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Abstract

We provide detailed arguments on how to derive properties of generalized form
factors, originally proposed by one of the authors (M.K.) and Weisz twenty years
ago, solely based on the assumption of “maximal analyticity” and the validity of the
LSZ reduction formalism. These properties constitute consistency equations which
allow the explicit evaluation of the n-particle form factors once the scattering matrix
is known. The equations give rise to a matrix Riemann-Hilbert problem. Exploiting
the “off-shell” Bethe ansatz we propose a general formula for form factors for an
odd number of particles. For the Sine-Gordon model alias the massive Thirring
model we exemplify the general solution for several operators. In particular we
calculate the three particle form factor of the soliton field, carry out a consistency
check against the Thirring model perturbation theory and thus confirm the general
formalism.
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1 Introduction

More than fifty years ago, Heisenberg [1] pointed out the importance of studying analytic

continuations of scattering amplitudes into the complex momentum plane. The first

concrete investigations in this direction were carried out by Jost [2] and Bargmann [3],

initially for non-relativistic scattering processes. The original ideas turned out to be very

fruitful and lead to interesting results on-shell, i.e. for the S-matrix [4], as well as off-shell,

that is for the two-particle form factors, see for instance [5].

Once one restricts ones attention to 1+1 dimensional integrable theories, the n-particle

scattering matrix factories into two particle S-matrices and the approach, now usually

referred to as the bootstrap program, reveals its full strength. On-shell, it leads to the

exact determination of the scattering matrix [6, 7], (for reviews see also [9-12]). The

results obtained in this way agree with the S-matrix obtained from the extrapolation of

semi-classical expressions for the Sine-Gordon model [8]. The first off-shell considerations

were carried out about two decades ago by one of the authors (M.K.) et al. [13, 14], who

introduced the concept of a generalized form factor and formulated several consistency

equations which are expected to be satisfied by these objects. Thereafter this approach

was mainly developed further and studied in the context of several explicit models by

Smirnov et al. [15-23]. Recently this program has seen some revival in relation to models

which arise as perturbations of certain conformal field theories [24], particularly in the

context of affine Toda theories [25] and closely related models [26-48].

An entirely different method, the Bethe ansatz [49], was initially formulated in order

to solve the eigenvalue problem for certain integrable Hamiltonians. The approach has

found applications in the context of numerous models and has led to a detailed study of

various mass spectra and S-matrices (for reviews and an extensive list of references see

for instance [50]). The original techniques have been refined into several directions, of

which in particular the so-called “off-shell” Bethe ansatz, which was originally formulated

by one of the authors (H.B.) [51, 52], will be exploited for our purposes. This version

of the Bethe ansatz paves the way to extend the approach to the off-shell physics and

opens up the intriguing possibility to merge the two methods, that is the form factor

approach and the Bethe ansatz. The basis for this opportunity lies in the observation

[53, 54, 55], that the “off-shell” Bethe ansatz captures the vectorial structure of Watson’s

equations (see section 2.2 properties (i) and (ii)). These are matrix difference equations

giving rise to a matrix Riemann-Hilbert problem which is solved by an ”off-shell” Bethe

ansatz. Furthermore, there exist interesting speculations in order to make contact with

general concepts of algebraic quantum field theory [60, 61].

Conceptionally, the on and off-shell approaches are very similar. For the on-shell
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situation one has certain constraints resulting from general physical and in particular

analytic properties (referred to as “maximal analyticity assumption”), which lead to a

set of conditions which turned out to be so restrictive that they allow to construct the

exact scattering matrix almost uniquely. This approach is adopted in order to determine

the key off-shell quantities, i.e. the form factors. In the present manuscript we provide a

detailed derivation of the consistency equations solely based on the maximal analyticity

assumption and the validity of the LSZ-formalism [57] (see also [58]). Form factors are

vector valued functions, representing matrix elements of some local operator O(x) at the

origin between an in-state and the vacuum, which we denote by (refer equation (3.2) for

more details)

FOα
(

((pi + pj)
2 + iε)(1≤i<j≤n)

)

:= 〈0 |O(0)| p1, . . . , pn〉inα1...αn
. (1.1)

Once all the n-particle form factors are known, one is in principle in a position to compute

all correlation functions. In particular the two point function for an hermitian operator

O in real Euclidian space reads

〈O(x)O(0)〉 =
∞
∑

n=0

∫

dθ1 . . . dθn
n! (4π)n

| FOα (θ1, . . . , θn) |2 exp

(

−r
n
∑

i=1

mi cosh θi

)

. (1.2)

Here r denotes the radial distance r =
√

x2
1 + x2

2 and θ is the rapidity related to the

momentum via pi = mi sinh θi (see section 3.2 for more details). The explicit evaluation

of all integrals and sums remains an open challenge for almost all theories, except the

Ising model1. Important progress towards a solution of this problem has recently been

achieved in [59].

A commonly used procedure which will yield expressions which satisfy all of the con-

sistency requirements is constituted out of the following steps: First of all one has to

have solved the on-shell system, that is one requires expressions for the S-matrix. In the

next step one usually makes an ansatz for the form factors of a type already introduced

in [13], in which one extracts explicitly the expected singularity structure. The nature

of the ansatz guarantees by construction that the generalized Watson’s equations (prop-

erties (i) and (ii)) are satisfied once the scattering matrix is diagonal. For generically

non-diagonal scattering matrices one may invoke also the techniques of the “off-shell”

Bethe ansatz [53, 54, 55] in order to capture the vectorial structure of the form factors.

1Of course one may also adopt a very practical point of view and resort to the well-known fact
that the series expansion of correlation functions in terms of form factors (1.2) converges very rapidly.
Consequently correlations functions may be approximated very often quite well by simply including
the two-particle form factor into the expansion. ¿From that point of view the form factor program is
completed, since the calculation of the two-particle form factors is well understood.
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The ansatz only involves the rapidity differences, apart from a possible pre-factor, which

takes the spin of the local field O into account, and has therefore the desired behavior

under Lorentz transformations (refer property (v) in section 3.2). General solutions for

the so-called minimal form factors (the function which satisfies the functional equation

(4.10)) are always fairly easy to find. Once the scattering matrix is non-diagonal one has

also to encode the vectorial structure at this stage. What is then left, is to determine

a general function which takes the complete singularity structure into account. For this

purpose one may now invoke properties (iii) and (iv) (equations (3.12) and (3.13) for the

bosonic case), which lead to a set of recursive equations. In principle these equations

may now be solved step by step, once the first non-vanishing form factor for a particular

operator is properly fixed. However, only after a few steps the expressions become usually

algebraically very complex and reveal very little insight. Therefore, it is highly desirable

to search for structures of a more general nature, that is in particular to seek for closed

expressions for all n-particle form factors. Only such expressions may ultimately shed

more light on the analytic expressions for the correlation functions (1.2). Alternatively,

one may try to construct directly a representation for the creation operators of the parti-

cles in the in-state in (1.1) [62, 63, 64, 65]. Representing the local operator O in the same

space, one may in principle also compute the form factors.

In the present manuscript we provide a general expression (see theorem 4.1) of a differ-

ent kind, which solves all the consistency requirements. It is very generic by construction

and, roughly speaking, captures the vectorial nature of the form factors by means of

“off-shell” Bethe ansatz states and the pole structure by particular contour integrals. We

exemplify this general expression for the form factors of the Sine-Gordon model involving

an odd number of states, which was hitherto unknown. For the even case similar expres-

sions may be found in [17, 18]. We present a detailed analysis of the three particle form

factor.

Once solutions for the set of consistency equations are found, it is highly desirable

to verify the solutions with some alternative method. Several different methods have

been developed in recent years. Assuming that the theory under consideration results

from the perturbation of some conformal field theory, one may carry out the following

consistency checks. For instance one may take the operator in the form factor to be the

trace of the energy momentum tensor and exploit the so-called c-theorem [66] in order to

obtain a first indication about the result. This check is not extremely restrictive what the

higher n-particle form factors concerns, since the expected value for c is usually already

saturated after the two-particle contribution. Alternatively one may also compare with the

perturbation theory around the conformal field theory, which is possible for all operators
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of the model. The latter approach has turned out to be very fruitful [27]. A further

consistency check consist out of the comparison between the exact result obtained from

the form factors with the predictions of the renormalisation group (that is asymptotic

freedom etc. [67, 35]). In the present manuscript we present a check of our solutions

against conventional perturbation theory in standard quantum field theory.

The manuscript is organized as follows: In section 2 we review the properties of the

general scattering matrix and in particular the Sine-Gordon S-matrix. In section 3 we

motivate the general properties of the generalized form factors, for simplicity initially only

for the bosonic case, which we thereafter extend to the general situation involving also

fermions. In section 4 we briefly explain the “off-shell” Bethe ansatz and state theorem

4.1, the main result of the manuscript. We present a general formula2 (based on the

”off-shell” Bethe ansatz) for form factors with an odd number of solitons or anti-solitons.

Furthermore, we provide an explicit analysis of several two- and three particle form factors

and carry out various consistency checks relating different form factors to each other. In

section 5 we compare our solution for a three particle form factor against perturbative

perturbation theory. Our conclusions are stated in section 6. In appendix A we provide

the proofs of the properties of the generalized form factors. In appendix B we proof

theorem 4.1 and appendix C serves as a depot for several useful formulae employed in the

working.

2 The S-matrix

2.1 General Properties

In this section we briefly review some of the well known facts on the general properties of

the scattering matrices. The Fock space is spanned by the in- or out-states of the particles

| p1, . . . , pn 〉in/outα1...αn
= ain/out †α1

(p1) · · ·ain/out †αn
(pn) | 0 〉 (2.1)

where the a†’s are creation operators. The p’s denote the momenta and the α’s the

internal quantum numbers of the particles, such as the particle type etc. We choose the

normalization

α′〈 p′ | p 〉α = δα′α 2ω 2π δ(p′ − p) = δα′α 4π δ(θ′ − θ) (2.2)

where the rapidity θ is related to the momentum by p = m sinh θ and ω =
√
m2 + p2.

In an integrable quantum field theory in 1+1-dimensions there exists an infinite set

of conservation laws. Therefore in a scattering process the sets of incoming and outgoing

2Our formula is similar to an analogous one of Smirnov [18] for even number of particles. This should
be a starting point for a comparison of both formulae.
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momenta are equal

{p1, . . . , pn} = {p′1, . . . , p′n′} .
The n-particle S-matrix is defined by

| p1, . . . , pn 〉inα1...αn
= | p1, . . . , pn 〉outα′

1...α
′
n
S(n)α

′
n...α

′
1

α1...αn
(p1, . . . , pn)

= | pn, . . . , p1 〉outα′
n...α

′
1
(σ(n)S(n))

α′
n...α

′
1

α1...αn
(p1, . . . , pn).

The statistics of the particles has been taken into account by the diagonal matrix σ(n). It

is a product of all two particle matrices σ with entries −1 if both particles are fermions

and +1 otherwise (see [68]). As a consequence of integrability , i.e. the existence of an

infinite number of conserved quantities, the n-particle S-matrix factorizes into n(n− 1)/2

two-particle ones

σ(n)S(n)(p1, . . . , pn) =
∏

i<j

σS(2)(pi, pj) ,

where the product on the right hand side has to be taken in a specific order (see e.g. [7]).

For this reason it is sufficient to investigate the properties of the two-particle scattering

matrix. As is usual in integrable quantum field theories in 1+1-dimensions it is most

convenient to regard the two-particle S-matrix as a function of the rapidity differences

θ = |θi − θj | rather than as a function of the Mandelstam variables sij = (pi + pj)
2. In

order to establish the analytic properties of the two-particle S-matrix one may employ the

relations sij = m2
i +m2

j + 2mimj cosh θij , tij = (pi− pj)2 = 2m2
i + 2m2

j − sij. Considering

the scattering matrix as a function in the complex sij-plane, there will be two branch cuts

present, the s-channel one for sij > (mi+mj)
2 and the t-channel one for sij < (mi−mj)

2.

In figure 1 the physical s-channel and t-channel regions in the complex (a) s– and (b)

θ–plains are labeled by I and II, respectively. The crossing transition is depicted by an

arrow. This and the transitions corresponding to the exchange of in– and out–going waves

are given by:

I ↔ II : sij + iǫ↔ tij − iǫ ⇔ θ ↔ iπ − θ
I ↔ III : sij + iǫ↔ sij − iǫ ⇔ θ ↔ −θ
II ↔ V I : tij − iǫ↔ tij + iǫ ⇔ iπ − θ ↔ iπ + θ

(It will be important in the following to notice that the t-channel cut (II-IV) is not present

for form factors as a function defined in the complex sij-plane.)

Let V be a finite dimensional vector space, whose basis vectors label all types of

particles of the model. Then one considers the S-Matrix as an intertwining operator

acting on the tensor product of two of these spaces

S12(θ) : V1 ⊗ V2 → V2 ⊗ V1 .
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Figure 1: The analyticity domains in the complex planes of (a) the Mandelstam variable
sij = (pi + pj)

2 and (b) the rapidity difference variable θ = |θ1− θ2|. The physical regimes
in the s- and t-channels are denoted by I and II, respectively. The crossing transition
from the s- to the t-channel is indicated by the arrow. As explained in the main text, the
interchange of in and out means transition from I to III for the s-channel, and II to IV
for the t-channel. The dots denote the possible positions of poles corresponding to one
particle intermediate states.

The unitarity of the S-matrix reads

∑

α′β′

(

Sα
′′β′′

β′α′ (θ)
)∗
Sβ

′α′

αβ (θ) = δα′′αδβ′′β or S21(−θ)S12(θ) = 1 (2.3)

since by analytic continuation from positive to negative variable one has S†12(θ) = S21(−θ).
The crossing relations are

Sδγαβ(θ) = Sγβ̄
δ̄α

(iπ − θ) = Sᾱδβγ̄(iπ − θ) (2.4)

where the bar refers to the anti-particles. The Yang-Baxter equation which follows from

the higher conservation laws is

(σS)12(|θ12|)(σS)13(|θ13|)(σS)23(|θ23|) = (σS)23(|θ23|)(σS)13(|θ13|)(σS)12(|θ12|) (2.5)

where θij = θi − θj . When there are no transitions of the sort that two bosons change

into two fermions, the signs given by the statistics cancel.

As usual we use here and in the following the notation for a vector with components

vα1...αn and a matrix with elements Aβ1...βn
α1...αn

acting on these vector

v1...n ∈ V1...n = V1 ⊗ · · · ⊗ Vn , A1...n : V1...n → V1...n (2.6)

where all vector spaces Vi are isomorphic to V and whose basis vectors label all kinds of

particles. An S-matrix as Sij acts nontrivial only on the factors Vi ⊗ Vj and in addition

exchanges these factors. If we want to express the fact that a particle belongs to a multiplet

of a specific type of particles, we also write va ∈ Va, vb ∈ Vb etc. and consider V =
⊕

a Va

7



as the direct sum of all these spaces. Usually these spaces Va are the representation spaces

of a symmetry group or quantum group of the model.

