a massively parallel computing is required to do meaningful problems.   

 

2.2.2 Moving Particle Semi-implicit method (MPS) 

The MPS method was developed by Koshizuka, Tamako and Oka (1995) and Koshizuka, 

and Oka (1996). In this method, a particle interacts with others in its vicinity modelled by a 

weight function. The gradient and Laplacian operator in the Navier-Stokes equations are 

replaced by the particle interaction models, which are given below based on the particle i and 

its neighbouring particle j, whose coordinates are ir  and jr , respectively:  
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where f is a scalar quantity, n is the particle number density, which was proposed (Koshizuka, 

1996) to approximate the fluid density and was defined as 
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where r0 is the cut-off radius. 

  A semi-implicit time splitting scheme is adopted by the MPS method. Firstly, the velocities 

and locations of water particles at intermediate time step are predicted explicitly using the 

known variables at the previous time step; secondly, the pressure is solved implicitly based on 

the variables at the intermediate time step; thirdly, the velocities and coordinates of particles 
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at new time step are updated.  

In the paper of Koshizuka and Oka (1996), the water column collapse was modelled and a 

acceptable agreement between the experimental data and numerical results was obtained. 

Since then, many researchers have applied the MPS method to deal with different problems.  

For example, Koshizuka, Nobe and Oka (1998) simulated the breaking wave over a slope. 

Two kinds of breaking waves, plunging and spilling breaker, were observed in the numerical 

results. Gotoh and Sakai (1999) simulated breaking waves over different seabed geometry, i.e. 

a uniform slope, a permeable uniform slope and a vertical wall with small step. Yoon, 

Koshizuka and Oka (1999) predicted the sloshing problems. This method has also been 

applied to resolve multiphase flow.  Koshizuka, Ikeda and Oka (1999) analyzed the 

fragmentation process of a melt droplet in vapour explosions. Nonura, Koshizuka, Oka and 

Obata (2001) successfully simulated the droplet breakup behaviour. Yoon, Koshizuka & Oka 

(2001) calculated the bubble growth, departure and rise in nucleate pool boiling. There are 

also some applications in the interaction between violent free surface flow and structures. For 

instance, Naito and Sueyoshi (2003) simulated the shallow water sloshing, free rolling of 

floating bodies and motions of floating bodies in waves. The sub-particle-scale turbulence 

model, the solid-liquid and liquid-gas two phase flow models and the floating–bodies model 

were developed by Gotoh and Sakai (2006). In order to further increase the calculation 

efficiency, Naito and Sueyoshi (2003) proposed a method to simulate a large field with a 

restricted small calculation domain. Two effective technologies were presented. The first one 

was the wave absorption with the sidewall of calculation; the second one was an actuated 

bottom to simulate the infinite depth of water. Sueyoshi and Naito (2004b) calculated the 3D 

simulation of nonlinear fluid problems over one million particles with parallel computing on 

PC cluster. More applications can be found in Guo and Tao (2003), Zhang, Morita, Fukuda 

and Shirakawa (2005), Wang, Zheng et al. (2005), Xie, Koshizuka and Oka (2007). 

In spite of the successful applications of the MPS method, there are still some numerical 

technologies need to be carefully investigated in order to get a stable solution when using the 

method.  The first problem is related to the gradient operator in Eq. (2.2.6), which may cause 

some numerical instability as discussed by Koshizuka & Oka (1996) and Koshizuka, Nobe & 

Oka (1998). The detailed discusses will be presented in section 2.3.  Another problem is 
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numerical implementations of solid boundary condition. Many researchers have made some 

improvements of numerical implementations of solid boundary conditions. The details will be 

given in section 2.4.  The third problem is from the simple judgment rule for free surface 

particles. There is a special section about the free surface judgment technique given in section 

2.5.  In addition to these, the pressure is found by directly applying the Eq. (2.2.7), which is 

rough approximation to Laplacian operator. 

Another problem is that the pressure solved by MPS method may have high frequency 

spurious fluctuations. To mitigate the pressure fluctuations, Sueyoshi and Naito (2002) used 

an averaged method; Sueyoshi and Naito (2004a) introduced an auxiliary computational 

procedure to reduce the oscillation; Hibi & Yabushita (2004) and Zhang, et al. (2006) 

employed more particles lays as solid boundary to obtain smooth pressure distribution. 

 

2.2.3 Meshless Local Petro-Galerkin method (MLPG) 

The MLPG method was proposed by Atluri & Zhu (1998) and was first extended to 

simulate the nonlinear water waves by Ma (2005a).  In the MLPG, the unknown function f is 

approximated by a set of discretised variables and can be written as 
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where N is the number of total particles that affect particle x , )(xj  is interpolation 

function called shape functions, which is formed by using moving least square (MLS) method 

(Atluri & Zhu, 1998; Ma, 2005a, b, 2007; Han & Atluri, 2004a, 2004b; Han et al 2006; Li, 

Shen, Han & Atluri, 2003). The derivative of an unknown function was found by direct 

differentiation of the shape function. The MLPG method is developed and based on a local 

symmetric weak form. For each particle, a local sub-domain is specified, which is a circle for 

two-dimensional and a sphere for three-dimensional cases. An equivalent weak form of 

governing equation is integrated over a local sub-domain. Through imposing the essential 

boundary conditions, the field variables (e.g. velocity, coordinate and etc) over the whole 

computational domain are solved by using a time marching procedure. 

  Due to the flexible choose of different trial and test functions, many variants of MLPG 
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methods have been developed by Atluri & Shen (2002). In that paper, six different MLPG 

methods have been compared numerically and the method using the Heaviside step function 

as the test function seems to be more promising than others.  Many mixed numerical 

methods together with the MLPG method have also been developed to simplify the meshless 

implementation and to improve the efficiency. Atluri et al. (2004) proposed the so-called 

MLPG “mixed” finite volume method, in which both the displacements and displacement 

gradients were interpolated using the identical shape functions, independently. As a result, the 

continuity requirement on the trial function was reduced by one order, and the complex 

second derivatives of the shape function were avoided.  Liu, Han & Atluri (2006b) 

developed a MLPG mixed collocation method for solving elasticity problems, in which the 

Dirac delta function was adopted as the test function, and therefore the equations were 

established at particles only. The traction boundary conditions were imposed by a penalty 

method, and the displacement boundary conditions were directly applied to the equations by 

the standard collocation approach. The MLPG mixed collocation method had achieved a great 

success, since it had a stable convergence rate, and higher efficiency than the MLPG finite 

volume method. Atluri, Liu & Han (2006) presented the MLPG mixed the finite difference 

method (FDM) to solve the solid mechanics problems, in which the displacements, 

displacement gradients, and stresses were interpolated independently using identical MLS 

shape functions. The MLPG mixed finite difference method successfully solved various 

elasticity problems with complex displacement and stress solutions.  

In addition to its various applications to solid and general fluid problems, Ma (2005a) first 

extended the MLPG method to deal with nonlinear water wave problem and produced many 

encouraging results. In that paper, the simple Heaviside step function was adopted as the test 

function to formulate the weak form over local sub-domain, resulting in one in terms of 

pressure gradient. Following Ma (2005a), Ma (2005b) further developed a new form of the 

MLPG method called as a MLPG_R method, which is more suitable for modelling the 

nonlinear water waves.  In MLPG_R method, the solution for Rankine sources rather than 

the Heaviside step function was taken as the test function. Based on this test function, a weak 

form of governing equations was derived, which did not contain any gradients of unknown 

functions and therefore made numerical discretisation of the governing equation relatively 
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easier and more efficient. A semi-analytical technique was also developed to evaluate the 

domain integral involved in this method, which dramatically reduce the CPU time spent on 

the numerical evaluation of the integral. Numerical tests showed that the MLPG_R method 

could be twice as fast as the MLPG method for modelling nonlinear water wave problems. 

The MLPG_R method has been successfully simulated the 2D freak waves, sloshing wave 

and various nonlinear water waves in Ma (2007).  

Ma (2008) made another step forward in the development of the MLPG_R method for water 

waves. In that paper, a new meshless interpolation was suggested, which is as accurate as the 

moving least square method but much more efficient, particularly for computation of gradient 

of unknown functions. The method has been applied to solve 2D problem without wave 

breaking. 

  

2.3 Numerical methods for calculation pressure gradient in meshless methods 

In the numerical procedure of meshless methods, how to estimate the pressure and its 

gradient in terms of discrete value of pressure at nodes is an important step, which to some 

extent affects the efficiency and precision of the method.  Atluri & Shen (2002) has 

reviewed the various meshless interpolation schemes.  They are the Shepard function (SF), 

the partition of unity (PU), the reproducing kernel particle interpolation method (RKPM), 

radial basis function (RBF) and moving least square (MLS) method.  Based on Atluri & 

Shen (2002) and Ma (2008), the Shepard function is the simplest method, which is similar to 

that used in the MPS method and has low order precision; the PU method is more 

computational expensive; The RKPM is equivalent to the MLS method if the basis and weight 

function used in them are the same; the RBF method has lower order accuracy than MLS if 

use the same number of nodes or need more nodes to achieve the same accuracy. Although the 

MLS method is widely used, it requires inverse of matrix or solution of a linear algebraic 

system and so is also quite time-consuming. 

As mentioned above, the gradient operator Eq. (2.2.6) is used in the MPS method 

because of simplicity.  However, the Eq. (2.2.6) may cause some numerical instability as 

discussed by Koshizuka & Oka (1996) and Koshizuka, Nobe & Oka (1998).  A new pressure 

gradient form was proposed by Koshizuka et al. (1996 and 1998) to overcome the problem by 
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replacing if  in Eq. (2.2.6) with the minimum value of f among the neighbouring particles 

satisfying 0|)(|  ij rrW . Applying that equation to pressure it follows 
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where )min( ji pp  , p is the pressure of nodes. The treatment improved the stability of the 

MPS method by ensuring that “the forces between particles are always repulsive because 

ij pp   is positive” (Koshizuka et al., 1998). However, this improvement is achieved by the 

sacrifice of conservation of momentum (Khayyer & Gotoh, 2009). From Eq. (2.3.1), one can 

notice that the force exerting on particle j by particle i due to the pressure gradient, will not 

equal to the force on particle i owing to particle j because of using the minimum value of 

pressure among the neighbouring particles rather than the pressure of particle i.  To 

overcome the problem, Khayyer & Gotoh (2009) proposed an anti-symmetric equation for 

pressure gradient term given as follows 
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Khayyer & Gotoh (2009) made a simple numerical test for the evolution of an elliptical water drop 

using the Eqs. (2.2.6) and (2.3.2), and found that using Eq. (2.3.2), the conservation of momentum 

had been significantly improved. Ma (2008) also made some numerical investigations about the 

gradient formulation of Eq. (2.2.6) and found that the formulation was accurate for any 

distribution of nodes only if the function was a constant or accurate for a linear function only 

when the all nodes lied on intersection points of rectangular grid and the grid is square, which 

were hard to be met in practical problem simulations.  Ma (2008) further presented a simplified 

finite difference interpolation (SFDI) scheme for meshless methods. This scheme is derived by 

using the Taylor series ignoring the terms of second and higher order derivatives. Therefore it has 

second order accuracy. The details will be given in Chapter 3. 
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2.4 Numerical methods for implementation of solid boundary condition in meshless 

methods 

 

One of key problems in meshless methods is how to implement the solid boundary 

condition which strongly affects the accuracy convergence of the simulation of the nonlinear 

waves, particularly their interaction with solid boundaries (e.g. the wavemaker and the 

floating body).  To do so, Koshizuka and Oka (1996) developed a method, which is used 

together with the MPS method. This method is referred as BC1 for brevity.  In BC1, the 

solid boundary is modelled as several layers of particles (referred as wall particles) but only 

the particles in the first layer, which is the closest to the fluid, are involved in solving the 

boundary value problem (BVP) for the pressure. The wall particles in other layers are called 

as dummy particles. The same formulation for the pressure at the wall particles of the first 

layer as that for the fluid particles is used.  The only contribution of the dummy particles is 

to calculate the particle number density in case the wall particle in the first layer would be 

judged as free surface particle because of small particle number density.  So the dummy 

particles will not be considered as neighbour particle when solving the pressure governing 

equation. Therefore, the influence domain for these particles lies in one side of wall particles. 

This may reduce the overall accuracy. Fig 2.4.1a shows that all neighbour particles are 

distributed only on the right hand side of the wall particle I.  The fact implies that the 

approximation to the pressure equation at the wall particle is of lower order accuracy than at 

the inner particles. A simple analysis can show that the BC1 can not generally ensure the 

pressure to satisfy the solid boundary condition.  How good the approximation to the 

condition depends not only on the number of particles but also on how they are distributed. 

For example, when all the water particles are in line with their corresponding wall particles 

(Fig 2.4.1a) and the horizontal velocity of water particles adjacent to the wall is equal to the 

wall velocity, the solid boundary condition can be satisfied in the BC1 while it may not be in 

all other cases. In the problems about water waves, water particles are continuously moving 

and as a result, they may be sometimes in line with the wall particles but sometimes not.  

This implies that approximation to the solid boundary condition is sometimes better but 

sometimes worse and therefore possibly leads to spurious wiggles in the pressure time history. 
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(a)                          (b)                        (c) 

Fig. 2.4.1 Illustration of the influence domain for wall particles in (a) BC1, (b) BC2 and (c) 

BC3 (solid circle: wall particles; hollow circle: water particles) 

 

  To overcome the problem, Hibi & Yabushita (2004) and Zhang, Morita, Fukuda & Shirakawa 

(2006) suggested another method (referred as BC2). In the BC2, all the wall particles including 

outer layers are considered in solving the BVP for the pressure.  In this implementation, the 

neighbouring particles of the wall particles in the first layer are distributed on both sides of the 

layer and therefore enhance the accuracy to some extent.  When the pressure equation is applied 

to the first layer wall particles, the neighbours of the wall particles do not only include those on 

their right (water particles) but also those on their left (wall particles in other two layers as shown 

in Fig 2.4.1b).  However, after doing so, the number of unknown pressure values is larger than 

the number of discretised equations.  In order to obtain sufficient number equations, the pressure 

at wall particles in other two layers is related to the pressure at wall particles by assuming that the 

pressure is linearly distributed, e.g., the pressure at Particle J in Fig 2.4.1b is expressed as 

)()( IJIIJ xx
x

p
pp 




                                                    (2.4.1) 
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p 
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



, xU is the acceleration of wall with respect to x direction. It is noted 

that although the approximation to the pressure equation in the BC2 may be more accurate 

than that in the BC1, the problem about variation in the degree of approximation to the solid 

boundary condition still remain.  That is, the spurious wiggles may also appear. 

In both BC1 and BC2, the physical solid boundary condition is only approximately 

satisfied and sometimes wiggles in the time history of pressure are observed (Hibi & 

Yabushita 2004 and Sueyoshi & Naito, 2004a).  Ma (2005a, b) employed another method to 
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implement the boundary condition, in which the pressure gradient for the wall particles in the 

first layer is forced to satisfy the physical solid boundary condition. This is referred as BC3 

(shown in Fig. 2.4.1c). In the BC3, the solid boundary condition of pressure is directly 

applied to the wall particles in the first layer.  That is, the discretised equation for them is 

based on the solid boundary condition.  It could be understood that the approximation to the 

solid boundary condition in the BC3 depends less on the distribution of water particles and 

yields much smoother pressure. 

Apart from these, Monaghan (1994) applied artificial force acting on the fluid particles 

near the solid boundaries.  Lo and Shao (2002) suggested to use a mirror technique.  But 

these methods mainly ensure the velocity to satisfy the solid boundary condition.  Atluri 

(1998) solved the boundary value problems with a penalty method, the penalty method works 

well for fixed (or with little movement) boundary problems. As pointed out by Ma (2005a), 

the penalty method may cause unaccepted errors, particularly near the free surface. 

 

2.5 Numerical methods for identifying the free surface 

Many surface tracking or capturing methods have been developed in mesh-based methods 

available to simulate the free surface, e.g., marker and cell (MAC, Harlow and Welch, 1965) 

method, volume of fluid (VOF, Hirt and Nichols, 1981) method, level set method (LSM, 

Osher and Sethian, 1988). MAC method is based on a Lagrangian approach and a set of 

massless marker particles whose position at any time step are used to reconstruct the interface. 

Accuracy requires a considerable amount of particles per grid cell, making the method 

computationally expensive, especially in 3D cases. VOF method is based on the Eulerian 

point of view instead. A discrete indicator (or color) function is used that corresponds to the 

cell volume occupied by fluid. The main issues include the difficulty in advecting a 

discontinuous indicator function and the accurate modeling of surface tension effects. An 

alternative to the indicator-function methods is the level set method (Sethian, 1996), which 

makes use of a function representing the distance to the liquid surface. Reconstruction of the 

free surface is conceptually simpler than with the VOF method. However, for violently 

moving free surfaces the level set function requires to be redefined regularly, and 

conservation of the amount of liquid cannot be guaranteed (Rider & Kothe, 1995). 
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  Different from the aforementioned methods, meshless methods discretize the fluid by 

particles. Hence it is a more natural way to track the free surface by following the free surface 

particles. In different meshless methods, there are different techniques to do so. For example, 

in the SPH methods, the free surface particles are identified by the density; i.e., if the ratio of 

the density of a particle to the fluid density is less than a specified value, such as 1%, it is then 

identified as a free surface particle [e.g., Lo and Shao, (2002)]. Khayyer et al. (2008c) 

compared the violent free surfaces using Incompressible SPH (CISPH) and Corrected 

Incompressible SPH (CISPH), and found that obvious improvements have been achieved for 

the judgements of the free surface by using the CISPH method.  However, one can note that 

from the compared photographs shown in that paper, the thickness of the free surface 

(normally the thickness is one particle layer) was still thick especially in the breaking and 

post-breaking regions, which indicated that the efficiency of the technique of judging free 

surface in SPH methods is low. 

 In MPS method, one simple technique is used based on the following parameter 

0* / nnII                                                             (2.5.1) 

where *
In  is the particle number density at particle I as defined in Section 2.2.2.  

  Due to the fact that no particle exists in the outer region of a free surface, the particle 

number density decreases on the free surface. So if I <  , then particle I will be judged as a 

free surface particle.  Currently, there is no common agreement about how to specify the 

value of  .  It is problem-dependent.  Different researchers use different values.  For 

example, it was 0.97 in Koshizuka and Oka (1996) and Gotoh and Sakai (2006) while it was 

0.99 in Shao and Lo (2003).  Results look to be promising in all the papers even with 

different values for . Khayyer et al. (2007, 2008a and 2008b) compared the configuration of 

free surface and non-free surface particles in CMPS (Corrected MPS), CMPS-SBV (CMPS 

with Strain-Based Viscosity) and standard MPS (Koshizuka et al., 1996) using the simple rule. 

