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Abstract: We study various aspects of N = 2 quiver-Chern-Simons theories, conjectured

to be dual to M2-branes at toric Calabi-Yau four-fold singularities, under Higgsing. In

particular we study in detail the orbifold C4/Z3
2, obtaining a number of different quiver-

Chern-Simons phases for this model, and all 18 toric partial resolutions thereof. In the

process we develop a general un-Higgsing algorithm that allows one to construct quiver-

Chern-Simons theories by blowing up, thus obtaining a plethora of new models. In addition

we explain how turning on torsion G-flux non-trivially affects the supergravity dual of

Higgsing, showing that the supergravity and field theory analyses precisely match in an

example based on the Sasaki-Einstein manifold Y 1,2(CP2).
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1. Introduction and overview

There has been considerable interest recently in supersymmetric Chern-Simons (CS) matter

theories as candidate AdS4/CFT3 duals to M2-branes at various conical singularities. A key

breakthrough was made in [1], following work by [2,3], in which Aharony-Bergman-Jafferis-

Maldacena (ABJM) constructed a U(N)k × U(N)−k quiver-Chern-Simons (QCS) theory,

with N = 6 superconformal symmetry, and conjectured this to be the low-energy theory

on N M2-branes probing a C4/Zk singularity. (Here the generator of Zk acts with equal

charge on each coordinate of C4.) In the field theory the Chern-Simons level k ∈ Z plays

the role of a coupling constant, with the k = 1 theory on a stack of N parallel M2-branes

in flat spacetime being strongly coupled. For k = 1, 2 the theory has enhanced N = 8

superconformal symmetry, as expected for the theories on M2-branes transverse to C4,

C4/Z2, respectively. In the field theory this is a quantum enhancement of supersymmetry,

involving monopole operators which create quantized magnetic flux in the diagonal U(1)

gauge group [1].

This work was soon generalized to QCS theories with less supersymmetry [4–20], which

have been conjectured to be dual to M2-branes probing other geometries admitting parallel

spinors. These include orbifolds of C4, preserving various fractions of supersymmetry, as

well as non-trivial hyperKähler, Calabi-Yau and Spin(7) holonomy cones C(Y7), where Y7

is a compact tri-Sasakian, Sasaki-Einstein, or weak G2 manifold, respectively. Here we

focus on QCS theories with N = 2 supersymmetry that conjecturally describe M2-branes

on Calabi-Yau four-fold cones. This is the fewest number of supercharges for which super-

symmetry still provides a useful constraint on the infra-red (IR) dynamics. For example,

the scaling dimensions of chiral primary operators are given exactly by their R-charges

under the U(1)R symmetry.

In this paper we study various aspects of N = 2 QCS theories under Higgsing. As for

the more well-studied case of D3-branes at Calabi-Yau three-fold singularities [21–23], the

Higgs mechanism is a useful way to construct new QCS theories from old. A necessary

condition to interpret a QCS theory as a worldvolume theory on an M2-brane probing a

Calabi-Yau four-fold singularity X is that its vacuum moduli space (VMS) is, or at least

contains, X. At the level of the VMS, the Higgsing leads to a partial resolution π : X̂ → X

of X induced by turning on Fayet-Iliopoulos (FI) parameters, and the IR limit is then

a near-horizon limit in X̂. Indeed, this process of partial resolution is the basis for the

– 2 –



inverse algorithm of [21], by which one can in principle obtain a D3-brane quiver gauge

theory for any toric Calabi-Yau three-fold singularity by partial resolution of an appropriate

Abelian orbifold of C3. The latter gauge theory may be constructed straightforwardly as

a Douglas-Moore (DM) projection of N = 4 super-Yang-Mills theory [24].

Motivated by this early work of [21, 23] on partial resolutions of C3/Z2
2 and C3/Z2

3,

here we study the Abelian orbifold C4/Z3
2. At present there is no known general method

for constructing QCS theories for orbifolds C4/Γ as a projection of the ABJM theory – for

certain choices of Γ one can use a DM projection, but for the C4/Z3
2 singularity of interest

this is not the case. (For very recent work on orbifolds of the ABJM theory, see [25].) This

leads us to construct an un-Higgsing algorithm where one starts with a QCS theory for a

singularity X, and then enlarges the quiver in a specific way, corresponding to “blowing

up” X. Via this method, and others, we are able to construct a number of different QCS

theories, starting from the ABJM theory, whose Abelian VMSs are the orbifold C4/Z3
2. We

then systematically study the Higgsings of these theories, thus obtaining QCS theories for

all 18 inequivalent toric partial resolutions of the singularity. This leads to a wealth of new

models, many of which are new to the literature.

Another important difference between the M2-brane and D3-brane cases is that typi-

cally for the background AdS4 × Y7 one is allowed to turn on torsion G-flux in H4(Y7,Z);

whereas for AdS5 × Y5 backgrounds, with Y5 a toric Sasaki-Einstein five-manifold, there

is never torsion in H3(Y5,Z). Indeed, typically H4
tor(Y7,Z) is non-zero, and each different

choice of flux should give a physically distinct theory. This was first discussed in this context

by [26], who considered the ABJM model with Y7 = S7/Zk. In this case H4(Y7,Z) ∼= Zk,
so there are k distinct M-theory backgrounds corresponding to the k choices of torsion

G-flux. The authors of [26] argued this corresponds to changing the ranks of the ABJM

theory from U(N)k × U(N)−k to U(N + l)k × U(N)−k, where 0 ≤ l < k. As we explain

quite generally, theories with non-zero torsion G-flux have a richer behaviour under Higgs-

ing than those without any flux. As for the D3-brane case, when there is no flux one can

argue from the supergravity dual that one expects to obtain field theories for all partial

resolutions of a given singularity by Higgsing the original theory. However, once one turns

on torsion flux the story is more complicated. The essential idea is that in the supergravity

dual of the RG flow induced by the Higgsing one must extend the G-flux over the whole

spacetime, satisfying the appropriate equations of motion. This can lead to interesting

predictions for the expected patterns of Higgsings observed in the dual field theory. We

examine this in detail in the example where Y7 = Y 1,2(CP2) is a certain non-trivial Sasaki-

Einstein seven-manifold, finding precise agreement between the supergravity analysis and

field theory analysis for a new QCS theory we construct by un-Higgsing. A different QCS

theory for this Calabi-Yau geometry, with a Type IIA construction, has already appeared

in the literature, and we point out several puzzles encountered when trying to similarly

interpret this as an M2-brane theory.
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The organization of the paper is as follows. We begin in Section 2 with a brief review

of quiver-Chern-Simons theories in (2 + 1) dimensions and explain how to compute their

moduli spaces; this is simply the generalization [16] of the forward algorithm of [21]. In

Section 3 we consider C2/Zn×C2/Zn theories, reviewing how these theories can be obtained

by orbifold projection of the ABJM theory, and studying their general behaviour under

Higgsing. In Section 4 we introduce the un-Higgsing algorithm and utilize it to produce

a C4/Z3
2 phase, together with several sets of other phases. We examine the rules for

transformations between certain types of dual theories, and study in detail the Higgsing

behaviour of the C4/Z3
2 phases. In Section 5 we study partial resolutions of C(Y7) spaces

with different configurations of torsion G-flux, examining in detail the example where

Y7 = Y 1,2(CP2). We conclude with some discussions and future prospects in Section 6. In

two appendices we present the details of some orbifold projections, and also list additional

QCS theories that do not appear in the main text.

2. N = 2 quiver-Chern-Simons theories and toric geometry

In this section we briefly review the N = 2 supersymmetric QCS theories of interest,

focusing in particular on their vacuum moduli spaces. For further details the reader is

referred to [11,12,27] and references therein. We shall make extensive use of toric geometry

throughout the paper, so include a brief summary for completeness (a standard reference

is [28]). We also state a necessary and sufficient condition on the toric diagram for the

corresponding Calabi-Yau four-fold singularity to be isolated.

2.1 N = 2 QCS theories

Our starting point is an N = 2 gauge theory in (2 + 1) dimensions with product gauge

group
∏G
i=1 U(Ni). The matter content will be specified by a quiver diagram with G nodes.

To each arrow in the quiver going from node i to node j we associate a chiral superfield

Xi,j in the bifundamental representation of the corresponding two gauge groups. More

precisely, we take the convention that Xi,j transforms in the (Ni, N̄j) representation of the

gauge groups at nodes i and j, respectively. When i = j this is understood to be the adjoint

representation, and we shall often denote such an adjoint field by φi. The Lagrangian, in

N = 2 superspace notation, is then

L =

∫
d4θTr

∑
Xi,j

X†i,j e−ViXi,j eVj +
G∑
i=1

ki
2π

1∫
0

dtViD̄
α(etViDαe−tVi)


+

∫
d2θW (Xi,j) + c.c. . (2.1)

Here i = 1, . . . , G labels the nodes in the quiver, or equivalently factors in the gauge group,

Vi are the corresponding gauge multiplets, Dα denotes the superspace derivative, and W
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is the superpotential. The latter is taken to be a gauge invariant polynomial in the chiral

superfields formed from traces of closed loops in the quiver. The first and third terms in

(2.1) are the same as the kinetic and superpotential terms in (3 + 1)-dimensional N = 1

field theories, respectively. The second term is special to (2 + 1) dimensions and is the

supersymmetric completion of the Chern-Simons interaction. The integers ki ∈ Z are the

CS levels. We may denote these in the quiver diagram by attaching an integer label to

each node, as shown for the quivers of the C4 phases in Figure 1. In general we take the

following two constraints on these CS levels

G∑
i=1

ki = 0, gcd({ki}) = 1 . (2.2)

The first ensures that the string theory dual has zero Romans mass [29], and thus has an

M-theory lift, while for the second if gcd({ki}) = h ∈ N, then the vaccum moduli space

will simply be a Zh quotient of the moduli space with CS levels {ki/h}.
The classical VMS M is determined by the following equations [11,12]

∂Xi,jW = 0 ,

µi := −
G∑
j=1

X†j,iXj,i +
G∑
k=1

Xi,kX
†
i,k =

kiσi
2π

,

σiXi,j −Xi,jσj = 0 , (2.3)

where σi is the scalar component of Vi. The first two equations are precisely analogous to

the F-term and D-term equations of N = 1 gauge theories in (3 + 1) dimensions, while

the third equation is a new addition. To form M one should identify vacuum solutions to

these equations that are related by the gauge symmetries of the theory. This is slightly

more subtle than in (3 + 1) dimensions due to the Chern-Simons interactions.

In this paper we will be particularly interested in Abelian theories, where the gauge

group is U(1)G and where M is a toric Calabi-Yau four-fold variety. For a stack of N

coincident M2-branes transverse to a Calabi-Yau four-fold singularity, one expects the

moduli space to be the Nth symmetric product of the four-fold. In [11] it was shown quite

generally that the moduli space of the U(N)G theory is (or, more precisely, contains) the

Nth symmetric product of the moduli space of the Abelian N = 1 theory. It is then natural

to try to interpret such a QCS theory as the effective worldvolume theory on M2-branes

transverse to the Calabi-Yau four-fold.

In the Abelian case the moduli space M is straightforward to describe. The third

equation of (2.3) sets all σi equal σ1 = · · · = σG = s to a single value s on the coherent

component of the moduli space. The first equation describes the space of F-term solutions,

which is by construction an affine algebraic set. For the theories we study in this paper,

this is itself a toric variety, of dimension 4 + (G− 2) = G+ 2. This is the so-called master

space F [G+2, studied in detail in [30], and is the same as that in (3 + 1)-dimensional N = 1
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theories. Finally, the combination of imposing the second equation in (2.3) and identifying

by the gauge symmetries may be described as a Kähler quotient of F [G+2 by a subgroup

U(1)G−2 ⊂ U(1)G. This subgroup is specified [11,13] by the integer kernel of the matrix

C =

(
1 1 1 . . . 1

k1 k2 k3 . . . kG

)
. (2.4)

In particular, this Kähler quotient precisely sets the µi in (2.3) equal to kis/2π, where s,

which may take any real value, is interpreted as a coordinate on the VMS. As discussed

in [11], this picks out a particular baryonic branch of F [G+2 determined by the vector of

CS levels. The four-fold moduli space M4 of the (2 + 1)-dimensional QCS theory then

fibres over the three-fold moduli space of the corresponding (3 + 1)-dimensional N = 1

theory obtained by replacing the CS interaction by standard kinetic terms. The four-fold

and three-fold are related by a U(1) Kähler quotient where s is precisely the moment map

level. To summarize,

M4
∼= F [G+2 //U(1)G−2 , (2.5)

where the Kähler quotient is taken at level zero, implying that M4 is a Kähler cone.

2.2 Toric Calabi-Yau four-folds

An affine toric four-fold variety X = X4 is specified by a strictly convex rational polyhedral

cone C4 ⊂ R4. More invariantly, R4 here is the Lie algebra of a torus T4 ∼= U(1)4 of rank

four. By definition, C4 takes the form

C4 =

{
D∑
a=1

λava | λa ∈ R≥0

}
(2.6)

where the set of vectors va ∈ R4, a = 1, . . . , D, are the generating rays of the cone. The

condition of being rational means that va ∈ Q4, and without loss of generality we normalize

these to be primitive vectors va ∈ Z4. The condition of strict convexity is equivalent to

saying that C4 is a cone over a compact convex polytope.

For an affine toric Calabi-Yau four-fold the va all have their endpoints in a single

hyperplane, where the hyperplane is at unit distance from the origin/apex of the cone. By

an appropriate choice of basis, we may therefore write va = (1, wa) where the wa ∈ Z3

are the vertices of the toric diagram ∆. The toric diagram is simply the convex hull of

these lattice points, and so is a compact convex lattice polytope in R3. Any affine toric

Calabi-Yau four-fold is specified uniquely by ∆, up to shifts of the origin and SL(3,Z)

transformations, which amount to SL(4,Z) transformations of the original torus T4 ∼=
U(1)4. Much of the geometry of affine toric Calabi-Yau four-folds reduces to studying

these lattice polytopes. The toric diagram for X4 = C4 is shown as an example in Figure

1 (B).
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Given a toric diagram ∆, one can recover the corresponding Calabi-Yau four-fold via

Delzant’s construction. In physics terms, this would be called a gauged linear sigma model

(GLSM) description of the four-fold. A minimal presentation of the variety is as follows.

One takes the external vertices wa ∈ Z3, a = 1, . . . , D, of the toric diagram ∆ (the smallest

set of points whose convex hull is ∆), and constructs the linear map

A : RD → R4

; ea 7→ va . (2.7)

Here {ea} denotes the standard orthonormal basis of RD. The fact that we started with a

strictly convex cone implies that the map (2.7) is surjective. Since A maps lattice points

in RD to lattice points in R4, there is an induced map of tori

TD = RD/ZD → T4 = R4/Z4 . (2.8)

The kernel is G ∼= U(1)D−4 × Γ, where Γ ∼= Z4/spanZ{va} is a finite Abelian group. The

toric variety X4 is then the Kähler quotient

X4
∼= CD //G (2.9)

at moment map level zero, so that it is a Kähler cone. In GLSM terms, the coordinates

p1, . . . , pD on CD are identified with vacuum expectation values of the chiral fields; we shall

thus generally refer to these as p-fields. The moment map equation then arises as a D-term

equation, while quotienting by G identifies gauge-equivalent vacua. There is an induced

action of T4 ∼= U(1)4 ∼= U(1)D/G on the Kähler variety X4, and the image of the moment

map is a polyhedral cone C∗4 which is the dual cone to the polyhedral cone C4 with which

we began.

With the exception of C4, the apex of the cone always corresponds to a singular point p

in the toric variety. An important question is whether this is an isolated singular point, or

whether there are other singular loci that intersect it. In the former case, X4\{p} ∼= R+×Y7
where Y7 is a smooth Sasakian seven-manifold. The condition for the singular point p to

be isolated is precisely the condition that the moment map cone C∗4 is good, in the sense

of [31]. This condition may be stated as follows. Let F be a face of the cone, and let

{va1 , . . . , vam} be the normals to the set of supporting hyperplanes meeting at the face F .

Then the singularity is isolated if and only if for every face F the {va1 , . . . , vam} may be

extended to a Z-basis for Z4. In particular, this means that necessarily m = codimF . This

translates into the following condition on the toric diagram ∆:

• Each face of ∆ is a triangle.

• There are no lattice points internal to any edge or face of ∆.
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These are necessary and sufficient1 for the “link” Y7 to be a smooth manifold. It was proven

recently in [32] that all such toric Sasakian manifolds admit a unique Sasaki-Einstein metric

compatible with the complex structure of the cone.

2.3 The QCS forward algorithm

The Abelian vacuum moduli spacesM4 of interest will be toric Calabi-Yau varieties,M4 =

X4, and so will be specified by a toric diagram ∆. The gauge theory construction of M4

as a Kähler quotient of the toric master space F [G+2 by U(1)G−2 is, however, highly non-

minimal, and this results in multiplicities of the lattice points in ∆. The construction of the

VMS outlined in Subsection 2.1 was turned into an algorithm in [16], whose end product

is precisely the lattice points of ∆, together with their multiplicities. We summarize this

algorithm in (2.10).

INPUT 1:

Quiver
→ dG×E → (QD)(G−2)×c = ker(C)(G−2)×G · Q̃G×c ;

↗ with dG×E := Q̃G×c · (P T )c×EINPUT 2:

CS Levels
→ C2×G

↗

INPUT 3:

Superpotential
→ PE×c → (QF )(c−G−2)×c = [kerP ]t ;

↓

(Qt)(c−4)×c =

(
(QD)(G−2)×c

(QF )(c−G−2)×c

)
→

OUTPUT:

(Gt)4×c = [Ker(Qt)]
t

(2.10)

In the diagram C denotes the 2 × G matrix (2.4), d denotes the G × E incidence

matrix of the quiver, where E is the number of edges, and P = K · T is the E × c matrix

constructed from the superpotential W . Here K is an E × (G + 2) matrix that encodes

the F-terms derived from W , where T denotes the dual cone. The integer c is in fact the

number of perfect matchings in the brane tiling description. We refer to [16] for further

details, and references therein. The key point is that the algorithm takes the data of the

1The proof is left as an exercise for the reader. However, we present here an argument in dimension

three, to give an idea. In this case the toric diagram ∆ = ∆2 is a convex lattice polytope in R2 ⊃ Z2. The

external vertices are dual to the facets (codimension one faces) of the cone C∗3 , and in this case the goodness

condition is vacuous. On the other hand, two external vertices w1, w2 ∈ Z2 are joined by an external edge

E of ∆2 if and only if the dual facets meet at an edge of the cone C∗3 . Using the shift symmetry of the

problem, we may suppose that w1 = (0, 0) is at the origin, so v1 = (1, 0, 0). Then v1, v2 can be extended

to a Z-basis of Z3 if and only if w2 can be extended to a Z-basis of Z2. But this is true if and only if the

components w1
1, w

2
1 of w2 satisfy gcd(w1

1, w
2
1) = 1, which is true if and only if w2 cannot be written as nw

with w ∈ Z2 and n > 1 an integer, i.e. there is no lattice point in the interior of the edge E.
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matter content (specified by the incidence matrix d), the Chern-Simons levels (specified by

the matrix C), and the superpotential (specified by the matrix K, from which one derives

the matrix P ), and produces the single charge matrix Qt. The kernel of this, Gt, is a 4× c
matrix that encodes the toric diagram of the Calabi-Yau four-fold. Here the Calabi-Yau

condition is equivalent to the four-vector columns being coplanar, on a hyperplane at unit

distance from the origin. The number of repetitions of a given vector in the c columns is

defined to be the multiplicity of the corresponding lattice point in ∆.

3. Higgsing the non-chiral phase of C2/Zn × C2/Zn

In this section we begin by introducing the ABJM QCS theory for an M2-brane in flat

spacetime, which we refer to as (C4)I , as well as another QCS theory (C4)II which has been

conjectured to be dual to this. After briefly reviewing orbifold projections and Higgsing in

QCS theories, as a warm-up we study in detail a Zn projection of the ABJM theory (C4)I ,

which is conjecturally dual to an M2-brane at a C2/Zn × C2/Zn singularity.

3.1 The simplest pair: (C4)I and (C4)II

Let us begin with the simplest Calabi-Yau four-fold, namely C4 equipped with a flat metric.

In [1,13,15,16,18] there are two QCS theories presented which have C4 as their VMS. The

toric diagram is drawn in part (B) of Figure 1.

(A)

(B)
(C)

K=-1 K=1 K=-1 K=1

Figure 1: (A) The quiver diagram for the (C4)I theory (the Chern-Simons level k associated with each

node in the quiver is also shown). (C) The quiver diagram for the (C4)II theory. (B) The toric diagram

for the simplest Calabi-Yau four-fold C4.

The first of the two phases is a special case of what has come to be known as the ABJM

theory [1] (and is also called, in the brane-tiling picture, the Chessboard model in [18]):

two gauge groups U(N)×U(N) with CS levels (k,−k), four bifundamental fields, and the

superpotential

W = tr(X1
1,2X

1
2,1X

2
1,2X

2
2,1 −X1

1,2X
2
2,1X

2
1,2X

1
2,1) . (3.1)
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The moduli space of this theory depends on the CS levels and is given by C4/Zk, where

the generator of Zk acts with equal charge on each coordinate of C4. We thus need to

take k = 1, and shall denote this theory (C4)I . The quiver diagram is given in part (A) of

Figure 1.