The physical S-matrix in the formulas above is given for positive values of the rapidity

parameter θ. For later convenience we will also consider an auxiliary matrix Ṡ regarded as

a function depending on the individual rapidities of both particles θ1, θ2 or θ12 = θ1 − θ2

Ṡ12(θ1, θ2) = Ṡ12(θ1 − θ2) =
{

(σS)12(|θ1 − θ2|) for θ1 > θ2
(Sσ)−1

21 (|θ1 − θ2|) for θ1 < θ2
(2.7)

with σ taking into account the statistics of the particles. Up to these statistics factors Ṡ

is obviously the analytic extension of the physical S-matrix S from positive to negative

values of θ, due to the unitarity (2.3).

It appears convenient to introduce a graphical representation for several of the ampli-

tudes, which will allow us to develop a more direct graphical intuition for the derivation

of several relations. The auxiliary matrix Ṡ may be depicted as

Ṡ12(θ1, θ2) =
�

�
��

@
@

@@

θ1 θ2

Here and in the following we associate a rapidity variable θi ∈ C to each space Vi which is

graphically represented by a line labeled by θi or simply by i. In terms of the components

of the S-matrix we have

Ṡδγαβ(θ1, θ2) =
�

�
�

@
@

@

α β

γδ

θ1 θ2
.

In terms of the auxiliary S-matrix the Yang-Baxter equation has the general form

Ṡ12(θ12) Ṡ13(θ13) Ṡ23(θ23) = Ṡ23(θ23) Ṡ13(θ13) Ṡ12(θ12)

which grphically simply reads

�
�

�
�

��

@
@

@
@

@@

=

�
�

�
�

��

@
@

@
@

@@
1

2 3 1 2
3

.

(2.8)

Unitarity and crossing may be written and depicted as

Ṡ21(θ21)Ṡ12(θ12) = 1 :
�

�
@

@
�

�
@

@
=

1 2 1 2
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Ṡ12(θ1 − θ2) = C22̄ Ṡ2̄1(θ2 + iπ − θ1)C2̄2 = C11̄ Ṡ21̄(θ2 − (θ1 − iπ)C1̄1 :

�
�

��

@
@

@@

1 2

=
�

�
��

A
A

AA

�
�

1 2

=
�
�
��

@
@

@@
�



1 2

where C11̄ and C11̄ are charge conjugation operators with components Cαβ̄ = Cαβ̄ = δαβ.

We have introduced the graphical rule, that a line changing the “time direction” also

interchanges particles and antiparticles and changes the rapidity as θ → θ± iπ, as follows

Cαβ̄ = δαβ =

��
θ θ − iπ
α β̄

, Cαβ̄ = δαβ = ��θ θ + iπ
α β̄

(2.9)

Similar crossing relations will be used below to investigate the properties of form factors.

2.2 Bound states

Let the two particles labeled by 1 and 2 of mass m1 and m2, respectively form a bound

state labeled by (12) of mass m(12). If the mass of the bound state is

m(12) =
√

m2
1 +m2

2 + 2m1m2 cosh θ
(12)
12 , (Re θ

(12)
12 = 0, 0 < Im θ

(12)
12 < π)

the corresponding eigenvalue of the S-matrix Se(θ) will have a pole at θ = θ
(12)
12 such that

Se(θ) ≈
Re

θ − θ(12)
12

, for θ → θ
(12)
12 , (2.10)

giving rise to a residue Re. The eigenvalues are given by the diagonalization of the S-

matrix

S12(θ) =
∑

e

ϕ21
e Se(θ)ϕ

e
12 (2.11)

where the projections onto the eigenspaces are given by the intertwiners (Clebsch-Gordan

cofficients) ϕe12 with
∑

e

ϕ12
e ϕ

e
12 = 112 , ϕe

′

12ϕ
12
e = δe′e.

Formula (2.10) may also be written as

Res
θ=θ

(12)
12

S12(θ) = ϕ21
(12)R(12)ϕ

(12)
12 (2.12)

where a matrix product with respect to the space of bound states V(12) is assumed.

Remark: In general an eigenvalue of S may have several poles corresponding to bound
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states of different masses. On the other hand several eigenvalues may have poles at the

same point, which means that there are several types of bound states (12) of the particles

1 and 2 with the same mass. The space of the bound states V(12) is then a direct sum of

spaces belonging to these types of particles.

The corresponding fields are related by a normal-product relation like

Ψ(12)(x) = N [Ψ1Ψ2](x)ϕ
12
(12) .

The bound state S-matrix which describes the scattering of a bound state with another

particle is given by [68]

Ṡ(12)3(θ(12)3) =
√

R(12)ϕ
(12)
12 Ṡ13(θ13)Ṡ23(θ23)ϕ

12
(12)/

√

R(12)

∣

∣

∣

θ1−θ2=θ
(12)
12

(2.13)

where the rapidity θ(12) is fixed by p1 + p2 = p(12). Here and below we use the phase

convention that
√
Re = i

√−Re if Re < 0.

In integrable quantum field theories there exist different types of bound state spectra

which may be characterized by the absence or presence of solitons or kinks. Of course, in

quantum field theory the bootstrap picture means that all particles are to be considered

on the same footing. The names ’solitons’, ’kinks’ and ’breathers’ are motivated by the

classical non-linear equations associated with the quantum model. These equations may

possess soliton or kink solutions, i.e localized non-singular solutions with a localized energy

density. Special solutions consisting of a soliton and an antisoliton are called ’breathers’

because of their oscillatory behaviour. In the quantum case we call a particle a soliton if

it is a bound state of itself and another particle. Similarly (and more general), we call a

particle a kink if it is a bound state of a particle with the same mass and another particle.

The mass spectra of integrable quantum field theories characterized by the absence or

presence of solitons are given as follows:

i) There are particles labeled by a with mass [7, 69]

ma = m1

sin π
2
νa

sin π
2
ν
, a = 1, 2, . . . < 2/ν.

This means that two particles of massma andmb form a bound state of massmc=a+b.

The corresponding poles of the two particle S-matrix element and the rapidities in

the bound state formula (2.13) are given by

θcab = iπ
2
ν(a + b) , θa = θc + iπ

2
νb , θb = θc − iπ2νa.

The chiral SU(N)-Gross-Neveu model [72], the Z(N) invariant Ising models [73]

or the SU(N)-affine Toda field theories are examples for the above spectrum with

10



ν = 2/N . In general the mass spectrum is more involved, for instance for affine

Toda field theories (with real coupling constant) related to simply laced algebras

the masses constitute the entries of the Perron-Frobenius eigenvector of the Cartan

matrix [70, 71] and for theories related to non-simply laced algebras they do not

even renormalise uniformly [74].

ii) If there exist kinks (solitons) of mass M labeled by A then there are three types of

bound states:

a) Particles (breathers) labeled by a are kink-antikink bound states with

ma = 2M sin π
2
νa , a = 1, 2, . . . < 1/ν. (2.14)

Here the corresponding poles of the kink-antikink S-matrix and the rapidities

in the bound state formula (2.13) are given by

θaAB = iπ(1− aν) , θA = θc +
1

2
θaAB , θB = θc −

1

2
θaAB.

b) The kink B may be considered as a bound state of a particle a and a kink A

such that the pole of the (a-A)-S-matrix and the rapidities in the bound state

formula (2.13) are

θBaA =
iπ

2
(1 + aν) , θa = θB +

iπ

2
(1− aν) , θA = θB − iπaν.

c) In addition as in i) two particles of mass ma and mb form a bound state of

mass mc=a+b, however, here a < 1/ν.

Examples for the latter case are the sine-Gordon (SU(2)-affine Toda theory) alias the

massive Thirring model with ν = β2/(8π−β2) = π/(π+2g) and the O(2N)-Gross-Neveu

model with ν = 1/(N − 1). Also in this case the mass spectrum is in general more

complicated, for example all affine Toda field theories with purely imaginary coupling fall

into this category [75].

The bound state formulae above may be depicted as follows: For θ12 = θ1− θ2 = θ
(12)
12

with Im θ12 > 0 we introduce

√

R(12) ϕ
(12)
12 = ��

1 2

(12)
, (σϕ)21

(12)

√

R(12) = �
2 1

(12)

1/
√

R(12) (ϕσ)
(12)
21 = ��

2 1

(12)
, ϕ12

(12) /
√

R(12) = �
1 2

(12) .
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Then we have the relations

�
�
�



e

e′

1 2 = δe′e
e

,
∑

e
���


1 2

e

1 2

=
1 2

where formally we have put Re/Re = 1 even if Re = 0 in case that e does not correspond

to a bound state. The sum in the last formula is over all eigenspaces Ve ⊂ V1 ⊗ V2 of the

S-matrix. If we would sum only over those e = (12) which correspond to bound states, we

would get the projector onto the subspace of bound states in V1 ⊗ V2. Moreover formula

(2.12) is depicted as

Res
θ12=θ

(12)
12 �

�
��

A
A

AA

1 2
= ���


1 2

(12)

2 1

The bound state formula (2.13) may be depicted as

�
�

��

@
@

@@

(12) 3
=

��

�
�
�
�
��

@
@

@
@

@@

(12) 3

1 2 .

It implies relations of two-particle S-matrices [69] called ’pentagon equations’ (also referred

to as bootstrap equations) like

S(12)3

√

R(12) ϕ
(12)
12 =

√

R(12) ϕ
(12)
12 S13S23 : �

��

@
@@

1
2

3 =
�

�

@
@

@@���

�
��1

2 3
.

2.3 The Sine-Gordon model S-matrix

The Sine-Gordon model alias the massive Thirring model is defined by the Lagrangians

LSG =
1

2
(∂µφ)2 +

α

β2
(cosβφ− 1),

LMTM = ψ̄(iγ∂ −M)ψ − 1

2
g(ψ̄γµψ)2,

respectively.

The Fermi field ψ correspond to the soliton and antisoliton and the bose field φ to the

lowest ‘breather’ which is the lowest soliton antisoliton bound state. The precise relation

12



between the related coupling constants was found by Coleman [76] within the framework

of perturbation theory

ν =
β2

8π − β2
=

π

π + 2g

where the parameter ν is introduced for later convenience. The two-particle S-matrix is

S(θ, ν) =



























a
b c
c b

a
Ssb

Sbb
. . .



























(2.15)

where the soliton-soliton amplitude a(θ) and the soliton-antisoliton forward and backward

amplitudes b(θ) and c(θ)

a =
�

��
@

@@

� I
�I =

�
��
@

@@
	R

	R
, b =

�
��
@

@@
	

I

	
I =

�
��
@

@@

�
R�

R
, c =

�
��
@

@@
	

I
�

R
=

�
��
@

@@

�
R
	

I

are given by [8]

b(θ) =
sinh θ/ν

sinh(iπ − θ)/ν a(θ) , c(θ) =
sinh iπ/ν

sinh(iπ − θ)/ν a(θ) ,

a(θ) = exp
∫ ∞

0

dt

t

sinh 1
2
(1− ν)t

sinh 1
2
νt cosh 1

2
t

sinh t
θ

iπ
.

(2.16)

These amplitudes fulfill ’crossing’

a(iπ − θ) = b(θ) , c(iπ − θ) = c(θ) (2.17)

and unitarity

a(−θ)a(θ) = 1 , b(−θ)b(θ) + c(−θ)c(θ) = 1. (2.18)

The intertwiners ϕeab of section 2.1 are given by the non-vanishing components

ϕ0
ss = ϕ0̄

s̄s̄ = 1 , ϕ±ss̄ = 1/
√

2 , ϕ±s̄s = ±1/
√

2 (2.19)

and the corresponding S-matrix eigenvalues are

S0 = S0̄ = a , S± = b± c . (2.20)

The amplitudes S0 = S0̄ have no poles corresponding to bound states. The amplitudes

S±(θ) have poles at θ = iπ(1 − kν) for even/odd k < 1/ν corresponding to the k-th

breather as soliton-antisoliton bound states.

13



As examples of soliton-breather and breather-breather amplitudes those for the lowest

breather are [7]

Ssb(θ) =
sinh θ + i sin 1

2
π(1 + ν)

sinh θ − i sin 1
2
π(1 + ν)

= − exp
∫ ∞

0

dt

t
2
cosh 1

2
νt

cosh 1
2
t

sinh t
θ

iπ
,

Sbb(θ) =
sinh θ + i sin πν

sinh θ − i sin πν = − exp
∫ ∞

0

dt

t
2
cosh(1

2
− ν)t

cosh 1
2
t

sinh t
θ

iπ
.

(2.21)

The S-matrix element Sbb has been dicussed before in [77]. The pole of Ssb(θ) at θ =

iπ(1+ ν)/2 belongs to the soliton as a soliton-breather bound state and the pole of Sbb(θ)

at θ = iπν to the second breather b2 as a breather-breather bound state. The intertwiners

ϕeab of section 2.1 are given by the non-vanishing components

ϕssb = ϕsbs = ϕb2bb = 1. (2.22)

The formulae involving higher breather may be found in [7], e.g.

Ssbk(θ) = (−1)k exp
∫ ∞

0

dt

t
2
cosh 1

2
νt sinh 1

2
νkt

cosh 1
2
t sinh 1

2
νt

sinh t
θ

iπ
(2.23)

for k < l

Sbkbl(θ) = exp
∫ ∞

0

dt

t
4
cosh 1

2
νt sinh 1

2
νkt cosh 1

2
(1− νl)t

cosh 1
2
t sinh 1

2
νt

sinh t
θ

iπ
(2.24)

and

Sbkbk(θ) = − exp
∫ ∞

0

dt

t
2
cosh 1

2
νt sinh 1

2
(2kν − 1)kt+ sinh 1

2
(1− ν)t

cosh 1
2
t sinh 1

2
νt

sinh t
θ

iπ
. (2.25)

3 Properties of generalized form factors

We investigate the properties of generalized form factors, in particular for integrable

quantum field theories in 1+1 dimensions. Some formulae, originally proposed in [13], are

recalled and the physical arguments on how to derive them are provided in appendix A. All

arguments are solely based on the validity LSZ reduction formalism [57] (see also [58]) and

the additional assumption of “maximal analyticity” which means, roughly speaking, that

the S-matrix and the form factors are analytic functions everywhere except at those points

where they posses singularities due to physical intermediate states. In other words the

entire pole structure is of physical origin and in the following we investigate it employing

the arguments of [13, 14, 69] (see also [17, 18, 28]).
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3.1 Form factors in momentum space and rapidity space

For simplicity we first consider the case of bosonic charged particles. The extension to

the general situation will be provided below. The corresponding Fock space is spanned by

the in- or out-states of particles and anti-particles given by (2.1) and (2.2). In addition

to the notation of vectors and matrices of (2.6) we denote co-vectors by

v1...n ∈ V †1...n (3.1)

with components vα = vα1...αn
.