From the comparisons, it has concluded that there are much more improvements in terms of 

free particle particles judgement in CMPS-SBV and CMPS compared with the standard MPS. 

But in CMPS-SBV and CMPS, however there are still many incorrect judgements of free 
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surface particles. Some inner water particles were incorrectly judged as free surface particles, 

and many free surface particles were wrongly judged as inner water particles.  So it is 

necessary to develop a more effective way to identify free surface particle. 
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3. MATHEMATICAL MODEL AND NUMERICAL METHOD 

 

This chapter presents the governing equations, boundary conditions as well as the detailed 

the numerical procedures. The 2D and 3D MLPG_R formulations, including the numerical 

techniques for the domain integration, the gradient calculation scheme, are also presented. 

Fig 3.0.1 shows the schematic of the computational domain and the coordinate system. The 

computational domain is chosen as a rectangle tank with a width of B. It may consist of two 

connected portions, the one with a flat seabed with a constant water depth of d and the other 

one with a sloping seabed with a sloping angle of  . The lengths of these two portions are L1 

and L2 respectively.  The incident waves are generated by a wavemaker, which is mounted 

on the left side of the tank. A Cartesian coordinate system is used with the oxy plane on the 

mean free surface and with the z-axis being positive upwards.  

 

 

 

 

 

 

 

Fig 3.0.1 Schematic of computational domain and the coordinate  

 

3.1 Governing equations and boundary conditions 

The fluid is assumed to be incompressible and governed by the continuity and momentum 

equations as follows: 

 

0 u


                                                             （3.1.1） 
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ugp
Dt
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 


                                               （3.1.2） 

 

where 
Dt

D
 is the substantial (or total time) derivative following fluid particles; u


is the fluid 

velocity,  is the density of the fluid and p is the pressure,  is the kinematic viscosity and g 

is the gravitational acceleration. 

The Lagrangian forms of kinematic and dynamic conditions on the free surface 

( ),,( tyxz  ) are given as followed 

 

Dr
u

Dt





                                                              （3.1.3） 

and 

0p                                                                 （3.1.4） 

where r xi yj zk  
 

 is the position vector related to the origin of the coordinate system. 

The relative atmospheric pressure in Eq. (3.1.4) has been taken as zero. On the rigid boundary, 

the following kinematic and dynamic boundary conditions are satisfied: 

 

Unun


                                                           (3.1.5) 

and 






  unUngnpn


 2.                                        (3.1.6) 

 

where n


 is the inwards unit normal vector of the rigid boundary; U


 and U

 are the 

velocity and the acceleration of the rigid boundary, respectively. 

 

3.2 Numerical Procedure 

The mathematical model formed by Eqs. (3.1.1.) ~ (3.1.6) is solved by a time splitted 

scheme similar to Ma (2005a, b). Suppose the velocity, pressure and the location at nth time 

step are known, one can use the following numerical procedure to find them at (n+1)th time 

step. 
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(1) Calculate the intermediate velocity ( *u


) and position( *r


) of particles by using 

tutguu nn 
 2*                                                  （3.2.1）  

turr n  ** 
                                                         (3.2.2) 

 

where the superscript * and n represent the intermediate step and nth time step, respectively; 

t  is the time step.  

(2) Implicitly evaluate the pressure pn+1 using 
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n 
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


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
                                        （3.2.3） 

 

where   is an artificial coefficient between 0 and 1, and 1n  and *  are the fluid 

densities at (n+1)th time step and at the intermediate time step, respectively.   For the 

incompressible flow, the density should be a constant and 1n =  , where   is the density 

of fluid specified initially.  The density *  at the intermediate step may not be the same as 

  because the velocity and position calculated in Eqs. (3.2.1) and (3.2.2) do not necessarily 

satisfy the continuity equation given in Eq. (3.1.1). 

(3) Calculate the fluid velocity and thus update the position of the particles using  

 

1** 


 np
t

u



                                                      （3.2.4） 
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                                          （3.2.5） 

turr nnn   11 
                                                     （3.2.6） 

 

(4) Go to (1) for the next time step 

 

As it can be seen, the key task of this procedure is to solve Eq. (3.2.3) in order to evaluate the 

pressure. Many numerical methods, for example, finite difference method and finite element 
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method, may be adopted to solve this equation. But in this study, the MLPG_R method will 

be adopted. 

In the meshless method, the computational domain is discretised by many particles. At 

each of the particles, a sub-domain is specified, which is a circle for 2D and a sphere for 3D 

cases. Eq. (3.2.3), after multiplying by an arbitrary test function , is integrated over the 

sub-domain, leading to 


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

 
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



II

I

n

I
n du

tt
dp  ])1([ *

2

*1
12                          (3.2.7) 

where I  is the area (2D problems) or volume (3D problems) of the sub-domain centred at 

particle I.  Test function   can be chosen as different functions, which will lead to 

different formulations used in different meshless methods.  For example, if   is defined as 

a Heaviside step function or a Rankine Source function, Eq. (3.2.7) will be changed to the 

governing equations used in the MLPG or MLPG_R methods (Ma, 2005a, b; Ma & Zhou, 

2009; Zhou & Ma, 2010); or if   is defined as a   function, Eq. (3.2.7) will be the same 

as those used in the MPS method (Ikeda, 1999; Zhang, et al, 2005).  The MLPG_R 

formulations for 2D and 3D will be detailed in the following subsection. Due to the facts that 

Rankine source function has different forms in 2D and 3D problems and that the integration 

domains of particles are also different in 2D and 3D problems, the MLPG_R formulations for 

2D and 3D will be separately presented below for clarity.  

 

3.3 MLPG_R Formulation for 2D cases 

In the MLPG_R method, the particles are separated into three groups: those located on the 

rigid boundary (referred to as wall particles), those on the free surface (referred to as free 

surface particles) and others (referred to as inner particles), which are illustrated in Fig. 3.3.1.  

For each inner particle I, Eq. (3.2.7) is applied. The test function is taken as the Rankine 

source solution, i.e., the function   satisfies 02   , in I  excluding the center and 

0  on I  which is boundary of I .  For 2D cases, the expression of the Rankine 

source solution is  
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)/ln(
2

1
IRr


                                                        (3.3.1) 

where r is the distance between a concerned point and the center of I  and IR  is the 

radius of I . 

 

 

Fig. 3.3.1 Illustration of particles, integration domain and support domain 

(a: wall particle; b: free surface particles and c: inner particles) 

 

In Eq. (3.2.7), the second order derivative of unknown pressure and the gradient of the 

intermediate velocity are included. Numerical calculation of the derivative and gradient terms 

requires not only much computational time but also degrades the accuracy. In order to obtain 

a better form, Eq. (3.2.7) is changed, by adding a zero term 2p   and applying the Gauss’s 

theorem, into 
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where   is a small surface surrounding the center of I , which is a circle in 2D cases.  

The reason for adding   is that the test function   in Eq. (3.3.1) becomes infinite at r=0 
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and so the Gauss’s theorem can not be used otherwise.  1n in Eq. (3.2.7) has been replaced 

by a function of   based on the discusses below Eq. (3.2.3). One can easily prove that 

taking 0  results in (Ma (2005b)) 
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                                                      (3.3.3) 
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and 





I

IR
d

4

2

                                                           (3.3.6) 

Using the results in Eqs. (3.3.3) ~ (3.3.6), Eq. (3.3.2) can be rewritten as: 
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                         (3.3.7) 

where it has been assumed that the increment of the density ( *  ) is a constant within the 

sub-domain and so equal to its value at Particle I, which is acceptable not only because the 

density should not change much due to the change in the intermediate position of the particle 

but also because the small error caused due to the assumption is further reduced by 

multiplying the coefficient   that has a small value. The term may be evaluated in a more 

accurate way, for example by interpolation as done for the second term but such a way will 

not improve the accuracy significantly due to the reason. 

It is obvious that Eq. (3.3.7) requires the intermediate density that is not computed in the 

MLPG_R method.  Actually, the density can be replaced by a particle number density (PND) 

defined by Koshizuka and Oka (1996) in their MPS method as follows: 
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where W is a weight function in terms of the distance between Particle I and Particle j,  

which becomes zero when the distance is larger than a certain value.  The domain, within 

which the weight function is not zero, is called support domain (see the example shown in Fig. 

3.3.1).  In the above equation, N is the total number of particles in the support domain of 

particle I.  As indicated by Koshizuka and Oka (1996), the PND is related to the density by: 




IV I

II
I

dVrW

nm

)(
 ,                                                      (3.3.9) 

where Im  is the mass of Particle I.  The denominator of Eq. (3.3.9) is the integral of the 

weight function in the whole region VI, excluding a central part occupied by Particle I, this 

integration is constant if the radius of the whole region VI is fixed. After applying Eq. (3.3.9), 

Eq. (3.3.7) becomes  
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where 0n is the initial particle number density of fluid and *
In  is the particle number density 

of Particle I at the intermediate step.  Ma (2005b) has detailed the method to discretize Eq. 

(3.3.10), in which the pressure on the left hand side is interpolated by a moving least square 

method (MLS) and the integration of the second term on the right hand side is evaluated by a 

semi-analytical technique.  For the purpose of completeness, the details will be simply 

explained as follows. 

 

3.3.1 Discretization of the governing equation for pressure 

  The unknown function p needs to be approximated by a set of discretized variable. Herein 

the approximation may be written as  





N

J
JJ pxxp

1

ˆ)()(


                                                    (3.3.11) 

where N is the number of particles affecting the pressure at point x


; )(xJ


 is interpolation 

function called shape function. Jp̂  are particle variables but not necessarily equal to the 
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particle values of )(xp


. Generally in meshless methods, a local approximation to the 

unknown function is assumed, which is expressed in terms of unknown variables 

corresponding to some randomly located particles nearby. This local approximation may be 

formulated in a variety of ways. One of them is to use a moving least-squre (MLS) method 

(Atluri and Shen, 2002), which is adopted in this study. With this method, the shape function 

is given by 
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With the base function being ],,1[],,[)( 321 yxxT  


 (M=3) for 2D cases, and with the 

matrixes )(xB


and )(xA


being defined as  
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and 
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which shows each column of the matrix T is the value of the base function  at a 

particular point. The weight function )( JJ xxw


 may be chosen to be a spline function given 

by 
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where Jr is the size of support domain of the weight function and || JJ xxd


  is the 

distance between the particle J and point x

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  Using Eq. (3.3.11), Eq. (3.3.10) can be rewritten as 

][]ˆ[][ IIJ FpK                                                        (3.3.18) 
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in which Particle I are inner particles; and Particle J are those influencing Particle I, 

determined by the weight function. Using test function Eq. (3.3.1), the boundary integral in 

Eqs.(3.3.19) can be simplified as 

 
 
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I I

dSx
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dSnx J
I

J )(
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                                     (3.3.21) 

The integral over the domain in Eq. (3.3.20) can also be simplified as 

2* *

0 02

I

I

R

ru d u drd
t t

  


  
   


                                    (3.3.22) 

where *
ru  is the radial component of *u . 

 

3.3.2 Numerical Technique for Domain Integration 

As shown in Eq. (3.3.22), the domain integration must be numerically evaluated, usually by 

using the Gaussian quadrature. To do so, more than 16 Gaussian points for 2D cases may be 

required to obtain satisfactory results, at which the intermediate velocities are estimated by 

employing the MLS method. Evaluation of the velocities at so many points is time-consuming.  

In order to make the method more efficient, the following semi-analytical technique is 

suggested: 

 

1. Dividing an integration domain into several sub-domains; 

2. Assuming intermediate velocities to linearly vary over each sub-domain; 

3. Performing the integration over each sub-domain analytically. 
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Fig. 3.3.2 Illustration of division of an integration domain 

 

Let us consider a circular integration domain with a radius of IR , centred at (x0, y0), as shown 

in Fig. 3.3.2 and divide it into four sub-domains, 0-1-2, 0-2-3, 0-3-4 and 0-4-1. Over each 

sub-domain, e.g., 0-1-2, the intermediate velocity components at arbitrary point (x, y) are 

assumed to be linear with respect to coordinates and given by 

IuyIux RyycRxxcuu /)(/)( 00
(*)
0

(*)                                 (3.3.23a) 

IvyIvx RyycRxxcvv /)(/)( 00
(*)
0

(*)                                 (3.3.23b) 

where ),( (*)(*) vu are the intermediate velocity components at any points (x, y) in the 

subdomain 0-1-2; and ),( (*)
0

(*)
0 vu are those at its centre. uxc , uyc , vxc and vyc are constants, 

which are determined in such a way that the velocity components equal to those at point 1 and 

2. Taking the x-component as an example, one should have  

Iuyux Ruuyycxxc )()()( (*)
0

(*)
10101                                  (3.3.24a) 

Ivyvx Rvvyycxxc )()()( (*)
0

(*)
10101                                   (3.3.24b) 

which gives 

)( (*)
0

(*)
1 uucux                                                        (3.3.25a) 

)( (*)
0

(*)
2 uucuy                                                        (3.3.25b) 

vxc and vyc can be found similarly or obtained by replacing ),( (*)
2

(*)
1 uu with ),( (*)

2
(*)
1 vv in Eq. 

(3.3.25); and thus the velocities in this sub-domain are determined by Eq. (3.3.23). The 

velocities in other sub-domains can also be estimated in this way. The only difference is that 

0 1

2

3 

4

(x, y) 

  
(x0, y0) 
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they may be related to the velocities at points 3 and 4, depending on which sub-domain is 

concerned. Consequently, the velocities at any points in the circle are determined by those at 

only five points (0, 1, 2, 3, and 4). Based on this, the integration in Eq. (3.3.22) over the circle 

can be rewritten as: 

   





i i

i

I
I

N

i

R

r

R

r drdrudrdu
1 0

(*)
2

0 0

(*)
1

),(






                                       (3.3.26) 

(Ni=4 for four divisions and 15   ) 

The integration over each sub-domain can be evaluated analytically using Eq. (3.3.23). For 

this purpose, Eq. (3.3.23) can be rewritten as 

 sincos(*)
0

(*) rcrcuu uyux


                                           (3.3.27a) 

 sincos(*)
0

(*) rcrcvv vyvx


                                            (3.3.27b) 

where the transformation of cos/)( 0 rRxx


  and sin/)( 0 rRyy


 have been 

employed. The relationship between the (*)
ru  and (*)u , (*)v is  

 sincos (*)(*)(*) vuur                                                  (3.3.28) 

Substituting Eq. (3.3.27) into Eq. (3.3.28) yields  

 22(*)
0

(*)
0

(*) sinsincossincoscossincos rcrcrcrcvuu vyvxuyuxr


    (3.3.29) 

It is easy to show that the integration of  sincos (*)
0

(*)
0 vu  over whole circle becomes zero 

and can be omitted.  The integration of other terms in Eq. (3.3.29) over sub-domain 0-1-2 is 

given by 
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                  (3.3.30) 

Substituting the values of uxc , uyc , vxc and vyc  and 2/;0 21    into Eq. (3.3.30), it can 

be rewritten as 

)}(2/){(
4

1
),( (*)

0
(*)(*)(*)(*)(*)(*)(*)

2/

0 0
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1020201 vvuuvvuuRdrdru I

R

r

I

  


     (3.3.31) 

Similar results can be obtained for other sub-domains and the sum of these gives the results 

for the whole domain.  The finial integration over sub-domain 0-2-3 can be expressed as 
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follows, 
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      (3.3.32) 

The finial integration over sub-domain 0-3-4 can be expressed as follows, 
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    (3.3.33) 

The finial integration over sub-domain 0-4-1 can be expressed as follows, 
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By adding the Eqs. (3.3.31) ~ (3.3.34) together, the final expression for Eq. (3.3.26) over the full 

circle can be obtained as follows, 
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),( (*)(*)(*)(*)
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0 0

(*)
4321 vuvuRdrdru I

R

r

I

 
                                (3.3.35) 

It can be seen that the integral over full circle is determined by the velocity only at four 

points rather than at least 16 Gaussian points if the Gaussian quadrature would be employed. 

Although the results depend on the number of sub-domains, numerical tests show that four 

sub-domains are good enough for 2D cases. It is noted that the above derivation is similar to 

that given in Ma (2005b), but the finial expression Eq. (3.3.35) is more compact. 

 

 

3.3.3 Numerical implementation of solid boundary condition 

  In MLPG_R method, the solid boundaries are also discretized into many particles, but only 

one layer is used to represent the solid boundary (shown in Fig. 3.3.3). 

 

Fig. 3.3.3 Illustration of the influence domain for wall particles 

(solid circle: wall particles; hollow circle: water particles) 

I 
Re 
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The solid boundary condition (Ma 2005a, b), without considering the viscosity, is given as 

 Ungnpn



 .                                                   (3.3.36) 

where U

 is the acceleration of the solid boundary. This expression can be derived directly 

from Eqs. (3.1.2) and (3.1.6) by taking 0 .  When 0  as in the cases considered in 

this study, one may also derive the condition by using Eqs. (3.1.2) and (3.1.6) and obtain: 

 unUngnpn


 2.   .                                        (3.3.37) 

It is obvious that one must compute the term u
2  when applying this condition, which 

needs to estimate the second order derivative at the rigid boundary.  Although there is no 

much difficulty to do so theoretically, the error associated with it is not easy to be suppressed 

in computational practice as the fluid particles located only on one side of the boundary. 

Therefore, it is better to avoid the computation of the second order derivative when possible.  

For this reason, Eqs. (3.1.5) and (3.2.5) are combined to give an alternative equation for the 

boundary condition as follows: 

)( 1*1  


 nn Uun
t

pn
 

                                            (3.3.38) 

where *u


 is computed by Eq. (3.2.1) with  nu


 taken as nU


.  If the solid boundary is 

fixed, 01  nUn


 and so Eq. (3.3.38) can be rewritten as 

*1 un
t

pn n  


  
                                                    (3.3.39) 

Although one still needs to calculate u
2 , which is inevitable, to estimate *u


, the second 

order derivative term is not explicitly involved in Eqs. (3.3.38) and (3.3.39) and does not need 

to be calculated again after *u


is available.  The solid boundary condition of pressure (Eq. 

(3.3.38) or Eq. (3.3.39)) is applied directly to the wall particles.  That is, the pressure 

equation Eq. (3.3.38) or Eq. (3.3.39) is discretized with the gradient of pressure approximated 

by Eq. (B6) or Eq. (B7) in 2D cases.   