The second phase is a special case of an example in [13], and was dubbed the One

Double-Bonded One-Hexagon Model in [18]: two gauge groups U(N)×U(N) with CS levels

(k,−k), two bifundamental fields, two adjoint fields (one for each gauge group factor), and

the superpotential

W = tr(X2,1[φ
1
1, φ

2
1]X1,2) . (3.2)

The moduli space of this theory is (C2/Zk)× C2. Thus, we again need to take k = 1, and

shall denote this theory (C4)II . The quiver diagram is given in part (C) of Figure 1.

3.2 Orbifold projections

Next we review the well-known orbifold projection of Douglas-Moore (DM), which first

brought the study of quiver theories to D-branes [33]. For branes in flat spacetime, the

transverse direction is the trivial Calabi-Yau space Cq: in the case of D3-branes q = 3,

while in the present M2-brane case of interest q = 4. We denote the complex coordinates

of Cq by (x1, . . . , xq). An orbifold is then a quotient space of the form Cq/Γ, where Γ is an

appropriate discrete group, its elements γ ∈ Γ acting as matrices on the vector of coordi-

nates. Indeed, Γ needs to be a subgroup of SU(q) to ensure that the orbifold is Calabi-Yau.

The induced orbifold projection on the spacetime fields on the brane worldvolume is by

conjugation by the regular representation of Γ. Only the fields that are invariant under

this action survive the orbifold projection.

It is straightforward to apply the above projection to the ABJM theory (C4)I [4,5,34].

As an illustrative example we consider here a non-chiral theory where Γ ∼= Zn. Let A1,A2

be the gauge fields for the two U(N) factors of the ABJM theory, and denote by Z =

ZA + θζA + θ2FA and W = WA + θωA + θ2GA the bifundamental and anti-bifundamental

hypermultiplet superfields, respectively; these are N × N matrices, where the index A =

1, 2. In the Abelian N = 1 case we may identify Z1, Z2, W 1† and W 2† with the four

coordinates xa of C4, and the Zn action on these is defined to be xa → e2πi/naxa where

na = (n, n,−n,−n). In order to take the orbifold projection in the field theory, we begin

with nN M2-branes (so that the Z and W fields are now nN × nN matrices) and choose

the regular n-dimensional representation of Zn to project back to a U(N) theory. The

orbifold action on the fields is then by conjugation:

ZA → e2πi/nΩZAΩ† , WA → e2πi/nΩWAΩ† , ζA → e−2πi/nΩζAΩ† ,

ωA → e−2πi/nΩωAΩ† , A1
µ → ΩA1

µΩ† , A2
µ → ΩA2

µΩ† , (3.3)
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where Ω := diag(IN×N , e
2πi/nIN×N , e

4πi/nIN×N , . . . , e
2π(n−1)i/nIN×N ). Only fields invari-

ant under this projection survive. Some explicit examples of such projections are presented

in Appendix A.

Naively, one might expect the Abelian N = 1 moduli space of the resulting theory to

be C4/Zn. However, this is not the case. In order to apply the projection one needs to take

the CS levels of the original theory to be a multiple of n, so that the levels are (nk,−nk) for

the two nodes. In the projected theory there are then 2n gauge nodes, all with CS levels ±k,

and the N = 1 moduli space of the orbifold is instead C4/Zn × Zkn [8, 9]. More generally,

the CS levels should be quantized according to the order of the orbifold group Γ. This

is where M2-brane orbifold projections differ from D3-brane orbifold projections, and is

essentially the reason why there currently does not exist a general method for constructing

QCS theories for an arbitrary orbifold C4/Γ.

3.3 Higgsing in QCS theories

By starting with a parent geometry and turning on FI parameters, we can (partially) resolve

the singularity to derive new dualities between geometries and gauge theories. By turning

on FI parameters, some of the chiral fields in the QCS theory acquire vacuum expectation

values (VEVs), and this Higgses the theory at low energy. At the level of the VMS, the FI

parameters (partially) resolve the singularity to π : X̂ → X, and the choice of VEVs picks

a point p ∈ X̂ in this space; the low-energy limit is then a near-horizon limit of p (giving

the tangent cone at p). Partial resolution in (2 + 1)-dimensional QCS theories works very

similarly to (3 + 1)-dimensional quiver Yang-Mills (QYM) theories (q.v. [21, 23, 33, 35] for

the latter). The key differences in the QCS case are that only G − 2 FI parameters are

relevant for resolving the singularity, and the CS levels of the gauge nodes being Higgsed

should also be taken into account.

To illustrate this last point, suppose we wish to give a VEV to the field X1,2, a bifun-

damental (N1, N̄2) under gauge nodes 1 and 2. The relevant part of the action is

S ⊃
∫

d3x
(
k1ε

µνρA1
µ∂νA1

ρ + k2ε
µνρA2

µ∂νA2
ρ − |DµX1,2|2

)
, (3.4)

where A1, A2 are the gauge fields for nodes 1 and 2, respectively, and the covariant deriva-

tive is

DµX1,2 = ∂µX1,2 − i(A1
µ −A2

µ)X1,2 . (3.5)

After giving X1,2 a VEV, which we will denote as M , the combination A1
µ −A2

µ becomes

massive. If we define A± = 1
2(A1 ±A2) and k± = k1 ± k2, we can rewrite (3.4) as follows

S ⊃
∫

d3x
(
k+ε

µνρA+
µ ∂νA+

ρ + k+ε
µνρA−µ ∂νA−ρ + 2k−ε

µνρA−µ ∂νA+
ρ − 4M2(A−µ )2

)
. (3.6)

At energies well below the scale set by M , we can proceed to integrate out A−. Since

in the IR this field is effectively constant, we have ∂A− = 0. Solving the equations of

– 11 –



motion we see that A− ∝ 1
M2 and therefore terms that contain A− can be deleted from

the Lagrangian in the low-energy limit. As such, (3.4) reduces to

S ⊃
∫

d3x k+ε
µνρA+

µ ∂νA+
ρ . (3.7)

We therefore see that the CS level of the gauge node which survives in the IR is the sum

of the CS levels of the gauge nodes under which the field X1,2 was charged.

3.4 Resolutions of C2/Zn × C2/Zn

Let us put the above two techniques, orbifolding and Higgsing, into practice. For several

reasons, the “simplest” orbifold of C4 is perhaps when C4 is thought of as two copies of

C2, with the orbifold group acting independently on these two copies. In this case, the

singularity is simply the product of two C2 orbifolds, and the latter have been studied to

a great extent over the past decade. There is then also a standard Hanany-Witten type

of brane configuration [36] dual to the QCS theory. It is therefore natural to consider the

space C2/Zn × C2/Zn as a demonstrative warm-up.

The theory for this orbifold has been studied already, and is the non-chiral theory first

presented in [4]. It may be obtained by taking a Zn projection of the ABJM theory with

CS levels k = n. The quiver is presented in Figure 2, while the superpotential and CS

matrix are as follows:

W =
n∑
l=1

Z2l−1W2lZ2lW2l−1 − Z2lW2lZ2l+1W2l+1 , C2×2n =

(
1 1 1 1 . . . 1

1 -1 1 -1 . . . -1

)
.(3.8)

2n 1 43

Z 2n Z 1 Z 2 Z 3

W2n W1 W2 W3

2

Figure 2: The quiver for the non-chiral Zn projection of the ABJM theory at CS level k = n. We

close the chain by identifying node 2n+ 1 with node 1. The quiver is identical to that of a D-brane on

the ALE space C2/Zn.

We can compute the VMS using the forward algorithm, with the above quiver, super-

potential and Chern-Simons levels as input. The output is the toric diagram described by

Gt, whose columns are the vertices of ∆; we will present Gt explicitly at the end of this

subsection. Using Delzant’s construction we can check that the moduli space of the theory

is indeed C2/Zn×C2/Zn. We present the toric diagram in Figure 3. Notice that it has two

external edges each containing n− 1 lattice points, which do not intersect, and that there

are no other lattice points inside the toric diagram. The former implies that the singularity

is not isolated.

– 12 –



(0,0,0)

(n,0,0)

(0,1,n)

(0,1,0)

Figure 3: The toric diagram of C2/Zn × C2/Zn.

Let us study the moduli space in detail using the forward algorithm, reviewed briefly

in Subsection 2.3. Recall from the flowchart (2.10) that each of the points in the toric

diagram corresponds to a field p in the gauged linear sigma model. The relation between

the spacetime fields and the p-fields is encoded in the so-called perfect-matchings matrix

P . To obtain P we will first calculate the Kasteleyn matrix, the procedure for which we

refer the reader to Appendix B of [16]. The Kasteleyn matrix Kas and its determinant D

are computed to be

Kas =



Z2 +W2 0 0 . . . 0 Z1 +W1

Z3 +W3 Z4 +W4 0 . . . 0 0

0 Z5 +W5 Z6 +W6 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Z2n−1 +W2n−1 Z2n +W2n


,

D ≡ det(Kas) = (Z2 +W2)(Z4 +W4) . . . (Z2n +W2n)

+(−1)n(Z1 +W1)(Z3 +W3) . . . (Z2n−1 +W2n−1) . (3.9)

We see that there are 2n+1 terms in D and each field appears in 2n−1 terms. Moreover,

the even and odd indexed fields do not mix in any product. Therefore P is actually block-

diagonal, one for the odd and one for the even indices; we shall denote the blocks by

P even and P odd, respectively, and similarly the charge matrix will also be a block matrix.

Henceforth we concentrate on the one pertaining to the even indexed fields, where P even is

given by

p1 p2 . . . p
2n−2 p

2n−2+1
. . . p

2n−1−1
p
2n−1 p

2n−1+1
p
2n−1+2

. . . p
3∗2n−2 p

3∗2n−2+1
. . . p2n−1 p2n

Z2 1 1 . . . 1 1 . . . 1 1 0 0 . . . 0 0 . . . 0 0

W2 0 0 . . . 0 0 . . . 0 0 1 1 . . . 1 1 . . . 1 1

Z4 1 1 . . . 1 0 . . . 0 0 1 1 . . . 1 0 . . . 0 0

W4 0 0 . . . 0 1 . . . 1 1 0 0 . . . 0 1 . . . 1 1

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

Z2n 1 0 . . . 0 1 . . . 1 0 1 0 . . . 0 1 . . . 1 0

W2n 0 1 . . . 1 0 . . . 0 1 0 1 . . . 1 0 . . . 0 1

 .
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After writing explicitly the relevant part of the incidence matrix d we easily compute the

corresponding block in the charge matrix Q̃:

deven =


node/field Z2 W2 Z4 W4 . . . Z2n W2n

u1 0 0 0 0 . . . -1 1

u2 1 -1 0 0 . . . 0 0

u3 -1 1 0 0 . . . 0 0

u4 0 0 1 -1 . . . 0 0

u5 0 0 -1 1 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

u2n 0 0 0 0 . . . 1 -1

 , Q̃even
i,j =

−(−1)P
even
i−1,j

2n
, (3.10)

where 1 6 j 6 2n, 1 6 i 6 2n and we identify P even
0,j with P even

2n,j . We can also compute,

from (3.8), the kernel of the CS matrix C explicitly. First we have that∑
j

ker(C)i,j = 0 ,
∑
j

(−1)j+1 ker(C)i,j = 0 , (3.11)

whence,

ker(C)i,1 = −
n−1∑
j=1

ker(C)i,2j+1 , ker(C)i,2 = −
n−1∑
j=1

ker(C)i,2(j+1) . (3.12)

In a chosen basis we find that

ker(C)i,j =

{
δj,2(n+1)−i − δj,2 , i = 2k

δj,2n−i − δj,1 , i = 2k + 1
. (3.13)

Finally, by taking the null-space of the join of Qd = ker(C) · Q̃ and Qf we obtain the

desired matrix Gt:

G =t n  n-1 n-1 n-2...5  4  4  3  4  3  3  2  4  3  3  2  3  2  2  1  4  3  3  2  3  2  2  1  3  2  2  1  2  1  1  0
n=1

n=3
n=4

n=5

1   1    1    1.....1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

n=2

(3.14)

The other two rows of this matrix are zero, as follows from the fact that Qd and Qf are

block diagonal. The repetitions in the columns of Gt indicate the multiplicities of the

lattice points in the toric diagram. Notice here that these multiplicities are the numbers

in Pascal’s triangle; this was observed for the C2/Zn singularity in [37,38].

We next examine the partial resolutions of C2/Zn × C2/Zn obtained by Higgsing this

theory. When Higgsing a spacetime field one needs to delete the corresponding p-fields in

the GLSM, as dictated by the matrix P since each spacetime field is a specfic product of

p-fields. The associated point in the toric diagram will either be deleted, or, if there are

multiple p-fields for that point, i.e. repetitions in columns in Gt, the multiplicity will be

reduced. Given the structure of the P matrix, repeatedly Higgsing only one type of field
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(Z or W ) results in half of Gt being deleted with each iteration. More specifically, the left

half of Gt will be deleted by Higgsing in the following order:

Z2 → Z4 → . . .→ Z2n . (3.15)

This operation reduces the length of one of the lines in the toric diagram in Figure 3 by

one at each Higgsing step, corresponding to a partial resolution of the C2/Zm singularity

to C2/Zm−1.
One might be concerned that during this proccess additional fields may acquire a VEV.

However, each Z-field appears alone in one term in the superpotential, accompanied by

W -fields only. Therefore, each Z-field corresponds to a unique p-field and as such cannot

be Higgsed by Higgsing other Z-fields. Moreover, from the form of the superpotential it

is guaranteed that Higgsing the Z-fields with even indices will not give mass to any of the

other fields. This also holds for the odd indices. Thus a similar order of Higgsing for the

odd-indexed fields will result in partial resolution of the second C2/Zn in C2/Zn ×C2/Zn,

which corresponds to the second line of lattice points in the toric diagram.

In conclusion, therefore, QCS theories for all toric sub-diagrams can be obtained by

Higgsing the original theory, and these are all orbifolds of the form C2/Zl × C2/Zm for

1 ≤ l,m ≤ n.

4. A complete family: resolutions of C4/Z3
2

In the previous section we have seen an example of a QCS theory which, via Higgsing,

can generate QCS theories for all toric sub-diagrams obtained by partial resolution of

the parent. It is natural to wonder if, given an arbitrary toric Calabi-Yau four-fold X,

there is a systematic way in which we can construct a QCS theory for X via this method.

Indeed, recall that in the case of four-dimensional gauge theories on D3-branes it has been

shown [21,23,33,35] that a d = (3+1), N = 1 quiver gauge theory on a D3-brane transverse

to any toric Calabi-Yau three-fold can be obtained by partial resolution of an appropriate

Abelian orbifold C3/(Zn)2, for sufficiently large n ∈ Z. The latter may then be constructed

as a DM orbifold projection of N = 4 SYM [24,39,40], as already mentioned.

Motivated by the works [21,23], which obtained D3-brane gauge theories on all partial

resolutions of C3/Z2
2 and C3/Z2

3 via Higgsing, we consider M2-branes probing the orbifold

C4/Z3
2. Here the three Z2 generators act on the four coordinates (x1, x2, x3, x4) by multi-

plication by (−1,−1, 1, 1), (−1, 1,−1, 1), (−1, 1, 1,−1), respectively. The toric diagram is

presented in Figure 4 (1). It has ten vertices and is simply a rescaling of the toric diagram

of C4 in each direction by a factor of two. The remaining diagrams in Figure 4 represent all

possible partial resolutions of C4/Z3
2, i.e. inequivalent toric sub-diagrams of that of C4/Z3

2.

We have drawn the lattice points for the toric diagrams in a standard three-dimensional

projection, so that, for example, the ten vertices for C4/Z3
2 are (0, 0, 0), (1, 0, 0), (2, 0, 0),

(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1).
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1 2 3 4

5 6 7 8

9 10 12

14 15

17 18

13 16

19

11

Figure 4: All 18 toric sub-diagrams of that of the parent orbifold C4/Z3
2, including the latter itself

which is presented in (1). Each diagram corresponds to an inequivalent affine toric Calabi-Yau four-fold,

which is a partial resolution of C4/Z3
2.
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There are 18 inequivalent children which have at least four vertices and which are

non-coplanar; this is to guarantee that the geometry is really that of a Calabi-Yau four-

fold, rather than say a three-fold. Moreover, recall from Subsection 2.2 that two toric

diagrams give an equivalent affine four-fold if and only if they are related by an SL(4,Z)-

transformation. Each diagram in Figure 4 is in a different equivalence class. Note that the

list is exhaustive; that is, we have found all possible SL(4,Z)-inequivalent sub-diagrams.

An immediate problem, already mentioned in Subsection 3.2, is that when taking a

DM projection of a QCS theory, the order of the orbifold group must divide the CS levels

of the parent. This means that a (Z2)
2 DM quotient of the ABJM theory necessarily

gives C4/(Z2)
2 × Z4 as the minimal model [8, 9]. As far as the authors are aware, it is

therefore not possible to obtain a QCS theory for C4/Z3
2 by a projection of the ABJM

theory. We are thus naturally led to wonder if there are other methods by which we can

find the QCS theory for an M2-brane probing C4/Z3
2, the natural analogue of C3/Z2

2 for

D3-branes. We will use two different approaches. First, we will start by un-Higgsing the

two well-known theories which we called (C4)I , (C4)II in Subsection 3.1. This leads to a

phase of the desired theory, which we will call (C4/Z3
2)I . Second, we will examine another

phase, (C4/Z3
2)II , which will be constructed by lifting a parent theory from Type IIA to

M-theory.

4.1 The (C4/Z3
2)I theory

In this section we wish to un-Higgs (C4)I to obtain a theory with C4/Z3
2 as VMS. We thus

begin with a discussion of the known constraints on QCS theories, and then describe a

general un-Higgsing algorithm. This is then applied to the ABJM theory to obtain a phase

(C4/Z3
2)I . We then study the Higgsing behaviour of the latter theory by giving VEVs to

all possible combinations of bifundamental fields.

4.1.1 Calabi-Yau, toric and tiling conditions

We begin by reviewing the conditions which should be satisfied by a QCS theory on M2-

branes probing a non-compact toric Calabi-Yau four-fold.

In order that the VMS, and any (partial) resolution of it obtained by turning on FI

parameters, is Calabi-Yau, we require that for each node in the quiver the number of arrows

entering and leaving the node should be equal. This condition then guarantees that the

Gt matrix, which is the null-space of the charge matrix, can be put into a form with a

row of 1s by an appropriate SL(4,Z) transformation – see the discussion in Subsection 2.2.

Notice this is the same condition as gauge anomaly cancellation in the (3 + 1)-dimensional

YM parent.

The superpotential satisfies the toric condition if each chiral multiplet appears precisely

twice in W : once with a positive sign and once with a negative sign. This ensures that the

solution to the F-term equations is a toric variety.
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The last condition that we want to impose is the so-called tiling condition. All known

quiver theories related to toric Calabi-Yaus, in both (3 + 1) and (2 + 1) dimensions, obey

this condition due to their brane-tiling/dimer model description [12, 13, 41]. This leads to

the elegant condition

G− E +NT = 0 , (4.1)

where G is the number of nodes, E is the number of fields and NT is the number of terms

in the superpotential. It is intriguing that this relation, suggestive of a planar, rather

than solid, tiling, still holds for all theories we have constructed in this paper. In the next

subsection we will un-Higgs theories that obey this condition, and see that whenever the

rule is broken in the resulting theory the dimension of its VMS is no longer four.

i k

i

j

k

h

j

i
k

i

j

k

i

j

k

a b c

d e

Figure 5: The un-Higgsing process. Gauge nodes of the original theory (in red) appear on the boundary

of the circle, while the gauge node that has been introduced in the un-Higgsing appears (in blue) inside

the circle: (a) adding one field; (b) adding three fields; (c) adding five fields; (d) and (e) adding four

fields.

4.1.2 The un-Higgsing algorithm

The un-Higgsing procedure for quiver gauge theories was studied in [42] in the context

of D3-branes probing complex cones over del Pezzo surfaces. Here we wish to system-

atize this method and use it as a guide for constructing QCS theories living on M2-brane

worldvolumes. As we will explain shortly, the un-Higgsing process for theories with toric

Calabi-Yau four-folds as VMS is quite restrictive. The basic idea is that by adding one
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gauge node at a time we can obtain theories whose VMSs contain the original toric diagram

as a sub-diagram; thus this will be a QCS form of “blow-up”.

Let us begin with the simplest case: un-Higgsing by adding one field to the quiver. This

step is shown schematically in Figure 5 (a). The gauge nodes which sit on the circumference

of the dotted circle are those in the original theory which is being un-Higgsed. The gauge

node sitting inside the circle is that being added to the theory. We have indicated the

original node in red, indexed by i, and the new node in blue, indexed by k. We shall say

that i participates in the un-Higgsing process, because it will be attached to k, while all

other nodes in the original theory are non-participatory.

Next, we add to the original quiver a bifundamental field Xi,k charged under (Ni, N̄k);

this is an arrow connecting node i to node k. The key point in un-Higgsing is that we must

be able to Higgs the new theory to the original one by letting Xi,k acquire a non-zero VEV.

To continue to satisfy the toric condition, the field Xi,k must be added simultaneously to

a positive and a negative term which already appears in the superpotential, and no extra

terms should be introduced. In order to exhaust all possiblities for constructing new

consistent theories the i index should run over all values between 1 and G, where G is the

number of gauge nodes in the original quiver. Moreover, the field Xi,k must be inserted to

all possible pairs of negative and positive terms in the superpotential.

