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Abstract. A stochastic approach is proposed to obtain reliable estimates of the peak response of 
nonlinear systems to excitations specified via a response/ design seismic spectrum. This is 
achieved without resorting to numerical integration of the governing nonlinear equations of 
motion. First, a numerical scheme is utilized to derive a power spectrum which is compatible in 
a stochastic sense to a given elastic design spectrum. This spectrum is then treated as the 
excitation spectrum in the context of the statistical linearization method to determine effective 
parameters, damping and stiffness, corresponding to an equivalent linear system (ELS). The 
obtained parameters are used in conjunction with the linear design spectrum, for various values 
of damping, to estimate the response of certain nonlinear systems. The case of single-degree-of-
freedom systems with cubic stiffness nonlinearity and hysteretic systems whose restoring force 
traces a bilinear law are considered in conjunction with the elastic design spectrum prescribed by 
the European aseismic code provisions (EC8). Monte Carlo simulations pertaining to an 
ensemble of non-stationary EC8 design spectrum compatible accelerograms are conducted to 
confirm that the average peak response of the nonlinear systems compare reasonably well with 
that of the ELS. This is true, even in cases where the response of the nonlinear oscillators 
deviates significantly from the linear one. In this manner, the proposed approach yields ELS 
which can reliably replace the original nonlinear systems in carrying out computationally 
efficient analyses in the initial stages of the aseismic design of structures under severe seismic 
excitations. Furthermore, the potential of this approach for developing inelastic design spectra 
from a given elastic design spectrum is established. 
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INTRODUCTION 

Contemporary code provisions strongly favor response spectrum-based analyses for 
the aseismic design of structures. For this purpose, they prescribe elastic response 
(design) spectra for defining the input seismic severity. In this context, the inelastic/ 
hysteretic behavior that ordinary structures are expected to exhibit under severe 
earthquake excitations, is heuristically accounted for by means of semi-empirically 
defined “reduction factors” applied to the seismic induced forces and the adoption of 
inelastic response spectra, see e.g. [1]~[3] and references therein. Alternatively, 
computationally demanding inelastic time-history analyses can be incorporated to 
obtain the inelastic response time-histories of nonlinear structures using numerical 
integration techniques. 



A considerably different approach in dealing with nonlinear systems is to employ a 
linearization method. That is, to approximate the a priori unknown response of the 
nonlinear systems by considering the response of an appropriately defined 
“equivalent” linear system (ELS). In general, the dynamical characteristics of the ELS 
depend on the nonlinear system, on the input excitation, and on the various 
assumptions made by the particular linearization method.   

In an early study by Iwan and Gates [4] the potential of various linearization 
techniques to estimate the peak response of certain single-degree-of-freedom (SDOF) 
hysteretic oscillators exposed to strong ground motion was assessed. This was done 
vis-à-vis numerical results obtained by integrating the nonlinear equations of motion 
pertaining to an ensemble of 12 recorded accelerograms. All the linearization 
techniques considered in the aforementioned study define deterministically the ELSs 
without considering the statistical attributes of the seismic excitation. 

Along similar lines, Koliopoulos et al. [5] pursued a comparative assessment of the 
applicability of certain linearization techniques for the case of bilinear hysteretic 
SDOF systems. In this case a small ensemble (9) of artificial accelerograms whose 
average response spectra was relatively close to a specific design spectrum prescribed 
by the European aseismic code provisions (EC8) was used for the numerical validation 
of the techniques considered. One of these techniques involved a random vibration-
based linearization scheme relying on the solution of an underlying Fokker-Planck 
equation, necessitating the limiting assumption of white noise input. 

Furthermore, Basu and Gupta [6] derived inelastic spectra pertaining to certain 
recorded seismic accelerograms also based on a statistical linearization formulation. 
This formulation required the minimization of the error of the mean square of the peak 
responses between the original nonlinear and an ELS. A piecewise linear non-
hysteretic type of nonlinearity was considered with a fixed value for the yielding 
displacement selected so that the system experiences mild non-linear behavior. 