In the numerical simulations, the corresponding normal pressure derivative to the different 
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topographies should be found approximately using the gradient operator Eqs. (B6) and (B7) 

or the combinations of Eqs.(B6) and (B7) in 2D cases.  The details about how to implement 

the solid boundary condition will be presented as follows. Taking the 2D breaking wave over 

a beach as example, the detailed implementations will be given based on different solid 

boundaries. The schematic set-up is plotted in Fig. 3.3.4, the whole solid boundary can be 

simply divided into four kinds of different solid boundary, namely, a, b, c and d boundaries.  

 

 

Fig. 3.3.4 schematic of different solid boundaries  

 

For the wall particles on boundary a, the inwards normal pressure derivative, i.e. the 

pressure derivative in x direction will be found approximatively using the gradient operator Eq. 

(B6) from the neighboring particles. On this boundary the pressure condition Eq. (3.3.38) will 

be changed into  

)( 1*1  


 n
xx

n
x Uu

t
p


                                                    (3.3.40) 

where xp is the pressure derivative in x direction; *
xu


 is the intermediate velocity component 

in x direction calculated based on Eq. (3.2.1), 1n
xU


is the x-dimensional velocity component 

of the boundary at (n+1)th  time step. 

For the wall particles on boundary b, the inwards normal pressure derivative, i.e. the 

pressure derivative in z direction will be found approximately using the gradient operator Eq. 

(3.3.42) from the neighbouring particles. On this boundary the pressure condition Eq. (3.3.39) 

can be rewritten as  

*1
z

n
z u

t
p




 

                                                          (3.3.41) 

where zp is the derivative of pressure in z direction; *
zu


 is the intermediate velocity 

beach
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c b 
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wavemaker
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component in z direction calculated based on Eq. (3.2.1), in which 0n
zu


 is assigned 

according to the kinematic condition. 

For the wall particles on boundary c, which is the intersection points of two different solid 

boundaries, they are singularity points, which need to satisfy both boundary conditions. To 

overcome the numerical difficult in treating singularly points, the MLS is used to approximate 

the pressure at those points using their neighboring particles. The details can be seen in Eqs. 

(3.3.12) ~ (3.3.18). 

For the wall particles on boundary d, the pressure derivative in the normal direction is the 

combination of the derivative in x direction and the derivative in z direction. The illustration 

is plotted in Fig. 3.3.5.  The left side of Eq. (3.3.39) can be rewritten as 

 

zxzx pp
n

z
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x
p

n

p
pn  cos)sin( 















                           (3.3.42) 

 

 

Fig. 3.3.5 Schematic analysis of normal derivative for d boundary particle 

 

Using the Eqs. (B6) and (B7), Eq. (3.3.42) can be discretized to construct the pressure 

governing equation at the particles on the solid boundary. The normal velocity at the right side 

of Eq. (3.3.39), i.e. *
nu  , can be calculated based on Eq. (3.2.1) with 0n

nu  according to the 

kinematic condition. 

For 2D cases with more complicated geometry of seabed, solid boundaries can be 

considered as a combination of a, b, c and d boundaries. The above four formulas can be used 

to implement the boundary conditions.  

Zhou et al (2008) investigated three different numerical implementations of solid boundary 

in meshless methods.  Two of them are from the MPS method, they are named as BC1 and 

  

x 

z n


 

  
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BC2 for brevity as discussed in Chapter 2.4; another one is from MLPG_R method, which is 

presented above and named as BC3.  In that paper, 2D cases for solitary wave propagation in 

a flat tank have been investigated with the three different numerical implementations of solid 

boundary.  Both the wave elevation and the pressure time history were studied.  The 

particles were uniformly distributed at beginning with the same distance between water 

particles in both directions.  The number of particles along z-direction is represented by Nz. 

Different particle numbers (Nz) have been investigated for BC1, BC2 and BC3, i.e. Nz=15, 20, 

25, 30 and 40 for BC1 and BC2; Nz=15, 20 and 25 for BC3.  The numerical results showed 

that the wave elevation and pressure on the rigid wall at fixed locations were different with 

25Nz for the BC1 and BC2, however, the results became to convergent until 30Nz . On 

the other hand, the results obtained by using BC3 with Nz=20 were almost the same as those 

with 25Nz . So one can conclude that the results with 20Nz have already been 

convergent.  Many comparisons between BC1, BC2 and BC3 have been made in that paper 

and conclusion has been drawn that to achieve the results with similar accuracy, the BC3 

requires much less number of particles than the other two.  Therefore, the BC3 may be 

recommended to achieve higher computational efficiency or accuracy. 

 

3.3.4 Test the effectiveness of parameter in Eq. (3.2.3) 

The formulation in Eq. (3.2.1) to Eq. (3.2.6) is different from the previous MLPG_R 

formulations by Ma (2005a, b and 2008) in two aspects.  (1) The viscous term is considered 

in this work but not considered in the previous work.  (2) There are two terms on the right 

hand side of Eq. (3.2.3) rather than one term in the previous publications.  Nevertheless, if 

0 , the formulation here become the formulation in Ma (2005a, b and 2008) automatically.  

As pointed out in cited papers, the viscous effect is neglectable if waves are not breaking.  

That is why the associated term is ignored in those papers that considered only non-breaking 

steep waves.  This thesis aims to study the breaking waves and thus the viscosity is likely 

important.  As a result, viscosity must be taken into account.  Regarding the change in Eq. 

(3.2.3), it can be shown that the governing equation for the pressure have two forms: one 

corresponding to 0  (Ma 2005a, b and 2008) and the other to 1  [Koshizuka & Oka 

(1996); Idelsohn Storti and Onate (2001)], and both are derived by applying the continuity 
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equation for incompressible fluid.  Without wave breaking, the formulation with 0  can 

yield good results as demonstrated in the cited papers.  However, when wave breaking 

occurs, splash and re-entry take place frequently.  In such cases, none of the two forms on 

their own works very well.  Assigning a nonzero small value to  can improve the results 

dramatically, which will be demonstrated in the following section.  Such an approach has 

also been adopted by Zhang, Morita, Kenji and Shirakawa (2006) for the MPS method. 

As discussed above, either of the form of Eq. (3.2.3) with 0 or the one 

with 1 does not work well in the cases for breaking waves.  The root cause of the 

problem, based on the observation of numerical results, is that the distribution of the particles 

becomes over-distorted.  This sub-section will present some results indicating that the 

problem may be overcome by choosing appropriate value for  . 

For this purpose, one needs to define an indicator that reflects the level of distortion of 

particle distribution.  The particle number density (PND) will be chosen as the indicator.  

That is because the change in the PND at inner particles defined in Eq. (3.3.8) can reflect the 

feature of particle distributions.  At the beginning, the difference between the largest and the 

smallest PND of inner particles is a given value depending on the initial distribution of 

particles.  It is very small if the initial distribution is almost uniform.   With increase in the 

level of distortion of particle distribution, the difference between the largest and the smallest 

PND will grow.   The larger the difference, the severer the distortion is. 

To show how the PND changes, a dam breaking problem is considered. This is a classical 

case for studying violent free surface flow, which has been numerically simulated by many 

researchers using various methods, such as Monaghan (1994) and Koshizuka and Oka (1996).  

The geometry used here is similar to that in Koshizuka and Oka (1996). In this case, the 

parameters with a length scale are nondimensionalised by the water depth d and the time is 

nondimensionalised by gd / . So the ratio of the length to the height of the water column 

confined by a plate is 0.5 with the total length of the tank being 2. The plate is lifted off at τ 

=0 instantaneously. To model this case, the distribution of particles is in uniform at beginning 

and the particle number along the z direction is 50, which yields the total particle number 

being 1,551. And the time step   is chosen as 0.004.   Because the aim here is to show 
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Fig. 3.3.6 Effects of different   on the PND in dam breaking cases 



 
 

56

the effectiveness of  ,  the change in particle number and time step is not considered, 

though it is believed that the values chosen here are sufficient according to the numerical tests 

given below. The time histories of the ratios of the maximum and minimum values of the 

intermediate PND to the initial PND for inner particles excluding the free surface particle are 

recorded at each intermediate time step.  They are plotted in Fig. 3.3.6 (a) for the cases with 

0  and  =0.1. One can see from this figure that the maximum ratio fluctuates at about 

1.7 and the minimum ratio change around 0.5 for the case with 0 . The difference 

between them is about 1.2.  On the other hand, the difference between the maximum and 

minimum ratios for the case with 1.0 is about 0.4 and tends to be consistently smaller 

with increase of time.  The effect of   is further illustrated by using Fig. 3.3.7, where the 

configurations of particles at the same instant for 0  and 1.0  are plotted and two 

small areas are enlarged in the figure.  The distribution of the particles in the enlarged areas 

for 1.0  is more uniform than that for 0 .  These observations show that the particle 

distribution in the case with 1.0  is better than in the case with 0 and the former is 

likely to lead to better results. 

The cases with other values of 1.0  are also investigated.  The similar results can be 

obtained with  =0.1,  =0.2 and  =0.3 shown in Fig. 3.3.6 (c).  However, when 

4.0 , the difference between the maximum and minimum PND is found to be large after a 

period of simulation even though it is small at the beginning.   This feature is illustrated in 

Fig. 3.3.6 (b) for the case with 6.0 .  It can be seen from this figure that the maximum 

and minimum ratios are almost the same from 0 to about 5.0 but in the area near 

57.0  the difference reaches 1.5 with the maximum PND being 2.2 and the minimum 

PND being 0.7. Although the difference becomes smaller again after 65.0 , the results for 

the flow is not right any more due to the error produced when it is large in the earlier steps.  

Based on these numerical investigations, the acceptable value of   is in the range from 0.1 

and 0.3.  In this study,   is chosen as 0.1.  Nevertheless, the appropriate value may 

different for other cases not considered in this study. 
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 (a) 0.0  

 

(b) 1.0  

Fig. 3.3.7 Configurations of particles for the cases with different value of   

 

3.4 MLPG_R Formulation for 3D cases 

In MLPG_R method for 3D cases, the whole computational domain is also discritized by 

lots of particles, which are again separated into three groups: wall particles, free surface 

particles and inner particles.  The MLPG_R formulations for 3D cases are similar to those 

described in Chapter 3.3.  The main difference is the integration domain. Therefore, details 

will not be repeated here. Only the difference will be described as follows. 

 In the 3D formulation, the test function is also taken as the solution of Rankine source, the 
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expression of the solution for Rankine source for 3D cases is  

1
(1 / )

4 IR r


                                                          (3.4.1) 

Using the same techniques as those adopted in 2D cases, Eq. (3.3.2) will be simplified and the 

differences between the 2D and 3D are the coefficients in Eqs. (3.3.4) and (3.3.6). In 3D cases, 

they are 
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Using Eqs. (3.4.2) and (3.4.3), Eq. (3.3.2) can be rewritten as: 
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                (3.4.4)  

where the increment of the density is also replaced by the particle number density as done in 

2D cases.  Based on the experience in 2D cases, a small value coefficient   is taken as 0.1 

for all 3D cases.  The method to discritize Eq. (3.4.4) is very similar to 2D cases and 

therefore only brief description will be given in the following section for completeness. 

Substituting Eq. (3.3.11) into Eq. (3.4.4), it follows that: 

][]ˆ[][ IIJ FpK                                                          (3.4.5) 

where p̂ is the vector formed by the nodal value of pressure pI and the elements of the 

Matrixes KIJ and FI are given by 

)()( xRdSnxK JIJIJ
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                                            (3.4.6) 
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                                  (3.4.7) 

where particle I is an inner water particle; and particle J are those influencing particle I, 

determined by the weight function Eq. (3.3.17). Employing with the test function Eq. (3.4.1), 
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the sphere surface integral in Eq. (3.4.6) can be rewritten as: 
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                                  (3.4.8) 

The domain integral over the sphere in Eq. (3.4.7) can also be simplified to: 
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
 

                                 (3.4.9) 

where (*)
ru  is the radial component of (*)u


,   and   are defined in Fig. 3.4.1. 

 

3.4.1 Numerical technique for evaluating domain integrals 

 

 

Fig. 3.4.1 Illustration of division of an integration domain 

 

  In previous Chapter 3.3.2, a semi-analytical technique has been applied to 2D problems and 

proved to be sufficiently accurate and more efficient than Gaussian quadrature. This technique 

will be extended to 3D cases here.  For this purpose, let us consider a spherical domain with 

a radius of RI , which is centred at (x0, y0, z0) (Fig. 3.4.1) and divided into 8 sub-domains. 

Over each sub-domain, e.g. 0-1-2-5, the intermediate velocity components are assumed to be 

linear with respect to coordinates and given by 
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I
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Cww 000(*)
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
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
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                                (3.4.10c) 

    

where ( (*)(*)(*) ,, wvu ) are the intermediate velocity components at targeted point (x, y, z) in the 

sub-domain 0-1-2-5; and ),,( (*)
0

(*)
0

(*)
0 wvu are those at its centre point 0. uzuyux CCC ,, , 

vzvyvx CCC ,,  and wzwywx CCC ,, are constants, which are determined in such a way that the 

velocity components equal to those at Point 1, 2 and 5.  Taking the x-component as an 

example, one should have 

Iuzuyux RuuzzCyyCxxC )()()()( (*)
0

(*)
1010101  (3.4.11a)

Iuzuyux RuuzzCyyCxxC )()()()( (*)
0

(*)
2020202  (3.4.11b)

Iuzuyux RuuzzCyyCxxC )()()()( (*)
0

(*)
5050505                         (3.4.11c) 

which yields 

(*)
0

(*)
1 uuCux                                                          (3.4.12a) 

(*)
0

(*)
2 uuCuy                                                          (3.4.12b)                 

(*)
0

(*)
5 uuCuz                                                          (3.4.12c) 

Similarly, if taking the y-component as an example, one should have 

Ivzvyvx RvvzzCyyCxxC )()()()( (*)
0

(*)
1010101 

                        (3.4.13a) 

Ivzvyvx RvvzzCyyCxxC )()()()( (*)
0

(*)
2020202  (3.4.13b)

Ivzvyvx RvvzzCyyCxxC )()()()( (*)
0

(*)
5050505                          (3.4.13c)                 

which will lead to 

(*)
0
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1 vvCvx                                                          (3.4.14a) 

(*)
0

(*)
2 vvCvy                                                          (3.4.14b)                 

(*)
0

(*)
5 vvCvz                                                          (3.4.14c) 

Similarly, if taking the z-component as an example, one should have 

Iwzwywx RwwzzCyyCxxC )()()()( (*)
0

(*)
1010101 

                      (3.4.15a) 
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Iwzwywx RwwzzCyyCxxC )()()()( (*)
0

(*)
2020202  (3.4.15b)

Iwzwywx RwwzzCyyCxxC )()()()( (*)
0

(*)
5050505                        (3.4.15c)                 

which will yield 
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(*)
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(*)
2 wwCwy                                                         (3.4.16b) 

(*)
0

(*)
5 wwCwz                                                         (3.4.16c) 

Substituting Eqs. (3.4.12), (3.4.14) and (3.4.16) into Eq. (3.4.10) results in 
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Thus the velocities ( (*)(*)(*) ,, wvu ) in the sub-domain 0-1-2-5 are estimated by Eq. (3.4.17).  

The velocities in other sub-domains can also be estimated in this way. The only difference is 

that they may be related to the velocities at Points 3, 4 and 6, depending on which sub-domain 

is concerned. Consequently, the velocities at any point in the sphere are determined by those 

at only 7 points (0, 1, 2, 3, 4, 5 and 6). The relationship between (*)
ru and ( (*)(*)(*) ,, wvu ) is 

listed as follows: 

 cossinsincossin (*)(*)(*)(*) wvuur                                  (3.4.18) 

Based on this, the spherical integration in Eq. (3.4.9) can be discretized at every sub-domain: 
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where 4iN , 2jM  and 15   .  

Substituting Eqs. (3.4.17) and (3.4.18) into Eq. (3.4.19), the spherical integration evaluated 

analytically at the first sub-domain 0-1-2-5 is given by 
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                  (3.4.20) 

Consequently in the same way, the spherical integration at sub-domain 0-2-3-5 can be 

obtained by 
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the spherical integration at sub-domain 0-3-4-5 can be obtained by 
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the spherical integration at sub-domain 0-4-1-5 can be obtained by 
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the spherical integration evaluated analytically at the first sub-domain 0-1-2-6 is given by 
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the spherical integration at sub-domain 0-2-3-6 can be obtained by 
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the spherical integration at sub-domain 0-3-4-6 can be obtained by 
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                (3.4.26) 

 

the spherical integration at sub-domain 0-4-1-6 can be obtained by 
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Added all the results together, the Eq. (3.4.19) can be rewritten as 
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              (3.4.28) 

It can be seen that the integral over each local spherical domain is determined by the 

velocities only at six points rather than at least at 64 Gaussian points if the Gaussian 

quadrature would be employed. 

 

3.4.2 Numerical technique for evaluating surface integrals 

The integral of Eq. (3.4.8) regarding the shape function is an integral over a curve in 2D 

cases, which was estimated by using Gaussian quadrature in Ma & Zhou (2009).  For 3D 

cases, if using the same way, it will need 28M Gaussian points assuming the spherical 

surface is divided into 8 quadrants, where M is the number of Gaussian points corresponding 
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to each variable of the integral in one quadrant.  Later, it will be shown that M≥3, indicating 

that at least 72 Gaussian points over the whole spherical surface of the local domain are 

required, which would be very time consuming if the Gaussian quadrature is still used.  

Therefore, a new numerical technique is developed to evaluate the spherical surface integral 

in Eq. (3.4.8), which is similar to that for evaluating the domain integral described above but 

based on a different approximate function.  To introduce the technique, the integral in Eq. 

(3.4.8) is rewritten as  
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                                      (3.4.29) 

where 4iN , 2jM  and 15    and the subscript of  is dropped without affecting its 

meaning. That is, the integration is first performed over each of 8 quadrants and then the 

results are added together, similar to what have been done for obtaining Eq. (3.4.28). 

 

 

Fig.3.4.2 Illustration of integration domain in  -  plane 

 

The shape function   in the integrand in Eq. (3.4.29) is the function of   -  and thus it 

may be transformed to the   -  plane that may be split into 8 patches as illustrated in Fig. 