However, notice that after adding Xi,k to the quiver, the Calabi-Yau condition men-

tioned in the previous subsection is broken: the number of arrows that enter node i or node

k is not equal to the number of those that leave. To remedy this we need to relocate the

heads and tails of arrows in the original quiver between node i and node k. For example,

for a three-noded quiver with nodes i, i1 and i2 we can do this by changing the tail of Xi,i1

to k:

i

i

i

1

2

k

i

i

i

1

2

k

a b

(4.2)

Finally, we assign CS levels to nodes i and k such that their sum is equal to the original

CS level of node i.

Next we turn to more complicated un-Higgsing possiblities. Adding more than one

field forces us to add terms to the superpotential, instead of simply adjoining the fields

to existing terms, as was the case above; otherwise, it would be impossible to obtain the

original quiver by Higgsing. The only possibility is that after introducing such new terms

to the superpotential, some of the fields will become massive after the Higgsing and will

be integrated out. Therefore, we see immediately that it is not possible to un-Higgs the
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theory by adding only two fields: insertion of a term that contains two fields is not a valid

un-Higgsing step as these fields would be integrated out even before Higgsing because we

would be adding a quadratic mass term.

Hence, let us move on to consider introducing three new fields. In accordance with

the labelling in Figure 5 (b), the three fields are denoted Xi,j , Xj,k and Xk,i, where Xj,k

is the field which we wish to Higgs in order to reproduce the original theory in the IR.

Since the three fields should disappear from the IR theory after Higgsing, there must be

a cubic term in the superpotenital which contains all three. This new cubic term should

be gauge invariant, and thus the fields which we add must form a closed loop. Notice that

after Higgsing Xj,k we are left with a term that contains two fields: Xi,j and Xk,i. Those

fields should be integrated out in the IR as they give rise to a quadratic mass term.

To satisfy the toric condition, Xi,j , Xj,k and Xj,k should also appear in other terms in

the superpotential and have opposite sign with respect to the cubic term. Furthermore, we

must satisfy2 the tiling condition (4.1). Now, since we have added one node and three fields,

we must add two terms to the superpotential. The cubic term mentioned above is one of

them. What about the other? There are two options: to add a new term or to split one of

the existing terms into two. The first option would just be the cubic term with opposite sign,

which would simply cancel in the Abelian theory and hence is ineffective. We must therefore

take the second option and split an existing term, inserting Xi,j and Xk,i separately into

the two split terms. This guarantees that after integrating out these fields the split terms

are united. To see this in more detail, suppose the original superpotential contains a term

AB, where A and B are monomials in bifundamental fields; that is: W = AB + . . .. Then

our procedure would change this superpotential to W = A Xi,j+B Xk,i−Xi,jXj,kXk,i+. . ..

When Xj,k acquires a VEV (say 〈Xj,k〉 = 1 for convenience), the equation of motion for

Xi,j becomes A = Xk,i, and the first and third terms cancel while the middle term becomes

AB, as required. Finally, Xj,k can be added to an arbitrary term with the opposite sign

to the cubic term.

In order to exhaust all possibilities we split terms, insert fields, assign CS levels and

vary i and j in all possible combinations (notice that i could equal j for the case of adjoint

fields). Furthermore, we insert the cubic term both with positive and negative signs and

allow relocation of heads or tails of arrows involving nodes i and k in ways that satisfy the

Calabi-Yau condition, as in the case of adding one field.

The next possibility is un-Higgsing by introducing four new fields. As shown in Figure 5

(d) and (e), this can be done in two different ways. Let us discuss (d) first. Notice that the

only way this can be achieved is by insertion of two new cubic terms into the superpotential:

Xj,kX
1
k,iXi,j−Xj,kX

2
k,iXi,j . However, this violates the Calabi-Yau condition on both nodes

i and k. Since the field to be Higgsed is Xj,k, we can transform heads and tails of arrows

2A priori, violating this condition is not a problem. However, in all cases that we have studied the

resulting theory will then have a five complex-dimensional VMS.
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Step Fields added Quiver Superpotential X Duals

0 - (a) X1
1,3X

1
3,1X

2
1,3X

2
3,1 −X2

1,3X
1
3,1X

1
1,3X

2
3,1 (18)

1 X3,5 (e) X5,1X
1
1,3X3,1X

2
1,3X3,5 −X5,1X

2
1,3X3,1X

1
1,3X3,5 (16) (e2)

2 X2,1 (i) X5,1X
1
1,3X3,2X2,1X

2
1,3X3,5−

X5,1X
2
1,3X3,2X2,1X

1
1,3X3,5

(12) (i2−3)

3 X1,7 (l) X5,1X1,3X3,2X2,1X1,7X7,3X3,5−
X5,1X1,7X7,3X3,2X2,1X1,3X3,5

(9) (l2−6)

4 X2,4, X4,3, X
1
3,2 (p)

X1,7X7,3X
1
3,2X2,1 −X2,4X4,3X

1
3,2+

X1,4X4,3X
2
3,2X2,4X4,5X5,1−

X1,4X4,5X5,1X1,7X7,3X
2
3,2X2,1

(5)

5 X2,5, X5,6, X6,2 (s)
X2,4X4,6X6,2 −X2,4X4,3X

1
3,2+

X1,7X7,3X
1
3,2X2,1 −X2,5X5,6X6,2+

X1,4X4,3X
2
3,2X2,5X5,6X6,1−

X1,4X4,6X6,1X1,7X7,3X
2
3,2X2,1

(2)

6 X2,8, X8,4, X4,2 (t)

−X1,4X4,2X2,1 −X2,4X4,3X3,2+

X2,4X4,6X6,2 +X2,8X8,4X4,2+

X1,7X7,3X3,2X2,1 −X2,8X8,5X5,6X6,2−
X1,7X7,3X3,8X8,4X4,6X6,1+

X1,4X4,3X3,8X8,5X5,6X6,1

(1)

Table 1: Stepwise un-Higgsing the (C4)I theory to the (C4/Z3
2)I theory. At each step the fields added,

quiver (numbered according to Figure 7), superpotential, toric diagram of the vacuum moduli space X

(numbered according to Figure 4), and dual candidate (numbered according to Figure 6) are indicated.

between nodes j and k only and cannot fix the Calabi-Yau condition on node i. Therefore

this un-Higgsing step is allowed only when i is equal to j. The same analysis can be applied

for (e), and the result is the same. With this constraint, since we have introduced four

new fields, one gauge node, and two new terms to the superpotential, the tiling condition

is violated. In the theories that we have checked this results in five-dimensional VMSs. We

hence cannot introduce four fields.

The final un-Higgsing process involves insertion of five new fields. Careful examination

implies that this can be done by introducing two cubic terms into the superpotential with

opposite signs. If we use the notation of Figure 5 (c), we can write the terms as follows:

Xi,kXk,hXh,i − Xi,kXk,jXj,i (i, j and h can be equal). Notice that by Higgsing Xi,k we

obtain two terms in the superpotential that contain two fields each, and therefore four

fields should be integrated out. By a similiar analysis to the above, after satisfying the

tiling condition by splitting terms in the superpotential it can be seen that Xk,h and Xh,i

should appear in different split negative terms. Similarly, Xk,j and Xj,i should appear in

different split positive terms.

Finally, note that five fields is the maximum number of fields that can be introduced

if one wants to obtain the original theory by Higgsing only one field. This concludes the

discussion of our un-Higgsing algorithm.

4.1.3 Obtaining the (C4/Z3
2)I phase

With the aid of a computer we may apply the un-Higgsing algorithm described above to

theory (C4)I or theory (C4)II . In each step of the un-Higgsing we add one point to the

toric diagram.
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Let us describe the un-Higgsing of theory (C4)I , the standard ABJM theory. For the

present purposes we will call this quiver (a). We find that by adding new fields stepwise we

can indeed arrive at a theory whose VMS is C4/Z3
2, or diagram (1) in Figure 4. We present

the intermediate results in Table 1. Here we have listed the quiver, numbered according3

to Figure 7, the superpotential of the non-Abelian theory, as well as the resulting toric

moduli spaces, the latter numbered according to Figure 4 above.

Theory (e), and its dual (e2), in Table 1 will be discussed in more detail later in the

paper. Note that their VMS is C(Y 1,2(CP2)), where Y 1,2(CP2) is one of the explicit Sasaki-

Einstein seven-manifolds discussed in [43] whose toric diagram is number (16) in our list.

We shall also refer to these theories as C(Y 1,2(CP2))Ia and C(Y 1,2(CP2))Ib, respectively

(whenever the discussion is relevant for both phases we will omit the a(b) subscript).

Theories (s) and (p) have toric diagrams in which there are external vertices with

multiplicities greater than one. This is an issue first raised in [21]: it has been suggested

that M2-brane theories, as well as D3-brane theories, should have external multiplicities

equal to one [12,13]. We have applied the algorithm together with the constraint that the

external multiplicities in the toric diagrams are all equal to one. Although this produces

QCS theories up to toric diagram (2), it is not possible to produce a theory for (1) this

way, at least if we are limiting4 the number of gauge nodes to 8. We will briefly discuss

this external multiplicity issue further in Subsection 5.5.

4.1.4 Dualities

In some steps in the un-Higgsing process more than one theory can be obtained with the

same VMS. For toric diagrams with no internal vertices (i.e. (9), (12) and (16) in the case

at hand) it is possible to exhaustively list these dual theories if we restrict the external

multiplicites to one. Those theories are shown in Figure 6.

In order to examine this in more detail, let us define an operation with respect to

gauge node i in the following way:

ki → −ki
kj → kj + ki , (4.3)

where j indexes nodes which are connected to node i. We will show that, with this oper-

ation, each class of dual theories form a closed system, i.e. by performing the operation

that we have just defined on single-flavour nodes (nodes with one arrow entering and one

arrow leaving) it is possible to obtain all other theories in the class, and no others. These

transformation rules for the CS levels, as observed in [8, 44], are related to changing the

order of two (1, p)-branes on a circle in theories with Type IIB brane models. By examining

3Figure 7 also summarizes results obtained later in this section.
4Indeed, it is not possible to exhaustively un-Higgs without limiting the number of gauge nodes, as we

can always un-Higgs a theory to a theory with the same VMS.
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the VMS equations we will show in general that the rule (4.3) leaves the VMS invariant,

provided one applies the transformation only to single-flavour nodes. Notice this is distinct

from Seiberg duality in (3 + 1) dimensions, and dualities in (2 + 1) dimensions that were

observed in [44], in that the quiver is unchanged, and only the CS levels are altered.
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Figure 6: Dual candidates. The quivers and superpotentials in each class are identical to those of

the parent in Table 1. To transform between theories within the same class one performs the CS level

transformation on gauge nodes indicated by black dots. CS levels are indicated in (blue) square brackets.

To see the above claim, let us concentrate on the following piece of quiver:
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j

i

j

1

2

We write the Abelian VMS equations and concentrate on the branch in which the σs

are equal. The D-terms can be written as follows

µi ≡ Xi,j1X
†
i,j1
−X†j2,iXj2,i =

ki
2π
σ ,

µj1 ≡ −X
†
i,j1
Xi,j1 + . . . =

kj1
2π
σ ,

µj2 ≡ Xj2,iX
†
j2,i

+ · · · = kj2
2π
σ . (4.4)

If we define

µ̃i ≡ −µi , µ̃j1 ≡ µj1 + µi , µ̃j2 ≡ µj2 + µi ,

we can rewrite these D-terms as follows

µ̃i = −Xi,j1X
†
i,j1

+X†j2,iXj2,i =
−ki
2π

σ ,

µ̃j1 = −X†j2,iXj2,i + . . . =
kj1 + ki

2π
σ ,

µ̃j2 = Xi,j1X
†
i,j1

+ · · · = kj2 + ki
2π

σ . (4.5)

If we now relabel Xi,j1 ↔ Xj2,i we obtain the same D-terms as before, only with the

substitutions

ki → −ki , kj1 → kj1 + ki, kj2 → kj2 + ki . (4.6)

These are precisely the rules given in (4.3). Notice that the other vacuum equations (2.3)

are invariant under the relabelling. Indeed, the third equation in (2.3) is invariant since all

the σs are equal. Moreover, the first equation, which is the F-term, is also invariant since

the superpotential is invariant. To see this notice that Xi,j1 and Xj2,i must appear in the

same terms in the superpotential, otherwise the terms would not be gauge-invariant.

4.1.5 Higgsing (C4/Z3
2)I

We have now arrived at our “parent” theory, namely the (C4/Z3
2)I theory. This is expected

to be an M2-brane QCS theory because we have obtained it, via the un-Higgsing algorithm,

from ABJM theory on an M2-brane in flat spacetime. We would now like to determine all

possible Higgsings of this theory, and hence find QCS theories for the 18 sub-diagrams in

Figure 4, corresponding to all toric partial resolutions of C4/Z3
2. Specifically, we will give
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Toric diagram Gt Superpotential W X

(a)

 -1 0 0 -1
0 1 0 1
0 0 1 1
2 0 0 0

 X1
1,3X

1
3,1X

2
1,3X

2
3,1 −X1

1,3X
2
3,1X

2
1,3X

1
3,1 (19)

(b)

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 X1,5X5,1X
1
1,1X

2
1,1 −X1,5X5,1X

2
1,1X

1
1,1 (18)

(c)

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 X1
1,3X

1
3,1X

2
1,3X

2
3,1 −X1

1,3X
2
3,1X

2
1,3X

1
3,1 (18)

(d)

 2 0 0 0 1 1
-1 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 −X1
1,3X

1
3,2X

1
2,1 +X2

1,3X
1
3,2X

2
2,1+

X1,1X
1
1,3X

2
3,2X

1
2,1 −X1,1X

2
1,3X

2
3,2X

2
2,1

(17)

(e)

 -1 0 0 0 1
1 0 0 1 0
2 0 1 0 0
-1 1 0 0 0

 X1
1,3X3,1X

2
1,3X3,5X5,1−

X2
1,3X3,1X

1
1,3X3,5X5,1

(16)

(f)

 0 0 0 0 1
-1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

 X1,2X2,1X1,1X1,5X5,1−
X1,5X5,1X1,1X1,2X2,1

(15)

(g)

 1 1 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
-1 -1 1 0 0 0

 X1,2X2,1X1,7X7,1X1,5X5,1−
X1,7X7,1X1,2X2,1X1,5X5,1

(14)

(h)

 0 0 -1 0 0 1
1 0 1 0 1 0
1 0 1 1 0 0
-1 1 0 0 0 0

 X3,2X2,1X
1
1,3X1,5X5,1X

2
1,3−

X3,2X2,1X
2
1,3X1,5X5,1X

1
1,3

(13)

(i)

 -1 0 0 0 0 1
0 1 0 0 1 0
1 -1 0 1 0 0
1 1 1 0 0 0

 X3,2X2,1X
1
1,3X1,5X5,1X

2
1,3−

X3,2X2,1X
2
1,3X1,5X5,1X

1
1,3

(12)

(j)

 1 0 0 1 2 0 1
0 0 0 0 -1 1 0
1 0 1 0 0 0 0
-1 1 0 0 0 0 0

 −X1
1,3X

1
3,2X

1
2,1 +X1

1,3X
2
3,2X

1
2,1X1,5X5,1+

X2
1,3X

1
3,2X

2
2,1 −X2

1,3X
2
3,2X

2
2,1X1,5X5,1

(11)

(k)

 2 0 0 1 2 0 1
-1 0 0 0 -1 1 0
1 0 1 0 0 0 0
-1 1 0 0 0 0 0

 X1,3X
1
3,2X2,1 −X1,3X

2
3,2X2,1X1,4X4,1−

X2,4X4,3X
1
3,2 +X1,4X4,1X4,3X

2
3,2X2,4

(10)

(l)

 1 -1 0 0 0 0 1
1 0 1 0 0 1 0
-1 1 -1 0 1 0 0
0 1 1 1 0 0 0

 X3,2X2,1X1,3X3,5X5,1X1,7X7,3−
X3,2X2,1X1,7X7,3X3,5X5,1X1,3

(9)

(m)

 0 1 0 0 0 0 1
2 1 0 0 1 1 0
-1 -1 0 1 0 0 0
0 0 1 0 0 0 0

 X1,2X2,1X2,2 +X1,4X4,2X2,4X4,5X5,1−
X2,2X2,4X4,2 −X1,2X2,1X1,4X4,5X5,1

(8)

(n)

 -1 1 0 0 0 0 0 1
1 1 -1 1 0 0 1 0
0 0 1 0 0 1 0 0
1 -1 1 0 1 0 0 0

 X1,3X
1
3,2X2,1 +X1,4X4,3X

2
3,2X2,4X4,5X5,1−

X2,4X4,3X
1
3,2 −X1,3X

2
3,2X2,1X1,4X4,5X5,1

(7)

(o)

 -1 -1 0 0 1 0 0 1
1 0 1 0 1 0 1 0
1 1 0 0 -1 1 0 0
0 1 0 1 0 0 0 0

 −X2,2X2,4X4,2 +X1,4X4,2X2,4X4,1+

X1,7X7,2X2,2X2,1 −X1,4X4,1X1,7X7,2X2,1
(6)

(p)

 0 1 1 1 1 2 0 0 0 1
1 0 -1 0 0 -1 0 0 1 0
-1 -1 0 0 -1 -1 0 1 0 0
1 1 1 0 1 1 1 0 0 0

 −X2,4X4,3X
1
3,2 +X1,7X7,3X

1
3,2X2,1+

X1,4X4,3X
2
3,2X2,4X4,5X5,1−

X1,4X4,5X5,1X1,7X7,3X
2
3,2X2,1

(5)

(q)

 -1 -1 -1 -1 0 0 0 0 0 0 1
1 0 2 1 0 0 1 0 0 1 0
1 2 0 1 0 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0

 X1,3X2,5X
1
3,2X5,1 +X1,1X1,3X2,5X

2
3,2X5,1+

X1,7X2,1X
1
3,2X7,3 −X1,1X1,7X2,1X

2
3,2X7,3

(4)

(r)

 0 1 0 1 0 1 1 0 1 2 0 0 1
1 -1 2 1 0 -1 0 0 1 0 0 1 0
0 0 -1 -1 0 0 0 0 -1 -1 1 0 0
0 1 0 0 1 1 0 1 0 0 0 0 0


X1,3X3,2X2,1 −X1,4X4,2X2,1−
X2,4X4,3X3,2 +X2,4X4,5X5,2+

X2,8X8,4X4,2 −X1,3X3,8X8,4X4,5X5,1+

X1,4X4,3X3,8X8,5X5,1 −X2,8X8,5X5,2

(3)

(s)

 0 1 0 0 1 0 1 1 1 2 0 0 0 1
-1 -1 -1 0 0 0 -1 0 -1 -1 0 0 1 0
2 1 1 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0 0 0


−X2,4X4,3X

1
3,2 +X2,4X4,6X6,2+

X1,7X7,3X
1
3,2X2,1 −X2,5X5,6X6,2−

X1,4X4,6X6,1X1,7X7,3X
2
3,2X2,1+

X1,4X4,3X
2
3,2X2,5X5,6X6,1

(2)

(t)

 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 2 0 0 0 1
0 1 0 0 1 1 1 1 0 1 1 2 1 1 0 0 0 0 1 0
1 0 2 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


X1,7X7,3X3,8X8,4X4,6X6,1 −X2,4X4,3X3,2+

X2,4X4,6X6,2 +X2,8X8,4X4,2+

X1,7X7,3X3,2X2,1 −X2,8X8,5X5,6X6,2−
X1,4X4,3X3,8X8,5X5,6X6,1 −X1,4X4,2X2,1

(1)

Table 2: The toric diagrams and superpotentials for the possible Higgsings of theory (t), which is theory

(C4/Z3
2)I . Also listed are the corresponding toric moduli spaces X, numbered according to Figure 4.

Note that all 19 toric sub-diagrams are obtained.
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Theory Higgsed fields

(a) {X2,1, X4,3, X7,3, X2,8, X5,6, X4,6}
(b) {X2,1, X4,3, X7,3, X2,8, X5,6, X3,8}
(c) {X2,1, X4,3, X7,3, X2,8, X5,6, X6,1}
(d) {X1,4, X4,6, X7,3, X2,8, X5,6}
(e) {X2,1, X4,3, X7,3, X2,8, X5,6}
(f) {X1,4, X4,3, X7,3, X2,8, X5,6}
(g) {X1,4, X4,3, X2,8, X5,6}
(h) {X4,3, X1,7, X2,8, X5,6}
(i) {X4,3, X7,3, X2,8, X5,6}
(j) {X1,4, X7,3, X2,8, X5,6}

Theory Higgsed fields

(k) {X4,6, X7,3, X2,8, X5,6}
(l) {X4,3, X2,8, X5,6}
(m) {X7,3, X2,8, X3,8, X5,6}
(n) {X7,3, X2,8, X5,6}
(o) {X2,8, X3,8, X6,1, X5,6}
(p) {X2,8, X5,6}
(q) {X2,8, X4,6, X6,1}
(r) {X7,3, X5,6}
(s) {X2,8}

Table 3: The list of fields which acquire VEVs in Higgsing theory (t), i.e. (C4/Z3
2)I , in order to obtain

the various partial resolutions.

VEVs to all possible subsets of the fields, and determine the resulting low-energy theories

at scales well below the scale set by the VEVs. We can then compute the moduli spaces

of these theories using the forward algorithm (2.10), and compare their toric diagrams to

sub-diagrams of that of the parent. As one might imagine, there are hundreds of thousands

of possibilities; we have executed these exhaustively with the aid of a computer.

