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Abstract 
 

The harmonic wavelet transform is employed to analyze various kinds of 

nonstationary signals common in aseismic design. The effectiveness of the harmonic 

wavelets for capturing the temporal evolution of the frequency content of strong ground 

motions is demonstrated. In this regard, a detailed study of important earthquake 

accelerograms is undertaken and smooth joint time- frequency spectra are provided for 

two near- field and two far- field records; inherent in this analysis is the concept of the 

mean instantaneous frequency. Further, as a paradigm of usefulness for aseismic 

structural purposes, a similar analysis is conducted for the response of a 20-story steel 

frame benchmark building considering as the excitation one of the four accelerograms 

scaled by appropriate factors to simulate undamaged and severely damaged conditions 

for the structure. The resulting joint time- frequency representation of the response time 

histories captures the influence of nonlinearity on the variation of the effective natural 

frequencies of a structural system during the evolution of a seismic event. In this context, 

the potential of the harmonic wavelet transform as a detection tool for global structural 

damage is explored in conjunction with the concept of monitoring the mean instantaneous 

frequency of records of critical structural responses. 



1. Introduction 
 
 Seismic signals are inherently nonstationary as their intensity and frequency 

content evolve with time. Earthquake accelerograms decay in time, after a short initial 

period of growth, and exhibit a time-varying frequency composition due to the dispersion 

of the propagating seismic waves. Since the response of a structural system to a strong 

ground motion is primarily a resonance problem, capturing the evolution of the 

frequencies present in a seismic accelerogram facilitates the assessment of its damage 

potential to constructed facilities. Furthermore, the time histories associated with certain 

structural response quantities, such as floor displacements and inter-story drifts of a 

building subject to seismic excitation, can also be processed as nonstationary signals 

whose evolving frequency contents not only reflect, obviously, some characteristics of 

the input excitation but also carry valuable information about the possible level of global 

structural damage caused by the motion of the ground. Such signals call for a joint time- 

frequency analysis; for it is clear that their time- dependent frequency content cannot be 

adequately represented by the ordinary Fourier analysis which provides only the average 

spectral decomposition of a signal.  

During recent decades the wavelet transform has become a potent analysis tool in 

signal processing that can be used to yield a well defined time-frequency representation 

of a deterministic signal; see for instance Burrus et al. (1997) and Mallat (1998). In most 

cases, it is advantageous compared to traditional time- frequency analysis methods such 

as the windowed or short- time Fourier transform (STFT), and the Wigner- Ville 

distribution (WVD) (e.g. Newland, 1997). STFT involves truncating the signal in time 

using possibly overlapping window functions of a chosen width T to obtain piecewise 



stationary signals of constant duration T. Then, Fourier analysis is performed to each of 

these pieces of the initial signal resulting in Fourier coefficients that feature the same 

frequency bandwidth of approximately 1/T, due to the uncertainty principle (Cohen, 

1995). This constitutes a non- adaptive analysis procedure with significant time- 

frequency resolution limitations. Once the window function is chosen, the frequency and 

time resolution are fixed for all frequency bands and all times. To assume stationarity, the 

window is supposed to be narrow, which results in poor frequency resolution. If the width 

of the window is increased, the frequency resolution improves but the time resolution 

becomes poor and the condition of stationarity may be violated.  

The Wigner- Ville method aims to circumvent some of the shortcomings of STFT 

and is based on the concept that a time- dependent spectrum at time t can be defined as 

the Fourier transform of an instantaneous correlation function R(τ, t), which corresponds 

to the standard correlation function R(τ) with time lag τ centered at time t (Cohen, 1995; 

Newland, 1997; Spanos and Failla, 2004). Clearly, WVD utilizes the non decaying in 

time harmonic sinusoids and thus the variable τ must be integrated over an infinite range 

to compute the Fourier coefficients of  R(τ, t), yielding a spectrum that cannot reflect the 

actual local behavior of the signal at time t. In this respect, the WVD poses the same 

fundamental problem that limits the STFT. Furthermore, the WVD lacks, to a certain 

degree, physical meaning since in several cases it yields negative values for the spectrum 

with obvious physical interpretation problems (Cohen, 1995).          

