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ABSTRACT 

A stochastic approach for obtaining reliable estimates of the peak response of 

nonlinear systems to excitations specified via a design seismic spectrum is proposed. This is 

achieved in an efficient manner without resorting to numerical integration of the governing 

nonlinear equations of motion. First, a numerical scheme is utilized to derive a power 

spectrum which is compatible in a stochastic sense with a given design spectrum. This power 

spectrum is then treated as the excitation spectrum to determine effective damping and 

stiffness coefficients corresponding to an equivalent linear system (ELS) via a statistical 

linearization scheme. Further, the obtained coefficients are used in conjunction with the 

(linear) design spectrum to estimate the peak response of the original nonlinear systems. The 

cases of systems with piecewise linear stiffness nonlinearity, along with bilinear hysteretic 

systems are considered. The seismic severity is specified by the elastic design spectrum 

prescribed by the European aseismic code provisions (EC8). Monte Carlo simulations 
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pertaining to an ensemble of non-stationary EC8 design spectrum compatible accelerograms 

are conducted to confirm that the average peak response of the nonlinear systems compare 

reasonably well with that of the ELS, within the known level of accuracy furnished by the 

statistical linearization method. In this manner, the proposed approach yields ELS which can 

replace the original nonlinear systems in carrying out computationally efficient analyses in the 

initial stages of the aseismic design of structures under severe seismic excitations specified in 

terms of a design spectrum.  

 

Keywords: Statistical linearization, design spectrum, inelastic spectrum, bilinear hysteretic, 

equivalent linear system, power spectrum 

 

 

1. INTRODUCTION 

 

Contemporary code provisions favor response spectrum-based analyses for the aseismic 

design of structures. For this purpose, they prescribe elastic response (design) spectra to define 

the input seismic severity in terms of the peak response of linear single-degree-of-freedom 

(SDOF) oscillators characterized by their natural period T and ratio of critical damping ζ (e.g. 

[1]). Nevertheless, regulatory agencies allow for ordinary structures to exhibit inelastic/ 

hysteretic behavior (i.e. to suffer some structural damage), towards achieving cost-effective, 

functional, and aesthetically acceptable designs. In a performance-based design context, the 

extent of the allowable damage depends on the severity of the seismic event considered relative 

to the one defined by the elastic design spectrum (e.g. [2]). This is accomplished, within the 
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common force-based aseismic design procedure, by considering reduced input seismic forces 

compared to those prescribed by the elastic design spectrum by a factor R (strength reduction 

factor), with the stipulation that appropriate detailing is ensured during construction so that the 

structure complies with certain “performance criteria”. Inherent to the latter consideration is the 

concept of ductility demand μ which is equal to the ratio of the maximum lateral deformation 

attained by a yielding structure over a “nominal” yielding deformation. Thus, linear response 

spectrum-based analysis can still be applied for the aseismic design of ordinary constructed 

facilities by incorporating a spectrum of reduced ordinates (inelastic design spectrum) to allow 

for inelastic structural behavior expressed in terms of a specified level of ductility demand. 

 Initiated by the work of Veletsos and Newmark [3], significant research effort has been 

devoted over the past five decades to calculating the peak response of SDOF oscillators of T  

natural period for small oscillations (i.e. when no yielding occurs) tracing various nonlinear 

force-deformation laws for a large number of recorded ground motions pertaining to various 

seismic events. This is done by numerical integration of the governing nonlinear equations of 

motion. Based on such extensive numerical studies, several semi-empirical R-μ-T relations have 

been proposed for obtaining inelastic response spectra from the elastic ones (see e.g. References 

[4-7]). In fact, all contemporary code provisions rely on simplified versions of such relations to 

define inelastic response spectra to be used for the design of structures. 

 Alternatively, computationally demanding inelastic time-history analyses can be 

incorporated to obtain the inelastic response time-histories of nonlinear structures using 

numerical integration techniques. In the aseismic design framework dictated by a specific code, 

these kinds of analyses require the consideration of field recorded or artificially generated 
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seismic accelerograms conforming with certain compatibility criteria with the prescribed elastic 

design spectrum (see e.g. [8]). 

A considerably different approach in dealing with nonlinear systems response 

determination is to employ a linearization technique. That is, to approximate the a priori 

unknown response of the nonlinear systems by considering the response of an appropriately 

defined “equivalent” linear system (ELS). In general, the dynamical properties of the ELS 

(effective/equivalent stiffness and damping) depend on the force-deformation law of the 

nonlinear system (e.g. elastic, inelastic/ hysteretic), on the input excitation (e.g. harmonic, 

earthquake, stochastic etc.), and on the various assumptions made by the particular linearization 

scheme. Representing a non-linear oscillator by a linear effective natural period Teq and a ratio of 

critical damping ζeq facilitates the study of the underlying non-linear behavior significantly since 

these effective linear properties are amenable to a clear physical interpretation. More 

importantly, in obtaining the response of the nonlinear system the numerical integration of the 

nonlinear equations of motion is circumvented by such a representation. This of course is 

achieved at the cost of accepting certain errors due to the simplifying approximating assumptions 

inherent to all linearization techniques. For instance, in the cases where the response of nonlinear 

SDOF and multi-DOF systems to a stochastic excitation is of interest, the method of statistical 

(or stochastic) linearization is considered the most versatile alternative to the computationally 

demanding Monte Carlo analyses (see e.g. [9] and references therein). The latter analyses 

involve the integration of the nonlinear equations deterministically for an appropriately derived 

ensemble of time-histories statistically consistent with the considered stochastic input process.    

Focusing on earthquake engineering applications, consideration of equivalent linear 

oscillators derived from non-linear oscillators allows for interpreting the inelastic response 
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spectra as elastic response spectra corresponding to the effective stiffness and damping 

properties of the ELS (e.g. [10]). In fact, this interpretation renders possible the development of 

inelastic spectra from (Teq, ζeq)-μ-Τ relations as opposed to the previously discussed R-μ-T 

relations. For example, Iwan and Gates [11] and Kwan and Billington [12] derived (Teq, ζeq)-μ-Τ 

relations via numerical integration of various non-linear oscillators exposed to certain field 

recorded strong ground motions. Furthermore, Gulkan and Sozen [13] and Shibata and Sozen 

[14] suggested the use of ELS, derived from pertinent experimental results on single and multi 

storey R/C frames, as a tool for aseismic design of R/C structures. Based on the above concepts, 

the tool of an equivalent linear SDOF “substitute” structure is incorporated to account for the 

inelastic behavior of SDOF and MDOF structures in various contemporary methodologies for the 

aseismic design and the assessment of the seismic vulnerability of structures (see e.g. [15-18]). 