The results are summarized in Table 2. Here we have applied the forward algorithm

(2.10) to each low-energy theory, with given quiver, superpotential and Chern-Simons levels

inherited from the parent. The output is the matrix Gt, whose columns are the vertices of

the toric diagram ∆, with the number of repetitions of a column being the multiplicity. It

turns out that there are typically many inequivalent QCS theories with a given Calabi-Yau

four-fold moduli space X – in other words, different phases for X – and so for reasons of

space we have in general presented only one such theory for each possible partial resolution

in Table 2 (examples of this non-uniqueness of phases may be found in Appendix B). The

quiver diagrams for the various theories are presented in Figure 7. Theory (t) in Figure 7 is

our parent (C4/Z3
2)I . By Higgsing it, we find a total of 19 inequivalent affine toric Calabi-

Yau four-folds, including the parent; we denote the corresponding theories as (a) to (t).

Theories (b) and (c) correspond to toric diagram (18), and are shown in order to emphasize

that both (C4)I and (C4)II can be obtained from Higgsing the same parent theory.

We see that the entire list of toric sub-diagrams of C4/Z3
2 in Figure 4 is obtained via

Higgsing the parent theory (C4/Z3
2)I . We have therefore constructed QCS theories for

an entire family of partial resolutions, as promised. For completeness, the list of fields

acquiring VEVs for each theory (with respect to theory (t)) is presented in Table 3. In

fact, a stronger claim can be made. Each of the theories in Figure 7 can be Higgsed to

obtain theories that correspond to all their own toric sub-diagrams. Notice that theories

(p), (q), (r) and (s) correspond to toric diagrams with external multiplicities greater than
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Figure 7: Quiver diagrams for the 19 Higgsed theories obtained from (t), which is (C4/Z3
2)I . We have

labelled the Chern-Simons levels with (blue) square brackets, and have kept an absolute numbering of

the nodes with respect to the theory (t) from which all are derived.

one, and of these theories (p), (q) and (s), as opposed to (r), can be further Higgsed in

order to reduce all external multiplicities to one.
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Toric diagram Gt Superpotential W

(b)


0 1 0 1 1 1 0 0 0 1 0 1 2 1 0 0 0 1

0 1 0 1 0 0 1 1 1 1 2 0 0 1 0 0 1 0

1 0 2 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


X1,2X2,4X4,1 −X1,4X4,2X2,1−
X2,4X4,3X3,2 +X1,7X7,3X3,2X2,1+

X2,8X8,4X4,2 −X1,7X7,3X3,8X8,4X4,1−
X1,2X2,8X8,5X5,1 +X1,4X4,3X3,8X8,5X5,1

(c)


-1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1

0 1 1 0 0 0 2 1 1 1 0 0 0 0 1 0

1 0 1 0 2 1 0 0 1 0 1 0 0 1 0 0

1 1 0 2 0 1 0 1 0 0 0 1 1 0 0 0


X1,2X2,4X4,1 −X1,4X4,2X2,1+

X2,3X3,4X4,2 −X2,4X4,3X3,2−
X1,2X2,3X3,5X5,1 +X1,4X4,3X3,5X5,1+

X1,7X7,3X3,2X2,1 −X1,7X7,3X3,4X4,1

Table 4: The Gt matrix and superpotentials for the two C4/Z3
2 daughter phases obtained by Higgsing

the parent (C4/Z3
2)I . Theories (b) and (c) are obtained by giving VEVs to X6,1 and {X6,1, X3,8},

respectively.

Interestingly, we see that one can Higgs away fields X6,1, or {X6,1, X3,8}, from theory

(t) to obtain theories which are different phases, i.e. share the same VMS, of the parent

orbifold C4/Z3
2. Indeed, note these have different numbers of nodes in the quiver (respec-

tively 8, 7 and 6) but still have the same moduli space. The quivers for these theories are

shown in Figure 8, while the superpotential and Gt matrix are presented in Table 4.
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Figure 8: Quiver diagrams for the two Higgsed theories obtained from (a), or theory (C4/Z3
2)I . We

have labelled the CS levels with (blue) square brackets, and have kept an absolute numbering of the

nodes with respect to the theory (a) from which all are derived.

Another theory obtained from Higgsing (C4/Z3
2)I , which we have not presented in

Figure 7, is a theory which is dual to theory (h). We will refer to this theory as C(Q1,1,1)I .

Geometrically, this is a cone over Q1,1,1 and the toric diagram is number (13) in our

list. The quiver and superpotential for these theories are the same, while the CS levels

are different. To obtain C(Q1,1,1)I from theory (h) we need to apply the duality rules,

discussed in Subsection 4.1.4, on one of the single-flavour nodes. The CS levels that are

obtained are then (−1, 1,−1, 1). These dual theories were first presented in [15], and

C(Q1,1,1)I was studied in detail in [17]. In the latter reference it was shown that the

manifest global symmetry of the gauge theory is U(1)R × SU(2) × U(1), which is strictly

smaller than the isometry group of Q1,1,1. It was conjectured that the gauge theory at CS

levels (−k, k,−k, k) is dual to AdS4 × Q1,1,1/Zk, where the action of Zk precisely breaks
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the isometry group to U(1)R × SU(2) × U(1). Moreover, the simplest chiral operators in

this gauge theory were analyzed [17], and shown to match the Kaluza-Klein harmonics on

AdS4×Q1,1,1/Zk, thus proving further tests of this gauge theory as a theory on M2-branes

at the C(Q1,1,1) singularity.

4.2 The (C4/Z3
2)II theory

We have just seen two more phases of the parent C4/Z3
2 theory. It is therefore natural

to ask whether we could obtain other phases. In this subsection we shall see that this is

indeed so. We shall succeed in constructing yet another phase, (C4/Z3
2)II , using a rather

different method.

4.2.1 Obtaining the (C4/Z3
2)II phase from a PdP5 parent theory

It is by now well-known that it is possible to generate a (2+1)-dimensional QCS theory with

toric Calabi-Yau four-fold moduli space by starting from the quiver and superpotential of a

(3 + 1)-dimensional theory [11,12,16,18,45–47]. The (2 + 1)-dimensional theory can be ob-

tained by appropriate assignment of CS levels to the nodes of the (3+1)-dimensional parent

theory. The resulting four-dimensional moduli space, which has a three-dimensional toric

diagram ∆ = ∆3, can be seen to be an “inflated” version of the original two-dimensional

parent toric diagram ∆2; more precisely, the latter is a projection of the former.

(A) (B) (C)

Figure 9: The toric diagram (A) for the C4/Z3
2 theory can be projected to that of the Pseudo del Pezzo

5 singularity in (B). The quiver for the associated (3 + 1)-dimensional theory for PdP5 is presented in

part (C).

In order to find a potential (3 + 1)-dimensional parent theory for C4/Z3
2 we must first

find an appropriate projection of its three-dimensional toric diagram, which we recall is

diagram (1) in Figure 4, or diagram (A) in Figure 9. This may be achieved as in Figure 9,

where in part (B) we have shown the resulting two-dimensional toric diagram. This is the

Pseudo Del Pezzo 5 (PdP5) geometry of [42], which is a complex cone over a non-generic

blow-up of CP2 and is, in fact, an orbifold of the conifold. The quiver for the corresponding
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(3 + 1)-dimensional theory is presented in part (C) of Figure 9, while the superpotential is

W = −X1,3X3,5X5,1 +X1,4X4,6X6,1 +X5,2X2,4X4,5 −X6,2X2,3X3,6 +X5,1X1,8X8,5 −

X6,1X1,8X8,6 −X5,2X2,8X8,5 +X6,2X2,8X8,6 +X3,5X5,7X7,2X2,3 −

X4,6X6,7X7,2X2,4 +X6,7X7,1X1,3X3,6 −X5,7X7,1X1,4X4,5 . (4.7)

To obtain the second phase of C4/Z3
2 we assign CS levels k = (0 . . . 0,−1, 1) to the

PdP5 quiver in Figure 9. The forward algorithm may be used to verify that the moduli

space is indeed C4/Z3
2, as desired. We shall call this theory (C4/Z3

2)II . Notice that, as in

(C4/Z3
2)I , the external multiplicities of the lattice points in the toric diagram are all equal

to one.

4.2.2 Higgsing (C4/Z3
2)II

We now take (C4/Z3
2)II as our parent theory and determine all possible Higgsings thereof,

precisely as in Subsection 4.1.5. We will see that the situation here is more subtle than that

for theory (C4/Z3
2)I , in that certain toric sub-diagrams cannot be obtained by Higgsing the

parent theory. We thus see that it is possible for different phases to lead to different sets of

toric sub-diagrams. Again, we have executed this exhaustively with the aid of a computer.

The resulting toric diagrams, specified by Gt, and superpotentials W for the Higgsed

theories are summarized in Table 5. We find a total of 18 inequivalent affine toric Calabi-

Yau four-folds, including the parent; we denote the corresponding theories as (a) to (r).

The list of fields acquiring VEVs for each theory is shown in Table 6. The quiver diagrams

are shown in Figure 10. Notice that we get a different set of theories from those obtained

from the Higgsing of (C4/Z3
2)I . Observe, in particular, theory (p), which we will refer to as

C(Y 1,2(CP2))II , and compare to the theory we called C(Y 1,2(CP2))I in Subsection 4.1.5. In

fact C(Y 1,2(CP2))II appeared first in the literature in reference [11], while C(Y 1,2(CP2))I

is new. In theories (b), (c), (d), (i), (l), (m) and (p) we encounter toric diagrams with

external points which have multiplicity greater than one; moreover, these theories cannot

be further Higgsed to reduce these multiplicities. We will return to a more systematic

discussion of this point later. We see that we only obtain a partial list of the possible toric

sub-diagrams; in particular we are missing geometry (19) in Figure 4, which is the orbifold

C4/Z2.

By examining the toric diagrams in Figure 4, we see that the “missing” theory for

C4/Z2 should be obtained by Higgsing a theory corresponding to toric diagram (16). We

present this toric diagram, together with its two partial resolutions to (18) and (19), in

Figure 11. In the next section we will examine in detail the Higgsing behaviour of the dual

candidates C(Y 1,2(CP2))I , C(Y 1,2(CP2))II to this geometry.
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Toric diagram Gt Superpotential W X

(a)

(
×7 ×2 ×2 ×2 ×2 ×7
0 1 1 0 0 1 0 0 2 0
1 1 0 1 0 0 0 2 0 0
1 0 1 0 1 0 2 0 0 0
1 1 1 1 1 1 1 1 1 1

) −X1,3X3,5X5,1 +X1,4X4,6X6,1+

X5,2X2,4X4,5 −X6,2X2,3X3,6+

X5,1X1,8X8,5 −X6,1X1,8X8,6−
X5,2X2,8X8,5 +X6,2X2,8X8,6+

X3,5X5,7X7,2X2,3 −X4,6X6,7X7,2X2,4+

X6,7X7,1X1,3X3,6 −X5,7X7,1X1,4X4,5

(1)

(b)

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 -1 -1 0 0 -1 -1 0 0 0 1 0
1 1 1 1 0 1 0 1 2 1 1 0 1 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0


−X1,3X3,5X5,1 +X1,2X2,4X4,5X5,1−
X1,2X2,3X3,6X6,1 +X1,4X4,6X6,1−
X1,4X4,5X5,7X7,1 +X1,3X3,6X6,7X7,1+

X2,3X3,5X5,7X7,2 −X2,4X4,6X6,7X7,2

(2)

(c)

 -1 0 -1 -1 0 -2 -1 -1 -1 0 0 1 0 1
1 0 1 1 0 2 1 1 1 0 0 0 1 0
1 1 1 1 2 0 0 1 0 0 1 0 0 0
0 0 0 0 -1 1 1 0 1 1 0 0 0 0


−X1,2X2,3X3,1 +X1,4X4,3X3,1−
X1,3X3,5X5,1 +X1,2X2,4X4,5X5,1+

X1,3X3,7X7,1 −X1,4X4,5X5,7X7,1−
X2,4X4,3X3,7X7,2 +X2,3X3,5X5,7X7,2

(3)

(d)

 1 0 0 0 1 0 1 2 0 0 1
0 0 -1 0 -1 0 -1 -1 0 1 0
0 0 2 1 1 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0


X1,2X2,6X6,1 −X1,5X5,6X6,1−
X1,6X6,2X2,1 +X2,5X5,6X6,2−
X1,2X2,5X5,7X7,1 +X1,6X6,7X7,1+

X1,5X5,7X7,2X2,1 −X2,6X6,7X7,2

(4)

(e)

 1 -1 1 1 1 -1 1 1 0 2 0 0 1 1
0 0 0 0 0 1 -1 0 0 -1 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0 0 0


−X1,3X3,5X

1
5,2X

1
2,1 +X2,4X4,5X

1
5,2+

X2,3X3,5X
2
5,2 −X1,4X4,5X

2
5,2X

2
2,1−

X2,3X3,6X
2
6,2 +X1,4X4,6X

2
6,2X

1
2,1+

X1,3X3,6X
1
6,2X

2
2,1 −X2,4X4,6X

1
6,2

(5)

(f)

 1 1 -1 0 0 0 0 1
-1 -1 2 1 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0

 X1,2X2,4X4,2X2,1 −X1,2X2,1X1,6X6,1−
X2,4X4,6X6,4X4,2 +X1,6X6,4X4,6X6,1

(6)

(g)

 1 1 1 1 0 0 2 1 0 1
0 0 0 -1 0 0 -1 0 1 0
0 0 1 0 0 1 0 0 0 0
0 0 -1 1 1 0 0 0 0 0

 X1,2X2,4X
2
4,5X

2
5,7X7,1 −X1,2X2,5X5,1+

X1,4X
1
4,5X5,1 −X1,4X

2
4,5X

1
5,7X7,1−

X2,4X
1
4,5X

2
5,7X7,2 +X2,5X

1
5,7X7,2

(7)

(h)

 1 0 0 0 0 0 1
0 0 0 0 0 1 0
1 -1 0 0 1 0 0
-1 2 1 1 0 0 0

 X1,2X2,1X1,5X5,7X7,1 −X1,2X2,2X2,1+

X2,2X2,5X5,2 −X1,5X5,2X2,5X5,7X7,1
(8)

(i)

 -1 -1 1 1 0 -1 0 1 0 1
1 1 0 0 0 1 0 0 1 0
1 2 -1 0 0 1 1 0 0 0
0 -1 1 0 1 0 0 0 0 0

 X1,4X4,6X6,1 −X1
1,8X8,4X4,6X6,7X

2
7,1−

X1,4X4,7X
1
7,1 +X2

1,8X8,4X4,7X
2
7,1−

X2
1,8X8,6X6,1 +X1

1,8X8,6X6,7X
1
7,1

(9)

(j)

 0 0 -1 1 0 0 0 1
0 0 1 -1 0 0 1 0
0 0 1 -1 0 1 0 0
1 1 0 2 1 0 0 0

 −X1,5X
3
5,2X

2
2,1 +X1,5X

2
5,2X

1
2,1+

X2,8X
2
8,5X

3
5,2 −X1,8X

2
8,5X

1
5,2X

1
2,1−

X2,8X
1
8,5X

2
5,2 +X1,8X

1
8,5X

1
5,2X

2
2,1

(10)

(k)

 1 1 1 0 0 2 0 1
0 0 0 0 0 -1 1 0
0 0 1 0 1 0 0 0
0 0 -1 1 0 0 0 0

 X2
1,5X

2
5,6X

1
6,2X

1
2,1 −X2

1,5X
1
5,6X

1
6,2X

2
2,1−

X1
1,5X

2
5,6X

2
6,2X

1
2,1 +X1

1,5X
1
5,6X

2
6,2X

2
2,1

(11)

(l)

 -2 -2 -1 0 1 0 0 1
1 1 1 0 0 0 1 0
1 1 1 0 0 1 0 0
1 1 0 1 0 0 0 0

 −X1,4X
3
4,2X

2
2,1 +X1,4X

1
4,2X

1
2,1+

X2,8X
2
8,4X

3
4,2 −X1,8X

2
8,4X

2
4,2X

1
2,1−

X2,8X
1
8,4X

1
4,2 +X1,8X

1
8,4X

2
4,2X

2
2,1

(12)

(m)

 -1 0 0 1 -1 0 0 1
1 1 0 0 1 0 1 0
1 1 0 0 1 1 0 0
0 -1 1 0 0 0 0 0

 X1
1,8X

1
8,4X

1
4,7X

2
7,1 −X2

1,8X
1
8,4X

2
4,7X

2
7,1−

X1
1,8X

2
8,4X

1
4,7X

1
7,1 +X2

1,8X
2
8,4X

2
4,7X

1
7,1

(13)

(n)

 1 -1 0 0 0 1
-1 1 0 0 1 0
1 0 0 1 0 0
0 1 1 0 0 0

 −X1,2X2,2X2,1 +X1,2X2,1X1,8X8,1+

X2,2X2,8X8,2 −X1,8X8,2X2,8X8,1
(14)

(o)

 1 0 0 0 1
0 0 0 1 0
1 0 1 0 0
-1 1 0 0 0

 X1
1,5X5,1X

2
1,5X5,7X7,1 −X2

1,5X5,1X
1
1,5X5,7X7,1 (15)

(p)

 1 -2 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0

 −X1
1,4X

1
4,2X

3
2,1 +X3

1,4X
1
4,2X

1
2,1−

X2
1,4X

2
4,2X

1
2,1 +X1

1,4X
2
4,2X

2
2,1+

X2
1,4X

3
4,2X

3
2,1 −X3

1,4X
3
4,2X

2
2,1

(16)

(q)

 0 0 0 0 0 1
0 0 0 0 1 0
1 2 0 1 0 0
0 -1 1 0 0 0

 X1
1,8X

2
8,5X

2
5,1 −X2

1,8X
2
8,5X

1
5,1−

X1,1X
1
1,8X

1
8,5X

2
5,1 +X1,1X

2
1,8X

1
8,5X

1
5,1

(17)

(r)

 0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 X1
1,5X

1
5,1X

2
1,5X

2
5,1−

X2
1,5X

1
5,1X

1
1,5X

2
5,1

(18)

Table 5: The toric diagrams and superpotentials for the possible Higgsings of theory (a), i.e.

(C4/Z3
2)II . Also listed are the corresponding toric moduli spaces X, numbered according to Figure 4.

Note that all except toric diagram (19), corresponding to C4/Z2, are obtained.
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Figure 10: Quiver diagrams for the 18 Higgsed theories from (C4/Z3
2)II .
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Theory Higgsed fields

(b) {X2,8}
(c) {X2,8, X3,6}
(d) {X1,3, X2,4, X8,5}
(e) {X1,8, X7,2}
(f) {X1,3, X2,8, X4,5, X5,7}
(g) {X2,3, X8,5, X8,6}
(h) {X1,3, X2,4, X4,6, X8,5}
(i) {X1,3, X2,3, X4,5}
(j) {X1,3, X1,4, X5,7, X6,7}

Theory Higgsed fields

(k) {X1,3, X1,4, X6,7, X8,5}
(l) {X1,3, X4,5, X4,6, X7,2}
(m) {X1,3, X2,3, X4,5, X4,6}
(n) {X1,3, X1,4, X4,5, X6,7, X7,2}
(o) {X1,3, X1,4, X2,4, X3,6, X8,5}
(p) {X1,3, X1,8, X4,5, X4,6, X7,2}
(q) {X1,3, X1,4, X2,4, X5,7, X6,7}
(r) {X1,3, X1,4, X2,4, X3,6, X7,2, X8,5}

Table 6: The list of fields which acquire VEVs in Higgsing theory (C4/Z3
2)II to obtain the various

partial resolutions.

16

Figure 11: Resolving toric diagram (16), which is C(Y 1,2(CP2)), to (18), which is simply C4, and to

(19), which is C4/Z2.

5. Torsion G-flux and Higgsing

In this section we discuss the effect of adding torsion G-flux to the AdS background AdS4×
Y7, where Y7 is a Sasaki-Einstein seven-manifold. For the ABJM theory, where Y7 = S7/Zk,
this has been conjectured to be dual to changing the ranks from U(N)k × U(N)−k to

U(N + l)k×U(N)−k, where 0 ≤ l < k is identified with the torsion flux in H4(Y7/Zk,Z) ∼=
Zk [26]. One thus expects to find a similar behaviour in other QCS theories. Here we

point out that adding such torsion flux non-trivially affects the supergravity dual of the

Higgsing. More precisely, Higgsing a superconformal QCS theory leads to an RG flow, and

in the supergravity dual of this flow one needs to appropriately extend the non-zero G-flux

on the UV boundary at infinity. This is an interesting problem, and leads to non-trivial

predictions about the Higgsing patterns expected in the field theory.

We begin by explaining this in a general context in the next subsection, and then

proceed to study the example Y7 = Y 1,2(CP2) in detail, which is toric diagram number
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(16) in Figure 4. This has two inequivalent choices of G-flux, corresponding to the two

elements in the group Z2
∼= H4(Y 1,2(CP2),Z). We show that the behaviour of Phase

C(Y 1,2(CP2))Ib (theory (e2) in Figure 6) under Higgsing, with different choices of ranks, is

precisely as expected from the dual supergravity solutions with the two choices of torsion

G-flux. On the other hand, we find that the behaviour of Phase C(Y 1,2(CP2))II , which

recall we obtained here by Higgsing (C4/Z3
2)II , does not seem to match the supergravity

analysis. Indeed, we show that there are various related puzzles in interpreting this theory

as an M2-brane QCS theory, despite the fact that it has a Type IIA construction [48].