Herein, the potential of estimating the peak responses of inelastic systems by 
utilizing effective (equivalent) linear parameters ([7]) and power spectra derived to be 
compatible with given response/design spectra is explored. The cases of SDOF 
Duffing and bilinear hysteretic oscillators are considered and numerical examples 
pertaining to the EC8 design spectrum [8] are provided. It is emphasized that the 
purpose of the present work is not to assess the accuracy of the statistical linearization 
technique, a well-studied theme in the literature (see e.g. [9] and references therein). 
Instead, it aims to take advantage of the concept of response spectrum-compatible 
stationary power spectra for developing inelastic response spectra from a given elastic 
spectrum without resorting to the numerical integration of the underlying nonlinear 
equations of motion.    

RESPONSE SPECTRUM-COMPATIBLE POWER SPECTRA 

Given a design/response pseudo-acceleration seismic spectrum Sα, the core 
equation for relating it to a one-sided power spectrum G(ω) reads (e.g. [10]) 
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where λj,n,G denotes the spectral moment of order n of the response of a SDOF system 
of natural frequency ωj and ratio of critical damping ζ excited by a stationary process 
g(t) characterized by the spectrum G(ω) in the frequency domain. Namely, 
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The “peak factor” ηj,G appearing in Eq. (1) is the critical parameter establishing the 

equivalence, with probability p, between the Sa and G(ω) and can be estimated by the 
semi-empirical formula [10] 
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For the purpose of this study p is taken equal to 0.5 in Eq. (4), so that Eq. (1) 
prescribes the following compatibility criterion: considering an ensemble of stationary 
samples of the process g(t), half of the population of their response spectra will lie 
below Sa (i.e. Sa is the median response spectrum). Furthermore, Ts is the duration of 
the process g(t) corresponding to the strong -motion part exhibited by typical recorded 
accelerograms pertaining to historical seismic events. 

Given a design spectrum Sa, an estimate of the power spectrum G(ω) conforming 
with the aforementioned criterion can be recursively evaluated at a specific set of 
natural frequencies ωj equally spaced by Δω apart using the equation [10],[11] 
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In this equation, ω0 is the lowest frequency for which Eq. (3) is defined, and N(ω) is 
assumed to be clipped white noise of unit strength on the interval [0, ωb] where ωb 
signifies the maximum frequency of interest. 

The, thus, obtained discrete power spectrum G[ωj] can be further modified 
iteratively to improve the matching of the associated response spectrum A[ωj,ζ] with 
the target design spectrum Sα according to the equation at the ν-th iteration (e.g. 
[12],[13]) 
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Next, it is proposed to use the obtained design spectrum compatible power 
spectrum G[ωj], as a surrogate for determining effective natural frequency and 
damping parameters associated with a nonlinear restoring function; this well- 
established in standard references ([7], [9]) procedure is briefly reviewed in the 
following sections. These effective parameters can then be used in conjunction with 
the family of the elastic seismic spectra to estimate the seismic response of the 
nonlinear system. 

STATISTICAL LINEARIZATION: DUFFING OSCILLATOR 

In implementing the proposed approach, the governing equation of motion for a 
unit-mass quiescent SDOF system with linear-plus-cubic type of stiffness (Duffing 
oscillator) and ratio of critical viscous damping ζ base-excited by the stationary 
acceleration process g(t) is considered. Specifically, (e.g. [9]) 