Clearly, the development of efficient linearization schemes accounting for the input seismic 

action in terms of a given design spectrum is critical and timely. 

Jennings [19] considered and compared six early deterministic linearization methods, 

assuming harmonic excitation and steady-state response conditions. Further, Iwan and Gates [20] 

assessed the potential of various linearization techniques to estimate the peak response of certain 

SDOF hysteretic oscillators exposed to strong ground motion. This was done vis-à-vis numerical 

results obtained by integrating the nonlinear equations of motion for an ensemble of 12 recorded 

accelerograms. Similarly, Hadjian [21] compared the formulae for defining equivalent linear 

properties resulting from several linearization techniques for elasto-plastic SDOF hysteretic 

systems. All the linearization techniques considered in these early studies define 

deterministically the ELSs without considering the statistical attributes of the seismic hazard 

explicitly. 
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More recently, Koliopoulos et al. [22] pursued a comparative assessment of the 

applicability of certain linearization schemes for the case of bilinear hysteretic SDOF systems. In 

this case a small ensemble (9) of artificial accelerograms whose average response spectra was 

relatively close to a specific design spectrum prescribed by the European aseismic code 

provisions (EC8) was used for the numerical validation of the techniques considered. One of 

these schemes involved random vibration-based linearization relying on the solution of an 

underlying Fokker-Planck equation, necessitating the assumption of white noise input: a limiting 

one for representing strong ground motion excitations. 

Furthermore, Basu and Gupta [23] derived inelastic spectra pertaining to certain recorded 

seismic accelerograms also based on a statistical linearization formulation. This formulation 

required the minimization of the expected value of the square difference (error) between the 

considered nonlinear equation of motion and the corresponding (target) equivalent linear with 

respect to the dynamical properties of the ELS. The associated expected values were computed 

based on the distribution of the peak response of the ELS excited by a Gaussian stationary 

process. A piecewise linear non-hysteretic type of nonlinearity was considered with a fixed value 

for the yielding displacement selected so that the system experiences mild nonlinear behavior. 

An attempt to predict the lower order displacement peaks and to develop constant cumulative 

damage spectra was also made assuming a Kanai-Tajimi filtered white noise excitation. Later, 

the formulation was applied for the case of bilinear hysteretic oscillators [24]. However, the 

scope of both of the aforementioned studies was to estimate the damage accumulation of the 

underlying nonlinear systems. Thus not special attention was given to the equivalent linear 

parameters which were treated as by-products of the statistical linearization formulation 

followed. 
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Moreover, in Miranda and Ruiz-García [25] the performance of four deterministic 

linearization schemes, along with two popular R-μ-Τ relations, were evaluated to obtain peak 

deformations of certain hysteretic SDOF systems. Special attention was given to quantifying the 

error of the estimated maximum responses versus results from a comprehensive Monte Carlo 

analysis involving the numerical integration of the nonlinear systems for a bank of 264 recorded 

accelerograms.  

In a study concerning the response of secondary systems founded on SDOF nonlinear 

systems, Politopoulos and Feau [26] proposed two different schemes to derive equivalent linear 

parameters. The first, concerns hysteretic perfectly elasto-plastic SDOF systems and involves a 

least square fit of linear transfer functions to power spectra estimated from response data of 

nonlinear systems obtained from Monte Carlo analyses. Clearly, this procedure does not 

circumvent the numerical integration of the nonlinear equations of motion while it involves 

certain approximations associated with spectral estimation and curve fitting considerations. The 

second, pertains to a class of nonlinear elastic systems subject to white noise excitation and 

utilizes a special statistical linearization procedure treating the equivalent linear stiffness 

parameter as a random variable. From a practical viewpoint, both the white noise excitation 

assumption and the probabilistic nature of the equivalent linear stiffness parameter considered 

limit, rather significantly, the merit of these proposed linearization methods.    

Notably, the potential advantages of focusing on the ELS derived from the method of 

statistical linearization considering input processes consistent with elastic design spectra seems 

to have been overlooked in the published literature. In this paper, a design spectrum compatible 

power spectrum is considered in conjunction with appropriate statistical linearization schemes as 

a surrogate for determining the peak seismic response of nonlinear systems. It is emphasized that 



8 
 

the purpose of the present work is not to assess the accuracy of the statistical linearization 

technique, a well-studied theme in the literature (see e.g [9] and references therein). Instead, it 

proposes a novel approach to estimate inelastic response spectral ordinates from a given family 

of elastic spectra for various damping ratios without resorting to numerical integration of the 

underlying nonlinear equations of motion. In this manner, the need to consider field recorded 

accelerograms of similar characteristics to the ones that have been used in the definition of the 

considered design spectrum is circumvented. Furthermore, the inherent probabilistic nature of 

the excitation is explicitly accounted for. Note that the stationarity assumption in the surrogate 

model of the strong ground motion input renders the statistical linearization step quite efficient, 

while it is not particularly restrictive in accounting for the physical aspects of strong ground 

motions. In fact, it has been argued that stationary power spectra consistent with a given 

response/design spectrum accounts implicitly for the transient attributes of the response of 

seismically excited structures as these reflect on the response/design spectrum [27].  

Figure 1.  

 

For clarity, the proposed approach is qualitatively presented in the flowchart of Figure 1. 

Clearly, the main steps of the approach encompass the derivation of a design spectrum 

compatible power spectrum, an issue that has been extensively studied in the open literature (e.g. 

[28-31]), and the application of the statistical linearization method (see e.g. [9, 32-33]). To this 

end, in section 2 an efficient method for deriving design spectrum compatible power spectrum is 

considered. Further, section 3 reviews the pertinent mathematical formulae for deriving  ELS via 

the statistical linearization method for viscously damped SDOF oscillators characterized by 

hardening piecewise linear elastic, and bilinear hysteretic restoring force-deformation laws. 