The wavelet transform overcomes the aforementioned difficulties. It provides a 

time- frequency representation of a signal based on a double series of basis functions 

called “wavelets” (small waves). Wavelets have an oscillatory wave-like form with 



certain frequency content and localized energy in time. They are generated by scaling and 

shifting a single “mother wavelet” function. Scaling allows the time duration of the 

wavelet to be adjusted according to the local frequency content of the signal, contrary to 

the harmonic sinusoids used in all Fourier- based techniques that have infinite support in 

time. Thus, small or large scales can be selected to capture high- or low- frequency 

components, respectively, with a significant reduction of the requisite computational 

effort as compared to the STFT. 

A plethora of wavelet functions capable of generating meaningful analyzing basis 

has been developed to best suit several problems in science and engineering related to 

transient, time-variant, or non-stationary phenomena. This fact endows the method with 

flexibility which constitutes another reason for its popularity among many researchers. In 

a recent review article by Spanos and Failla (2005), an extensive reference list is 

provided citing numerous publications incorporating the wavelet analysis for random 

field simulation, system identification, damage detection and other structural engineering 

and vibration applications. Additionally, Zhou and Adeli (2003a, 2003b), considered the 

Mexican hat wavelets to analyze earthquake accelerograms in time-frequency domain, 

while Qang and Deng (1999), Hou et. al (2000),  and Spanos et. al (2006) used spatial 

wavelets to detect damage in structural members.  

The family of generalized harmonic wavelets introduced by Newland (1994a, 

1994b), possesses the appealing property of non- overlapping Fourier transforms which 

renders the corresponding harmonic wavelet transform an exceptional tool in cases where 

enhanced resolution in the frequency domain is important. To enhance the time resolution 

as well, the filtered harmonic wavelets were proposed later by the same author (Newland, 



1999). The harmonic wavelet transform has been used in geotechnical earthquake 

engineering in conjunction with the spectral analysis of surface waves to estimate the 

shear wave velocity of soil layers (Kim and Park, 2002), as well as in soil dynamics for 

analyzing transient vibration data from centrifuge model experiments to study 

liquefaction of saturated sands (Newland and Butler, 2000; Haigh et al., 2002).  

The present article extends earlier efforts made (Spanos et al., 2005), in using 

filtered harmonic wavelets for capturing local effects on various nonstationary signals 

frequently encountered in earthquake and structural engineering. Previous works by 

Haigh et al. (2002) and Spanos et al. (2005), have considered the analysis of recorded 

earthquake accelerograms associated with major seismic events via the harmonic 

wavelet transform. Herein, a more systematic study of strong ground motions is 

undertaken and smooth joint time- frequency spectra are provided for important near- 

field (two) and far- field (two) recorded seismic events (Spencer et al., 1999; Ohtori et 

al., 2004), featuring the concept of the mean instantaneous frequency (Boashash, 1992a; 

Boashash, 1992b; Cohen, 1995).  

Furthermore, the joint time-frequency harmonic wavelet analysis is used to 

complement early works such as that of Roesset (1986), to capture the influence of 

nonlinearity on the variation of the effective natural frequencies of a structural system 

during the evolution of a seismic event. For this purpose, nonlinear step-by-step in time 

analysis is performed for a benchmark 20- story steel frame building described in 

Spencer et al. (1999), and Ohtori et al. (2004), excited by one of the above mentioned 

strong ground motions scaled by various factors. Appropriate numerical results for 

certain of the response time histories analyzed by means of the harmonic wavelet 



transform are presented. They pertain to undamaged and severely damaged structural 

conditions, and demonstrate that the mean instantaneous frequency of a signal can be 

used as a detection tool for global structural damage. 