Let now O(x) be a local scalar operator, the generalized form factors are defined as

the co-vector valued functions given by

〈 0 | O(x) | p1, . . . , pn 〉inα1...αn
= e−ix(p1+...+pn) FOα

(

(sij + iǫ)(1≤i<j≤n)

)

(3.2)

where α = {α1, . . . , αn} and where sij = (pi+pj)
2 is one of the Mandelstam variables, as in

the previous section. There may also be anti-particles in the state. As is well known these

functions are boundary values of analytic functions as indicated by the ǫ-prescription. We

assume that the domain of analyticity is much larger than could be proven by means of

general principles. Similar as for the scattering matrix we assume in addition at this

point “maximal analyticity” meaning that there should be no redundant poles, but all

singularities should be of physical origin as particle states etc. Since the x-dependence of

the form factors is trivial, in the sense that we may always carry out a translation as in

eq. (3.2), we consider in the following the operator always at the origin, i.e. O = O(0).

Under the assumption that F is an analytic function, an interchange in eq. (3.2) of

the in and out states leads to the replacement of s+ iǫ by s− iǫ. This means in particular

that

〈 0 | O | p1, . . . , pn 〉outα1...αn
= FOα

(

(sij − iǫ)(1≤i<j≤n)

)

. (3.3)

The crossing property for the connected part of the matrix element yields

out
α1...αm

〈 p1, . . . , pm | O | pm+1, . . . , pn 〉in conn.
αm+1...αn

= FOα (sij + iǫ, trs − iǫ, skl + iǫ) (3.4)

where 1 ≤ i < j ≤ m, 1 ≤ r ≤ m < s ≤ n, m ≤ k < l ≤ n and trs = (pr− ps)2 is another

Mandelstam variable. See appendix A for a proper derivation of this claim.

The most basic properties of the form factors are usually refered to as Watson’s equa-

tions [78], which have been already known in the fifties. It is instructive at this point to

discuss them first for the case n = 2. Using the completeness of the out-states we have

FOα1α2
(s12 + iǫ) = 〈 0 | O | p1, p2 〉inα1α2

=
∑

out

〈 0 | O | out 〉〈 out | p1, p2 〉inα1α2
. (3.5)
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For 4m2 ≤ s12 < ’lowest inelastic threshold’ only the two particle S-matrix contributes

FOα1α2
(s12 + iǫ) = FOα′

1α
′
2
(s12 − iǫ)Sα

′
2α

′
1

α1α2
(s12) (3.6)

and analogously starting with α1〈 p1 | O | p2 〉α2 in (3.5) we obtain

FOα1α2
(t12 − iǫ) = FOα1α2

(t12 + iǫ) , (3.7)

where the fact has been used that the one-particle S-matrix is always trivial. In integrable

theories there are no inelastic transitions, therefore eq. (3.6) holds for all s ≥ 4m2. The

generalized Watson’s equations for 1 ≤ m ≤ n read as (see [13])

FOα (sij+iǫ, trs−iǫ, skl+iǫ) = Sαm...α1

α′
1...α

′
m

(sij)F
O
α′ (sij−iǫ, trs+iǫ, skl−iǫ)S

α′
n...α

′
m+1

αm+1...αn (slk). (3.8)

For a diagonal S-matrix these equations have been discussed before in [79].

The generalized form factors also contain singularities [13, 14, 9] which are determined

by the one-particle states in all sub-channels (αi, . . . , αj) ⊂ (α1, . . . , αn) (see figure 2).

Poles occur if the square of the total momentum in the sub-channel equals the one-particle

�
�
�
�

�
�

�
�

•

. . . . . .

O

Figure 2: A singular contribution to the n-particle form factor diagram corresponding to
a sub-channel. The dashed lines belong to off-shell lines.

mass squared. In particular there are poles, if for instance particle 1 is the anti-particle of

particle 2 and particle 1 is crossed to the out-state together with p2 → p1, which means

(p2 + p3 − p1)
2 → m2

3. Alternatively, if particle 3 is a bound state of particle 1 and 2, in

which case (p2 + p1)
2 → m2

3. The residues of the form factors at these poles are related

to form factors with fewer legs, as indicated in figure 2. We will discuss these facts later

in detail.

Similarly as for the S-matrix we may also write the form factors (3.4) as co-vector

valued analytic functions of the rapidity differences θij = θi − θj
FOα (sij + iǫ, trs − iǫ, skl + iǫ) = FOα (|θij |, iπ − |θrs|, |θkl|)
FOα (sij − iǫ, trs + iǫ, skl − iǫ) = FOα (−|θij |, iπ + |θrs|,−|θkl|)

The domains of analyticity and the physical regimes in the complex planes of the Man-

delstam variables and the rapidity difference variables are depicted in figure 1. However,

now the branch cut between between region II and IV is absent (c.f. eqs. (3.7 and (3.8)).
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3.2 The auxiliary form factor function

Furthermore, it is convenient to introduce a new co-vector valued auxiliary function fOα (θ)

which is considered as an analytic function of the individual rapidities of the particles,

instead of analytic functions of all rapidity differences (see also [17]). It coincides with

the generalized form factor for a particular order of the rapidities

fOα (θ1, . . . , θn) = FOα (|θij|) = 〈 0 | O | p1, . . . , pn 〉inα , for θ1 > . . . > θn. (3.9)

For all other arrangements of the rapidities the functions fOα (θ) are given by analytic

continuation. The domains of analyticity, the physical regimes and the transitions to the

crossed regions in the complex planes of θi and θj for θi > θj are depicted in figure 3.

6

|

θj

|
θj+iπ

IIII

II II

θi

(a)

? |

θi−iπ

|
θi

I III

II II

θj

(b)

Figure 3: The physical regimes in the complex planes of the rapidity variables (a) θi and
(b) θj for θi > θk > θj (k = 1, . . . , n). Again the crossing transitions (see appendix B)
are indicated by the arrows.

Now we formulate the main properties of generalized form factors in terms of the aux-

iliary functions fO1...n under the assumptions of “maximal analyticity”.

Properties: The co-vector valued auxiliary function fO1...n(θ) is meromorphic in all vari-

ables θ1, . . . , θn and

(i) fulfills the symmetry property under the permutation of both, the variables θi, θj

and the spaces i, j at the same time

fO...ij...(. . . , θi, θj , . . .) = fO...ji...(. . . , θj , θi, . . .)Sij(θi − θj) (3.10)

for all possible arrangements of the θ’s,

(ii) fulfills the periodicity property under the cyclic permutation of the rapidity variables

and spaces

fO1...n(θ1, θ2, . . . , θn, ) = fO2...n1(θ2, . . . , θn, θ1 − 2πi), (3.11)
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(iii) and has poles determined by one-particle states in each sub-channel (see figure 2).

In particular the function fOα (θ) has a pole at θ12 = iπ such that

Res
θ12=iπ

fO1...n(θ1, . . . , θn) = 2iC12 f
O
3...n(θ3, . . . , θn)

(

1− S2n . . . S23

)

(3.12)

where C12 is the charge conjugation matrix with matrix elements Cαα′ = δᾱα′.

(iv) If there are also bound states in the model the function fOα (θ) has additional poles.

If for instance the particles 1 and 2 form a bound state (12), there is a pole at

θ12 = θ
(12)
12 such that

Res
θ12=θ

(12)
12

fO12...n(θ1, θ2, . . . , θn)ϕ
12
(12) = fO(12)...n(θ(12), . . . , θn)

√

2iR(12) (3.13)

where the quantities ϕ12
(12), R(12) and the values of θ1, θ2, θ(12) and θ

(12)
12 were dis-

cussed in section 2.2.

The property (i) - (iv) may be depicted as

(i)

�
�

�
�fO

. . . . . .
=

�
�

�
�fO

�
��
A

AA. . . . . .

(ii)

�
�
�
�fO

. . .
= ��
' $�
�
�
�fO

. . .

(iii)
1

2i
Res
θ12=iπ

�
�
�
�fO

. . .
= � �
�
�
�
�fO

. . .
−

' $
%�

�
�
�
�fO

. . .

(iv)
1√
2i

Res
θ12=θ

(12)
12

�
�
�
�fO� �. . . =

�
�
�
�fO

. . .

Both properties (ii) and (iii) are consequences of the general crossing formulae

1̄〈 p1 | O | p2, . . . , pn 〉in2...n
=

n
∑

j=2
1̄〈 p1 | pj 〉j fO2...ĵ...n S2j · · ·Sj−1j + C1̄1 fO12...n(θ1 + iπ−, . . . , θn)

=
n
∑

j=2
1̄〈 p1 | pj 〉j fO2...ĵ...n Sjn · · ·Sjj+1 + fO2...n1(. . . , θn, θ1 − iπ−)C11̄.

(3.14)

where we introduced the notation fO
2...ĵ...n

, meaning that the space j and the corresponding

variable θj are missing. In terms of the components, 1̄〈 p1 | pj 〉j means δᾱ1αj
4π δ(θ1 − θj)
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and δ11̄ means δα1ᾱ1 . These are equations for distributions where on the right hand side

the second terms are understood as boundary values of analytic functions with π− = π−ǫ.
The crossing formulae may be depicted as

�
�
�
�fO

. . .

2 n

1̄

=
n
∑

j=2
&�
�
�
�
�fO

. . .

2 j n

1̄

+ ��
�
�
�
�fO

. . .

2 n

1̄

=
n
∑

j=2
%�

�
�
�
�fO

. . .

2 j n

1̄

+ ��
�
�
�
�fO

. . .

2 n

1̄

where we have again used the graphical rule (2.9), which states that a line changing the

“time direction” also interchanges particles and anti-particles and changes θ → θ ± iπ.

Taking the analytic part of the crossing relation one obtains property (ii) and considering

in addition the part with point like support one gets property (iii). The proofs of the

properties (i)-(iv) and equation (3.14) are provided in appendix A.

(v) Naturally, since we are dealing with relativistic quantum field theories we finally

have

fO1...n(θ1 + u, . . . , θn + u) = e±su fO1...n(θ1, . . . , θn) (3.15)

if the local operator transforms under Lorentz transformations as O → e±suO where

s is the “spin” of O.

3.3 The general bosonic and fermionic case

For the general case where the states involve also fermions and where O(x) is a local

bosonic or fermionic operator with arbitrary spin we write the matrix elements of O(0)

as

〈 0 | O | p1, . . . , pn 〉inα1...ᾱn
=
∑

l

v̄(pi) · · ·Γ(l)
µ1...µk

· · ·u(pj) pµ1
i1 . . . p

µk

ik
G(l),O
α (sij + iǫ) (3.16)

where the Γ are matrices in spinor space. For the invariant form factor functions GOα ,

the Watson’s equations look quite analogously to those in the bosonic case. However,

sometimes it is more convenient to consider the full matrix elements and then we must

take into account sign factors due to the fermions. Analogously to eq. (3.9) we introduce

the co-vector valued auxiliary function fO which determines the form factors for a specific
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order of the rapidities. For the general case the three main properties of the co-vector

valued function fO may be written as:

(i) fO1...ij...n(θ1, . . . , θi, θj, . . . , θn) = fO1...ji...n(θ1, . . . , θj , θi, . . . , θn) Ṡij

(ii) = fO2...n1(θ2, . . . , θn, θ1 − 2iπ) σO1

(iii) ≈ 2i
θ12−iπ

C12 f
O
3...n(θ3, . . . , θn)

(

1− S2n . . . S23

)

(3.17)

The bound state formula (iv) is in general true for the invariant part of the form factors.

For the case of fermions, spinors have to be taken into account (see the examples below).

In the formulae (3.17) the statistics of the operator O is taken into account by σO1 = −1 if

both O and particle 1 are fermionic and σO1 = 1 otherwise. The statistics of the particles

is taken into account by Ṡ which means that Ṡ12 = −S12 if both particles are fermions

and Ṡ12 = S12 otherwise. Again, both properties (ii) and (iii) are consequences of the

crossing formulae, which, for the general case of bosons or fermions, reads

1̄〈 p1 | O | p2, . . . , pn 〉in2...n

= σO1

{

n
∑

j=2
1̄〈 p1 | pj 〉j fO2...ĵ...n Ṡ2j · · · Ṡj−1j + C1̄1fO12...n(θ1 + iπ−, . . . , θn)

}

=
n
∑

j=2
1̄〈 p1 | pj 〉j fO2...ĵ...n Ṡjn · · · Ṡjj+1 + fO2...n1(. . . , θn, θ1 − iπ−)C11̄.

(3.18)

replacing eq. (3.14). The proof of these relations are also given in appendix A.

The appearance of Ṡ is natural in the context of factorizing S-matrices. See for example

the general Yang-Baxter relation (2.5) which is essential if transitions as fermion + anti-

fermion → boson + anti-boson are possible.

4 Solution for the sine-Gordon alias massive Thirring

model Model

We will now provide a constructive and systematic way of how to solve the properties

i)-v) for the co-vector valued function f once the scattering matrix is given. To capture

the vectorial structure of the form factors we will employ the techniques of the “off-shell”

Bethe ansatz [51, 52] which we now explain briefly.

4.1 The general formula

As usual in the context of algebraic Bethe ansatz we define the monodromy matrix

T1...n,0(θ, θ0) = Ṡ10(θ1 − θ0) Ṡ20(θ2 − θ0) · · · Ṡn0(θn − θ0) =
1 2 n

0. . . (4.1)
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as a matrix acting in the tensor product of the “quantum space” V1...n = V1 ⊗ · · · ⊗ Vn
and the “auxiliary space” V0 (all Vi ∼= C2 = soliton-antisoliton space). The Yang-Baxter

algebra relations yield

T1...n,a(θ, θa)T1...n,b(θ, θb) Ṡab(θa − θb) = Ṡab(θa − θb)T1...n,b(θ, θb)T1...n,a(θ, θa) (4.2)

which in turn implies the basic algebraic properties of the sub-matrices A,B,C,D with

respect to the auxiliary space defined by

T1...n,0(θ, θ) ≡
(

A1...n(θ, θ) B1...n(θ, θ)
C1...n(θ, θ) D1...n(θ, θ)

)

≡







. . .� � . . .� -

. . .- � . . .- -





 . (4.3)

A Bethe ansatz co-vector in V †1...n is defined by

ψ1...n(θ, u1, . . . , um) = Ω1...nC1...n(θ, u1) · · ·C1...n(θ, um)

�
�

�
�ψ

θ1 θn
. . .