Section 4 provides numerical results supporting the effectiveness and the practical usefulness of 
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the proposed approach in conjunction with the design spectrum prescribed by EC8 [2]. Finally, 

section 5 includes pertinent concluding remarks.     

 

2. DERIVATION OF RESPONSE SPECTRUM COMPATIBLE POWER SPECTRA 

The core equation for relating a design/response pseudo-acceleration seismic spectrum Sα 

to a one-sided power spectrum G(ω) representing a Gaussian stationary process g(t) in the 

frequency domain reads (e.g. [34]) 

 ( ) 2
, ,0,,a j n j G j j GS ω ζ η ω λ= . (1)

In the above equation λj,m,G denotes the spectral moment of order m of the stationary response of 

a linear single-degree-of-freedom (SDOF) mass-spring-damper system of natural frequency ωj 

and damping ratio ζn base-excited by the process g(t). Namely, 

 
( )

( ) ( ), , 2 22 2
0 2

m

j m G

j n j

G
d

ω ω
λ ω

ω ω ζ ωω

∞

=
− +

∫ . (2)

Furthermore, the “peak factor” ηj,G appearing in Equation (1) is the critical parameter 

establishing the equivalence, with probability of exceedance p, between the Sa and G(ω) [34]. 

Specifically, it represents the factor by which the standard deviation of the response of the 

considered SDOF oscillator must be multiplied to predict the level Sa below which the peak 

response of the oscillator will remain, with probability p, throughout the duration of the input 

process Ts. The exact determination of ηj,G is associated with the first passage problem which 

involves the evaluation of the probability that the response of a linear SDOF oscillator does not 

cross a certain amplitude level (barrier) within the duration Ts (see e.g. [35]). A closed form 

solution for this problem is not available. Herein, the following semi-empirical formula for the 
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calculation of the peak factor is adopted which is known to be reasonably reliable for earthquake 

engineering applications ([34, 36]) 

 ( )( ){ }1.2
, , , ,2 ln 2 1 exp ln 2j G j G j G j Gv q vη π⎡ ⎤= − −⎢ ⎥⎣ ⎦

, (3)

where 

 ( ) 1,2,
,

,0,

ln
2

j Gs
j G

j G

Tv p
λ

π λ
−= − , (4)

and 

 
2
,1,

,
,0, ,2,

1 j G
j G

j G j G

q
λ

λ λ
= − . (5)

 For the purposes of this study, it is appropriate to set the probability p equal to 0.5 in 

Equation (4). Under this assumption, Equation (1) prescribes the following compatibility 

criterion: considering an ensemble of stationary samples of the process g(t) half of the population 

of their response spectra will lie below Sa (i.e. Sa is the median response spectrum). A 

computationally efficient numerical scheme is used to derive a non-parametric power spectrum 

G(ω) satisfying the aforementioned criterion for a given pseudo-acceleration design spectrum by 

solving the “inverse” stochastic dynamics problem governed by Equations (1) to (5). Compared 

to other methods utilized in the literature in a similar context, this scheme does not require 

iterations to be performed as in [28-29], and does not involve the solution of an optimization 

problem as in [29-30]. 

In particular, the adopted scheme relies on the following approximate formula to obtain a 

reliable estimate for the response variance of a lightly damped SDOF system subject to a 

relatively broadband excitation [34]  
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( ) ( ),0, 3 4

0

11
4

j
j

j G
j n j

G
G d

ωω πλ ω ω
ω ζ ω

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∫ . (6)

Approximating the integral in Equation (6) by a discrete summation, substituting Equation (6) in 

Equation (1), and appropriately rearranging the resulting terms yields [31, 34] 

 
( ) [ ]

2 1

02
11 ,

0

,4 ,
4

0 , 0
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G
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α ω ζζ ω ω ω ω
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ω ω

−

=−

⎧ ⎛ ⎞
⎪ ⎜ ⎟− Δ >⎪ ⎜ ⎟−⎡ ⎤ = ⎨⎣ ⎦ ⎝ ⎠
⎪

≤ ≤⎪⎩

∑ . (7)

Τhe latter equation establish an approximate numerical scheme to recursively evaluate G(ω) at a 

specific set of equally spaced by Δω (in rad/sec) natural frequencies ωj= ω0+ (j-0.5)Δω; j= 

1,2,…,M where ω0 denotes the lowest bound of the existence domain of Equation (3) [31]. 

Specifically, ω0 should be set equal to the lowest value of the natural frequency ωn which 

simultaneously satisfies the conditions 

 ( ),ln 2 0j Nv ≥ , (8)

and 

 ( )( ){ }1.2
, , ,ln 2 1 exp ln 2 0j N j N j Nv q vπ⎡ ⎤− − ≥⎢ ⎥⎣ ⎦

. (9)

  Obviously, in implementing the above scheme the peak factors ηj,N need to be calculated 

for an input power spectrum N(ω) which has to be a priori assumed without knowledge of G(ω). 

The duration of the underlying stationary process characterized by N(ω) is assumed equal to the 

duration Ts of g(t). Conveniently, the value of ηj,N is not very sensitive to the shape of the 

spectrum N(ω) (see e.g. [36]). This observation is justified by the fact that the evaluation of the 

peak factor (Equations (2) to (5)), involves ratios of integrals of the product of the input power 

spectrum with the squared modulus of the frequency response function of the various SDOF 

systems considered over the whole range of frequencies. The validity of this assertion is verified 
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in a following section using numerical results pertaining to three different shapes of N(ω). These 

are the unit amplitude white noise (WN) spectrum 

 ( ) 1 ; 0 bN ω ω ω= ≤ ≤ , (10)

the Kanai-Tajimi (KT) spectrum [37] 

 ( )

2

2

22 2

2

1 4
; 0

1 4

g
g

b

g
g g
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ωζ
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ω ω ω
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⎝ ⎠= ≤ ≤
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

, (11)

and the Clough-Penzien (CP) spectrum [38] 

 ( )
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, (12)

where ωg, ζg, ωf, and ζf  are predefined constant parameters, and ωb is the largest frequency of 

interest. The values of the parameters ωg, ζg reflect the filtering effects of the surface soil 

deposits on the propagating seismic waves during an earthquake event. Thus, they should be 

judicially chosen based on the soil conditions associated with the given (target) design spectrum. 