3.4.2.   It is noted, however, that the shape function  is the same for any values of  when 

0 or   because it corresponds to a single point 5 or 6 in Fig. 3.4.1.  Consider the 

shape function   in the quadrant 1-2-5 in Fig. 3.4.1 or the patch near the origin in Fig. 3.4.2, 

we may approximate it by using 

 

 DCBA                                                 (3.4.30)                   

where A, B , C and D are constants.  They can be determined by using the fact that the shape 
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function should be equal to 5 at 0 and 0  or 2/  ; equal to 1 at 2/  and 

0 ; and equal to 2 at 2/  and 2/  , where the subscripts of   refer to the 

number in Fig. 3.4.1, that is 

  

A5                                                              (3.4.31a)                  

2/5 CA                                                      (3.4.31b)                  

2/1 BA                                                       (3.4.31c)                 

 22 2/2/2/  DCBA  .                                       (3.4.31d)                 

 

It follows that 

5A                                                              (3.4.32a)  

0C                                                                (3.4.32b)                 

)(
2

51 


B                                                       (3.4.32c)                

 122

4



D                                                      (3.4.32d)                 

 

Substituting Eq. (3.4.32) into Eq. (3.4.30) yields  







)(
4

)(
2

122515                                 (3.4.33)                

which is the approximate expression of the shape function in the first sub-domain 1-2-5 in Fig. 

3.4.1 or the patch near the origin in Fig. 3.4.2. 

 

The integral of Eq. (3.4.29) over the sub-domain 1-2-5 is then given by 
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dd                                 (3.4.34)                  

 

Similarly, the integration of Eq. (3.4.29) over sub domain 2-3-5 is given by 
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Similarly, the integration of Eq. (3.4.29) over sub domain 3-4-5 is given by 
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Similarly, the integration of Eq. (3.4.29) over sub domain 4-1-5 is given by 
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Similarly, the integration of Eq. (3.4.29) over sub domain 1-2-6 is given by 
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Similarly, the integration of Eq. (3.4. 29) over sub domain 2-3-6 is given by 
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Similarly, the integration of Eq. (3.4. 29) over sub domain 3-4-6 is given by 
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Similarly, the integration of Eq. (3.4. 29) over sub domain 4-1-6 is given by 
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The integration over other sub domains can be obtained in the similar way and the sum of 

these results over whole spherical plane domain is given by 

))(42()(2sin 654321

2

0 0
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

dd                      (3.4.42) 

 

It is noted that the integral in Eq. (3.4.42) is only related to the shape function at six points, 

compared with at least 72 points if the Gaussian quadrature is employed.  Therefore, the 

CPU time spent on evaluation of the integral will be dramatically reduced, which will be 

demonstrated in the later section. 
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3.4.3 Effectiveness of the semi-analytical technique for surface integrals 

As pointed above, the main aim of developing this semi-analytical technique for evaluating 

the surface integral given in Eq. (3.4.42) is to reduce the computational time while 

maintaining the same or similar accuracy of results.  This will be demonstrated in this 

section by modelling two examples using the Gaussian quadrature and the semi-analytical 

technique for estimating the surface integral with all others being the same.  Again in 

following cases, the parameters with a length scale are nondimensionalised by the water depth d, 

the pressure by gd  and the time by gd / . In the first example, a static case is considered 

in which the solution for pressure is just the hydrostatic pressure.  A tank with the height, 

length and width being 2, 3 and 1, respectively, is used. A schematic view of the tank is 

shown in Fig.3.4.3, where grey particles and blue particles represent wall particles and water 

particles, respectively. To make it clearer, only those of boundary particles on the right wall, 

the left wall and the bottom are plotted in the Fig.3.4.3.  The particles are uniformly 

distributed initially in all the directions. The number of particles along z-direction is 

represented by Nz, Nz is equal to 10 in this case. The total water particles are 2,900 excluding 

the particles on boundaries and 5,260 including those on the boundaries.  

 

 

Fig.3.4.3 A schematic view of the tank 
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Table 3.4.1 Comparison of CPU time required by using different methods to evaluate the 

surface integral (GQ: Gaussian quadrature) for a static case 

Method Semi- 

analytical 

32 Gauss 

points (GQ)

72 Gauss 

points (GQ) 

Average CPU time 

in one time step 

1 5.67 11.17 
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Fig.3.4.4 Comparison of static pressure obtained by using the Gaussian quadrature and the 

semi-analytical technique for estimating the surface integral 

 

Figs. 3.4.4a, b and c present the pressure distribution along a vertical line in the middle of the 

tank after running 200, 400 and 600 time steps, respectively.  It can be seen from these 

figures that the results are almost the same, which indicates that the semi-analytical technique 

produces the same results as the Gaussian quadrature.   The CPU time required for forming 

Matrix K and F in Eq. (3.4.5) in the cases shown in Fig. 3.4.4 is summarised in Table. 3.4.1, 

where the CPU time is divided by the CPU time required by the semi-analytical technique.   

This table shows that the CPU time required by the Gaussian quadrature is at least 5 times 

longer than that required by the semi-analytical technique.   
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In the second example, the propagation of a solitary wave is modelled, again by using the 

semi-analytical technique and Gaussian quadrature with 32 (M=2) and 72 (M=3) Gaussian 

points, respectively.  The solitary wave is generated by a piston-type wavemaker according 

to the theory given by Goring (1978).  The numerical water tank and coordinate system are 

shown in Fig. 3.0.1, the water depth at the flat seabed is 1; the width of the tank is 0.5; L1=10 

and the angle of the slope is 1:15. The wave height targeted is h =0.45.   For this case, the 

particle number along z-axis, i.e., Nz, is 20, which yields 89,492 particle totally.  These cases 

are run up to 500 time steps with the length of 0.02 each step.  Wave profiles at 6 different 

instants are compared in Fig. 3.4.5.  From this figure, one may see that the results of 

Gaussian quadrature with 32 Gaussian points are very different from these of Gaussian 

quadrature with 72 Gaussian points.  The later is very similar to those obtained by using the 

semi-analytical technique.  This indicates that at least 72 Gaussian points are required to 

compute the integral in Eq. (3.4.8) in this case.   It is highly likely that such a number is 

needed for modelling other 3D violent waves, which has been confirmed for cases we 

considered so far.   This also indicates that the semi-analytical technique can produce results 

that are as accurate as the Gaussian quadrature with 72 Gauss points.  Similar comparison of 

CPU time to that shown in Table. 3.4.1 is made in Table. 3.4.2.  This table demonstrates that 

the CPU time required by the semi-analytical technique is only 1/17.65 of that required by the 

Gaussian quadrature with 72 Gauss points to achieve acceptable results.  Although the CPU 

time required for the case with 32 (M=2) Gaussian points is only half of that with 72 (M=3), 

the accuracy of the former is not satisfactory.    
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Fig. 3.4.5 Comparison of wave profiles at different instants obtained by using the 

semi-analytical technique and the Gaussian quadrature with 32 and 72 Gaussian points, 

respectively. 

 

Table 3.4.2 Comparison of CPU time required by using different method to evaluate the 

surface integrals (GQ: Gaussian quadrature) for a dynamic case 

Method Semi-analytical 32 Gauss 

points (GQ) 

72 Gauss 

points (GQ) 

Average CPU time 

in one time step 

1 8.57 17.65 

 

Investigations on these static and dynamic cases demonstrate that the semi-analytical 

technique spends only a small fraction of the CPU time spent by the Gaussian quadrature to 

achieve the results with a similar accuracy.  This advance allows to model 3D breaking 

waves on a normal PC within a reasonable time, which has proved impossible if using the 

Gaussian quadrature. 
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4 NUMERICAL TECHUNIQUES FOR IDENTIFYING PARTICLES ON 

FREE SURFACE 

 

The mathematical models and some key numerical techniques adopted in MLPG_R method, 

including the detailed discretizations of pressure governing equation for inner particles have 

been described in Chapter 3.  This chapter presents the numerical technique developed to 

identify free surface particles. 

 

4.1 Introduction 

In order to find solution for pressure by using the governing equation Eq. (3.3.10) for 2D 

cases and Eq. (3.4.4) for 3D cases in Chapter 3, all the particles need to be sorted into three 

groups: those on rigid boundaries (referred as wall particles), those on the free surface 

(referred as free surface particles) and others (referred as inner particles).  The wall particles 

are always attached to the rigid boundary in this modeling.  Eq. (3.3.38) or (3.3.39) is 

applied to wall particles.  Eq. (3.3.10) or Eq. (3.4.4) is applied to the inner particles. The 

pressure at the free surface particles is specified by the condition in Eq. (3.1.5). 

For non-breaking waves, one can assume that the particles initially on the free surface 

remain on the free surface.  Therefore, the free surface particles need only to be specified at 

the first step and there is no need to identify them during the simulation. 

However, for the cases with breaking waves as considered in this study, the fluid particles 

initially on the free surface may not remain on the free surface during calculation.  Actually, 

the particles initially within the fluid can emerge on the free surface and the particles initially 

on the free surface can immerge into the inner fluid domain due to wave breaking and 

splashing.  Consequently, it is necessary to identify which particle is on the free surface 

when modeling breaking-wave cases. 

There is a similar requirement on identifying the free surface in mesh-based numerical 
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models for breaking waves, as discussed in Section 2.5. Nevertheless, the identification of 

free surface particles remains to be a big challenge in meshless methods, particularly for those 

of true meshless models without any background mesh, like the MLPG_R method.    

 

4.2 Mixed Particle Number Density and Auxiliary Function Method (MPAM) for 2D 

cases 

The approach to identify the free surface used in the MPS is named as Particle Number 

Density Method, abbreviated to PNDM in this study.  In PNDM, there is no standard rule for 

how to assign the value of  . However, all the results associated with MPS method seem to 

be promising with different values of  , like the discusses in Chapter 2.5. 

The PNDM method is also tested by using the MLPG_R method in this study. However, 

the results showed that the simple technique based on different values of   is not very 

robust.  There are always many particles that are incorrectly identified (i.e., free surface 

particles are identified as inner particles or vise versa).  The incorrect identification could 

not be rectified by simply choosing a different value for . Similar observation has also been 

described by Lee and Park (2007).  To shed some light on the reason for this, one may 

consider the examples shown in Fig.4.2.1, which illustrates particles around a steep wave 

crest.  Particle I is near the crest of a steep wave.  In this area, the particles on the free 

surface are generally much closer to each other than in other areas and so the particle number 

density associated with them can be very higher.  As a result, Particle I may be incorrectly 

identified as an inner particle rather than a free surface particle by the PNDM.  On the other 

hand, the neighbor particle of Particle J is quite far from it.  The value of the particle number 

density can be relatively smaller and so it may be incorrectly considered as a free surface 

particle even though it should be an inner particle.  In addition to these situations, two or 

three splashed particles may be very close to each other and so may also be incorrectly 

identified as inner particles though they should be considered as free surface particles for the 

sake of solving pressure. 
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To improve the robustness of identification of free surface particles, a new approach has 

been suggested (Ma & Zhou, 2009).  The approach is based on three auxiliary functions.  

The first auxiliary function is defined by  









0,0

1,1
)(_

NA

NA
Iafsp                                              (4.2.1) 

where NA represents the number of free surface particles existing in the support domain (Df) 

of Particle I in previous time step as shown in Fig. 4.2.2.  The second auxiliary function is  









3,0

4,1
)(_

NB

NB
Ibfsp ,                                             (4.2.2) 

where NB represents the number of quadrants occupied by the neighbor particles of Particle I 

in a local coordinate system originating at Particle I,  as shown in Fig. 4.2.2.  

 

 

Fig. 4.2.1 Two typical examples of incorrect identification of free surface particles.   

(Solid circle represents free surface particle identified by the PNDM; hollow one represents 

inner particle identified by the PNDM; dash circle represents support domain). 

 

 

Fig. 4.2.2 Local coordinate system at Particle I (inner circle denotes integration domain of the 

particle; outer circle denotes the support domain on it) 
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The third auxiliary function is given by  









3,0

4,1
)(_

NC

NC
Icfsp   ,                                        (4.2.3) 

where NC represents the number of colored rectangles in Fig. 4.2.2 in which there is at least 

one fluid particle.   

If one of following conditions is met when they are checked sequentially, Particle I is 

identified as a free surface particle. 

(a) no inner particle in Df except for I; 

(b) 97.0I  and 1)(_ Iafsp ; 

(c) 97.0I , 1)(_ Iafsp  and 0)(_ Ibfsp ; 

(d) 97.0I , 1)(_ Iafsp  and 0)(_ Icfsp . 

Satisfying the condition (a) indicates that the particle concerned is in the group of particles 

which belong to the part of splashing fluid.  The condition (b) identifies those free surface 

particles with at least one neighbour particle on the free surface.  The condition (c) and (d) 

picks up those free surface particles with sufficient large number of neighbour particles but 

with no particle in a sufficient large part of its support domain.  This approach will be called 

as Mixed Particle Number Density and Auxiliary Function Method, abbreviated to MPAM. 

Using this new approach, the wrong identification of the free surface particles may be 

suppressed.  For the Particle I in Fig. 4.2.1, there is more than one free surface particle in its 

support domain, and a large part of its support domain is not occupied by any particle. As a 

result, 1)(_ Iafsp ,  0)(_ Ibfsp  and it will be identified, by applying Condition (b) or 

(c), as a free surface particle no matter what is the value for  . For Particle J shown in Fig. 

4.2.1, there are no free surface particles existing in its support domain and so 0)(_ Iafsp . 

Therefore, even though 97.0I  for the particle, no one of four conditions will be met and 

thus Particle J is not identified as a free-surface particle. 
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4.3 Effectiveness of MPAM for identifying the free surface particles 

In this sub-section, some numerical results will be presented to show that the MPAM works 

better than the PNDM.  Two cases are used for this purpose.  The first case is that used in 

Chapter 3.3.3, which is a typical 2D dam breaking case.  The case is simulated by using the 

MPAM and the PNDM, respectively.  Particle configurations obtained by using the two 

different techniques at an instant are shown in Fig. 4.3.1.  Fig. 4.3.1 (a) is the results 

corresponding to the PNDM while Fig. 4.3.1 (b) is these corresponding to the MPAM.  This 

figure clearly demonstrates that many inner particles are incorrectly identified as free surface 

particles by the PNDM but are correctly judged as inner particles by the MPAM.  It also 

shows that the PNDM assigns some free surface particles to inner particles in the enlarged 

area but the MPAM does not make such a mistake.  

 

(a) PNDM  

 

(b) MPAM 

Fig. 4.3.1 Comparisons of particle configurations obtained by using different free surface 

identification techniques (black color: free surface particles; grey or blue color: wall particles 

or inner particles) 
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Fig. 4.3.2 Snapshots of the water particles in pre-breaking stage 

(Blue particles: inner water particle; Black particles: free surface particle; Grey particles: 

sloping seabed and Red line: experiment data (Li & Raichlen, 1998)) 

 

The second case considered here is that used in Chapter 5.1 which is the solitary wave 

propagates from flat seabed to a mild beach. Here a series of particle configurations in the 

area of wave crest profiles are focused on to show the effectiveness of MPAM, others details 

can be referred to Chapter 5.1.  The results in Fig. 4.3.2 and Fig. 4.3.3 are obtained based on 

the particle number along z direction on the flat seabed being 30, i.e. Nz=30.  Four constant 

snapshots together with the experiment data (Li & Raichlen, 1998) are plotted in Fig. 4.3.2, 
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from which one may notice that the free surface particles (the black ones) have been 

accurately tracked regardless of how violent deformability the wave profiles are. Even for the 

wave profiles in the post-breaking situations, the MPAM can still find the free surface 

particles accurately as shown in Fig. 4.3.3.  Furthermore, the free surface particles around 

the air cavity are correctly identified as well.  From the wave propagation to formation of 

plunging jet and from pre-breaking stage to post-breaking stage, there is almost only 

one-particle layer identified as free surface particle. Hence the free surface boundary 

conditions can be correctly applied to the free surface particles, which to some extent 

guarantee the high accurate numerical simulation of breaking wave using MLPG_R method. 

 

 

 
Fig. 4.3.3 Snapshots of the water particles in the post-breaking stage 

(Blue particles: inner water particle; Black particles: free surface particle; 

Grey particles: sloping seabed) 

 

4.4 Mixed Particle Number Density and Auxiliary Function Method (MPAM) for 3D 

cases 

In the above sub-section, a technique (called as MPAM) for identifying free surface 

particles and its effectiveness have been presented. This method can be easily extended to 3D 

cases.  In MPAM for 2D cases, the support domain of every targeted particle is divided into 

four sub-domains and four rectangles.  Then based on the local neighbour particles’ 

configurations and particle number density, the targeted particle will be judged as free surface 
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particle or not.  In MPAM for 3D cases, some necessary modifications have been made to 

simulate the 3D violent breaking waves, the auxiliary functions in the MPAM method have 

also been extended to 3 dimensional forms (Zhou & Ma, 2010).  The support domain of a 

targeted particle, which is a sphere in 3D cases, is divided into eight sub-domains and six 

cylinders.  Then again, based on the local neighbour particles’ configurations and particle 

number density, the targeted particle will be identified as free surface particle or not.  The 

details are follows: 

 

 
Fig. 4.4.1 Local domain at Node I for the definition of auxiliary function  

(the inner sphere denotes integration domain of the particle; the outer sphere denotes the 

support domain; the 6 coloured cylinders have the same diameter as the inner sphere) 

 

Similar auxiliary functions should also be defined in 3D MPAM. The first auxiliary function, 

which is the same as Eq. (4.2.1) for 2D cases, is defined by  









0,0

1,1
)(_

NA

NA
Iafsp                                            (4.4.1) 

where NA represents the number of free surface particles existing in the support domain (Df) 

of Node I in previous time step.  The second auxiliary function is now given by 









7,0

8,1
)(_

NB

NB
Ibfsp ,                                            (4.4.2) 

where NB represents the number of quadrants occupied by the neighbor particles of Node I in 

a local coordinate system originating at Node I,  as shown in Fig. 4.4.1.  

The third auxiliary function is changed to  

 

I
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







5,0

6,1
)(_

NC

NC
Icfsp   ,                                          (4.4.3) 

where NC represents the number of colored cylinders in Fig. 4.4.1 in which there is at least 

one fluid particle.   

 

If one of following conditions is met when they are checked sequentially, Node I is identified 

as a free surface particle. 

(a) no inner particle in Df except for I; 

(b)  I  and 1)(_ Iafsp ; 

(c)  I , 1)(_ Iafsp  and 0)(_ Ibfsp ; 

(d)  I , 1)(_ Iafsp  and 0)(_ Icfsp . 