 
 
2.  Harmonic wavelets and Mean instantaneous frequency of signals 

Consider a function ( )f t  in the time domain satisfying the finite energy 

condition 

( ) 2
f t dt

∞

−∞

< ∞∫ .     (1) 

The classic Fourier transform decomposes the function ( )f t  by projecting it onto 

the basis of sinusoidal functions with varying frequencies. For each frequency value, a 

Fourier coefficient is assigned and the two-dimensional (2-D) Fourier amplitude 

spectrum of ( )f t  is obtained by plotting those coefficients versus frequency. Note that 

sinusoids are represented by delta functions in the frequency domain, yielding excellent 

frequency resolution but have no strong temporal localization features.  

The Wavelet transform uses a basis of functions generated by appropriately 

dilating and then translating in time a single mother wavelet function. Generally, they are 

oscillatory functions of zero mean and absolutely integrable and square integrable (i.e. of 

finite energy in L1 and L2 norm). Dilation is achieved by modifying the scale parameter 

α which controls the frequency content of the wavelet function, while translation in time 

is accomplished by altering the time parameter b. Thus, the Wavelet transform provides a 

joint time-frequency representation of ( )f t by assigning a number of wavelet coefficients 

at different scales, extending the traditional concept of frequency, and time positions. The 



most general form of the continuous wavelet transform (CWT) of ( )f t is given by the 

equation 

( ) ( )1, * t bw a b f t dt
aa

ψ
∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ,    (2) 

where the function ( )tψ denotes the mother wavelet, and w(a,b) is the wavelet 

coefficient at scale a and time position b. The symbol (*) denotes complex conjugation. 

Typically, such an analysis results in a 3-D spectrum having the wavelet coefficients 

plotted versus time and scale. However, caution should be exercised on defining time, 

and distinguishing scale from frequency and the relationship between them which 

depends on the wavelets used and their form. For symmetric wavelets in the time domain, 

time is usually defined as the center of their time window and the same holds respectively 

for symmetric wavelets in the frequency domain. Otherwise, the mean time and the mean 

frequency of the wavelet serve for time and frequency in the 3-D spectral map.   

Harmonic wavelets are specifically defined to have a band limited spectrum. In 

general, two indices (m, n), are used to define their finite support in the frequency domain 

and thus to control their frequency content. Two different kinds of time-frequency 

representation have been introduced by Newland (1994a, 1994b), in conjunction with the 

harmonic wavelet transform (HWT), and the treatment of deterministic signals; the 

dyadic and the generalized harmonic wavelet schemes, the first being a special case of 

the second for m= 2α and n= 2α+1. Later, the filtered harmonic wavelet scheme was 

presented by the same author to enhance the time resolution of the generalized scheme 

(Newland, 1999; Spanos et al., 2005). Previous work such as in Spanos et al. (2005), 

suggests that the filtered harmonic wavelet scheme improves significantly the time 



resolution of the wavelet transform, and does compensate for its increased computational 

cost by being capable of adequately capturing the change in the frequency content of 

seismic signals. Herein, the last scheme is briefly reviewed as it is exclusively used in the 

ensuing analyses. 

The filtered harmonic wavelets scheme incorporates a Hanning window function 

in the frequency domain to improve the time localization capabilities of the HWT in the 

wavelet mean square map for a given frequency resolution (Newland, 1999; Spanos et al., 

2005). The wavelet function of scale (m, n) and position (k) in the frequency domain 

takes the form 

( )( , ),

1 21 cos , 2 2ˆ ( )2
0, elsewhere

m n k

m m n
n m n m

ω π π ω π
ω π

⎧ ⎛ − ⎞⎛ ⎞− ≤ ≤⎪ ⎜ ⎟⎜ ⎟Ψ = − −⎝ ⎠⎨ ⎝ ⎠
⎪
⎩

 , (3) 

where m and n are assumed to be positive, not necessarily integer numbers. By 

application of the inverse Fourier transform in Eq. (3) one obtains its complex- valued 

time domain counterpart (Spanos et al., 2005), with magnitude  

( )
( )