=
- �

- �6 6

θ1 θn
um

u1

. . ....
...

(4.4)

where Ω1...n is the “pseudo-vacuum” co-vector consisting only of particles of highest

weight. When the monodromy matrix involves only the scattering matrix of soliton anti-

solitons it is given as

Ω1...n =↑ ⊗ · · ·⊗ ↑ (4.5)

consisting only of solitons and fulfilling

Ω1...nB1...n(θ, u) = 0

Ω1...nA1...n(θ, u) =
n
∏

i=1

ȧ(θi − u)Ω1...n

Ω1...nD1...n(θ, u) =
n
∏

i=1

ḃ(θi − u)Ω1...n .

(4.6)

Here the eigenvalues of the matrices A and D, i.e. ȧ and ḃ are related to the amplitudes

of the scattering matrix (refer (2.16) via ȧ = −a and ḃ = −b.
In the conventional Bethe ansatz [50], one is usually concerned with the computation

of the eigenvalues of the transfer matrix

τ1...n(θ, u) = A1...n(θ, u) +D1...n(θ, u) (4.7)

on a Bethe wave vector. Applying the transfer matrix to the co-vector (4.4) one obtains

in general an equation of the form

ψ1...n(θ, u1, . . . , um) τ1...n(θ, u) = Λ(u|u1, . . . |θ)ψ1...n(θ, u1, . . . , um) (4.8)

−
m
∑

j=1

Λj(u1, . . . , um|θ)ψj1...n(θ|u1, . . . , uj−1, u, uj+1, . . . , um)
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where Λ(u|u1, . . . |θ) and Λj(u1, . . . , um|θ) are some complex valued functions. The co-

vectors ψj1...n(θ|u1, . . . , uj−1, u, uj+1, . . . , um) are not proportional to the Bethe ansatz

vectors ψ1...n(θ, u1, . . . , um). Hence in general, that is for an arbitrary set of the spec-

tral parameter, the Bethe ansatz vector is not an eigenvector of the transfer matrix.

To achieve this one usually imposes the validity of the Bethe ansatz equations, i.e.

Λj(u1, . . . , um|θ) = 0 (j = 1, . . . , m) such that the so-called “unwanted terms” vanish

and one obtains a genuine eigenvalue equation for the transfer matrix with eigenvalue

Λ(u|u1, . . . |θ). In analogy to the one particle situation one may refer to such Bethe vec-

tors as being “on-shell” in contrast to the generic situation (4.8) which is referred to as

“off-shell” [51, 52]. In order to construct solutions to the properties (i)-(v) we shall employ

the Bethe vector (4.4) in its “off-shell” version.

Let us now consider the auxiliary form factor function given by

fOα (θ1, . . . , θn) = 〈 0 | O | p1, . . . , pn 〉inα , for θ1 > . . . > θn. (4.9)

where the indices α refer to solitons and antisolitons.

Theorem 4.1 The co-vector valued function fO1...n(θ) fulfills the conditions (i), (ii) and

(iii) of section 3 (see eqs. (3.10-3.12)) if it is represented by the following generalized

Bethe ansatz [55]

fO1...n(θ) = NOn

∫

Cθ
du1 · · ·

∫

Cθ
dum g(θ, u) Ω1...nC1...n(θ, u1) · · ·C1...n(θ, um) (4.10)

with a normalization constant NOn and the scalar function

g(θ, u) =
∏

1≤i<j≤n

F (θij)
n
∏

i=1

m
∏

j=1

φ(θi − uj)
∏

1≤i<j≤m

τ(ui − uj) e±s̃
(

2
∑

uj−
∑

θi

)

(4.11)

where s̃ = s/q and s is the “spin” (c.f. eq. (3.15)) and q = n − 2m is the charge of the

operator O. The number s̃ is assumed to fulfil exp(2πis̃) = (−1)n. The function F (θ)

(see (4.14)) is a soliton-soliton form factor fulfilling Watson’s equations

F (θ) = −F (−θ) a(θ) = F (2πi− θ) (4.12)

with the soliton-soliton scattering amplitude a(θ) (see 2.16). The scalar functions φ(u)

and τ(u) are defined as

φ(u) =
1

F (u)F (u+ iπ)
, τ(u) =

1

φ(u)φ(−u) . (4.13)

The integration contour Cθ consists of several pieces (see figure 4):
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a) A line from −∞ to ∞ avoiding all poles such that ℑθi − π − ǫ < ℑuj < ℑθi − π.

b) Clock wise oriented circles around all poles (of the φ(θi − uj)) at uj = θi.

In addition we assume that the number of particles involved, i.e. n, to be odd.

• θn − 2πi

•θn − iπν
c θn − iπ

• θn
�



�
	�

c θn + iπ(ν − 1)

• θn + iπ

c θn + iπ(2ν − 1)

. . .

• θ2 − 2πi

•θ2 − iπν
c θ2 − iπ

• θ2
�



�
	�

c θ2 + iπ(ν − 1)

• θ2 + iπ

c θ2 + iπ(2ν − 1)

• θ1 − 2πi

•θ1 − iπν
c θ1 − iπ

• θ1
�



�
	�

c θ1 + iπ(ν − 1)

• θ1 + iπ

c θ1 + iπ(2ν − 1)

- 	
�

Figure 4: The integration contour Cθ (for the repulsive case ν > 1). The bullets belong to
poles of the integrand resulting from a(θi−uj)φ(θi−uj) and the small open circles belong
to poles originating from b(θi − uj) and c(θi − uj).

This theorem is proven in appendix B.

Remarks:

• The minus sign in eq. (4.12) is due to the fermionic statistics of the solitons.

• A solution of the Watson’s equations (4.12) is

F (θ) = −i sinh 1
2
θ fminss (θ) (4.14)

where the ’minimal’ soliton-soliton form factor function is given as

fminss (θ) = exp
∫ ∞

0

dt

t

sinh 1
2
(1− ν)t

sinh 1
2
νt cosh 1

2
t

1− cosh t(1− θ/(iπ))

2 sinh t
.

The corresponding functions φ(u) and τ(u) are (see appendix C)

φ(u) = const.
1

sinh u
exp

∫ ∞

0

dt

t

sinh 1
2
(1− ν)t

(

cosh t(1
2
− u/(iπ))− 1

)

sinh 1
2
νt sinh t

τ(u) = const. sinh u sinhu/ν
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• Using Watson’s equations (4.12) for F (u), crossing (2.17) and unitarity (2.18) for the

sine-Gordon amplitudes one derives the following identities for the scalar functions

φ(u) and τ(u)

φ(u) = φ(iπ − u) = − 1

b(u)
φ(u− iπ) =

a(u− 2πi)

b(u)
φ(u− 2πi) , (4.15)

τ(u) = τ(−u) =
b(u)

a(u)

a(2πi− u)
b(2πi− u) τ(u− 2πi) (4.16)

where b(u) is the soliton-antisoliton scattering amplitude related to a(u) by crossing

b(u) = a(iπ − u).

• The number of C-operators m depends on the charge q = n − 2m of the operator

O, e.g. m = (n− 1)/2 for the soliton field ψ(x) with charge q = 1.

• The integrals in eq. (4.11) converge if 1
2
(1 + 1/ν)q ∓ 2s̃+ 2/ν + 1 > 0.

• Note that other sine-Gordon form factors can be calculated from the general formula

(4.10) using the bound state formula (3.13).

We shall now apply the general formula (4.10) to an explicit example and exploit the fact

that the properties (i)-(iv) relate several different form factors to each other. This will

permit us to carry out various consistency checks.

4.2 The two particle form factors

We repeat some well known results (see for example [13, 69]). According to equation

(3.17), the auxiliary function for the two particle form factor fOαβ(θ1, θ2) has to satisfy

fOαβ(θ1, θ2) =
∑

α′β′

fOβ′α′(θ2, θ1) Ṡ
β′α′

αβ (θ12) = fOβα(θ2, θ1 − 2πi) σO1.

These matrix equations may be solved easily by diagonalization of the S-matrix. If there

are only bosons involved we have to solve the scalar “Watson’s equations”

fOe (θ) = fOe (−θ)Se(θ) = fOe (2πi− θ) (4.17)

where Se(θ) are the eigenvalues of the S-matrix given by eq. (2.11). In [13] it was shown

that the general solution of these equations is of the form

fOe (θ) = NOe Ke(θ) f
min
e (θ) (4.18)
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where NOe is a normalization factor, fmine (θ) is the minimal solution of Watson’s equations

without any poles or zeroes in the physical strip 0 ≤ Im θ ≤ π andKe(θ) is an even periodic

function with period 2πi. If the S-matrix eigenvalue is given by

Se(θ) = exp
∫ ∞

0
dt f(t) sinh tθ/iπ (4.19)

the minimal solution of Watson’s equations is given as

fmine (θ) = exp
∫ ∞

0
dt f(t)

1− cosh t(1− θ/iπ)

2 sinh t
. (4.20)

If there are also fermions involved Watson’s equations (4.17) hold for the invariant form

factors (c.f. (3.16)). For the full matrix elements the representation (4.18) holds with

additional factors exp(±θi/2) on the right hand side for all fermions.

The poles of fOe (θ) in the physical strip are determined by the one-particle states in

the channel corresponding to the S-matrix eigenvalue. In [13] the minimality assumption

was made, meaning that there are only these poles and no zeroes in 0 < ℑ θ < π. This

implies that

Ke(θ) =
L
∏

k=1

1

sinh 1
2
(θ − θk) sinh 1

2
(θ + θk)

, (ℜ θk = 0, 0 < ℑ θk < π) .

For several examples this assumption was checked against perturbation theory.

Examples

We present two-particle form factors for several local operators and several particle states

of the sine-Gordon quantum field theory. Some of them were already calculated in [13] (see

also [17]). Up to normalizations the problem is solved by eqs. (4.18-4.20) since the sine-

Gordon S-matrix (2.15) is diagonal except of the soliton-anti-sector where the eigenvalues

are given by eqs. (2.16) and (2.20).

4.2.1 The two-breather form factor

The simplest sine-Gordon form factor is that for a scalar operator φ2(x) = Nφ2(x) con-

necting the two-particle lowest breather state to the vacuum

fφ
2

bb (θ12) = 〈 0 |φ2 | p1, p2 〉inbb = Nφ2

bb Kbb(θ12) f
min
bb (θ12) .

According to (4.19) and (4.20) the minimal form factor function combined with (2.21)

reads

fminbb (iπx) = −i sinh 1
2
θ exp

∫ ∞

0

dt

t
2
cosh(1

2
− ν)t

cosh 1
2
t

1− cosh t(1− x)
2 sinh t

.
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The “minimality assumption” implies that the ’pole function’

Kbb(θ) =
1

sinh 1
2
(θ − iπν) sinh 1

2
(θ + iπν)

only possesses the pole corresponding to the second breather b2 as a bound state of

two lowest breathers b. The normalization constant can be calculated by means of the

asymptotic behavior [13]. Weinberg’s power counting implies that in the limit of infinite

momentum transfer the form factor tends to its free value

〈 0 |φ2 | p1, p2 〉inbb → 〈 0 | :φ2 : | p1, p2 〉freebb = 2Zφ as (p1 + p2)
2 → −∞ .

Here Zφ is the wave-function renormalization constant of the fundamental sine-Gordon

field which has been calculated in [13]

Zφ = (1 + ν)
π
2
ν

sin π
2
ν
E(ν) . (4.21)

We introduce the function

E(x) = exp
(

−1

π

∫ πx

0

t

sin t
dt
)

(4.22)

= exp
{

−1

π

(

iL
(

eiπx
)

+ iL
(

eiπx + 1
)

− x ln
(

eiπx + 1
)

+
iπ

12

)}

where L(x) =
∞
∑

n=1

xn

n2 + 1
2
ln x ln(1−x) denotes the Rogers dilogarithm [80]. Notice, that this

wave function renormalization constant satisfies (compare figure 5) 0 ≤ Zφ ≤ 1, which is

a general consequence of positivity [56] (see also e.g. [58] p. 204). For the free boson case,

that is β = 0, ν = 0, we have Zφ = 1. For the free soliton case, i.e. g = 0, ν = 1, where

the breather decays into soliton-antisoliton pairs, we have Zφ = 0. Using the asymptotic

formula the normalization has been calculated in [13]

Nφ2

bb = −2(1 + ν)
π

2
ν cot

π

2
ν.

In addition we may now employ this result and compute a further renormalization

constant by means of the bound state formula (3.13). With ϕbbb2 = 1 (see eq. (2.22)) we

calculate the wave function renormalization constant Zφ2
via

Res
θ=θ0

fφ
2

bb (θ)
(

2iRes
θ=θ0

Sbb(θ)
)−1/2

= fφ
2

b2
= 〈 0 |φ2 | p1 + p2 〉inb2 =

√
Zφ2

where the fusing angle is θ0 = iπν. The wave function renormalization constant turns out

to be

Zφ2

=
(

Zφ
)2 cosπν

cos2 π
2
ν
E(1− 2ν). (4.23)
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Figure 5: The wave function renormalization constants Zφ and Zφ2
as a function of the

coupling ν = β2

8π−β2 = 1
1+2g/π

.

Again we have 0 ≤ Zφ2 ≤ 1 and now Zφ2
vanishes at ν = 0 and ν = 1/2, which is to

be expected since at these values (compare for instance with the mass formula (2.14))

the second breather decays into the two lowest breathers or a soliton-antisoliton pair,

respectively.

4.2.2 The breather-soliton form factor

We now choose O(x) to be the fermi-field ψ(x) of the massive Thirring model which

annihilates the soliton. We assume the breather-soliton form factor related to this field

fψbs(θ1, θ2) = 〈 0 |ψ | p1, p2 〉inbs

to acquire the following form

fψbs(θ1, θ2) = Nψ
bs

(

1 +Nψ
5 γ

5 coth 1
2
θ12
)

u(p2)Kbs(θ12) f
min
bs (θ12) , (4.24)

that is consisting out of a scalar and a pseudoscalar coupling part. For our conventions

concerning spinors and the γ-matrices see section 5. Upon employing (4.19) and (4.20),

the minimal form factor function reads together with equation (2.21)

fminbs (iπx) = sin π
2
x exp

∫ ∞

0

dt

t
2
cosh 1

2
νt

cosh 1
2
t

1− cosh t(1− x)
2 sinh t

.