In 2D cases,   is equal to 0.97; but in 3D cases, the value of   is slightly adjusted to 

0.9, which can give better results according to our numerical tests. The effectiveness of 

MPAM in 3D cases will be shown in later chapters related to 3D cases. 
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5. NUMERICAL SIMULATION OF DAM BREAKING 

 

As a classic test case for violent free surface flows, dam breaking cases have been 

experimentally and numerically studied by many researchers. In practices, the dam breaking 

problems can be approximately regarded as a green water problem. The knowledge revealed 

by studying dam breaking benefits the understanding of the green water impact. This chapter 

presents the numerical simulations of dam breaking using the MLPG_R method. Both 2D and 

3D cases are considered. The accuracy and convergence properties of the MLPG_R in such 

problems are of most concern.  The parameters with a length scale are nondimensionalised 

by the initial water depth d and the time by gd / . 

 

5.1 Two dimensional dam breaking 

A 2D dam breaking case has been presented in previous chapters for verifying some 

numerical techniques. More details will be presented here to show the overall accuracy of the 

MLPG_R methods.  The problem definition is sketched in Fig. 5.1.1 with a rigid gate 

holding the water column initially. The vertical particle number Nz is chosen as 50 in this case, 

the total number of particle and water particle number are 1,551 and 1,250, respectively, and 

the time step is 0.008. 

 

Fig. 5.1.1 Dam breaking: problem definition 

 

0.5d 1.5d 

d=1Water 

column 
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Fig. 5.1.2(a) Snapshots of free surface at different time steps 

(grey particles: wall; the black ones: free surface particles) 

 

Configurations of the free surface at different time steps are shown in Fig. 5.1.2.  The 

water column begins to collapse when the rigid gate is suddenly removed at 0 . At 

48.0 and 36.1  the collapsing water is running on the bottom of the tank, then 
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impinge on the right wall just before 6.1 . From 6.1  to  =4, the water impinges on 

the right wall and goes up along the right wall forming a thin film attached to the vertical wall. 

The water column gradually lose its momentum and begin to come down at  =3.52.  The 

falling water jet hits the free surface after  =4 and a reflected water jet is formed at  = 4.8; 

the jet hits on the left wall at  =5.36. The water goes up along the left wall after the 

impinging at  =6.48.  In order to show the efficiency of free surface particles identification 

method (MPAM), the free surface particles are also plotted separately using the black color. 

Through Fig. 5.1.2, one can clearly see that the free surface particles are tracked accurately 

regardless of how violent the free surface profile is. 
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Fig. 5.1.2(b) Snapshots of free surface at different time steps  

(grey particles: wall; the black ones: free surface particles) 

 

The predicted horizontal location of the free surface along the bottom wall are compared 
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with the experimental data from Martine and Moyse (1952) & Koshizuka et al. (1995) and 

other numerical results, i.e. Miyata & Park (1995), Hirt & Nichols (1981) and Lv et al (2010). 

For the purpose of comparisons, they are all plotted in Fig. 5.1.3. As can be seen, the present 

results agreed well with other two numerical ones, i.e. Miyata & Park (1995) and Hirt & 

Nichols (1981). Furthermore, the three numerical results seem to be different from the 

experimental data. This is mainly due to two facts: one is that the initial friction of right-hand 

side of the water column is different between the experiments and simulations when the rigid 

gate is suddenly removed; the other one is that the effect of air on the free surface is not taken 

into account in the numerical modeling. Obviously, the results of Lv et al (2010) are much 

closer to the experimental data thanks to the consideration of gaseous phase with complex 

numerical methods.  
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 Fig. 5.1.3 Comparing the motion of the leading edge with other simulated results and 

experiment data 
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5.1.1 Convergent investigation on different values of  /x  

 

0 0.5 1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

4

t(2g/L)1/2

Z
/L

 

 
x/=1

x/=2.5

x/=3.33

x/=5

x/=10

L

Z

 

Fig. 5.1.4 Comparing the motion of the leading edge corresponding different values 

of  /x  

 

Convergent tests are now shown on the case in Fig. 5.1.4. Following the previous 

experience at Chapter 4 and Chapter 5, the different ratios of x to  are investigated. In the 

investigations, the representative distance x is chosen as 0.02, corresponding to the particle 

number along z-direction (Nz) being 50.  The values of  /x are chosen as 1, 2.5, 3.33, 5 

and 10, respectively.  The motion of the leading edge corresponding to different values of 

 /x  is plotted in Fig. 5.1.4. One can see that there is no obvious difference between these 

results except minor difference existing in the results of  /x =1 compared to others.  

Furthermore, when  /x =1, there is a non-physical phenomenon happening, which some 

water particles penetrate the solid wall when the water jet hitting the right wall shown in Fig. 

5.1.5. The probable reason may be that the time step is a little bigger; the water particles 

cannot be effectively stopped by the interaction between the wall particles and water particles. 

Based on these reasons, one may conclude that results of 5.2/  x are considered to 
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model the process well and are convergent. The free surface profiles are also numerically 

investigated to show how the results are affected by the values of  /x . The comparisons 

are plotted in Fig. 5.1.6. From the time  =1.2 to  =4, i.e. from the water column beginning 

to collapse to water column coming down along the right side wall after hitting the right wall, 

the four sets of numerical results are in good agreement with each other. But after that from 

the last two sub-figures in Fig. 5.1.6, obvious difference can be observed between the results 

of  /x =1 and others results, the jet shape and location are different and a little lower than 

others at  =4.8.  Hence based on above numerical investigations, similar conclusion can be 

drawn that the results of 5.2/  x may be considered as convergent for simulation of free 

surface profiles in the 2D dam breaking case. 
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Fig. 5.1.5 Non-physical occurrence with  /x =1 
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Fig. 5.1.6 Comparing free surface profiles corresponding to different values of  /x  

 

5.1.2 Convergent investigation on different space increments x  

The effect of x  on the convergence properties of the MLPG_R in modeling the case 

shown in Fig. 5.1.3 is also investigated. In the investigation, constant  /x =2.5 is chosen. 
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The values of x are 0.04, 0.025, 0.02 and 0.0167, respectively. The corresponding particle 

numbers along z-axis (Nz) are 25, 40, 50 and 60, respectively. 
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Fig. 5.1.7 Comparing free surface profiles corresponding to  

different values of x with 5.2/  x  
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Six instant snapshots of the free surface profiles are shown in Fig. 5.1.7.  It can be seen 

that the four sets of results are very close to each other, although there is some small 

differences between the results of x =0.04 and others after the water column beginning to 

come down along the right wall.  Hence, 04.0x with 5.2/  x  can be used to find 

the satisfied results for the free surface profiles in the 2D dam breaking case. 

 

5.2 Three-dimensional dam breaking  

Similar to 2D dam breaking problem, 3D cases have also been studied experimentally and 

numerically by many researchers, such as Kleefsman et al. (2005).  For convenience of 

comparing numerical results with experimental data, the parameters presented in this 

subsection are all dimensional.  In the case, a rectangle tank (Fig. 5.2.1) with dimensions of 

3.22 1 1   m is used. A water column, whose length, width and height are 1.228m, 1m and 

0.55m, respectively, is initially held on the right side of the tank by a rigid gate.  A box-type 

obstacle is mounted facing the water column. The distance between the centre of the obstacle 

and the left vertical wall of the tank is 0.744 m.  On the surface of the obstacle, various 

pressure transducers are installed.  The locations of those pressure transducers are illustrated 

in Fig. 5.2.2.   In the experiment by Kleefsman et al. (2005), four probes (whose locations 

are H1, H2, H3 and H4 shown in the Fig. 5.2.1 and Fig. 5.2.3) are used to record the time 

history of the wave height.  The geometry of the system is described in Fig. 5.2.3.  Based 

on the convergence investigation of 2D dam breaking case and considering 3D computational 

efficiency, in this case, the spatial distance between two particles are taken as 0.022m (Nz=25, 

dimensionless space increment 04.0x ) and the time step dt as 0.00189s (equivalent 

dimensionless time step 008.0 ) is used. The total number of water particles and total 

number of particle numbers are 63,000 and 87,589, respectively.  The simulation time step is 

4,200, yielding duration up to 6 seconds.  The total CPU time is about 31 hours in normal 

PC with Inter (R) Core(TM) 2 Duo CPU E7500 @ 2.93GHz (one CPU is used) and 2.93G 

RAM in Microsoft system. 
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Fig. 5.2.1 Schematic view of the tank and the obstacle (unit: m).  

 

 

Fig. 5.2.2 Details of the obstacle and the pressure transducers (unit: m) 

 

 

Fig. 5.2.3 General description of the system: top (top picture) and side (bottom picture) views 
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Fig. 5.2.4 Snapshots of the free surface at (a) t=0.227s (b) t=0.493s and (c) t=0.701s. 

 

The numerical simulation starts when the rigid gate is released instantaneously.  Some 

snapshots of the free surface profiles are shown in Fig. 5.2.4 which demonstrates typical 

stages of the wave evolution.  In this figure, different color highlights different water height. 

When the collapsed water column hits the obstacle with very high speed (Fig. 5.2.4b), an 

impact occurs on the surface of the obstacle.  After that, the water near the front side of the 

obstacle (facing impact) is reflected by the obstacle causing relatively higher elevations (Fig. 

5.2.4c). The free surface profiles at two instants t  0.4s and t  0.56s are compared with the 

experimental photographs and the numerical results (with Finite Volume Method) by 

Kleefsman, et al. (2005) in Fig. 5.2.5 and Fig. 5.2.6.  Only the free surfaces near the obstacle 

a) 

b) 
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are plotted for clarity.  From the figures, it is found that the present results are very similar to 

the Kleefsman’s numerical ones and both the numerical results are also similar to the 

experimental profiles. 

 

 

    
   

          

Fig. 5.2.5 Comparison of the free surface profiles at t  0.4s (a: experiment, b: FVM 

numerical results, both results from Klessfsman, et al, 2005; c: present method) 
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Fig. 5.2.6 Comparison of the free surface profiles at t  0.56s (a: experiment, b: FVM 

numerical results, both results from Klessfsman, et al, 2005; c: present method) 

 

The comparisons shown in Fig. 5.2.5 and Fig. 5.2.6 demonstrate an acceptable accuracy of 

the MLPG_R method in predicting the spatial distribution of the free surface elevation at 

specific time steps. The comparison is also made for the time histories of the wave height 

recorded at different positions of the tank in order to explore its accuracy in modeling 

temporal distribution of physical quantities.  Some results are shown in Fig. 5.2.7 for the 

wave height histories recorded by Probes H2, H3 and H4. It is observed from Fig. 5.2.7 that 

the numerical results correlate very well with the experimental data.  However, a visual 

a) 

b) 

c) 
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difference exits.  Considering complexity of this problem, these agreements can be 

considered as acceptable. 
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Fig. 5.2.7 The time histories of free surface elevations at (a) for H2, (b) for H3 and (c) for H4 
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Fig. 5.2.8 Pressure time histories at (a) for P1, (b) for P2 and (c) for P3 

 

Apart from the wave profiles, another important quantity is the pressure.  It is also 

investigated.  Fig. 5.2.8 displays the time histories of pressure acting at three points on the 

front side of the obstacle shown in Fig. 5.2.2.  For the purpose of comparison, the 

corresponding experimental data (Klessfsman, et al, 2005), recorded by the pressure 

transducers located at the same places, are also plotted.  From the Fig. 5.2.8, one can notice 

that there are two pressure rises in each curve.  The first pressure rise is generated due to the 

primary impact on the obstacle after the water column collapses while the second rise occurs 

when the returning wave front hits the obstacle again from the right after it is reflected by the 

c) 
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left and then right walls. The first rise is extreme large and last for a very short period, 

demonstrating the typical impulsive feature caused by impact.  The second rise is not so 

large and grows relatively slowly.  One can also see that the shapes of the numerical curves 

are largely similar to the experimental ones.  Particularly, the numerical method does not 

only predict the first pressure rise well, but also give a good estimation to the second rise of 

experimental data. The comparisons between the numerical results and the experimental data 

or numerical results from other methods further demonstrate the capability and the accuracy 

of the MLPG_R method in modeling wave height and impact pressure caused by violent 

water waves. 
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Fig. 5.2.9 Pressure time histories at (a) for P5, (b) for P6, (c) for P7 and (d) for P8 
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Our attention is also paid to the pressure recorded on the top of the obstacle. Some results 

are displayed in Fig. 5.2.9 with the corresponding experimental data, which show that good 

agreements have been achieved.  However, it is found that the curves are not as smooth as 

those shown in Fig. 5.2.8.  To mitigate the fluctuation, the numerical smooth technique 

suggested by Ma (2005b) may be used, in which the water particles velocity are updated by 




 
N

j

n
jj

n
i

n
newi uuu

1

111
, )1(                                            (5.2.1) 

where 1
,
n
newiu is the new velocity of particle i after being smoothed, 1n

iu and 1n
ju are the 

velocities of particle i and particle j at the (n+1) time step, respectively, and particle j are 

those influencing particle i, determined by the weight function Eq. (3.3.17).   is an artificial 

coefficient; N is the total neighboring particle number. j is the shape function implemented 

by the moving least square method (the details can be seen in the Eqs. (3.3.12) ~ (3.3.18)). 

Based on the numerical tests,   is chosen as 0.1. 

  In order to show the effect of the smooth technique, two snapshots at the same instant but 

from different simulations, one without considering the smooth technique and the other 

applying the smooth technique, are plotted in Fig. 5.2.10 for comparison. From the Fig. 

5.2.10(a), one may notice that the splashed water particles are very scattered if the smooth 

technique is not applied. While the smooth technique seems to make the splashed water 

become more regular (Fig. 5.2.10 (b)).  Other than the free surface, the pressure time 

histories of the top wall particles in Fig. 5.2.2 are also investigated and the results are plotted 

in Fig. 5.2.11.  From this figure, one can see that the pressure curves become much smoother 

than those in Fig. 5.2.9, but the pressure peak in the time histories is a little lower than the 

experimental data. The reason may be that the some energy is dissipated because of the 

numerical viscosity caused by the smoothing. 
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Fig. 5.2.10 Comparison of free surface profile at the t=0.68s 

 (a) results without smoothing, (b) results with smoothing 
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Fig. 5.2.11 Pressure time histories at (a) for P5, (b) for P6, (c) for P7 and (d) for P8 
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6. BREAKING WAVES OVER NON-FLAT SEABED 

 

In this chapter, the breaking wave over non-flat seabed will be simulated by using the 

MLPG_R method combining the newly developed numerical techniques, e.g. the scheme to 

identify free surface particles.  The schematic view of the tank is shown in Fig. 6.0.1 for 2D 

cases and a Cartesian coordinate system is adopted where the x-axis is positive pointed from 

wavemaker to the beach, the z-axis is positive upwards, the origin of the coordinate is located 

on the free surface at the toe of slope unless mentioned otherwise. The water waves are 

generated by a piston-type wavemaker mounted at the left side of the numerical wave tank.  

Similar to the cases presented in Chapter 5, all the parameters with a length scale are 

nondimensionalised by the water depth d and the time by gdt / , unless mention 

otherwise. 

 

 

 

Fig. 6.0.1 Illustration of model set-up for the solitary wave 

 

In mesh-based methods, the convergence property is related to the element (or cell size) 

size in meshes or grids and time step (  ).  In the MLPG_R method, there is no mesh at all.  

Therefore, element (or cell) size is not relevant.  A similar quantity is the distance between 

particles. Unfortunately, the distance continuously varies when modeling water waves.   To 

bypass the problem, the initial distance of two adjoining particles is chosen as a representative 
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distance.  As the initial distribution of particles is uniform in the study, the representative 

distance is equal to the difference in the x- or z- coordinates of two adjoining particles, which 

is denoted by x in the following discussion. The number of particles along z-direction is 

represented by Nz. 

The two parameters ( x and  ) can be considered directly for studying the 

convergence property.  They can also be replaced by other two parameters, such as x  

and x .  The second way is chosen herein, because the later is related to the well-known 

Courant number that has a form of xct  ( gdxct t  in dimensional form) with 

tc  being a constant, as used by a number of researchers studying wave waters, for instance, 

Grilli, Guyenne and Dias (2001) and Yan and Ma (2009).  

According to the linear wavemaker theory (Goring, 1978), the solitary wave can be 

generated by specifying the wavemaker motion as follows, 

)tanh(tanh)( 


 
H

S                                                (6.0.1) 

   )(Sc                                                     (6.0.2) 

   /)11(/1log zz                                                (6.0.3) 

where )(S is the displacement of the wavemaker; H is the solitary wave height; 4/3H ; 

Hc  1  is the celerity; z is a coefficient which is assigned to be 0.002 in this study. 

 

6.1 2D breaking waves on a slope  

The case considered here is about the propagation of solitary waves over a beach with a 

slope of 1:15.  The experimental data for this case are available in Li and Raichlen (1998).  

Its experimental set-up is similar to that illustrated in Fig. 6.0.1, in which the distance 

between the wavemaker and the toe of beach is 10 and the height of the solitary wave is h is 

0.45.  In order to focus on the overturning and wave breaking process, which takes place 

over the beach, it is assumed that the instant corresponding to the wave crest being at the toe 

of the beach is 0  for this case. 
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6.1.1 Convergence investigation on different value of x  

Firstly, how the ratio, x , affects numerical results will be investigated.  For this 

purpose, the representative distance, x ,  is taken as 0.05, corresponding to Nz =20, which 

yields the total particle number of 5893. The values of x  are chosen as 2.5, 5.0, 7.0 

and 9.0, respectively. The propagation of the solitary wave is illustrated in Fig. 6.1.1 by 

snapshots at several instants, which are obtained by using different values for x .  For 

the purpose of comparison and validation, the experimental data from Li and Raichlen (1998) 

are also plotted together.  It can be seen that at about 29.9 , the wave crest becomes very 

steep; then at 87.9 , a plunging jet starts to be formed; and after this, the jet is moving 

forward and nearly impacts on the other part of the water surface in its front at time 

73.10 .   There is no experimental data after this instant.  For validation purpose, we 

only present the results until this instant here. 

It can be seen that the numerical wave profiles generally agree well with the experimental 

ones except for those corresponding to 5.2 x .  In addition, the numerical results for 

5 x  and 7 x are a bit closer to the experimental data than that for 9 x .  

That seems to imply that for a certain value of x , the time step should not be too large or too 

small.   It is easy to understand why the time step should not go beyond the upper limit but 

the reason why it is also subjected to the lower limit from the point of view of accuracy needs 

to be further studied.  Nevertheless, one should not choose too small time step in practice in 

order to save computational time if possible and so the lower limit may not be of a huge 

concern. 

It is worth noting that Yan and Ma (2009) and Grilli, Guyenne and Dias (2001) both have 

concluded that one may take 4.0tc  in xct  to simulate 2D overturning solitary 

waves using fully nonlinear potential theory for the finite element and boundary element 

simulations, respectively, which corresponds to 5.2 x .   This investigation seems to 

suggest that the time step for the MLPG_R method based on the NS equation should be 

smaller (about half in this case) than that in the methods for potential theory to achieve 
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similar accuracy.  The information is useful because it helps researchers to guess the suitable 

time step a prior from experience in using the potential theory.  