( )
( , ), 2

2

sin

1
m n k

kt n m
n mt

k kt t n m
n m n m

π
ψ

π

⎛ ⎞− −⎜ ⎟−⎝ ⎠=
⎛ ⎞⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

,  (4) 

and phase 

( ) ( )( , ),m n k
kt t m n

n m
ϕ π ⎛ ⎞= − +⎜ ⎟−⎝ ⎠

.    (5) 

Eq. (3) shows that the filtered harmonic wavelets attain non zero values in the 

frequency band [m2π, n2π]. Their centre frequency is (m+ n)π and their bandwidth is (n-

m)2π, while symmetry is preserved making the transition from scale to frequency domain 

an easy task. Mathematically the filtered harmonic wavelets have an infinite support in 

the time domain as Eqs. (4) and (5) show, but the fairly fast decay that they exhibit, leads 



to the definition of an effective support, so that the function is assumed to have a finite 

energy whose concentration depends on (n- m), besides k. The Hanning window function 

applied in the frequency domain for the filtered wavelets results in a narrower effective 

support in the time domain, improving their resolution in time over the generalized 

wavelets. However, contrary to the generalized harmonic wavelets that feature box-like 

spectra, the filtered wavelet transform does not define an orthogonal transform. 

Fortunately, if signal reconstruction is not an issue, as in the case of analyzing time- 

history records, this does not constitute a major drawback.  

An important point concerning the practical implementation of the HWT is that 

the term 1/(n-m) determines the scale of harmonic wavelets and thus may be construed as 

the substitute of the scale parameter α. As it will be shown in the numerical results to be 

discussed in a forthcoming section of the paper, careful selection of the n, m parameters 

which is typically a case-dependent procedure may lead to a satisfactory balance between 

time and frequency resolution.  

The complex harmonic wavelet coefficients of a function ( )f t satisfying Eq. (1) 

are given by the equation 

( ) ( ) *
( , ), ( , ),( ) ( )m n k m n kw t n m f t t dtψ

+∞

−∞

= − ∫ .   (6) 

 From a computational point of view, it must be noted that the HWT utilizes the 

fast Fourier transform (FFT) which offers a significant advantage in terms of the requisite 

computational effort when long sequences are considered. This is achieved by performing 

the convolution that Eq. (6) describes for the corresponding discrete or sampled 

quantities in the frequency domain, where it becomes a simple multiplication (Newland, 



1999). Taking into account the fact that the harmonic wavelets are conveniently defined 

in the frequency domain as in Eq.(3), the FFT algorithm need only to be applied to the 

function ( )f t , and then the inverse FFT is used to obtain the wavelet coefficients in the 

time domain.    

In analogy to standard time- frequency analysis procedures (Cohen, 1995), the 

wavelet spectrogram can be defined as 

2

( , ),( , ) m n kSP t wω = .    (7) 

Clearly, Eq. (7) yields a 3-D graphical direct representation of ( )f t versus time and 

frequency and constitutes the basic result for all the ensuing analyses of the accelerogram 

and the structural response records. Treating the wavelet spectrogram as a joint time-

frequency density function the mean instantaneous frequency (Boashash, 1992a; 

Boashash,  1992b; Cohen, 1995) can be computed by the expression 

( )
( , )

( , )

SP t d
MIF t

SP t d
ω

ω

ω ω ω

ω ω
=
∫

∫
.    (8) 

Strictly speaking, Eq. (8) averages the wavelet spectrogram over all frequencies 

considered at a specific time instant and normalizes the outcome over the whole 

spectrum. Intuitively, it gives the temporal change of the mean value of the frequencies 

contained in the signal. Clearly, the averaging procedure eliminates local fluctuation and 

thus can yield more readily discernible information about the temporal evolution of the 

frequency content of a particular signal. 