The parameters ωf, ζf control the shape of the high-pass filter incorporated in the CP spectrum to 

suppress the low frequencies allowed by the KT spectrum and their values should be selected 

accordingly. More detailed discussions on the spectral forms of Equations (11) and (12) can be 

found in [8] and the references therein. 

To this end, it is noted that the evaluation of the spectral moment integrals defined by 

Equation (2) for the input spectra given by the Equations (10) to (12) can be performed either 

numerically using appropriate quadrature rules or analytically. In the latter case, the residue 
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theorem for complex integration can be employed [36]. Alternatively, these response spectral 

moments can be obtained by solving linear systems of equations derived from application of the 

Hilbert transform on the governing differential equations of motion as it has been shown by 

Spanos and Miller [39]. For the simplest case of N(ω) being unit strength white noise (WN) the 

following closed form expressions for the quantities in Equations (4) and (5) hold 

 ( ) ( ) 1
, 1 ln

2
s

j N n j
Tv pω
π

−
= = − , (13)

 
2

1
, 1 2 2

1 21 1 tan
1 1

j Nq ζ
ζ π ζ

−
=

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟− −⎝ ⎠

. (14)

Regarding the conditions of Equations (8) and (9), pertinent plots shown in Figure 2(a) 

reveal that Equation (9) defines a more stringent criterion which is satisfied for relatively small 

values of ω0 for the cases that N(ω) assumes a WN and a KT spectral form (Figure 2(b)). Results 

from extensive numerical experimentation, similar to those presented in Figure 1 indicate that for 

the range of values of the KT parameters, ωg and ζg, of practical interest, the admissible values 

for ω0 coincide with those for the WN input spectrum. Interestingly, for the CP spectrum ω0 is 

always zero since the left hand side of Equations (8) and (9) are positive everywhere (see also 

Figure 2(a)). This result is associated with the fact that the CP spectrum vanishes as ω→0. 

 

Figure 2.  

 

Note that upon determining the discrete power spectrum G[ωj] by Equation (7) the 

associated pseudo-acceleration response spectrum D[ωj,ζ] can be computed in a straightforward 

manner using Equations (1) to (5). For this purpose, the first three spectral moments of the 
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response of a SDOF system excited by a process characterized by a power spectrum known at 

equally spaced frequencies can be evaluated by the formulas reported in [29, 40], which are 

included in the Appendix for completeness. 

Incidentally, if so desired, the initially obtained discrete power spectrum G[ωj] can be 

further modified iteratively to improve the matching of the associated response spectrum D[ωj,ζ] 

with the target design spectrum Sα according to the equation written at the v-th iteration (e.g. 

[27]) 

 ( ) ( )
( )

2

1 ,

,
a jv v

j j v
j

S
G G

D

ω ζ
ω ω

ω ζ
+

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠
. (15)

 

3. BACKGROUND  ON  THE STATISTICAL LINEARIZATION METHOD 

 

Consider a unit-mass viscously-damped quiescent SDOF system with a non-linear 

restoring force component base-excited by the stationary zero-mean acceleration process g(t) 

characterized in the frequency domain by the power spectrum G(ω). The equation of motion of 

this system reads 

 ( ) ( ) ( ) ( ) ( ) ( )22 , ; 0 0 0n n nx t x t x x g t x xζ ω ω ϕ+ + = − = = , (16)

in which x(t) is the system deformation (displacement trace of the system relative to the motion 

of the ground), ωn is the system natural frequency for small deformations, ζn is the ratio of 

critical viscous damping, and ( ),x xϕ  is a nonlinear function governing the restoring force-

deformation law; the dot over a symbol signifies differentiation with respect to time t. 

 The statistical linearization method utilizes the response process y of an equivalent linear 

system (ELS) of natural frequency ωeq and damping ratio ζeq given by the equation  
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 ( ) ( ) ( ) ( ) ( ) ( )22 ; 0 0 0eq eq eqy t y t y t g t y yζ ω ω+ + = − = = , (17)

to approximate the process x, that is, the response of the non-linear oscillator of Equation (16) 

[9]. According to the original and most widely-used form of statistical linearization the above 

linear system is defined by minimizing the expected value of the difference (error) between 

Equations (16) and (17) in a least square sense with respect to the quantities ωeq and ζeq (i.e. the 

effective dynamical properties of the ELS), (see e.g. [9, 32-33]). This criterion yields the 

following expressions for the effective linear properties [9] 

 
( ){ }
{ }

2
2

,
eq

E x x x
E x
ϕ

ω = , (18)

and 
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,
n

eq n
eq

E x x x
E x
ϕωζ ζ

ω
= + , (19)

where E{•} denotes the mathematical expectation operator. In this junction, it is commonly 

assumed that the unknown distribution of the response process x of the non-linear oscillator can 

be approximated, for the purpose of evaluating the expected values, by a zero-mean Gaussian 

process. Furthermore, it is also assumed that the variances of the processes x and y are equal ([9, 

33]). The latter suggests that  
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in Equations (18) and (19). Under the aforementioned assumptions, Equations (18) and (19) can 

be simplified as [9] 

 
( )2 ,

eq

x x
E

x
ϕ

ω
∂⎧ ⎫
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, (22)

and 

 
( ),n

eq n
eq

x x
E

x
ϕωζ ζ

ω
∂⎧ ⎫

= + ⎨ ⎬∂⎩ ⎭
. (23)

For many nonlinear force-deformation laws of practical interest the above formulae assumption 

leads to closed-form expressions which facilitate significantly the application of the statistical 

linearization method [9]. In any case, Equations (20) to (23) establish a system of nonlinear 

equations that needs to be simultaneously satisfied. Typically, this is achieved via a numerical 

iterative scheme [9]. Conveniently for the purposes of the proposed approach, G(ω) is a non-

parametric power spectrum known at a specific set of equally-spaced frequencies and thus the 

integrals in Equations (22) and (23) can be evaluated at each iteration using the closed-form 

formulas included in the Appendix. 