 

6.1.2 Convergence investigation based on different value of x  

Secondly, the convergence properties against the value of x are also investigated.  For 

this purpose, three different values for x  are chosen.  They are 0.05, 0.04 and 0.033, 

respectively. 5 x  is used for all cases. The corresponding numerical results are 

plotted in Fig. 6.1.2 together with the experimental data of Li and Raichlen (1998).   This 

figure indicates that all these results up to 73.10  have an acceptable agreement with the 

experimental one.  It also indicates that 05.0x  is sufficient for the results in Fig. 6.1.1. 

Nevertheless, it does not mean all the values are equally good beyond that instant.  In 

order to show this, some snapshots for later instants are plotted in Fig 6.1.3, which illustrates 

the wave profiles after the jet impacts on the front part of the water surface, called as 

post-breaking stage.  As can be observed, another jet is formed and a cavity behind the jet 

appears after the impact.  It is also observed that the profiles for 04.0x  (Nz=25) and 

033.0x  (Nz=30) are quite similar but there is a significant discrepancy between the one 

for 05.0x and others.  Although the experiential data is not available for the profiles in 

these instants, one may deduce that 05.0x may not be sufficiently small to model the 

post-breaking waves.  In other words, more particles are required to model the waves in this 

stage. 
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Fig. 6.1.1 Comparison between experimental wave profiles (Li and Raichlen, 1998) and 
numerical results for different values of x  



 
 

105

      
10.5 11 11.5 12 12.5 13 13.5

-0.2

0

0.2

0.4

0.6

0.8

1

x



Experiment
x=0.05
x=0.04
x=0.033

=9.29
x/=5

 

10.5 11 11.5 12 12.5 13 13.5

-0.2

0

0.2

0.4

0.6

0.8

1

x



Experiment
x=0.05
x=0.04
x=0.033

=9.87
x/=5

 

10.5 11 11.5 12 12.5 13 13.5

-0.2

0

0.2

0.4

0.6

0.8

1

x



Experiment
x=0.05
x=0.04
x=0.033

=10.35
x/=5

 

10.5 11 11.5 12 12.5 13 13.5

-0.2

0

0.2

0.4

0.6

0.8

1

x



Experiment
x=0.05
x=0.04
x=0.033

=10.73
x/=5

 

 

Fig. 6.1.2 Comparison between experimental wave profiles [Li and Raichlen (1998)] and 

numerical results obtained by using different x  values when 5 x  
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Fig. 6.1.3 Wave profiles in the post-breaking stage obtained by using different values of x  
at when 5 x  
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In order to further test the MLPG_R method for simulating the post-breaking wave stage, 

another case is considered, in which the incident solitary wave height is 0.4 and the slope is 

1/15. In the case, the post-breaking stage will be concentrated to highlight for comparisons as 

indicated above, more particles should be needed to simulate the post-breaking stage. So 

Nz=40 is chosen in this case, which yields the total particle number being 22,610. 5 x  

is used to choose the time step. The comparisons of wave profiles with laboratory 

photographs (Li & Raichlen, 2003) are shown in Fig. 6.1.4, where laboratory photographs are 

shown on the left column and numerical simulation results are on the right column.  From 

the figure, it can be seen that the numerical snapshots agree well with the laboratory 

photographs. Especially for the Fig. 6.1.4 (a) and (am), (b) and (bm) and (c) and (cm), the 

numerical snapshots are almost the same as the laboratory photographs.  

After the plunging jet hits the free surface, a cavity appears where the air is enclosed by the 

water in the experiments. However, in the numerical modeling, the air is not considered. That 

may be the reason why there is some differences in the two snapshots Fig. 6.1.4 (d) and (dm), 

which may further affect the shapes of air cavity and jet after that.  To improve the accuracy 

at this stage, the multi-phase flow model should be introduced in MLPG_R method, which 

will be done in the future work. 
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Fig. 6.1.4 Comparisons between laboratory photographs (Li and Raichlen, 2003) and 

numerical snapshots (right column: Blue particles: inner water particle; Black particles: free 

surface particle) 
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6.2 2D breaking waves over a submerged step 

To further validate the method, another case is considered, which has been experimentally 

studied by Yasuda, Mutsuda and Mizutani (1997).  The sketch and the coordinate system are 

illustrated in Fig. 6.2.1, in which there are three wave gauges P1, P2 and P3 located at x= 6.45, 

8.11 and 9.74, respectively, to measure the wave elevations at the different positions. The 

solitary wave height is h=0.423. The particle number (Nz) along the z-axis is 33 in the part 

before the step and is 5 over the step, respectively.  The total particle number used in this 

case is 14,806. The representative distance is chosen as x 0.03.  Taking 5 x , the 

time step is 0.006. 

The solitary wave is generated by the piston-type wavemaker amounted at the left side of 

the tank in the same way as above. At earlier stage, the solitary wave propagates towards the 

step without deformation. When it is near the step, a part of the wave is reflected and other is 

transmitted to the area over the step. The front of the transmitted wave becomes steep and a 

jet is formed. Then the wave breaking occurs. To illustrate the process, four snapshots of 

solitary wave profiles over the step at different time steps are shown in Fig. 6.2.2.  One can 

observe that the wave crest becomes steep at 67.6 ; a plunging jet is formed and almost 

hits the free surface at 81.7 .  After the jet impacts the free surface, an cavity appears and 

the second plunging jet is formed at 43.8 .  Another new air cavity appears after the 

second jet hits the free surface at 27.9 . This process is largely similar to that for the 

solitary wave propagating over a sloped beach.  
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Fig. 6.2.1 Sketch of the problem about a solitary wave propagating to and over the step 

Fig. 6.2.2 Snapshots of solitary wave evolution over the step at different time steps 
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Fig. 6.2.3 Comparisons of wave elevations between the numerical results (line) and 

experimental data (mark) (Yasuda et al, 1997) at three different gauges (P1, P2 and P3) 

 

The time histories of the wave elevations recorded at the three wave gauges are shown in 

Fig. 6.2.3, together with the corresponding data from Yasuda, Mutsuda and Mizutani (1997). 

As can be seen from the figure, the wave form recorded at Gauge P1 is still similar to a full 

solitary wave form, but the maximum wave height is higher than the height at x=0.  At 

Gauges P2 and P3, the wave elevations grows quickly but the wave height is relatively 

smaller compared with the height at x=0.  This indicates that the wave has become very 

steep or broken before the points.  As can also be seen, the numerical results are in very 

good agreement with the experimental data (Yasuda, Mutsuda and Mizutani 1997) at all the 

gauges.  That again shows that the MLPG_R method works well in the cases with violent 

breaking waves. 

Except the wave elevation, the velocity field around the step tip is also shown in Fig. 6.2.4 

when wave crest is passing by, from which it can be clearly seen that due to the existence of 

vertical step, water particles before the step have obvious upwards velocity and consequently 

increase the wave elevation. It also explains the phenomena in Fig 6.2.3 why the total wave 

elevation at wave gauge P1 is higher than the solitary wave height. A clockwise eddy can also 
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be observed above the step, the reason is that water particles are quickly passing by the step 

tip, which leads to relative less water particles and the relative lower pressure area above the 

step. Therefore, some water particles flow back from the right side to the step tip as a result of 

pressure difference. 
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Fig. 6.2.4 Velocity field around the step when wave crest is passing by 

 

6.3 3D breaking waves on a slope  

The experimental results of 3D breaking waves have not been found in the public domain 

to the best of the knowledge. However, one may agree that all 2D experiments may also be 

considered as a y-independent 3D problem to validate 3D MLPG_R methods. For this 

purpose, the same 2D case in Chapter 5.1 will be simulated in a 3D numerical wave tank. The 

width of the numerical wave tank is 0.5, the others parameters are the same as those shown in 

Fig. 6.0.1.  In order to save the CPU time for this 3D case, computational process is split into 

two stages.  The first stage starts from wave generation and ends when the wave propagates 

just to the toe of the slope (x=0 in Fig. 6.0.1).  The wave propagation in this stage is 

simulated by using the 2D model.  The second stage continues from the end of the first stage, 
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and the 3D model is employed.  It is noted that the 3D model can be used for the entire 

process, though it may need a longer CPU time. 

Following the 2D convergence property investigations, similar investigations have also 

been made for the 3D case and corresponding results will be presented as following section. 

 

6.3.1 Convergence investigation on different values of  /x  

Similar to 2D investigations in Chapter 6.1, the numerical tests will be carried out, i.e. 

,5.2/  x 5, 7 and 9 and with fixed representative distance 05.0x , which yields 

89,492 particles totally. For the purpose of better comparisons between the numerical results 

and experimental data from Li and Raichlen (1998), which should be considered as average wave 

profiles with respect to y-coordinates because they are drawn from the photographs taken during 

laboratory experiments from a side, the resulting wave profiles near the section when 

overturning occurs at four instants and at three different transverse positions (y=0, y=0.25 and 

y=0.5) are shown in Fig. 6.3.1.  One can observe that before just overturning (Fig. 6.3.1 a 

and b), all the numerical results are almost the same as the corresponding experimental data.  

At the third instant ( 35.10 ), the numerical results for 5



x

and 



x

7 are close to 

each other and both have good agreement with the experiment, but 



x

2.5 and 



x

9 seem 

have a bit quicker forward velocities compared to the experiment. This observation indicates that 

the convergence features of the 3D MLPG_R method are similar to those for the 2D case. For 

better simulation of breaking wave cases, especially for the post-breaking stages, the results seem 

to imply that for a certain value of representative distance, the time step should not be too large or 

too small. 
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Fig. 6.3.1 Comparison between experimental wave profiles (Li and Raichlen, 1998) and 

numerical results for different values of x  
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6.3.2 Convergence investigation on different values of x  

In this subsection the results obtained by using the three different values of x , i.e., 0.05, 

0.04 and 0.033 (corresponding to Nz=20, 25 and 30, respectively), with 5/  x as 

discussed. The wave profiles near the section when overturning occurs at four instants and at 

three different transverse positions (y=0, y=0.25 and y=0.5) are shown in Fig. 6.3.2.  The 

four instants are those as in Fig. 6.3.2, corresponding when the wave becomes very steep, just 

overturning, a jet appearing and a jet touching the water surface in its front.  The 

experimental data from Li and Raichlen (1998) are also shown in the Fig. 6.3.2 for 

comparisons.  The figure demonstrates that the results corresponding to different x values 

are very similar to each other and that all of them agree quite well with the experimental 

profiles. This also demonstrates that the value of 05.0x used in Fig. 6.3.1 is suitable. 
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Fig. 6.3.2 Comparisons between experimental wave profiles [Li and Raichlen (1998)] and 

numerical results obtained by using different x when 5/  x  
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Fig. 6.3.3 wave profiles in the post-breaking stage obtained by using different values of 

x when 5/  x  

 

The wave profiles at the post-breaking stage are plotted in Fig. 6.3.3.  At this stage, the 

plunging jets hit on the free surface in the front and cause splash, leading to a cavity formed 

behind the new jet. In addition, the profiles for x =0.04 (Nz=25) and x =0.033 (Nz=30) 

are very similar to each other, but have visible discrepancy with those for x =0.05, 

especially in the shape of the cavities.  This indicates that one may need more particles to 

model the post-breaking waves.  It is noted that the profiles at different y-coordinates are not 

the same, unlike what we have seen in Fig. 6.3.2.   That is perhaps because some unknown 

random factors arise due to the turbulence at the post-breaking stage. The similar 

phenomenon can be observed in laboratory experiments.  Further investigations are required 

to find the reasons in future. 
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7. SIMULATION OF VIOLENT SLOSHING WAVES 

 

  With the increasing demand for oil and natural gas, large FPSOs (Floating Production, 

Storage and Offloading System) have recently been developed quickly. Large FPSOs with 

liquid tanks of large volume may suffer from random waves frequently on the real seas. Due 

to the excitations from random waves, liquid sloshing in tanks has complicated behaviours. In 

some severe sea states, violent sloshing may yield very huge impact pressure to tank structure, 

even cause the damage of tank structures. Therefore the violent sloshing waves in tanks have 

been given lots of concerns in the past decades. Much effort has been devoted to numerically 

or experimentally study the violent wave motion in sloshing tanks and much useful 

knowledge has been accumulated. However, there are still lots of uncertainties associated 

with violent sloshing, for example, the pressure impact, the baffle effect on the sloshing wave 

and 3 directional effects. Because violent sloshing is a strong nonlinear problem, which may 

involve many complicated physical phenomena and procedure, such as breaking wave, 

splashing, formation of air pocket and air bubbles, behaviours of impact pressure and 

dynamic coupling with structural response.  Due to these, it is difficult to exactly predict 

violent sloshing motions. Therefore, the laboratorial experiments were considered as main 

tools to study the practical information of sloshing problems. However, it is not always 

possible to obtain the required information, such as the continuous spatio-temporal details of 

dynamic distributions of water flow (velocity field) and pressure, which are essential for 

studying dynamic features of sloshing motion.  Over the past decades, the numerical 

methods have been developed to address the issue. For instance, Kishev et al (2006) and 

Akyildiz & Unal (2006) adopted the finite difference method to investigate pressure impact 

problem due to the violent sloshing; Okamoto and Kawahara (1990) used the finite element 

method to analysis the 2D sloshing problems; Djavareshkian & Khalili (2006) made the 

comparison of finite volume and pendulum models for simulation of sloshing; Naito & 
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Sueyoshi (2002), Sueyoshi (2009) and Pan et al (2008) adopted MPS method to simulate 

different sloshing problems; SPH method was used by Delorme et al (2005) and Kim (2007) 

to investigate the problems.  

This chapter will present our work on modelling sloshing waves by using the MLPG_R 

method. First the mathematical model and numerical technique will be presented in Chapter 

7.1; two dimensional sloshing simulations, convergence investigation and numerical 

validation will be given in Chapter 7.2; the last section 7.3 focuses on three dimensional 

sloshing simulations and corresponding conclusions are given. 

  

7.1 Mathematical model and numerical techniques 

Similar to many numerical methods focusing on the sloshing problem, a moving coordinate 

system, following the motion of the tank, is employed. In other words, the tank is fixed with 

respective to the coordinate system. Thus the fluid flow relative to the tank will be considered. 

The governing equations in the relative system are given in the following Lagrangian form:  

0 u


 (7.1.1) 

sAugp
Dt

uD 


 21 


 (7.1.2) 

The last term in Eq. (7.1.2), sA


, represents the acceleration induced by the motion of the tank, 

which may include the translational and angular motions and expressed by 

 rr
dt

d
u

dt

Ud
As











 2  (7.1.3) 

where 


, U


 are the angular velocity and translational velocity vector, respectively, r


 is the 

position vector of the point concerned relative to the centre of the rotation (e.g. centre of gravity of 

a ship);  The compressibility is ignored in the above equations.  The position of the fluid 

particle relative to the system is determined by  

u
Dt

rD 


 . (7.1.4) 

At all the free surface particles, pressure is considered as equal to relative atmospheric 

pressure, which may be taken as zero, i.e., 

0p   (7.1.5) 

On the rigid boundary, the following kinematic and dynamic boundary conditions are 
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satisfied: 

Unun


                                                            (7.1.6) 

and 






  unUngnpn


 2.                                        (7.1.7) 

where n


 is the normal direction of the boundary surface.  

The mathematical model formed by Eqs. (7.1.1) to (7.1.6) is solved with a time marching 

procedure, which is similar to the numerical procedure for the fixed coordinate system 

detailed in Chapter 3.  Only a summary is given below. Suppose the velocity, pressure and 

the position of a particle at n–th time step (t=tn) are known, they are found at (n+1)-th time 

step by the following step: 

(1) Calculate the intermediate velocity (
*u


) and position (
*r


) of particles using 

                    n
s

n Augtuu


 2*   (7.1.8) 

              turr  *** 
 (7.1.9) 

where the superscript n represents n-th time step; t  is the length of time step.  

(2) Find the pressure pn+1 by solving  

             *
0

*0

2
12 )1( u

tn

nn

t
p n 








    for inner particles (7.1.10) 

 and  

                *1 un
t

pn n 



  

 on a rigid boundary  (7.1.11) 

(3) Calculate the fluid velocity and therefore update the position of the particles using  

                 1** 


 np
t

u



 (7.1.12) 

                   ***1 uuu n 
  (7.1.13) 

              turr nnn   11 
 (7.1.14) 

(4) Go to the next time step  

 

There is only one difference between the procedure above and the procedure in Chapter 3.2. 

The difference is the last term in Eq. (7.1.8), which is the acceleration of sloshing waves; 
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while no this term in Eq. (3.2.1). 

  In the following cases, the fluid in the sloshing tank is chosen as water. Similar to what 

have done before, the parameters with a length scale are nondimensionalised by the water 

depth d, the pressure by gd and the time by gd /  where g is gravity acceleration.  In 

all the cases, the particles are uniformly distributed at the beginning with the same distance 

between the particles in all directions.  

 

7.2 Numerical investigations on 2D sloshing waves  

  The accuracy of the MLPG_R method in modelling 2D sloshing problems is first 

investigated by comparing with experimental data. Corresponding studies on the sloshing 

problem are first presented to reveal its convergence feature in such problems, though the 

convergence property of the MLPG_R methods have been studied by using many cases 

presented in Chapter 5 and Chapter 6. Apart from this, the effects of the baffle in a tank on the 

sloshing problems, which have not been systematically studied using NS-based numerical 

model, are mainly focused. Some interesting finding will be revealed. 

 

7.2.1 Convergence investigation and numerical validation 

 

Fig. 7.2.1 Schematic view of experimental set-up and corresponding tank sizes 

 

  To validate the MLPG_R method in sloshing problems, some experimental results in public 

domain, i.e. Kishev et al (2006), is used. The case considered here is a rectangle tank in 

translational motion. The filling rate is 40%. The corresponding experimental set-up and some 

experimental parameters are shown in Fig. 7.2.1. A pressure recorded point is located on the 

L=5 

H=2.5 

d=1h=0.833 
water 
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left side of the tank with 0.833 above the bottom.  The tank’s motion is specified by: 

 

)sin()(  aX                                                         (7.2.1) 

)cos()()(  aXU                                                  (7.2.2) 

 

where a and   are the amplitude and frequency of the tank motion, respectively, which are 

chosen as 0.41667 and 0.46328 rad, respectively. The parameters are the same as those for 

one of the cases in Kishev et al (2006), where they presented some experimental results. 