5.1 G-flux and the supergravity dual of Higgsing

We begin by discussing more carefully the supergravity backgrounds of interest. Thus,

consider the M-theory Freund-Rubin background AdS4×Y7, where Y7 is a Sasaki-Einstein

seven-manifold. The M-theory flux G is quantized, satisfying

Z 3 N =
1

(2πlp)6

∫
Y7

∗11G . (5.1)

As is well-known, this background may be interpreted as the near-horizon limit of N

M2-branes placed at the singularity of the Calabi-Yau four-fold cone5 X̄ = C(Y7). Such

backgrounds are very similar to their d = (3+1) cousins in Type IIB supergravity, where one

has N D3-branes placed at the singularity of a Calabi-Yau three-fold cone C(Y5). However,

at least for toric geometries, for which the field theories are currently best understood,

there is a key difference: for a simply-connected toric Sasaki-Einstein five-manifold Y5

there is no torsion in the cohomology of Y5 [49], while for the corresponding geometries

in seven dimensions typically H4(Y7,Z) has non-trivial torsion. Because of this latter

fact, we may turn on a flat torsion G-flux without affecting the supergravity equations of

motion, or the supersymmetry of the background. Since these are physically inequivalent

M-theory backgrounds, the SCFTs will also be physically distinct, and should therefore

display different properties. This was first discussed in the context of QCS theories for the

ABJM theory in [26], although here the torsion in H4(S7/Zk,Z) ∼= Zk is due to the Zk
quotient, giving π1(S

7/Zk) ∼= Zk. More generally there are examples in which the torsion

G-flux is not associated to the CS level quotient by Zk – for example, the Y p,k geometries

discussed in detail in [43].

For our discussion, it is useful to think of the AdS background instead as the warped

product R1,2 ×X0, where X0 = {r > 0} ⊂ X̄ is the cone X̄ minus the singular apex. Here

one may think of r as either the cone coordinate on X0
∼= R+ × Y7, where the cone metric

on X0 is gX0 = dr2 + r2gY7 , or as the radial coordinate in AdS4 in a Poincaré slicing. In

this picture the warping is due to the near-horizon limit of the harmonic function, 1/r6,

sourced by the presence of the N M2-branes at {r = 0}. Consider adding G-flux to this

5The reason for the bar over X will become apparent later.
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background, in a way that preserves the AdS4 symmetry SO(3, 2) and supersymmetry. The

former implies that G is the pull-back of a flux on Y7. On the other hand, supersymmetry

requires G to be self-dual on X0 [50]. These two facts together hence imply that G is flat,

and thus the different choices of G-flux in the AdS background are classified by the torsion

cohomology class [G] ∈ H4
tor(Y7,Z).

Suppose now that one has a field theory dual to the above gravity solution; for example,

we may take this to be the superconformal fixed point of a QCS theory for concreteness.

Consider Higgsing this theory by giving non-zero VEVs to some of the matter fields. As

usual, this typically requires one to turn on FI parameters in the field theory in order to

satisfy the D-term equations, and this in turn gives a (partial) resolution of the VMS. For

the theory on a single M2-brane, for which the VMS is the Calabi-Yau singularity X̄, the

VMS with the given FI parameters is thus some (partial) Calabi-Yau resolution π : X̂ → X̄.

If we give corresponding diagonal VEVs in the U(N)G theory, we pick a point in the VMS

which is the image of the diagonal (p, p, . . . , p) ∈ X̂ × X̂ × · · · × X̂, where p ∈ X̂. At the

same time this introduces a scale into the theory, and thus an RG flow.

The supergravity dual of this RG flow was first discussed in the Type IIB context by

Klebanov-Witten [51], and has been further elucidated in [52–54], the latter in particular

discussing this for general D3-brane quivers and Calabi-Yau three-folds. The M-theory

discussion is precisely analogous: the dual supergravity solution to the RG flow induced by

the Higgsing involves replacing the Calabi-Yau cone X̄ by the (partial) resolution X̂, which

is no longer a cone and thus breaks the scaling symmetry of the supergravity solution.

We should equip X̂ with a Ricci-flat Kähler metric which is asymptotic at large r to

the cone metric on X0, so that in the UV r =∞ we obtain the AdS4×YUV geometry, where

we have now denoted the original Sasaki-Einstein seven-manifold as Y7 = YUV. There has

been recent mathematical work proving existence of complete asymptotically conical Ricci-

flat Kähler metrics on such manifolds – see [55–57] and references therein. In particular,

there is a general existence theorem for toric singularities. For partial resolutions with

residual singularities, we may take an appropriate limit of the smooth metrics by varying

the Kähler class. The diagonal Higgsing described above is then dual to placing all N

M2-branes at the point p in X̂ in the supergravity solution. (Non-diagonal Higgsings of

course correspond to separating the stack of M2-branes.)

The full supergravity solution, including the back-reaction of the M2-branes, requires

us to find a solution to the Green’s function on X̂, with source at p, decaying as 1/r6

at infinity. Again, there are general existence and uniqueness theorems implying we can

always do this, discussed in [53]. Once we include the back-reaction of the M2-branes at

the point p ∈ X̂, the latter point is sent to infinity (by the Green’s function), and the

spacetime has two boundaries: AdS4 × YUV in the UV, and AdS4 × YIR near the point p.

This is shown in Figure 12. Here the tangent space at p is the cone C(YIR). Thus if p is a

smooth point, YIR = S7. We will be more interested in partial resolutions, and placing the
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M2-branes at a residual singular point p.

It is expedient to briefly summarize the spaces which we study and the relationships

amongst them:

Y7: = YUV The Sasaki-Einstein seven-fold

X̄: = C(Y7) Singular Calabi-Yau cone over Y7

X0: = {r > 0} ⊂ X̄ Cone X̄ minus the apex

X̂: (partial) Calabi-Yau resolution of singularity π : X̂ → X̄

YIR: Near-horizon limit of p ∈ X̂, close to the M2-branes

X: = X̂ \ {p} M2-branes are placed at p ∈ X̂

a b

Figure 12: (a) A stack of N M2-branes transverse to the Calabi-Yau cone singularity C(YUV); (b)

the supergravity geometry describing an RG flow dual to a diagonal Higgsing. The eight-manifold is

X = X̂ \ {p}, where the N M2-branes are placed at the point p on the partial resolution X̂.

The above discussion implies that, for zero G-flux on Y7 = YUV, we expect a supergrav-

ity solution to exist for any choice of Higgsing in the field theory. Conversely, since for any

partial resolution of X̄ we have a supergravity solution, there should exist a field theory

dual to this given by an appropriate Higgsing pattern. This suggests, for example, that

Phase (C4/(Z2)
3)I is dual to having no torsion G-flux on the boundary YUV = S7/(Z2)

3,

although this example is complicated by the fact that the latter is not a smooth manifold.

More interesting is when we turn on torsion G-flux on YUV. In this case, to obtain

a supergravity solution we must extend G over the (partial) resolution X̂, satisfying the

appropriate supersymmetric equations of motion. The key point here is that when G = 0 on

YUV , we may obviously extend this as G = 0 on the partial resolution, while for non-trivial

torsion G the process of completing the supergravity solution is much more involved. There

are two steps: first, it must be possible to extend the cohomology class [G] ∈ H4(YUV,Z)

to a cohomology class6 in H4(X,Z), where we have defined X = X̂ \ {p} – a priori there

might be topological obstructions to this; second, if this is possible, we must choose a flux

6We assume here that the membrane anomaly on X is zero. This will be true in the example that

we shall study. The membrane anomaly on Y is automatically zero, as it is zero on any oriented spin

seven-manifold.
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in this cohomology class to satisfy the supersymmetry conditions [50], which require that

G must be primitive, so G∧ω = 0 where ω is the Kähler form, and have Hodge type (2, 2)

with respect to the complex structure (which implies it is self-dual).

This leads to two issues: (i) if the choice of G-flux on YUV cannot be so extended then

the supergravity solution does not exist, and therefore the SCFT dual to YUV with this G-

flux cannot be Higgsed to the partial resolution corresponding to X̂, (ii) the choice of G-flux

may not be unique, meaning that the SCFT should be Higgsable to the partial resolution

but with potentially more than one choice of torsion G-flux in H4(YIR,Z). Indeed, notice

that choosing an extension of [G] over X immediately leads by restriction to a choice of

G-flux in H4(YIR,Z), and thus a torsion G-flux in the IR theory dual to AdS4 × YIR.

To conclude, one expects M2-brane QCS theories dual to torsion G-flux backgrounds to

display different behaviour to those without G-flux – namely, one should see obstructions

to Higgsings to certain partial resolutions in theories with G-flux. We shall investigate

this in detail in the remainder of this section for a particular example, and show that this

behaviour is indeed realized.

5.2 Y 1,2(CP2): Gravity results

We now investigate the above discussion in detail in a particular example: the toric Calabi-

Yau cone X̄ = C(Y 1,2(CP2)) [43]. This is precisely toric diagram number (16) in Figure 4.

Here the Sasaki-Einstein metric on YUV = Y 1,2(CP2) is known explicitly, and was con-

structed in [58]. The complex structure of the cone singularity X̄ may be described as the

affine holomorphic quotient of C5 by C∗ with charges (1, 2,−1,−1,−1). This is of course

the same complex structure induced by the Kähler quotient, at moment map level zero, of

C5 by U(1) with the same charges. There are precisely two (partial) Calabi-Yau resolutions

of this singularity, given by taking the moment map level ζ < 0 or ζ > 0.

To describe these partial resolutions, let z1, . . . , z5 denote coordinates on C5. The

moment map/GLSM D-term equation is then

|z1|2 + 2|z2|2 − |z3|2 − |z4|2 − |z5|2 = ζ . (5.2)

For ζ < 0 this describes the smooth Calabi-Yau four-fold X̂− ≡ total space of O(−1) ⊕
O(−2) → CP2. The zero-section, which is a copy of CP2, is at {z1 = z2 = 0}, while

the boundary ∂X̂− = YUV = Y 1,2(CP2). In fact, note that an explicit Ricci-flat Kähler

metric on this manifold was constructed in [59]. Since X̂− is contractible to CP2, it follows

that H0(X̂−,Z) ∼= H2(X̂−,Z) ∼= H4(X̂−,Z) ∼= Z, with all other cohomology vanishing.

Moreover, since X̂− is the total space of a rank four real vector bundle over CP2, the Thom

isomorphism implies that H4(X̂−, YUV,Z) ∼= H6(X̂−, YUV,Z) ∼= H8(X̂−, YUV,Z) ∼= Z,

where the generator of H4(X̂−, YUV,Z) is the Thom class. It follows that the image of the

generator in the map H4(X̂−, YUV,Z)→ H4(X̂−,Z) ∼= H4(CP2,Z) is the Euler class of the

bundle O(−1)⊕O(−2). Denoting H the hyperplane class that generates H2(CP2,Z) ∼= Z,
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we have

e(O(−1)⊕O(−2)) = c2(O(−1)⊕O(−2)) = c1(O(−1)) ∪ c1(O(−2))

= (−H) ∪ (−2H) = 2 ∈ H4(CP2,Z) ∼= Z . (5.3)

Recall here that H ∪H generates H4(CP2,Z) ∼= Z. Thus the long exact sequence

H4(X̂−, YUV,Z)
f→ H4(X̂−,Z)→ H4(YUV,Z)→ H5(X̂−, YUV,Z) ∼= 0 (5.4)

implies, since the first “forgetful” map f is multiplication by the Euler number e = 2,

that H4(YUV,Z) ∼= Z2. Thus we may turn on precisely one non-trivial torsion G-flux on

YUV = Y 1,2(CP2). It is similarly straightforward to show that the only other non-trivial

cohomology groups of YUV are H2(YUV,Z) ∼= H5(YUV,Z) ∼= Z. Notice this agrees with [43],

where the cohomology groups of YUV were computed via a completely different method.

Now consider the other partial resolution, with ζ > 0 in (5.2). This may be described

as X̂+ ≡ total space of O(−1)3 → WCP1
[1,2], where the zero-section weighted projective

space WCP1
[1,2] is now at {z3 = z4 = z5 = 0}. X̂+ has a single, isolated singular point at

p = {z1 = z3 = z4 = z5 = 0}, which has tangent cone C4/Z2 where the Z2 generator acts

with equal charge on each coordinate of C4; thus this is the ABJM k = 2 quotient. This

tangent cone is precisely the partial resolution 19 in Figure 4. If we remove p from X̂+, we

obtain a smooth eight-manifold X+ with boundaries YUV = Y 1,2(CP2) and YIR = S7/Z2,

as in Figure 12.

From our general discussion in Subsection 5.1, one thus expects to be able to Higgs

the field theory dual to AdS4 × YUV with zero G-flux to the ABJM theory with k = 1 or

k = 2 (or a dual theory) and zero G-flux. Here the latter corresponds to putting the N

M2-branes at the singular point p of X̂+, while putting the M2-branes anywhere else on

X̂+, or at any point on X̂−, should have near horizon limit given by the ABJM theory

at CS level k = 1 (or a dual theory). To investigate what happens with G-flux, we must

extend the non-zero G over either X±, satisfying the appropriate supersymmetry equations

for the flux. Analysing this is in fact quite technical, although for this relatively simple

example we will be able to provide a complete answer to the problem.

5.2.1 The geometry X+

In order to know whether or not we can extend the non-zero torsion flux in H4(YUV,Z) ∼=
Z2, we need to know something about the cohomology of the smooth eight-manifold X+ ≡
X̂+ \ {p}. This has boundary ∂X+ = YUV q YIR with two connected components YUV =

Y 1,2(CP2), and YIR = S7/Z2. To extend the non-trivial element of H4(YUV,Z) ∼= Z2 over

X+ we need to examine the exact sequence

H4(X+,Z)→ H4(∂X+,Z)→ H5(X+, ∂X+,Z) . (5.5)
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This says we may extend an element of H4(∂X+,Z) over X+ if and only if it maps to zero

in H5(X+, ∂X+,Z). Thus we need to compute the latter group, and also the map. By

Poincaré-Lefschetz duality, notice that H5(X+, ∂X+,Z) ∼= H3(X+,Z).

We compute by covering X+ ⊂ X̂+ with two open sets, and then using the resulting

Mayer-Vietoris sequence. We first define V1 = {z1 6= 0} ∼= C∗ × C4 ⊂ C5, with C5

having coordinates (z1, . . . , z5). The invariants under the C∗ action on C5 with charges

(1, 2,−1,−1,−1) are spanned by x1 = z2/z
2
1 , w1 = z3z1, w2 = z4z1 and w3 = z5z1.

Thus V1/C∗ ≡ U1
∼= C4, with coordinate functions x1, w1, w2, w3. We similarly define

V2 = {z2 6= 0} ⊂ C5. The invariants are now spanned by the 10 functions x2 = z21/z2,

y1 = z3z1, y2 = z4z1, y3 = z5z1, y4 = z23z2, y5 = z24z2, y6 = z25z2, y7 = z3z4z2, y8 = z4z5z2,

y9 = z3z5z2. These satisfy the 6 relations

y1y2 = y7x2 , y2y3 = y8x2 , y1y3 = y9x2 ,

y1y7 = y2y4 , y2y8 = y3y5 , y3y9 = y1y6 . (5.6)

This precisely defines the affine variety C4/Z2, and thus V2/C∗ ≡ U2
∼= C4/Z2. Indeed, if

u1, u2, u3, u4 denote standard coordinates on C4, with the Z2 action multiplication by −1

on all coordinates, then the invariants are u21, u
2
2, u

2
3, u

2
4, u1u2, u1u3, u1u4, u2u3, u2u4,

u3u4. We may identify x2 = u21, y1 = u1u2, y2 = u1u3, y3 = u1u4, y4 = u22, y5 = u23,

y6 = u24, y7 = u2u3, y8 = u3u4, y9 = u2u4.

The two coordinate patches U1
∼= C4, U2

∼= C4/Z2 in fact now cover X̂+, since one

cannot have both z1 = 0 and z2 = 0 – such points violate the moment map equation (5.2)

for ζ > 0 (in holomorphic language, these points are unstable in the GIT quotient). Hence

X+ = X̂+ \ {p} is covered by A1 ≡ U1
∼= C4 and A2 ≡ U2 \ {p} ∼= R × S7/Z2. The

coordinate patch U1 overlaps U2 where z2 6= 0. In U1, this is the subset {x1 6= 0}. Thus

U1 ∩ U2
∼= A1 ∩A2

∼= C∗ × C3 ∼= S1 × R7, where the first C∗ coordinate is x1.

Consider now the Mayer-Vietoris sequence:

0 ∼= H3(A1 ∩A2,Z)→ H3(A1,Z)⊕H3(A2,Z)→ H3(X+,Z)→ H2(A1 ∩A2,Z) ∼= 0 .

(5.7)

Since H3(A2,Z) ∼= H3(S
7/Z2,Z) ∼= Z2, it thus follows that H3(X+,Z) ∼= Z2, which is

the homology group of interest. Moreover, U2
∼= C4/Z2 is the tangent cone to the singular

point p, whose link is thus YIR = S7/Z2. The generator of H3(S
7/Z2,Z) ∼= Z2 thus trivially

maps to the generator of H3(A2,Z), whose image via inclusion we have shown generates

H3(X+,Z) ∼= Z2. The Poincaré-Lefschetz dual of this is thus that we have shown that the

map

Z2 ⊕ Z2
∼= H4(S7/Z2,Z)⊕H4(YUV,Z)→ H3(X+,Z) ∼= Z2 (5.8)

takes (1, 0) ∈ Z2 ⊕ Z2 to 1 ∈ Z2. To determine the map completely, we need to also know

the image of (0, 1). This is the image of H3(YUV,Z) in H3(X+,Z) under inclusion. We

may compute this with a slight modification of the above argument.
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Let X0 = R+ × YUV. This is X̂+ minus the WCP1
[1,2] zero-section, which recall is

{z3 = z4 = z5 = 0}. We would like to remove these points from X̂+ to obtain X0. In terms

of the coordinate patches, this gives B1 ≡ U1\{w1 = w2 = w3 = 0} ∼= C×R×S5 ∼= R3×S5

and B2 ≡ U2 \ {yi = 0, i = 1, . . . , 9} ∼= (C × R × S5)/Z2, where the Z2 acts as −1 on C,

and is the Z2 ⊂ U(1) in the Hopf U(1) action on S5 (and thus acts freely of course). Now

B1 ∩ B2 is still {x1 6= 0} ⊂ B1, which gives B1 ∩ B2
∼= C∗ × R× S5 ∼= S1 × S5 × R2. The

Mayer-Vietoris sequence for X0 = B1 ∪B2 is hence

0 ∼= H3(B1 ∩B2,Z)→ H3(B1,Z)⊕H3(B2,Z)→ H3(X0,Z)→ H2(B1 ∩B2,Z) ∼= 0 .

Again, H3(B2,Z) ∼= Z2. If we coordinatize B2 with the coordinates u1, u2, u3, u4, the

generator may be taken to be u1 = u2 = 0, |u3|2+ |u4|2 = 1, which is a copy of S3/Z2 ⊂ B2.

The above sequence thus proves that H3(X0,Z) ∼= H3(YUV,Z) ∼= Z2, which of course we

already knew. However, the key point is that this shows that the generator of H3(YUV,Z)

is represented by the above copy of S3/Z2. But this is also contained in A2 ⊃ B2, and

similarly generates H3(A2,Z) ∼= Z2, and the Mayer-Vietoris sequence (5.7) thus proves

that the generator of H3(YUV,Z) ∼= Z2 maps to the generator of H3(X+,Z) ∼= Z2 under

inclusion. Hence (0, 1) ∈ Z2 ⊕ Z2 in (5.8) also maps to 1 ∈ Z2, and thus the map (5.8) is

simply addition of the two factors.

All this rather abstract algebraic topology thus shows that zero G-flux on the UV

boundary YUV
∼= Y 1,2(CP2) lifts to a (necessarily torsion) G-flux on the RG flow manifold

X+ only if there is zero G-flux on the IR boundary YIR. On the other hand, non-trivial

torsionG-flux on the UV boundary, whereH4(YUV,Z) ∼= Z2, lifts to aG-flux on the RG flow

manifold only if there is non-trivial G-flux on the IR boundary YIR, where H4(YIR,Z) ∼= Z2.

In the field theory, it follows that the dual to YUV with/without torsion G-flux can be

Higgsed to the CS level k = 2 ABJM theory (or a dual theory) with/without torsion

G-flux, respectively. This is summarized in Table 7.

5.2.2 The geometry X−

Finally, we consider the resolution X̂− ∼= O(−1)⊕O(−2)→ CP2. In this case zero G-flux

on YUV
∼= ∂X̂− clearly extends as zero G-flux over X̂−, but for non-zero flux we must

necessarily turn on a non-torsion G-flux in H4(X̂−,Z) ∼= Z. More precisely, we should pick

a point p ∈ X̂− and extend G in H4(X−,Z) where X− = X̂− \ {p}, although the difference

between X̂− and X− will not affect our discussion of flux, since removing p does not affect

the cohomology of interest. The flux in turn must be primitive and type (2, 2) in order to

satisfy the supersymmetry equations (and hence equations of motion).