 

 



3. Historic accelerograms and the benchmark structural system description 

Four historic earthquake records are studied to illustrate the appropriateness of the 

harmonic wavelet transform to provide information about the time-frequency 

characteristics of ground acceleration records pertaining to major earthquake events. The 

El Centro (N-S component recorded at the Imperial Valley Irrigation District substation 

in El Centro, California, during the Imperial Valley, California earthquake of May 18, 

1940), and the Hachinohe (N-S component recorded at Hachinohe City during the 

Takochi-oki earthquake of May 16, 1968), earthquakes have been selected as far-field 

examples. The Northridge (N-S component recorded at Sylmar County Hospital parking 

lot in Sylmar, California, during the Northridge, California earthquake of January 17, 

1994), and the Kobe (N-S component recorded at the Kobe Japanese Meteorological 

Agency (JMA) station during the Hyogo-ken Nanbu earthquake of January 17, 1995), 

earthquakes have been chosen as near-field examples. This selection of historic data is 

motivated by the fact that they have also been used in benchmark studies related to 

structural control (Ohtori et al., 2004). Figure (1) shows the accelerograms of these strong 

ground motions. 

The usefulness of the harmonic wavelet transform for capturing localized 

frequency content is further investigated in this study by considering the nonlinear 

structural seismic responses of a particular structure. To this end, the nonlinear dynamic 

response of a benchmark 20-story steel frame introduced in Spencer et al. (1999) and 

Ohtori et al. (2004), to the preceding accelerograms is derived. It was designed by 

Brandow & Johnston Associates for the SAC Phase II Steel Project and is part of a 



typical mid- to high-rise building which meets the seismic code for the Los Angeles, 

California region.  

The structural system consists of moment- resisting frames (MRFs), at the 

perimeter to engage lateral loads, and simple framing in the interior. The columns are 345 

MPa steel and the floors are composite with 248 MPa steel beams and concrete. The 

model of the building along with information regarding various structural parameters is 

shown in Figure (2). The floors are assumed to be rigid in the horizontal plane and thus 

diaphragmatic action holds. The inertia forces are assumed to be evenly distributed on the 

two moment resistant frames. Symmetry allows an in-plane 2-D analysis of half of the 

entire building and thus only one MRF along the weak N-S direction is considered. The 

mathematic model described in Spencer et al. (1999), is adopted for the boundary 

conditions and the discretization of the elastic and inertia properties of the frame. The 

first five natural frequencies of the frame are 0.261, 0.753, 1.30, 1.83 and 2.40 Hz. A 

trilinear hysteresis model for structural member bending, as the one shown in Figure (3), 

is used.  

 

4. Numerical results/ Joint time-frequency spectra 

4.1 Accelerograms 

The wavelet transform has been employed to analyze the four aforementioned 

accelerograms using the filtered harmonic wavelets. Certain plots summarizing the 

numerical results obtained are shown in figures (4), (5), (6) and (7), corresponding to the 

El Centro, Hachinohe, Northridge and Kobe earthquake records, respectively. In the (a) 

plot of each figure the percentage of the total energy of the signal that is captured at 

different frequencies is given, resulting from standard Fourier transform analysis.  



The (b) plots present the 3-D wavelet spectrograms as computed by Eq. (7). It is 

noted that although three indices appear in the local spectrum notation, two relate to 

frequency (m, n), and the third defines the time position (k). Thus, by changing the values 

of m and n one may have a trade-off between time and frequency resolution in the 

general harmonic wavelet map, where the uncertainty principle applies. After several 

trials, the difference n-m= 10 is found to yield a meaningful compromise between time 

and frequency resolution.          

A comparison of the above plots for each record shows clearly the advantages of a 

joint time-frequency analysis for earthquake accelerograms. Not only does it offer a 

useful representation of the overall frequency content of the signal, just like the standard 

Fourier analysis does, but it also succeeds to capture the evolution of the frequencies 

present in time for as long as the earthquake lasts. Moreover, note the smoothness of the 

wavelet spectrograms and the resolution by which the filtered harmonic wavelets 

represent the signals at all frequency bands that are of interest.   