 
 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 32 ;n nx t x t x t x t g t x xζω ω ε 0 0 0+ + + = − = = , (7) 
 
where x(t) is the displacement trace of the non-linear oscillator relative to the motion 
of the ground, ωn is the natural frequency of the system for small oscillations, ε is a 
constant controlling the severity of the nonlinearity, and the dot over a symbol denotes 
differentiation with respect to time t. Introducing the dimensionless time τ= ωnt and 
displacement y= x/ ,0,n Gλ , and the quantity ρ= ε ,0,n Gλ   Eq. (7) is written as (e.g. [9]) 
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The statistical linearization method utilizes the response ( x̂ ) of an ELS of natural 

frequency ωeq and damping ratio ζeq given by the equation  
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to approximate the response (x) of the non-linear oscillator of Eq. (7) [9]. According to 
the original and most widely-used form of statistical linearization the above linear 
system is defined by minimizing the expected value of the difference (error) between 
Eqs. (7) and (9) in a least square sense with respect to the quantities ωeq and ζeq (i.e. 
the dynamical properties of the equivalent linear system), [7],[9],[14]. For the Duffing 
oscillator, the aforementioned minimization operation yields [9] 
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Equations (2) and (10) can be satisfied simultaneously through an iterative 

procedure to obtain ωeq and ζeq which depend on ωn, ζ, ρ and G(ω) [9]. 



STATISTICAL LINEARIZATION: BILINEAR OSCILLATOR 

The proposed approach is also implemented for the response of a unit-mass 
quiescent viscously damped SDOF whose restoring force traces the bilinear law φ(x) 
as depicted in Fig. 1. Its motion is governed by the equation [15] 

 
 ( ) ( ) ( ) ( ) ( ) ( )22 ;n nx t x t x g t x xζω ω ϕ+ + = − =0 0 0= . (11) 
 

In determining the effective parameters of the ELS (Eq. (9)), the previously 
described statistical linearization method yields the following expressions ([7],[15]) 
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A similar iterative procedure as in the case of the Duffing oscillator must be 

employed to solve numerically the non-linear system of Eqs. (2) and (12)~(14) to 
obtain ωeq and ζeq which depend on ωn, ζ, a (defined in Fig.1) and G(ω) [9]. 

 

 
FIGURE 1.  Bilinear force-displacement law considered in Eq. 11 and definitions of the reduction 

factor R, the ductility μ and the post-yield to pre-yield stiffness ratio α. 

NUMERICAL APPLICATION TO THE EC8 DESIGN SPECTRUM 

Consider the pseudo-acceleration design spectrum prescribed by the European code 
provisions (EC8) for soil conditions B, damping ratio ζ= 5%, and peak ground 
acceleration equal to 36% the acceleration of the gravity (gray line in Fig. 2(b)) as the 
given/ target spectrum. A power spectrum compatible with this target spectrum is 



initially obtained by means of Eq. (5) for Δω=0.1 rad/sec and Ts= 20sec (dotted line in 
Fig. 2(a). Performing four iterations using Eq. (6) a modified power spectrum (black 
line in Fig. 2(a)) is obtained which achieves enhanced matching with the target 
spectrum as evidenced in Fig. 2(b). The dotted and solid black lines of Fig. 2(b) are 
computed via Eqs. (1)~(4) while the dots correspond to the median spectral ordinates 
of 1000 20sec long stationary signals compatible with the modified power spectrum 
generated using an auto-regressive-moving-average filtering technique [16]. 
Evidently, the criterion posed by Eq. (1) is satisfactorily met for the modified power 
spectrum. The latter is considered as the input spectrum for statistical linearization in 
all of the ensuing numerical results. 

 

 

FIGURE 2. EC8 design spectrum compatible power spectra (a) and associated compatibility 
verification (b); Response spectra of an ensemble of 40 EC8 design spectrum compatible artificial non-
stationary accelerograms used for the Monte Carlo analysis (Fig. (4)) (c); Time-history of one of these 

accelerograms (d) and its corresponding velocity (e) and displacement trace (f).  
 

Figures 3(a) and 3(b) provide the properties of the ELSs obtained by iteratively 
solving Eq. (2) and (10) for Duffing oscillators of various levels of nonlinearity ρ and 
natural periods Tn= 2π/ωn, while Figs. 3(c)~3(f) provide the properties of the ELSs 
obtained by iteratively solving Eqs. (2) and (12)~(14) for bilinear oscillators of various 
reduction factors R (defined in Fig.1), post to pre-yield stiffness ratios α (defined in 
Fig.1) and natural periods Tn= 2π/ωn. In all cases the viscous damping ratio of the 
nonlinear systems (ζ) is fixed to 5%. 