It is noted that statistical linearization formulations using alternative criteria to minimize 

the error between Equations (16) and (17) have been proposed in the literature (e.g. [23, 33, 41-

43]), while significant research effort has been also devoted in relaxing the aforementioned 

Gaussian distribution assumption (e.g. [44, 45]). However, such considerations involve 

computationally intensive iterative numerical schemes requiring the calculation of integrals 

which are not amenable to analytical treatment, without necessarily yielding results of 

substantially increased accuracy (see e.g. [23, 33, 43]). Since simplicity and computational 

efficiency are primary objectives in the herein proposed approach, the classical statistical 

linearization method is adopted in all of the ensuing analytical and numerical results to obtain 
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equivalent linear properties by minimizing the squared difference between the nonlinear and the 

equivalent linear system. Further, the assumption that the distribution of the nonlinear response 

can be approximated by a Gaussian one is adopted to compute the mathematical expectations in 

Equations (22) and (23). It should be clear from the preceding comments that the effective linear 

properties ωeq and ζeq obtained through iterative solution of Equations (20) to (23) depend 

explicitly on the input power spectrum G(ω). In the framework of the proposed approach G(ω) is 

compatible with a given design spectrum and thus these ωeq and ζeq are related in a statistical 

sense with the latter spectrum in a straightforward manner. This constitutes the main advantage 

of the herein developed approach over the common equivalent linearization techniques used in 

various aseismic design procedures which define ELSs without accounting for the input seismic 

action as defined by regulatory agencies by means of design spectra (see e.g. [18, 46-48]. In the 

remainder of this section certain nonlinear restoring force-deformation laws of practical interest 

are discussed, and the pertinent formulas to obtain the related ωeq and ζeq are reported.  

 

3.1. Piecewise linear restoring force 

 

Consider a hardening non-linear elastic oscillator characterized by a piecewise linear 

restoring force consisted of two branches. Let α>1 be the stiffness (rigidity) ratio between the 

branches and xy be the critical deformation for which a change of stiffness occurs as shown in 

Figure 3(a). The equation of motion for such a system is obtained by substituting in Equation 

(16): 

 ( )
( ) ( ) ( )

;

sgn 1 ; sgn
y

y y

x x x
x

ax x x x x x
ϕ

α

⎧ ≤⎪= ⎨
+ − >⎪⎩

, (24)
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where sgn(•) symbolizes the signum function, namely, sgn(x)= 1 for x>0 and sgn(x)= -1 for x<0.  

 

Figure 3.  

 

In practical terms, the restoring force of Equation (24) can be considered in the context of 

preliminary aseismic design procedures in several cases. These include accounting for the 

pounding/impact effect in structural members such as between deck elements at expansion joints 

along the longitudinal direction of bridges (e.g. [49]), and between adjacent buildings (e.g. [50-

51]). They also include cases of structures whose lateral movement is restricted via “stop-

supports” and restrainers such as in above-ground pipelines along their transversal direction (e.g. 

[52]), and in seismically isolated structures (e.g. [53]). In this respect, the deformation xy is 

construed as the clearance/distance between structural members or between structures and their 

surroundings, while the ratio α reflects the increase in the overall structural stiffness after impact. 

Substitution of Equation (24) in Equations (22) and (23) yield the following expressions 

for the parameters of the ELS associated with a nonlinear oscillator with piecewise linear 

restoring force  

 ( )2 2

,0,

1 ,
2

y
eq n

eq G

x
a a erfω ω

λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (25)

and 

 n
eq

eq

ωζ ζ
ω

= , (26)

in which erf (•) denotes the error function defined as 



19 
 

 ( ) ( )2

0

2 exp
u

erf u v dv
π

= −∫ . (27)

Clearly, given a certain nonlinear oscillator with piecewise linear restoring force defined by a set 

of values for ωn, ζn, a, and xy or equivalently R (see Figure 3(a)), excited by a specific design 

spectrum compatible G(ω), a set of linear parameters ωeq and ζeq  can be computed by iteratively 

solving Equations (20), (25), and (26) [9].  

 

 

3.2. Bilinear hysteretic restoring force 

 

Of particular interest in the aseismic design of structures is the bilinear hysteretic force-

deformation law show in Figure 3(b) which is the simplest model to capture the hysteretic 

behavior of structural members and structures under  seismic excitation (see e.g. [7, 11, 14, 51, 

54]). For instance, it is a common practice to model the inelastic behavior of structures, including 

multi-storey buildings and bridges, exposed to strong ground motion by viscously damped 

bilinear hysteretic SDOF oscillators in the context of non-linear static analyses (see e.g. [18, 47]) 

and of performance/displacement-based design procedures (e.g. [15-17]). The governing 

equation of motion of such an oscillator can be mathematically expressed with the aid of an 

auxiliary state z by substituting in Equation (16) [55] 

 ( ) ( ), 1x x ax a zϕ = + − , (28)

where 

 ( ) ( ) ( ) ( ) ( ), 1 y yz x x x U x U z x U x U z x⎡ ⎤= − − − − − −⎣ ⎦ , (29)
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in which xy is the yielding deformation and α<1 is the post-yield to pre-yield (rigidity) ratio, and 

U(•) denotes the Heaviside step function, namely, U(v)= 1 for  v≥0, and U(v)= 0 for v= 0.  

Adopting the assumptions of the classical statistical linearization method and assuming 

that the response of the nonlinear system is narrowband (i.e. is dominated by a slowly varying in 

time apparent frequency) effective parameters of an ELS corresponding to a given viscously 

damped bilinear hysteretic SDOF system, are obtained via the formulae (e.g. [9, 32]) 

 
( ) 2

2 2
3

1

8 1 1 11 1expeq n

a vv dv
v v

ω ω
π θ θ

∞⎧ ⎫− ⎛ ⎞−⎪ ⎪⎛ ⎞= − + −⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∫ , (30)

and 

 
2

1 11n n
eq n

eq eq

a erfω ωζ ζ
ω ω πθ θ

⎛ ⎞ ⎛ ⎞− ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
, (31)

where  

 ,0,
22 eq G

yx
λ

θ = . (32)

As in the previous case considered, iterations need to be performed to numerically derive 

equivalent linear properties ωeq and ζeq, from Equations (20), and (30) to (32) to approximate 

statistically the response of a certain bilinear hysteretic oscillator defined by the parameters ωn, 

ζn, a, and xy or equivalently R (see Figure 3(b)), excited by a specific design spectrum compatible 

G(ω). Note that in this case the equivalent damping expression (Equation (31)) includes an 

additional term which accounts for the energy dissipation in the nonlinear system due to 

hysteresis.     
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4. NUMERICAL APPLICATION TO THE EC8 DESIGN SPECTRUM 