Contour plots of the wavelet spectrograms are provided in the (c) part of the 

figures where the mean instantaneous frequency (MIF), as computed by Eq. (8), is 

superimposed; the time histories of the accelerograms (d) are shown as well to expedite 

the physical interpretation. In this manner, a more efficient joint time- frequency 

representation is achieved from a practical point of view, and the evolution in time of the 

frequency content of the signal becomes even more apparent. 

Examining these numerical results, expected trends due to the characteristics of 

the recorded events are clearly captured by the analysis. In general, the higher 

frequencies are more dominant during the “growth phase” of the accelerograms and then 



decay following a rate that is influenced by many parameters whose consideration is 

beyond the scope of the present paper.  

 

4.2 Structural response  

The joint time-frequency analysis using the harmonic wavelet transform was next 

implemented to extend early works such as that of Roesset (1986), to capture the 

influence of nonlinearity on the variation of the effective natural frequencies of yielding 

structural systems during the evolution of a seismic event, and to demonstrate the 

potential of the method for damage detection purposes. In particular, the inelastic 

structural response of the 20- story steel frame of Figure (2) has been determined for 

various amplitude levels of excitation using as input the four previously analyzed ground 

accelerations of Figure (1). The standard β-Newmark algorithm with the assumption of 

constant acceleration at each time step (values β=1/4, γ=1/2), was implemented for the 

purpose of accounting for the non linear behavior of the frame under consideration, as 

extensively described in Ohtori et al. (2004).    

The harmonic wavelet transform was applied to the lateral displacement response 

of the first floor. To assess the effectiveness of the harmonic wavelets as an analytical 

damage detection tool two extreme cases are considered in Figures (8) and (9) where the 

plots included are of the same kind and order as discussed before. In Figure (8), the El 

Centro accelerogram scaled by the factor 0.5 is used as input, so that the frame stays in 

the elastic region, whereas for the El Centro accelerogram scaled by 2.50 (Figure (9)) the 

frame suffers structural damage witnessed by permanent deformations. For reference 

purposes the first five natural frequencies of the elastic frame are shown on the plots. 



In this context, it is noted that linear structural systems exhibit highly resonant 

transfer functions and thus act like pass-band filters to earthquake signal inputs yielding 

output- response signals characterized by the structural natural frequencies. Further, when 

they are forced to exhibit inelastic behavior their effective natural frequencies decrease, 

due to stiffness degradation. Both trends can be readily seen in Figures (8) and (9) in the 

traditional Fourier spectrum plots (a), and the wavelet spectrograms (b), (c). Obviously, 

the joint time- frequency representation gives additional time localization information 

about the effective frequencies of the response signals and adequately captures their 

evolution in time.  

More importantly, in this case the MIF can be construed as a structural damage 

indicator. Clearly, the structural response signal in the frequency domain is determined as 

the product of the transfer function of the structure times the Fourier transform of the 

input signal. For any particular effective temporal segment, the MIF of the response 

averages this product over the frequency domain. Note that the MIF of the El Centro 

accelerogram oscillates around a mean value of roughly 3Hz as seen in Figure (4c), while 

the first two natural frequencies of the elastic structure attain much lower values of 

0.26Hz and 0.75Hz. During the first few seconds of both of the response signals 

examined in Figures (8c) and (9c) the MIF practically remains the same. Primarily, the 

elastic transfer function is involved in the averaging, since the input signal has not been 

substantially build up, yet. During the period which follows up to the 30th second when 

most of the energy of the strong ground motion has been induced to the structure, the 