 

 
FIGURE 3.  Properties of equivalent linear systems corresponding to various Duffing and bilinear 

hysteretic oscillators for the considered EC8 compatible power spectrum (solid line of Fig.2(a)). 
 



  In Fig.4 appropriately normalized averaged peak responses obtained via numerical 
integration of the various nonlinear systems considered (dots of various shapes) are 
compared with similar results obtained from the corresponding ELSs (lines of various 
types) for an ensemble of 40 non-stationary artificial seismic accelerograms 
compatible with the target EC8 design spectrum of Fig.2. These accelerograms have 
been generated by a wavelet-based stochastic approach recently proposed by the 
authors [17] (see also Figs. 2(c)~2(f)). As expected, the quality of agreement between 
the peak response of the nonlinear and ELSs decreases as the level of the nonlinearity 
expressed by the quantities ρ for the Duffing and R for the bilinear oscillators 
increases and as the natural period of for small oscillations Tn increases [6], [9], [15]. 

 

 
FIGURE 4.  Assessment of the capability of the equivalent linear systems (ELSs) to approximate the 

peak response of various Duffing and bilinear hysteretic oscillators via Monte Carlo simulations. 
 
Figure 5 exemplifies the way by which the ELSs derived from the proposed design 

spectrum-based statistical linearization procedure as those shown in Fig.3 can be used 
to approximate the responses of the associated nonlinear systems in terms of pseudo-
acceleration spectral ordinates. In particular, with reference to a certain elastic 
response spectrum for damping ζ and considering a specific nonlinear oscillator 
(vertical dotted lines), one can move, following the horizontal arrows, to a vertical 
solid line which corresponds to an ELS characterized by Τeq= 2π/ωeq and ζeq obtained 



by the statistical linearization as proposed herein and “read” the related spectral 
ordinate. Obviously, for the case of the Duffing oscillator, this procedure can be 
facilitated by having available a collection of elastic design spectra for corresponding 
to various levels of viscous damping. Remarkably, in the case of the bilinear systems 
the significant increase of the viscous damping ratio of the equivalent linear systems 
which accounts for the hysteretic damping is practically independent of Tn as implied 
in Figs. 3(d) and 3(f). Thus, only one spectrum (black practically overlapping lines in 
Figs. 5(c) and 5(d)) corresponds to all possible bilinear oscillators once the α and R 
properties are specified. More importantly, in this latter case this response spectrum 
curve is amenable to a dual interpretation: it can be construed both as an elastic 
response spectrum characterizing linear oscillators of increased viscous damping 
compared to the initial ζ (=5% in all examples herein considered), and as an inelastic 
response spectrum corresponding to a certain force reduction ratio R (see Fig. 1) [2].  

 

 
FIGURE 5.  Construction of inelastic response spectra. 

CONCLUDING REMARKS 

An approach has been presented for estimating the maximum seismic response of 
nonlinear systems exposed to excitations specified by a given design spectrum. The 



proposed approach relies on first determining a power spectrum which is equivalent, 
stochastically, to the given design spectrum. This power spectrum is then used to 
determine, via statistical linearization, effective natural frequency and damping 
parameters for the considered nonlinear system. These parameters are utilized to 
readily estimate the peak seismic response of the nonlinear system using standard 
linear response spectrum techniques. Obviously, this approach can serve for 
developing inelastic response spectra from a given elastic response/ design spectrum 
without the need for integrating numerically the nonlinear equations of motion. 
Numerical data supporting the reliability of the proposed approach have been 
provided; they pertain to the Duffing and the bilinear hysteretic kinds of nonlinear 
systems with respect to the EC8 elastic design spectrum. Future work will include the 
incorporation of more sophisticated nonlinear hysteretic models to account for system 
degradation combined with more elaborate statistical linearization schemes [18].    
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