 

4.1. EC8  design spectrum compatible power spectra 

 

 Consider the pseudo-acceleration design spectrum prescribed by the European aseismic 

code provisions (EC8) for soil conditions B, damping ratio ζn= 5%, and peak ground acceleration 

equal to 36% the acceleration of the gravity (gray thick line in Figure 4(b)) as the given/ target 

spectrum [2]. Figure 4(a) includes discrete power spectra compatible with this target spectrum 

computed by means of Equation (7) for the three input spectral shapes N(ω) considered in 

section 2, namely white noise (WΝ) (Equation (10)), Kanai-Tajimi (KT) (Equation (11)), and 

Clough-Penzien (CP) (Equation (12)). The duration Ts is taken equal to 20sec, while the 

discretization step is set equal to Δω= 0.1rad/sec. The requisite parameters for the definition of 

the KT and CP N(ω) spectra used are ζg= 0.78, ωg= 13.18rad/sec, ζf= 0.88, and ωf= 3.13rad/sec 

reported in a recent work by [8]. These values pertain to a parametric CP type evolutionary 

power spectrum compatible with the herein considered EC8 target spectrum. Furthermore, 

Figure 4(a) shows an iteratively modified power spectrum computed by means of Equation (15) 

after four iterations assuming as the “seed” spectrum the aforementioned WN based spectrum 

which is the simplest and computationally least demanding case of a spectrum that can be 

obtained utilizing Equation (7).  

 

Figure 4. 

 

The associated with the above power spectra pseudo-acceleration response spectra 

calculated analytically by Equations (1) to (5) are plotted in Figure 4(b) and compared with the 
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target spectrum. As it can be seen in the latter figure, consideration of more elaborate input 

spectral shapes N(ω) in Equation (7) results in somewhat different power spectra attaining 

response spectra which achieve slightly better matching with the target design spectrum. Similar 

results can be found in Giaralis [56] for EC8 design spectra pertaining to all soil types as 

prescribed by the European aseismic regulations. However, the iteratively matched power 

spectrum which attains a notably more resonant (“spiky”) shape compared to the power spectra 

computed from Equation (7) without any additional iterations performed, achieves the best 

agreement with the target spectrum. More importantly, this iteratively modified WN based 

spectrum is computationally less costly  to obtain compared to the KT and the CP based spectra 

considered herein which involve the calculation of more complex  response spectral moments as   

it has been discussed in section 2 (see also [36, 39]). Thus, in the context of an efficient 

algorithmic determination of design spectrum compatible power spectra, it is suggested to 

perform a reasonable number of iterations via Equation (15); as a “seed” (i.e. initial estimate) a 

non-parametric power spectrum obtained from Equation (7) assuming a WN N(ω) spectrum  can  

be  used.        

In Figure 4(c), pertinent results are shown associated with a Monte Carlo analysis 

conducted to assess the achieved level of compatibility of the aforementioned modified power 

spectrum with the target spectrum in terms of the criterion posed by Equation (1) for p= 0.5 (see 

also section 2). Specifically, an ensemble of 1000 stationary signals of 20sec duration each 

compatible with the iteratively modified power spectrum of Figure 4(a) are generated using an 

auto-regressive-moving-average (ARMA) filtering technique [57]. The response spectra of these 

signals are calculated [58] and the median spectral ordinates are compared with the EC8 target 

design spectrum in Figure 4(c). The cross-ensemble minimum and maximum spectral ordinates 
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are also included to illustrate the statistical nature of the analysis. Evidently, the criterion posed 

by Equation (1) is satisfactorily met, within engineering precision, by the iteratively modified 

power spectrum.  

 

4.2.  Equivalent linear systems and assessment via Monte Carlo analyses 

 

 In this subsection, the applicability of the proposed approach to estimate the maximum 

deformations of various stiffening piecewise linear elastic and bilinear hysteretic SDOF 

oscillators is illustrated. To this aim, the iteratively modified power spectrum of Figure 4(a) is 

used as a surrogate for determining equivalent linear systems (ELS) of natural period Teq and of 

ratio of critical damping ζeq associated with the aforementioned nonlinear oscillators in the 

context of the statistical linearization method. Furthermore, Monte Carlo simulations pertaining 

to an ensemble of 40 non-stationary artificial accelerograms compatible with the previously 

defined EC8 design spectrum are conducted. This is done  to confirm that the average peak 

response of the nonlinear systems compares reasonably well with those of the ELS. As shown in 

Figure 5 the ensemble average pseudo-acceleration spectrum of these accelerograms seismic 

signals is in a quite close agreement with the considered EC8 spectrum. These seismic signals 

have been generated by a wavelet-based stochastic approach recently proposed by the authors 

[8].  

 

Figure 5. 

 

In particular, Figure 6(a) to Figure 6(f) provide the properties of the ELSs (Teq and ζeq) 

obtained by iteratively solving Equations (20), (25), and (26) for piecewise linear oscillators. 
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This is done for various yielding displacements xy, natural periods Tn, rigidity ratios α, and for a 

fixed ratio of critical damping ζn= 0.05 exposed to the iteratively modified power spectrum of 

Figure 4(a). Note that these properties are plotted against the ductility μ since this a normalized 

quantity of interest expressing the demand of structural performance imposed by the input 

seismic action in aseismic design practice (see also Figure 3). For the purposes of this study the 

ductility μ is computed as the ratio of the average peak response of each ELS exposed to the 

ensemble of the seismic signals of Figure 5 over the yielding displacement xy of the 

corresponding non-linear system. As expected, systems of the same rigidity ratio α exhibiting 

more severe non-linear behavior in terms of higher ductility demand, or systems of the same 

level of ductility demand characterized by a higher rigidity ratio α yield stiffer ELS (i.e. ELS of 

decreased natural period Teq). The equivalent viscous damping ζeq changes accordingly since by 

definition it is dependent on the natural frequency of the ELS (see also Equation (26)).  