To see the existence of such a flux, we may appeal to the results of [60]. The lat-

ter reference proves that for a complete asymptotically conical manifold (X, gX) of real

– 40 –



Partial resolution YUV without G-flux YUV with G-flux

X−, near horizon YIR = S7 yes yes

X+, near horizon YIR = S7/Z2, without G-flux yes no

X+, near horizon YIR = S7/Z2, with G-flux no yes

Table 7: From the supergravity point of view: a summary of the geometries YIR and YUV, with and

without G-flux, and whether (yes/no) the corresponding supergravity solution exists.

dimension m, we have

HkL2(X, gX) ∼=


Hk(X, ∂X,R), k < m/2

f(Hm/2(X, ∂X,R)) ⊂ Hm/2(X,R), k = m/2

Hk(X,R), k > m/2

, (5.9)

where f denotes the “forgetful” map, forgetting that a class is relative. Thus the space

of L2 harmonic forms HkL2(X, gX) is topological. In particular, we showed earlier that

H4(X̂−, ∂X̂−,R) ∼= H4(X̂−,R) ∼= R under the forgetful map (which is multiplication by 2),

and we thus learn that there is a unique L2 harmonic four-form G on X̂−, up to scale. If we

normalize (2πlp)
−3 ∫

CP2 G = 2M + 1 to be odd, then this maps under reduction modulo 2

to the generator of H2(YUV,Z) ∼= Z2, for any M ∈ Z. Next note that ω∧G = 0, where ω is

the Kähler form on X̂−, follows since if ω∧G were not zero it would be an L2 normalizable

harmonic six-form on X̂−, and there are not any of these by (5.9). Thus the L2 harmonic

four-form on X̂− is necessarily primitive. Next, all of the cohomology on a toric Calabi-Yau

four-fold is of Hodge type (2, 2). Each Hodge type is separately harmonic, and thus again

we see that G has to be purely type (2, 2) (any other type would be topologically trivial and

harmonic, and thus zero by (5.9)). Recall that the explicit asymptotically conical Ricci-flat

Kähler metric on X̂− is known [59], and so in principle one should be able to construct

this harmonic four-form G explicitly.

The Higgsing behaviour expected from this supergravity analysis is summarized in

Table 7. We should see this behaviour in the candidate dual Chern-Simons quiver theories,

to which we turn next.

5.3 Y 1,2(CP2): Field theory results

In this subsection we present QCS theories which we conjecture to be dual to AdS4 ×
Y 1,2(CP2), with and without torsion G-flux in H4(Y 1,2(CP2),Z) ∼= Z2. Recall from Table

1 and Figure 6 that within the first phase C(Y 1,2(CP2))I for toric diagram number (16)

there are two dual phases, denoted as Ia and Ib. The analysis for both theories is similiar

and gives the same results. For convenience we fix on the C(Y 1,2(CP2))Ib phase. We

conjecture that equal ranks for the three gauge group factors corresponds to backgrounds

without torsion G-flux, and that by a certain rank deformation (which will be described
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in Figure 14) the theory with torsion G-flux is obtained. This can be motivated by similar

reasoning to [26] for the ABJM theory. As we demonstrate, Higging can be used as a

further check for matching G-flux backgrounds to particular choices of ranks in the dual

theory.

5.3.1 Equal ranks: U(N)× U(N)× U(N) for C(Y 1,2(CP2))Ib

In this subsection we discuss our candidate for the Y 1,2(CP2) Freund-Rubin background

without torsion G-flux. This is simply the C(Y 1,2(CP2))Ib phase with equal ranks, whose

quiver is shown in Figure 13. The superpotential of the theory we recall, from Table 1, to

be:

W = X1
3,1X1,2X2,3X

2
3,1X1,3 −X2

3,1X1,2X2,3X
1
3,1X1,3 . (5.10)

Here, and in the rest of the section, we leave traces implicit. Note that W vanishes in the

Abelian case of a single brane (N = 1).

K=-2

16

3

12

12

1 3

12

Figure 13: Quiver diagrams for the Higgsed theories obtained from C(Y 1,2(CP2))Ib with equal ranks

U(N) for all three nodes.

Moduli space

We first show explicitly, by computing the VMS for N = 1, that the moduli space for the

theory C(Y 1,2(CP2))Ib has no extra branches. The VMS is determined by equations (2.3).

The last equation in (2.3) can be written explicitly as

σ1X1,2 −X1,2σ2 = σ1X1,3 −X1,3σ3 = σ2X2,3 −X2,3σ3 =

σ3X
1
3,1 −X1

3,1σ1 = σ3X
2
3,1 −X2

3,1σ1 = 0 . (5.11)
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The D-terms are:

µ1 = X1,2X
†
1,2 +X1,3X

†
1,3 −X

1†
3,1X

1
3,1 −X

2†
3,1X

2
3,1 =

2

2π
σ1 ,

µ2 = X2,3X
†
2,3 −X

†
1,2X1,2 = − 1

2π
σ2 ,

µ3 = X1
3,1X

1†
3,1 +X2

3,1X
2†
3,1 −X

†
2,3X2,3 −X†1,3X1,3 = − 1

2π
σ3 , (5.12)

which we can sum to obtain σ1 = 1
2(σ2 + σ3). We wish first to solve this equation together

with (5.11). By taking σ1 = σ2 = σ3 we indeed obtain the four complex dimensional VMS

which is C(Y 1,2(CP2)). The Gt matrix which describes the toric diagram can easily be

calculated with the aid of the forward algorithm, which gives

Gt =


p1 p2 p3 p4 p5

1 1 1 1 1

0 1 0 1 1

0 1 1 0 0

0 0 1 1 0

 . (5.13)

This is indeed toric diagram number (16). What about other solutions (branches)? A

second solution could a priori come from setting σ2 6= σ3, and since σ1 is the average of σ2

and σ3 we then have σ1 6= σ2 6= σ3. However, subtituting this into (5.11) we see that all

the fields Xi,j must vanish and therefore from (5.12) we obtain σ1 = σ2 = σ3 = 0, which

is a contradiction. Therefore, we see that the only possible solution to the VMS equations

is the one in which all the σs are equal, and there is hence one irreducible branch in the

VMS which is C(Y 1,2(CP2)).

Higgsing

The Higgsing of the theory is presented schematically in Figure 13. Note that for N = 1

this Higgsing is exhaustive. Since the Abelian superpotential vanishes there is a 1 − 1

correspondence between points in the toric diagram and bifundamental fields. That is,

the P matrix which relates spacetime fields and the GLSM fields is equal to the identity

matrix, and there are hence no multiplicities in the toric diagram. Recall that when a

bifundamental chiral field acquires a VEV, one should delete the corresponding point in

the toric diagram. Thus, all toric sub-diagrams can be obtained in this case. Now, we

claim that the theories which correspond to toric diagram (18), namely, theories (b) and

(c) in Figure 13, are dual to backgrounds with no G-flux. To see this recall that diagram

(18) corresponds to C4 = C(S7) and since H4
tor(S

7,Z) ∼= 0, no torsion G-flux can be turned

on. Theory (d), which corresponds to toric diagram (19) or C4/Z2, has equal ranks and

was conjectured by [26] to have zero torsion G-flux. These results are hence precisely in

accordance with the calculation in the gravity dual in Subsection 5.2 (see Table 7).
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16

3

12

Figure 14: Quiver diagrams for the Higgsed theories obtained from theory C(Y 1,2(CP2))Ib with

unequal ranks.

5.3.2 Unequal ranks: U(N)× U(N)× U(N + 1) for C(Y 1,2(CP2))Ib

In the previous subsection we analysed a possible candidate theory for the Freund-Rubin

solution based on Y 1,2(CP2) without torsion G-flux. To complete the discussion we now

suggest a candidate dual theory to Y 1,2(CP2) with torsion G-flux in H4(Y 1,2(CP2),Z) ∼= Z2.

Motivated by the work of [26], we suggest that this theory can be obtained by changing

the gauge group ranks of the theory studied above. A priori, there are many ways in which

this can be done. However, as we will explain, the analysis of [26] suggests that the only

possibility here is changing the rank of the gauge group at the node with CS level k = 2

to U(N + 1), as shown in Figure 14(a). We show that the Higgsing constraints obtained

earlier in Subsection 5.2 can serve as a further guide; that is, the Higgsing behaviour of the

desired theory should fit the allowed partial resolutions with G-flux, as shown in Table 7.

Note that the superpotential of the theory remains as in (5.10).

Moduli space

Let us begin by computing explicitly the VMS for our candidate theory with N = 1 (note

this is non-Abelian since the gauge group at node 1 is now U(2)); this will serve as a first

test of our proposal by confirming that the change in ranks does not alter the classical

VMS with respect to the theory with equal ranks.

The classical VMS is determined, as usual, by the equations (2.3). It will be convenient

to use a gauge transformation to set, for the non-Abelian node 1 in the quiver, σ1 =(
σ11 0

0 σ21

)
, where σ2 and σ3 are real scalars. The bifundamental fields involving node 1
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are:

X1,2 =

(
a1

a2

)
, X1,3 =

(
b1

b2

)
, X1

3,1 =
(
c1 c2

)
, X2

3,1 =
(
d1 d2

)
. (5.14)

Hence, the last equation in (2.3) can be written explicitly in the following way:

0 =

(
(σ11 − σ2)a1
(σ21 − σ2)a2

)
=

(
(σ11 − σ3)b1
(σ21 − σ3)b2

)
,

0 =
(

(σ3 − σ11)c1, (σ3 − σ21)c2

)
=
(

(σ3 − σ11)d1, (σ3 − σ21)d2

)
,

0 = X2,3(σ2 − σ3) . (5.15)

The D-terms become(
|a1|2 a1a∗2
a2a
∗
1 |a2|2

)
+

(
|b1|2 b1b∗2
b2b
∗
1 |b2|2

)
−

(
|c1|2 c∗1c2
c∗2c1 |c2|2

)
−

(
|d1|2 d∗1d2
d∗2d1 |d2|2

)
=

2

2π

(
σ11 0

0 σ21

)
,

|X2,3|2 − |a1|2 − |a2|2 = − 1

2π
σ2 ,

|c1|2 + |c2|2 + |d1|2 + |d2|2 − |X2,3|2 − |b1|2 − |b2|2 = − 1

2π
σ3 . (5.16)

There are three different solutions to these equations:

(1) σ21 = σ3 = σ2 = σ , σ11 = 0 , a1 = 0 , b1 = 0 , c1 = 0 , d1 = 0 ,

(2) σ11 = σ3 = σ2 = σ , σ21 = 0 , a2 = 0 , b2 = 0 , c2 = 0 , d2 = 0 ,

(3) σ11 = σ21 = σ2 = σ3 = 0 . (5.17)

Solutions (1) and (2) are related by the Z2 Weyl symmetry in the gauge group U(2). It is

easy to see that by setting σ11 = σ2 = σ3 = σ and taking a2 = b2 = c2 = d2 = 0 we satisfy

all the equations, obtaining the same set of equations (including vanishing F-term) as for

the U(1)3 theory. Therefore, after identifying by the Z2 Weyl symmetry, this branch of the

VMS is precisely C(Y 1,2(CP2)).

To prove there are no extra branches we now show that solution (3) is a sub-locus

of solution (2) (or equivalently solution (1) using the Z2 Weyl symmetry). Since the

constraints (3) in (5.17) are a subset of (2), we just need to show that the constraints on

the bifundamental fields in branch (3) are those in (2). Notice that for branch (3) we are

free to use the complete U(2) gauge symmetry because σ1 = 0. The first case to examine

is X2,3 = 0, the substitution of which into the D-term gives us a1 = a2 = 0. Using a gauge

transformation we set b2 = 0, and, from (5.16), c2 = d2 = 0. Therefore, we see that for

σ1 = σ2 = σ3 = 0 and X2,3 = 0 the constraints in (2) and (3) are the same. Next, we

repeat this calculation for X2,3 6= 0. We can first use a gauge transformation to set d2 = 0.

Let us consider d1 = 0 and d1 6= 0 separately. If d1 = 0, we can use a gauge transformation
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to set c2 = 0, and we see from the first equation in (5.16) that a2 = b2 = 0. If d1 6= 0 the

F-term reduces to

b1a2 = a1b2 , b2c2 = 0 , b1c2 = 0 , a2c2 = 0 , a1c2 = 0 ,

which we can solve in two different ways. First, we could set c2 = 0, and from the first

equation in (5.16), we obtain a2 = 0 and b2 = 0. Second, we could set a1 = a2 = b1 = b2 =

0, and from (5.16), we then have c1 = c2 = X2,3 = 0. Hence, in both cases the constraints

are at least a2 = b2 = c2 = d2 = 0. We thus conclude that the only branch in the moduli

space is C(Y 2,1(CP2)), as claimed.

Let us discuss briefly the implications of the moduli space computation on the allowed

configurations of ranks. At low energy on the VMS we get N copies of a U(1)2×U(1)−1×
U(1)−1 theory, together with a pure U(1)2 N = 3 supersymmetric CS theory. The fields

that are charged under the latter are massive, as can be seen from the following term in

the action

S ⊃
∫

d3x
∑
Xi,j

(σiXi,j −Xi,jσj)(σiXi,j −Xi,jσj)
† . (5.18)

As discussed in [26], an N = 3 supersymmetric U(`)k pure CS theory does not exist as a

unitary theory for ` > k. This implies that in our case the allowed ranks are ` ≤ 2 for the

node with CS level k = 2 and ` ≤ 1 for the other nodes. If we assume that the ` = k and

` = 0 cases correspond to equivalent theories, which is true for the ABJM theory and the

non-toric theories discussed in [61], we see that the rank deformation that we have chosen

is the only one possible. We shall discuss this further at the end of the Higgsing analysis

in the next subsection.

Higgsing

Finally, we examine the Higgsing behaviour of the proposed theory, and compare it to that

expected from the dual supergravity analysis. As we shall see, the two precisely match

with the choice of ranks we have made. The theories that can be obtained by Higgsing are

presented in Figure 14.

To explain these results, let us start by recalling the action of the theory:

S =
∫

d3x
[∑

i kiε
µνρ(Aiµ∂νAiρ + 2

3A
i
µAiνAiρ)−

∑
Xi,j

(DµXi,j)
†.(DµXi,j)

+ 1
2π

∑
i
kiσiDi −

∑
i
Diµi(X) (5.19)

−
∑
Xi,j

(σiXi,j −Xi,jσj)(σiXi,j −Xi,jσj)
† −

∑
Xi,j

|∂Xi,jW |2
]
,

where µi(X) is the D-term for the ith gauge group:

µi(X) ≡
∑
j

Xi,jX
†
i,j −

∑
k

X†k,iXk,i . (5.20)
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To derive theory (b) in Figure 14 we let X1,2 acquire the following VEV X1,2 =

m

(
1N×N

0

)
. As a check, notice that with this VEV it is still possible to satisfy the VMS

equations. The F-term can be satisfied by setting all other chiral field VEVs to zero, and

the D-terms

µ1 ≡ X1,2X
†
1,2 +X1,3X

†
1,3 −X

1†
3,1X

1
3,1 −X

2†
3,1X

2
3,1 =

2

2π
σ1 + ε1 ,

µ2 ≡ X2,3X
†
2,3 −X

†
1,2X1,2 = − 1

2π
σ2 + ε2 ,

µ3 ≡ X1
3,1X

1†
3,1 +X2

3,1X
2†
3,1 −X

†
2,3X2,3 −X†1,3X1,3 = − 1

2π
σ3 + ε3 , (5.21)

can be satisfied by seting σ1 = πm2 ∗ diag(1N×N , 0), σ2 = σ3 = πm2 ∗ 1N×N and turning

on FI parameters as follows: ε1 = 0, ε2 = −m2

2 1N×N and ε3 = m2

2 1N×N . This corresponds

to turning on a negative FI paramter for the moment map µ2 − µ3. Finally, it can be seen

that the third set of equations in (2.3) are also satisfied.

We next discuss how this VEV Higgses the gauge group. Since we are giving a VEV

to X1,2 we are interested in the following part of the action

S =

∫
d3x

[
k1ε

µνρA1
µ∂νA1

ρ + k2ε
µνρA2

µ∂νA2
ρ − (DµX1,2)

†.(DµX1,2) + · · ·
]
. (5.22)

Recall the definition of the covariant derivative:

DµX1,2 = ∂µX1,2 − i(A1
µX1,2 −X1,2A2

µ) , (5.23)

wherein it is convenient to define

A1 =

(
B1N×N A1

OD,N×1
A1†
OD,1×N C1

)
, (5.24)

whence,

|(DµX1,2)|2 ⊃ m2

∣∣∣∣∣
(
B1N×N
A1†
OD,1×N

)
−

(
A2
N×N

0

)∣∣∣∣∣
2

= m2|B1 −A2|2 +m2|A1
OD|2 . (5.25)

Substituting this result into (5.22) we can rewrite the relevant part of the Lagrangian as

S =

∫
d3x

[
k1ε

µνρ(B1µ∂νB1ρ +A1
ODµ∂νA

1†
ODρ +A1†

ODµ∂νA
1
ODρ + C1µ∂νC1ρ) + k2ε

µνρA2
µ∂νA2

ρ

−m2|B1 −A2|2 −m2|A1
OD|2 + · · ·

]
. (5.26)

We see that A1
OD has become massive. In the IR we can therefore consider this field as

constant, ∂A1
OD = 0. Solving the equations of motion we see that A1

OD ∝ 1
m2 , and therefore

terms that contain A1
OD can be deleted from the Lagrangian in the low-energy limit. Next,
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let us integrate out the second massive combination of gauge fields, namely, B1−A2. After

deleting A1
OD from (5.26) and defining

A± =
1

2
(B1 ±A2) , (5.27)

together with k± = k1 ± k2, (5.26) reduces to

S =
∫

d3x
[
k+ε

µνρA+
µ ∂νA+

ρ + k+ε
µνρA−µ ∂νA−ρ + 2k−ε

µνρA−µ ∂νA+
ρ

+k1ε
µνρC1µ∂νC1ρ − 4m2(A−µ )2 + · · ·

]
. (5.28)

Again, we see that by solving the equations of motion A− ∝ 1
m2 , and therefore terms which

contain A− can be deleted from the Lagrangian in the low-energy limit.

Now that we have completed the discussion of the Higgsing of the gauge groups we

would like to see how the action in the IR is modified. First, let us examine the covariant

derivative term around the new vacuum, in which we define X1,2 =

(
m ∗ 1N×N +X

X̃1,+

)
. It

is easy to see that

|DµX1,2|2 ⊃

∣∣∣∣∣
(
B1(m ∗ 1N×N +X) +A1

OD · X̃1,+

A1†
OD(m ∗ 1N×N +X) + C1 · X̃1,+

)
−

(
(m ∗ 1N×N +X)A2

X̃1+ · A2

)∣∣∣∣∣
2

= |B1(m ∗ 1N×N +X) +A1
OD · X̃1,+ − (m ∗ 1N×N +X)A2|2

+ |A1†
OD(m ∗ 1N×N +X) + C1 · X̃1,+ − X̃1,+ · A2|2 , (5.29)

which in the low-energy limit becomes |C1 · X̃1,+− X̃1,+ ·A2|2. Moreover, in the low-energy

limit A2 = A+ −A− ' A+, and therefore

(DµX1,2)
† · (DµX1,2) = (∂µX̃1,+)† · (∂µX̃1,+) + |C1 · X̃1,+ − X̃1,+ ·A+|2

= (DµX̃1,+)† · (DµX̃1,+) . (5.30)

It is thus clear that the remaining degree of freedom in the field X1,2 transforms in the

(N1, N̄+) bifundamenal representation of the gauge group, where the subscript + denotes

the new node 2 after the Higgsing, as shown in Figure 15. Similarly, since in the IR

B1 = A+ +A− ' A+, we see that the bifundamental charged under A2 or B1 now carries

charge under A+. Therefore, the fields after Higgsing can be written as follows:

X2,3;N×N → X1
+,3;N×N , X1,3;(N+1)×N →

(
X2

+,3;N×N
X̃1,3;1×N

)
Xi

3,1;N×(N+1) →
(
Xi

3,+;N×N X̃i
3,1;N×1

)
(5.31)

We draw this intermediate step in Figure 15. This is not the quiver of the final theory as

there are other fields which become massive, as we now explain. To see which of the fields

become massive we need to examine the relevant terms in the action; these are of the form
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presented in (5.18). In the notations of the intermediate quiver σ1 = 0 and σ3 = πm21N×N ,

while from (5.27) it follows that σ+ = πm21N×N . Therefore all the bifundamental fields

between node 1 and the other nodes in the quiver in Figure 15 become massive. To illustrate

this point let us investigate an example by focusing on the term that contains X̃1,+, namely

(σ1X̃1,+ − X̃1,+σ+)(σ1X̃1,+ − X̃1,+σ+)† = π2m4|X̃1,+|2 . (5.32)

3
U(N)

k=2

1

U(1)

+

U(N)

k=1

k=-1

k=2

3

12

U(N)

U(N+1)U(N)

k=-1

k=-1

VEV to X 1,2

Figure 15: The intermediate step of giving X1,2 a VEV in Higgsing the theory C(Y 1,2(CP2))Ib with

gauge group U(N)× U(N)× U(N + 1) going into U(N)× U(N)× U(1).

From this we see that X̃1,+ acquires a mass. After integrating this out the superpo-

tential reduces to

W = X1
3,1X1,2X2,3X

2
3,1X1,3 −X2

3,1X1,2X2,3X
1
3,1X1,3

=
(
X1

3,+ 0
)
·

(
1N×N

0

)
·X1

+,3 ·
(
X2

3,+ 0
)
·

(
X2

+,3

0

)

−
(
X2

3,+ 0
)
·

(
1N×N

0

)
·X1

+,3 ·
(
X1

3,+ 0
)
·

(
X2

+,3

0

)
= X1

3,+X
1
+,3X

2
3,+X

2
+,3 −X2

3,+X
1
+,3X

1
3,+X

2
+,3 . (5.33)

The resulting theory is (b) in Figure 14. We see that this theory is just the U(N)1 ×
U(N)−1 ABJM theory together with a decoupled U(1) gauge group. This theory is dual

to AdS4 × S7.