MIF decreases in both cases. It is clear that in this case the MIF averages the product of 

the effective transfer function of the structure with the spectrum of the excitation. In the 



case of the scaled by 2.5 input, there is an expected overall trend of the MIF curve 

towards the lower frequencies when compared to the response induced by the input 

scaled by 0.5. After the 30th second, which roughly marks the effective duration of this 

particular strong ground motion, the structural response becomes primarily free vibration 

response. Thus, in the elastic case, the MIF converges to its value corresponding to the 

beginning of the seismic event, since, of course, the dynamic characteristics of the 

structure, remain the same. On the contrary, for the 2.50 El Centro input, the MIF value 

remains in much lower levels as the frame has undergone plastic deformations.  In the 

Fourier spectrum (Figure 9b), this is manifested by a dominant dc component, which is 

entirely absent from the Fourier spectrum of the elastic case response. Evidently, this new 

“mode” contributes significantly to the drop in MIF for the 2.5 El Centro input after the 

30th second of the signal. 

 

5) Concluding remarks 

The present article has extended earlier efforts made in Spanos et al. (2005), 

regarding applications of wavelets on various nonstationary signals frequently 

encountered in earthquake and structural engineering, in general. 

In this regard, the harmonic wavelet transform, incorporating the enhanced time 

resolution and the appealing properties in frequency domain of the filtered harmonic 

wavelets, has been employed to analyze historic earthquake accelerograms and time 

histories of inelastic structural response to seismic signal inputs. Signals of this nature are 

inherently non stationary as their intensity and frequency content varies with time and 

thus call for a joint time- frequency representation.   



In this context, four ground acceleration records pertaining to two near-field and 

two far- field major earthquake events have been analyzed via this signal processing tool, 

and smooth 3-D wavelet spectrograms have been obtained with strong resolution at all 

frequency bands that are of interest. Certain observations have been made regarding the 

numerical results and the appropriateness of the time-frequency representation for 

capturing the evolving frequency content vis a vis the traditional Fourier amplitude 

spectrum. 

Furthermore, the harmonic wavelet transform has been applied to the lateral 

displacement response of the first floor of a 20-story steel frame exposed to one of the 

four historical accelerograms scaled by appropriate factors to simulate undamaged and 

severely damaged conditions for the structure.  The effectiveness of the harmonic wavelet 

transform as a detection tool for global structural damage has been demonstrated. In this 

context, attention has also been focused on the usefulness of the mean instantaneous 

frequency. The latter decreases significantly when the frame is forced to exhibit inelastic 

behavior, reflecting the overall reduction of the effective natural frequencies due to 

stiffness degradation and health deterioration of structure. 

It is believed that studies such as the present will further familiarize the structural 

engineering community with the advantages of custom-made joint time- frequency 

analyses and will establish wavelets and other related concepts as indispensable tools of 

modern signal localization capturing and system/ structure health monitoring.       
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Figure (1): Earthquake accelerograms considered. 
 
 
  



 
 
Figure (2): Benchmark 20-story steel frame used in the analysis of typical mid- to high-

rise building’s response to earthquake excitations (after Spencer et al. 1999). 
 
 

 
 
 
 



 
 

Figure (3): Trilinear hysteresis model for structural member bending. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
Figure (4): Joint time-frequency analysis of the El Centro N-S component earthquake via 

harmonic wavelet transform 
 
 
 

 
 

Figure (5): Joint time-frequency analysis of the Hachinohe N-S component earthquake 
via harmonic wavelet transform 

 

(a) 

(b) 

(c)

(d)

(a) 

(b) 

(c)

(d)



 
Figure (6): Joint time-frequency analysis of the Northridge N-S (Sylmar) component 

earthquake via harmonic wavelet transform 
 
 
 

 
Figure (7): Joint time-frequency analysis of the Kobe N-S component earthquake via 

harmonic wavelet transform 
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Figure (8): Joint time-frequency analysis of the first floor lateral displacement response to 

0.50·El Centro ground acceleration input. 
 

 
Figure (9): Joint time-frequency analysis of the first floor lateral displacement response to 

2.50·El Centro ground acceleration input. 
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