In Figure 6(g) to Figure 6(i) the aforementioned ductility demands are plotted for each 

considered ELS (lines of various types) versus the strength reduction factor R defined in Figure 

3. These R factors are computed as the ratio of the average peak response of the infinitely linear 

system corresponding to the various considered Tn values excited by the aforementioned 

ensemble of signals over the yielding force fy of the corresponding non-linear system (see also 

Figure 3a). Moreover, in Figure 6(g) to Figure 6(i) the average ductility demand μ obtained via 

numerical integration of the considered non-linear systems with piecewise linear restoring force 

(dots of various shapes) subject to the ensemble of the accelerograms of Figure 5 are also 

included. For this task, the standard constant acceleration Newmark’s method, incorporating an 

iterative Newton-Raphson algorithm to treat locally the discontinuities of the piecewise linear 

force-deformation law, has been used (see e.g. [1]).  
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In general, the R-μ-Tn relations of Figure 6(g) to Figure 6(i) derived from the ELS and 

from the corresponding systems with piecewise linear type of stiffness nonlinearity as described 

above compare well for the cases considered. Clearly, this fact demonstrates the reliability of the 

ELS obtained via the proposed approach to estimate the peak deformations of the non-linear 

systems subject to seismic action defined by means of the given design spectrum. 

 

Figure 6. 

 

Similarly to the case of the piecewise linear oscillators, equivalent linear properties 

corresponding to bilinear hysteretic oscillators have been determined. This has been done for 

bilinear oscillators of various yielding displacements xy, natural periods Tn, and for ζn= 0.05 

excited by the iteratively modified EC8 compatible power spectrum of Figure 4(a). The obtained 

equivalent linear properties are plotted in Figure 7(a) and Figure 7(b) versus the ductility μ. The 

rigidity ratio α is taken equal to 0.5. These properties have been derived by iteratively solving 

Equations (20) and (30) to (32). As one should expect vis a vis the previous case of the stiffening 

nonlinear elastic systems, for this “softening” system the stiffness of the ELSs decreases 

(increased Teq values) for higher levels of nonlinearity as expressed by larger strength reduction 

factors R. Further, the departure from the region of linear response for this system leads to a 

significant increase of the viscous damping ratio of the ELSs to account for the additional energy 

dissipation achieved via the exhibited hysteretic behavior. Moreover, Figure 7(c) present R-μ-Tn 

relations based on averaged response time-histories obtained via numerical integration of the 

considered bilinear hysteretic systems (dots of various shapes) and of the corresponding ELSs 

(lines of various types) considering as input the ensemble of the seismic signals of Figure 5. An 
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algorithm similar to the one adopted in the case of the piecewise linear oscillators has been used 

to integrate the governing equation of the bilinear hysteretic systems.  

 

Figure 7. 

 

Clearly, the quality of the agreement between the peak response of the nonlinear systems 

and that of the ELSs deteriorates as the level of the nonlinearity increases. This is because the 

response of a system exhibiting strongly nonlinear behavior deviates significantly from a 

Gaussian and narrowband process even for Gaussian excitation; this attribute is not in 

conformity with the assumptions of the herein adopted statistical linearization method (see e.g. 

[9], [45]).  

 

4.3. Estimation of peak nonlinear responses from elastic response spectra 

 

Figure 8 and 9 include certain examples illustrating the manner by which the effective 

linear properties of the ELSs derived from the proposed approach can be used to approximate the 

peak responses of the associated nonlinear systems in terms of pseudo-acceleration spectral 

ordinates. Specifically, with reference to a certain elastic design spectrum for damping ζn and 

considering a specific nonlinear oscillator of natural period Tn for small oscillations (vertical 

dotted lines), one can move, following the horizontal arrows, to a vertical solid line which 

corresponds to an ELS characterized by Τeq= 2π/ωeq and ζeq obtained by the proposed statistical 

linearization method and “read” the related spectral ordinate from an elastic design spectrum 

corresponding to the ζeq damping ratio. The equivalent linear Teq and ζeq properties utilized in 

Figure 8 and Figure 9 are taken from the plots in Figure 6 and Figure 7, associated with the 
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various piecewise linear elastic and bilinear hysteretic oscillators considered, respectively. 

Obviously, in every case the aforementioned procedure for estimating maximum nonlinear 

responses from elastic design spectra can be facilitated by having available a collection of elastic 

design spectra corresponding to various levels of viscous damping. In this regard, it is noted that 

common code provisions typically include semi-empirical formulae calibrated from extensive 

Monte Carlo analyses to define elastic response spectra of various damping levels. (see e.g. [2]). 

However, the reliability of such formulae is still a matter of open research (e.g. [59, 60]). To this 

end, the response spectra of Figure 8 andFigure 9 corresponding to various damping ratios have 

been numerically computed [58] from the ensemble of the 40 accelerograms compatible to the 

5%-damped design spectrum of Figure 5.  

 

Figure 8.  

 

Figure 9.  

 

Note that the response spectra curves of the aforementioned figures corresponding to 

various ζeq damping ratios are amenable to a dual interpretation. Specifically, they can be 

construed both as elastic response spectra characterizing linear oscillators of increased viscous 

damping compared to the initial ζn=5% in all examples herein considered. They can also be  

construed and as constant-strength inelastic response spectra corresponding to certain force 

reduction ratios R (see also [10, 12]). Focusing on the case of the bilinear hysteretic systems, and 

taking advantage of the aforementioned dual interpretation it is possible to develop constant-

strength and constant-ductility inelastic spectra associated with a given design spectrum [1] from 

the R-μ-Tn relations of Figure 7 derived by integrating only the equivalent linear SDOF systems. 
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Certain examples are given in Figure 10. Interestingly, the influence of the initial value of Tn on 

the equivalent linear viscous damping ratio is relatively insignificant as implied by Figure 7(b). 

Thus, it is reasonable to consider inelastic spectra obtained from elastic spectra averaged over 

oscillators of fixed α and R (or μ) properties for various Τn using the mean value of the derived 

equivalent linear damping ratios denoted by eqζ  in Figure 10. As it has been already pointed out, 

if reliable elastic spectra of various damping ratios are available, the above spectra can be 

constructed without the need to consider any real recorded or artificial accelerogram. Note that if 

such a family is not available, it is possible to estimate the peak response of the underlying ELS 

based on Equation (1). Namely, as a product of a peak factor calculated from Equation (5) times 

the standard deviation of the response of the ELS system computed from Equation (20).  

 

Figure 10.  