 

Table 7.2.1 Calculation conditions of convergent investigation 

Nz x   /x  /T  Nz x   /x  /T  

25 0.04     10    3390 35 0.02857     10    4746 

25 0.04     8    2712 35 0.02857     8    3797 

25 0.04     5    1695 35 0.02857     5    2373 

25 0.04 2.5 848 35 0.02857 2.5 1187 

25 0.04 2 678 35 0.02857 2 949 

25 0.04 1.67 566 35 0.02857 1.67 793 

30 0.033     10    4068 40 0.025     10    5424 

30 0.033     8    3254 40 0.025     8    4339 

30 0.033     5    2034 40 0.025     5    2712 

30 0.033 2.5 1017 40 0.025 2.5 1356 

30 0.033 2 813 40 0.025 2 1085 

30 0.033 1.67 680 40 0.025 1.67 904 

 

It has been pointed out that the pressure histories have a random feature in violent sloshing 

waves.  This has been demonstrated by many experimental works in literature (Kim, 2001).  

In numerical analysis, this is reflected by the high frequency fluctuation.  It is difficult to 

precisely catch these fluctuations.  In order to get more realistic results, it has been suggested 

and employed in the literature that the time histories are smoothed in the post-processing.  One 
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way to do so is to average the pressure in the neighbourhood, as proposed by Kim (2001).  This 

method will be used in the study.  The formula for this purpose is given by 

  5/)(
2

2






l

lj
jl tptp                                                                   (7.2.3) 

where )( ltp is the pressure at time lt . 

The accuracy of the MLPG_R is demonstrated in Fig. 7.2.2, which compares the pressure 

time history between the numerical results and the experimental data by Kishev et al (2006). 

In the numerical simulation, Nz=30,  /x =2 are used. Since the time origin in the 

experiment is not given in the reference, the time axis for numerical results has been slightly 

adjusted to match the pressure peak value. From this figure, it is found that two results are 

largely close to each other, which indicates that the MLPG_R method can yield results with 

the main feature. 
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Fig. 7.2.2 Comparison between the experiment and numerical results 

 

In order to investigate the convergence property of the MLPG_R method, two important 

parameters (  /x and x ) are mainly considered. As indicated before, x  is related to Nz 

by x =1/Nz, thus, the effect of x  can be converted to that of Nz.  According to the previous 

numerical investigation experience, their ranges in this investigation are, respectively, chosen 

as [1.67, 10] and [0.025, 0.04]. The detailed configurations are given in Table 7.2.1.  Ten 

periods were computed for each case. In order to clearly show the comparisons of different 

pressure curves, the pressure time histories only in the last four periods are shown in the 

figures displayed below. 
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The convergence property against  /x  is first considered. Some results are shown in 

Fig. 7.2.3 with different colours representing different values of  /x , in which  

x =0.033 (Nz=30).  One can see that six pressure curves are very similar to each other 

except the regions near some pressure peaks. It is also found that bigger the value of 

 /x is, more significant the pressure oscillation is. Further investigations are needed to 

suppress the fluctuations. Furthermore, the pressure changes very quickly within several time 

steps when the impact occurs.  So in order to simulate the phenomenon, the time step 

selected should not be too big. Based on the above reasons, the  /x may be chosen 

between 2 and 5. 
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Fig. 7.2.3 Time histories of pressure with different values of  /x for Nz=30 

 

Numerical investigation is also carried out to see how the different values of Nz affect the 

numerical results. Based on the investigations shown in Fig.7.2.3,  /x =2 is used here.  

The pressure time histories in the last four periods in the cases with different Nz (i.e. Nz is 

equal to 25, 30, 35 and 40, respectively) are plotted in Fig. 7.2.4  Similar to Fig. 7.2.3,  

numerical results are in good agreement with each other except in the region around the 

pressure peaks.  The pressure histories are also compared with the corresponding 

experimental data (Kishev et al, 2006). Some results are shown in Fig. 7.2.5. For clarity, only 

results in one period are shown. From the Fig. 7.2.5, it can be seen that the numerical results 

are very similar to the experimental data except for Nz=25.  Based on the tests, the results for 

Nz=30,  /x =2 can be accepted as convergent results for the violent sloshing case. 
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Fig. 7.2.4 Time histories of pressure with different Nz for  /x =2 
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Fig. 7.2.5 Pressure in one period with different Nz for  /x =2 

 

In order to show the correlation between the peak pressure and the motion of sloshing 

waves, the snapshots obtained by numerical results using Nz=30,  /x =2 corresponding 

to Fig. 7.2.2 are given in Figs. 7.2.6 ~ 7.2.10, where the black particles are the free surface 

particle.  The first pressure peak appears when time is close to 88.2684. The wave profile 

shown in Fig 7.2.6 demonstrates that the major peak of the pressure takes place before the 

highest run-up is reached. The reason may be that the major peak is created by the rapidest 

change in the moving direction of water from horizontal to vertical during the short period 

after the fast moving water strikes the wall. The rapid change of the moving direction causes 

the rapid change of momentum and therefore the large increase of pressure near the wall. 

With the tank further moves to the left, the run-up along the left tank wall continues 

increasing.  During this period, the water kinetic energy is gradually converted into potential 

energy, which reduces the corresponding dynamic pressure on the tank wall. Fig. 7.2.7 

exhibits the highest run-up at  =89.2685, which is the time when the first trough value of 

pressure in Fig. 7.2.5 occurs.  After this instant, the run-up is falling down while the pressure  
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Fig. 7.2.6 Wave profile corresponding to the first peak shown in Fig. 7.2.5 
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Fig. 7.2.7 Wave profile corresponding to the first trough value shown in Fig. 7.2.5 
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Fig. 7.2.8 Wave profile corresponding to the second peak shown in Fig. 7.2.5 

 

is rising until reaching the second peak in the period. The reason for the adverse movements 
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of water and pressure may be explained as follows. While the run-up goes down, the 

falling-down water is constrained by both the wall and the water in the lower region. The 

result is that the falling-down water is forced to change its moving direction from vertical to 

horizontal and therefore the pressure near the wall is increased due to the variation of 

momentum caused by the direction change. Fig. 7.2.8 shows the water profile when the 

pressure reaches the second peak in Fig. 7.2.5. At this time, the tank moves to the maximum  
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Fig. 7.2.9 Wave profile corresponding to the second trough shown in Fig. 7.2.5 
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Fig. 7.2.10 Wave profile corresponding to the third peak shown in Fig. 7.2.5 

 

displacement to left side.  The moving acceleration and the force reach the maximum value, 

which causes the rapid change in the moving direction of water from leftward to rightward 

and yields the second pressure peak. With the continuous falling-down of the water level, the 

black particles (the free surface face where pressure is zero) quickly approaches the pressure 

recorded point’s level (h=0.8333), Fig. 7.2.9 exhibits the wave profile corresponding to the 

second trough in the pressure history.  On the left side of Fig. 7.2.9, one can clearly notice 
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that the free surface is below 1z .  With the tank movement changing from left to right, 

the wave crest reaches its maximum height (shown in Fig. 7.2.10) and then falls down; this 

situation is exactly similar to the one where the second pressure peak occurs. The change of 

momentum from vertical to horizontal yields the third pressure peak. 

 

7.2.2 Behaviors of impact pressure in a baffled tank 

In many applications, there are baffles in liquid tanks to support tank walls or suppress the 

liquid motion, for example, large girders in FPSOs. The baffles on the walls affect the motion 

of liquid in tanks and so the pressure distribution. Cases for tanks with the same size but 

different installations of a baffle will be presented here to illustrate how the pressure would be 

affected by a baffle when sloshing is violent. It is noted that the investigation is preliminary. A 

detailed investigation will be carried out in the near future. 

In the cases with a baffled tank, special numerical algorithms to treat the baffle structures 

are required in the MLPG_R calculation. The basic ideas for numerical implementation of the 

boundary conditions on baffle walls are similar to those used for the rigid wall.  The baffles 

are discretized into two columns of particles. The sketch of baffle, vertically installed on the 

lower horizontal tank wall, and the water particles around it is shown in Fig. 7.2.11, in which 

the vertical black wall particles represent the baffle and the horizontal row of black wall 

particles are those on horizontal tank wall. Due to the existing of the baffle, the particles on 

the baffle surface or those surrounding it may be affected. In the MLPG_R method, the 

influence domain for any particle i is generally defined by using a cut-off radius. All particles 

falling in the region with a distance not large than the cut-off radius are considered to directly 

influence the particle i. By using this way, the influence domain for a particle on the baffle 

surface may include particles on the other side of the baffle, which, physically, do not directly 

affect particle i due to the obstruct of the baffle.  Some typical examples are shown in Fig. 

7.2.11. For clarity, the discussion on the particles on the baffle surface and the fluid particles 

surrounding the baffle is separated.  

For a particle on the baffle but not laying on the ends of the baffle, e.g. Particle i in Fig. 

7.2.11(a), its initial influence domain is a full circle with a constant cut-off radius (dashed 

circle in the figure). However, due to the obstruct of the baffle, the particles falling in the right  
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(a) (b) 

 

(c) 

 

(d)                                     (e) 

Fig. 7.2.11 sketch of baffle and the neighbouring water particles 

(black solid circles: baffle particles and wall particles; hollow circles: water particles; dash 

circles represent the initial influence domain; the solid curve represent effective influence 

domain) 

 

semi-circle of the influence domain do not directly affect Particle i, only the fluid particle at 

the left semi-circle can interact with it. Therefore, the effective influence domain should be 
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the left semi-circled area (solid semi-circle as shown in Fig. 7.2.11(a)).  For the particles 

located on the top of the baffle e.g. particle j shown in Fig. 7.2.11 (b), the effective influence 

domain is equal to the initial influence domain. For the particles at the bottom of baffle e.g. 

particle l shown in Fig. 7.2.11 (c), the effective influence domain is just a quarter circle 

because of the baffle existence.  

The special treatment for the fluid particles surrounding the baffle is discussed here.  For a 

fluid particle close to the baffle surface but away from the ends of the baffle, e.g. Particle k 

shown in Fig. 7.2.11 (d), the initial influence domain is a full circle (represented by dashed 

circle in the figure). Due to the baffle effect, the particles located on the other side (left side 

for particle k) of the baffle should be excluded from the initial influence domain. Hence only 

part of the initial influence domain may be considered as the effective influence domain, i.e. 

the plane surrounded by the solid curve and corresponding right side of for the particle k. For 

the fluid particle near the top of the baffle (shown in Fig. 7.2.11 (e)), the effective influence 

domain is equal to the initial influence domain. It should be noted that the technique 

described above can also be used to other problems with very thin structures, either 

submerged or surface-piercing. 

By using the special treatment indicated above, the baffle effect on the sloshing problems is 

investigated. The length and height of the tank considered for this purpose are 3 and 2, 

respectively. The water height is 1, corresponding filling ratio is 50%. Three different 

conditions are used in the investigation, i.e. without baffle (Fig. 7.2.12A), with a vertical 

baffle located in the middle (Fig. 7.2.12B) and with a vertical baffle located at a position other 

than the middle of the tank (Fig. 7.2.12C).  The height of the baffle in both the baffled tanks 

is half of the water depth. The tanks are subjected to the rotational motion defined by: 

)sin()( max                                                        (7.2.4) 

where the rotational amplitude being 8max  degree and frequency is  =0.9115 rad close to 

the natural frequency of tank without baffle. Two points on the left wall of the tank, i.e. a and b are 

selected as the pressure recorded points. The corresponding vertical coordinate of a and b is z=1 

and z=0.5, respectively.  The vertical particle number along z-direction (Nz) is chosen as 30 when 

distributing the initial particles, the corresponding x is 0.033333. The total particle number is 
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2,970; the time step is chosen as 0.016667. 

 

 
Fig. 7.2.12 Schematic view of tank and corresponding tank sizes 

(A: No baffle; B: Middle baffle and C: Left baffle) 

 

The total simulating time is 19 periods; it takes about 0.7 CPU hours to complete each case 

in normal a PC with Inter (R) Core(TM) 2 Duo CPU E7500 @ 2.93GHz (one CPU is used) 

and 2.93G RAM in Microsoft system. The pressure time histories recorded at point a in the 

last 7 periods are shown in Fig. 7.2.13.  From the figure, the primary peak value from the 

case A and C are very close, while that from the case B is the minimum among the three cases. 

Nevertheless, there are significant differences in the profiles of the curves in this figure.  For 

the case A, the pressure time history recorded at point a has one primary pressure peak and an 

obvious minor pressure peak in every period. However, for case B and case C, the minor 

pressure peaks are not very obvious.  The wave profiles when the maximum pressure value 

in the last period occurs are plotted in Fig. 7.2.14.  Due to the baffle effect, the wave profiles 

are quite different from each other.  It can be observed that the run-up in the tank without 

baffles (case A) is the highest.  The run-up for case B is the lowest, the run-up for case C is 

the between the other two. 
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Fig. 7.2.13 Comparison of pressure time histories at the point a 
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Fig. 7.2.14 Wave profiles corresponding to a primary pressure peak  

in the last period shown in Fig. 7.2.12 

(a) for Case A, (b) for Case B and (c) for Case C 

 

Fig. 7.2.15 exhibits the pressure time histories at point b in the three cases. The primary peak 

in case A has the maximum value compared to the others.  For the case C, the primary peak 

is close to that in the Case B.  That means the pressure peak at Point b is reduced due to the 

existing of baffle. 
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Fig. 7.2.15 Comparison of pressure time histories at the point b 

 

These cases appear to demonstrate that the baffles can affect the motion of sloshing waves 

and therefore the largest pressure. Nevertheless, just like the discussions in Ma et al (2009) 

that one should bear in mind that there are many factors leading to these results. At least, two 

factors would play a role: the resistance of the baffle to the movement of the water in the tank 

and the change of the natural frequency caused by it.  The first factor can always dissipate 

the wave motion and so reduce the pressure magnitude. The role of the second factor depends 

on the size and position of the baffle and also on the frequency of the excitation. If the baffle 

is high enough, the natural frequency of the baffled tank is significantly different from that of 

the smooth tank without baffles. Under such a condition, when the exciting frequency is near 

the natural frequency of the smooth tank and sufficiently away from that of the baffled tank, 

the motion of the wave and so the pressure may grow in a long time interval (Wu et al, 1998) 

and so is larger in the smooth tank. On the other hand, when the exciting frequency is close to 

the natural frequency of the baffled tank and sufficiently away from that of the smooth tank, 

the motion of the wave and so the pressure in the baffled tank are not necessarily smaller. 

More work is apparently required to further understand the effect of a baffle on sloshing 

waves. 

 

7.3 Numerical investigations for 3D sloshing waves 

  In this section, the MLPG_R method is adopted to simulate the violent sloshing wave in a 

three dimensional container with 6 degrees of freedom of motion.  Since the main objectives 

of the thesis is to develop the method, rather than investigating 3D sloshing problem, only one 
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case is presented here for demonstration. The schematic view and dimensions of tank are 

shown in Fig. 7.3.1. The filling rate is 50%. There are two columns of particles to record the 

pressure. One column is on the left front corner of the tank; the other one is at the left middle 

of the tank wall.  The heights of P1 and P4 are 0; the heights of P2 and P5 are 0.95 and the 

heights of P3 and P6 are 1.7.  The tank are excited by both translational and rotational 

motions, which are decomposed to, 

 

Fig. 7.3.1 Schematic view and sizes of the tank 

 

The periodic translational excitations are as follows: 

Surge motion: )66.1655.0sin(044.0)(  x                                (7.3.1) 

Sway motion: )27.2655.0sin(03.0)(  y                                 (7.3.2) 

Heave motion: )86.0655.0sin(1455.0)(  z                               (7.3.3) 

 

The periodic rotational excitations are: 

Roll motion: )68.1655.0sin(044.0)(1                                   (7.3.4) 

Pitch motion: )33.2655.0sin(035.0)(2                                  (7.3.5) 

Yaw motion: )052.0655.0sin(011.0)(3                                  (7.3.6) 

 

  For this case, the representative distance x is 0.05, which yields the total number of fluid 

particles and total number of particles being 52,200 and 68,670, respectively.  The time step 

is chosen as 0.012. The total simulation time is about 10 periods, which takes nearly 66.6 
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CPU hours on normal PC with Linux system Inter (R) Core (TM)2 CPU 6300 @ 1.86GHz.  

Based on Wu, Ma and Eatoch Taylor (1998) the natural frequencies in the three dimensional 

cases are given by 

...2,1,0,,)()(tanh)()( 22222  nm
B

n

L

m

B

n

L

m
mn

                    (7.3.7) 

where L and B are the length and width of the tank, respectively. Among them, the terms with 

m=1,3,5…, n=0 and n=1, 3, 5, …, m=0 correspond to the symmetric motions in the x and y 

directions, respectively. Thus in this case, 6403.010  and 433.101  are the lowest 

natural frequencies in x-direction and y-direction, respectively. 

  Fig. 7.3.2 shows snapshots of the particles location in different instants of the simulation, in 

which the black particles represents the free surface particles. Due to the fact that the exciting 

frequency is close to the lowest natural frequency in x-direction of the tank, the free surface 

seems to be violent.  The sloshing water hits the ceiling of the tank. The plunging jet is 

formed which generates many water droplets. One of the wave profiles before hitting the 

ceiling is shown in the Fig. 7.3.2 (a).  It can be observed that the whole free surface is tilted 

due to the motion of tank and rush to the ceiling of the tank.  One can also see that the 

plunging jets are formed after hitting the ceiling of the tank in Fig. 7.3.2 (b) and (c) and that 

fragmentation of the plunging jet occur.  In addition the free surface, represented by black 

particles in Fig. 7.3.2, is very clear even after the plunging jet is formed, which again implies 

that the technique MPAM works well even in 3D cases. 
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Fig. 7.3.2 Snapshots of violent slosh wave 

(black particles: free surface particle; blue: velocity field) 
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Fig. 7.3.3 Comparisons of the time histories of impact pressure on different record points 

 

 The pressure time histories recorded at different points are compared and some results are 

shown in Fig. 7.3.3.  From Fig. 7.3.3 (a) and (b), one can see that the pressure curves 

become nearly periodic from the sixth exciting periods.  There is no obvious difference 

existing in the pressure time histories between P1 and P4, and P2 and P5.  However in the 

Fig. 7.3.3 (c), one may observe that the pressure curves for P3 and P6 are significantly 

different, particularly the crest value.  The pressure peaks recorded at P3 are much bigger 

(a) 

(b) 

(c) 
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than those at P6.  That is because P3 is at the corner, where more momentum change leads to 

bigger pressure peak.  The above 3D case demonstrates the capability of MLPG_R method 

in simulating violent sloshing cases. 
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8.  3D NUMERICAL INVESTIGATIONS ON VIOLENT WAVE IMPACT ON 

THE CYLINDER: OFFSHORE ENERGY STRUCTURE 

 

Offshore wind energy has been considered to make significant contribution to provision of 

energy in future.  A great deal of knowledge about onshore wind energy utilization has been 

accumulated.  Although such knowledge may be very helpful for the development of 

offshore wind energy technologies, there are many issues which do not matter for onshore 

wind energy exploitation but that must be addressed for offshore wind energy system.  One 

of them is the violent wave impact on the structures under action of breaking waves.  The 

breaking waves may result in large impact pressure/forces on them and cause their damage.  