Extracting explicitly the expected pole structure the “pole function” reads

Kbs(θ) =
1

sinh 1
2
(θ − iπ 1+ν

2
) sinh 1

2
(θ + iπ 1+ν

2
)
.
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Once more we may use the bound state formula (3.13) in order to compute the normal-

ization constants, with ϕbss = 1 and θ0 = iπ
2
(ν + 1) (see eq. (2.22)) to obtain

Res
θ12=θ0

fψbs(θ1, θ2)
(

2i Res
θ12=θ0

Sbs(θ12)
)−1/2

= fψs = 〈 0 |ψ | p1 + p2 〉ins = u(p1 + p2) .

This determines the normalization constant to be

Nψ
bs =

cos2 π
2
ν

E
(

1
2
(1− ν)

)

√

√

√

√

E(ν)

sin π
2
ν

and the ratio of pseudo-scalar and scalar coupling to be

Nψ
5 = − tan π

2
ν tan π

4
(1 + ν).

Note that formula (4.24) may alternatively also be written as

fψbs(θ1, θ2) = Nψ
bs cos2 π

4
(1− ν) i

γ(p1 + p2)−m
(

1 + γ5 coth 1
2
θ12
)

u(p2) f
min
bs (θ12)

= Nψ
bs

sin π
4
(1 + ν)

cos2 π
2
ν





e−
1
2
iπνγ5

sinh 1
2
(θ12 + θ0)

+
e

1
2
iπνγ5

sinh 1
2
(θ12 − θ0)





u(p2) f
min
bs (θ12)

sinh 1
2
θ12

.

4.2.3 Soliton-antisoliton form factors

Having an in-state, which involves a soliton and an antisoliton, we have several options

for the operator O(x) such that the two-partice form factor is non vanishing.

a) Let O(x) = jµ(x) = N ψ̄γµψ(x) the electromagnetic current [13]

f j
µ

ss̄ (θ1, θ2) = 〈 0 | jµ | p1, p2 〉inss̄ = v̄(p2)γ
µu(p1) f−(θ12).

The function f−(θ) fulfills Watsons equations with the negative C-and P -parity

S-matrix eigenvalue S−(θ) = − cosh 1
2
(θ+iπ)/ν

cosh 1
2
(θ−iπ)/ν

a(θ) (see eqs. (2.16-2.20)). Taking the

singularity structure into account we obtain [13], with the help of (4.19), (4.20) and

(2.16)

f−(θ) =
cosh 1

2
(iπ − θ)

cosh 1
2
(iπ − θ)/ν f

min
ss (θ)

and

fminss (iπx) = exp
∫ ∞

0

dt

t

sinh 1
2
(1− ν)t

sinh 1
2
νt cosh 1

2
t

1− cosh t(1− x)
2 sinh t

.
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b) Let O(x) = φ(x) the fundamental sine-Gordon field which correspond to the lowest

breather [13]

fφss̄(θ1, θ2) = 〈 0 |φ | p1, p2 〉inss̄ = Nφ
ss̄ v̄(θ2)u(θ1)

1

sinh θ12
f−(θ12) .

The function f−(θ) is the same as in a). Since Coleman’s correspondence [76] relates

the field φ and the current jµ by

ǫµν∂νφ = −2π

β
jµ (4.25)

the normalization constant turns out to be [13]

Nφ
ss̄ =

2πi

βM
.

We may now carry out a consistency check and compute once more the wave function

renormalization constant now starting, however, from a different form factor. For

this purpose we use once again the bound state formula (3.13) with ϕss̄b = −ϕs̄sb =

1/
√

2 (see eq. (2.19)) and calculate

Res
θ=θ0

fφss̄(θ)
√

2
(

2iRes
θ=θ0

S−(θ)
)−1/2

= fφb = 〈 0 |φ | p 〉inb =
√
Zφ

where the fusing angle is θ0 = iπ(1 − ν). This computation leads to the value for

wave function renormalization constant of the previous subsection (4.21) which has

been obtained in [13] by slightly different arguments.

c) Let O(x) = Nφ2(x)

fφ
2

ss̄ (θ1, θ2) = 〈 0 |φ2 | p1, p2 〉inss̄ = Nφ2

ss̄ v̄(θ2)u(θ1) f+(θ12) .

The function f+(θ) fulfills Watsons equations with the positive C-and P -parity S-

matrix eigenvalue S+(θ) = − sinh 1
2
(θ+iπ)/ν

sinh 1
2
(θ−iπ)/ν

a(θ) (see eqs. (2.16-2.20)). With (4.19)

and (4.20) we obatin [13] together with the explicit expression for the integral rep-

resentation of this amplitude of the scattering matrix (2.16)

f+(θ) =
sinh 1

2
(iπ − θ)

sinh 1
2
(iπ − θ)/ν f

min
ss (θ) .

We still have to fix the normalization constant Nφ2

ss̄ , which may be achieved by

employing the bound state formula (3.13). Taking ϕss̄b2 = ϕs̄sb2 = 1/
√

2 (see eq. (2.19))

we calculate the wave function renormalization constant to be

Res
θ=θ0

fφ
2

ss̄ (θ)
√

2
(

2iRes
θ=θ0

S+(θ)
)−1/2

= fφ
2

b2
= 〈 0 |φ2 | p 〉inb2 =

√
Zφ2
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where θ0 = iπ(1 − 2ν). The wave function renormalization constant Zφ2
was cal-

culated in the previous subsection (4.23), such that we obtain the normalization

constant

Nφ2

ss̄ =
(1 + ν) π

8M sin3 π
2
ν
.

4.3 Three particle form factors

We shall now analyse the general expression proposed in theorem 4.1 for an explicit

example. First we recall the three breather form factor which was already calculated in

[13] and apply a consistency checks using (iii). Furthermore we calculate the three soliton

form factor using the general formula (4.10) and apply some consistency checks using (iii)

and (iv).

4.3.1 The three breather form factor

We choose the operator O(x) to be the fundamental sine-Gordon field φ(x) which corre-

sponds to the lowest breather and consider the form factor

fφbbb(θ1, θ2, θ3) = 〈 0 |φ | p1, p2, p3 〉inbbb.

The minimality assumption suggests the proposal [13]

fφbbb(θ1, θ2, θ3) = Nφ
bbbKbbb(θ1, θ2, θ3) f

min
bb (θ12) f

min
bb (θ13) f

min
bb (θ23)

with the “pole function”

Kbbb(θ1, θ2, θ3) =
1

cosh 1
2
θ12 cosh 1

2
θ13 cosh 1

2
θ23

Kbb(θ12)Kbb(θ13)Kbb(θ23) .

The “two-breather pole function”Kbb(θ) and the minimal form factor fminbb (θ) were already

provided above. We use property (iii), i.e. the recursion relation (3.12), and calculate

Res
θ12=iπ

fφbbb(θ12, θ13, θ23) = 2i
√
Zφ (1− Sbb(θ23))

which determines the normalization constant [13]

Nφ
bbb = 1

2
π2ν2(1 + ν)2 cot π

2
ν cos4 π

2
ν
(

Zφ
)−3/2

.
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4.3.2 The three (anti)-soliton form factor

We now choose O(x) to be the fermi-field ψ±(x) of the massive Thirring model which

annihilates the soliton. We consider the form factor

fψ
±

123(θ1, θ2, θ3) = 〈 0 |ψ± | p1, p2, p3 〉in123 .

Here ± refers to the first or second component of the spinor, respectively. Nonvanishing

matrix elements contain two solitons and one antisoliton. Taking in the general formula

(4.10) for n = 3 and m = 1 we obtain

fψ
±

123(θ) = Nψ±

3

∏

1≤i<j≤3

F (θij)
∫

C
du

3
∏

i=1

φ(θi − u) e±(
∑

u−
∑

θi/2) Ω123 C123(θ, u) . (4.26)

Here the function F (θ), which fulfills Watsons equations

F (θ) = −F (−θ) a(θ) = F (2πi− θ) ,

is closely related to the minimal form factor which was computed above

F (θ) = −i sinh 1
2
θ fminss (θ) .

The scalar function φ(u) reads

φ(u) =
1

F (u)F (u+ iπ)
.

We now use property (iii), i.e. the recursion relation (3.12) and calculate

Res
θ12=iπ

fψ
±

123(θ) = 2i C12 f
ψ±

3 (1− S23(θ23))

which determines the normalization constant

Nψ±

3 = ±i
√
M

4π

(

fminss (0)
)2
. (4.27)

Note that this follows also from the general recursion relation (B.7). The form factor is

now fixed with all its constants. However, we also expect the bound state formula (3.13)

to hold and we may employ it now as a consistency check. We calculate with ϕ12
− given

by eq. (2.19) and the fusing angle given by θ0 = iπ(1− ν)

Res
θ12=θ0

fψ
±

123(θ1, θ2, θ3)ϕ
12
−

(

2iRes
θ=θ0

S−(θ)
)−1/2

= fψ
±

b3 (θ(12), θ3) .

The result of this computation coincides with the form factor proposed in (4.24). Having

convinced ourselves of the mutual consistency of several solutions we shall now carry out

an additional check and compare the results with conventional perturbation theory.
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5 Perturbation theory: Massive Thirring model

In order to check the three particle form factor of the fundamental fermi field correspond-

ing to the soliton in perturbation theory we calculate the four point vertex function. We

start with the Lagrangian

LMTM = ψ̄(iγ∂ −M)ψ − 1

2
g(ψ̄γµψ)2 .

The fermi field ψ(x) annihilates a soliton and creates an antisoliton with the following

normalisation

〈 0 |ψ(x) | p 〉α = δαs e
−ipx u(p) , 〈 0 | ψ̄(x) | p 〉α = δαs̄ e

ipx v̄(p). (5.28)

We use the following conventions for the γ-matrices

γ0 =
(

0 1
1 0

)

, γ1 =
(

0 1
−1 0

)

, γ5 = γ0γ1 =
(−1 0

0 1

)

(5.29)

and for the spinors

u(p) =
√
M
(

e−θ/2

eθ/2

)

, v(p) =
√
M i

(

e−θ/2

−eθ/2
)

with pµ = M
(

sinh θ
cosh θ

)

. (5.30)

We also employ the formulae

{γµ, γν} = 2gµν , [γµ, γν ] = 2ǫµνγ5 , (ǫµν = −ǫνµ , ǫ01 = 1)

γµγνγµ = 0 , ǫµρǫνσ = gµσgνρ − gµνgρσ , γ5γµ = ǫµργρ .

The Lagrangian implies the Feynman rules of figure 6

�
�

��

�

���

@
@

@@

I

@@I• = −igγµ ⊗ γµ , �kµ =
i

γk −M .

Figure 6: The Feynman rules for the massive Thiring model.

The three particle matrix element of the fermi field up to order g turns out to be

〈 0 |ψ(0) | p1, p2, p3 〉ins̄ss =
�

�	6

6

@
@
I
•
•

p1 p2 p3

= −ig i

γ(p1 + p2 + p3)−M
(

γµu(p2) v̄(p1)γµu(p3)− γµu(p3) v̄(p1)γµu(p2)
)

+O(g2)

= −ig sinh 1
2
θ23

u(p2) cosh 1
2
θ12 + u(p3) cosh 1

2
θ13

cosh 1
2
θ12 cosh 1

2
θ13 cosh 1

2
θ23

+O(g2) .
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Note that for the soliton-soliton scattering amplitude this implies

a(θ) = 1− ig tanh 1
2
θ +O(g2)

in agreement with eq. (2.16).

To calculate the exact form factor up to this order we start from the general formula

(4.26)

fψ
±

s̄ss (θ1, θ2, θ3) =
∫

Cθ

du I(θ, u)

with the integrand

I(θ, u) = Nψ±

3

∏

1≤i<j≤3

F (θij)
3
∏

i=1

φ(θi − u) e±(
∑

u−
∑

θi/2)
(

ΩC(θ, u)
)

s̄ss
.

Using the residue theorem the integral may be written as

∫

Cθ
du I(θ, u) = 2πi

(

Res
θ1−iπ

−1
2

(

Res
θ1

+ Res
θ2

+ Res
θ3
− Res

θ1+iπ(ν−1)

)

)

I(θ, u)

+ 1
2

∫

C0
du
(

I(θ, u) + I(θ, u+ iπ)
)

where the integration contour C0 is a line from −∞ to ∞ avoiding all poles such that

ℑθi + π(ν − 2) < ℑu < ℑθi (for ν > 1, ν = 1/(1 + 2g/π) ≈ 1). The integral on the right

hand side is of higher order in g and the residues give

fψ
±

s̄ss (θ1, θ2, θ3) = Nψ±

3

∓4πg√
M

sinh 1
2
θ23

u±(p2) cosh 1
2
θ12 + u±(p3) cosh 1

2
θ13

cosh 1
2
θ12 cosh 1

2
θ13 cosh 1

2
θ23

+O(g2)

which is consistent with the result of the Feynman graph calculation because of equation

(4.27) and fminss (0) = 1+O(g). Hence we obtain mutual consistency between the solutions

of the form factor equations and conventional perturbation theory.

6 Conclusions

We have outlined in detail the so-called “form factor program”. Using only the “maximal

analyticity assumption” and the validity of the LSZ formalism we have derived general

properties of form factors. The properties are expressed in terms of the equations (i)–(v).

We provide a solution for these equations in a closed form, which captures the vectorial

structure by means of the “off-shell” Bethe ansatz and the singularity structure in term of

certain contour integrals. The validity of this solution has been checked by constructing

various explicit two and three particle form factors. We have compared our solution for
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the three particle form factor of the fundamental fermi field with the expressions obtained

from perturbation theory in the massive Thirring model. We find complete aggrement

between these two approaches and we take this as a further indication for the validity of

the “form factor program” formalism.

The vectorial nature of the form factors we present, is encapsulated in the “off-shell”

Bethe ansatz and the singularities are encoded in certain contour integrals. We assume

that this structure is of a universal nature and will allow to construct further solutions of

other integrable theories. It will be highly interesting to work out such solutions explicitly.

This task and the detailed study of the correlation functions obtained from these solutions

is left to future investigations.

We have applied the general formula (4.10) to an explicit example and exploit the

fact that the properties (i)–(iv) relate several different form factors to each other. This

permits us to carry out various consistency checks. We have for instance the following

relations

fψb2s
(iv)←− fψs̄ss

(iv)−→ fψbs
↓ (iii) ↓ (iii) ↓ (iv)

fψs = fψs = fψs

fφbbb
(iii)−→ fφb = fφb

↓ (iv) ↑ (iii) (iv)↑
fφb2b

(iv)←− fφss̄b
(iv)−→ fφss̄

(4.25) l
f j

µ

ss̄

fφ
2

ss̄b

(iv)−→ fφ
2

bb

↓ (iv) (iv)↓
fφ

2

ss̄
(iv)−→ fφ

2

b2

Several of these form factor relations and consistency checks have been presented in this

paper. The proof of further relations will be published elsewhere.
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Appendix

A Derivation of properties of generalized form fac-

tors

In this appendix we derive the formulae for form factors of section 3. We use LSZ tech-

niques [57] (see e.g. [58]) and assume in addition “maximal analyticity” which means

that all singularities originate from physical intermediate states. For simplicity we con-

sider only particles with the same mass m. Generalizations to the case of particles with
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different masses are obvious.