 

Incidentally, compared to the elastic response spectrum (gray line in Figure 10), the 

inelastic spectra of Figure 10 for the bilinear oscillator are much smoother. They  possess less 

prominent peaks while their ordinates increase only mildly for relatively short periods and 

decrease monotonically for longer periods. These observations are consistent with results from 

usual Monte Carlo analysis of nonlinear systems involving large ensembles of real recorded 

accelerograms (see e.g. [61]). 

 

 

 

 



29 
 

5. CONCLUDING REMARKS 

 

An approach has been presented for estimating the peak seismic response of nonlinear 

systems exposed to excitations specified by a given design spectrum. The proposed approach 

relies on first determining a power spectrum which is equivalent, stochastically, to the given 

design spectrum. A computationally efficient numerical algorithm has been used for this task. 

This power spectrum is next used to determine, via statistical linearization, effective natural 

frequency and damping coefficients for the considered nonlinear system. These coefficients are 

then utilized to estimate readily the peak seismic response of the nonlinear system using standard 

linear response spectrum techniques. Clearly, this practice can be facilitated by the availability of 

families of elastic design spectra prescribed for a wide range of damping ratios. Furthermore, this 

approach can serve for developing inelastic response spectra from a given elastic response/ 

design spectrum without the need of integrating numerically the nonlinear equations of motion 

for selected strong ground acceleration time-histories.  

Numerical data supporting the reliability of the proposed approach have been provided; 

they pertain to the piecewise linear elastic and to the bilinear hysteretic kinds of nonlinear 

systems in conjunction with the EC8 elastic design spectrum. Specifically, appropriately 

normalized peak responses of these oscillators excited by a specific EC8 design spectrum have 

been computed via the proposed approach. These data have been juxtaposed with results from 

Monte Carlo analyses involving direct numerical integration of the non-linear equations of 

motion for a suite of non-stationary ground acceleration time histories compatible with the same 

EC8 spectrum. The comparison has shown  a reasonable level of agreement.  
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  Note that the proposed approach can perhaps be extended to accommodate the 

incorporation of more sophisticated nonlinear hysteretic models to capture structural behavior in 

greater detail (e.g. [55]) through the consideration of more elaborate statistical linearization 

schemes (e.g. [9, 62]). Furthermore, it is pointed out that currently various deterministic 

linearization methods assuming harmonic input excitation (e.g. [19]) are commonly used in 

tandem with given elastic design spectra to derive equivalent linear systems (ELSs) iteratively 

from ideal SDOF bilinear hysteretic oscillators. This is done in the context of the non-linear 

static (pushover) method (e.g. [17, 18, 47]), and in various displacement based aseismic design 

procedures (e.g. [46, 48]). It is hoped that the herein proposed statistical linearization based 

approach can be a useful alternative to these conventional linearization methods. Clearly, it 

yields ELS whose properties are explicitly related to the physics of the structural dynamics 

problem as captured by the design spectra prescribed in contemporary aseismic code provisions. 

Obviously, further research work is warranted in this regard.  

 

APPENDIX 

 

 Consider a discretized stationary power spectrum G[ωq]= Gq, where ωq are equally 

spaced frequencies calculated as ωq= ω0+ (q-0.5)Δω; q= 1,2,…,M and ω0 is given by Equations 

(8) and (9). By discretizing the frequency domain according to the grid: ωp= ω0+ (p-1)Δω; p= 

1,2,…,M+1, the first three response spectral moments of Equation (2) can be numerically 

evaluated using the formula [29, 31, 40] 
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Figures with captions 
 

 

Figure 1. Flowchart of the proposed approach. 

 
 
 

 

Figure 2. Numerical evaluation of the conditions posed by Equations (8) and (9) and determination of the frequency 
ω0 appearing in Equation (7) for several values of the duration Ts of the underlying stationary process characterized 

by the N(ω) spectrum taken as WN (Equation (10)), KT (Equation (11) for ωg= 15rad/sec; ζg= 0.6), and CP 
(Equation (12) for ωg= 15rad/sec; ζg= 0.6; ωf= 3rad/sec; ζf=1). 
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Figure 3. Nonlinear restoring force-deformation laws considered and definitions of the strength reduction factor R 
and ductility μ. (a) Two-brunch piecewise elastic restoring force functions. (b) Bilinear hysteretic restoring force. 
The symbol k denotes the stiffness of the infinitely linear system associated with the response of the non-linear 

systems in the range of small deformations. 
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Figure 4. (a) Power spectra obtained by Equation (7) for various input spectra N(ω) and an iteratively modified 
spectrum obtained by Equation (15) after 4 iterations compatible with the target EC8 design spectrum (ζ=5%; PGA= 

0.36g; soil conditions B). (b) Response spectra calculated by Equation (1) pertaining to the power spectra of panel 
(a). (c) Numerical verification of the compatibility criterion posed by Equation (1) for the iteratively matched 

spectrum of panel (a). 
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Figure 5. Response spectra of an ensemble of 40 artificial non-stationary accelerograms compatible with the target 
EC8 design spectrum. The time-history of one of these accelerograms and its corresponding velocity and 

displacement trace are also plotted. 
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Figure 6. (a) to (f): Effective properties of ELSs corresponding to various viscously damped oscillators with 
piecewise linear elastic restoring force-deformation law compatible with the considered EC8 design spectrum.  

(g) to (i): Evaluation of the potential of the derived ELSs to estimate the peak response of the considered nonlinear 
oscillators via Monte Carlo simulations. 
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Figure 7. (a) to (b): Effective properties of ELSs corresponding to various viscously damped oscillators with 
bilinear hysteretic restoring force-deformation law (α= 0.5) compatible with the considered EC8 design spectrum. 

(c): Evaluation of the potential of the derived ELSs to estimate the peak response of the considered nonlinear 
oscillators via Monte Carlo simulations. 
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Figure 8. Estimation of maximum response of various non-linear oscillators following a piecewise linear elastic 
restoring force-deformation law from elastic design spectra in terms of pseudo-acceleration. 
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Figure 9. Estimation of maximum response of various non-linear oscillators following a bilinear hysteretic restoring 
force-deformation law (a=0.5)  from elastic design spectra in terms of pseudo-acceleration. 
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Figure 10. Estimated constant strength and constant ductility inelastic spectra from elastic spectra for various 
bilinear hysteretic oscillators (a=0.5). 

 
 

 
 
 
 