Finally, we will derive theory (c) in Figure 14. The analysis proceeds very much

analogously to that above. We begin by giving the following VEV: X2,3 = m ∗ 1N×N . As

before, with this VEV it is still possible to satisfy the VMS equations. The F-term can

be satisfied by setting all other spacetime fields to have zero VEV. The D-term (5.21) is
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satisfied by seting σ1 = σ2 = σ3 = 0, ε1 = 0, ε2 = m2 ∗ 1N×N and ε3 = −m2 ∗ 1N×N ;

this corresponds to turning on a positive FI parameter for the moment map µ2 − µ3. It

is easy to see that (5.15) are also satisfied since all the σ are set to zero. Since we gave a

diagonal VEV to the bifundamental field which is charged under (N2, N̄3), it follows that

the U(N)2 × U(N)3 group is Higgsed to the diagonal U(N), with k2 + k3 as CS level.

The superpotential precisely reduces to that of the ABJM theory. Since all σs are set to

zero, there are no additional massive fields which should be integrated out, and we obtain

precisely theory (c) in Figure 14. This is a theory which was conjectured in [26] to be dual

to AdS4 × S7/Z2 with one unit of torsion G-flux, as reflected by the ranks of the gauge

groups.

As a final remark, note that we could not find any other way to Higgs theory (a) in

Figure 14 to obtain a theory which is dual to AdS4 × S7/Z2 with no torsion G-flux. Once

more, this is in line with with the calculation in the gravity dual as presented in Table 7.

Moreover, one can repeat the same analysis for the U(N)−1×U(N)−1×U(N + 2)2 theory.

It is easy to see that we will still obtain the same theory (b), but with an isolated node

which corresponds to a U(2)2 theory, having, of course, the same VMS. Theory (c) will

change to U(N)−2 ×U(N + 2)2, which according to [26] is equivalent to U(N)−2 ×U(N)2

and therefore to a background with no G-flux. Thus we see that the Higgsing behaviour

of U(N)−1×U(N)−1×U(N + 2)2 and U(N)−1×U(N)−1×U(N)2 are the same, and this

is an indication that these theories are indeed dual to each other, as we suggested earlier.

5.4 C(Y 1,2(CP2))II : Some puzzles

So far we have shown that there is a correspondence between gravity calculations and field

theory results by examining the VMS and Higgsing behaviour of C(Y 1,2(CP2))I , both with

and without torsion G-flux. However, similiar examination of C(Y 1,2(CP2))II , which was

derived earlier by Higgsing (C4/Z3
2)II , does not fit with these expectations. This raises some

puzzles which should be further investigated in order to decide if this phase really describes

the worldvolume theory on M2-branes at the singularity described by toric diagram (16).

We note that this theory has a Type IIA derivation in [48].

We begin by showing that by Higgsing C(Y 1,2(CP2))II it is not possible to obtain any

theory corresponding to C4/Z2, with any G-flux configuration. This is related to the fact

that the partial resolution X̂+ cannot be obtained as a VMS of the field theory, for any

choice of FI parameters, and thus that the master space for this theory is “too small”.

Next, we will show that the VMS of C(Y 1,2(CP2))II contains an extra branch which does

not appear in the VMS of C(Y 1,2(CP2))I . It is not clear what the physical interpretation

of this branch should be, in terms of M2-branes. Finally, we will demonstrate that there is

a mismatch between the mapping of toric divisors and baryonic operators, which does not

occur in the case of C(Y 1,2(CP2))I ; again, this is closely related to the master space being

too small.
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Figure 16: Quiver diagrams for the Higgsed theories obtained from C(Y 1,2(CP2))II , corresponding

to toric diagram (16).

The quiver and GLSM fields p1,...,6 corresponding to toric diagram (16), as well as its

Higgsing to (18), are presented in Figure 16. The superpotential W of the theory and

associated P-matrix relating spacetime and GLSM fields are:

W = −X1
1,2X

1
2,3X

3
3,1 +X3

1,2X
1
2,3X

1
3,1−

−X2
1,2X

2
2,3X

1
3,1 + +X1

1,2X
2
2,3X

2
3,1+

+X2
1,2X

3
2,3X

3
3,1 −X3

1,2X
3
2,3X

2
3,1 ;

P =



p1 p2 p3 p4 p5 p6

X1
1,2 1 0 1 0 0 0

X2
1,2 1 0 0 1 0 0

X3
1,2 1 0 0 0 1 0

X1
2,3 0 1 0 1 0 0

X2
2,3 0 1 0 0 1 0

X3
2,3 0 1 1 0 0 0

X1
3,1 0 0 1 0 0 1

X2
3,1 0 0 0 1 0 1

X3
3,1 0 0 0 0 1 1


. (5.34)

We see from Figure 16 that by deleting nodes {p3, p6} from the toric diagram we can

arrive at toric diagram (18). Now, if we were to be able to Higgs to diagram (19), we

would have to delete GLSM fields {p1, p6}. However, from the P-matrix in (5.34), there

are no spacetime fields which correspond to this deletion and hence (19) cannot be reached

by Higgsing. This can also be seen from the GLSM picture. Because of the F-terms,

the GLSM coming from the field theory is non-minimal and has multiplicities in p-fields.

The GLSM equations (from the Qt-matrix) are derived7 easily with the aid of the forward

algorithm:

|p6|2 + |p1|2 + |p2|2 − |p3|2 − |p4|2 − |p5|2 = 0 ,

2|p1|2 + |p2|2 − |p3|2 − |p4|2 − |p5|2 = ζ . (5.35)

7Alternatively, these were derived by hand in [11].
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The second line, containing only five GLSM fields, is precisely the minimal GLSM descrip-

tion of C(Y 1,2(CP2)) discussed in Subsection 5.2, cf. equation (5.2). One can take the

FI parameter ζ to be either positive or negative, and in the absence of the first line and

the p6 field this gives the (partial) resolutions X̂+ and X̂− discussed earlier in Subsection

5.2. However, in the field theory the effect of the F-terms is to add a sixth GLSM field

p6, together with the first line in (5.35) (for which the FI parameter is zero, since these

are F-terms). The moduli space described by (5.35) for negative and positive ζ is then

X̂−. Indeed, combining the two equations in (5.35) gives |p6|2 = |p1|2 − ζ. For ζ < 0 one

can simply eliminate p6 using this equation, and the moduli space reduces to the second

equation, which describes X̂−. On the other hand, for ζ > 0 one instead eliminates p1

using |p1|2 = |p6|2 + ζ, which gives 2|p6|2 + |p2|2 − |p3|2 − |p4|2 − |p5|2 = −ζ, which is

again X̂−. Thus it is not possible to realize the partial resolution X̂+ as a branch of the

field theory moduli space, which may be phrased as saying that the master space is “too

small” – it doesn’t contain all partial resolutions of the cone geometry. On the other hand,

the singularity C4/Z2 described by toric diagram (19) is the near-horizon (tangent cone)

limit of the singular point in X̂+. This of course explains why it is not possible to Higgs

C(Y 1,2(CP2))II to a theory for toric diagram (19), and is the reason why theory (19) was

missing in the list in Figure 10.

Another puzzle arises when we examine the VMS of C(Y 1,2(CP2))II , whose explicit

equations are:

∂Xi,jW = 0 ,

µi := −
3∑
j=1

X†j,iXj,i +
3∑

k=1

Xi,kX
†
i,k =

kiσi
2π

,

σiXi,j −Xi,jσj = 0 . (5.36)

The last equation in (5.36) can be written in the following way:

Xi
1,2(σ1 − σ2) = Xi

2,3(σ2 − σ3) = Xi
3,1(σ3 − σ1) = 0 . (5.37)

Solving these equations by taking σ1 = σ2 = σ3 corresponds to the complex dimension four

moduli space which is precisely C(Y 1,2(CP2)). We can see this from the forward algorithm;

the Gt matrix which describes the toric diagram of this branch is

Gt =


p1 p2 p3 p4 p5 p6

1 1 1 1 1 1

0 1 0 1 0 0

1 0 1 1 0 1

0 1 1 0 0 0

 , (5.38)

which is indeed toric diagram number (16). Notice that p1 and p6 correspond to the same

point in the toric diagram.
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However, we now show that there is an extra branch in the VMS. Since k1 = 0 it

is possible to solve the vacuum equations with σ2 = σ3 = σ and arbitrary σ1. Notice

that these are the only solutions that satisfy the D-terms since after summing the D-term

equations we have 0 = σ2− σ3. Moreover, we have to set Xi
3,1 = Xi

1,2 = 0 in order to solve

(5.37). The remaining D-term equation is then

|X1
2,3|2 + |X2

2,3|2 + |X3
2,3|2 =

1

2π
σ . (5.39)

The VEVs of these bifundamental fields simply describe C3. Since the F-term vanishes

and there are no gauge transformation left by which we need to quotient, we see that this

branch in the VMS is C∗ × C3. Here C∗ = R × S1, where R corresponds to the the VEV

of σ1, which is unconstrained, while the S1 is parametrized by the VEV of the periodic

scalar dual to the gauge field A1. In conclusion, then, we have two branches in the VMS,

C(Y 1,2(CP2)) and C∗ × C3, which intersect where σ1 = σ.

The last issue we wish to discuss is the mapping between baryonic operators in the

field theory and M5-branes wrapped on toric divisors in the geometry. In the minimal

GLSM presentation of the Calabi-Yau four-fold singularity, one can realise the four-fold

as a Kähler quotient of CD by U(1)D−4, where D is the number of external vertices. Let

za=1,...,D, be complex coordinates on CD. Then setting za = 0 gives a complex codimension

one submanifold of the Calabi-Yau four-fold, invariant under the torus U(1)D action on

CD, and which is a cone. We have D such submanifolds, one for each external point in the

toric diagram, and these are called the toric divisors.

Now, on each submanifold za = 0 one can wrap an M5-brane. For the R1,2 × X4

solution this is Euclidean (an instanton in fact). As is well-known [62], one can “Wick

rotate” such a configuration to an M5-brane wrapping the five-manifold in Y7 cut out

by za = 0, which in the near-horizon AdS4 × Y7 solution leads to a BPS particle in AdS4.

AdS/CFT then implies there should be a chiral primary operator dual to this BPS particle.

In the field theory realization of the Calabi-Yau four-fold these M5-branes wrapping toric

five-cycles correspond to the external p-fields. Recall that via the P-matrix the GLSM

p-fields are expressed in terms of the original spacetime fields Xi,j and that this gives an

explicit mapping between M5-branes wrapping divisors and baryonic operators.

In the case at hand, it is immediate from the P-matrix (5.34) that it is not possible to

find a baryonic operator which corresponds to single irreducible toric divisor: as one can

see, the spacetime fields correspond to pairs of divisors. For example, there is no obvious

candidate operator in the field theory that is dual to an M5-brane wrapped on the toric

divisor p2 = 0, while a baryonic operator constructed from X1
2,3 is a candidate dual to the

reducible divisor {p2 = 0} ∪ {p4 = 0}. Therefore it remains to explain whether there are

BPS states in the field theory associated to M5-branes wrapped on single divisors. This

seems to be a general problem for theories with parents, as discussed in [13]. Notice that,
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on the contrary, for C(Y 1,2(CP2))I the P-matrix is the identity matrix, and therefore there

is a 1-1 correspondence between toric divisors and spacetime fields.

As a related comment, notice that it is a priori possible for a torsion G-flux to prevent

one from wrapping an M5-brane on a cycle, due to the global anomaly discussed by Witten

in [65]. Following the notations of [65] (the relevant equation is (5.10)), we see that the

restriction of the G-flux to the M5-brane worldvolume V , the left hand side of (5.10), should

be equal to a certain torsion class in H4
tor(V,Z), defined on the right hand side of (5.10).

In our case V = R×Σ, where Σ is a compact five-manifold. Then H4(V,Z) ∼= H4(Σ,Z) ∼=
H1(Σ,Z) (using Poincaré duality), which is always a finite group for toric geometries, and

indeed typically non-trivial. So a (torsion) G-flux in spacetime maps to an element of this

finite group. Witten’s global anomaly formula says this has to be the particular element

defined in (5.10). It would be interesting to try to compute this in explicit examples.

We have seen that the attempt to interpret C(Y 1,2(CP2))II as a large N theory on

M2-branes raises some puzzles. A more careful examination of the string theory origin of

this theory [48] might suggest a way out. In [48] C(Y 1,2(CP2))II was constructed from a

Type IIA parent theory, namely the theory on N D2-branes at the C3/Z3 singularity, by

turning on RR two-form and four-form fluxes. While the two-form flux is lifted to pure

geometry in M-theory, it is not clear how the four-form flux should be lifted. Turning on

the RR two-form flux also requires one to fibre the Calabi-Yau three-fold (C3/Z3 and its

resolution to O(−3)→ CP2) over the real line R, and in passing from negative to positive

R one passes through the singular geometry C3/Z3. The fluxes change when crossing this

singular point. This Type IIA construction suggests a non-trivial (non-flat) G-flux on

the Calabi-Yau four-fold, and indeed a primitive (2,2) flux would preserve supersymmetry

but break the conformal invariance8. There have been recent suggestions that turning on

such G-flux on a Calabi-Yau four-fold cone is dual to turning on a supersymmetric mass

term [61, 66]. This might be an indication that the QCS theory engineered in Type IIA,

at large N , does not flow to a SCFT dual to AdS4 × Y 1,2(CP2). If this speculation turns

out to be correct, further investigation will be needed in order to determine what is the IR

limit of this theory, and whether it has a supergravity dual.

5.5 Multiplicities

We conclude this section with some parting remarks about multiplicities in the toric di-

agram. As reviewed in Subsection 2.3, expressing the spacetime fields Xi,j in terms of

the GLSM fields p, which parametrize the toric diagram, leads to a huge redundancy in

the latter. This was noticed when the forward algorithm was first introduced [21]. So

far, in all brane worldvolume theories which have appeared in the literature, whether for

D3-branes or M2-branes, the VMS has the property that the toric diagram always has no

multiplicity for external points in the toric diagram; that is, we have multiplicity 1 for the

8We thank Mina Aganagic for pointing this out to us.
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p-fields describing the external toric points. Moreover, it is an empirical observation that

the multiplicities of points which are not extremal9 external, but rather live on the interiors

of external edges, tend to be binomial coefficients.

We have already mentioned that the external multiplicities for C(Y 1,2(CP2))I are all

equal to 1, while for the apparently problematic theory C(Y 1,2(CP2))II there is an external

point with multiplicity 2. Going back to our list of theories, we see that for the non-chiral

C2/Zn×C2/Zm theories all the external multiplicities in the toric diagrams are equal to 1.

For Phases I and II of C4/Z3
2, not all the Higgsed theories can be further Higgsed to have

external multiplicities 1. For the C4 theories which we present in Appendix B the result

is interesting: the two standard theories known in the literature, and which we introduced

in Subsection 3.1, namely (C4)I (the ABJM theory with k = 1) and (C4)II , both have

external multiplicities 1. However, all the other models in Figures 19 and 20 have more

than two nodes, and all have external multiplicities greater than 1. For the C2/Z2 × C2

theories, all those with number of nodes in the quiver exceeding three (except theories (f)

and (i)) in Figure 18 have external multiplicities exceeding 1. Theories (f) and (i) have

internal multiplicities which are not binomial coefficients, and which are greater than the

internal multiplicities of the other theories with three nodes.

6. Summary and prospects

In this paper we have studied Higgsing and un-Higgsing in (2 + 1)-dimensional N = 2

quiver-Chern-Simons theories, in the context of M2-branes probing toric Calabi-Yau four-

fold singularities. Whereas the (3 + 1)-dimensional analogue of D3-branes probing Calabi-

Yau three-folds is well understood, the story for (2 + 1)-dimensional M2-brane theories is

considerably more complicated.

From the outset there are two complications that do not arise in the D3-brane case:

(1) In order to take an (Abelian) orbifold projection of a QCS theory, it is necessary that

the order of the group divides the CS levels of the parent theory, subsequently leading to

an additional discrete quotient in the VMS of the projected theory. The upshot is that

there is currently no general method for constructing a QCS theory whose VMS is a given

orbifold C4/Γ. This is currently an important outstanding problem. (2) In AdS4 × Y7,
as opposed to AdS5 × Y5 backgrounds, it is possible to turn on different torsion G-flux,

classified by H4
tor(Y7,Z), and each such background corresponds to a physically distinct

SCFT.

Inspired by systematic studies for the D3-brane case, we set out to investigate toric

Abelian orbifold singularities. In the D3-brane case one can construct all such orbifolds

via a Douglas-Moore projection of N = 4 SYM theory, and moreover the D3-brane theory

for any toric Calabi-Yau three-fold singularity may be obtained via Higgsing such a theory

9Notice such points exist only for non-isolated singularities.
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– mathematically, this is related to the fact that the master space of an Abelian orbifold

theory contains all toric partial resolutions of the singularity [63]. As a warm-up we started

with the simple geometry C2/Zn × C2/Zn, whose field theory may be obtained via a

Zn projection of the ABJM theory. By Higgsing this theory10 one can indeed produce

QCS theories for all toric sub-diagrams, hence demonstrating a similarly straightforward

behaviour to the D3-brane case.

We then proceeded to study another example, namely the orbifold C4/Z3
2. This has

18 inequivalent toric sub-diagrams, corresponding to 18 toric partial resolutions, including,

of course, the flat space C4 (cf. Figure 4). Since a direct Douglas-Moore projection of the

ABJM theory does not produce this theory, we constructed instead two different phases

using other methods. First, we devised a general un-Higgsing algorithm for toric quiver-

Chern-Simons theories, in analogy to [42]. This algorithm, readily computerizable, at

each step obeys the tiling condition (4.1), which is expected to be a physical requirement.

(Indeed, in all examples studied it seems that violating this condition results in a QCS

theory with VMS having the wrong dimension.) Sequential un-Higgsing starting from the

ABJM theory for C4 then leads to the first phase, (C4/Z3
2)I . During this process, several

sets of dual theories were obtained and observed to be connected by simple a CS level

transformation (4.3). This leads to a general duality rule between theories with single-

flavour nodes. Second, we used the method of lifting from Type II parents, discussed

intensively in the literature, to derive a second phase from a descendent of the so-called

Pseudo del Pezzo 5 theory. Phase I can be Higgsed to theories for all 18 toric partial

resolutions, whereas Phase II is missing a theory for C4/Z2, which is toric diagram (19).

Moreover, we noticed the interesting phenomenon that (C4/Z3
2)I can also be Higgsed to

another two theories with the same VMS but with fewer gauge nodes. This raises the issue

of the M2-brane interpretation of these dual phases, especially since the latter two phases

derived from Phase I can no longer be Higgsed to all toric sub-diagrams.

In addition to the theories just mentioned, we have found a plenitude of other examples

of this phenomenon. Specifically, via Higgsing we have produced a plethora of new QCS

theories whose VMSs are C4 (17 in addition to the two standard ones) and C2×C2/Z2 (13

theories) – these are presented in Appendix B.

The “missing” toric sub-diagram (19) in the Higgsing of (C4/Z3
2)II is related to the

fact that the Higgsed theory C(Y 1,2(CP2))II for toric diagram (16) cannot itself be Higgsed

to diagram (19). We therefore focused attention on the singularity C(Y 1,2(CP2)), which

has two toric (partial) resolutions, and studied two Phases I and II in detail, with Phase

I obtained via Higgsing (C4/Z3
2)I . These display significantly different properties. A key

ingredient on our analysis was a careful consideration of the effect of torsion G-flux in the

dual AdS backgrounds, which we described for general four-fold singularities. In the case

10Since C2/Zn × C2/Zn is not an isolated singularity it is not clear to us how to classify G-flux on this

background.

– 56 –



at hand, the AdS solution AdS4 × Y 1,2(CP2) has two choices of torsion G-flux, labelled

by H4(Y 1,2(CP2),Z) ∼= Z2. We conjectured that C(Y 1,2(CP2))I , with equal gauge group

ranks, corresponds to the background with no G-flux: the theory Higgses to both (partial)

resolutions with no G-flux, and this is consistent with the supergravity analysis. Further-

more, we have shown that it is possible to deform the ranks of the C(Y 1,2(CP2))I phase so

that it corresponds to a background with G-flux, and that this is again consistent with the

Higgsings expected from the supergravity side. This analysis can in principle be used for

other theories, and should serve as a further constraint on M2-branes theories at Calabi-

Yau four-fold singularities. In general, we expect from the existence of a supergravity dual,

and also from the examples studied, that theories with no G-flux should be Higgsable to all

toric sub-diagrams.