A.1 Properties of generalized form factors for the pure bosonic

case

As usual we write the in-field as

φinα (x) =
∫

dp

2π2ω

(

ainα (p) e−ipx + ain †ᾱ (p) eipx
)

. (A.1)

It fulfills the Klein-Gordon equation (∂2 +m2)φ(x) = 0 and when acting on states of the

form (2.1) it creates anti-particles and annihilates particles. The commutation rules of

the creation and annihilation operators are

[ ainα′(p′) , ainα (p)] = 0 (A.2)

[ ainα′(p′) , ain †α (p)] = δα′α 2ω 2π δ(p′ − p) = δα′α 4π δ(θ′ − θ). (A.3)

Corresponding formulae hold also for the out-field.

For the matrix elements of a local scalar operatorO = O(0) we have the LSZ-reduction

formulae [57]

out
...ᾱ′

1
〈 . . . , p′1 | O | p1, . . . 〉inα1...

(A.4)

= out
...ᾱ′

1
〈 . . . , p′1 | aout †α1

(p1)O | . . . 〉in... + i
∫

d2x out
...ᾱ′

1
〈 . . . , p′1 | T

[

O j†α1
(x)
]

| . . . 〉in... e−ip1x

= out
... 〈 . . . | O ainα′

1
(p′1) | p1, . . . 〉inα1...

+ i
∫

d2x out
... 〈 . . . | T

[

O j†α′
1
(x)
]

| p1, . . . 〉inα1...
eip

′
1x

where T is the time ordering operator and the source term j(x) = (∂2 +m2)φ(x) is given

by the interpolating field φ(x). If p1 (p′1) corresponds to an anti-particle (a particle) j† has

to be replaced by j. On further reductions and combined with the assumption of maximal

analyticity the LSZ-formulae imply the crossing formula (3.4) for the connected part of

the matrix element. We call a contribution to a matrix element out〈 . . . | O | p1, . . . 〉in

• disconnected with respect to p1, if its support as a distribution with respect to p1 is

point like and

• connected with respect to p1 if it is a boundary value of an analytic function of the

Mandelstam variables s1j .

With this notation the first terms in eqs. (A.4) are disconnected and the second ones are

connected with respect to p1 or p′1, respectively.

If we interchange in eqs. (A.4) in and out the time ordering is replaced by anti-time

ordering. Comparing eq. (3.3) with (3.2) this means that s + iǫ is replaced by s − iǫ.
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Combined with the completeness of the in- and out-states we obtain the general Watson’s

equations (3.8). However, from integrability follows a stronger formula. To show this,

we consider the branch point s12 = (m1 ± m2)
2 separately. For simplicity we assume

m1 = m2.

Lemma A.1 Let the S-matrix factorize as denoted in (3.7), and let s12 be in a neigh-

bourhood of 4m2 or 0 and all other sij away from 4m2, then

FOα (s12 + iǫ, sij + iǫ) = FOα′ (s12 − iǫ, sij + iǫ)Sα
′
2α

′
1

α1α2
(s12) for s12 ≈ 4m2 (A.5)

FOα (s12 + iǫ, sij + iǫ) = FOα′ (s12 − iǫ, sij + iǫ) for s12 ≈ 0 (A.6)

with α = (α1, α2, . . . , αn) and α′ = (α′1, α
′
2, . . . , αn) and 2 < i < j ≤ n. Corresponding

formulae hold for all other branch points sij = 4m2.

Proof: By means of formula (3.4) we may cross all particles except 1 and 2 to the left

hand side. Using again LSZ we have for the full matrix element

out〈 p3, . . . , pn | O | p1, p2 〉in (A.7)

= out〈 p3, . . . , pn | aout †(p1)O | p2 〉+ i
∫

d2x out〈 p3, . . . , pn | T
[

O j†(x)
]

| p2 〉 e−ip1x
out〈 p3, . . . , pn | O | p1, p2 〉out (A.8)

= out〈 p3, . . . , pn | ain †(p1)O | p2 〉 − i
∫

d2x out〈 p3, . . . , pn | T ∗
[

O j†(x)
]

| p2 〉 e−ip1x

where we have omitted the indices α and T ∗ means anti-time ordering. The term
out〈 p3, . . . , pn | aout †(p1)O | p2 〉 is disconnected as in eq. (A.4), whereas
out〈 p3, . . . , pn | ain †(p1)O | p2 〉 in general contains also connected contributions. However,

for factorizing S-matrices this term is given by

out〈 p3, . . . , pn | ain †(p1) | q1, . . . , qm 〉in in〈 qm, . . . , q1 | O | p2 〉

which is disconnected with respect to p1. Therefore, if we take the connected parts of

eqs. (A.7) and (A.8) we obtain as in equations (3.2) and (3.3)

out〈 p3, . . . , pn | O | p1, p2 〉inconn. = FOα (s12 + iǫ, (trs)(1≤r≤2<s≤n), (skl + iǫ)(2<k<l≤n)) (A.9)

out〈 p3, . . . , pn | O | p1, p2 〉outconn. = FOα (s12 − iǫ, (trs)(1≤r≤2<s≤n), (skl + iǫ)(2<k<l≤n)) (A.10)

which implies the first claim. Moreover, crossing in equations (A.7) and (A.8) in addition

also particle 2 to the left hand side, by the same arguments we confirm the second claim,

since | p1 〉in = | p1 〉out.
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As a consequence of this lemma and the bose statistics of the particles we have the

property (i) (c.f. eq. (3.10))

fO...ij...(. . . , θi, θj, . . .) = fO...ji...(. . . , θj , θi, . . .)Sij(θi − θj). (A.11)

Iterating this formula we find that for θ1 < . . . < θn the auxiliary function fOα (θ) yields

the matrix element for an out-state

fOα1...αn
(θ1, . . . , θn) = fOα′

n...α
′
1
(θn, . . . , θ1)S

α′
n...α

′
1

α1...αn
(θ) = 〈 0 | O | p1, . . . , pn 〉outα . (A.12)

We obtain property (ii) (see eq. (3.11)) by comparing the analytic parts of the crossing

relations of the following lemma.

Lemma A.2 In terms of the auxiliary functions crossing for the full matrix elements

reads

1̄〈 p1 | O | p2, . . . , pn 〉in2...n (A.13)

=























1̄〈 p1 | p2 〉2 fO3...n(θ3, . . . , θn)
+ C1̄1 fO1...n(θ1 + iπ−, . . . , θn)

for θ1 ≥ θ2 > . . . > θn

1̄〈 p1 | pn 〉n fO2...n−1(θ2, . . . , θn−1)
+ fO2...n1(θ2, . . . , θn, θ1 − iπ−)C11̄ for θ2 > . . . > θn ≥ θ1

where π− = π − ǫ.

Together with property (i) this lemma implies the general crossing formulae (3.14) for

arbitrary ordering of the rapidities.

Proof: The disconnected contributions in eq. (A.13) follow directly from the LSZ - formu-

lae (A.4). Moreover the LSZ - formulae imply that crossing of particle 1 means p1 → −p1.

In terms of the Mandelstam variables s or the rapidity differences (see also figure 3 for the

analytic properties) this means s1j + iǫ→ t1j − iǫ or θ1j → iπ− θ1j . However, since there

is no branch cut separating region II and IV (see (A.6)), this is equivalent to considering

s1j + iǫ → t1j + iǫ or θ1j → iπ + θ1j . Hence, because of θ1j = |θ1 − θj | we have the

equivalences

θ1j → iπ + θ1j ⇔ θ1 → θ1 + iπ for θ1 > θj

θ1j → iπ + θ1j ⇔ θ1 → θ1 − iπ for θ1 < θj

which imply the claim.

The form factors have poles determined by one-particle states in any subchannel

(αi, . . . , αj) ⊂ (α1, . . . , αn), if the square of the total momentum of all particles in the
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subchannel equals the one-particle mass squared. We follow the arguments of [13] and

in particular of [69] (see also [17, 28]). A particular type of poles is always present, even

if there are no boundstates. These poles are often refered to as kinematic poles. If for

instance in (A.13) particle 1 is the anti-particle of 2, then one-particle intermediate states

with the quantum numbers of all other particles j (2 < j ≤ n) yield contributions to a

pole at p1 ≈ p2, since then (p2 + pj − p1)
2 ≈ m2

j in eq. (A.13), (see figure 7). The residue

�� �

�� �


. . .

1̄

2 3 4 n

Figure 7: A graph contributing to a pole of a form factor. The dashed lines denotes an
off-shell line with the propagator i

(p2+p3−p1)2−m2 .

of this pole is given by property (iii) of eq. (3.12). This can be seen as follows. By (ii) we

have for θ1 ≈ θ2 and θ1 6= θj , (j = 3, . . . , n)

fO12...n(θ1 + iπ−, . . .) ≈
1

θ1 − iǫ− θ2
C12 g(θ2, . . . , θn)

fO2...n1(. . . , θ1 − iπ−) ≈ 1

θ1 + iǫ− θ2
C12 g(θ2, . . . , θn)

for some function g(θ2, . . . , θn). Employing now the well known identity 1
a±iǫ

= P
a
∓iπδ(a),

with P denoting the principal value, the general crossing relations (3.14) imply for the

full matrix element for θ1 ≈ θ2 and θ1 6= θj , (j = 3, . . . , n))

1̄〈 p1 | O | p2, . . . , pn 〉in2...n ≈ 1̄〈 p1 | p2 〉2 fO3...n +
(

P

θ1 − θ2
+ iπδ(θ1 − θ2)

)

C12 g

≈ 1̄〈 p1 | p2 〉2 fO3...n S2n · · ·S23 +
(

P

θ1 − θ2
− iπδ(θ1 − θ2)

)

C12 g.

Comparing the delta-function parts we obtain

g(θ2, . . . , θn) = 2i fO3...n(θ3, . . . θn)
(

1− S2n · · ·S23

)

which yields (iii).

If there are also bound states there are additional poles [13] and we have also property

(iv). The latter is obvious from figure 2 and eq. (2.10) up to a normalization. The

normalization follows from the following argument developed in [13]. Let us consider a

model with a bound state of type c of two particles of type a and b such that the attractive
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region is connected analytically (by a coupling constant) to a repulsive region, where the

bound state decays. For simplicity we consider first the two-particle form factor

fOab(θab) = 〈 0 | O(0) | pa, pb 〉inab , (θa > θb) (A.14)

such that the (scalar hermitian) operator O connects the bound state c with the vacuum

fOc (θc) = 〈 0 | O(0) | pc 〉c =
√
ZO 6= 0. (A.15)

Then in the atractive region of the coupling the two-point Wightman function reads

〈 0 | O(x)O(y) | 0 〉 = ZO∆+(x− y,m2
c) + contributions from other masses (A.16)

or the time ordered two-point function in momentum space fulfills

〈 0 | Õ(k)O(0) | 0 〉 ≈ ZO
i

k2 −m2
c + iǫ

at k2 ≈ m2
c (A.17)

where ZO is a wave function renormalization function. In the repulsive region the contri-

bution from the two-particle intermediate states ab is given by

〈 0 | O(x)O(y) | 0 〉 =
∫ dpa

4πωa

dpb
4πωb

1

2
〈 0 | O(x) | pa, pb 〉inab in〈 pa, pb | O(y) | 0 〉ab + . . .

=
1

8π

∫ ∞

−∞
dθ fOab(θ)f

Oab(θ)∆+(x− y, sab) + . . . (A.18)

where summation over the multiplets a and b is assumed with sab = m2
a+m

2
b+2mamb cosh θ

and ∆+(x,m2) = (2π)−2
∫

d2keikxΘ(k0)2πδ(k
2−m2). In the repulsive region the functions

fOab(θ) and fO
ab

(θ) have poles in the unphysical sheet at ±θcab (Im θcab < 0), respectively.

If we move to the attractive region these poles will cross the integration path and by

analytic continuation we get

〈 0 | O(x)O(y) | 0 〉 =
1

8π

{

−
∮

θc
ab

+
∮

−θc
ab

+
∫ ∞

−∞

}

dθ fOab(θ)f
Oab(θ)∆+(x− y, sab) + . . .

=
1

4i

(

Res
θ=θc

ab

− Res
θ=−θc

ab

)

fOab(θ)f
Oab(θ)∆+(x− y,m2

c) + . . . (A.19)

Both residues give the same contribution, because

Res
θ=θc

ab

fOab(θ)f
Oab(θ) = Res

θ=θc
ab

fOba(−θ)Sab(θ)fO
ab

(θ) = fOba(−θcab)ϕbac Rc ϕ
c
abf
Oab(θcab)

Res
θ=−θc

ab

fOab(θ)f
Oab(θ) = Res

θ=−θc
ab

fOab(−θ)Sba(−θ)fO
ba

(−θ) = −fOab(−θcab)ϕabc Rc ϕ
c
baf
Oba(θcab)
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where property (i) eq. (3.10) and the residue formulae for the S-Matrix (2.10) and (2.11)

have been used. Using this and comparing eqs. (A.16) and (A.19) we obtain

ZO = fOc (θc) f
Oc(θc) =

1

4i

(

Res
θ=θc

ab

− Res
θ=−θc

ab

)

fOab(θ)f
Oab(θ)

=

(

Res
θ=θc

ab

fOab(θ)ϕ
ab
c

1√
2iRc

)(

1√
2iRc

Res
θ=−θc

ab

ϕcabf
Oab(θ)

)

which agrees with (iv). The general case may be proven similarly.

A.2 Properties of form factors for the general case

We now consider the case in which the particles are taken to be fermions and the operators

may be of fermionic or bosonic nature. Again we use LSZ techniques [57] and “maximal

analyticity”. The two component fermionic in-field is

ψinα (x) =
∫

dp

2π2ω

(

ainα (p) u(p) e−ipx + ain †ᾱ (p) v(p) eipx
)

(A.20)

and fulfills the Dirac equation (iγ∂ −m)ψ(x) = 0. The anti-commutation relations are

{ ainα′(p′) , ainα(p)} = 0
{ ainα′(p′) , ain †α (p)} = δα′α 2ω 2π δ(p′ − p) = δα′α 4π δ(θ′ − θ). (A.21)

Corresponding formulae hold for the out-field. We use the conventions for the γ-matrices

and the spinors of (5.29) and (5.30).