To avoid such damage and to guide the design of these structures, a good understanding of the 

interaction between breaking waves and offshore wind energy structures is required.   

Efforts have been made to investigate breaking waves and violent wave impacts acting on 

structures. Due to the high degree of complexity of such problems, numerical simulations are 

rarely seen in the early studies and, therefore, the laboratorial experiments or field 

observations are mainly performed, such as Mogridge and Jamieson, (1980); Blackmore and 

Hewson, (1984); Chan and Melville, (1988); Kirkgöz, (1982, 1991, 1995); Neelamani, et al 

(1999); Bullock, Crawford, Hewson, Walkden and Bird, (2001).  These experiments 

produced very useful results for some specific cases but are generally expensive.  In this 

chapter, MLPG_R method is presented to simulate the interaction between breaking waves 

and 3D offshore wind energy structures.  

In this study, the wind energy structure is considered as a vertical cylinder. To model its 

interaction with breaking waves, a solitary wave, which is generated by a piston wavemaker 

and overturns near the cylinder due to a sloping seabed, is considered as a representative. The 

motion equation of the wavemaker are Eqs. (6.0.1) - (6.0.3) for generating such waves. The 

bottom geometry is chosen as sloping seabed with different slopes at different positions as 
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sketched in Fig. 8.0.1.  The offshore wind energy structure has a diameter of 4.3m and the 

water depth at its position is 10m.  

As indicated above, the simulation is carried out in a numerical wave tank.  For 

convenience, the water depth near the wavemaker is d.  The sloping seabed starts from x=5d 

and truncated at x=10d.  For x>10d, a flat seabed is 0.5d under the mean free surface.  The 

radius of the cylinder is 0.1d and the width of the tank is taken as 1d for this investigation, as 

shown in Fig. 8.1.1. 

 

 

 

 

 

Fig. 8.0.1 Schematic view and details of tank and the structure 

(A, B and C are the different locations of cylinder) 

 

Again, the parameters presented below are nondimensionalised using the same method 

indicated before, for convenience of discussion. The spatial distance between two particles is 

taken as 0.0667, which yields the total number of particles of 55,888.  The time step is 0.012. 

The computation was run on a PC with two 1.86GHz processors (one is used) and 4.8G RAM 

in Linux system and needs 21.1 hours. Two points, i.e. Point 1 and Point 2, on the front side 

of the cylinder are assigned to record pressure; they are 0.1 and 0.3 above the mean water 

level (MWL). 
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8.1 Investigations of relationship between pressure impact peak and breaking waves 

 

 

 

 

 

Fig. 8.1.1 Different stages of wave impacting on the wind turbine structure 

 (solitary wave height is 0.7, cylinder location is C, which is shown in Fig. 8.0.1) 

 

In the first case considered here, the solitary wave height is taken as 0.7.  The structure is 

centered at location C, whose distance is 2.6 from where the sloping seabed truncated. Some 

snapshots of the free surface near the structure are illustrated in Fig.8.1.1, where   

represents the dimensionless time and the gray particles on the bottom represent the seabed 

geometry and colorful particles are free surface particles with different color denoting 

different wave elevation.  The solitary wave is generated by the wavemaker on the left side 

of the tank and propagates toward the structure. During its propagation, the solitary wave 

becomes steeper and overturning (Fig. 8.1.1a). The overturning wave hits the structure (Fig. 

a 

b 

d 

c 

 ≈ 13.2 

 ≈ 13.44 

 ≈ 13.68 

 ≈ 12.96 
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8.1.1b) in very short time and results in a huge pressure on the structure.  To view how large 

the pressure could be, the time histories of the pressure recorded at the two points on the front 

surface facing the incoming waves are plotted in Fig. 8.1.2.  As can be seen from this figure, 

at 13.2  , when the overturning jet hits the structure (Fig. 8.1.1b), the pressure at both two 

points reaches their first crests in very short time.  At this moment, the pressure acting on the 

Point 1 and Point 2 are very close.  These pressure values are much larger than the maximum 

hydrostatic pressures on the structure.  One may also find that for the pressure at Point 2, the 

pressure suddenly increase to its peak value.  This is clearly due to the impact from the 

breaking waves. 
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Fig. 8.1.2 Time histories of pressure acting on the wind energy structure (solitary wave height 

is 0.7, location: C; Point 1: 0.1 above the MWL; Point 2: 0.3 above the MWL) 

 

 

Fig. 8.1.3 Enlargement of free-surface particle distribution near structure viewed by x-z 

coordinates (solitary wave height is 0.7, location: C,  ≈ 13.44) 

 

Fig. 8.1.1 also illustrates the corresponding results after the plunging jet hits the structure.  

Fig. 8.1.1c shows that the major jet has been split into two jets when passing through the 
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structure. At this moment, not only the breaking jet, but also the main body of the wave crest 

hit the structure. It is clearer in Fig. 8.1.3 which displays the enlargement of the free surface 

particles around the structure.  This impact causes a second peak value of the pressure, 

which is larger than the first one, as can be seen from Fig. 8.1.2 ( 13.44  ).  After this, the 

plunging jets keep moving forward and touch the free surface as shown in Fig. 8.1.1d. Due to 

this, a third peak value of pressure occurs as shown in Fig. 8.1.1d ( 13.68  ).  This case 

reveals a different behaviour of the pressure time history from that of non-breaking waves, in 

which the peak value of pressure accompanied with the occurrence of the wave crest.  For 

the cases with breaking waves, there may be two or more pressure peaks corresponding to one 

wave crest.  Furthermore, it takes very short time for the pressure changes from zero to a 

large value at the beginning of the impact.  This causes a high rate of the change of the 

pressure and may lead to the damage of the structure.  Due to this fact, the interactions 

between structures and breaking waves need to be carefully investigated. 

 

8.2 Effects of Locations of Structures  

For regular non-breaking oscillating waves without considering seabed effects, the feature 

of the interaction between structures and waves may not be affected by the location of the 

structures.  However, for the cases with breaking waves, the effect of the location must be 

considered.  This is understandable. For example, for the structures located near the position 

where the breaking waves occurs (breaking points), the results must differ from those in the 

case with the structures being located far away from the breaking point. The effects of the 

location of the structures are further investigated in this section. 

For this purpose, the structures at three different locations, i.e. A, B and C as sketched in 

Fig.8.0.1, are considered.  All other parameters are the same as those in Fig. 8.1.1.  The 

free surface profiles at 13.2   in these cases are shown in Fig. 8.2.1.  From this figure, it 

is found that the location and time where an overturning jet appears are almost the same in 

these cases.  However, in the cases with the structure located at A and at B (Fig. 8.2.1a, b), 

the overturning occurs after the structure while for the case shown in Fig. 8.2.1c, the breaking 

jet starts at the same position as the structure. In addition, the structures have separated the 

breaking jet into two and results in turbulent breaking waves in the first two cases.  
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Fig. 8.2.1 Free surface profiles near the structures at 13.2  , which are in different locations 

(solitary wave height is 0.7, a for Location A, b for Location B and c for Location C) 
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Fig. 8.2.2 Pressure time histories at Point 2 on the structures located at different positions 

(Point 2: 0.3 above the MWL) 

 

The corresponding pressure time histories recorded at Point 2 are displayed in Fig. 8.2.2.  

It is found that for the case with the structure at location A, the pressure increases more 

slowly than in the other two cases.  It can also be found that the maximum pressures in 

a 

b 
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different cases are different.  For Location A, the value is the smallest while for Location B, 

it is the largest.  The reason may be that the wave becomes vertical at the Location B. From 

the Fig. 8.2.3, one can note that the wave crest is very steep when time is close to 12.48. The 

whole vertical water column hit the structures at the same time, which yields the maximum 

pressure peak. This is not like the case shown in Fig. 8.2.1c and Fig.8.1.1, where the 

overturning jet hits the structure first and then the rest part of the water follows.  Therefore, 

the maximum pressure in this case is larger than that shown in Fig. 8.1.1.  For the same 

reason, there is no clear second peak observed in the case of Location B.  Based on this 

observation, one may conclude that the pressure on the structure strongly depends on where 

the structure is located and its largest value can be reduced by selecting favorable location for 

it.  It is noted that this investigation is preliminary. A detailed investigation will be carried 

out in the near future.  

 

 

Fig. 8.2.3 Free surface profile near the structure at 48.12 at location B  

 

8.3 Effects of different wave heights 

Investigation is also made on the effect of the wave heights (H) on the wave impact on the 

wind energy structures. For this purpose, different solitary wave heights, ranging from 0.45 to 

0.7, are specified. Other parameters are the same as the case shown in Fig.8.2.1.  The wind 

energy structure is located at Location A, near the position where the sloping seabed 

truncated. 
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Fig. 8.3.1 Pressure time histories at Point 2 corresponding to different solitary wave heights 

(Point 2: 0.3 above the MWL). 

 

Fig. 8.3.1 illustrates the pressure time histories recorded at Point 2 for the cases with 

different wave heights. As can be seen, the maximum pressure appears earlier as wave height 

increase.  This is because the solitary wave with higher wave height has larger celerity and 

therefore travels faster.  In addition, it is found that the nondimensionlized pressure profiles 

are different for different wave heights, being flatter for smaller wave height.  
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9. CONCLUSIONS AND FUTURE WORK 

 

In this study, the MLPG_R method based on the Navier-Stokes model has been further 

developed in order to simulate breaking waves and their interactions with structures. In this 

method, the computational domain is discretized into many particles without meshes. The 

pressure governing equation is integrated over the sub-domain of each particle, which is a 

circle for 2D cases or a sphere for 3D cases. In order to solve the boundary value problem for 

pressure, comparative studies on three numerical implementations of solid boundary 

condition are carried out and the best one is the imposing of the condition about the normal 

derivative of pressure directly on the boundary particles. The test results indicate that the 

pressure wiggles can be suppressed, while other numerical implementations likely lead to the 

larger wiggles unless the number of particles is very large. For the purpose of simulating the 

breaking waves, a numerical technique for identifying the free surface named Mixed Particle 

Number Density and Auxiliary Function Method (MPAM) is developed, which is able to 

accurately track the free surface in 2D and 3D violent breaking waves.  In order to increase 

the computational efficiency of present method, semi-analytical methods for surface and 

domain integration in 3D cases are presented, which makes it possible to run the 3D cases in 

normal PCs when using MLPG_R method. 

 Numerical results obtained by the MLPG_R method have been compared with 

experimental data and the results from other methods in the public domain. The various cases 

with pre-breaking and post-breaking waves and with or without structures have been 

simulated and validated  The cases included the breaking wave of solitary wave generated 

by a piston wavemaker, dam breaking cases, sloshing cases and the interactions between 

breaking waves and offshore wind energy structure. Good agreements have been achieved. 

The convergence property of this method has been also investigated for different cases and 

shows the good convergence property. 

The more achievements details and conclusions are summarised below. It is then followed 
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by some recommendations on future work. 

 

9.1 Numerical techniques 

  In order to achieve high computational efficiency and robustness, a couple of numerical 

techniques are developed in this work. For the purpose of tracking the free surface particles 

accurately, a new technique based on three auxiliary functions, named as MPAM (Mixed 

Particle Number Density and Auxiliary Function Method), is developed in this project. In 

this method, each particle has a local coordinate system and a support domain. The first 

auxiliary function is to judge if there is a free surface particle in its support domain based on 

local particle configurations at previous time step. The second auxiliary function is based on 

how the local particles distribute in its support domain; the third auxiliary function is also 

based on the configurations of local particles.  There are four conditions formed based on 

the particle number density and the three auxiliary functions, if one of four conditions is met 

when they are checked sequentially, then the particle concerned will be identified as a free 

surface particle. With this new technique, the free surface can be identified accurately 

according to the numerical tests on the 2D and 3D cases. 

  In addition, semi-analytical methods for surface and domain integration in 3D cases are 

developed.  The semi-analytical methods are divided into three steps: the first one is to 

divide an integration domain into several sub-domains; the second one is to assume 

functions to linearly vary over each sub-domain; the last one is to perform the integration 

over each sub-domain analytically. The numerical comparisons of surface integrals using the 

semi-analytical method and Gaussian quadrature method are made to investigate the 

effectiveness of the semi-analytical technique for surface integrals. Two different cases are 

considered: one is to solve the hydrostatic pressure; the other one is to simulate the 

propagation of solitary wave. Numerical results show that the time spent by Gaussian 

quadrature method is at least 11 times more than the one spent by the semi-analytical 

method with the same precision. With these new approaches, the solution for 3D problems 

can be performed on normal PCs. 
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9.2  Two dimensional and three dimensional sloshing cases 

For this purpose, breaking sloshing waves in a container generated by oscillating the 

container are considered.  According to investigations on sloshing waves, it is found that 

there are three pressure peaks and two trough values in each impact period under certain 

condition (40% filling rate and oscillating frequency closing the natural frequency of the 

container).  The large and major pressure peak is first generated and then the pressure 

rapidly decreases to its first minimum value.  After that, the pressure rises again to its 

second minor peak value and drop down quickly to the second minimum value. And then 

again quickly rises to the third pressure peak. The investigations have also demonstrated that 

the major peaks of the pressure do not occur at the appearance of the highest run-up; instead 

they take place before the highest run-up is reached.  The reason may be that the major 

peaks are created by the rapidest change in the moving direction of water from horizontal to 

vertical during the short period after the fast moving water strikes the wall.  The rapid 

change of the moving direction causes the rapid change of momentum and therefore the 

large increase of pressure near the wall. The reason of the second peak may be the rapid 

change of moving direction of water from leftward to rightward, which lead to the rapid 

change of momentum and cause the second peak.  The generation of the third peak can also 

be explained by the change in the direction of water motion, which occurs when the water 

fall down and is forced to change towards horizontal direction by the container wall.  The 

effects of baffles on the sloshing waves have also been investigated and it is found that the 

baffles can not always reduce the pressure amplitude in violent sloshing cases.  This 

indicates that the variation of natural frequency due to a baffle must be carefully considered 

if it is large enough. 

 

9.3 Interaction between breaking waves and a fixed cylinder 

The MLPG_R method is used to preliminarily study the interaction between breaking 

waves and a fixed cylinder, which may be considered as the tower for offshore wind turbines. 

In the investigations, the cylinder is installed at the shallow water region and a typical sloped 

seabed is considered in the numerical wave tank. The solitary wave is generated by the piston 

wavemaker at the left side of numerical wave tank.  Due to the seabed effects, the wave 
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overturning and breaking will occur. From the investigations, some interesting features of 

interaction between structures and breaking waves have been discovered.  For example, It is 

found that two pressure peaks in one impact may be created if a large overturning wave 

hitting the structure and that the largest pressure does not correspond to the moment when the 

wave crest arrives at the structure but occurs after that.  It is also found that the features of 

the pressure during impact depend on the relative position between the structure and breaking 

point of breaking waves.  These findings may provide good guidelines on how to consider 

the impact pressure during the design of the structures. 

 

9.4 Future work 

Although the project has made significant advance in understanding of interactions 

between breaking waves and structures, many uncertainties still exist.   

Because the viscous effects have an important role in the breaking and post-breaking stages, 

it is necessary to introduce turbulent models into MLPG_R method and further investigations 

need to be carried out on implementation of different and/or new turbulent models.   

In modeling post-breaking wave stage case, there is obvious difference for the shape of air 

cavity between the experimental photographs and numerical results. The possible reason may 

be only the single phase flow considered.  So the multiphase flow model will be introduced 

into numerical model, and the air compressibility should be taken into account when breaking 

wave occurs. 

For the simulation of realistic 3D problems, larger computational domain and more 

particles are needed, in which the computational load significantly increases. Hence, the 

parallel computation should be considered for the cases of 3D calculations to increase the 

computational efficiency, especially in the case of the simulation of 3D multi-phase problems. 

In this study, fixed obstacles are considered in the numerical model. To model some 

practical problems, some related numerical methods should be included to deal with the 

moving obstacles in 2D and 3D cases. MLPG_R method can be further used to investigate the 

coastal sediment transport. 
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APPENDIX B: Gradient Calculation Scheme 

 

  Before updating the velocity following the Eq. (3.2.5), the pressure gradient value should 

be evaluated numerically.  Accuracy of the gradient calculation scheme will significantly 

affect the overall accuracy of MLPG_R method.  Herein, the gradient of pressure is 

estimated by using the method developed by Ma (2008). According to numerical tests, this 

method leads to higher order of accuracy than those used by the MPS method, particularly in 

the cases where the particles are distributed irregularly (Ma, 2008).  Only brief description 

will be given in the following section for completeness. 
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where N is the total particle number in the support domain, particle J is the particle affecting 

particle i based on the distance between them, W is weight function and sD  is the 

dimensional number. 

Alternatively, Eq. (B3) can be rewritten as 
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where m=1,2 and k=1,2, xk for k=1,2 is x and z coordinates, respectively, and 



 
 

164

 





N

J
iJ

iJ

xixJ
iJ

xi
mi rrW

rr

rr
rfrf

n
C mm

m

|)(|
||

)(
)]()([

1
2

,,

,
,







(B5a) 

 





N

J
iJ

iJ

xixJxixJ

xi
mki rrW

rr

rrrr

n
a kkmm

m

|)(|
||

))((1
2

,,,,

,
,






                            (B5b) 

and 

|)(|
||

)(
2

2
,,

, iJ

N

iJ iJ

xixJ
xi rrW

rr

rr
n mm

m














                                         (B5c) 

Solving the system in Eq. (B4), one can find the gradient components. For example, in 2D 

cases, the formulas are listed as follows: 
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The 3D gradient calculation scheme is presented as follows. Solving the system in Eq. (B5), 

the 3D gradient components can be found and Eq. (B5) can be rewritten as 
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[G] is an N3 matrix with its components defined as 
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[E] is an 33 matrix with its components defined as 

1)(,  mmmkimk EandkmaE                                    (B12) 

For more details about this formulation, readers are referred to Ma (2008). 

 