The C(Y 1,2(CP2))II phase, derived via Higgsing (C4/Z3
2)II , presents us with some puz-

zles, however. We have shown that it is not possible to Higgs this theory to its sub-diagram

C4/Z2, with any configuration of G-flux. This does not seem to agree with the expecta-

tions of the large N dual supergravity computation. Another potential problem with this

theory is the extra branch in the VMS; this does not appear in Phase I, and is difficult to

explain from the dual supergravity solution. (Of course, it is possible that quantum effects

could lift this branch, a speculation that deserves further study.) Furthermore, there is

an apparent mismatch between toric divisors and baryonic operators, again not present in

Phase I (although we note that baryonic operators are still rather poorly understood for

QCS theories). However, it is also possible that these puzzles will be resolved somehow

with a better understanding of the correspondence, perhaps along the lines suggested at

the end of section 5.4. These issues, together with the proposals above, should provide

ample future directions in investigating M2-brane quiver-Chern-Simons theories.
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A. Orbifold projections

In this appendix we demonstrate the orbifold projection procedure with two examples. We

begin with a Z3 × Z2 projection of theory (C4)I (the ABJM theory with CS level k = 1).

We take the orbifold group action generated by

Z3 : (x1, x2, x3, x4) −→ (e
2πi
3 x1, e

−2πi
3 x2, x3, x4) ,

Z2 : (x1, x2, x3, x4) −→ (−x1, x2,−x3, x4) , (A.1)
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where (x1, x2, x3, x4) are the coordinates of C4. We next promote the theory (C4)I to have

N = k = 6, i.e. our starting point will be a U(6)6×U(6)−6 quiver theory. We then consider

the Z3 × Z2 orbifold projection of this theory corresponding to (A.1). More precisely, the

fields of the ABJM theory described in Subsection 3.1 are required to obey the conditions:

X1
1,2 = −e

2πi
3 Ω1Ω2X

1
1,2Ω

†
2Ω
†
1 , X2

1,2 = e
−2πi

3 Ω1Ω2X
2
1,2Ω

†
2Ω
†
1 ,

X1
2,1 = −Ω1Ω2X

1
2,1Ω

†
2Ω
†
1 , X2

2,1 = Ω1Ω2X
2
2,1Ω

†
2Ω
†
1 , (A.2)

A1 = Ω1Ω2A1Ω†2Ω
†
1 , A2 = Ω1Ω2A2Ω†2Ω

†
1 ,

where A1, A2 are the gauge fields for the two nodes, and we have defined the diagonal

matrices

Ω1 := diag(1,−1, 1,−1, 1,−1) , Ω2 = diag(e
2πi
3 , e

2πi
3 , e

−2πi
3 , e

−2πi
3 , 1, 1) . (A.3)

On solving, we find that the invariant gauge fields are of the form

A1 =


v1 0 0 0 0 0

0 v2 0 0 0 0

0 0 v3 0 0 0

0 0 0 v4 0 0

0 0 0 0 v5 0

0 0 0 0 0 v6

 , A2 =


v7 0 0 0 0 0

0 v8 0 0 0 0

0 0 v9 0 0 0

0 0 0 v10 0 0

0 0 0 0 v11 0

0 0 0 0 0 v12

 .

The diagonal nature of these matrices implies that the daughter gauge group is U(1)6 ×
U(1)6. The invariant bifundamental fields are of the form:

X1
1,2 =


0 0 0 X1,10 0 0

0 0 X2,9 0 0 0

0 0 0 0 0 X3,12

0 0 0 0 X4,11 0

0 X5,8 0 0 0 0

X6,7 0 0 0 0 0

 , X2
1,2 =


0 0 0 0 X1,11 0

0 0 0 0 0 X2,12

X3,7 0 0 0 0 0

0 X4,8 0 0 0 0

0 0 X5,9 0 0 0

0 0 0 X6,10 0 0

 ,

X1
2,1 =


0 X7,2 0 0 0 0

X8,1 0 0 0 0 0

0 0 0 X9,4 0 0

0 0 X10,3 0 0 0

0 0 0 0 0 X11,6

0 0 0 0 X12,5 0

 , X2
2,1 =


X7,1 0 0 0 0 0

0 X8,2 0 0 0 0

0 0 X9,3 0 0 0

0 0 0 X10,4 0 0

0 0 0 0 X11,5 0

0 0 0 0 0 X12,6

 .

The C matrix encoding the Chern-Simons levels is then

C =

(
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

)
, (A.4)

and the resulting superpotential is

W = −X2,9X9,3X3,7X7,2 +X2,9X9,4X4,8X8,2 +X1,10X10,3X3,7X7,1

−X1,10X10,4X4,8X8,1 +X1,11X11,5X5,8X8,1 −X4,11X11,5X5,9X9,4

−X1,11X11,6X6,7X7,1 +X4,11X11,6X6,10X10,4 −X2,12X12,5X5,8X8,2

+X3,12X12,5X5,9X9,3 +X2,12X12,6X6,7X7,2 −X3,12X12,6X6,10X10,3 . (A.5)
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Using the forward algorithm we calculate

Gt =

(
2 3 1 2 3 4 2 3 1 2 1 2 1 2 1 2 0 1 2 1 1 2 1 0 2 1 0 2 1 1 1 0 2 1 1 1 0 0 0 1

3 2 4 3 2 1 3 2 2 1 2 1 2 1 2 1 1 0 1 2 0 1 2 1 1 2 1 1 2 0 0 1 0 1 1 1 0 0 2 1

0 1 -1 0 1 2 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 1 2 0 1 1 1 0 1 0 0 1 2 1 0 -1 0 1 1 0 1 2 0 0 1 2 1 0 0 1 2 0 1 0 0 0 1

1 1 0 0 2 1 1 0 1 1 0 1 2 0 2 1 0 1 0 0 1 1 0 1 0 0 -1 2 1 0 1 0 2 1 1 0 0 0 1 0

0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

)
. (A.6)

Using the Delzant construction we find that the VMS of this theory is C4/Z6 × Z3 × Z2,

where the generators of the three groups acts on the coordinates of C4 as follows:

Z6 : (e
2πi
6 , e

2πi
6 , e

−2πi
6 , e

−2πi
6 ) , Z3 : (e

2πi
3 , e

−2πi
3 , 1, 1) , Z2 : (−1, 1,−1, 1) . (A.7)

Compare this with (A.1): one sees that, in addition to the original Z3×Z2 action, there is

also a quotient by Z6 corresponding to the ABJM quotient with CS level k = 6.

As another example, we begin with theory (C4)II and consider instead a Z2 × Z2

projection. We first promote the theory to N = 4 M2-branes, i.e. to a U(4)4 × U(4)−4

quiver theory. The Z2 × Z2 orbifold projection on the matter fields is then

φ11 = −Ω1φ
1
1Ω
†
1 = −Ω2φ

1
1Ω
†
2 , φ21 = −Ω1φ

2
1Ω
†
1 = Ω2φ

2
1Ω
†
2 ,

X2,1 = Ω1X2,1Ω
†
1 = −Ω2X2,1Ω

†
2 , X1,2 = Ω1X1,2Ω

†
1 = Ω2X1,2Ω

†
2 , (A.8)

A1 = Ω1A1Ω†1 = Ω2A1Ω†2 , A2 = Ω1A2Ω†1 = Ω2A2Ω†2 ,

where again A1, A2 are the gauge fields for the two nodes and

Ω1 = diag(1, 1,−1,−1) , Ω2 = diag(1,−1, 1,−1) . (A.9)

The invariant gauge fields are then

A1 = diag(v1, v3, v5, v7) , A2 = diag(v2, v4, v6, v8) , (A.10)

signifying that the resulting gauge group is U(1)4 × U(1)4. The invariant bifundamental

fields and adjoints are subsequently:

φ11 =

 0 0 0 X1,7

0 0 X3,5 0

0 X5,3 0 0

X7,1 0 0 0

 , φ21 =

 0 0 X1,5 0

0 0 0 X3,7

X5,1 0 0 0

0 X7,3 0 0

 , (A.11)

X2,1 =

 0 X2,3 0 0

X4,1 0 0 0

0 0 0 X6,7

0 0 X8,5 0

 , X1,2 =

X1,2 0 0 0

0 X3,4 0 0

0 0 X5,6 0

0 0 0 X7,8

 . (A.12)

The resulting C matrix for the Chern-Simons levels is

C =

(
1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

)
, (A.13)
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while the superpotential is

W = X1,2X2,3X3,5X5,1 −X1,5X5,3X3,4X4,1 −X1,2X2,3X3,7X7,1

+X1,5X5,6X6,7X7,1 +X1,7X7,3X3,4X4,1 −X3,5X5,6X6,7X7,3

−X1,7X7,8X8,5X5,1 +X3,7X7,8X8,5X5,3 . (A.14)

Using the forward algorithm we calculate

Gt =

(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 2 1 2 1 1 0 1 0 0 0 0 4 3 3 2 3 2 2 1 2 1 2 1 3 2 2 1 2 1 1 0 1 0 1 0

1 0 0 1 1 0 0 1 1 2 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

-1 0 0 0 0 0 0 0 0 -1 -1 -1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

)
. (A.15)

Using the Delzant construction we find that the VMS of this theory is C4/Z4 × Z2 × Z2,

where the generators of the groups acts on the coordinates of C4 as follows:

Z4 : (1, e
−2πi

4 , e
2πi
4 , 1) , Z2 : (−1, 1, 1,−1) , Z2 : (1,−1, 1,−1) . (A.16)

Notice the additional Z4 quotient along the CS level direction of the original theory.

B. A plethora of models for C4 and C2/Z2 × C2

In addition to the phases of C4/Z3
2 studied in the main text, we have also studied the

Higgsing behaviour of yet a third phase of C4/Z3
2, which we present here. The quiver is

shown in Figure 17 and the superpotential is

W = −X1,4X4,2X2,1 −X2,4X4,3X3,2 +X2,4X4,6X6,2

+X2,8X8,4X4,2 +X1,7X7,3X3,2X2,1 −X2,8X8,5X5,6X6,2

−X1,7X7,3X3,8X8,4X4,6X6,1 +X1,4X4,3X3,8X8,5X5,6X6,1 . (B.1)

By Higgsing this theory it is not possible to obtain QCS theories which correspond

to toric diagrams (10), (16) and (19) in Figure 4. Moreover, we have noticed that there

are typically many theories produced which share the same VMS. Indeed, for the two

simplest and perhaps most-studied four-folds in the context of QCS theories, namely C4

and C4/Z2 × C2, we have found a plethora of toric phases; many of these are new to

the literature. For the purposes of completeness and of illustration, we list all possible

Higgsings of the third phase of C4/Z3
2 which lead to these two particular moduli spaces.
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Figure 17: Quiver diagram for the third phase of C4/Z3
2. The Chern-Simons levels are labelled in

(blue) square brackets.

For C4 we find a total of 17 QCS theories, in addition to (C4)I and (C4)II . The

quivers for these are presented in Figures 19 and 20, while the toric matrices Gt and

superpotentials are given in Tables 9 and 8. For the orbifold C2/Z2×C2 we find a total of

13 QCS theories. The quivers for these are presented in Figure 18, while the toric matrices

Gt and superpotentials are given in Table 10.

Toric diagram Gt Toric diagram Gt

(a)


0 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 0 0

 (e)


0 0 0 0 0 1

0 1 0 1 1 0

0 0 1 0 0 0

1 0 0 0 0 0



(b)


0 0 1 0 1

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

 (f)


0 0 0 1 1

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0



(c)


0 0 1 0 1

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

 (g)


0 0 0 1 1

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0



(d)


0 0 0 1 0 1

0 0 0 0 1 0

1 0 1 0 0 0

0 1 0 0 0 0

 (h)


0 0 0 0 0 1

0 0 1 1 1 0

0 1 0 0 0 0

1 0 0 0 0 0



Table 8: The toric diagrams for phases of C4 with vanishing (Abelian) superpotential.

We have therefore found a host of new theories. The authors of [1] conjectured the

ABJM theory to be the worldvolume theory on an M2-brane in flat spacetime, and one

may similarly wonder whether any of our C4 theories are really M2-brane worldvolume

theories. A necessary condition would be that the manifest N = 2 supersymmetry of the

theory is in fact enhanced to N = 8. In fact even for the ABJM theory (C4)I this amount

of symmetry is not manifest either; it is believed that the additional supersymmetries are

described by certain monopole operators [1], which are currently rather poorly understood.

It seems difficult, therefore, to address this question directly and deserves further study.

As another hint, recall that in the D3-brane case the number of nodes in the quiver is

precisely the Euler number of a (any) Calabi-Yau resolution of the singularity. In [64] it

was argued that for non-chiral QCS theories on M2-branes probing Calabi-Yau four-fold
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Figure 18: Quiver diagrams for various phases of C2/Z2 × C2.

singularities, the number of nodes is instead 2 + rankH2(Y7). If correct, this implies that

the number of nodes for Y7 = S7 should be 2. Clearly, this is true for models (C4)I and
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(C4)II , but the two non-chiral theories (i) in Figures 19 and (b) in 20 fail to satisfy this

condition. This suggests that there might be problems in interpreting these as M2-branes

theories.

K=1

K=0

K=0

K=-1

K=-1

K=0

K=0 K=1

K=-1

K=0

K=0 K=1

K=1
K=0

K=0

K=-1

K=1

K=0

K=-1

K=1

K=0

K=-1

(a) (b) (c)

(d) (e) (f)

K=1

K=-1

K=1 K=-1
K=1 K=-1

K=0

K=0

K=0

K=0

K=0

(g) (h) (i)

(j) (k)

K=1K=-1

K=0

K=0

K=-1 K=1K=0

Figure 19: Quiver diagrams for phases of C4 with non-vanishing superpotential.
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Toric diagram Gt Superpotential W

(a)
 0 0 0 0 0 0 1

0 0 0 0 1 1 0
1 0 1 1 0 0 0
0 1 0 0 0 0 0

 −X2
1,3X3,2X2,1 +X2

1,3X3,5X1
5,1+

X1
1,3X3,2X2,1X1,5X2

5,1 −X1
1,3X3,5X1

5,1X1,5X2
5,1

(b)
 1 0 1 0 0 0 1

0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 1 0 1 0 0 0

 X1,4X2
4,1X1,5X1

5,4X
1
4,1 −X1,4X4,2X2,5X1

5,4X
2
4,1−

X1,5X2
5,4X

1
4,1 +X2,5X2

5,4X4,2

(c)
 0 1 0 0 1 0 1

0 0 1 0 0 1 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0

 −X1
1,1X1,6X6,1 +X1

1,1X
2
1,1X1,5X5,6X6,1+

X1,6X6,2X2,1 −X2
1,1X1,5X5,6X6,2X2,1

(d)
 0 0 0 0 0 0 1

0 1 0 1 0 1 0
0 0 0 0 1 0 0
1 0 1 0 0 0 0

 −X1,1X1,5X5,1X1,8X8,1 +X1,1X1,5X5,2X2,8X8,1+

X1,8X8,5X5,1 −X2,8X8,5X5,2

(e)
 0 0 0 1 0 1

0 0 1 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0

 X1
1,1X

2
1,1X

2
1,6X6,1 −X1

1,1X
1
1,6X6,1−

X2
1,1X

2
1,6X6,2X2,1 +X1

1,6X6,2X2,1

(f)
 0 0 0 0 0 1

0 0 0 1 1 0
0 1 1 0 0 0
1 0 0 0 0 0

 −X2
1,3X3,2X2,1 +X2

1,3X
1
3,3X3,1+

X1
1,3X

2
3,3X3,2X2,1 −X1

1,3X
1
3,3X

2
3,3X3,1

(g)
 0 0 0 0 0 0 1

0 1 0 1 0 1 0
0 0 0 0 1 0 0
1 0 1 0 0 0 0

 −X1
1,1X1,8X8,1 +X1,2X2,8X8,1+

X1
1,1X

2
1,1X1,8X8,5X5,1 −X2

1,1X1,2X2,8X8,5X5,1

(h)
 0 0 0 0 0 0 1

0 1 0 1 0 1 0
0 0 0 0 1 0 0
1 0 1 0 0 0 0

 X1,1X1,5X1
5,1 −X1,2X2,5X1

5,1−
X1,1X1,5X2

5,1X1,7X7,1 +X1,2X2,5X2
5,1X1,7X7,1

(i)
 0 0 0 0 0 1

0 0 0 1 1 0
1 0 1 0 0 0
0 1 0 0 0 0

 −X1,1X1,2X2,1 +X1,1X2
1,5X

1
5,1+

X1,2X2,1X1
1,5X

2
5,1 −X2

1,5X
1
5,1X

1
1,5X

2
5,1

(j)
 0 0 0 0 0 0 1

1 0 0 1 1 1 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0

 X1,1X2
1,5X5,1 −X2

1,5X5,2X2,1−
X1,1X1

1,5X5,1X1,7X7,1 +X1
1,5X5,2X2,1X1,7X7,1

(k)
 0 0 0 0 0 1

0 1 0 0 1 0
1 0 0 1 0 0
0 0 1 0 0 0

 −X3
1,1X

2
1,1X

1
1,1 +X1

1,1X1,2X2,1+

X3
1,1X

2
1,1X1,5X5,1 −X1,2X2,1X1,5X5,1

Table 9: The toric diagrams and superpotentials for phases of C4 with non-vanishing superpotential.

(a) (b)

(d) (f)

(g)

K=1

K=-1

K=0K=0

K=-1K=1 K=0

K=0

K=-1 K=1

K=1

K=-1

K=1K=-1
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Figure 20: Quiver diagrams for phases of C4 with vanishing (Abelian) superpotential.

– 64 –



Toric diagram Gt Superpotential W

(a)

 0 0 0 0 1 0 0 1
0 -1 0 0 0 0 1 0
0 2 1 0 0 1 0 0
1 0 0 1 0 0 0 0

 −X1,2X2,2X2,1 +X2,2X2,8X8,2+

X1,2X2,1X1,3X3,8X8,5X5,1 −X1,3X3,8X8,2X2,8X8,5X5,1

(b)

 1 0 0 0 0 2 0 1
0 0 0 0 0 -1 1 0
0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0

 −X2
1,3X3,2X2,8X1

8,1 +X1,1X2
1,3X3,8X1

8,1+

X1
1,3X3,2X2,8X2

8,1 −X1,1X1
1,3X3,8X2

8,1

(c)

 0 -1 0 0 0 0 1
0 2 1 0 0 1 0
0 0 0 0 1 0 0
1 0 0 1 0 0 0

 −X1,2X2,2X2,1 +X1,2X2,1X1,3X3,8X8,1+

X2,2X2,8X8,2 −X1,3X3,8X8,2X2,8X8,1

(d)

 0 0 -1 0 0 0 0 1
0 0 2 1 0 0 1 0
0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0

 −X1,4X4,2X2,4X4,1 +X1,4X4,1X1,5X5,1+

X2,4X4,5X5,4X4,2 −X1,5X5,4X4,5X5,1

(e)

 0 -1 0 0 0 1
0 2 1 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

 X1,2X2,2X2,1 −X1,2X2,1X1,3X3,1−
X2,2X2,3X3,2 +X1,3X3,2X2,3X3,1

(f)

 0 0 -1 0 0 0 1
0 1 2 1 0 1 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0

 X1,2X2
2,5X5,1 −X1,2X1

2,5X5,1X1,6X6,1−
X2

2,5X5,6X6,2 +X1,6X6,2X1
2,5X5,6X6,1

(g)

 0 0 1 0 0 2 0 1
0 0 0 0 0 -1 1 0
0 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0

 X1
1,1X

2
1,1X1,5X5,1 −X1,2X2,1X1,5X5,1−

X1
1,1X

2
1,1X1,7X7,1 +X1,2X2,1X1,7X7,1

(h)

 0 0 0 0 1 0 1
0 0 0 0 0 1 0
1 2 0 1 0 0 0
0 -1 1 0 0 0 0

 −X2
1,3X

2
3,2X

1
2,1 +X1

1,3X
2
3,2X

2
2,1+

X2
1,3X

1
3,2X

1
2,1X1,5X5,1 −X1

1,3X
1
3,2X

2
2,1X1,5X5,1

(i)

 0 0 0 0 0 0 1
1 2 0 1 0 1 0
0 0 0 0 1 0 0
0 -1 1 0 0 0 0

 −X2
1,3X

2
3,2X

1
2,1 +X1

1,3X
2
3,2X

2
2,1+

X2
1,3X

1
3,2X

1
2,1X1,6X6,1 −X1

1,3X
1
3,2X

2
2,1X1,6X6,1

(j)

 1 0 0 2 0 1
0 0 0 -1 1 0
0 0 1 0 0 0
0 1 0 0 0 0

 X1,1X2
1,2X

1
2,8X

1
8,1 −X2

1,2X
2
2,8X

1
8,1−

X1,1X1
1,2X

1
2,8X

2
8,1 +X1

1,2X
2
2,8X

2
8,1

(k)

 0 0 0 0 0 0 1
0 0 0 0 1 1 0
1 2 0 1 0 0 0
0 -1 1 0 0 0 0

 X2
1,2X2,2X1

2,1 −X1
1,2X2,2X2

2,1−
X2

1,2X
1
2,1X1,8X8,5X5,1 +X1

1,2X
2
2,1X1,8X8,5X5,1

(l)

 0 0 1 2 0 1
0 0 0 -1 1 0
0 1 0 0 0 0
1 0 0 0 0 0

 −X3
1,1X1,5X5,1 +X1

1,1X
2
1,1X1,5X5,1+

X3
1,1X1,7X7,1 −X1

1,1X
2
1,1X1,7X7,1

(m)

 0 0 0 0 0 1
0 0 0 0 1 0
1 2 0 1 0 0
0 -1 1 0 0 0

 −X2
1,2X2,2X1

2,1 +X1
1,2X2,2X2

2,1+

X2
1,2X

1
2,1X1,6X6,1 −X1

1,2X
2
2,1X1,6X6,1

Table 10: The toric diagrams and superpotentials for various phases of C2/Z2 × C2.
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