The LSZ-reduction formulas for fermions read

out
...ᾱ′

1
〈 . . . , p′1 | O | p1, . . . 〉inα1...

= σOα1

out
...ᾱ′

1
〈 . . . , p′1 | aout †α1

(p1)O | . . . 〉in...
+ i

∫

d2x out
...ᾱ′

1
〈 . . . , p′1 | T [O ̄α1(x)] | . . . 〉in... u(p1) e

−ip1x (A.22)

= σOα′
1

out
... 〈 . . . | O ainα′

1
(p′1) | p1, . . . 〉inα1...

− i σOα′
1

∫

d2x out
... 〈 . . . | T

[

O ̄α′
1
(x)
]

| p1, . . . 〉inα1...
v(p′1) e

ip′1x (A.23)

where ̄(x) = ψ̄(x) (iγ
←

∂ + m) and σOα = −1 if O is fermionic and σOα = 1 otherwise.

Obviously σOα = (−1)n if n is the total number of fermions in the states. A similar

formula holds if we interchange particles and anti-particles. The invariant form factors

G(l)O(sij+iǫ) defined by eq. (3.13) are again boundary values of analytic functions. Again,

if we interchange in and out time ordering is replaced by anti-time ordering, which means
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again that sij + iǫ is replaced by sij − iǫ. The crossing relation for the connected part of

the matrix element reads

out
ᾱ1...αm

〈 p1, . . . , pm | O | pm+1, . . . , pn 〉in conn.
αm+1...ᾱn

= (−1)m
m
∏

i=1

σOαi

∑

v̄(pn) · · · ū(pm) Γµ1...µk
u(pm+1) · · · v(p1) p

µ1
i1 . . . p

µk

ik
(A.24)

GOα1...ᾱn
(sij + iǫ, trs − iǫ, skl + iǫ)

Watson’s equations for the invariant form factor functions G acquire the same form as

those for F for the bosonic case (3.8). Also Lemma A.1 holds for the invariant form

factors G.

Analogously to the bosonic case it is convenient to introduce the vector valued auxiliary

function fOα (θ) which is considered as an analytic function of the rapidities of the particles.

Its components coincide again with the physical matrix elements for a particular order of

the rapidities.

fOα (θ1, . . . , θn) := 〈 0 | O | p1, . . . , pn 〉inα , for θ1 > . . . > θn. (A.25)

In the other sectors the function fOα (θ) is again given by analytic continuation. Again,

as a consequence of Lemma A.1 and the fermi statistics of the particles we have now the

property (i) in the form (c.f. eq. (3.17))

fO...ij...(. . . , θi, θj , . . .) = fO...ji...(. . . , θj , θi, . . .) (−S)ij(θi − θj). (A.26)

The LSZ-formulae (A.22) and (A.23) imply the general crossing formulae (3.18). Note

that some signs in these formulae depend on the choice of the relative phases of the u-

and the v-spinors taken in eq. (5.30). The crossing formulae again, as for the bosonic

case, implies the properties (ii) and (iii) as given by (3.17), where we have used the fact

that σO1 = σ2n · · ·σ23, if particle 1 has the same statistics as particle 2.

B Proof of the theorem 4.1

In the proof of theorem 4.1 we follow [55] (see also [53]).

Proof that eq. (4.10) fulfills (i):

Property (i) (c.f. eq. (3.17)) follows directly from the Yang-Baxter equations, the defini-

tions of the soliton-soliton S-matrix (2.15) and the pseudo-ground state Ω and Watson’s
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equations for F (θ)

F (θji) Ω...ji...C...ji...(. . . θj , θi . . .) Ṡij(θij) = F (θji) Ω...ji... Ṡij(θij)C...ij...(. . . θi, θj . . .)

= −F (θji) a(θij) Ω...ij...C...ij...(. . . θi, θj . . .)

= F (θij) Ω...ij...C...ij...(. . . θi, θj . . .).

The minus sign is due to the fermi statistics of the solitons (c.f. (3.1))

Proof that eq. (4.10) fulfills (ii):

Using (i) the property (ii) (c.f. eq. (3.17)) may be rewritten as a difference equation

fO1...n(θ) = fO1...n(θ
′)Q1...n(θ) (B.1)

where θ′ = (θ1, . . . , θ
′
n = θn − 2πi) and Q(θ) is the trace of the monodromy matrix (4.1)

over the auxiliary space for the specific value of the spectral parameter θ0 = θn

Q1...n(θ) = tr0T
Q
1...n(θ) , with TQ1...n(θ) = T1...n(θ, θn) (B.2)

since Sn0(0) = Pn0 is the permutation operator. This may be depicted as

�
�
�
�fO

. . .
= ��
' $
� �
�
�
�
�fO

. . .

In the following we will suppress the indices 1 . . . n. The Yang-Baxter relations (4.2) imply

the well known commutation rules for the matrices A,C,D defined in eq. (4.3)

C(θ, u)C(θ, v) = C(θ, v)C(θ, u)

C(θ, u)A(θ, θ) =
a(θ − u)
b(θ − u)A(θ, θ)C(θ, u)− c(θ − u)

b(θ − u)A(θ, u)C(θ, θ) (B.3)

C(θ, u)D(θ, θ) =
a(u− θ)
b(u− θ)D(θ, θ)C(θ, u)− c(u− θ)

b(u− θ)D(θ, u)C(θ, θ)

In addition there are commutation rules where also the matrices AQ, CQ, DQ defined by

TQ(θ) =
(

AQ(θ) BQ(θ)
CQ(θ) DQ(θ)

)

are involved [14]

C(θ′, u)AQ(θ) =
a(θ′n − u)
b(θn − u)

AQ(θ)C(θ, u)− c(θn − u)
b(θn − u)

A(θ′, u)CQ(θ) (B.4)

C(θ′, u)DQ(θ) =
a(u− θn)
b(u− θ′n)

DQ(θ)C(θ, u)− c(u− θ′n)
b(u− θ′n)

D(θ′, u)CQ(θ) .
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To analyze the right hand side of eq. (B.1) we proceed as follows: We apply the trace of

TQ(θ) to the co-vector fO(θ′) as given by eq. (4.10) and the Bethe ansatz (4.4). In the

contribution from AQ(θ)

ΩC(θ′, u1) · · ·C(θ′, um)AQ(θ) = - �

- �6 6

��

6

��
θ1 θn−1 θn

um

u1

. . ....

θ′n

because of charge conservation only the amplitudes a(θ′n − uj) appear in the S-matrices

Ṡ(θ′n − uj) which are constituents of the C-operators. Therefore we may shift all uj-

integration contours Cθ′ to Cθ without changing the values of the integrals, because the

functions a(θ′n − uj)φ(θ′n − uj) are holomorphic inside Cθ′ − Cθ.
We now proceed as usual in the algebraic Bethe ansatz and push the AQ(θ) and DQ(θ)

through all the C-operators using the commutation rules (B.4) and obtain

C(θ′, u1) · · ·C(θ′, um)AQ(θ) =
m
∏

j=1

a(θ′n − uj)
b(θn − uj)

AQ(θ)C(θ, u1) · · ·C(θ, um) + uwA , (B.5)

C(θ′, u1) · · ·C(θ′, um)DQ(θ) =
m
∏

j=1

a(uj − θn)
b(uj − θ′n)

DQ(θ)C(θ, u1) · · ·C(θ, um) + uwD . (B.6)

The “wanted terms” written explicitly originate from the first term in the commutations

rules (B.4); all other contributions yield the so-called “unwanted terms”. If we insert these

equations into the representation (4.10) of f(θ′) we find that the desired contribution from

AQ already gives the result we are looking for. The wanted contribution from DQ applied

to Ω gives zero. The unwanted contributions cancel after integration over the uj. All

these three facts can be seen as follows. We have

ΩAQ(θ) =
n
∏

i=1

ȧ(θi − θn) Ω , ΩDQ(θ) = 0

which follow from eq. (4.6).

The relations (4.15) for φ(u) and (4.12) for F (θ) imply that the wanted term from AQ

yields f(θ). The commutation relations (B.3) and (B.4) imply that the unwanted terms

are proportional to a product of C-operators, where exactly one C(θ, uj) is replaced

by CQ(θ). Because of the commutativity of the Cs it is sufficient to consider only the

unwanted terms for j = m which are denoted by uwmA (u) and uwmD(u). They come from the

second term in (B.4) when AQ(θ) is commuted with C(θ, um). Then the resulting A(θ, um)
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pushed through the other Cs and taking only the first terms in (B.3) into account and

correspondingly for DQ(θ; um) we arrive at

uwmA (u) = −c(θn − um)

b(θn − um)

∏

j<m

a(um − uj)
b(um − uj)

A(θ′, um)C(θ′, u1) . . . C
Q(θ)

uwmD(u) = −c(um − θ
′
n)

b(um − θ′n)
∏

j<m

a(uj − um)

b(uj − um)
D(θ′, um)C(θ′, u1) . . . C

Q(θ).

Using again (4.6) and the relations (4.15) and (4.16) for φ(u) and τ(u) we obtain

g(θ′, u) ΩuwmD(u) = −g(θ′, u′) ΩuwmA (u′)

where also c(u)/b(u) = −c(−u)/b(−u) has been used and u′ = (u1, . . . , u
′
m = um + 2πi).

Therefore after integration of the A-unwanted term along Cθ and the D-unwanted term

along Cθ′ both cancel.

Proof that eq. (4.10) fulfills (iii):

We will prove that eq. (4.10) fulfills (iii) (see eq. (3.17)) in the form of

Res
θ1n=iπ

fO1...n(θ1, . . . , θn) = −σOn 2iC1n f
O
2...n−1(θ2, . . . , θn−1)

(

12...n−1 − S2n · · ·Sn−1n

)

which is equivalent to eq. (3.17) due to (i). We consider the n-particle form factor function

given by eq. (4.10)

fO1...n(θ) =
m
∏

i=1

(

∫

Cθ

dui

)

gn(θ, u) Ω1...nC1...n(θ, u1) · · ·C1...n(θ, um)

with the scalar function

gn(θ, u) =
NOn
NOn−2

gn−2(θ̃, ũ)

×F (θ1 − θn)
n−1
∏

i=2

(

F (θ1 − θi)F (θi − θn)
)

n
∏

i=1

φ(θi − um)

×
m−1
∏

j=1

(

φ(θ1 − uj)φ(θn − uj) τ(uj − um)
)

e±s̃(2um−θ1−θn)

where θ̃ = θ2, . . . , θn−1 and ũ = u1, . . . , um−1. We calculate the residue of this function at

θ1 = θn + iπ. It consists of three terms

Res
θ1=θn+iπ

fO1...n(θ) = R1 +R2 +R3

This is because each of the m integration contours will be “pinched” at three points:
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(1) uj = θn = θ1 − iπ,

(2) uj = θn + iπ = θ1

(3) uj = θn − iπ = θ1 − 2iπ.

Due to symmetry it is sufficient to determine the contribution from the um-integration

and multiply the result by m.

The contribution of (1) is given by um-integration along the small circle around um =

θn (see figure 4). The S-matrix S(θn−um) yields the permutation operator S(0) = P and

S(θ1 − um) the annihilation-creation operator S(iπ) = K

Sδγαβ(0) = δαδ δβγ = ��
α
β

γ
δ , Sδγαβ(iπ) = Cαβ Cδγ = δαβ̄ δδγ̄ = 
�

α
β

γ
δ

.

Therefore we have for um = θn = θ1 − iπ

Ω1...n C1...n(θ, u1) · · ·C1...n(θ, θn) =
- - � �

- - � �
6 6

� ��

6

- �

6

�

θ1 θ2 θn−1 θn

um

u1

um = θn v

. . ....

=
m−1
∏

j=1

(

ḃ(θ1 − uj)ȧ(θn − uj)
)

C1n Ω2...n−1C2...n−1(θ̃, u1) · · ·

· · ·C2...n−1(θ̃, um−1) Ṡ2n · · · Ṡn−1n

where C1n is the charge conjugation matrix with Cαβ = δᾱβ . We have used the fact

that because of charge conservation the amplitude b(·) only contributes to the S-matrices

S(θ1 − uj) and a(·) to the S-matrices S(θn − uj).
We combine this with the scalar function gn and after having performed the remaining

uj-integrations we obtain

R
(1)
1...n = C1n f

O
2...n−1(θ̃) Ṡ2n · · · Ṡn−1n

×m NOn
NOn−2

Res
θ1=θn+iπ

(−2πi) Res
um=θn

ȧ(θn − um)φ(θn − um) ḃ(θ1 − um)φ(θ1 − um)

×F (iπ)
n−1
∏

i=2

(

F (θ1 − θi)F (θi − θn)φ(θi − um)
)

×
m−1
∏

j=1

(

ḃ(θ1 − uj)φ(θ1 − uj)ȧ(θn − uj)φ(θn − uj)τ(uj − um)
)

e±s̃(2um−θ1−θn)

= 2i σOnC1n f
O
2...n−1(θ̃)S2n · · ·Sn−1n
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if we relate the normalization constants by the recursion relation

NOn = NOn−2e
±iπs̃

(

fminss (0)
)2

4πm
. (B.7)

We have also used that σOn = (−1)n and

F (u)F (u+ iπ)φ(u) = 1 and b(u+ iπ)φ(u+ iπ) a(u)φ(u) τ(−u) = 1

which follows from the definitions (4.12) and (4.13). Finally we have used the normal-

ization F (iπ) = 1 and Resu=0 ȧ(u)φ(u) = Resu=iπ ḃ(u)φ(u) = −2i/fminss (0) because of

eq. (4.14). Note also that the signs from the ȧs and ḃs cancel and σOn = (−1)n−2, since

all particles are fermions.

The remaining contribution to (iii) is due to R2 and R3

R
(2)
1...n +R

(3)
1...n = 2iC1n f

O
2...n−1(θ̃).

If both particles at 1 and n are solitons both vanish. If one particle at 1 or n is an soliton

and the other an anti-soliton one term gives the desired expression and the other vanish.

If both particles at 1 and n are anti-solitons both terms cancel. These fact can be proven

as follows.

The contribution of (2) is given by the um-integration along the small circle around

uM = θ1 (see again figure 4). Now S(θ1 − um) yields the permutation operator S(0) = P

and the co-vector part of this contribution for um = θ1 = θn + iπ is

Ω1...n C1...n(θ, u1) · · ·C1...n(θ, um = θ1)Pn(s)

=
�

�

-

-
6666

�-& �

θ1 θ2 θn−1

u1

umum

. . ....

θn

=
-

-

�

�

6666

�- ��

 �

θ1

θ1

θ2 θn−1

u1

um

um

. . ....

θn

=
n
∏

i=1

ȧ(θi − um)
m−1
∏

j=1

(

ȧ(θ1 − uj)ȧ(θn − uj)
)

×C1n Ω2...n−1C2...n−1(θ̃, u1) · · ·C2...n−1(θ̃, um−1)P1(s̄)Pn(s) (B.8)

where the Yang-Baxter relation (2.8) has been used iteratively. P1(s̄) and Pn(s) project

onto the components where the particle at 1 is a soliton and at n is an anti-soliton,

respectively. The remaining components if both particles at 1 and n are anti-solitons are

calculated below.
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We combine this with the scalar function gn and after having performed the remaining

uj-integrations we obtain

R
(2)
1...n Pn(s) = C1n f

O
2...n−1(θ̃)P1(s̄)Pn(s)

×m NOn
NOn−2

Res
θ1=θn+iπ

(−2πi) Res
um=θ1

ȧ(θ1 − um)φ(θ1 − um) ȧ(θn − um)φ(θn − um)

×F (iπ)
n−1
∏

i=2

(

F (θ1 − θi)F (θi − θn)ȧ(θi − um)φ(θi − um)
)

×
m−1
∏

j=1

(

ȧ(θ1 − uj)φ(θ1 − uj)ȧ(θn − uj)φ(θn − uj)τ(uj − um)
)

e±s̃(2um−θ1−θn)

= −2i σOn C1n f
O
2...n−1(θ̃)P1(s̄)Pn(s) .

if we apply the condition exp(2πs̃) = (−1)n = σOn and if we relate the normalization

constants as above. We have used the identities

F (−u)F (u+ iπ) ȧ(u)φ(u) = 1 and a(u)φ(u) a(u− iπ)φ(u− iπ) τ(−u) = 1. (B.9)

The contribution of (3) is given by um-integration along the small circle around um =

θn − iπ (see again figure 4). Now S(θn − um) yields the annihilation-creation operator

S(iπ) = K and the co-vector part of this contribution for um = θ1 − 2πi = θn − iπ is

Ω1...n C1...n(θ, u1) · · ·C1...n(θ, um = θn − iπ)P1(s)

=
-

-

�

�
6 6 6 6

��%-

θ1 θ2 θn−1

u1

umum

. . ....

θn

=
-

-

�

�

6 6 6 6

���-

# 


θ1 θ2 θn−1

u1

um

um

. . ....

θn

θn

=
n
∏

i=1

ḃ(θi − um)
m−1
∏

j=1

(

ḃ(θ1 − uj)ḃ(θn − uj)
)

×C1n Ω2...n−1C2...n−1(θ̃, u1) · · ·C2...n−1(θ̃, um−1)P1(s)Pn(s̄) (B.10)

if the particle at 1 is a soliton and that at n an anti-soliton. This contribution obviously

vanishes if n is a soliton. Again the remaining components if both particles at 1 and n

are anti-solitons are calculated below.

Again we combine this with the scalar function gn and after having performed the

remaining uj-integrations we obtain

R
(3)
1...n P1(s) = C1n f

O
2...n−1(θ̃)P1(s)Pn(s̄)
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×m NOn
NOn−2

Res
θ1=θn+iπ

(−2πi) Res
um=θn−iπ

ḃ(θn − um)φ(θn − um) ḃ(θ1 − um)φ(θ1 − um)

×F (iπ)
n−1
∏

i=2

(

F (θ1 − θi)F (θi − θn)ḃ(θi − um)φ(θi − um)
)

×
m−1
∏

j=1

(

ḃ(θ1 − uj)φ(θ1 − uj)ḃ(θn − uj)φ(θn − uj)τ(uj − um)
)

e±s̃(2um−θ1−θn)

= −2i σOn C1n f
O
2...n−1(θ̃)P1(s)Pn(s̄)

provided that we fix the normalization constants as above. We have used the identities

ḃ(u)F (−u)F (u+ iπ)φ(u) = 1 and a(u)φ(u) a(u− iπ)φ(u− iπ) τ(−u) = 1. (B.11)

Finally we calculate R
(2)
1...n + R

(3)
1...n for the case that both particles at 1 and at n are

anti-solitons. Instead of eq. (B.8) we have now for um = θ1 = θn + iπ

n
∏

i=1

ȧ(θi − um)
m−1
∏

j=1

(

ȧ(θ1 − uj)ȧ(θn − uj)
) c(θn − um−1)

a(θn − um−1)

× Ω2...n−1C2...n−1(θ̃, u1) · · ·C2...n−1(θ̃, um−2)D2...n−1(θ̃, um−1)P1(s̄)Pn(s̄) + . . .

and because of the Yang-Baxter relations (B.6)

C(θ̃, u1) · · ·C(θ̃, um−2)D(θ̃, um−1)

=
m−2
∏

j=1

a(uj − um−1)

b(uj − um−1)
D(θ̃, um−1)C(θ̃, u1) · · ·C(θ̃, um−2) + . . .

where the dots refer to similar terms with D2...n−1(θ̃, uj), (j < m − 1). Because of

symmetry with respect to the C-operators it is sufficient to consider only this term.

Similarly we get instead of eq. (B.10) um = θ1 − 2πi = θn − iπ
n
∏

i=1

ḃ(θi − um)
m−1
∏

j=1

(

ȧ(θ1 − uj)ȧ(θn − uj)
)c(θ1 − um−1)

b(θ1 − um−1)

× Ω2...n−1C2...n−1(θ̃, u1) · · ·C2...n−1(θ̃, um−2)A2...n−1(θ̃, um−1)P1(s̄)Pn(s̄) + . . .

and because of the Yang-Baxter relations (B.6)

C(θ̃, u1) · · ·C(θ̃, um−2)A(θ̃, um−1)

=
m−2
∏

j=1

a(um−1 − uj)
b(um−1 − uj)

A(θ̃, um−1)C(θ̃, u1) · · ·C(θ̃, um−2) + . . .
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where the dots again refer to similar terms with A2...n−1(θ̃, uj), (j < m − 1). We apply

D2...n−1(θ̃, um−1) and A2...n−1(θ̃, um−1) to the pseudo-vacuum, use as above the identities

(B.9) and (B.11), and find that the sum R(2) +R(3) is proportional to (with u = um−1)

∫

C
θ̃

du







c(θn − u)
a(θn − u)

n−1
∏

i=2

ḃ(θi − u)φ(θi − u)
m−2
∏

j=1

a(uj − u)
b(uj − u)

τ(uj − u)

+
c(θ1 − u)
b(θ1 − u)

n−1
∏

i=2

ȧ(θi − u)φ(θi − u)
m−2
∏

j=1

a(u− uj)
b(u− uj)

τ(uj − u)






= I

Due to crossing we have

c(θn − um−1)

a(θn − um−1)
= −c(θ1 − um−1 − 2πi)

b(θ1 − um−1 − 2πi)
.

In addition we use the quasi-periodicity properties (4.15) and (4.16) of φ(·) and τ(·) and

get

I =

{

−
∫

C
θ̃
+2πi

+
∫

C
θ̃

}

dum−1
c(θ1 − um−1)

b(θ1 − um−1)

n−1
∏

i=2

ȧ(θi − um−1)φ(θi − um−1)
m−2
∏

j=1

a(um−1 − uj)
b(um−1 − uj)

τ(uj − um−1)

which vanishes since the integrand is holomorphic inside the contour Cθ̃ − (Cθ̃ + 2πi).

C Some useful formulae

In this appendix we provide some explicit formulae (which partly may also be found

elsewhere in the literature) for typical scattering matrices, minimal form factors and

some auxiliary functions which we frequently employed in the explicit computations. We

state some typical integral representation, which are very useful since via (4.19) and (4.20)

they relate the scattering matrix and the minimal form factors effortlessly. The infinite

product representations in terms of Gamma functions, obtained from the evaluation of the

integrals or the direct solution of the functional relations, make the singularity structure

more transparent. For numerical purposes it is often more useful to express the Gamma

functions with the help of Euler’s product representation in terms of rational functions

at the cost of an additional infinite product.

A typical S-matrix eigenvalue is (for a > 0)

S(iπx, a) =
a+ x

a− x = exp
∫ ∞

0

dt

t
2e−ta sinh tx .
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According to (4.19) and (4.20) the corresponding minimal form factor function is therefore

fmin(iπx, a) = exp
∫ ∞

0

dt

t
2e−ta

1− cosh t(1− x)
2 sinh t

=
∞
∏

l=0

(2l + 2 + a− x)(2l + a + x)

(2l + 1 + a)2
=

Γ2(1
2

+ a
2
)

Γ(1 + a
2
− x

2
)Γ(a

2
+ x

2
)
.

In particular, for a = 0 we recover the scattering matrix of the Ising model

S = −1 → fmin(iπx) = sin
π

2
x

For negative values of a we use S(θ, a) = 1/S(θ,−a) and fmin(θ, a) = 1/fmin(θ,−a). A

further typical S-matrix eigenvalue3 is (for 0 < a < 1)

S(iπx, a) =
sin π

2
(a+ x)

sin π
2
(a− x) = exp

∫ ∞

0

dt

t
2
sinh t(1− a)

sinh t
sinh tx .

with the corresponding minimal form factor function

fmin(iπx, a) = exp
∫ ∞

0

dt

t
2
sinh t(1− a)

sinh t

1− cosh t(1− x)
2 sinh t

=
∞
∏

k=0

∞
∏

l=0

2l + 2k + a+ x

2l + 2k + 2− a+ x

2l + 2k + 2 + a− x
2l + 2k + 4− a− x

(

2l + 2k + 3− a
2l + 2k + 1 + a

)2

=
∞
∏

k=0

Γ(k + 1− a
2

+ x
2
)

Γ(k + a
2

+ x
2
)

Γ(k + 2− a
2
− x

2
)

Γ(k + 1 + a
2
− x

2
)

(

Γ(k + 1
2

+ a
2
)

Γ(k + 3
2
− a

2
)

)2

.

The sine-Gordon soliton-soliton S-matrix reads

Sss(iπx) = a(iπx) = exp
∫ ∞

0

dt

t

sinh 1
2
(1− ν)t

sinh 1
2
νt cosh 1

2
t

sinh tx

=
∞
∏

k=0

∞
∏

l=0

2l + ν + kν + x

2l + ν + kν − x
2l + 2 + kν + x

2l + 2 + kν − x
2l + 1 + ν + kν − x
2l + 1 + ν + kν + x

2l + 1 + kν − x
2l + 1 + kν + x

=
∞
∏

k=0

Γ((ν + kν − x)/2)

Γ((ν + kν + x)/2)

Γ((2 + kν − x)/2)

Γ((2 + kν + x)/2)

Γ((1 + ν + kν + x)/2)

Γ((1 + ν + kν − x)/2)

Γ((1 + kν + x)/2)

Γ((1 + kν − x)/2)

with

a(iπ(x+ ν)) = − cot
π

2
x cot

π

2
(x+ ν) a(iπx).

Consequently, the minimal form factor function is

3For instance almost all diagonal scattering matrices related to perturbation of certain conformal field
theories may be built out of these elementary blocks.
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fminss (iπx) = exp
∫ ∞

0

dt

t

sinh 1
2
(1− ν)t

sinh 1
2
νt cosh 1

2
t

1− cosh t(1− x)
2 sinh t

=
∞
∏

k=0

∞
∏

l=0

∞
∏

m=0

2m+ 2l + 2 + ν + kν − x
2m+ 2l + 3 + ν + kν − x

2m+ 2l + ν + kν + x

2m+ 2l + 1 + ν + kν + x

× 2m+ 2l + 4 + kν − x
2m+ 2l + 3 + kν − x

2m+ 2l + 2 + kν + x

2m+ 2l + 1 + kν + x

×
(

2m+ 2l + 2 + ν + kν

2m+ 2l + 1 + ν + kν

2m+ 2l + 2 + kν

2m+ 2l + 3 + kν

)2

=
∞
∏

k=0

∞
∏

l=0

Γ
(

l + 1
2
(3 + ν + kν − x)

)

Γ
(

l + 1 + 1
2
(ν + kν − x)

)

Γ
(

l + 1
2
(1 + ν + kν + x)

)

Γ
(

l + 1
2
(ν + kν + x)

)

×
Γ
(

l + 1
2
(3 + kν − x)

)

Γ
(

l + 2 + 1
2
(kν − x)

)

Γ
(

l + 1
2
(1 + kν + x)

)

Γ
(

l + 1 + 1
2
(kν + x)

)

×
Γ2
(

l + 1
2
(1 + ν + kν)

)

Γ2
(

l + 1 + 1
2
(ν + kν)

)

Γ2
(

l + 1
2
(3 + kν)

)

Γ2
(

l + 1 + 1
2
kν
)

with asymptotic behavior for |ℜθ| → ∞, (|ℑθ − π| < π
2
(3 + ν − |1− ν|))

fminss (iπ − θ) = css
(

e
1−ν
4ν
|θ| + o(1)

)

with the constant

css = exp
1

2

∫ ∞

0

dt

t

(

sinh 1
2
(1− ν)t

sinh 1
2
νt cosh 1

2
t sinh t

− 1− ν
νt

)

.

The corresponding functions φ(u) =
(

F (u)F (iπ+ u)
)−1

and τ(u) =
(

φ(u)φ(−u)
)−1

with

F (iπx) = sin(π
2
x)fminss (iπx) are

φ(iπx) =
1

F 2
(

iπ
2

)

1

sin(πx)
exp

∫ ∞

0

dt

t

sinh 1
2
(1− ν)t

(

cosh t(1
2
− x)− 1

)

sinh 1
2
νt sinh t

=
1

F 2
(

iπ
2

)

∞
∏

k=0

∞
∏

l=0

2l + 1 + ν + kν + x

2l + kν + x

2l + 2 + ν + kν − x
2l + 1 + kν − x

(

2l + kν + 1
2

2l + ν + kν + 3
2

)2

=
1

F 2
(

iπ
2

)

∞
∏

k=0

Γ
(

1
2
(kν + x)

)

Γ
(

1
2
(1 + ν + kν + x)

)

Γ
(

1
2
(1 + kν − x)

)

Γ
(

1
2
(2 + ν + kν − x)

)

Γ2
(

ν+kν
2

+ 3
4

)

Γ2
(

kν
2

+ 1
4

)

with

φ(iπ(x+ ν)) =
sin π

2
x

cos π
2
(x+ ν)

φ(iπx)
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and

τ(iπx) =
F 2(iπ/2)F 2(−iπ/2)

sin π
2ν

sin πx sin(πx/ν) .
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